Michigan Department of Transportation Traffic and Safety

GEOMETRIC DESIGN GUIDES

GEO - 100 THRU GEO - 690

Disclaimer:

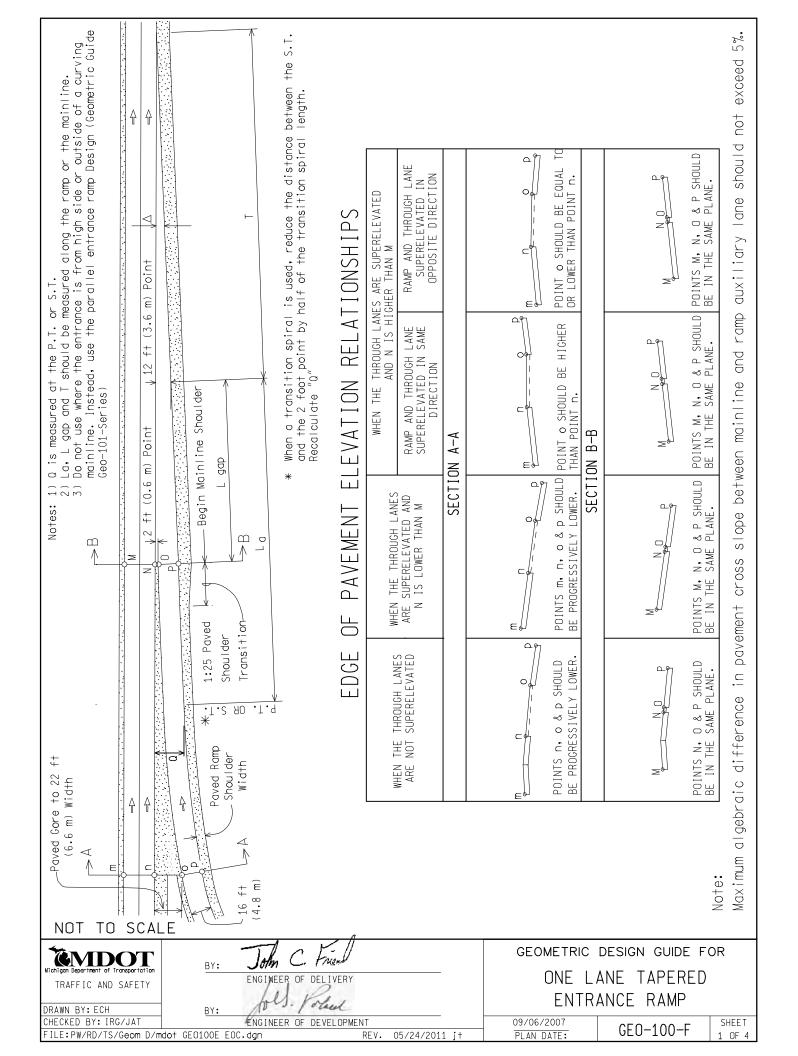
The information provided is a product of the Michigan Department of Transportation (MDOT) and is intended for your use and is not to be sold or otherwise distributed for profit. There are no expressed or implied warranties concerning the accuracy, completeness, reliability or usability of this information. The MDOT assumes no responsibility for any incorrect results or damage resulting from the use of this information.

The information presented in these documents has been prepared in accordance with recognized engineering principles and is for general use. It should not be used for specific application without competent professional examination and verification of its suitability and applicability by a licensed professional engineer.

ENGLISH VERSION

PREPARED BY TRAFFIC AND SAFETY

DEPARTMENT DIRECTOR KIRK T. STEUDLE ENGINEER OF TRAFFIC AND SAFETY DRAWN BY: MTS CHECKED BY: JAT


FILE: K:-DGN-Coverpage-Cover e geometric.tsg

REV.9/21/2010 dhd

GEOMETRIC DESIGN GUIDES INDEX

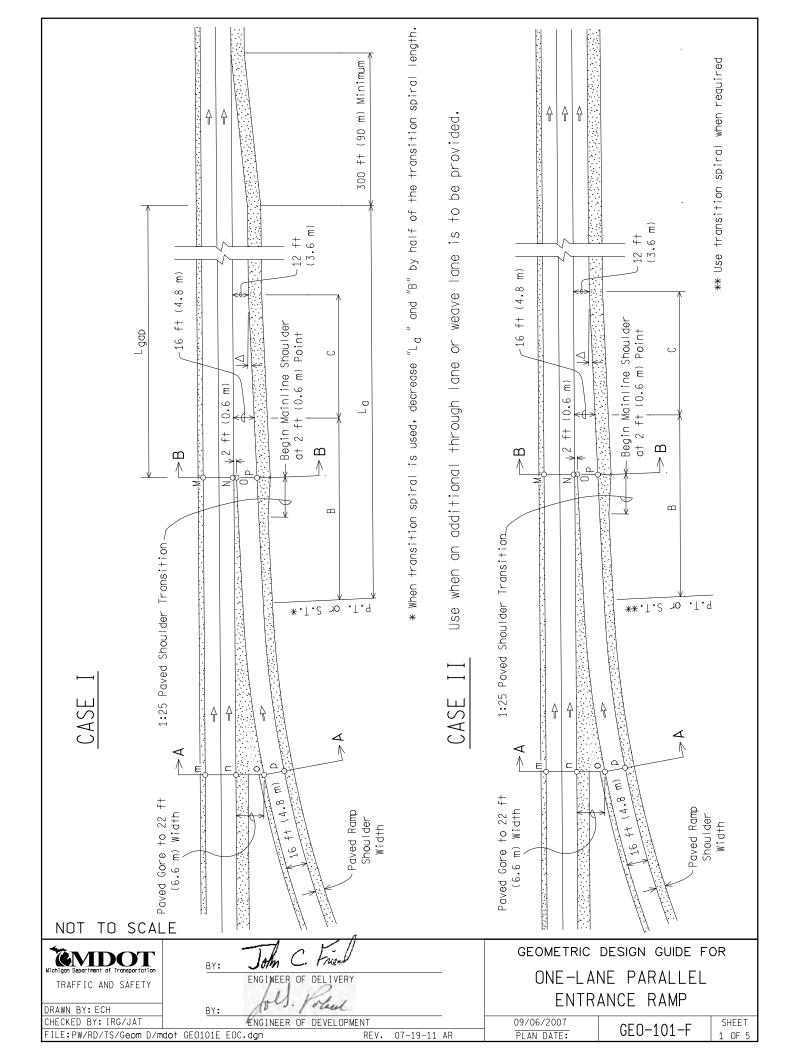
Guide Num	ber and Name	Approval Date
GEO-100-F	One-Lane Tapered Entrance	09-06-07
GEO-101-F	One-Lane Parallel Entrance	09-06-07
	Two-Lane Entrance	09-06-07
GEO-120-C	Successive Entrance	09-06-07
GEO-130-D	One-Lane Tapered Exit Ramp	08-07-08
GEO-131-D	One-Lane Parallel Exit Ramp	08-07-08
GEO-140-B	Two-Lane Exit Ramp	08-07-08
GEO-150-C	Successive Exit Ramps	08-07-08
GEO-202-B	12' Width Entrance and Exit Slip Ramps	08-07-08
GEO-300-D	Diamond Interchange	06-03-10
GEO-310-C	Collector-Distributor Road	06-03-10
GEO-320-C	Parclo - A - 4 - Quad	08-07-08
GEO-330-C	Parclo - B - 4 - Quad	08-07-08
GEO-340-A	Parclo - A - B - 2 - Quad	09-06-07
GEO-350-B	Trumpet Type	09-06-07
GEO-360-A	Cloverleaf Type	09-06-07
GEO-370-D	Ramp Terminal Details	06-03-10
GEO-400-B	Urban Diamond Interchange	06-03-10
GEO-500-C	Rest Area	08-07-08
	Two-to-Four Lane Divided Transition	06-03-10
	Turned-In Roadway	09-06-07
GEO-650-D		06-03-10
GEO-670-D		06-03-10
	Commercial Driveways	06-03-10
GEO-690-D	Temporary Runaround	06-03-10

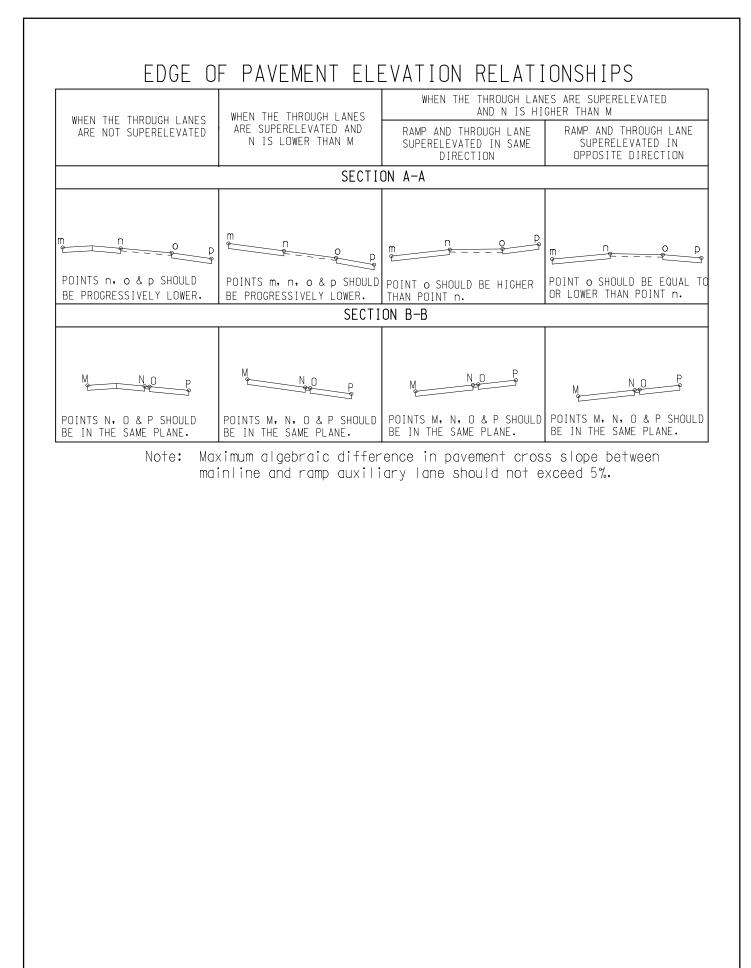
Michigan Department of Transportation Division of Operations

MINIMUM ENGLISH LENGTHS FOR TAPERED ENTRANCE RAMPS

		TAPER ∆=0°5	=65 : 1 2'53"	TAPER ∆=0°5		TAPER ∆=1°0		TAPER ∆=1°0		TAPER ∆=1°1	
RAMP DESIGN SPEED	PERCENT GRADE OF		WAY SPEED MPH	ROAD DESIGN = 70 M	SPEED	ROAD DESIGN = 60	SPEED	ROAD DESIGN = 55 to		ROAD DESIGN 45 or I	SPEED =
(MPH)	THROUGH ROADWAY	T = 7 Lgap =		T = 7 Lgap =		T = 6 Lgap =		T = 6 Lgap =		T = 5 Lgap =	40 FT 270 FT
		La (FT)	Q (FT)	La (FT)	Q (FT)	La (FT)	Q (FT)	La (FT)	Q (FT)	La (FT)	Q (FT)
	-3 TO LESS THAN -5	978	27.1	912	27.2	660	24.0	506	22.2	450	22.0
20	BETWEEN -3 AND +3	1630	37.1	1520	37.4	1100	32.0	810	28.2	450	22.0
20	+3 TO LESS THAN +5	2528	50.9	2280	50.0	1540	40.0	1094	33.9	608	25.5
	-3 TO LESS THAN -5	948	26.6	852	26.2	612	23.2	500	22.0	450	22.0
25	BETWEEN -3 AND +3	1580	36.4	1420	35.7	1020	30.6	780	27.6	450	22.0
20	+3 TO LESS THAN +5	2528	50.9	2201	48.7	1479	38.9	1092	33.9	608	25.5
	-3 TO LESS THAN -5	906	26.0	810	25.5	555	22.0	500	22.0	450	22.0
30	BETWEEN -3 AND +3	1510	35.3	1350	34.5	910	28.6	670	25.4	450	22.0
	+3 TO LESS THAN +5	2492	50.4	2160	48.0	1365	36.9	972	31.5	608	25.5
	-3 TO LESS THAN -5	852	25.2	738	24.3	550	22.0	500	22.0	450	22.0
35	BETWEEN -3 AND +3	1420	33.9	1230	32.5	800	26.6	550	23.0	450	22.0
	+3 TO LESS THAN +5	2450	49.7	2030	45.9	1200	33.9	798	28.0	608	25.5
	-3 TO LESS THAN -5	696	22.8	600	22.0	550	22.0	500	22.0	450	22.0
40	BETWEEN -3 AND +3	1160	29.9	1000	28.7	550	22.0	500	22.0	450	22.0
	+3 TO LESS THAN +5	2088	44.2	1700	40.4	825	27.0	725	26.5	608	25.5
	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0	450	22.0
45	BETWEEN -3 AND +3	1040	28.0	820	25.7	550	22.0	500	22.0	450	22.0
	+3 TO LESS THAN +5	1924	41.6	1435	36.0	825	27.0	725	26.5	608	25.5
	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0		
50	BETWEEN -3 AND +3	780	24.0	600	22.0	550	22.0	500	22.0		
	+3 TO LESS THAN +5	1482	34.8	1080	30.0	825	27.0	725	26.5		
	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0	500	22.0		
55	BETWEEN -3 AND +3	650	22.0	600	22.0	550	22.0	500	22.0		
	+3 TO LESS THAN +5	1268	31.5	1080	30.0	825	27.0	725	26.5		
	-3 TO LESS THAN -5	650	22.0	600	22.0	550	22.0				
60	BETWEEN -3 AND +3	650	22.0	600	22.0	550	22.0				
	+3 TO LESS THAN +5	1268	31.5	1080	30.0	825	27.0				
	-3 TO LESS THAN -5	650	22.0	600	22.0						
65	BETWEEN -3 AND +3	650	22.0	600	22.0						
	+3 TO LESS THAN +5	1268	31.5	1080	30.0						
70	-3 TO LESS THAN -5	650	22.0	600	22.0						
70	BETWEEN -3 AND +3	650	22.0	600	22.0						
	+3 TO LESS THAN +5	1268	31.5	1080	30.0						
75	-3 TO LESS THAN -5	650	22.0								
10	BETWEEN -3 AND +3	650	22.0								
	+3 TO LESS THAN +5	1268	31.5								

MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	09/06/2007		SHEET
FILE:PW/RD/TS/Geom D/mdot GE0100E E0C.dgn	REV. 05/24/2011 j†	PLAN DATE:	GEU-100-F	2 OF 4


MINIMUM METRIC LENGTHS FOR TAPERED ENTRANCE RAMPS


			=65 : 1 2'53"		=60:1 7′17″	TAPER ∆=1°0	=55:1 2'30″	TAPER ∆=1°0			=45 : 1 6'23"
RAMP DESIGN SPEED	PERCENT GRADE OF THROUGH	ROADN DESIGN = 120		ROAD DESIGN = 110	SPEED	ROAD DESIGN = 100	SPEED	R04 DESIGN = 90 to			SPEED =
(km/hr)	ROADWAY		238 m 119 m	T = 2 Lgap =	219 m 110 m	T = 2 Lgap =	201 m = 101 m	T = 1 Lgap =			165 m = 82 m
		L _a (m)	Q (m)	L _a (m)	Q (m)	L _a (m)	Q (m)	L _a (m)	Q (m)	L _a (m)	Q (m)
	-3 TO LESS THAN -5	309	8.4	234	7.5	183	7.0	152	6.7	137	6.7
30	BETWEEN -3 AND +3	515	11.6	390	10.1	305	9.2	225	8.1	137	6.7
	+3 TO LESS THAN +5	736	14.7	555	12.7	428	11.4	315	9.9	178	7.6
	-3 TO LESS THAN -5	294	8.2	222	7.3	171	6.8	152	6.7	137	6.7
40	BETWEEN -3 AND +3	490	11.2	370	9.8	285	8.8	205	7.7	137	6.7
	+3 TO LESS THAN +5	736	15.0	555	12.9	428	11.4	287	9.4	178	7.6
	-3 TO LESS THAN -5	276	7.9	204	7.0	168	6.7	152	6.7	137	6.7
50	BETWEEN -3 AND +3	460	10.7	340	9.3	255	8.3	175	7.1	137	6.7
	+3 TO LESS THAN +5	736	15.0	544	12.7	408	11.1	263	8.9	178	7.6
	-3 TO LESS THAN -5	246	7.4	183	6.7	168	6.7	152	6.7	137	6.7
60	BETWEEN -3 AND +3	410	10.0	290	8.5	205	7.4	152	6.7	137	6.7
	+3 TO LESS THAN +5	697	14.4	493	11.9	349	10.0	243	8.5	178	7.6
	-3 TO LESS THAN -5	198	6.7	183	6.7	168	6.7	152	6.7	137	6.7
70	BETWEEN -3 AND +3	325	8.6	200	7.0	168	6.7	152	6.7	137	6.7
	+3 TO LESS THAN +5	553	12.1	340	9.3	302	9.1	243	8.5	178	7.6
	-3 TO LESS THAN -5	198	6.7	183	6.7	168	6.7	152	6.7	137	6.7
80	BETWEEN -3 AND +3	245	7.4	183	6.7	168	6.7	152	6.7	137	6.7
	+3 TO LESS THAN +5	441	10.4	329	9.1	302	9.1	243	8.5	178	7.6
	-3 TO LESS THAN -5	198	6.7	183	6.7	168	6.7	152	6.7		
90	BETWEEN -3 AND +3	198	6.7	183	6.7	168	6.7	152	6.7		
	+3 TO LESS THAN +5	356	9.1	329	9.1	302	9.1	243	8.5		
	-3 TO LESS THAN -5	198	6.7	183	6.7	168	6.7				
100	BETWEEN -3 AND +3	198	6.7	183	6.7	168	6.7				
	+3 TO LESS THAN +5	356	9.1	329	9.1	302	9.1				
	-3 TO LESS THAN -5	198	6.7	183	6.7						
110	BETWEEN -3 AND +3	198	6.7	183	6.7						
	+3 TO LESS THAN +5	356	9.1	329	9.1						
	-3 TO LESS THAN -5	198	6.7								
120	BETWEEN -3 AND +3	198	6.7								
	+3 TO LESS THAN +5	356	9.1								

MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	09/06/2007		SHEET
FILE:PW/RD/TS/Geom D/mdot GE0100E EOC	.dgn	REV. 05/24/2011 j+	PLAN DATE:	GEU-100-F	3 OF 4

- 1. The designer has the flexibility to choose either the taper type ramp or the parallel type ramp. However, the same type of entrance and exit ramp should be used within an interchange and corridor. Uniformity in design is needed to aid driver expectancy. On sharp curves, it may be preferable to use parallel type ramps.
- 2. Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDOT Road Design Manual.
- 3. If an additional through lane is provided or the entrance ramp joins the mainline on the high side (outside) of the curve, use GEO-101-Series.
- 4. If the through pavement is curved, plot offsets for taper and connect with appropriate curve.
- 5. Prepare detail grades and profiles from Section A-A to section B-B.
- 6. The value of La or Lgap, whichever produces the greater distance downstream from the 2 ft (0.6 m) point, is suggested for use in the design of the ramp entrance. La is the acceleration distance. Lgap is the minimum distance required to find a gap in traffic and merge onto the mainline.
- 7. Spirals transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 8. The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%.
- 9. The cross slope in the gore area between the 2 ft (0.6 m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent paved lane. This algrebraic difference also applies within crowned gores.
- 10. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 11. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 12. Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GEO-300-Series.
- 13. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

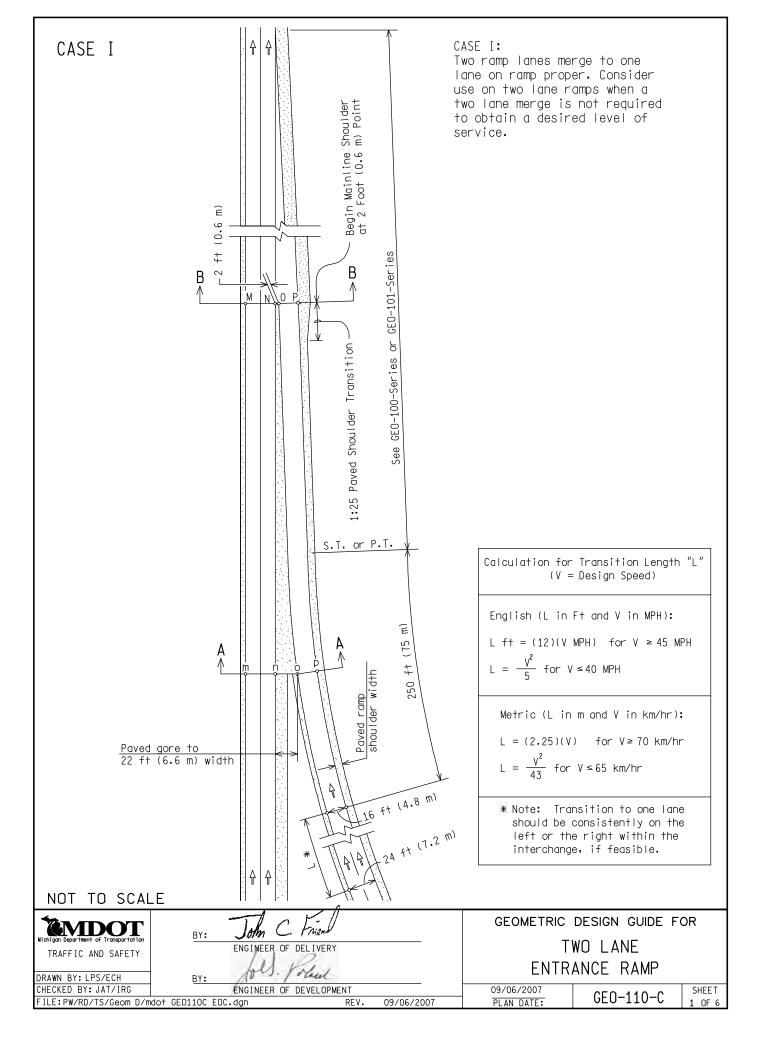
MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	09/06/2007	CEO 100 E	SHEET
FILE:PW/RD/TS/Geom D/mdot GE0100E E0C.dgn	REV. 05/24/2011 j+	PLAN DATE:	GEO-100-F	4 OF 4

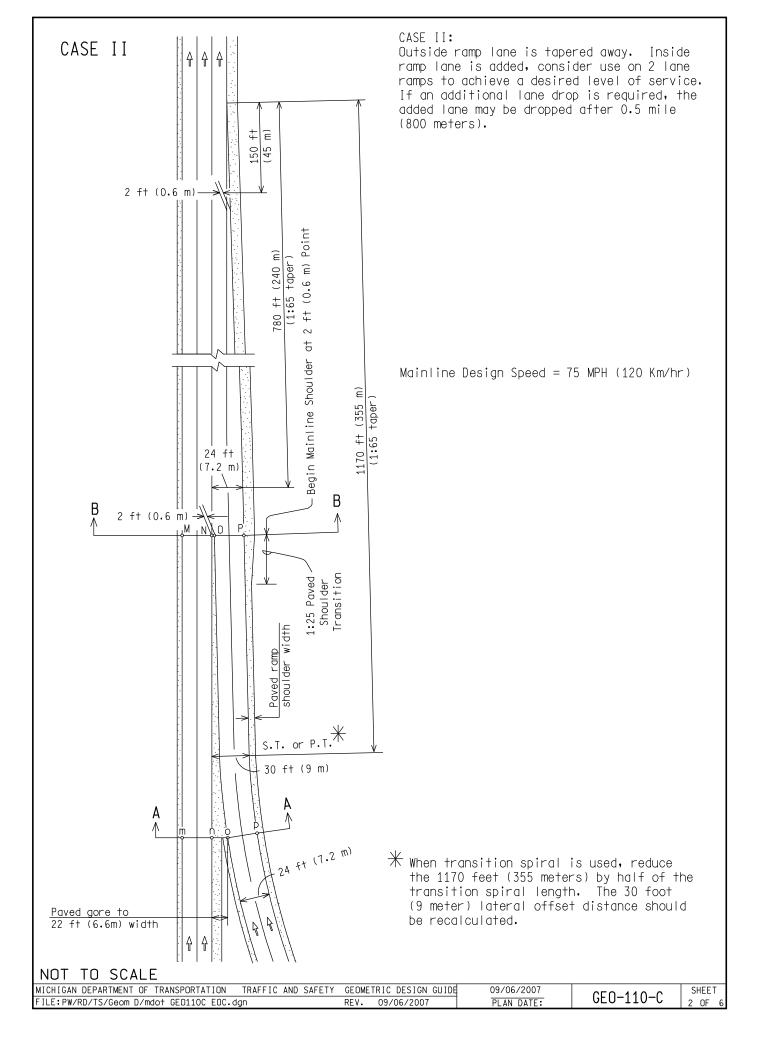
MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	09/06/2007		SHEET
FILE: PW/RD/TS/Geom D/mdot GE0101E EOC.	dgn	REV. 05/24/2011 j†	PLAN DATE:	GEU-101-F	2 OF 5

MINIMUM ENGLISH LENGTHS FOR PARALLEL ENTRANCE RAMPS

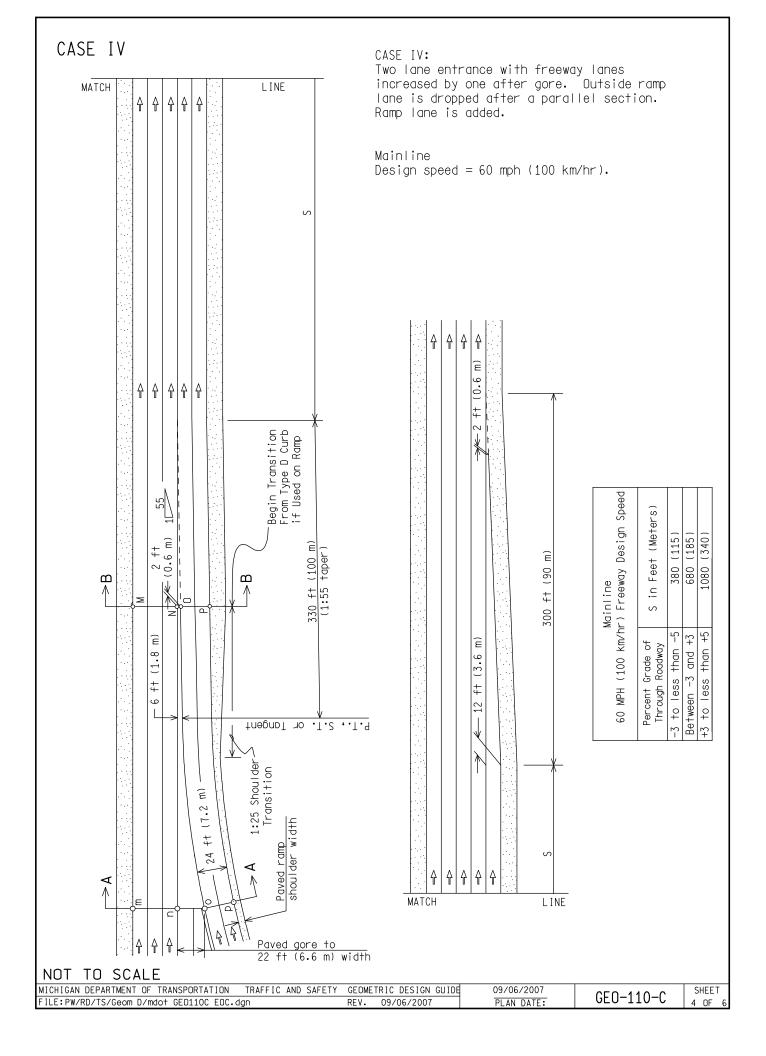
		TAPER=65:1 Δ=0°52′53″	TAPER=60:1 ∆=0°57′17″	TAPER=55:1 ∆=1°02′30″	TAPER=50:1 Δ=1°08′45″	TAPER=45:1 Δ=1°16′23″
RAMP DESIGN SPEED	PERCENT GRADE OF	ROADWAY DESIGN SPEED = 75 MPH	ROADWAY DESIGN SPEED = 70 MPH	ROADWAY DESIGN SPEED = 60 MPH	ROADWAY DESIGN SPEED = 55 to 50 MPH	ROADWAY DESIGN SPEED = 45 or less MPH
(MPH)	THROUGH ROADWAY	B = 390 FT C = 260 FT	B = 360 FT C = 240 FT	B = 330 FT C = 220 FT	B = 300 FT C = 200 FT	B = 270 FT C = 180 FT
		Lgap = 390 FT	Lgap = 360 FT	Lgap = 330 FT	Lgap = 300 FT	Lgap = 270 FT
		La (FT)	La (FT)	La (FT)	La (FT)	La (FT)
	-3 TO LESS THAN -5	978	912	660	506	450
20	BETWEEN -3 AND +3	1630	1520	1100	810	450
	+3 TO LESS THAN +5	2528	2280	1540	1094	608
	-3 TO LESS THAN -5	948	852	612	500	450
25	BETWEEN -3 AND +3	1580	1420	1020	780	450
	+3 TO LESS THAN +5	2528	2201	1479	1092	608
	-3 TO LESS THAN -5	906	810	550	500	450
30	BETWEEN -3 AND +3	1510	1350	910	670	450
	+3 TO LESS THAN +5	2492	2160	1365	972	608
	-3 TO LESS THAN -5	852	738	550	500	450
35	BETWEEN -3 AND +3	1420	1230	800	550	450
	+3 TO LESS THAN +5	2450	2030	1200	798	608
	-3 TO LESS THAN -5	696	600	550	500	450
40	BETWEEN -3 AND +3	1160	1000	550	500	450
	+3 TO LESS THAN +5	2088	1700	825	725	608
	-3 TO LESS THAN -5	650	600	550	500	450
45	BETWEEN -3 AND +3	1040	820	550	500	450
	+3 TO LESS THAN +5	1924	1435	825	725	608
	-3 TO LESS THAN -5	650	600	550	500	
50	BETWEEN -3 AND +3	780	600	550	500	
	+3 TO LESS THAN +5	1482	1080	825	725	
	-3 TO LESS THAN -5	650	600	550	500	
55	BETWEEN -3 AND +3	650	600	550	500	
	+3 TO LESS THAN +5	1268	1080	825	725	
	-3 TO LESS THAN -5	650	600	550		
60	BETWEEN -3 AND +3	650	600	550		
	+3 TO LESS THAN +5	1268	1080	825		
	-3 TO LESS THAN -5	650	600			
65	BETWEEN -3 AND +3	650	600			
	+3 TO LESS THAN +5	1268	1080			
	-3 TO LESS THAN -5	650	600			
70	BETWEEN -3 AND +3	650	600			
	+3 TO LESS THAN +5	1268	1080			
75	-3 TO LESS THAN -5	650				
75	BETWEEN -3 AND +3	650				
	+3 TO LESS THAN +5	1268				

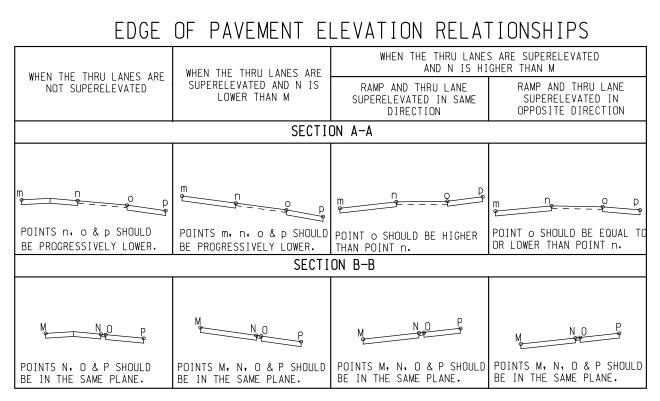
FILE:PW/RD/TS/Geom D/mdot GE0101E EOC.dgn REV. 05/24/2011 jt PLAN DATE: GEU-IUI-F 3 OF	MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	09/06/2007	CEO 101 E	SHEET
	FILE:PW/RD/TS/Geom D/mdot GE0101E EOC.c	lgn	REV. 05/24/2011 j+	PLAN DATE:	GEU-101-F	3 OF 5

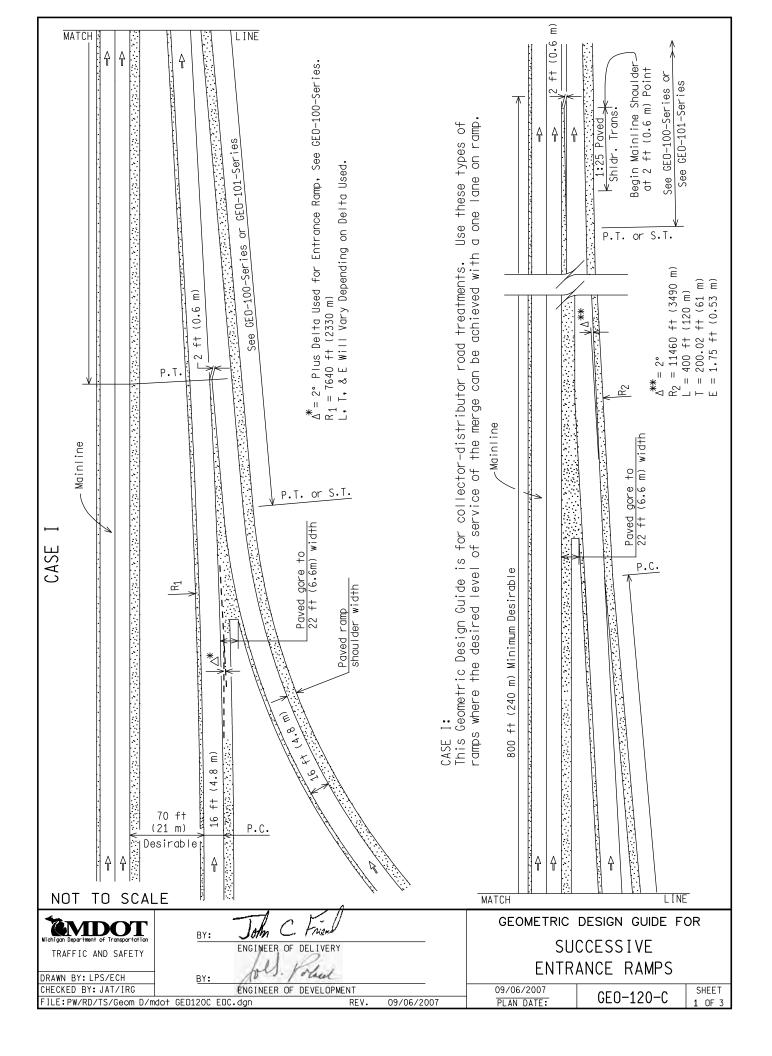

MINIMUM METRIC LENGTHS FOR PARALLEL ENTRANCE RAMPS

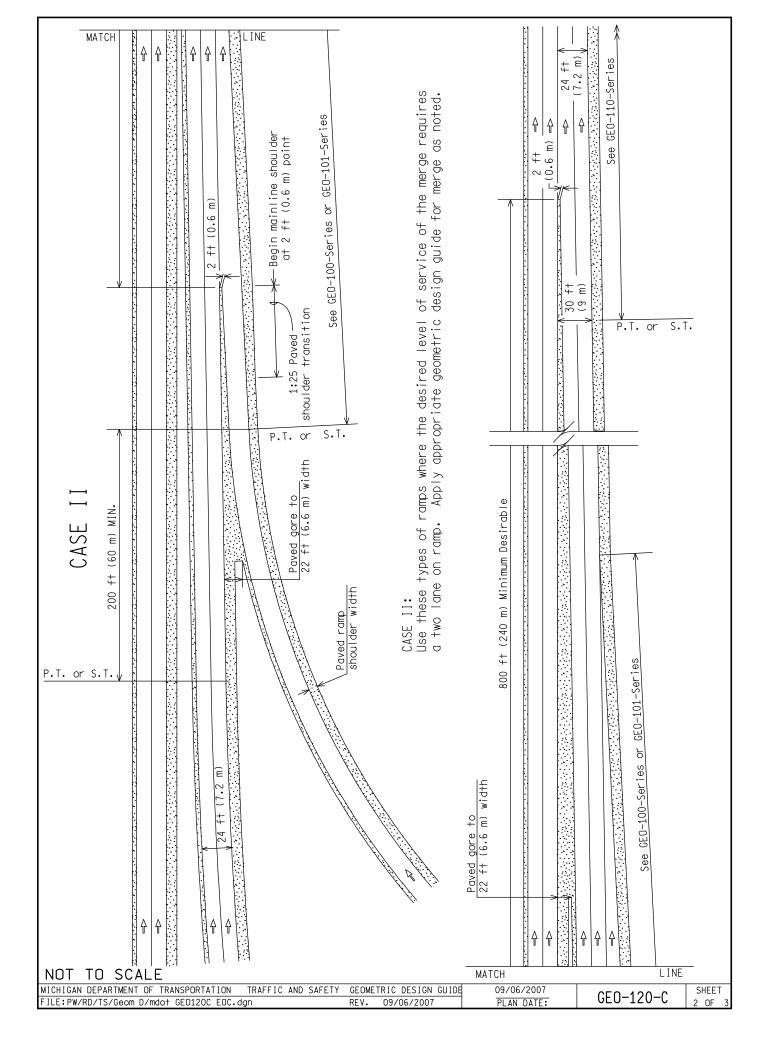

		TAPER=65:1	TAPER=60:1	TAPER=55:1	TAPER=50:1	TAPER=45:1
		$\Delta = 0^{\circ} 52' 53''$	$\Delta = 0^{\circ} 57' 17''$	$\Delta = 1^{\circ} 02' 30''$	Δ=1°08′45″	$\Delta = 1^{\circ} 16' 23''$
RAMP	PERCENT				DOLDWAY	ROADWAY
DESIGN	GRADE	ROADWAY	ROADWAY	ROADWAY	ROADWAY	DESIGN SPEED
SPEED	OF	DESIGN SPEED	DESIGN SPEED	DESIGN SPEED	DESIGN SPEED	= 70 Km/Hr
(km/hr)	THROUGH	= 120 Km/Hr	= 110 Km/Hr	= 100 Km/Hr	= 90 TO 80 Km/Hr	or Less
	ROADWAY	B = 119 m C = 79 m	B = 110 m C = 73 m	B = 101 m C = 67 m	B = 91 m C = 61 m	B = 82 m
						C = 55 m
		Lgap = 119 m	Lgap = 110 m	Lgap = 101 m	Lgap = 91 m	Lgap = 82 m
		L _a (m)	L _a (m)	L _a (m)	L _a (m)	L _a (m)
	-3 TO LESS THAN -5	309	234	183	152	137
30	BETWEEN -3 AND +3	515	390	305	225	137
	+3 TO LESS THAN +5	736	555	428	315	178
	-3 TO LESS THAN -5	294	222	171	152	137
40	BETWEEN -3 AND +3	490	370	285	205	137
	+3 TO LESS THAN +5	736	555	428	287	178
	-3 TO LESS THAN -5	276	204	168	152	137
50	BETWEEN -3 AND +3	460	340	255	175	137
	+3 TO LESS THAN +5	736	544	408	263	178
	-3 TO LESS THAN -5	246	183	168	152	137
60	BETWEEN -3 AND +3	410	290	205	152	137
	+3 TO LESS THAN +5	697	493	349	243	178
	-3 TO LESS THAN -5	198	183	168	152	137
70	BETWEEN -3 AND +3	325	200	168	152	137
	+3 TO LESS THAN +5	553	340	268	243	178
	-3 TO LESS THAN -5	198	183	168	152	137
80	BETWEEN -3 AND +3	245	183	168	152	137
	+3 TO LESS THAN +5	441	329	302	243	178
	-3 TO LESS THAN -5	198	183	168	152	
90	BETWEEN -3 AND +3	198	183	168	152	
	+3 TO LESS THAN +5	356	329	302	243	
	-3 TO LESS THAN -5	198	183	168		1
100	BETWEEN -3 AND +3	198	183	168	1	
	+3 TO LESS THAN +5	356	329	302	1	
	-3 TO LESS THAN -5	198	183			
110	BETWEEN -3 AND +3	198	183			
	+3 TO LESS THAN +5	356	329			
	-3 TO LESS THAN -5	198		1		
120	BETWEEN -3 AND +3	198				
	+3 TO LESS THAN +5	356				
L			1			


FILE:PW/RD/TS/Geom D/mdot GE0101E EOC.dgn REV. 05/24/2011 jt PLAN DATE: GEU-IUI-F 4 OF	MICHIGAN DEPARTMENT OF TRANSPORTAT	ON TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	09/06/2007		SHEET
	FILE:PW/RD/TS/Geom D/mdot GE0101E	.OC.dgn	REV. 05/24/2011 j+	PLAN DATE:	GEU-101-F	4 OF 5


- 1. The designer has the flexibility to choose either the taper type ramp or the parallel type ramp. However, the same type of entrance and exit ramp should be used within an interchange and corridor. Uniformity in design is needed to aid driver expectancy. On sharp curves, it may be preferable to use parallel type ramps.
- 2. Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDDT Road Design Manual.
- 3. If the through pavement is curved, plot offsets for the taper and connect with the appropriate curve.
- 4. Prepare detail grades and profiles from Section A-A to Section B-B.
- 5. The value of La or Lgap, whichever produces the greater distance downstream from the 2 ft (0.6 m) point, is suggested for use in the design of the ramp entrance. La is the acceleration distance. Lgap is the minimum distance required to find a gap in traffic and merge onto the mainline.
- 6. Spiral transitions should be used on new ramp alignments, based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 7. The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%.
- 8. The cross slope in the gore area between the 2 ft (0.6 m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 9. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 10. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 11. Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GED-300-Series.
- 12. These design concepts are for new construction. Where modifications may be needed for retrofitting to existing road features, consult with the Geometric Design Unit of Lansing Traffic and Safety.

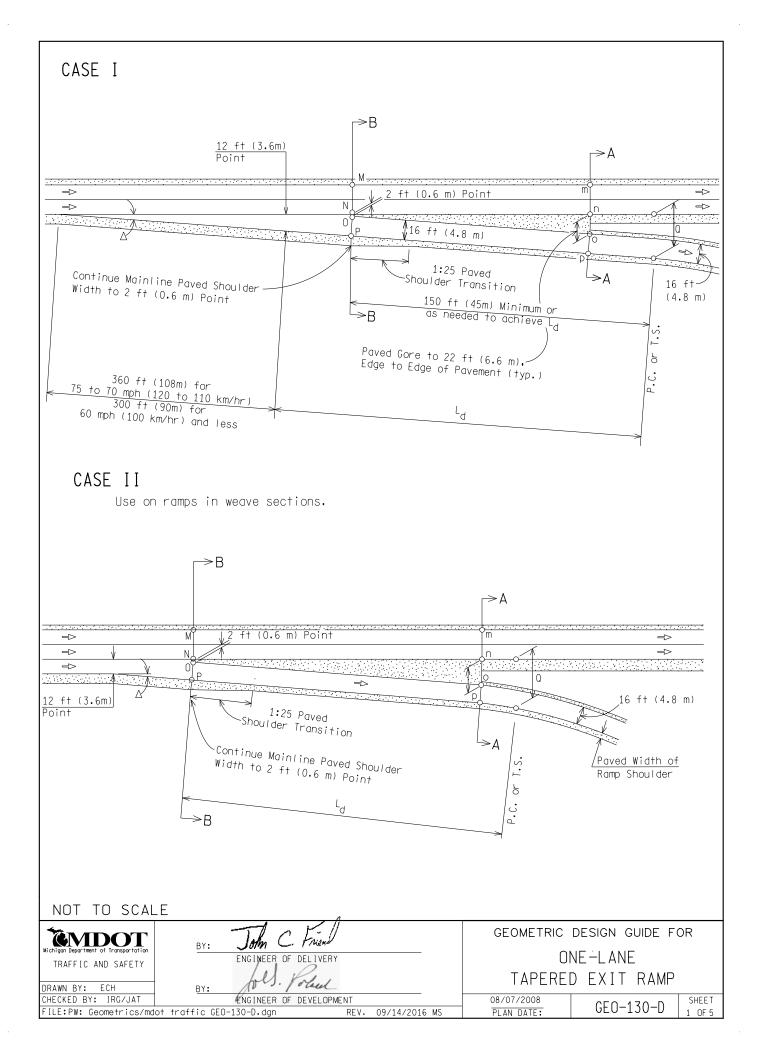

MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	09/06/2007		SHEET
FILE:PW/RD/TS/Geom D/mdot GE0101E EOC.dgn	REV. 05/24/2011 j†	PLAN DATE:	GEU-101-F	5 OF 5

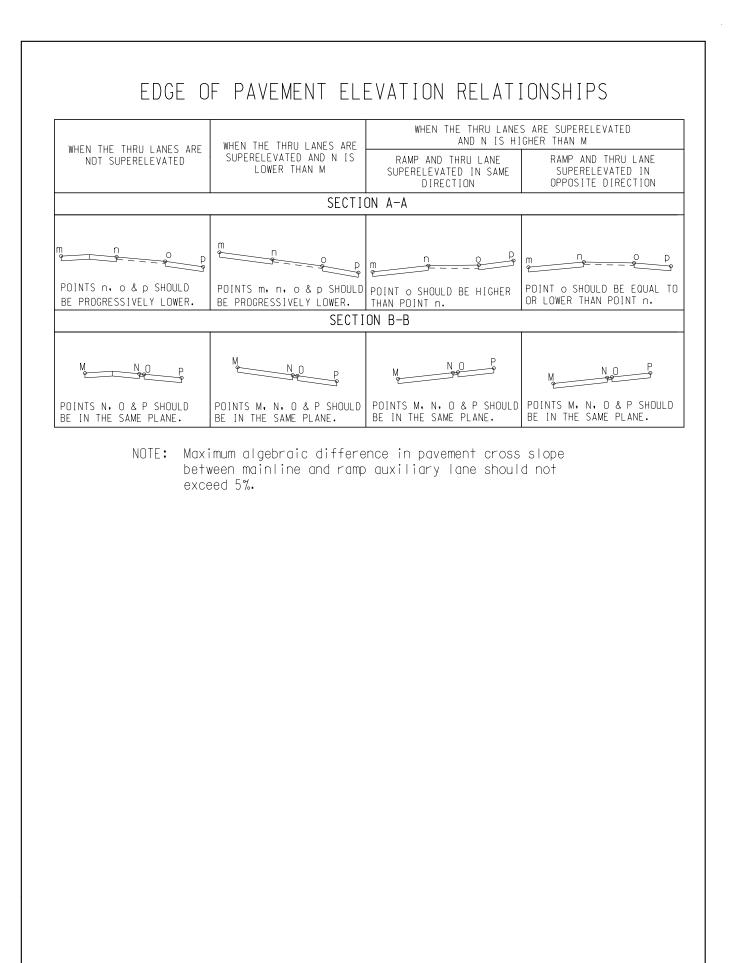

NOTE: Maximum algebraic difference in pavement cross slope between mainline and ramp auxiliary lane should not exceed 5%.


NOT TO SC	ALE
-----------	-----

MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOME	TRIC DESIGN GUIDE	09/06/2007		SHEET
FILE:PW/RD/TS/Geom D/mdot GED110C EDC.	dgn	REV.	09/06/2007	PLAN DATE:	6E0-110-C	5 OF 6

- 1. Select design speed based on combination of the superelevation rate and the radius of the curve. See chapter 3 of the MDOT Road Design Manual.
- 2. If the through pavement is curved, plot offsets for the taper and connect with the appropriate curve.
- 3. Prepare detail grades and profiles from Section A-A to Section B-B to assure proper drainage.
- 4. Spiral transitions should be used on new ramp alignments, based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives maximum radius in which a spiral should be used.
- 5. The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%.
- 6. The cross slope in the gore area between the 2 ft (0.6 m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 7. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 8. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 9. Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GEO-300-Series.
- 10. Two lane ramps should be 24 ft (7.2 m) minimum edge to edge. Radii less than 500 ft (150 m) may require widening, consult the Geometric Design Unit of Lansing Traffic and Safety.
- 11. The longitudinal joint on a 24 foot (7.2m) ramp pavement shall be located 12 feet (3.6m) from the right edge of the pavement and ended where the ramp width becomes 16 feet (4.8m).
- 12. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.


INUT TO SCALL						
MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOME	FRIC DESIGN GUIDE	09/06/2007	CEO 110 C	SHEET
FILE: PW/RD/TS/Geom D/mdot GED110C EDC.c	lgn	REV.	09/06/2007	PLAN DATE:	GEU-110-C	6 OF 6



- 1. Select design speed based on combination of the superelevation rate and the radius of the curve. See chapter 3 of the MDDT Road Design Manual.
- 2. The design speed of the collector-distributor (C-D) roadway is generally 60 mph (100 km/hr).
- 3. If the through pavement is curved, plot offsets for the taper and connect with the appropriate curve.
- 4. Spiral transitions should be used on new ramp alignments, based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 5. The cross slope in the gore area between the 2 ft (0.6 m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope difference between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 6. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 7. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 8. Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GED-300-Series.
- 9. Two lane ramps should be 24 ft (7.2 m) minimum edge to edge. Radii less than 500 ft (150 m) may require lane widening, consult the Geometric Design Unit of Lansing Traffic and Safety.
- 10. The longitudinal joint on a 24 foot (7.2 m) ramp pavement shall be located 12 feet (3.6 m) from the right edge of the pavement and ended where the ramp width becomes 16 feet (4.8 m).
- 11. These design concepts are for new construction. Where modifications may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

NUT TU SCALE				
MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUID	09/06/2007		SHEET
FILE:PW/RD/TS/Geom D/mdot GED120C EDC.dgn	REV. 09/06/2007	PLAN DATE:	GEO-120-C	3 OF 3

MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY GEO	EOMETRIC DESIGN GUIDE 08/07/2008		SHEET
FILE:PW: Geometrics/mdot traffic GEO-130-D.dgn REV	EV. 09/14/2016 MS PLAN DATE:	GEU-150-D	2 OF 5

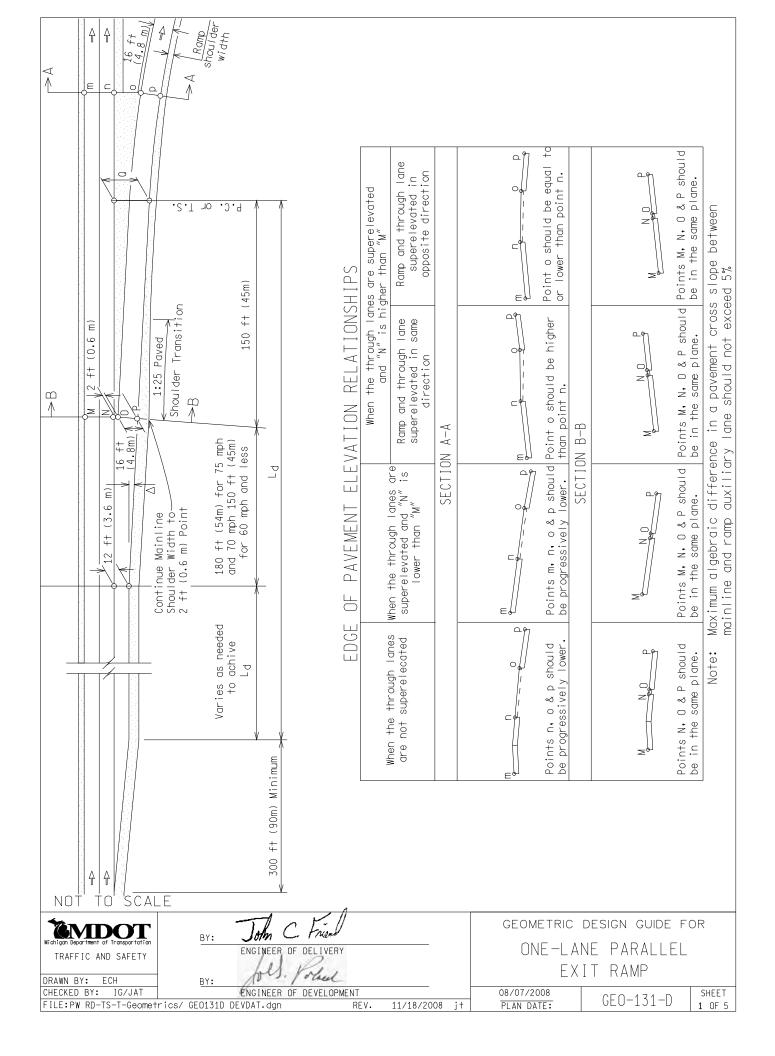
MINIMUM ENGLISH LENGTHS FOR TAPERED EXIT RAMPS

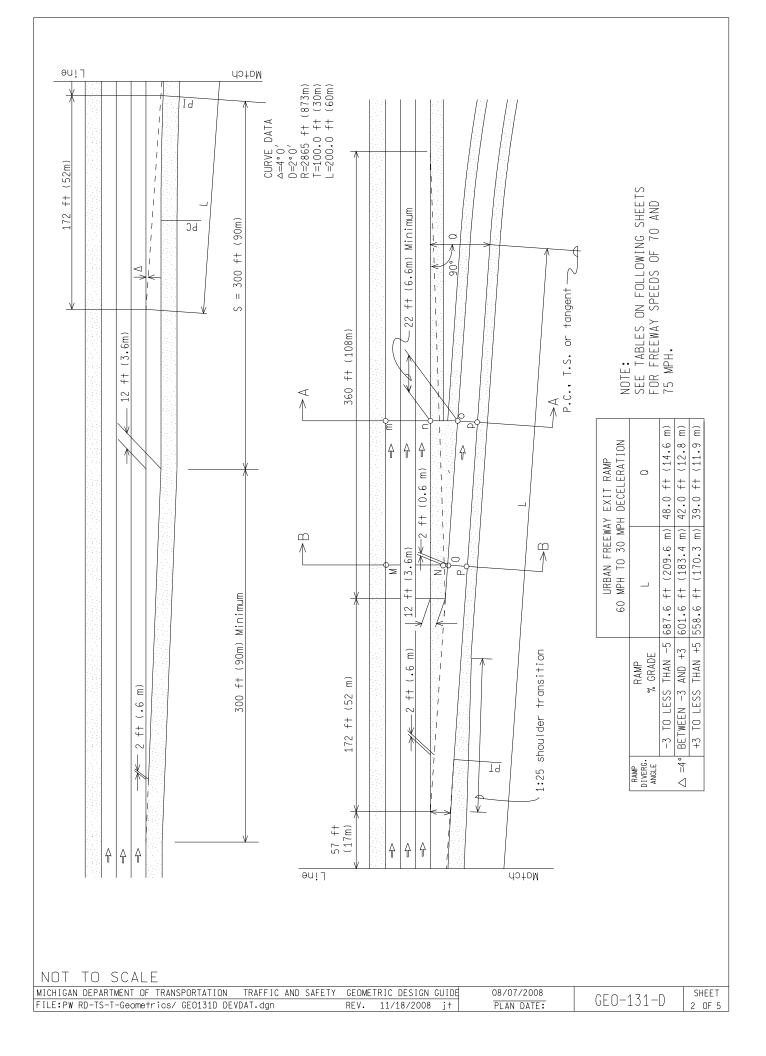
		TAPER ∆=1°5		TAPER ∆=1°5	=30:1 4'33"		=25 : 1 7'26"	TAPER Δ=2°1	=25:1 7'26"		=25 : 1 7'26"
RAMP DESIGN SPEED (MPH)	PERCENT GRADE OF THROUGH	ROAD DESIGN = 75	SPEED	ROAD DESIGN = 70 M	SPEED	ROAD DESIGN = 60		= 55	WAY SPEED MPH O MPH		SPEED MPH
	ROADWAY	L _d min	= 330	L _d mir	= 330	L _d mir	n = 300	L _d mir	n = 300		= 300
		Ld (FT)	Q (FT)	Ld (FT)	Q (FT)	Ld (FT)	Q (FT)	Ld (FT)	Q (FT)	Ld (FT)	Q (FT)
	-3 TO LESS THAN -5	744	36.8	684	34.8	576	35.1	528	33.2	390	27.6
20	BETWEEN -3 AND +3	620	32.7	570	31.0	480	31.2	440	29.6	325	25.0
	+3 TO LESS THAN +5	558	30.6	513	29.1	432	29.3	396	27.9	300	24.0
	-3 TO LESS THAN -5	720	36.0	660	34.0	552	34.1	492	31.7	354	26.2
25	BETWEEN -3 AND +3	600	32.0	550	30.4	460	30.4	410	28.4	300	24.0
	+3 TO LESS THAN +5	540	30.0	495	28.5	414	28.6	369	26.8	300	24.0
7.0	-3 TO LESS THAN -5	690	35.0	624	32.8	516	32.7	456	30.3	300	24.0
30	BETWEEN -3 AND +3 +3 TO LESS THAN +5	575	31.2	520	29.4	430	29.2	380	27.2	300	24.0
	-3 TO LESS THAN +5	518 642	29.3 33.4	468 588	27.6 31.6	387 486	27.5 31.5	342 420	25.7	300 300	24.0 24.0
35	BETWEEN -3 AND +3	535	29.9	490	28.4	406	28.2	350	28.8 26.0	300	24.0
55	+3 TO LESS THAN +5	482	28.1	441	26.7	365	26.6	315	28.0	300	24.0
	-3 TO LESS THAN -5	588	31.6	528	29.6	420	28.8	342	25.7	300	24.0
40	BETWEEN -3 AND +3	490	28.4	440	26.7	350	26.0	300	24.0	300	24.0
	+3 TO LESS THAN +5	441	26.7	396	25.2	315	24.6	300	24.0	300	24.0
	-3 TO LESS THAN -5	528	29.6	468	27.6	360	26.4	300	24.0	300	24.0
45	BETWEEN -3 AND +3	440	26.7	390	25.0	300	24.0	300	24.0	300	24.0
	+3 TO LESS THAN +5	396	25.2	351	23.7	300	24.0	300	24.0	300	24.0
	-3 TO LESS THAN -5	468	27.6	432	26.4	300	24.0	300	24.0		
50	BETWEEN -3 AND +3	390	25.0	360	24.0	300	24.0	300	24.0		
	+3 TO LESS THAN +5	351	23.7	330	23.0	300	24.0	300	24.0		
	-3 TO LESS THAN -5 BETWEEN -3 AND +3	468	27.6	432	26.4	300	24.0	300	24.0		
55	+3 TO LESS THAN +5	390 351	25.0 23.7	360 330	24.0 23.0	300 300	24.0	300 300	24.0		
	-3 TO LESS THAN -5	468	27.6	432	26.4	300	24.0	500	24.0	J	
60	BETWEEN -3 AND +3	390	25.0	360	24.0	300	24.0				
00	+3 TO LESS THAN +5	351	23.7	330	23.0	300	24.0				
	-3 TO LESS THAN -5	468	27.6	432	26.4		2.110	1			
65	BETWEEN -3 AND +3	390	25.0	360	24.0						
	+3 TO LESS THAN +5	351	23.7	330	23.0						
	-3 TO LESS THAN -5	468	27.6	432	26.4						
70	BETWEEN -3 AND +3	390	25.0	360	24.0						
	+3 TO LESS THAN +5	351	23.7	330	23.0						
	-3 TO LESS THAN -5	468	27.6								
75	BETWEEN -3 AND +3	390	25.0								
	+3 TO LESS THAN +5	351	23.7	l							

NOT	ΤO	SCA	L	Ξ			
11.0111.0.111	0504	OTHENT	05	TRANCOORTATION	TRAFELO	1110	<u> </u>

FILE:PW: Geometrics/mdot traffic GED-130-D.dgn REV. 09/14/2016 MS PLAN DATE: GED-ISU-D 3 OF 5	MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	08/07/2008		SHEET
	FILE: PW: Geometrics/mdot traffic GEO-13	30-D.dgn	REV. 09/14/2016 MS	PLAN DATE:	GEU-130-D	3 OF 5

RAMP DESIGN SPEED (km/hr)	PERCENT GRADE OF THROUGH ROADWAY	∆=1°5 ROADN DESIGN	NAY SPEED) Km/Hr	Δ =1°5 ROAD DESIGN = 110 L _d min	WAY SPEED Km/Hr	∆=2°1 ROAD	WAY SPEED Km/Hr	TAPER Δ=2°1 ROAE DESIGN = 90 K to 80 L _d min	7'26")WAY N SPEED Sm/Hr Km/Hr	∆=2°1 ROA DESIG = 70	DWAY N SPEEC Km/Hr LESS
		Ld (m)	Q (m)	Ld (m)	Q (m)	L d (m)	Q (m)	Ld (m)	Q (m)	L d (m)	Q (m)
	-3 TO LESS THAN -5	222	11.0	204	10.4	186	11.0	162	10.1	114	8.2
30	BETWEEN -3 AND +3	185	9.8	170	9.3	155	9.8	135	9.0	95	7.4
	+3 TO LESS THAN +5	167	9.2	153	8.7	140	9.2	122	8.5	90	7.2
	-3 TO LESS THAN -5	210	10.6	192	10.0	174	10.6	144	9.4	109	8.0
40	BETWEEN -3 AND +3	175	9.4	160	8.9	145	9.4	120	8.4	90	7.2
	+3 TO LESS THAN +5	158	8.9	144	8.4	131	8.8	108	7.9	90	7.2
	-3 TO LESS THAN -5	204	10.4	180	9.6	162	10.1	132	8.9	90	7.2
50	BETWEEN -3 AND +3	170	9.3	150	8.6	135	9.0	110	8.0	90	7.2
	+3 TO LESS THAN +5	153	8.7	135	8.1	122	8.5	99	7.6	90	7.2
	-3 TO LESS THAN -5	186	9.8	168	9.2	144	9.4	120	8.4	90	7.2
60	BETWEEN -3 AND +3	155	8.8	140	8.3	120	8.4	100	7.6	90	7.2
	+3 TO LESS THAN +5	140	8.3	126	7.8	108	7.9	90	7.2	90	7.2
	-3 TO LESS THAN -5	168	9.2	144	8.4	120	8.4	90	7.2	90	7.2
70	BETWEEN -3 AND +3	140	8.3	120	7.6	100	7.6	90	7.2	90	7.2
	+3 TO LESS THAN +5	126	7.8	108	7.2	90	7.2	90	7.2	90	7.2
0.0	-3 TO LESS THAN -5 BETWEEN -3 AND +3	144	8.4	126	7.8	109 90	8.0	90	7.2		
80	+3 TO LESS THAN +5	120	7.6	105	7.1	90	7.2	90	7.2		
	-3 TO LESS THAN -5	108 144	7.2 8.4	100 126	6.9 7.8	90 109	7.2 8.0	90 90	7.2 7.2		
90	BETWEEN -3 AND +3	120	7.6	126	7.1	90	7.2	90	7.2		
90	+3 TO LESS THAN +5	108	7.2	105	6.9	90	7.2	90	7.2		
	-3 TO LESS THAN -5	100	8.4	126	7.8	109	8.0	30	1•2		
100	BETWEEN -3 AND +3	120	7.6	105	7.1	90	7.2				
100	+3 TO LESS THAN +5	108	7.2	100	6.9	90	7.2				
	-3 TO LESS THAN -5	144	8.4	126	7.8		1•2				
110	BETWEEN -3 AND +3	120	7.6	105	7.1						
	+3 TO LESS THAN +5	108	7.2	100	6.9						
	-3 TO LESS THAN -5	144	8.4								
120	BETWEEN -3 AND +3	120	7.6								
	+3 TO LESS THAN +5	108	7.2								


101	0	SCALE


FILE:PW: Geometrics/mdot traffic GEO-130-D.dan REV. 09/14/2016 MS PLAN DATE: GEU-I3U-D 4 OF	MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	08/07/2008		SHEET
	FILE:PW: Geometrics/mdot traffic GEO-13	0-D.dgn	REV. 09/14/2016 MS	PLAN DATE:	GEU-130-D	4 OF 5

- 1. The designer has the flexibility to choose the taper type ramp or the parallel type ramp. However, the same type of entrance and exit ramp should be used within an interchange and corridor. Uniformity in design is needed to aid driver expectancy. On sharp curves, it may be preferable to use parallel type ramp.
- 2. Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDDT Road Design Manual.
- 3. If an additional through lane is provided or the exit ramp leaves the mainline on the high side (outside) of the curve, use GED-131-Series.
- 4. If the through pavement is curved, plot offsets for taper and connect with the appropriate curve.
- 5. Prepared detail grades and profiles from Section B-B through Section A-A.
- 6. Spirals transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 7. The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%.
- 8. The cross slope in the gore area between the 2 ft (0.6m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent paved lane. This algebraic difference also applies within crowned gores.
- 9. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 10. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 11. Each ramp will be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide Geo-300-Series.
- 12. Caution must be used in positioning a taper type deceleration lane on a left turning highway. The exit should begin before or after the P.C. or S.T. to avoid having the appearance of an extension of the mainline to the motorist. Consider using a parallel type deceleration lane.
- 13. The sight distance in advance of the exit ramp gore should be at least 25% longer than the minimum stopping sight distance for the design speed of the mainline.
- 14. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult with the Geometric Design Unit of Lansing Traffic and Safety.

NOT TO SCALE	IOT	ΤO	SCALE	
--------------	-----	----	-------	--

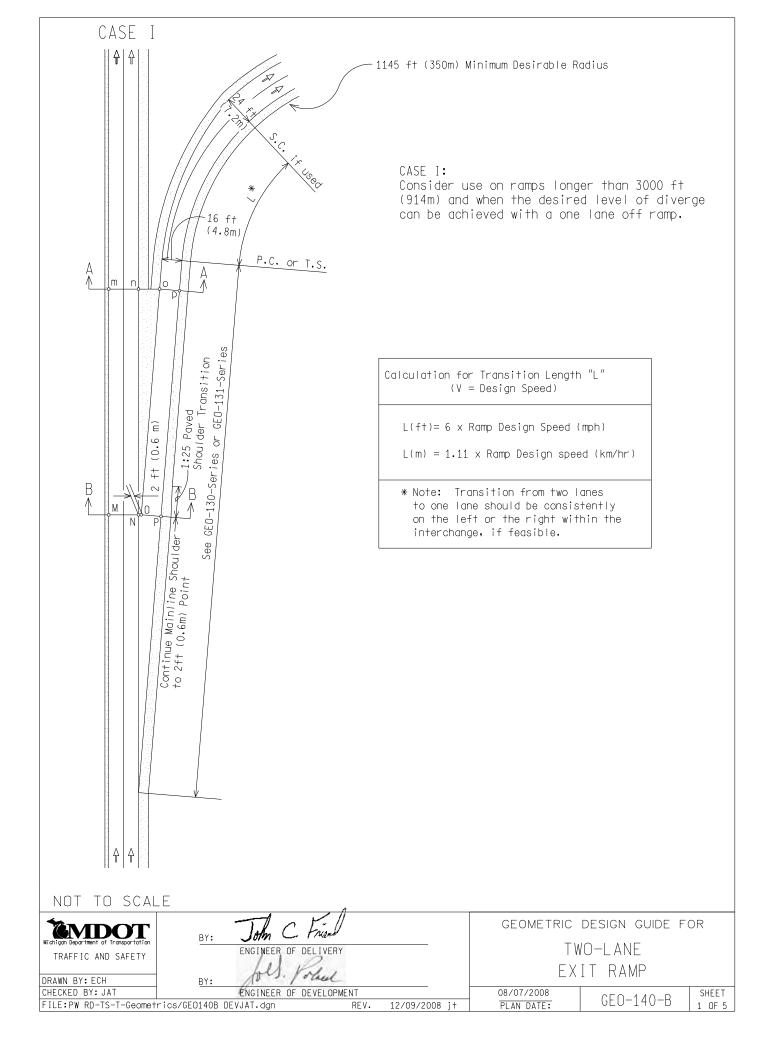
MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND	SAFETY GEOMETRIC DESIGN GUIDE	08/07/2008	000 170 D	SHEET
FILE:PW: Geometrics/mdot traffic GED-130-D.dgn	REV. 09/14/2016 MS	PLAN DATE:	GEU-130-D	5 OF 5

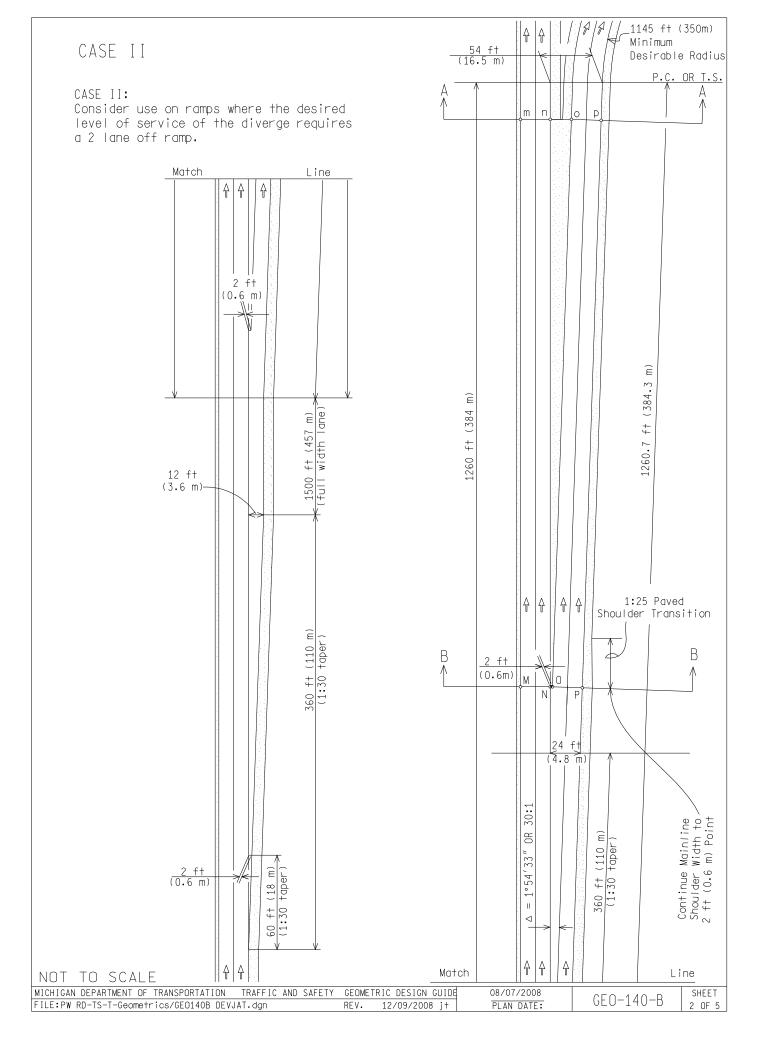
MINIMUM ENGLISH LENGTHS FOR PARALLEL EXIT RAMPS

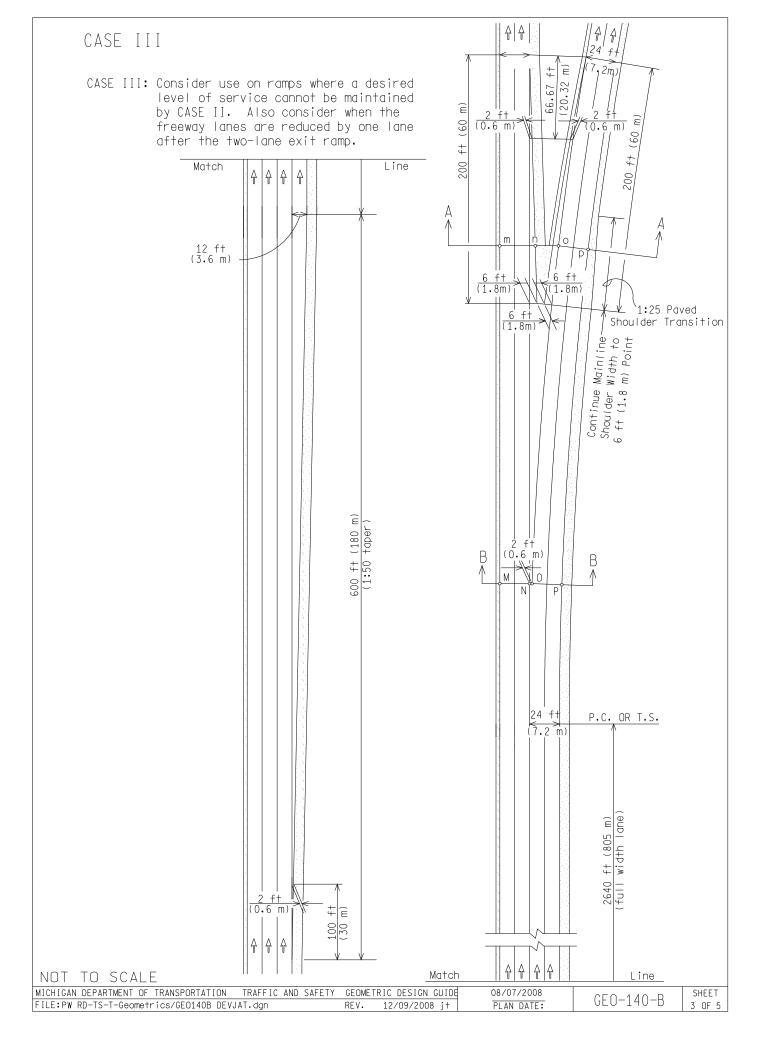
TAPER=30:1 Δ=1°54′33″	TAPER=30:1 Δ=1°54′33″	TAPER=25:1 Δ=2°17′26″	TAPER=25:1 Δ=2°17′26″	TAPER=25:1 Δ=2°17'26"
CENT ROADWAY	ROADWAY	ROADWAY	ROADWAY	ROADWAY
ADE DESIGN SPEED	DESIGN SPEED	DESIGN SPEED	DESIGN SPEED	DESIGN SPEED = 45 MPH
NF = 75 MPH	= 70 MPH	= 60 MPH	= 55 MPH TO 50 MPH	OR LESS
DUGH $Q = 23'$	Q = 23'	Q = 24'	Q = 24'	Q = 24'
DWAY $U = 23$ $L_d \min = 350'$	L _d min = 350'	L _d min = 300'	L _d min = 300'	L _d min = 300
Ld	Ld	Гd	Гd	Гd
(FT)	(FT)	(FT)	(FT)	(FT)
SS THAN -5 744	684	576	528	390
-3 AND +3 620	570	480	440	325
SS THAN +5 558	513	432	396	300
SS THAN -5 720	660	552	492	354
-3 AND +3 600	550	460	410	300
SS THAN +5 540	495	414	369	300
SS THAN -5 690	624	516	456	300
-3 AND +3 575	520	430	380	300
SS THAN +5 518	468	387	342	300
SS THAN -5 642	588	486	420	300
-3 AND +3 535	490	405	350	300
S THAN +5 482	441	365	315	300
SS THAN -5 588	528	420	342	300
-3 AND +3 490	440	350	300	300
SS THAN +5 441	396	315	300	300
SS THAN -5 528	468	360	300	300
-3 AND +3 440	390	300	300	300
SS THAN +5 396	351	300	300	300
SS THAN -5 468	432	300	300	
-3 AND +3 390	360	300	300	
SS THAN +5 351	350	300	300	
S THAN -5 468	432	300	300	
-3 AND +3 390	360	300	300	
SS THAN +5 351	350	300	300	
SS THAN -5 468	432	300		
-3 AND +3 390	360	300		
SS THAN +5 351	350	300		
188				
	550			
	_			
	-			
SS THAN -5 468 -3 AND +3 390 SS THAN +5 351 SS THAN -5 468 -3 AND +3 390 SS THAN +5 351	432 360 350 432 360 350			

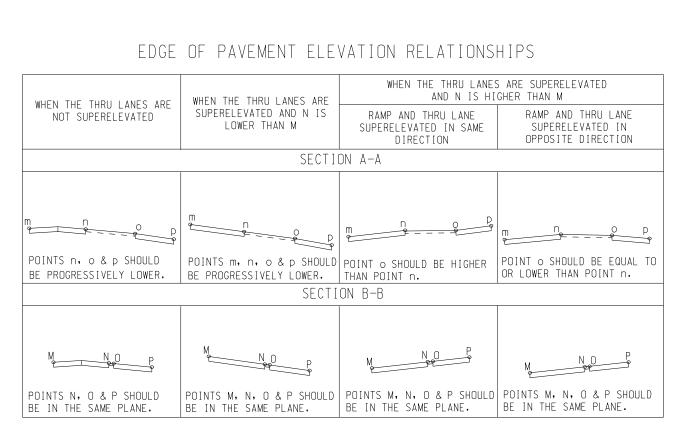
MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY GEOMET	RIC DESIGN GUIDE 08/	07/2008	1 D SHEET
FILE:PW RD-TS-T-Geometrics/ GE0131D DEVD	AT.dgn REV.	11/18/2008 j† PLA	AN DATE: GEU-IS.	1-U 3 OF 5

MINIMUM METRIC LENGTHS FOR PARALLEL EXIT RAMPS

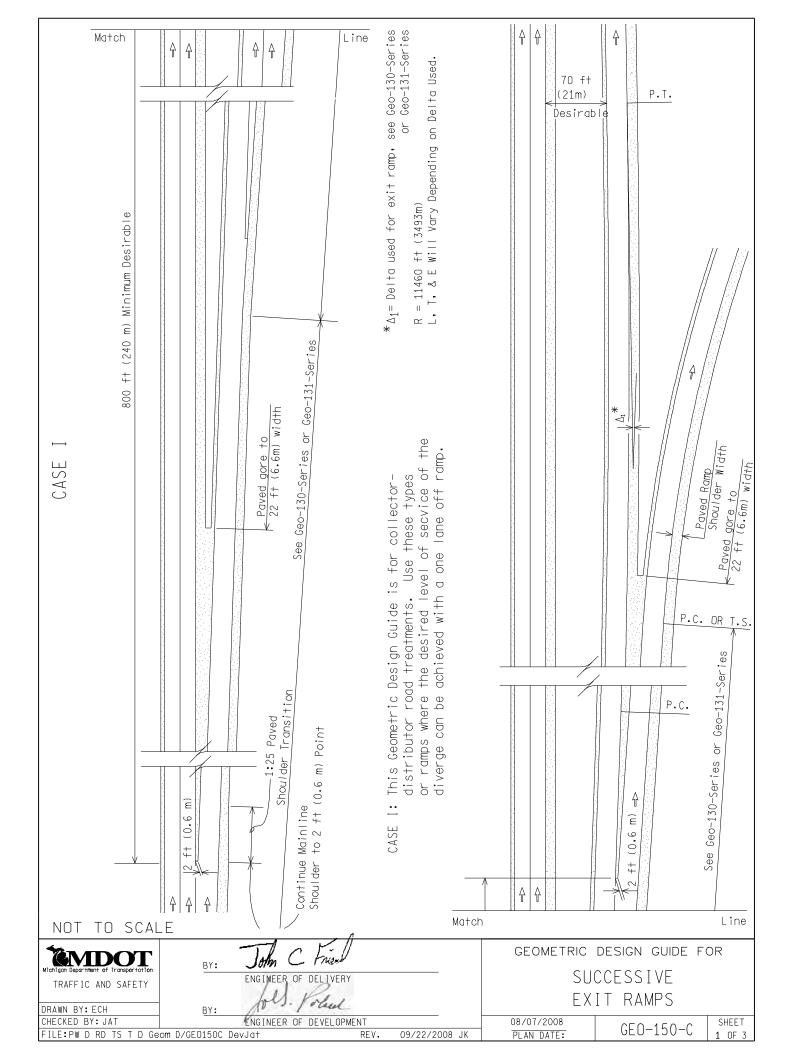

RAMP DESIGN SPEED (km/hr)	PERCENT GRADE OF THROUGH ROADWAY	TAPER=30:1 $\Delta=1^{\circ}54'33''$ ROADWAY DESIGN SPEED = 120 Km/Hr Q = 6.9m L _d min = 107	TAPER=30:1 $\Delta=1^{\circ}54'33''$ ROADWAY DESIGN SPEED = 110 Km/Hr Q = 6.9m L _d min = 107	TAPER=25:1 Δ =2°17'26" ROADWAY DESIGN SPEED = 100 Km/Hr Q = 7.2m Ld min = 90	TAPER=25:1 Δ =2°17'26" ROADWAY DESIGN SPEED = 90 Km/Hr to 80 Km/Hr Q = 7.2m L_d min = 90 L_d	TAPER=25:1 Δ =2°17'26" ROADWAY DESIGN SPEED = 70 Km/Hr OR LESS Q = 7.2m Ld min = 90m
		L d (m)	L d (m)	L d (m)	(m)	L d (m)
	-3 TO LESS THAN -5	222	204	186	162	114
30	BETWEEN -3 AND +3	185	170	155	135	95
50	+3 TO LESS THAN +5	167	153	140	122	90
	-3 TO LESS THAN -5	210	192	174	144	102
40	BETWEEN -3 AND +3	175	160	145	120	90
	+3 TO LESS THAN +5	158	144	131	108	90
	-3 TO LESS THAN -5	204	180	162	132	90
50	BETWEEN -3 AND +3	170	150	135	110	90
	+3 TO LESS THAN +5	153	135	122	99	90
	-3 TO LESS THAN -5	186	168	144	120	90
60	BETWEEN -3 AND +3	155	140	120	100	90
	+3 TO LESS THAN +5	140	126	108	90	90
	-3 TO LESS THAN -5	168	144	120	90	90
70	BETWEEN -3 AND +3	140	120	100	90	90
	+3 TO LESS THAN +5	126	108	90	90	90
	-3 TO LESS THAN -5	144	126	102	90	
80	BETWEEN -3 AND +3	120	107	90	90	
	+3 TO LESS THAN +5	108	107	90	90	
	-3 TO LESS THAN -5	144	126	102	90	
90	BETWEEN -3 AND +3	120	107	90	90	
	+3 TO LESS THAN +5	108	107	90	90	
	-3 TO LESS THAN -5	144	126	102		-
100	BETWEEN -3 AND +3	120	107	90		
	+3 TO LESS THAN +5	108	107	90]	
	-3 TO LESS THAN -5	144	126		<u>,</u>	
110	BETWEEN -3 AND +3	120	107			
	+3 TO LESS THAN +5	108	107			
	-3 TO LESS THAN -5	144		-		
120	BETWEEN -3 AND +3	120				
	+3 TO LESS THAN +5	108]			

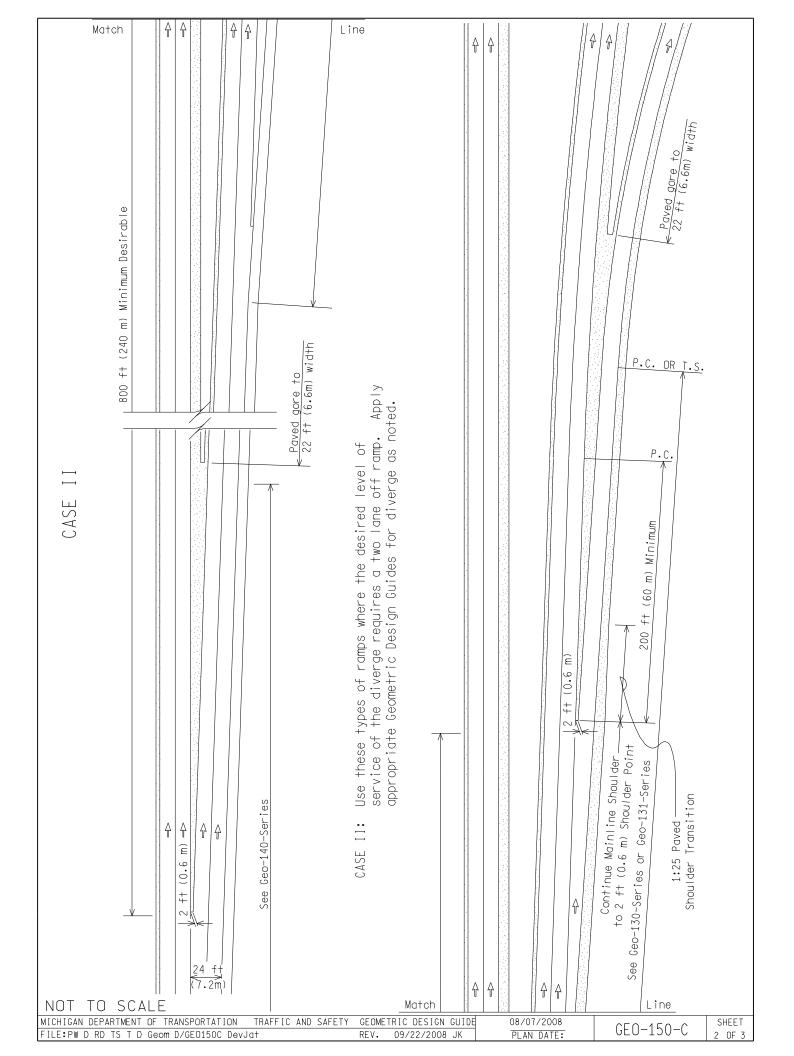

Note: When an L_d value of 90m is used for mainline design speeds of 100 km/hr and less, the parallel portion of the ramp is omitted, and the ramp taper connects directly with the mainline taper to form a uniform deflection (Δ).


MICHIGAN DEPARTMENT OF TRANSPORTATION TR	AFFIC AND SAFETY GEOMETRIC	DESIGN GUIDE 08/07	7/2008	SHEET
FILE:PW RD-TS-T-Geometrics/ GE0131D DEVDAT	.dgn REV. 11/	18/2008 j† PLAN	DATE: GEU-ISI-D	4 OF 5


- 1. The designer has the flexibility to choose the taper type ramp or the parallel type ramp. However, the same type of entrance and exit ramp should be used within an interchange and corridor. Uniformity in design is needed to aid driver expectancy. On sharp curves, it may be preferable to use parallel type ramp.
- 2. Select the design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of MDOT Road Design Manual.
- 3. If an additional through lane is provided or the exit ramp leaves the mainline on the high side (outside) of the curve, use GED-131-Series.
- 4. If the through pavement is curved, plot offsets for taper and connect with appropriate curve.
- 5. Prepare detail grades and profiles from Section B-B through A-A.
- 6. Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 7. The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%.
- 8. The cross slope in the gore area between the 2 ft (0.6m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent paved lane. This algebraic difference also applies within crowned gores.
- 9. The design speed of the ramp vertical alignment shall match or exceed the design speed of the ramp horizontal alignment.
- 10. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 11. Each ramp shall be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide Geo-300-Series.
- 12. The sight distance in advance of the exit ramp gore should be at least 25% longer than the minimum stopping sight distance for the design speed of the mainline.
- 13. These design concepts are for new construction. Where modifications may be needed for retrofitting to existing road features, consult with the Geometric Design Unit of Lansing Traffic and Safety.

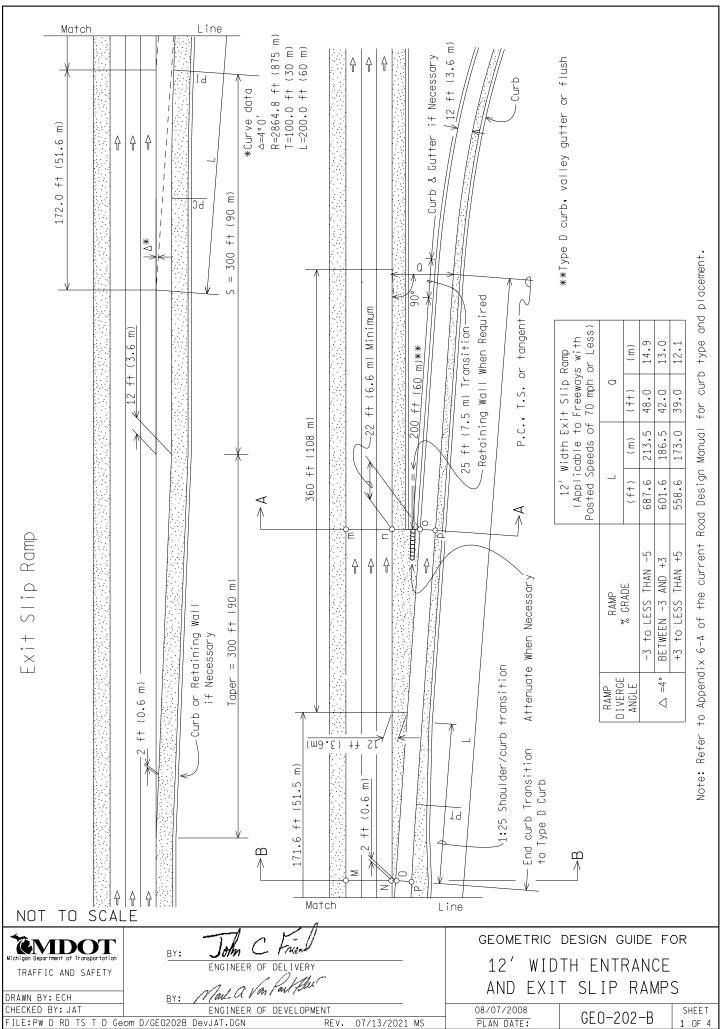
NOT TO SCALE	-						
MICHIGAN DEPARTMENT OF	TRANSPORTATION	TRAFFIC AND	SAFETY	GEOMET	RIC DESIGN	GUIDE	08/07/2008
FILE:PW RD-TS-T-Geometr	ics/ GEO131D DEV	/DAT.dgn		REV.	11/18/2008	j†	PLAN DATE:

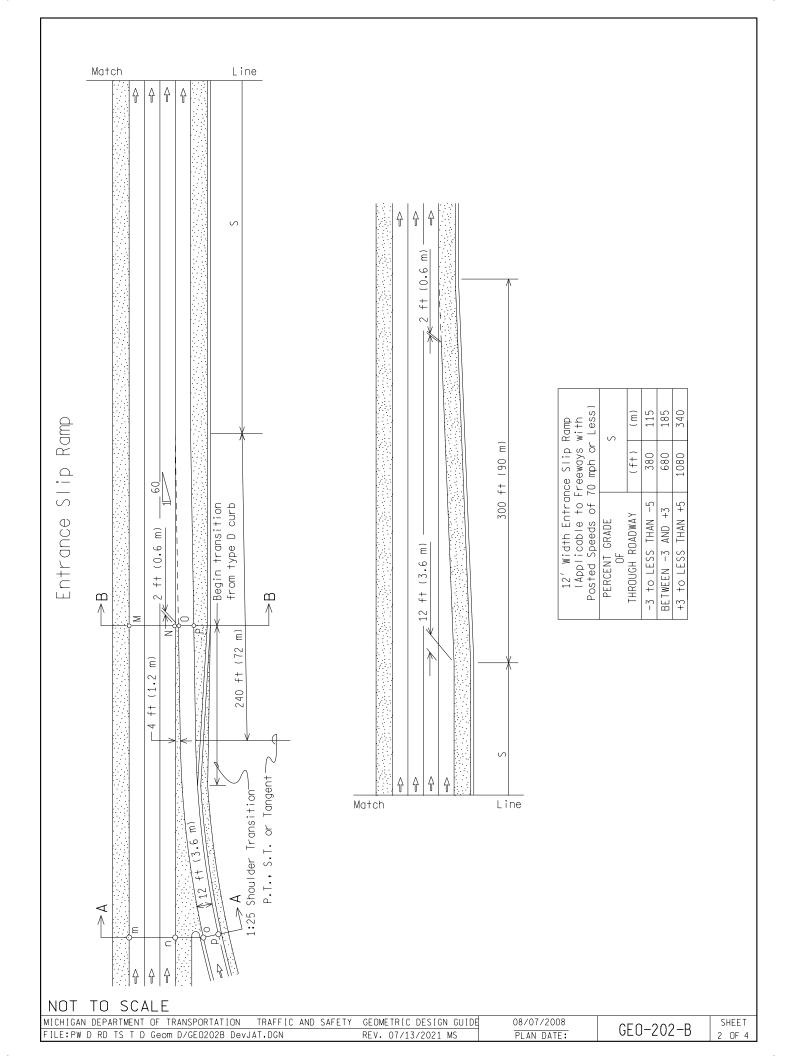

NOTE: Maximum algebraic difference in pavement cross slope between mainline and ramp auxilary lane should not exceed 5%.

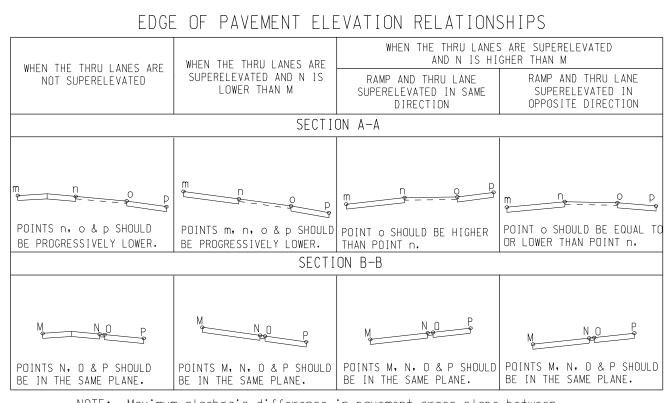

NOT TO SCALE						
MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMET	RIC DESIGN GUIDE	08/07/2008	CEO 140 D	SHEET
FILE:PW RD-TS-T-Geometrics/GE0140B DEVJ	AT.dgn	REV.	12/09/2008 j†	PLAN DATE:	GEO-140-B	4 OF 5

- 1. Select design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDOT Road Design Manual.
- 2. If an additional through lane is provided or the entrance ramp joins the mainline on the high side (outside) of the curve, use GED-101-Series.
- 3. If the through pavement is curved, plot offsets for taper and connect with appropriate curve.
- 4. Prepare detail grades and profiles from Section A-A to Section B-B.
- 5. Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 6. The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%.
- 7. The cross slope in the gore area between the 2 ft (0.6m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent paved lane. This algebraic difference also applies within crowned gores.
- 8. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 9. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 10. Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GED-300-Series.
- 11. Two lane ramps should be 24 ft (7.2m) minimum edge to edge. Radii less than 500ft may require widening, consult the Geometric Design Unit of Lansing Traffic and Safety.
- 12. The longitudinal joint on a 24 ft (7.2m) ramp pavement shall be located 12 ft (3.6m) from the right edge of the pavement and ended where the ramp width becomes 16 ft (4.8m).
- 13. The sight distance in advance of the exit ramp gore should be at least 25% longer than the minimum stopping sight distance for the design speed of the mainline.
- 14. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

 	~ ~	_
1 ()	SCAL	

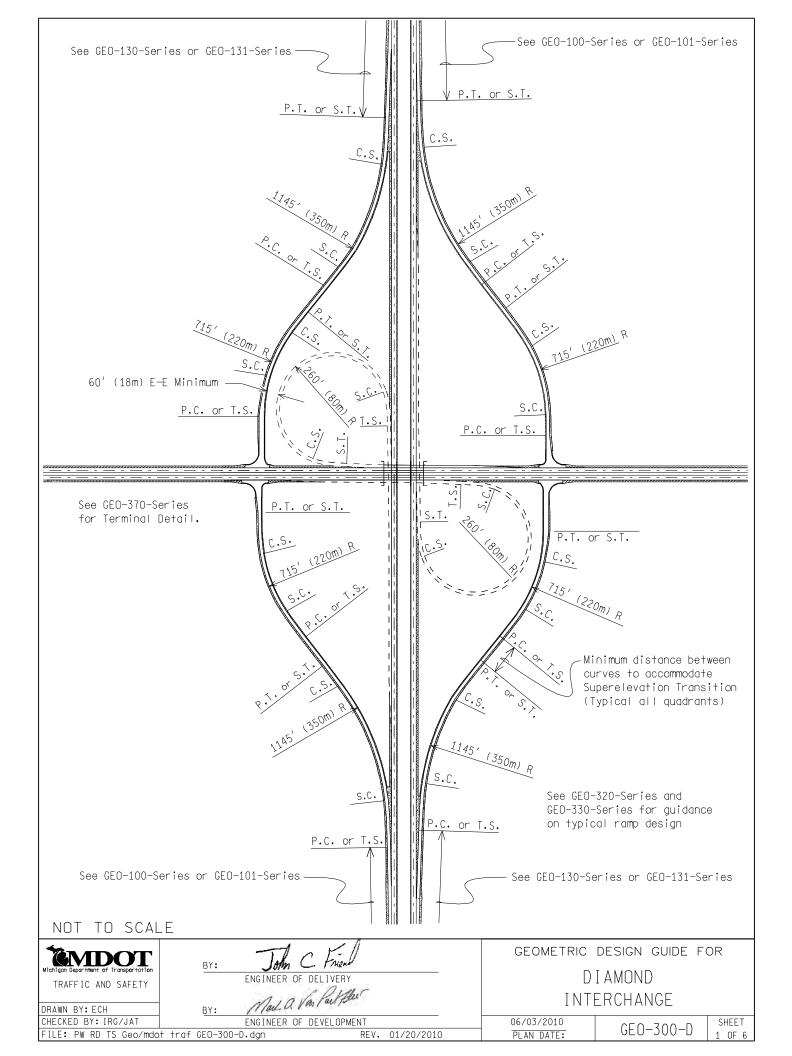

MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMET	RIC DESIGN GUIDE	08/07/2008	CEO 140 D	SHEET
FILE:PW RD-TS-T-Geometrics/GE0140B DEVJ	AT.dgn	REV.	12/09/2008 j†	PLAN DATE:	GEU-140-B	5 OF 5

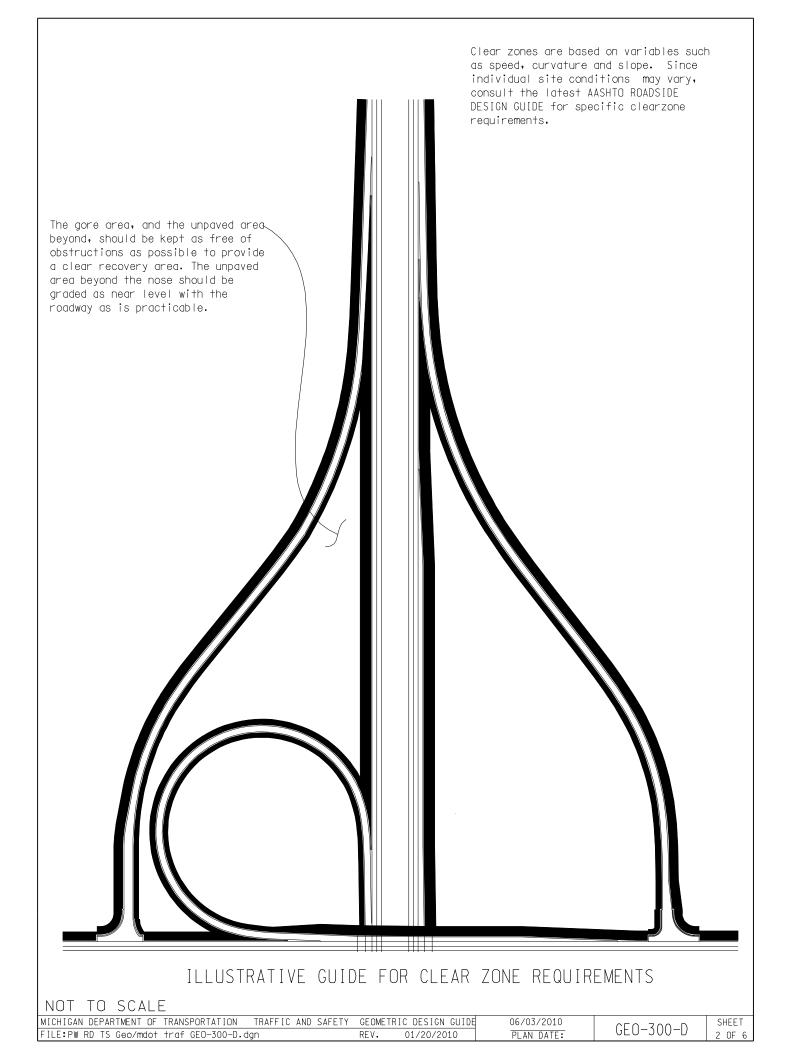


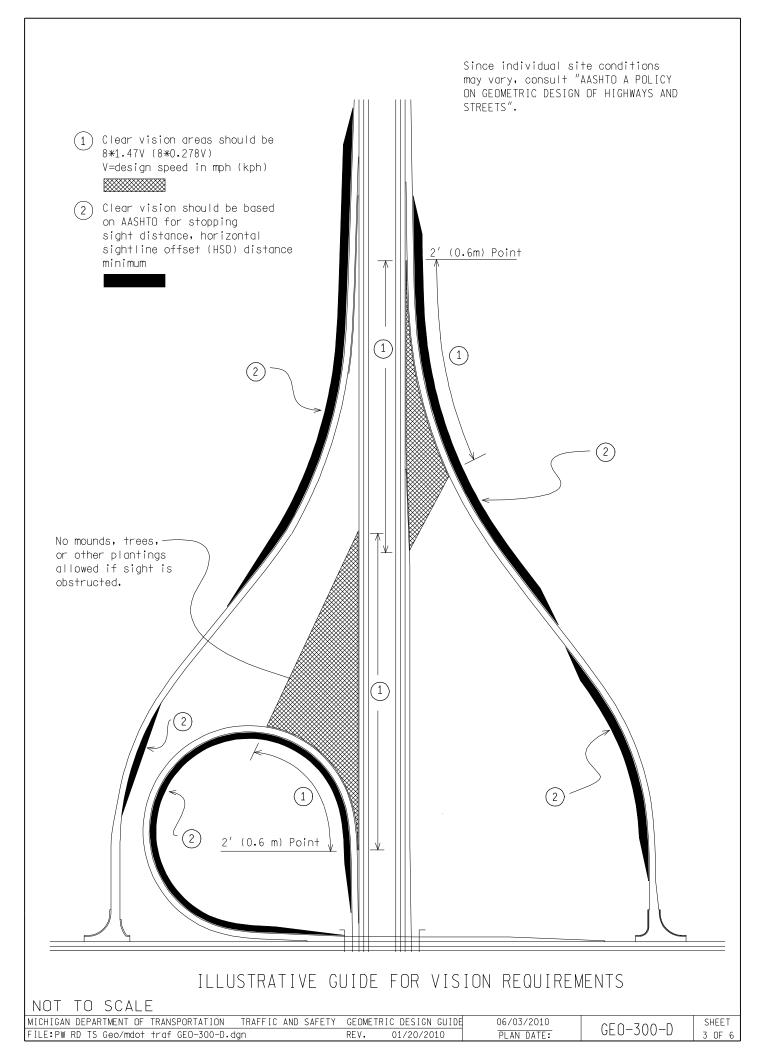


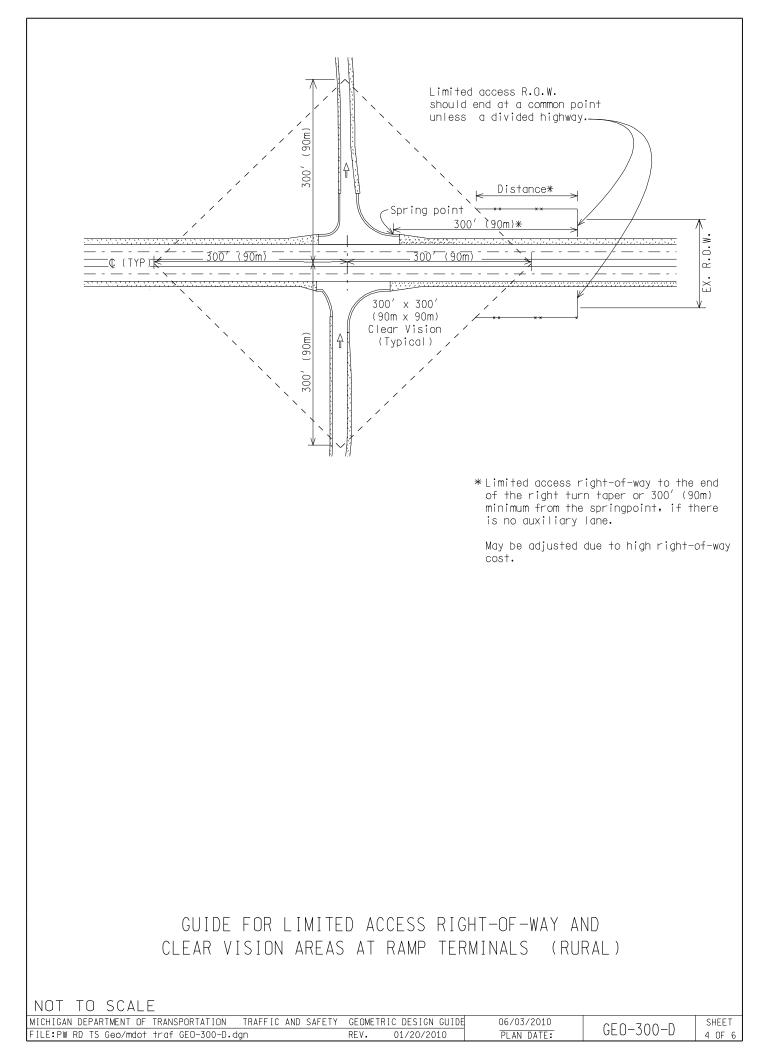
- 1. Select the design speed based on a combination of the superelevation rate and the radius of the curve. See also chapter 3 of the MDDT Road Design Manual.
- 2. The design speed of the collector-distributor (C-D) roadway is generally 60 mph (100 km/hr).
- 3. If the through pavement is curved, plot offsets for taper and connect with the appropriate curve.
- 4. Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 5. The cross slope in the gore area between the 2 ft (0.6m) point and the 22 ft (6.7 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 6. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 7. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 8. Each ramp shall be carefully studied to provide maximum vision at its merge points. See Geometic Design Guide Geo-300-Series.
- 9. The sight distance in advance of the exit ramp gore should be at least 25% longer than the minimum stopping sight distance for the design speed of the mainline.
- Two lane ramps should be 24 ft (7.2 m) minimum edge to edge. Radii less than 500 ft (150 m) may require lane widening, consult the Geometric Design Unit of Lansing Traffic and Safety.
- 11. The longitudinal joint on a 24 foot (7.2 m) ramp pavement shall be located 12 feet (3.6 m) from the right edge of the pavement and ended where the ramp width becomes 16 feet (4.8 m).
- 12. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

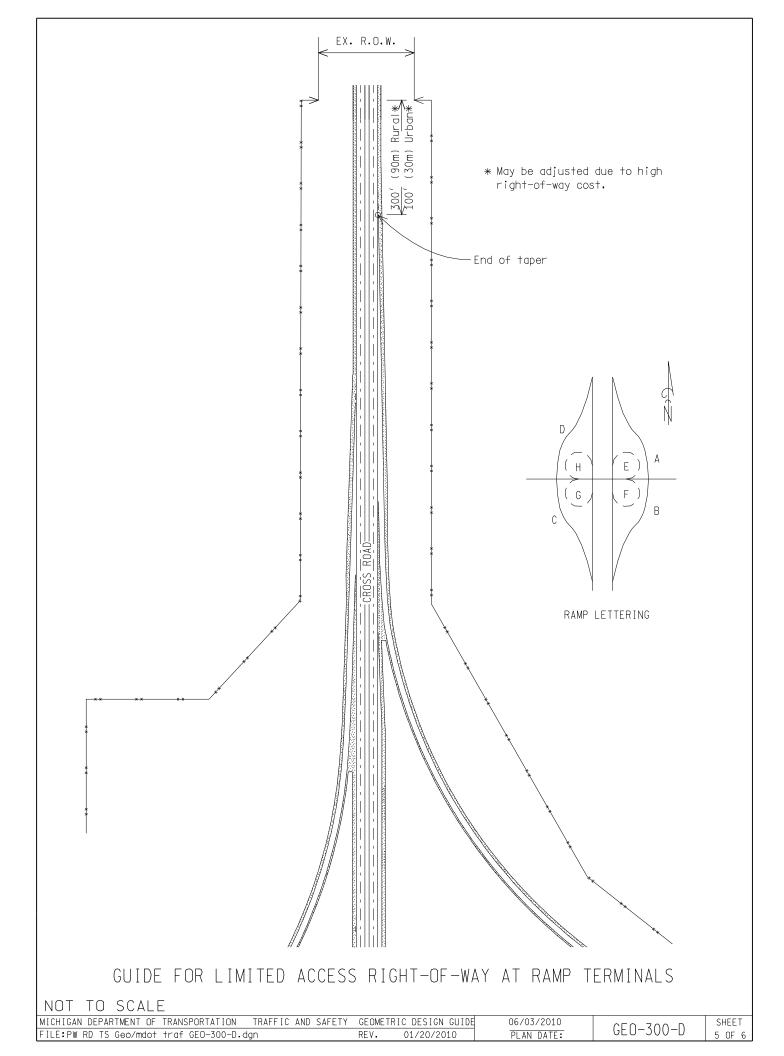
MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOME	TRIC DESIGN GUIDE	08/07/2008		SHEET
FILE:PW D RD TS T D Geom D/GEO150C Dev	a†	REV.	09/22/2008 JK	PLAN DATE:	GEO-150-C	3 OF 3

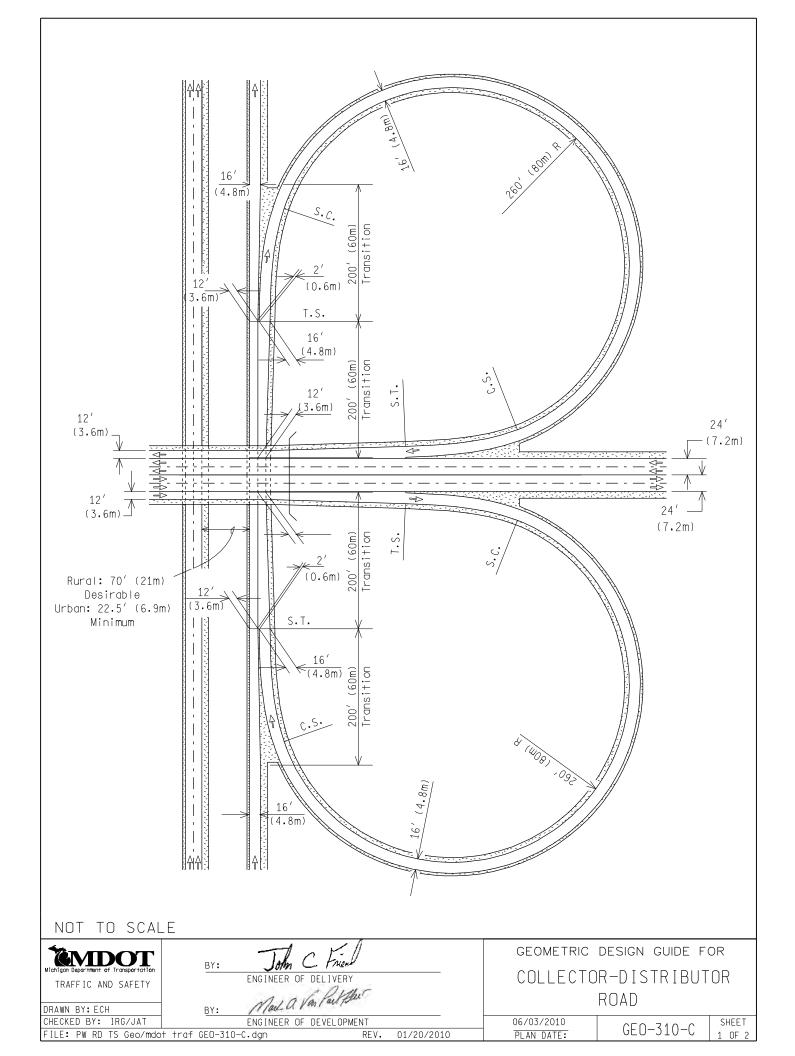


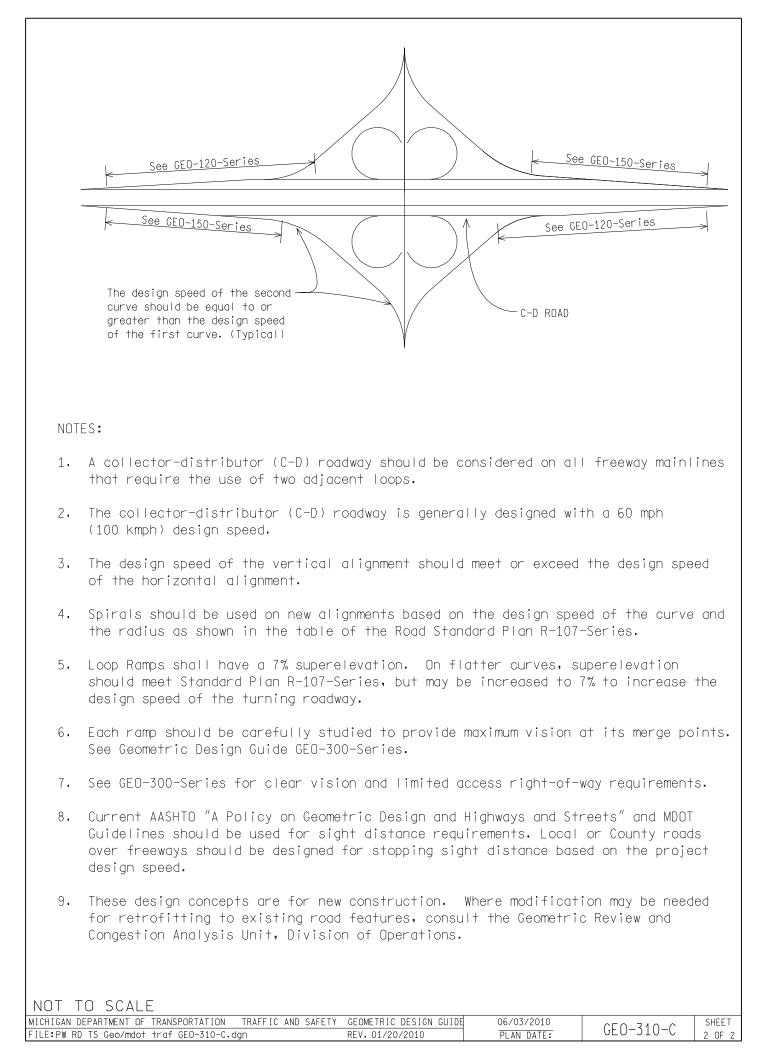

NOTE: Maximum algebraic difference in pavement cross slope between mainline and ramp auxilary lane should not exceed 5%.

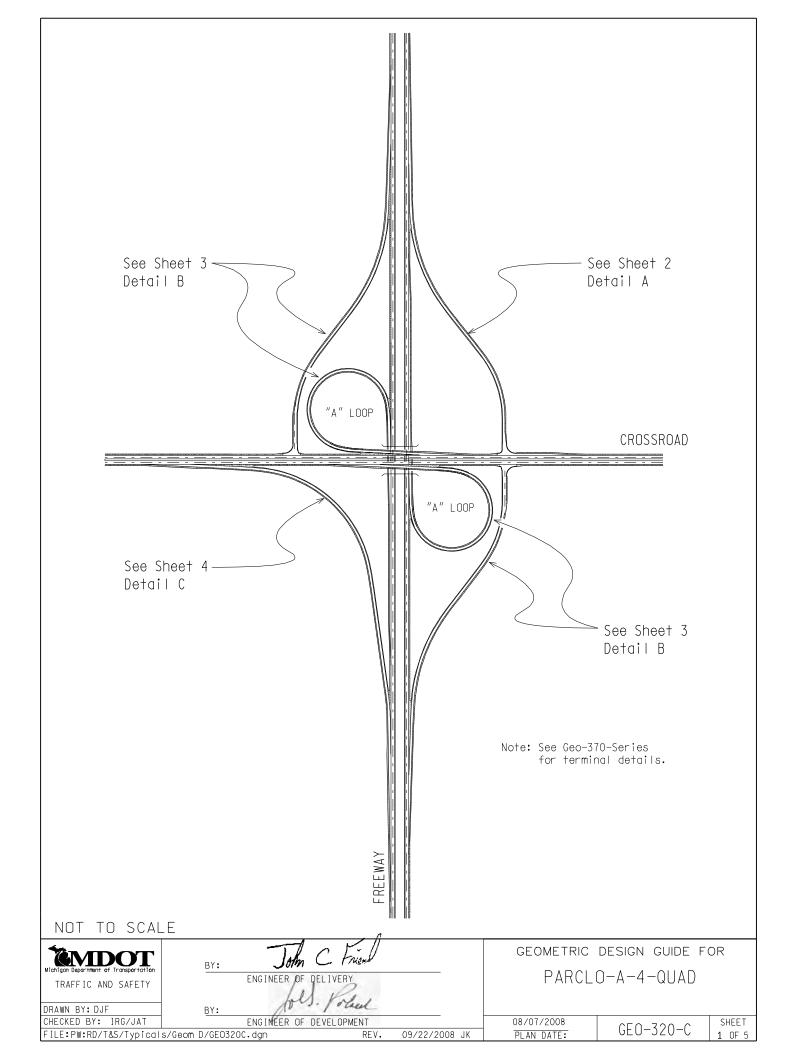

MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	08/07/2008		SHEET
FILE:PW D RD TS T D Geom D/GEO202B DevJ	AT.DGN	REV. 05/26/2009 kl	PLAN DATE:	GEU-ZUZ-B	3 OF 4

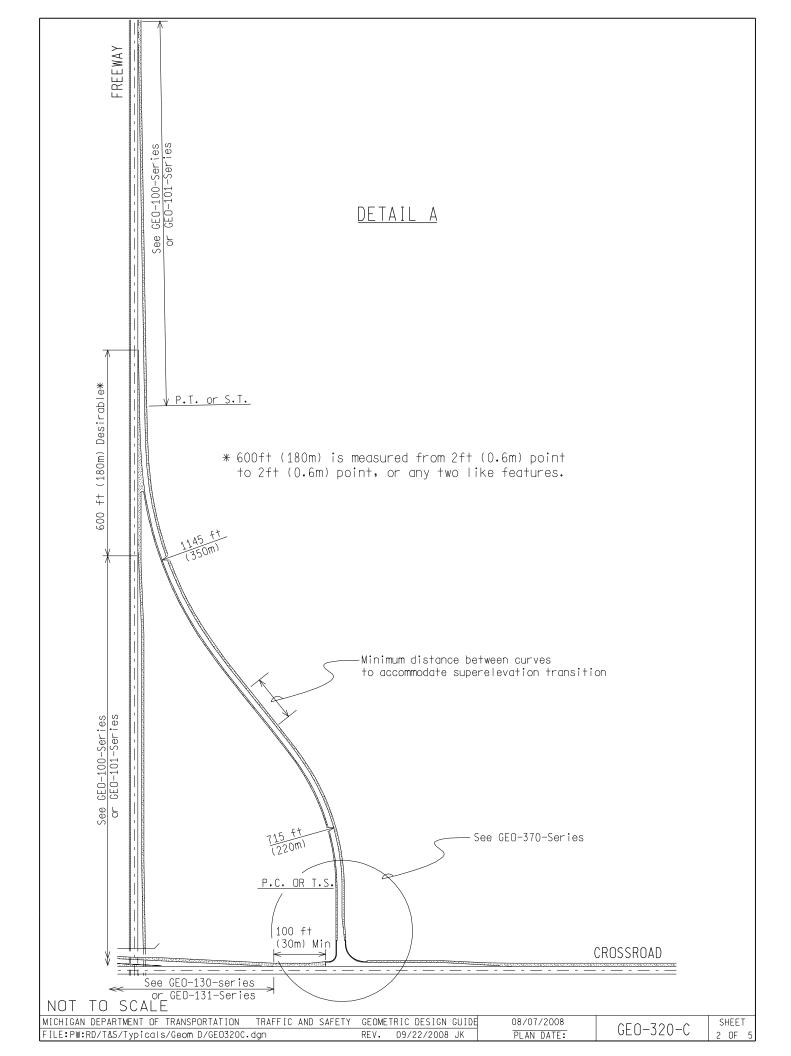

- 1. Select design speed based on a combination of the super elevation rate and the radius of the curve. See also chapter 3 of the MDOT Road Design Manual.
- 2. If an additional through lane is provided or the entrance ramp joins the mainline on the high side (outside) of the curve, use GEO-101-Series.
- 3. If the through pavement is curve, plot offsets for taper and connect with appropriate curve.
- 4. Prepare detail grades and profiles from Section A-A to Section B-B.
- 5. A curve on the exit ramp beyond the gore may be introduced when necessary but should have a 1145 ft (350m) minimum radius for slip exit ramps.
- 6. Radii less than 500 ft (105m) would require lane widening to 16 ft (4.8m).
- 7. A parallel entrance acceleration lane length "S" of at least 1080' (324 m), plus taper, is desirable wherever it is anticipated that the ramp and freeway will carry traffic volumes approximately equal to the design capacity of the merging area.
- 8. Spirals transition should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the Maximum radius in which a spiral should be used.
- 9. The maximum algebraic difference in pavement cross slope between the mainline and the ramp auxiliary lane should not exceed 5%.
- 10. Super elevation should conform to Standard Plan R-107-Series. The maximum rate of super elevation for ramp curves should be 5%.
- 11. The cross slope in the gore area between the 2 ft (0.6m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent paved lane. The algebraic difference also applies within crowned gores.
- 12. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 13. The mainline shoulder width should extend along the ramp to where the gore is 2 ft (0.6 m) wide. Use a 1:25 taper transition where it joins the ramp shoulder paving.
- 14. Each ramp should be carefully studied to provide maximum vision at their merge points. See Geometric Design Guide GEO-300-Series.
- 15. The sight distance in advance of the exit ramp gore should be at least 25% longer than the minimum stopping sight distance for the design speed of the mainline.
- 16. These design concepts are for new construction. Where modifications are needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

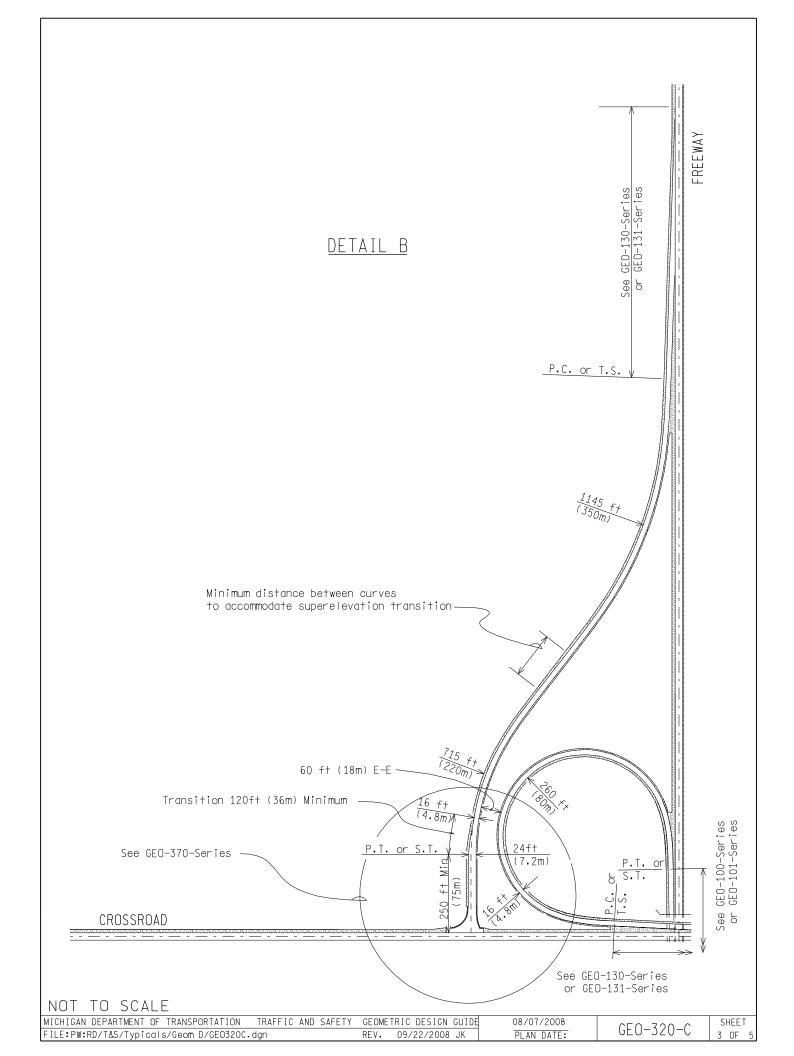

IN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY GEOMETRIC DESIGN GUIDE	08/07/2008	CEO 202 D	SHEET
V D RD TS T D Geom D/GEO202B DevJAT.DGN REV. 05/26/2009 kI	PLAN DATE:	GEU-202-B	4 OF 4

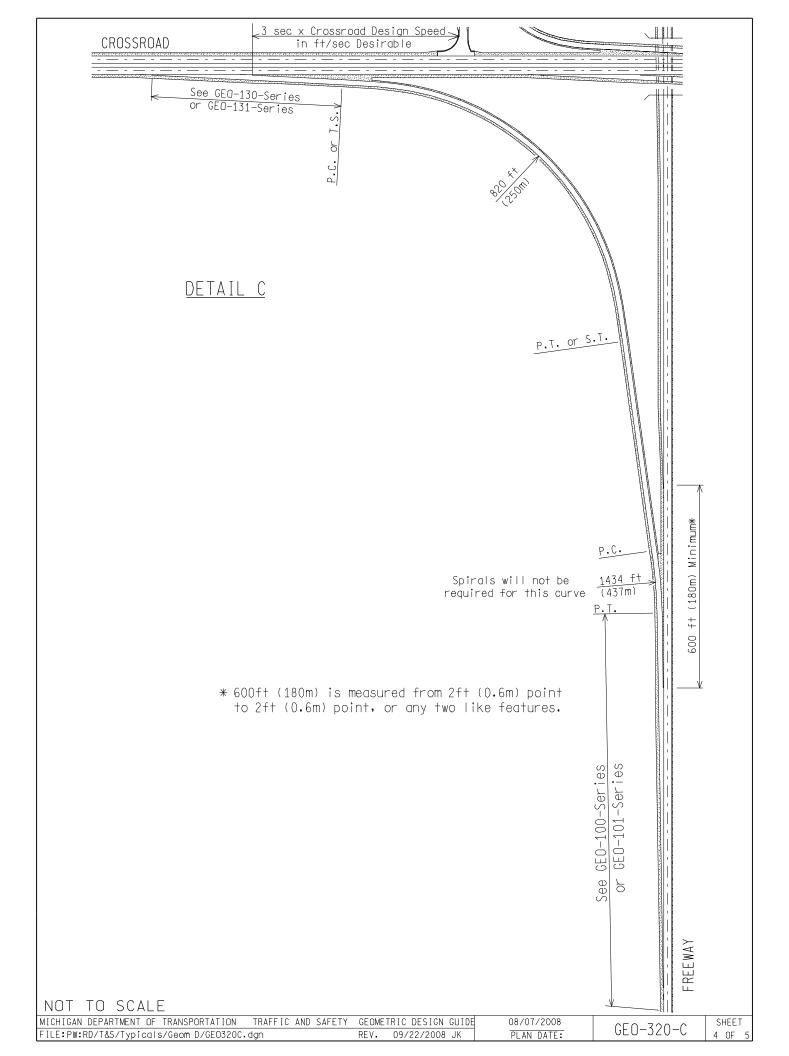


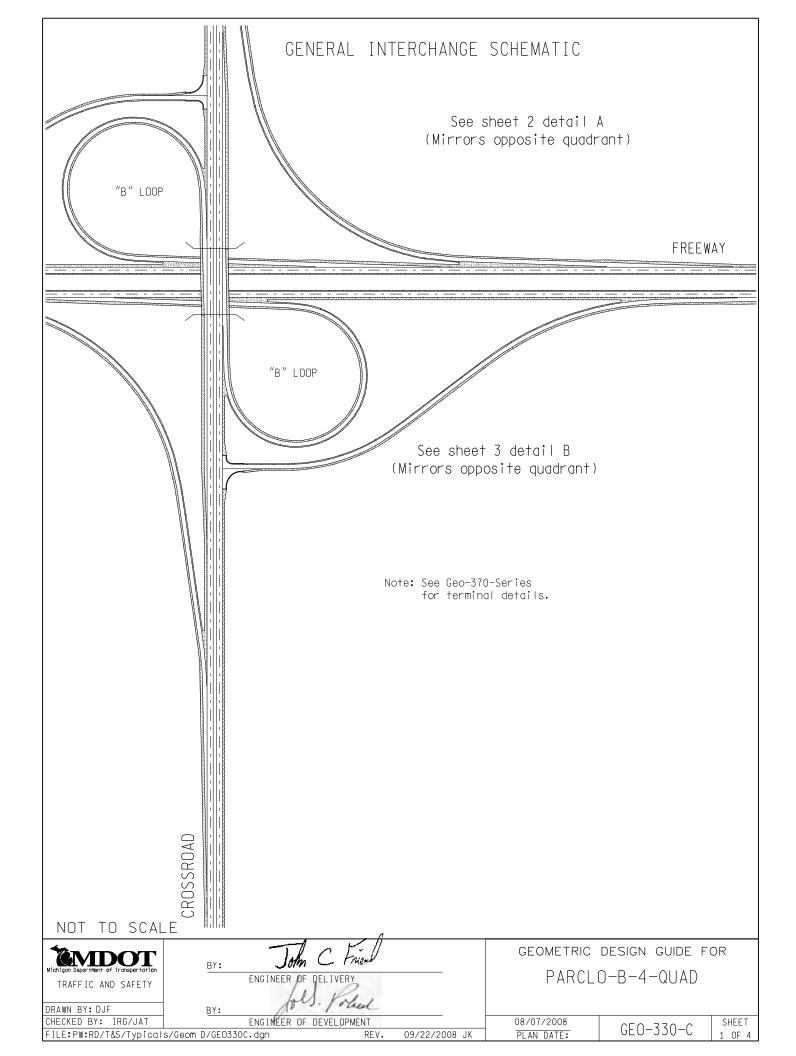


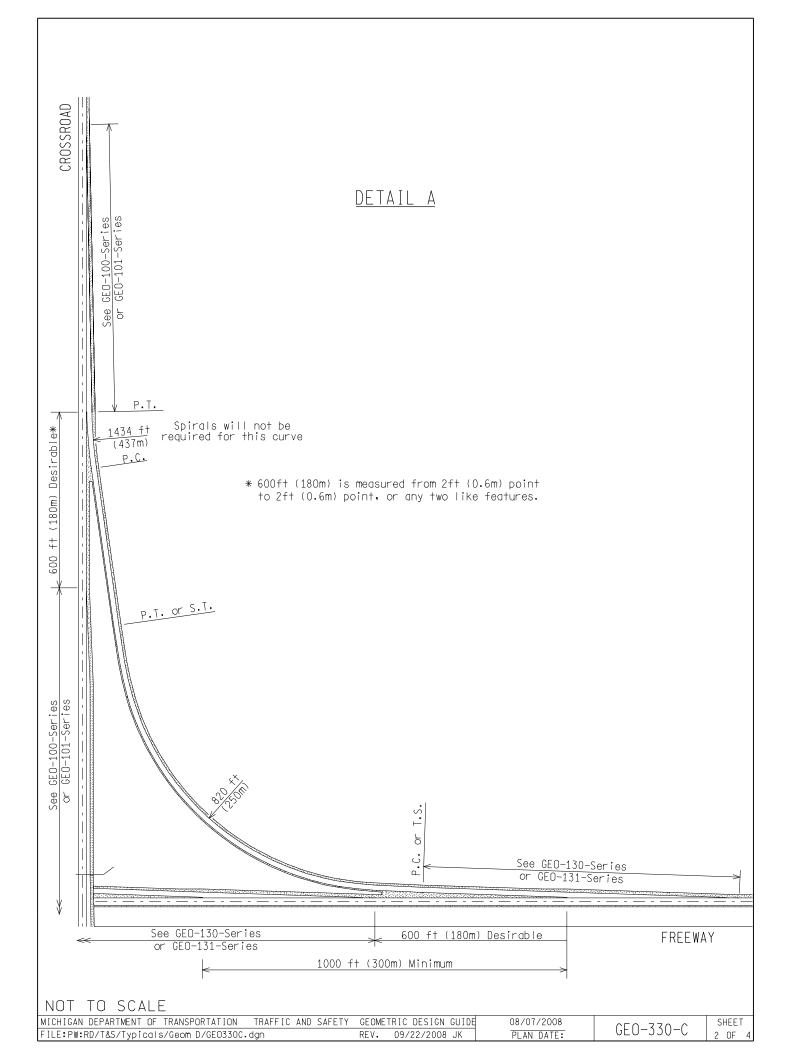


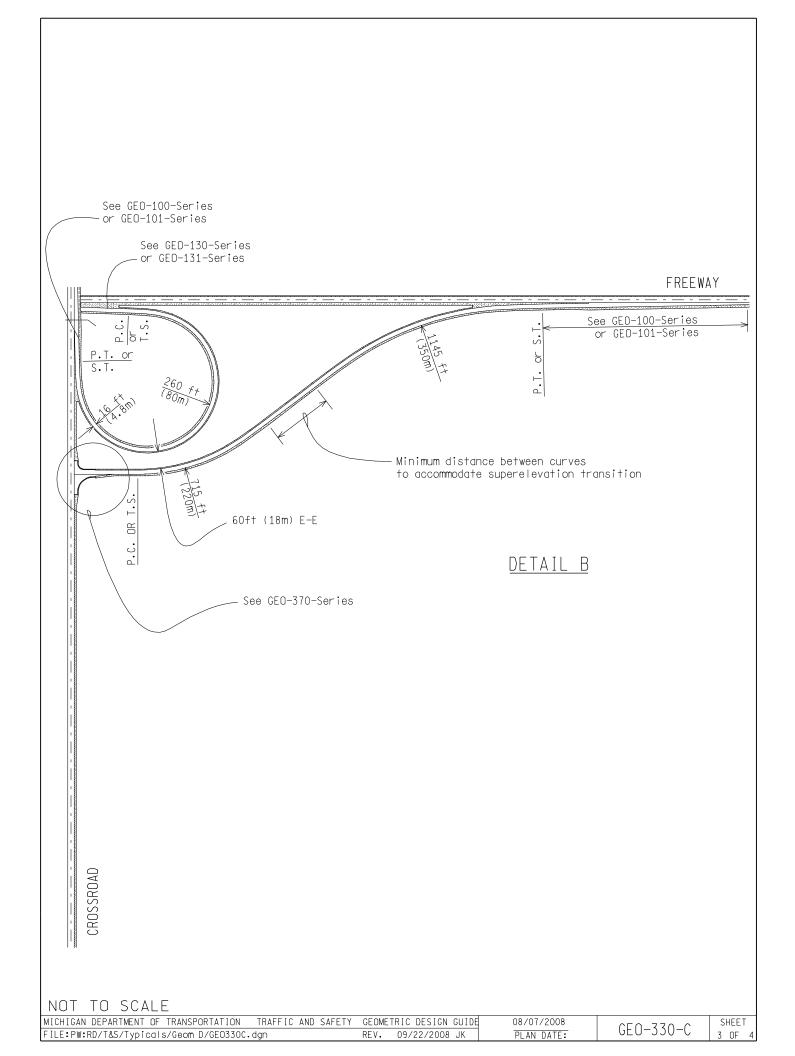

- Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series.
- 2. The cross slope in the gore area between the 2' (0.6m) point and the 22' (6.6m) point should not exceed 8% with a 6% maximum algebraic difference in cross slope between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 3. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 4. Each ramp should be carefully studied to provide maximum vision at its merge points.
- 5. See Geometric Design GED-370-Series for ramp terminal details.
- 6. The interchange design should allow for possible future construction of a Parclo-A 4 quad design or the need for B-Loops. See GEO-120-Series for successive entrance ramps and GEO-150-Series for successive exit ramps.
- 7. See Standard Plan R-42-Series for joint layouts for ramps.
- 8. Current AASHTO A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS and MDDT Guidelines should be used for sight distance requirements. Local or County roads over freeways should be designed for stopping sight distance based on the project design speed.
- 9. Limited access Right-of-Way should be as shown in this guide and the current MDOT Road Design Manual.
- 10. These design concepts are for new construction. Where modifications are needed for retrofitting to existing road features, consult the Geometric Review and Congestion Analysis Unit, Division of Operations.


MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAF	ETY GEOMET	RIC DESIGN GUIDE	06/03/2010		SHEET
FILE:PW RD TS Geo/mdot traf GEO-300-D.dgn	REV.	01/20/2010	PLAN DATE:	GEU-300-D	6 OF 6



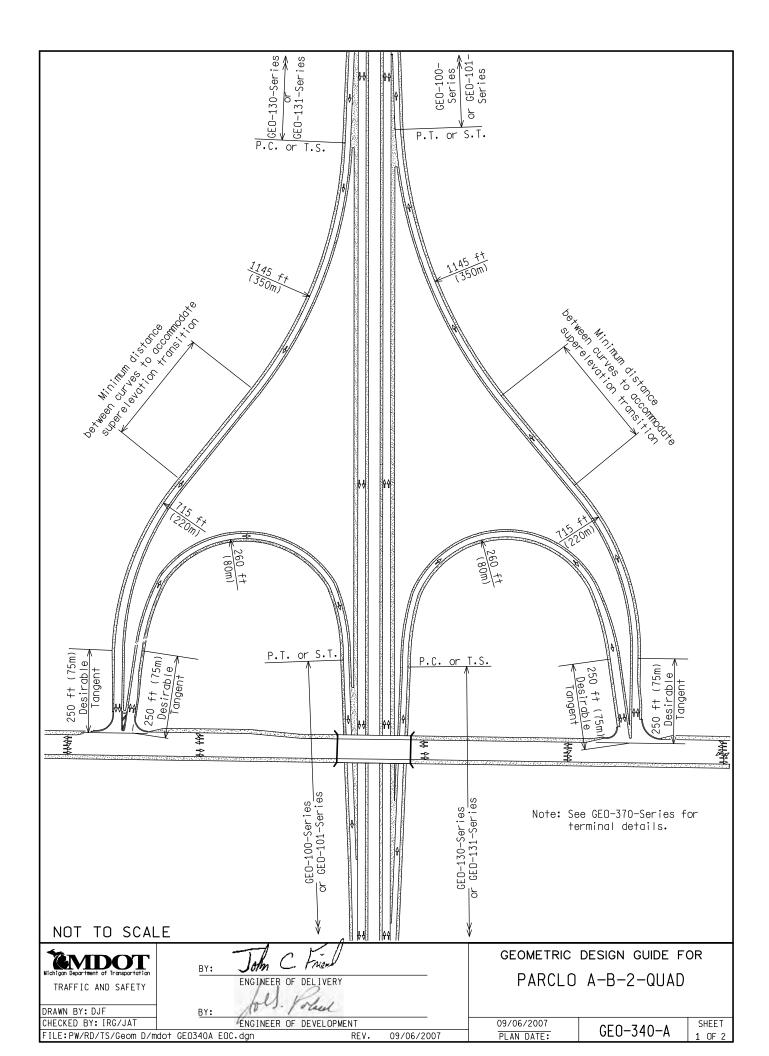


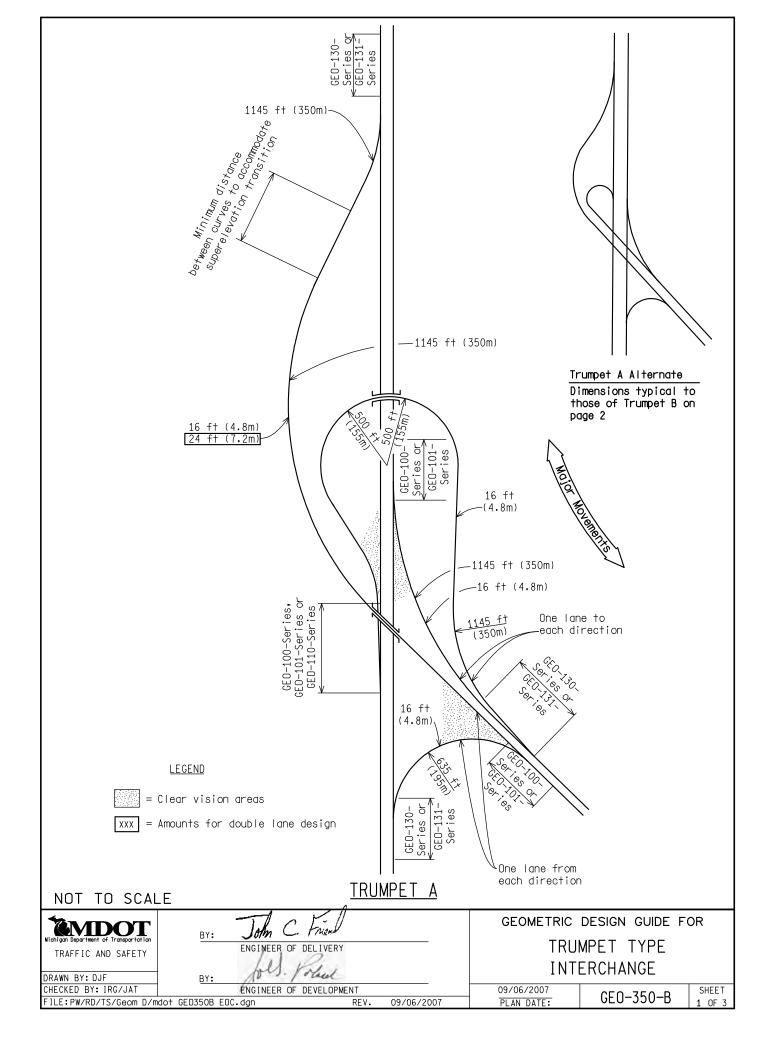


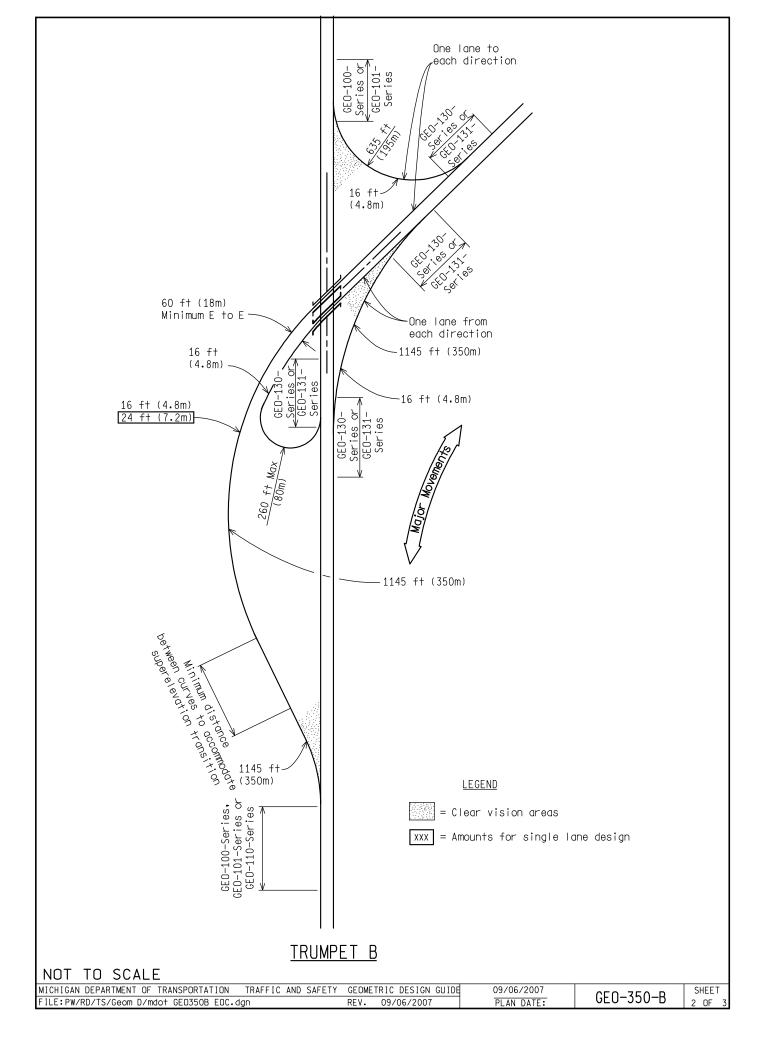


- 1. This Geometric Design Guide is applicable where physical restrictions or lack of R.O.W. prohibit usage of a full Cloverleaf design.
- 2. This layout is applicable for crossroad passing over or under the freeway.
- 3. A free-flow ramp from the crossroad to the freeway is preferred in place of a diamond ramp provided the greater required length of limited access along the crossroad can be met.
- 4. Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. This table gives the maximum radius in which a spiral should be used.
- 5. The cross slope in the gore area between the 2 ft (0.6m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 6. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 7. For allowable approach grades between the cross road and ramp terminal, see GEO-650-Series.
- 8. See Geometric Design Guide GEO-370-Series for ramp terminal details.
- 9. See Geometric Design Guide GEO-300-Series for clear vission area requirements.
- 10. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOME	TRIC DESIGN GUIDE	08/07/2008		SHEET
FILE:PW:RD/T&S/Typicals/Geom D/GEO320C	FILE:PW:RD/T&S/Typicals/Geom D/GE0320C.dgn		09/22/2008 JK	PLAN DATE:	GEU-320-C	5 OF 5

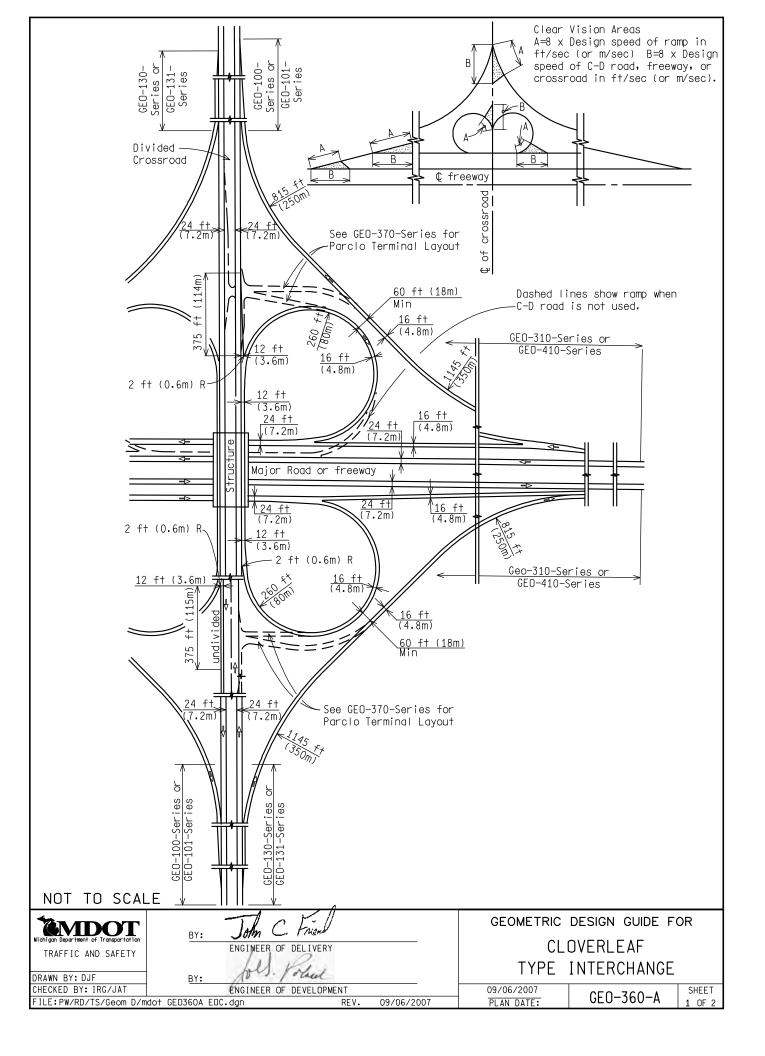



- 1. This Geometric Design Guide is applicable where physical restrictions or lack of R.O.W. prohibit usage of a full Cloverleaf design.
- 2. This layout is applicable for crossroad passing over or under the freeway.
- 3. Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. This table gives the maximum radius in which a spiral should be used.
- 4. The cross slope in the gore area between the 2 ft (0.6m) point and the 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 5. The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 6. For allowable approach grades between the cross road and ramp terminal, see GEO-650-Series.
- 7. See Geometric Design Guide GEO-370-Series for ramp terminal details.
- 8. See Geometric Design Guide GED-300-Series for clear vision requirements.
- 9. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.


MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY GEOMETRIC DESIGN GUIDE		08/07/2008		SHEET	
FILE:PW:RD/T&S/Typicals/Geom D/GE0330C.dgn		REV.	09/22/2008 JK	PLAN DATE:	GEU-330-C	4 OF 4

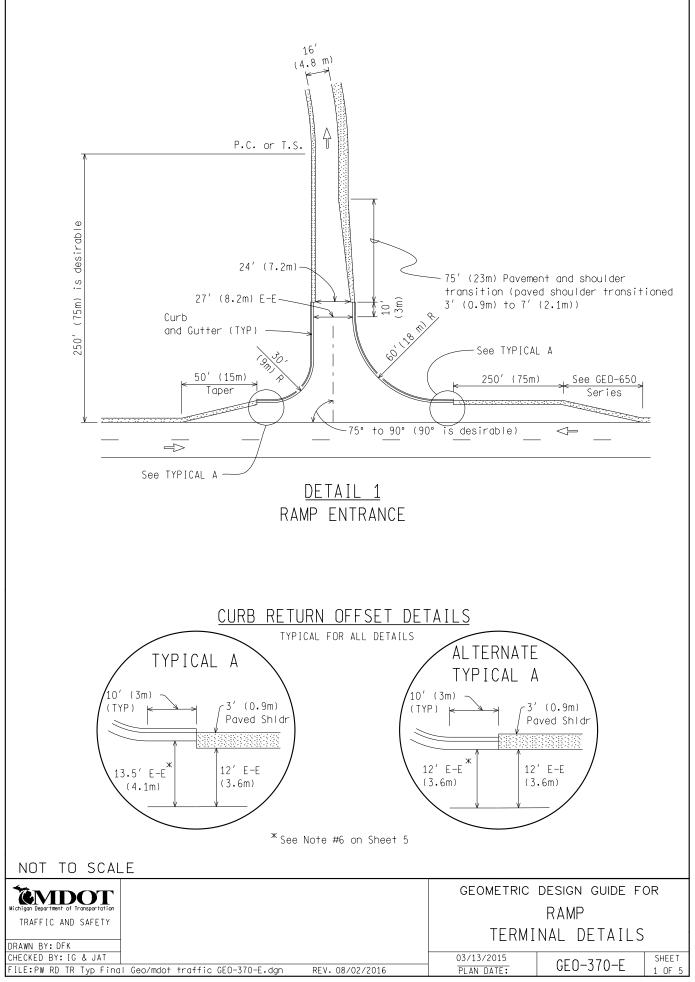
- 1) This geometric design guide is applicable where physical restrictions or a lack of R.O.W prohibit usage of a full cloverleaf design.
- 2) This layout is applicable for the crossroad passing over or under the freeway.
- 3) Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. This table gives the maximum radius in which a spiral should be used.
- 4) The cross slope in the gore area between the 2 ft (0.6 m) point and 22 ft (6.6 m) point should not exceed 8%, with a 6% maximum algebraic difference in cross slope between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 5) The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 6) For allowable approach grades between the crossroad and ramp terminal, see GED-650-Series.
- 7) See geometric design guide GEO-370-Series for ramp terminal details.
- 8) See geometric design guide GEO-300-Series for clear vision area requirements.
- 9) These design concepts are for new construction. Where modifications may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

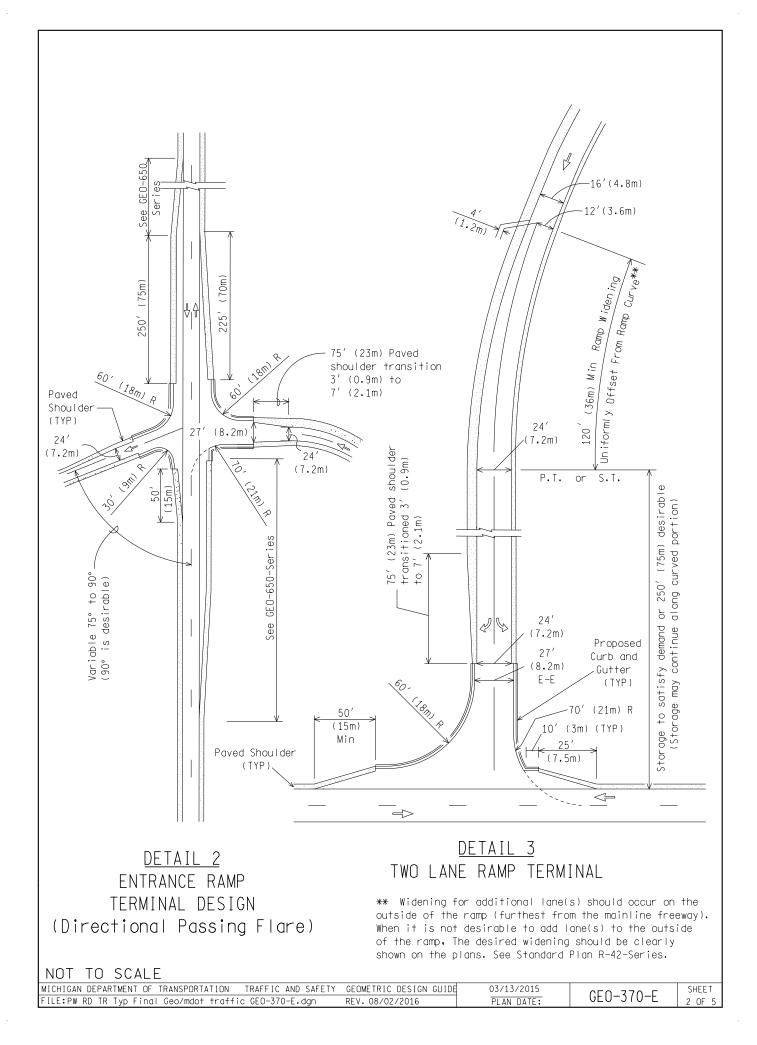
MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY	GEDMETRIC DESIGN GUID	09/06/2007		SHEET
FILE:PW/RD/TS/Geom D/mdot GEO340A EOC.dgn	REV. 09/06/2007	PLAN DATE:	GEU-340-A	2 OF 2

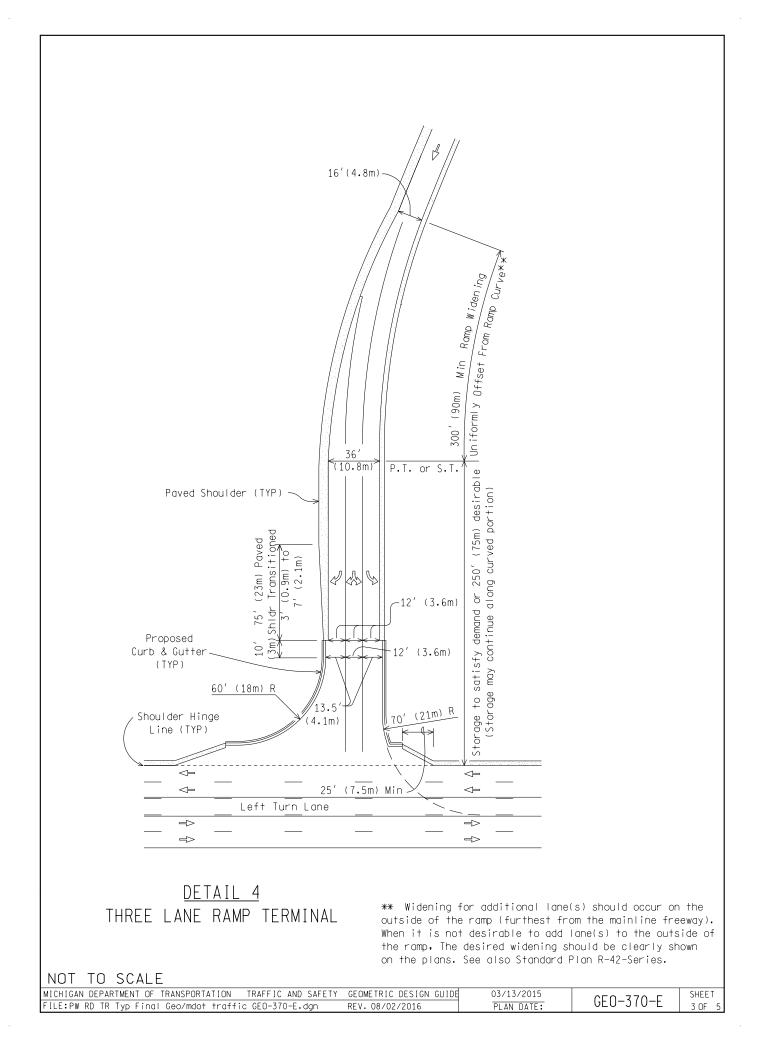


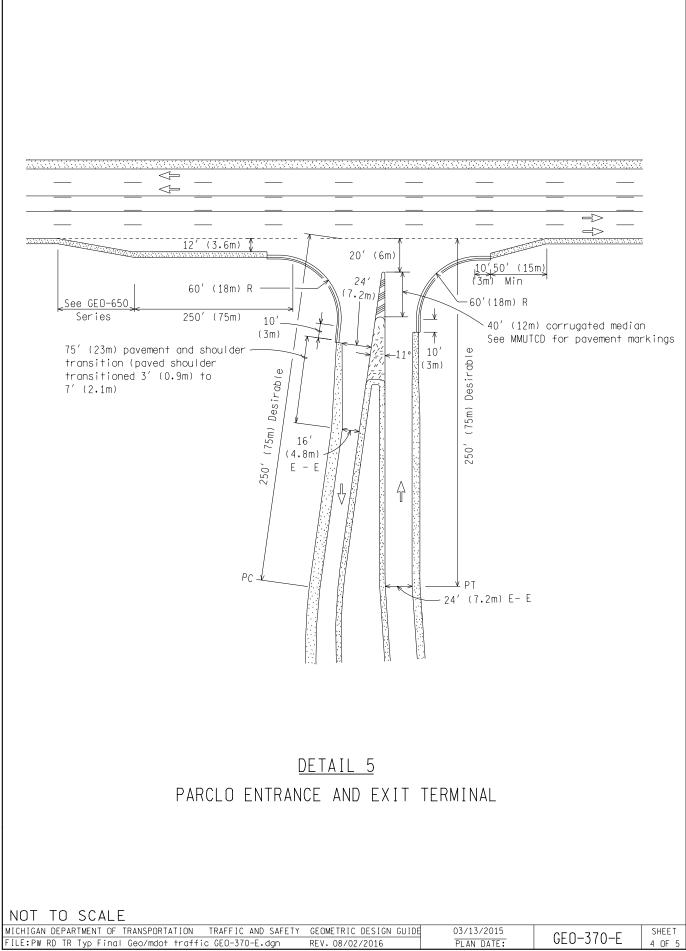
- 1) For ramps longer than 2000 ft (610m) consider two lanes to allow for passing opportunities.
- Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 3) See geometric design guide GEO-300-Series for clear vision area requirements.
- 4) These design concepts are for new construction. Where modifications may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

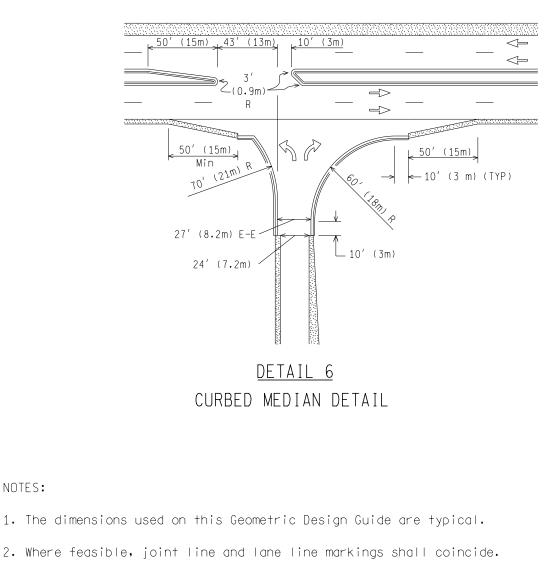
NOT T	0	SCAL	LE
-------	---	------	----


MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOME	TRIC DESIGN GUIDE	09/06/2007		SHEET
FILE: PW/RD/TS/Geom D/mdot GED350B EDC.	dgn	REV.	09/06/2007	PLAN DATE:	0EU-330-B	3 OF 3

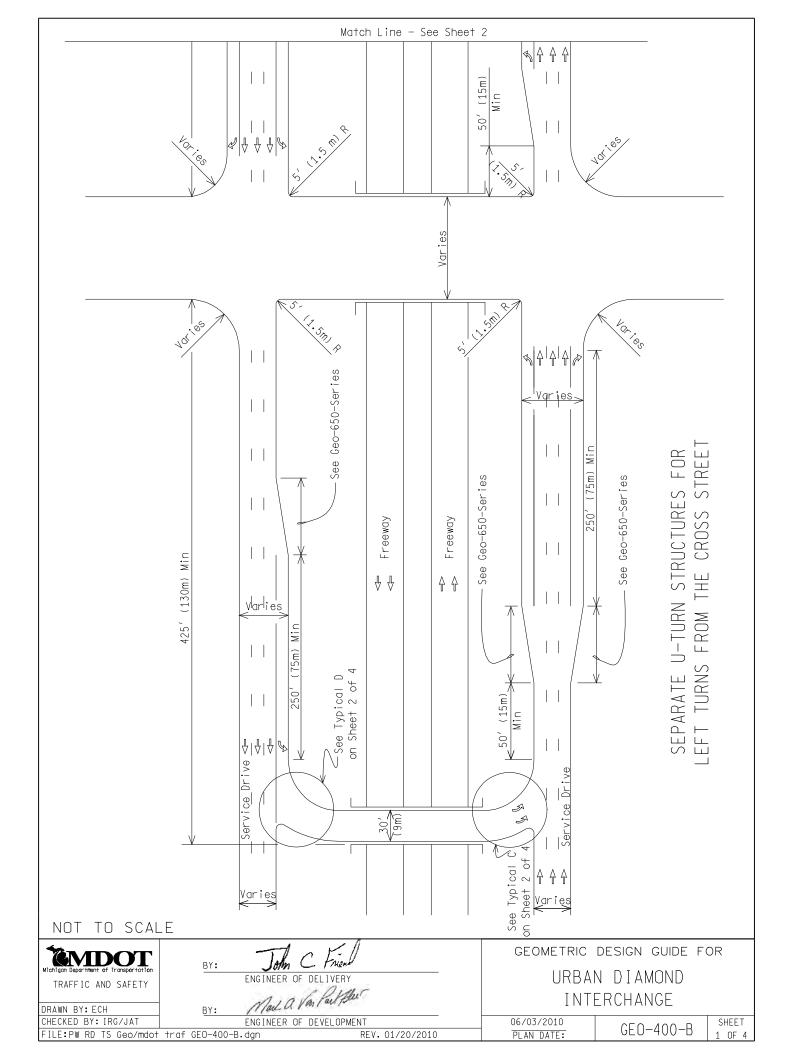

- 1) The design speed of the collector-distributor (C-D) roadway is generally 60 mph (100 km/hr).
- 2) Spiral transitions should be used on new ramp alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series. The table gives the maximum radius in which a spiral should be used.
- 3) The cross slope in the gore area between the 2 ft (0.6 m) point and the 22 ft (6.6 m) point should not exceed 8% with a 6% maximum algebraic difference in cross slope between the gore and the adjacent lane. This algebraic difference also applies within crowned gores.
- 4) The design speed of the ramp vertical alignment should meet or exceed the design speed of the ramp horizontal alignment.
- 5) Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GEO-300-Series.
- 6) See Geometric Design Guide GEO-370-Series for ramp terminal details.
- 7) The longitudinal joint on a 24 foot (7.2 m) ramp pavement shall be located 12 feet (3.6 m) from the right edge of the pavement and ended where the ramp width becomes 16 feet (4.8m).
- 8) These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

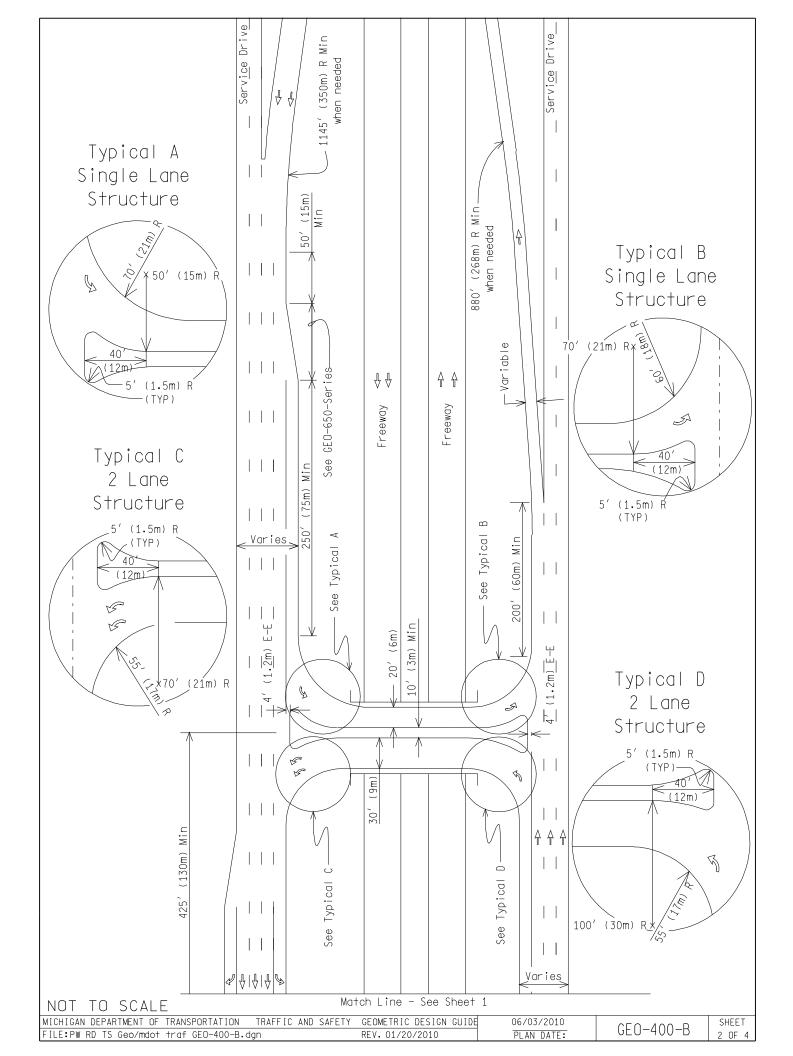

NOT TO	SCALE
--------	-------

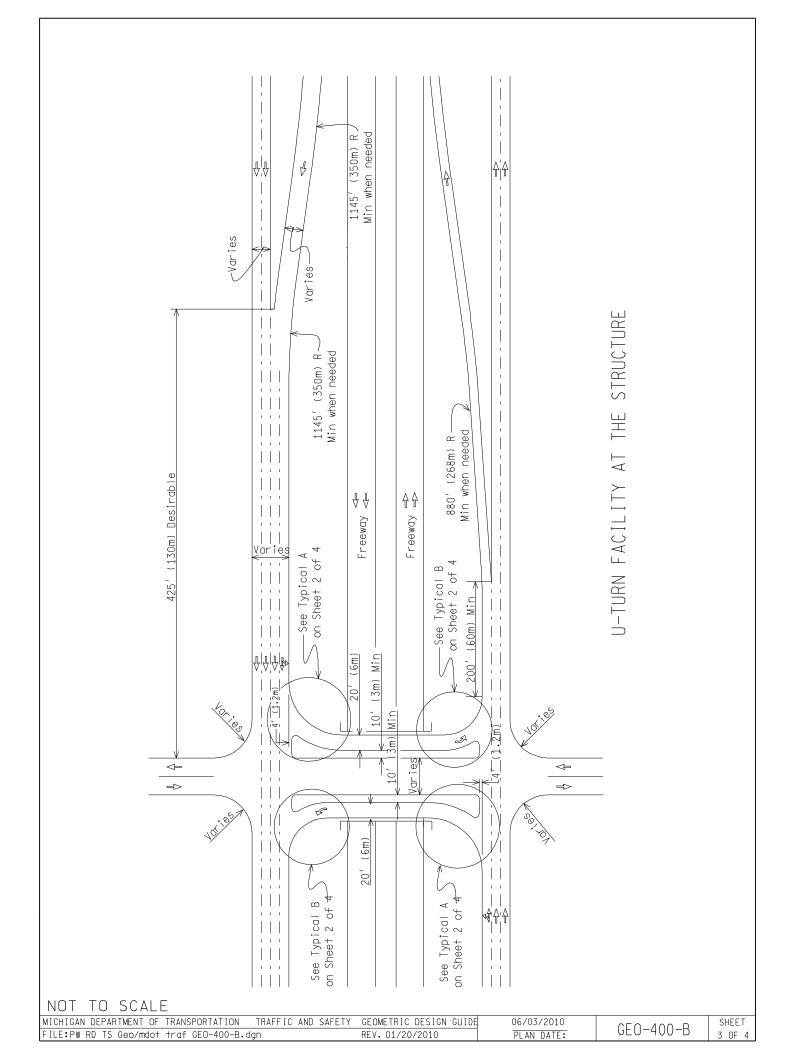

MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOME	TRIC DESIGN GUIDE	09/06/2007		SHEET
FILE:PW/RD/TS/Geom D/mdot GED360A EDC.c	lgn	REV.	09/06/2007	PLAN DATE:	GEU-360-A	2 OF 2



÷

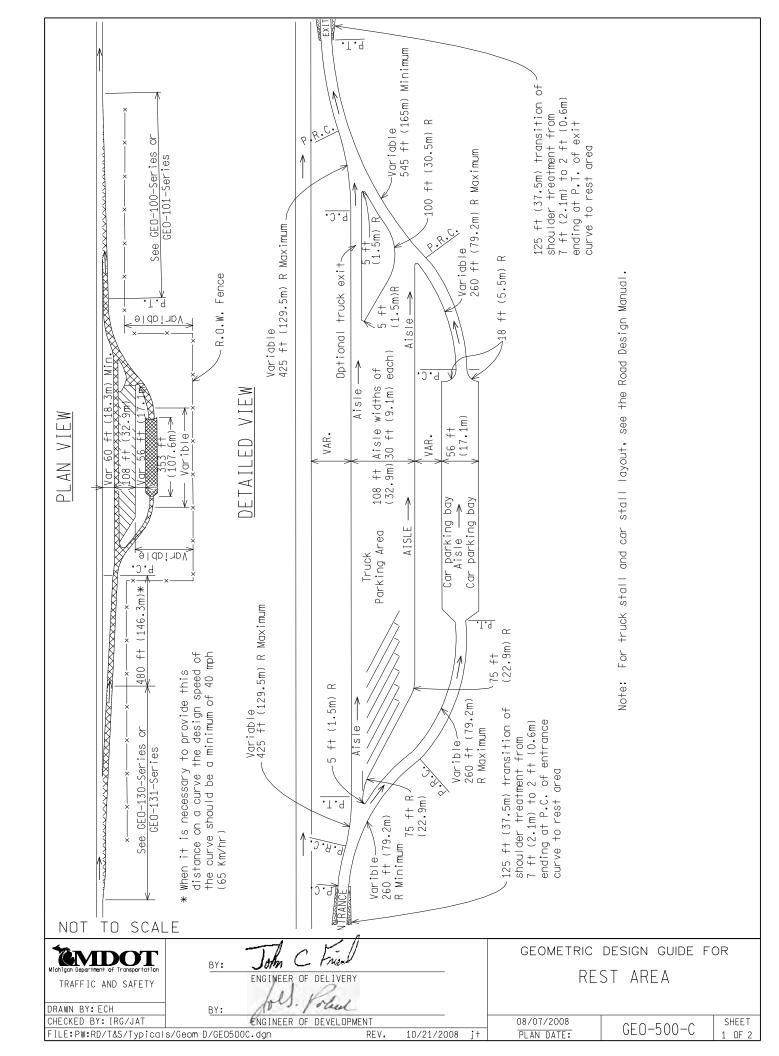


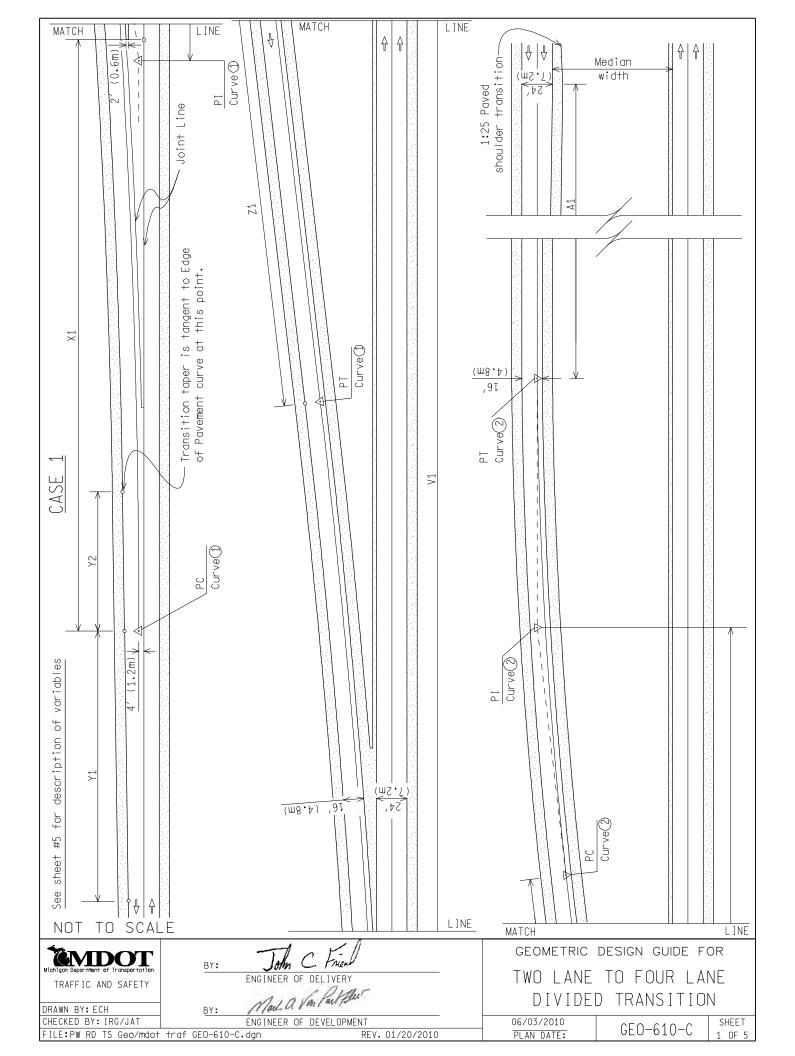

- 3. See Standard Plan R-42-Series for joint layout.
- 4. Clear vision areas and sight distance along the ramp and its terminals must be according to current MDOT practice. No hidden ramp or disappearing crossroad grades will be permitted.
- 5. Provide intersection sight distance at all exit ramp terminals.
- 6. Alternate Typical A may be used when construction and maintenance issues make the 13.5' (4.1m) curb setback undesirable or the crossroad is curbed.
- 7. For all entrance and exit ramps, the angle of intersection between the ramp and the cross-road should be between 75° and 105° (with 90° desirable).
- 8. All ramp turning radii should be designed to accommodate a WB-67 design vehicle.

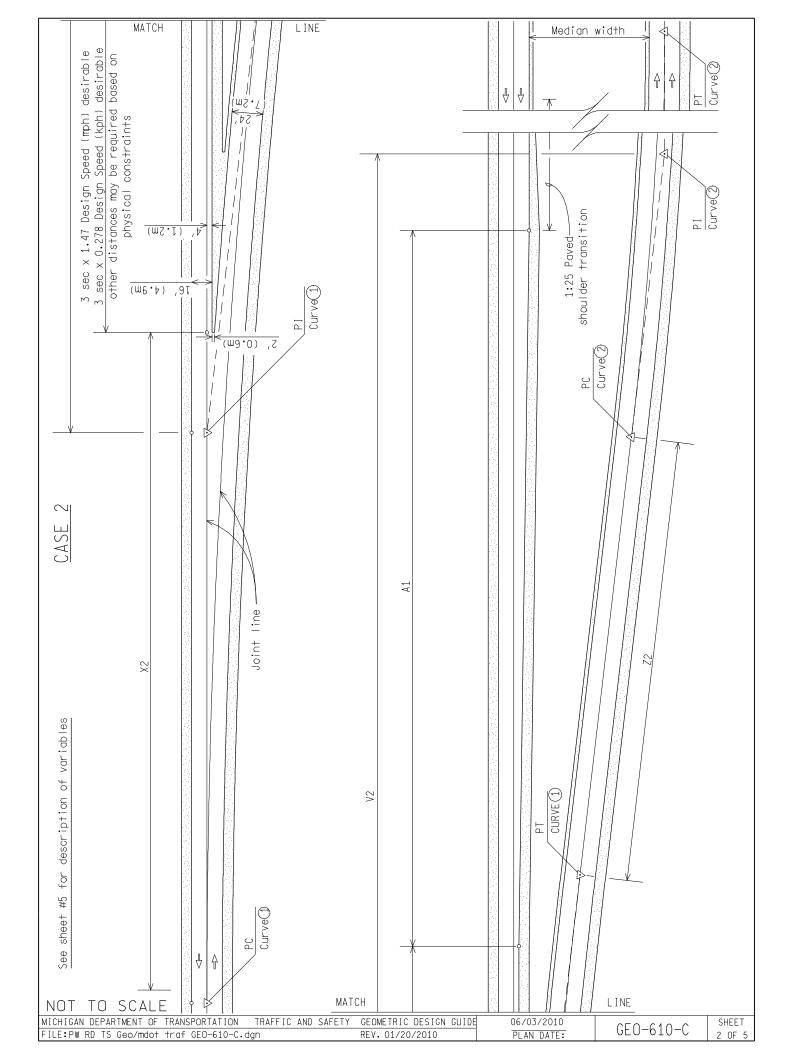

NOT TO SCALE

NOTES:

MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	03/13/2015	0F0 770 F	SHEET
FILE:PW RD TR Typ Final Geo/mdot traffic GEO-370-E.dgn	REV. 08/02/2016	PLAN DATE:	GEU-370-E	5 OF 5




- 1. Vertical curb on ramps should be removed for a minimum distance of 200' (60m) from the ramp nose or bifurcation and entirely removed on freeway mainlines.
- 2. Where curb is called for on a service drive or cross street, provide a minimum 100' (30m) of sloped curb beyond the exit nose.
- 3. Refer to geometric design guide GEO-650-Series for taper lengths, intersection radii, and auxiliary lane storage length.
- 4. A capacity analysis should be performed at each intersection to determine the type and number of lanes needed.
- 5. If radii shown can not be obtained at the u-turn structure, bridge width may need to be widened.
- 6. Current AASHTO "A Policy on Geometric Design of Highways and Streets" and MDDT Guidelines should be used for sight distance requirements.
- 7. Spirals should be used on new alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series.
- 8. The cross slope in the gore area between the 2' (0.6m) point and the 22' (6.7m) point should not exceed 8%, with a 6% maximum algebraic difference in grades between the gore and the adjacent paved shoulder.
- 9. The design speed of the vertical alignment should meet or exceed the design speed of the horizontal alignment.
- 10. Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GED-300-Series.
- 11. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Review and Congestion Analysis Unit, Division of Operations.


MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	06/03/2010		SHEET
FILE:PW RD TS Geo/mdot traf GEO-400-B.	lgn	REV. 01/20/2010	PLAN DATE:	GEU-400-B	4 OF 4

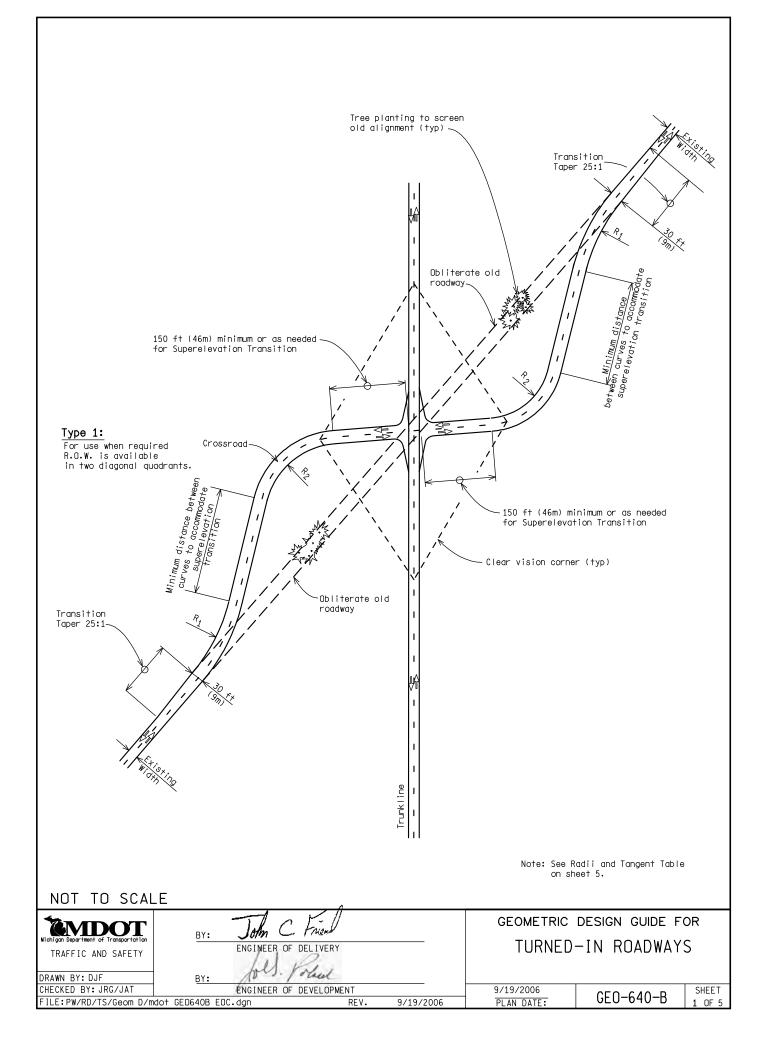
- 1. The designer has the flexibility to choose the taper type ramp or the parallel type ramp. However, the same type of entrance and exit ramp should be used within a rest area and corridor. Uniformity in design is needed to aid driver expectancy.
- 2. Entrance and exit ramps should be designed in accordance with GED-100-Series, GED-101-Series, GED-130-Series and/or GED-131-Series as appropriate.
- 3. Each ramp should be carefully studied to provide maximum vision at its merge points. See Geometric Design Guide GED-300-Series.
- 4. Current AASHTO "A Policy on Geometric Design of Highways and Streets" and MDOT Guidelines should be used for sight distance calculations.
- 5. Superelevation of the curves within the rest area layout is not recommended.
- 6. Four foot (1.2m) shoulders are recommended. However, shoulder width should be modified to meet the current Road Standards, the current Road Design Manual, and as recommended by the Geometric Design Unit of Lansing Traffic and Safety."
- 7. Curb is to be used for traffic control. The type and location of curb will be shown on design plans. See the Road Design Manual and the Standard Plans for more information.
- 8. The orientation, size and layout of the parking areas, entrances and exits to them may be modified to fit the site conditions, capacity needs and other requirements.
- 9. Pavement markings should be accordance with PAVE-956-Series and all other relevant Pavement Markings Standards and Special Details.
- 10. If the orientation of the rest area is different than shown, the truck parking stalls should be so situated as to keep the length of aisles to a minimum.
- 11. Specifically designated 12ft (3.6m) wide handicap parking stalls will be located as close as possible to walkways and entrances. See Michigan Vehicle Code and local ordinances for more information on ADA and handicap requirements.
- 12. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Design Unit of Lansing Traffic and Safety.

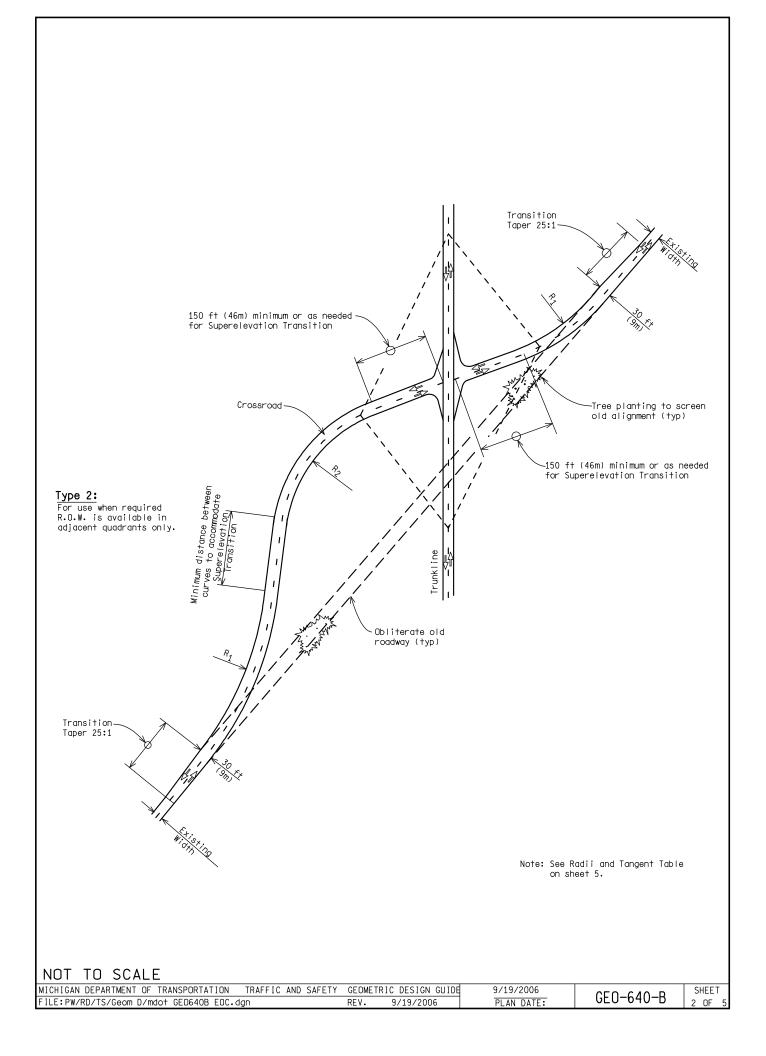
MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFET	Y GEOMETRIC DESIGN GUIDE	08/07/2008		SHEET
FILE:PW:RD/T&S/Typicals/Geom D/GE0500C.dgn	REV. 10/21/2008 j+	PLAN DATE:	GEU-300-C	2 OF 2

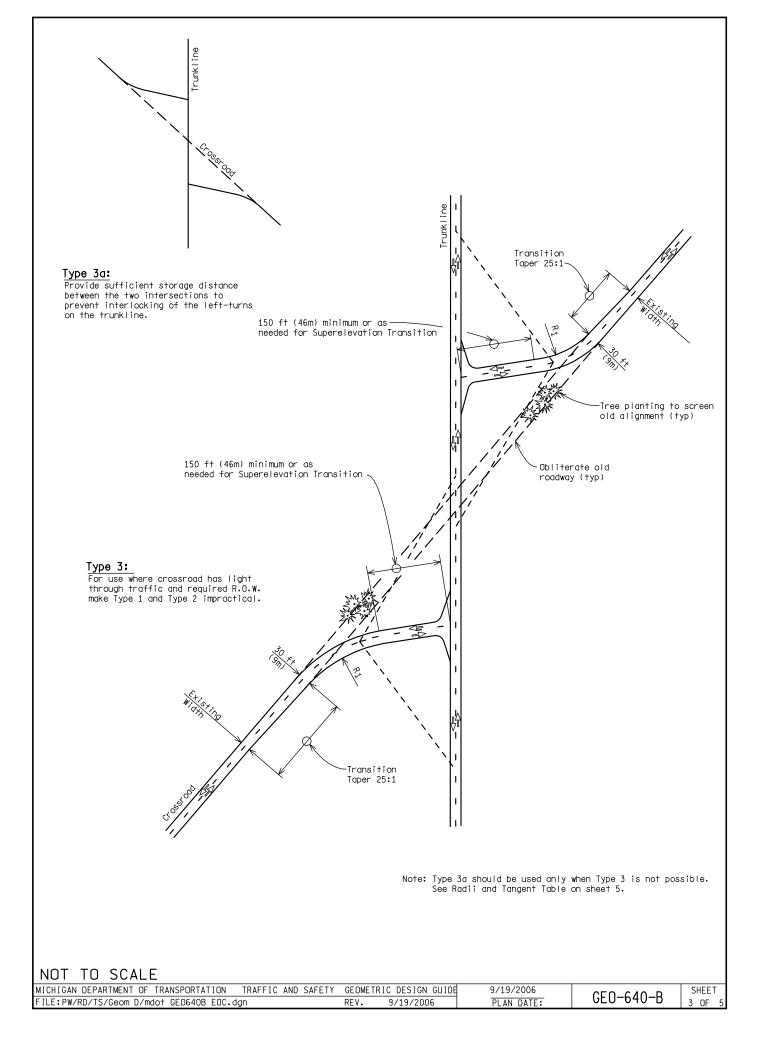
Γ			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
		Ĩ		840		840		840	840	720	720	720	720	720	720	720	600	600	600		_	600	600	320				320	320	320	
	5	74	524.53	524.53	524.53	524.53		524.53	524.75	420.60	420.60	420.60	420.60	420.60	421.11	428.63	370.97	370.97	370.97	370.97	•	371.12	376.64	321.31	321.31	321.31	•	321.31	321.33	325.12	
	Z UAIA	i		349.30 5		356.61 5		365.27 5	369.35	451.50 4	452.68 4	455.47 4	460.44 4	464.80 4	470.66 4	480.29 4	93	393.21 3	396.94 3	398.99 3	23	408.30 3	416.47 3	328.15	329.85 3		334.01 3	337.52 3	341.20 3	347.37 3	
		-		65 349								90 455					1 392.9								62 329	-	54 334	34 337			
	CV	7 4	1007.01	975.6	925.41	891.39	833.61	794.88	749.49	880.46	856.91	822.9	799.21	761.80	735.03	709.10	759.31	738.81	710.81	689.10	658.6	634.73	612.53	646.11	629.6		586.5	559.3	539.16	519.27	
-	۲ د ک	2	8.96	8.96	8.96	8.96	8.96	108.96	108.96	.64	.64	.64	.64	.64	.64	81.64	76.14	76.14	76.14	.14	.14	.14	76.14	.30	71.30	71.30	71.30	71.30	• 30	71.30	
				52 108.	52 108.	52 108.			.52 10	.18 81.	18 81.	18 81.		18 81.	.18 81.			.93 76	.93 76	.93 76.		93 76.	.93 76	35 71			35		35 71.	.35 71	
< 	UALA V1	-	225.	225.					225	199		199.	-	199.	199	199.18	161.93	161	161	161	161.	161.	161	124.35		-	124.	124.35	124.35	124	
-	- 5	+ <	462.41	462.41	462.41	462.41	462.41	462.41	462.41	370.71	370.71	370.71	370.71	370.71	370.71	371.62	326.91	326.91	326.91	326.91	326.91	326.91	327.31	283.07	283.07	283.07	283.07	283.07	283.07	283.19	
	71 LAS		.44	.95	310.10 4	98	46	.13	. 25	.38	420.69	22	.17	•00	421.50	423.42	366.89 3	365.56	43	93		80	.31	80		305.81 2	79	305.31 2	305.03 2	305.64 2	
	-	-		51 312	03 310	95 313.		.89 312	53 309.	52 421	.18 420	.88 420.	15 422	27 421						28 365.			.52 367	20 305.		.14 305	.61 305.	.38 305	22 305		
	1			939.5		848.9		741.8	689.5	850.62	825.1	787.8	761.15	718.2	686.03	652.38	733.57	711.45	680.56	656.2	•	592.4	563.5	624.20	606.30	579.1	558.6	527.3	503.2	477.73	
	сц	L	6.51	5.81	4.90	4.22	3.35	2.71	2.12	3.64	3.22	2.65	2.25	1.72	1.36	1.01	3.10	2.75	2.26	1.92	1.46	1.16	0.86	3.13	2.76	2.28	1.94	1.48	1.17	0.88	
	¢	L	445.56	421.11	386.67	358.89	320.00	287.78	254.44	218.10	205.24	186.19	171.43	150.00	133.33	115.24	160.61	151.21	136.97	126.36	110.30	98.18	84.85	138.00	129.78	117.78	108.67	95.11	84.67	3.33	lane width.
		J	03	77	.50	.58	60	.96	27	.21	102.75 2			75.05 1		57.64 1	80.46 1	75.74 1	58	26	0	m	45	19	65.05 1	<u> </u>	43		38	69 7	lane
		-	72 223.	72 210.	72 193.	72 179.		72 143	2 127.	2 109.			<u> </u>		2 66.70		74 80.	74 75.	4 68.	74 63.		4 49.1	4 42.	4 69.			4 54.	4 47.62	42.	4 36.	a 12'
Ē		21		3819.7	-	3819.7		3819.7	3819.72	1637.02	1637.02	1637.02	1637.02	1637.02	1637.02	1637.02	1041.7	1041.7	1041.74	1041.7	1041.7	1041.74	1041.74	763.9	763.94	763.94	763.94	763.94	763.94	763.94	ed on
	60	1	~	1°30'	~	1°30'	~	1°30'	1° 30′	3° 30′ :	3°30':	3°30'	2	3°30'	~	3° 30′	5°30'	5°30'	5°30':	~	~	~	5°30′	7° 30′	7° 30′	7° 30′	7°30′	7°30′	7°30′	7° 30′	re based
-		-		11.62	80	44	71	42	24	10.92	9.67	95	6.74	16	4.08	3.04	11.38	10.08	8.27				3.17	11.73	10.37	53	7.26	56	40	30	Values ar
	-			.22 11	.33 9.	78 8.		56 5.	89 4.		.71 9.	57 7.		00 5.						.33 7.			.11 3.			67 8.		67 5.	50 4.	.2.00 3.	
+	UAIA		891.11	842	773	717.78		575.56	508.89	654.29	615	558.	514.29	450.00	400.00	345.71	588.89	554.44	502.22	463		360.00	311	517.50		-	407.50	356.67	317.	27	in mot
-	⊣∣⊱	-	446.06	421.54	387.00	359.15	320.19	287.91	254.54	327.63	308.26	279.59	257.38	225.16	200.11	172.93	295.03	277.71	251.47	231.95	202.41	180.13	155.64	259.46	243.92	221.47	204.09	178.56	158.91	137.61	speeds in mph.
		1	44	44	44	44	44	44	7639.44	4911.07	4911.07	4911.07	4911.07	.07	4911.07	4911.07	3819.72	3819.72	3819.72				3819.72	2864.79	2864.79 2	2864.79 2	2864.79 2	2864.79	2864.79	2864.79	- put
				5'7639.	5' 7639.	5′7639.		5′7639.					L	0'4911	<		~			~	~	~	<u> </u>					~		~	feet and
-	2			, 0°45	, 0°45	, 0°45		, 0°	′ 0° 45	, 1°10'	/ 1°10′	/ 1°10	/ 1°10′	/ 1°10'	/ 1°10	/ 1°10	1.30	′ 1°30′	′ 1°30′	/ 1°30		1	, 1°30	1 2°00′	, 2°00'	, 2°00'	, 2°00'	, 2°00	, 2°00	, 2°00	
	DELTA		6°41′	6°19	5°48′	5°23	4°48′	4°19	3°49	7° 38	7°11	6°31	00.9	5°15	4°40	4°02	8°50	8°19′	7°32'	6°57	6°04	5°24′	4°40	10°21	9°44'	8°50'	8°09	7°08	6°21	5°30'	ces are
	WEDIAN	CIII DI M	94	84	70	60	46	36	26	94	84	70	60	46	36	26	94	84	70	60	46	36	26	94	84	70	60	46	36	26	l distances
	VESIGN	-	70		I					60		<u> </u>	1	L	I	I	50							40	I	1	<u> </u>	<u> </u>	<u> </u>		*Note all
OT TO SC HIGAN DEPARTMEI			RANS	2001	2 T 4 .		N	тр	AFFIC	<u>` Л МГ</u>			ΓV	C.E	∩M⊑	TRIC	DEC	ICN	CIT	. D E			06/03.	/20/	10						
E:PW RD TS Geo									ALT 16	/ ANL	, JF	11 E	. 1)1/20			501				PLAN						GE	0-6	510

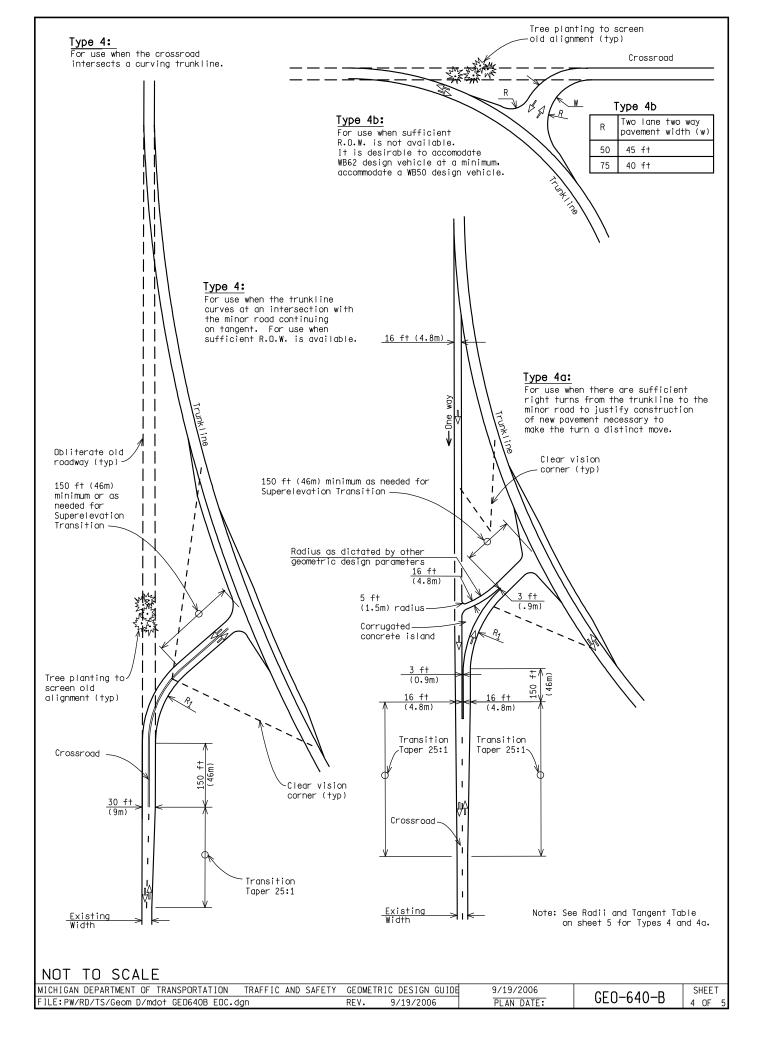
	A1	270	270	270	270	270	270	270	225	225	225	225	225	225	225	180	180	180	180	180	180	180	85	85	85	85	85	85	85
	X2	161.03 2	161.03 2	161.03 2	161.03 2	161.03 2	161.03 2	.14	.32	.32	.32	.32	.32	.62 2	.17	.88	.88 1	.88 1	.88 1	.88 1	.89 1	.08 1	.64	.64	64	64	64	64	.94
DATA	×	.35 161		92			50 161	26 161	45 127	.45 127	95 127	05 127	41 127	.10 127	91 130	35 113	47 113	58 113	.05 113	46 113	30 113	.90 115	1 98	22 98.	.7 98.	56 98.	0 98.	91 98.0	.5 98.
CASE 2	Z2	111	111.09	112.	114.57	115.34	116.	119.26	144.45	145	145.	147.05	149.	151	152.	115.	115.	116.	117	118.	120.	121	86.8	87.	87.7	88.	89.70	90.	92.1
0	V2	315.28	304.79	287.61	276.90	260.65	247.84	235.05	273.74	267.18	254.75	247.37	237.54	229.55	221.07	232.50	226.20	215.65	208.75	199.47	192.54	184.88	191.28	186.07	176.72	171.00	162.86	156.50	149.64
	Υ2	32.14	32.14	32.14	32.14	32.14	32.14	32.14	24.08	24.08	24.08	24.08	24.08	24.08	24.08	24.06	24.06	24.06	24.06	24.06	24.06	24.06	24.04	24.04	24.04	24.04	24.04	24.04	24.04
TA	۲1	73.41	73.41	73.41	73.41	73.41	73.41	73.41	62.52	62.52	62.52	62.52	62.52	62.52	62.52	47.62	47.62	47.62	47.62	47.62	47.62	47.62	32.72	32.72	32.72	32.72	32.72	32.72	32.72
CASE 1 DATA	X1	141.96	141.96	141.96	141.96	141.96	141.96	141.96	112.22	112.22	112.22	112.22	112.22	112.22	112.22	100.36	100.36	100.36	100.36	100.36	100.36	100.36	86.90	86.90	86.90	86.90	86.90	86.90	86.90
CA	Z1	100.83	100.01	100.62	101.33	100.54	100.11	100.67	135.29	135.72	135.04	135.21	135.92	135.92	135.42	107.55	107.21	107.32	107.04	107.10	107.55	107.25	80.36	80.39	80.16	80.33	80.40	80.52	80.28
	V1	304.83	293.77	275.37	263.72	245.89	231.50	216.49	264.66	257.52	.91	235.59	224.10	214.41	203.61	224.79	218.02	206.48	198.81	188.18	179.84	170.29	184.94	179.34	169.20	162.86	153.64	146.18	137.83
	E2	1.96	1.77	1.43	1.24	0.99	0.81	0.63	1.08	0.96	0.76	0.64	0.50	0.39	0.29	1.05	0.93	0.74	0.63	0.49	0.39	0.29	1.10	0.98	0.78	0.67	0.52	0.42	0.32
A	L2	137.18	130.20	117.29	108.91	97.39	87.96	77.49	65.74	61.81	55.12	50.76	44.51	39.56	34.32	54.06	51.01	45.51	42.05	37.06	32.99	28.71	46.76	44.14	39.56	36.58	32.36	28.94	25.31
VE 2 DATA	12	68.67	65.16	58.69	54.49	48.72	44.00	38.76	32.92	30.95	27.59	25.40	22.27	19.79	17.17	27.08	25.55	22.79	21.05	18.55	16.51	14.36	23.45	22.13	19.82	18.32	16.20	14.49	12.66
CURVE	R2	1200	1200	1200	1200	1200	1200	1200	500	500	500	500	500	500	500	350	350	350	350	350	350	350	250	250	250	250	250	250	250
	E1	3.93	3.54	2.87	2.47	1.98	1.61	1.25	3.25	2.87	2.28	1.93	1.49	1.17	0.88	3.59	3.19	2.54	2.17	1.68	1.33	1.01	3.95	3.52	2.82	2.41	1.89	1.51	1.15
DATA	L1	274.37	260.40	234.57	217.82	194.78	175.93	154.99	197.22	185.44	165.37	152.28	133.52	118.68	102.97	.85.35	174.88	156.03	144.16	127.06	113.10	98.44	168.34	158.91	142.42	131.69	116.50	104.20	91.11
CURVE 1	11	137.33	130.33 2	117.38 2	108.98 2	97.44 1	88.00 1	77.52	98.75	92.84 1	82.77 1	76.21 1	66.80 1	59.37 1	51.51	92.86 1	87.60 1	78.13 1	72.17 1	63.59 1	56.59 1	49.25	84.41 1	79.66 1	71.36 1	65.96 1	58.33 1	52.16 1	45.59
-	R1	2400	2400 1	2400 1	2400 1	2400	2400	2400	1500	1500	1500	1500	1500		1500	1200	1200	1200	1200	1200	1200	1200	900	006	006	900	900	900	006
	DELTA	6°33′	6°13′	5°36′	5°12′	4°39′	4°12′	3° 42′	7°32′	7° 05 ′	6°19′	5°49′	5°06′	4°32′	3°56′	8°51′	8°21′	7°27′	6°53′	6°04′	5°24′	4°42′	10° 43′	10°07′	9°04′	8°23′	7°25′	6°38′	5°48′
MEDIAN	WIDTHS	29	26	21	18	14	11	8	29	26	21	18	14	11	ω	29	26	21	18	14	11	8	29	26	21	18	14	11	80
DESIGN	SPEED	120	<u> </u>	<u> </u>	<u> </u>	<u> </u>			100		L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	80							60	<u> </u>	L				<u> </u>

MICHIGAN DEPARTMENT OF TRANSPORTATION TH	AFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	06/03/2010		SHEET
FILE:PW RD TS Geo/mdot traf GEO-610-C.dgn		REV. 01/20/2010	PLAN DATE:	GEU-010-C	4 OF 5

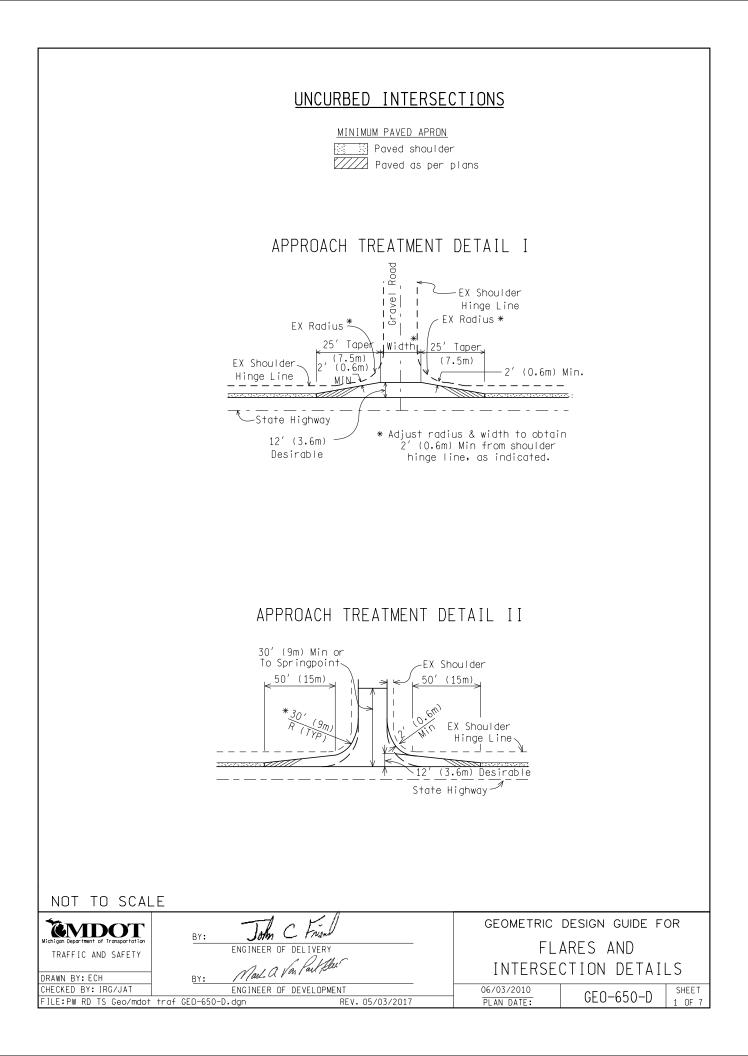

DESCRIPTION OF VARIABLES

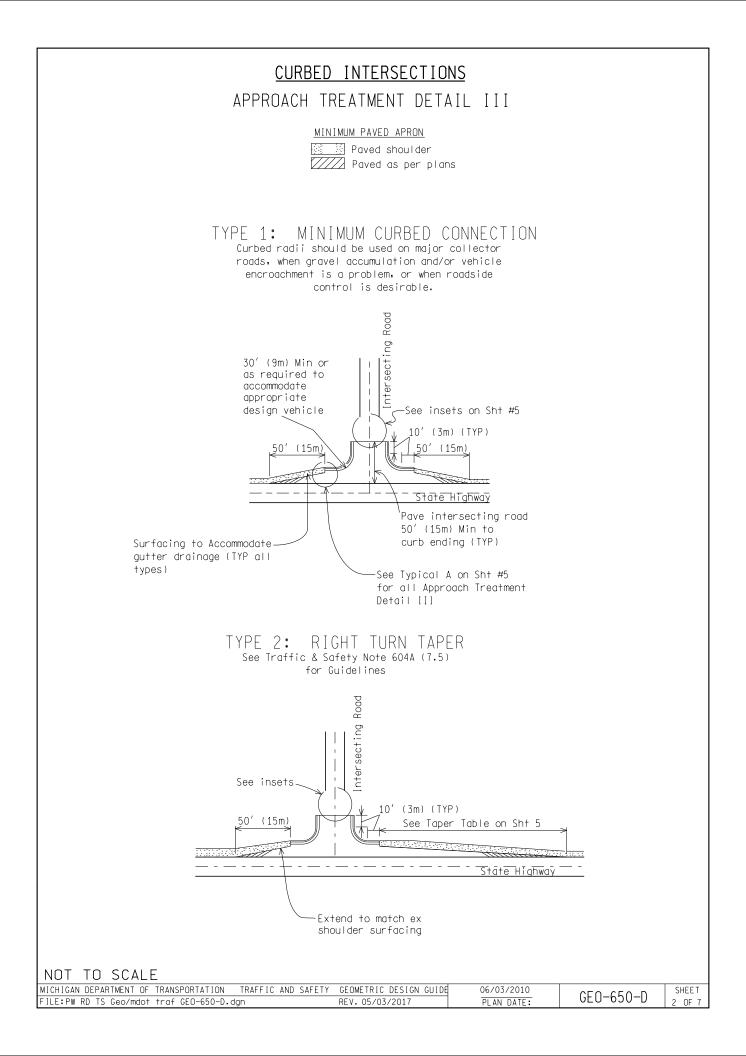

- A1 = length of 2 to 1 transition
- V1 = distance from PI of curve 1 to PI of curve 2 (case 1)
- V2 = distance from PI of curve 1 to PI of curve 2 (case 2)
- X1 = tangent distance along the curve to the 2' (0.6m) point (case 1)
- X2 = tangent distance along the curve to the 2' (0.6m) point (case 2)
- Y1 = distance from transitioning pavement widths
- Y2 = distance into curve 1 from PC that is required such that transition taper is tangent to the curve
- Z1 = distance between curve 1 and curve 2 (case 1)
- Z2 = distance between curve 1 and curve 2 (case 2)

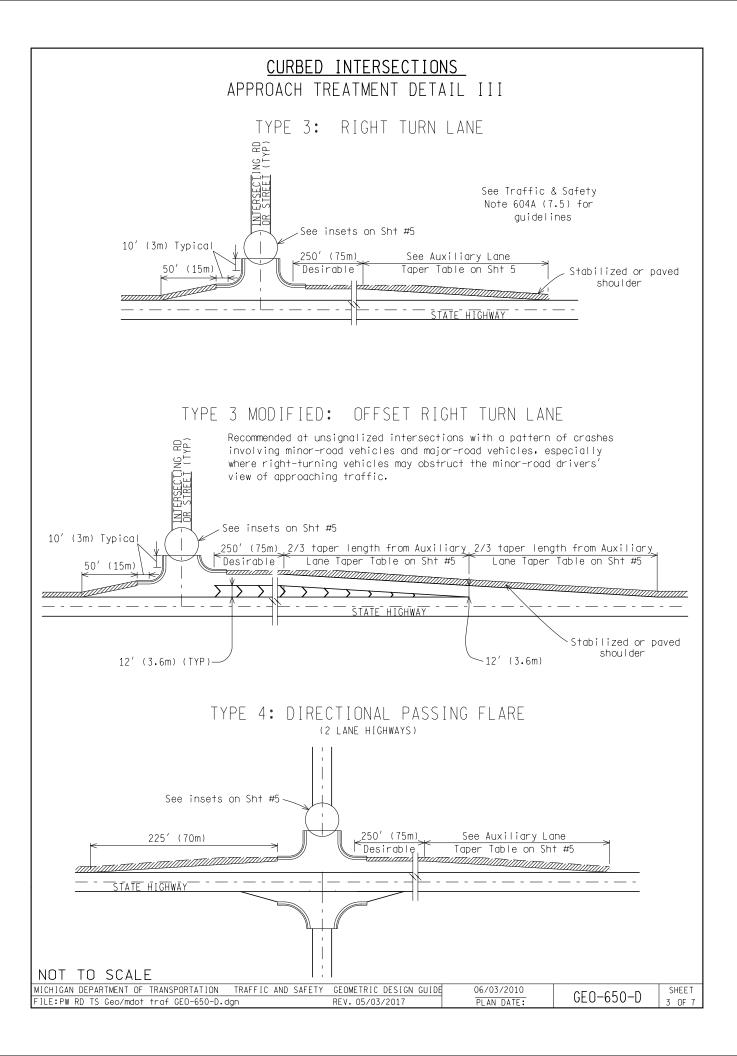

NOTES:

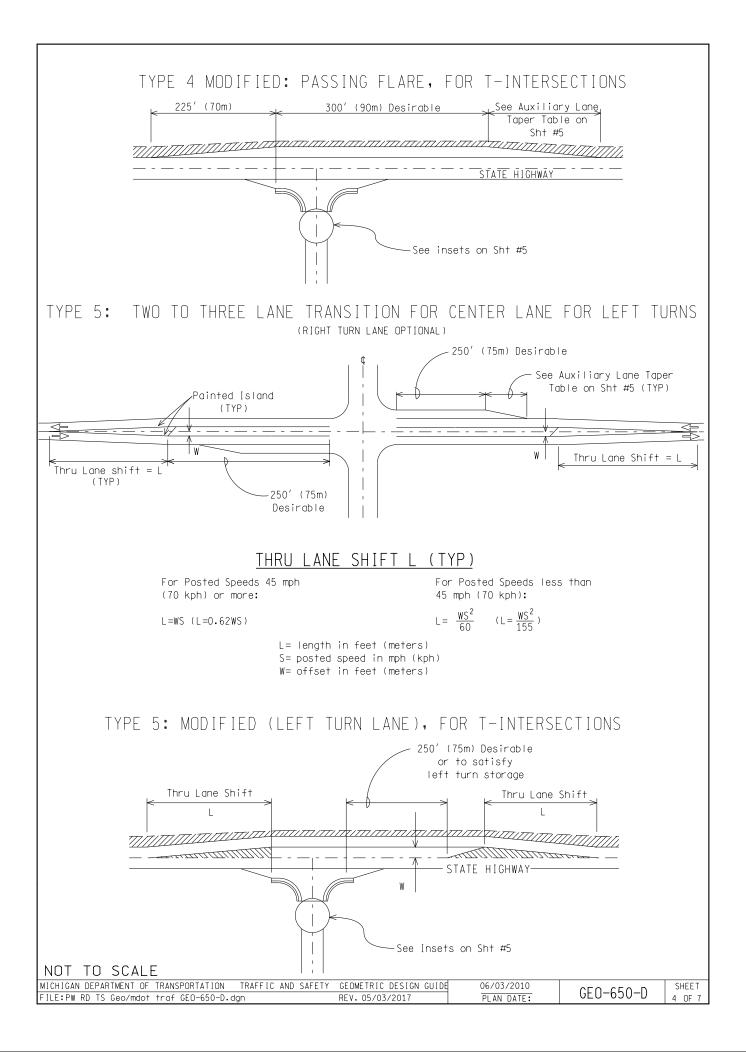

- 1. Provide the driver with sight distance along the full length of the 2 to 4 lane transition.
- 2. Full paved shoulders should be used along lane drop tapers. Use a 1:25 taper transition where it joins the normal median shoulder width.
- 3. The data provided in the tables are examples of typical situations. For combinations of design speeds, lane widths, median widths, and curve data not given in the table, the designer should interpolate a delta value (Δ) using median widths and calculate the remaining values.
- 4. If the lane drop is on a curve, plot offsets for taper and connect with appropriate curve. Design lane drops on tangent alignment if possible.
- 5. Spirals should be used on new alignments based on the design speed of the curve and the radius as shown in the table of the Road Standard Plan R-107-Series.
- 6. The cross slope in the gore area between the 2' (0.6m) point and the 22' (6.6m) point should not exceed 8%, with a 6% maximum algebraic difference in grades between the gore and the adjacent paved shoulder.
- 7. The design speed of the vertical alignment should meet or exceed the design speed of the horizontal alignment.
- 8. Each transition should be designed to provide decision sight distance at its merge points. See Geometric Design Guide GEO-300-Series.
- 9. Current AASHTO "A Policy on Geometric Design of Highways and Streets" and MDOT Guidelines should be used for sight distance requirements.
- 10. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Review and Congestion Analysis Unit of the Division of Operations.

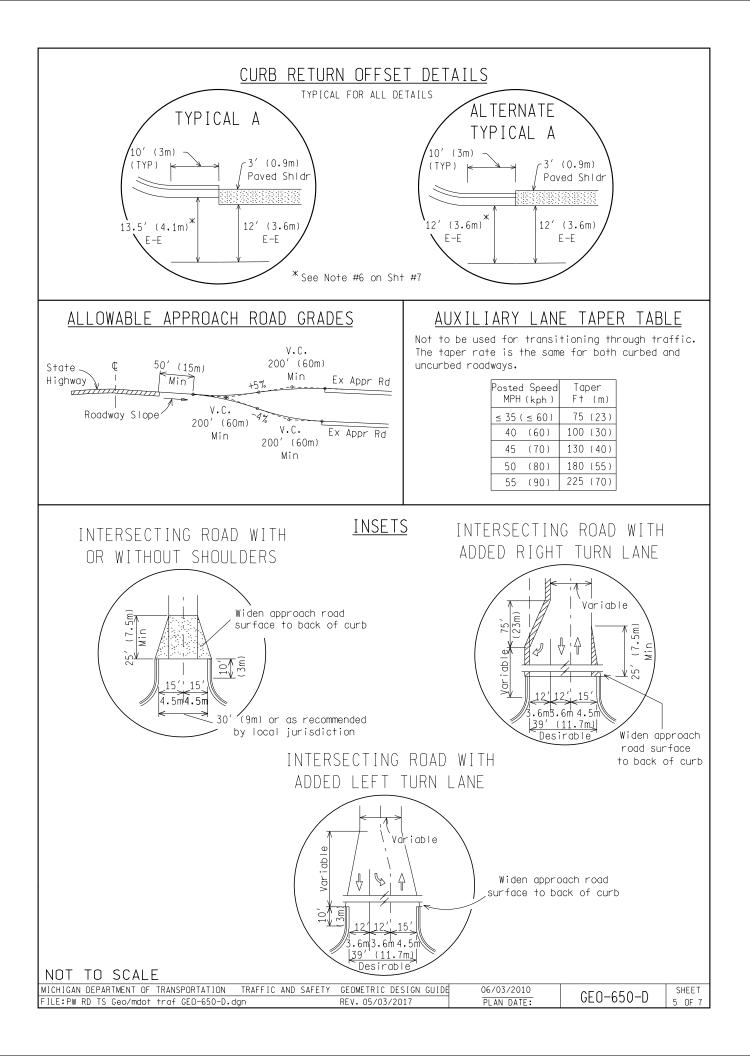
MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFET	GEOMETRIC DESIGN GUIDE	06/03/2010	CEO C10 C	SHEET
FILE:PW RD TS Geo/mdot traf GEO-610-C.dgn	REV. 01/20/2010	PLAN DATE:	GEU-010-C	5 OF 5

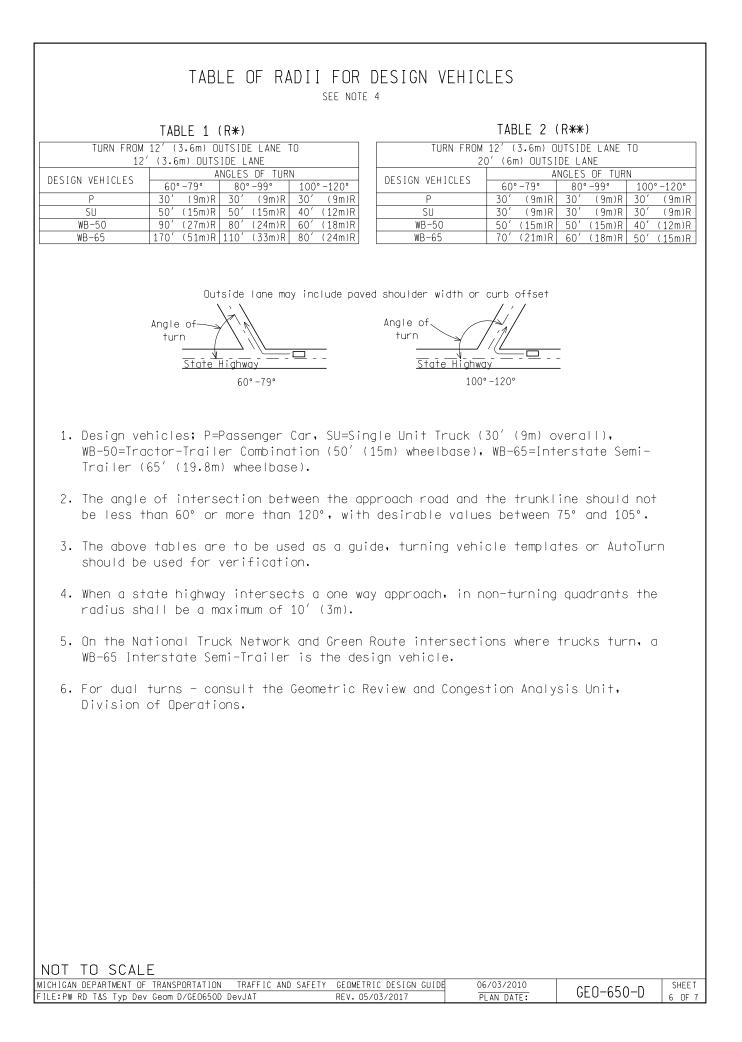


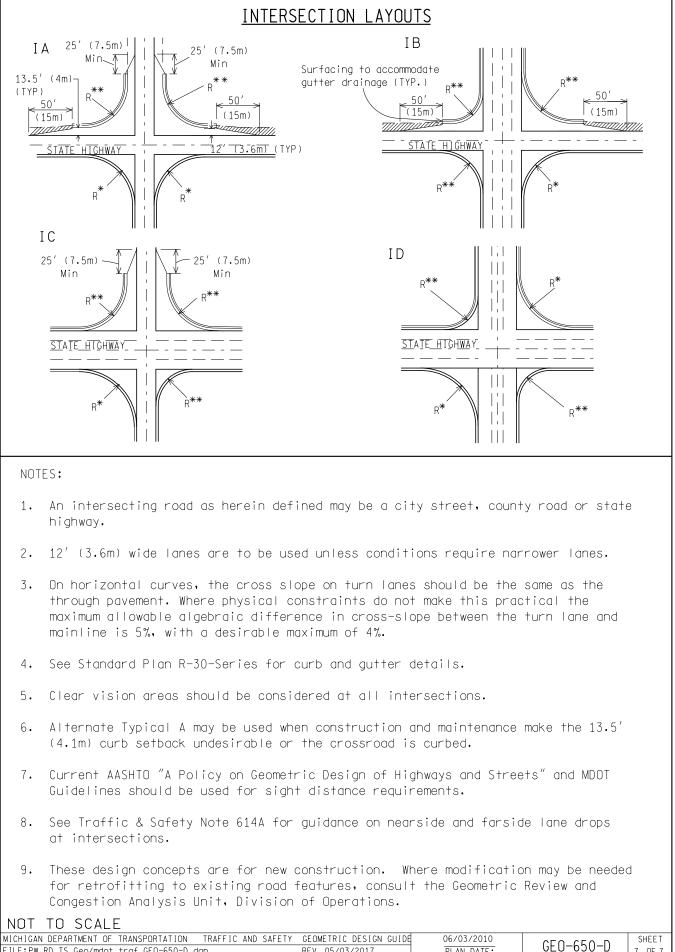


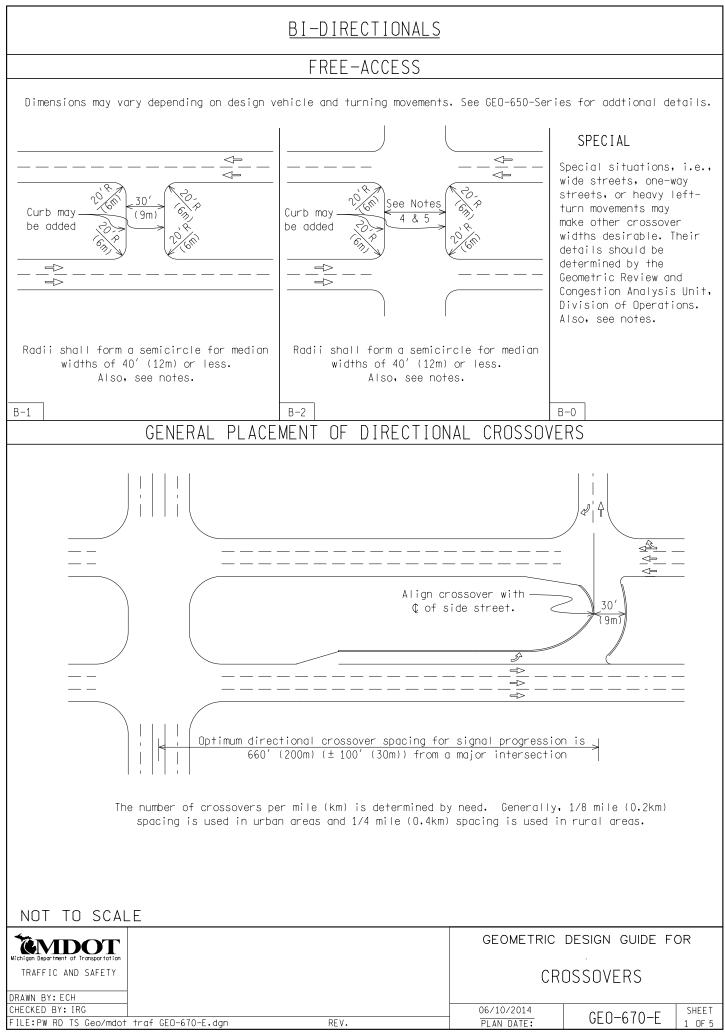

Radii and Tangent Table									
Approach Speed R ₁	R ₁	Tangent Between Curves	Approach Speed R ₂	R ₂					
20 mph	90 f†	90 f†	20 mph	90 f†					
30 km/h	27m	27m	30 km/h	27m					
30 mph	230 f†	130 f†	30 mph	230 f†					
50 km/h	70m	40m	50 km/h	70m					
40 mph	460 ft	175 f†	30 mph	230 ft					
60 km/h	140m	53m	50 km/h	70m					
50 mph	620 f†	220 ft	30 mph	230 ft					
80 km/h	189m	67m	50 km/h	70m					


- 1. Trees should not be planted within Clear Vision areas and Clear Zones.
- 2. An angle of intersection between the mainline and crossroad should be 90° However an angle of intersection between 75° and 105° is acceptable.
- 3. Tree planting of coniferous trees should be made in accordance with the tree planting guide to screen the old pavement alignment.
- 4. Clear vision areas as per Geometric Design Guide GED-300-Series, should be provided at all intersections.
- 5. Approaching grades at the intersecting roadways should be as flat as practical, especially on the sections that are used for storage space. Grades between 2 and 3 percent are desirable. See Geometric Design Guide GEO-650-Series for further guidance.
- 6. Adequate intersection sight distance should be provided along both roadways.
- 7. Consult the Geometric Design Unit of Lansing Traffic and Safety where modifications are needed.
- 8. Intersection approach grades should be studied to provide adequate landing areas for adequate sight distance.

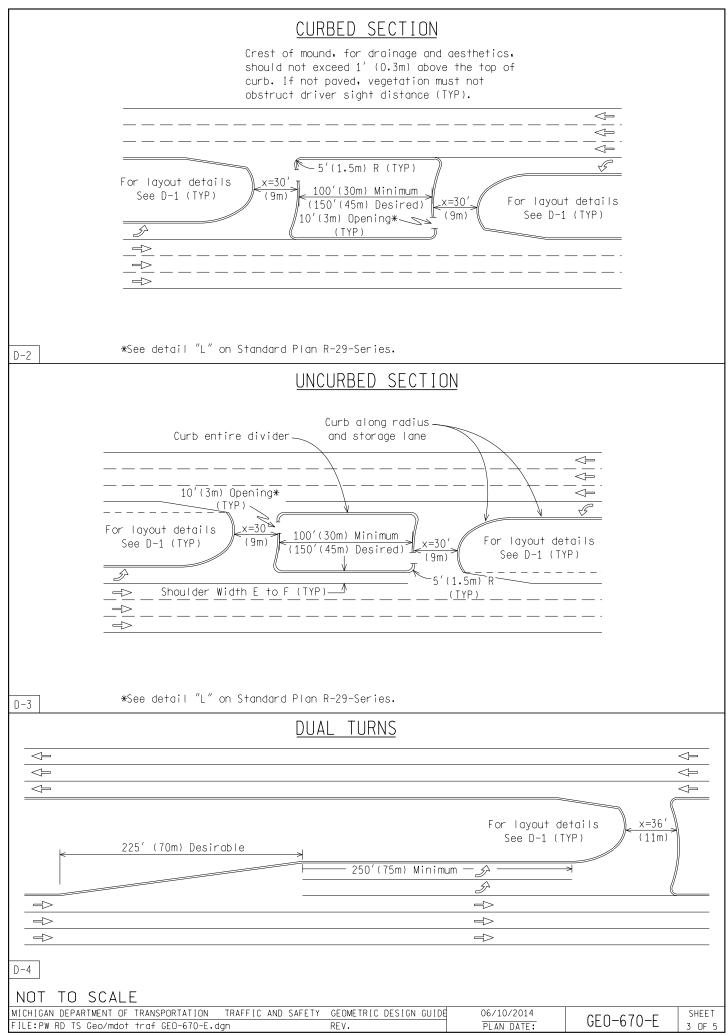

NOT TO SCALE				
MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	9/19/2006		SHEET
FILE:PW/RD/TS/Geom D/mdot GED640B EDC.dgn	REV. 9/19/2006	PLAN DATE:	GEO-640-B	5 OF 5

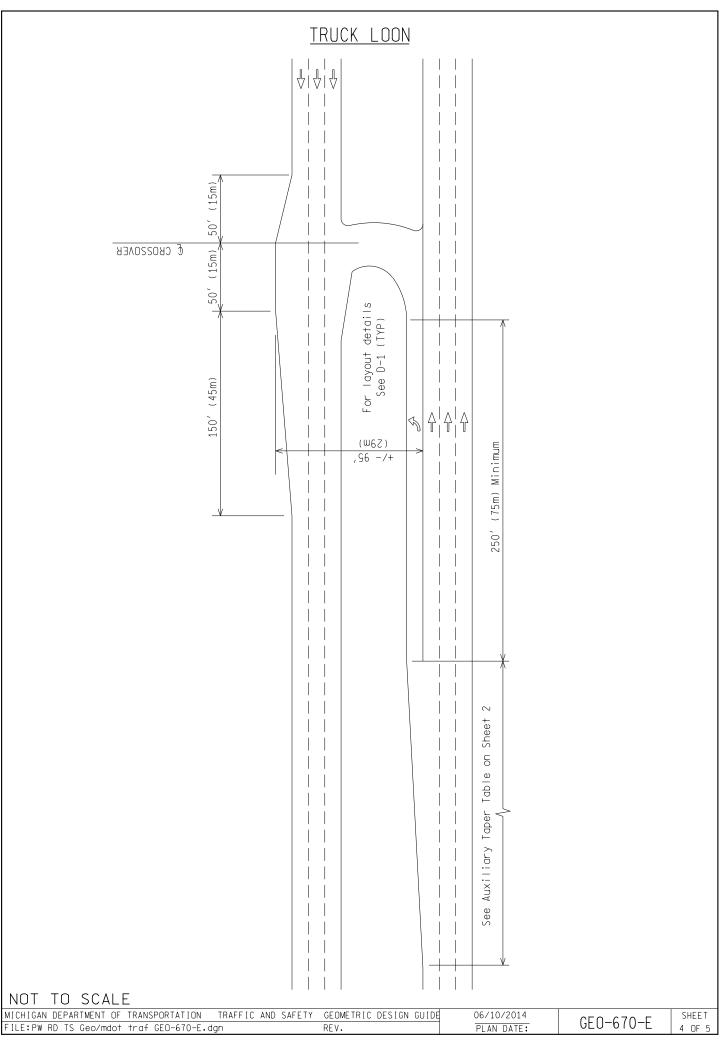






FILE:PW RD TS Geo/mdot traf GEO-650-D.dgn REV. 05/03/2017 PLAN DATE:

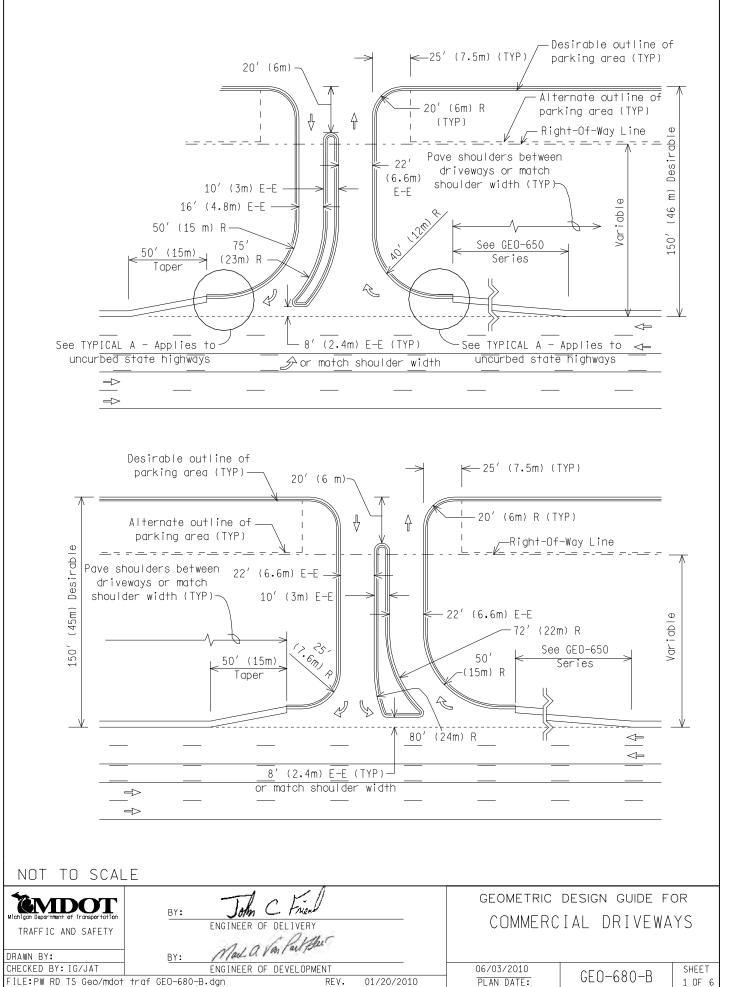

7 OF 7



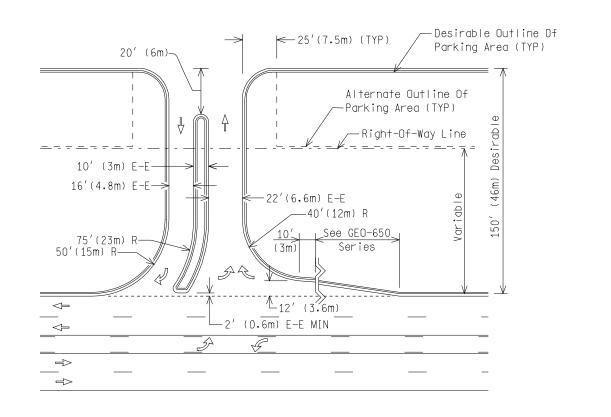
DIRECTIONALS

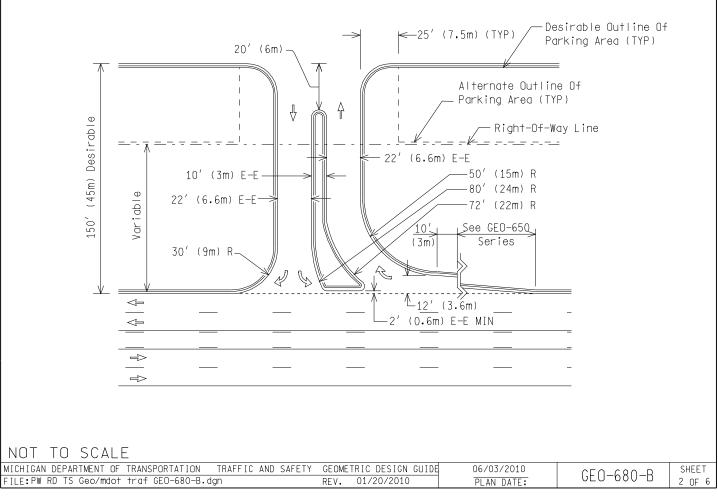
I

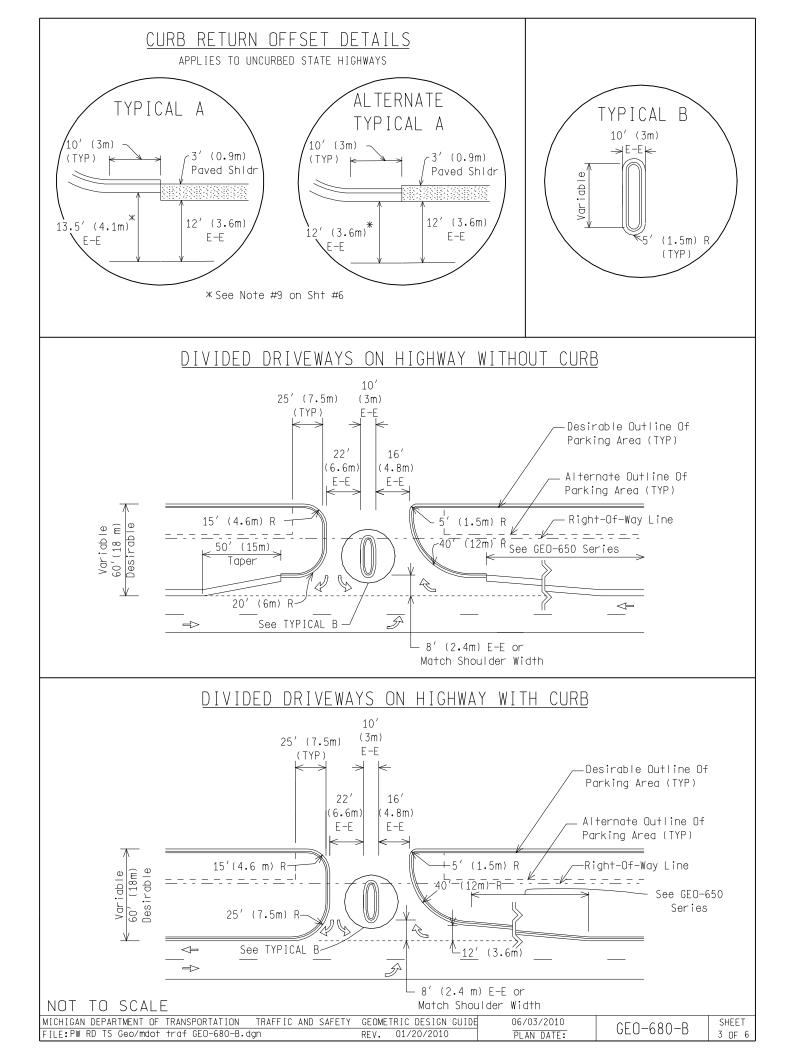
FREE-ACC	CESS					
Cross-street directionals for median widths over 100' (30m and less than 26' (8m) require special study. Rural cross- directionals require special study.		DETAIL D-11U	WID	DIAN TH, M (30m-20m)	R ₁	R ₀
$= \underbrace{ \begin{array}{c} \hline \\ 25 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 25 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 19.5 \\ \hline \\ 6m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 19.5 \\ \hline \\ 6m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_{\text{Flare Rate}} \underbrace{ \begin{array}{c} \hline \\ 16 \\ 7.5m \end{array}}_$	Curb may	D-12U D-13U D-10	65'-41' 40'-26' SP	(20m-12m) (12m-8m) ECIAL	(1.4)(M)	(1.8)(M) (2.0)(M)
			-Series H	for desiral		
Not a common radus point ────────────────────────────────────	,	left ed	5	line or tr vement in or ramp.		
D-10 THRU D-13U						
Taper is not required -> 1 if number of lanes on	×	DETAIL		DIAN TH, M	R ₁	Ro
mainline is greater than two. R; becomes M. 30′ ↔		D-21U D-20		(30m-9m) CIAL	M-12	(1.75)(M)
Driveway centerline or traffic divider; left edge of pavement in the case of a one-way street or ramp. D-20 AND D-21U				er 100′(3 special s		less than
SPECIAL	AU	XILIAF	RY LAI	NE TAP	ER TA	BLE
Special situations may make other crossover details desirable. Their details should be determined by the Geometric Review and Congestion Analysis Unit. Special study is required for directional crossovers with median widths less than 30' (9m) or greater than 120' (36m). Loons may be required opposite crossover to accommodate turns in narrow medians.	transiti traffic. rate is both cur uncurbed	e used fo oning thr The tap the same bed and roadways	ough er for	POSTED SPEED MPH (kpH ≤ 35 (≤ 6 40 (60) 45 (70) 50 (80) 55 (90)	TAF 0) 75 100 130 180	_IARY 2ER (m) (23) (30) (40m) (55m) (70m)
In an uncurbed area, use type "B"	T-1					
curb along storage lane and on both inside and outside radii.	DUT DE	TAIL				
					, 	
	- 50′(15r ⊨	>				
			m/2.5			
			× =m+x			
				Shoulde	<u></u>	
				single lan dual lane		
NOT TO SCALE MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND SAFETY GEOMETRIC D FILE:PW RD TS Geo/mdot traf GEO-670-E.dgn REV.	ESIGN GUIDE		0/2014 DATE:	GEO	—670-Е	SHEET 2 OF 5

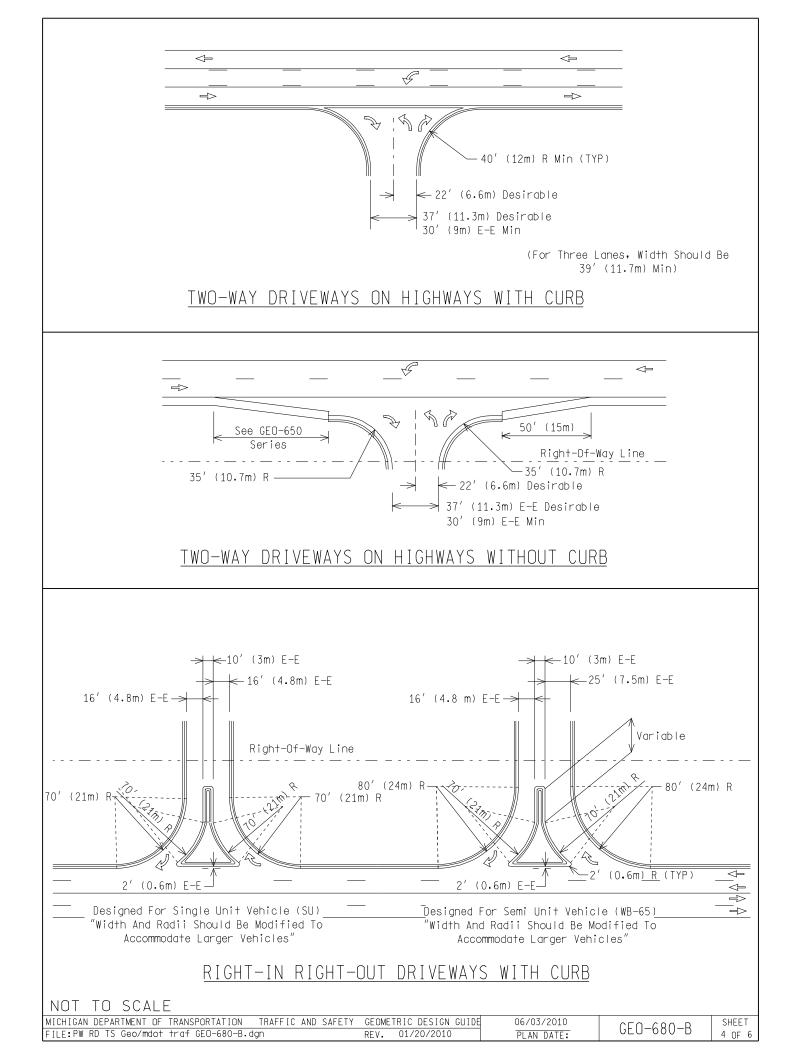


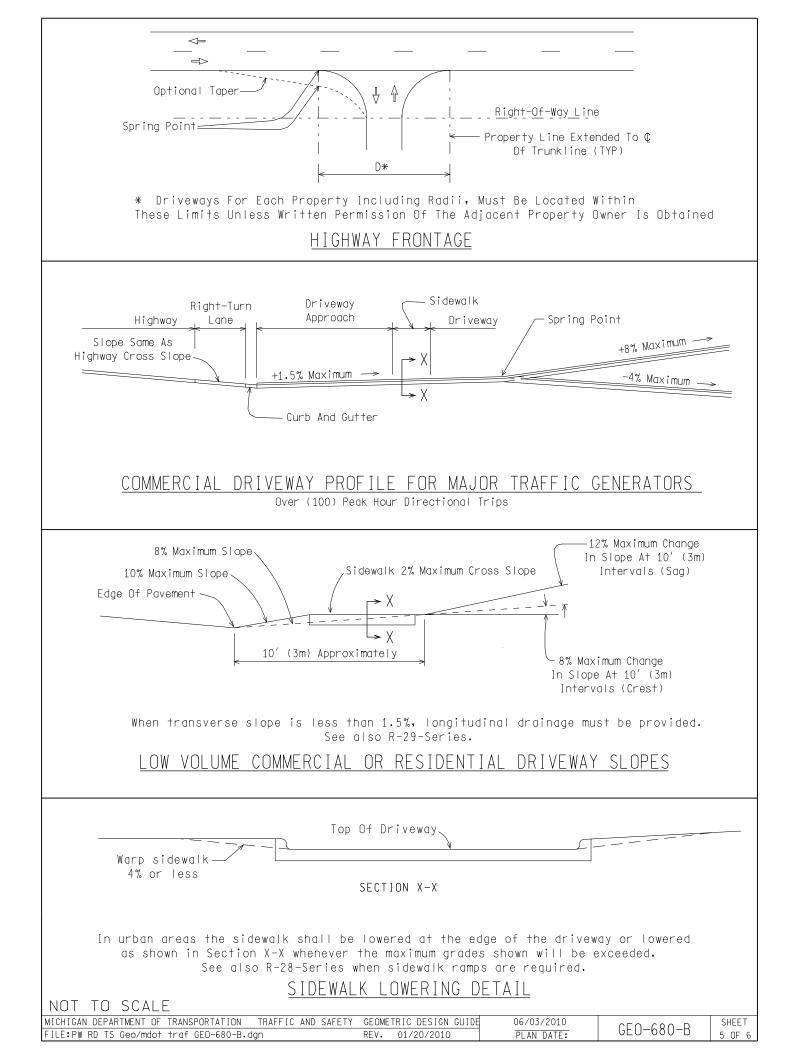
<u>minimum designs</u>	S FOR U-	-TURNS									
		= Min. t (m) fo			-						
Type of Maneuver	Р	SU	BUS	WB-50	WB-65						
Left Lane to Inner Lane	44′ (13.4m)	76′ (23.2m)	80′ (24m)	82′ (25m)	82' (25m) *						
Left Lane to 2nd Lane	32′ (9.8m)	64′ (19.5m)	68′ (20.7m)	70′ (21m)	70' (21m) *						
Left Lane to 3rd Lane	22′ (6.7m)	54′ (16.5m)	58′ (17.7m)	60′ (18m)	60' (18m) *						
* To accommodate WB-65 semi-trucks, provide 36' (11m) crossover width or 4' (1.2m) paved area behind curb on the inside radius, from spring point to spring point.	<pre>* To accommodate WB-65 semi-trucks, provide 36' (11m) crossover width or 4' (1.2m) paved area behind curb on the inside radius, from spring point</pre> Vehicle Codes and Length of Design Vehicle - ft (m) P = Passenger, 19' (5.8m) SU = Single Unit Truck, 30' (9m) BUS = Bus, 40' (12m)										
NOTES:											
 Crossovers should be called for by their re the plans. 	espective	detail nu	umber or v	detailed	in						
2. Crossover details are to be used on free-ac	ccess faci	ilities or	ıly.								
3. Bi-directional crossovers should have a min streets or commercial driveways which are 3 streets or commercial driveways that have o of the crossover should match the cross str	30′ (9m) (width of	or less ir f greater	n width.	For inte	rsecting						
 Desirably, free-access crossover grades sho special study. 	ould not e	exceed 3%	steepe	r grades	require						
5. For type of curb on crossovers, see Sec. 6.	06.06 of	Road Des	ign Manua	.							

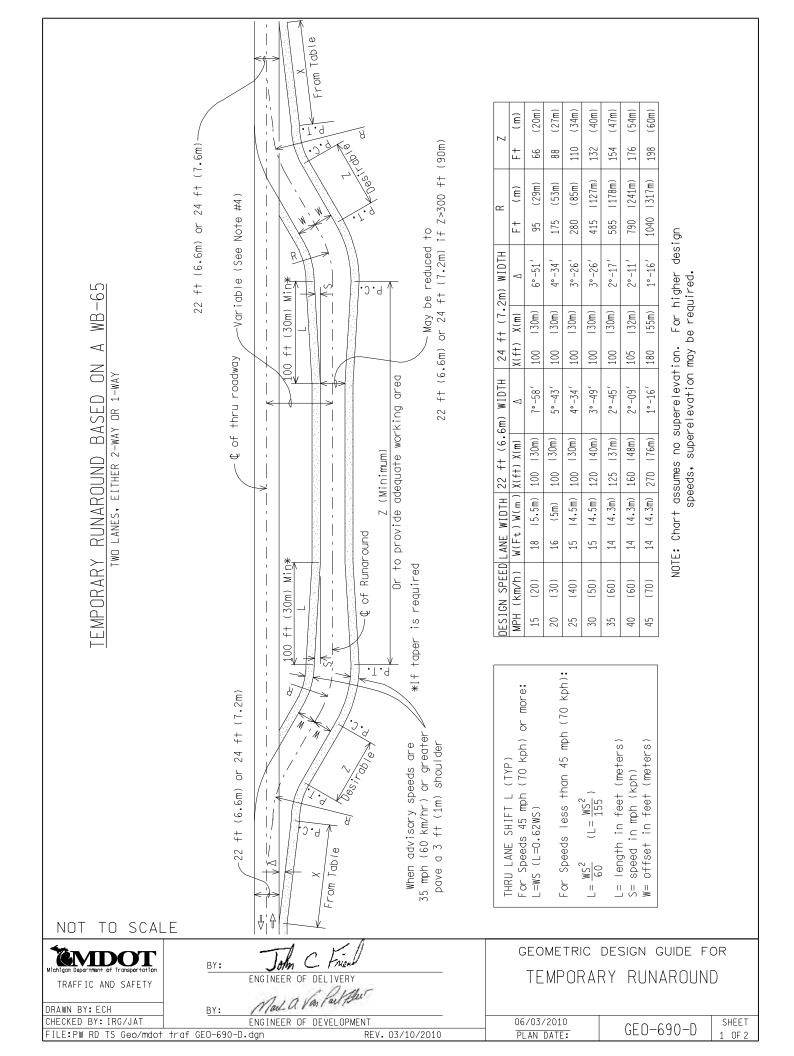

- 6. For typical joint layouts on concrete pavement, see Standard Plan R-42-Series.
- 7. These design concepts are for new construction. Where modification may be needed for retrofitting to existing road features, consult the Geometric Review and Congestion Analysis Unit, Division of Operations.
- 8. Current AASHTO "A Policy on Geometric Design of Highways and Streets" and MDOT Guidelines should be used for sight distance requirements.


MICHIGAN DEPARTMENT OF TH	RANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	06/10/2014		SHEET
FILE:PW RD TS Geo/mdot to	raf GEO-670-E.d	gn	REV.	PLAN DATE:	GEU-670-E	5 OF 5
-						


DIRECTIONAL DRIVEWAYS AT HIGHWAYS WITHOUT CURB




DIRECTIONAL DRIVEWAYS AT HIGHWAYS WITH CURB



- 1. The Region or TSC Traffic Engineer shall determine the necessary signing and pavement marking requirements to ensure that the driveway will operate safely and efficiently. The property owner shall erect and maintain all required signing and pavement markings as a condition of the driveway permit.
- 2. Consult the Region or TSC Traffic Engineer whenever:
 - A. There is a question as to which type of driveway a commercial establishment should use.
 - B. Operational conflicts with existing or anticipated future driveways across the highway may occur.
- 3. Suitable median crossovers may be required on divided highways as per Geometric Design Guide GED-670-Series.
- 4. For dimensions not shown on this guide, refer to the document "Administrative Rules Regulating Driveways, Banners, and Parades On And Over Highways".
- 5. One-way driveways should be complemented with a well designed angle parking area to encourage one-way operation.
- 6. Driveway widths and radii shall be designed for the proper design vehicle. Where proper radii can not be provided, increase the drive throat width.
- 7. In urban areas a partial arc radius should be used when the distance from the edge of pavement to the sidewalks is between 5' (1.5m) and 20' (6m). When this distance is less than 5' (1.5m), consult the Region or TSC Traffic and Safety Engineer to determine the width and radii of the driveway.
- 8. See MDDT Construction Permit Manual.
- 9. Alternate Typical A may be used when construction and maintenance issues make the 13.5' (4.1m) curb setback undesirable.
- 10. For divided driveways, the desirable area of separating islands is $75ft^2$ $(7m^2)$, preferably $100ft^2$ $(9m^2)$. The island width shall not be less than 4' (1.2m).
- 11. To eliminate left turns locking up from the cross street or driveways at unsignalized divided drives, the left turning vehicles should be headed up across from each other.
- 12. Current AASHTD "A Policy on Geometric Design of Highways and Streets" and MDDT Guidelines should be used for sight distance requirements.
- 13. These design concepts are for new construction. Where modifications may be needed for retrofitting to existing road features, consult the Geometric Review and Congestion Analysis Unit, Division of Operations.

MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND S	AFETY GEOMETRIC DESIGN GUIDE	06/03/2010		CHEFT
MICHIGAN DEPARTMENT OF TRANSPORTATION TRAFFIC AND S	AFEIT GEUMETRIC DESIGN GUIDE	06/03/2010		SHEET
FILE:PW RD TS Geo/mdot traf GEO-680-B.dgn	REV. 01/20/2010	PLAN DATE:	GEU-000-D	6 OF 6

- 1. The minimum design speed for runaround should be 10 mph (15kph) less than the posted speed prior to construction. A lower design speed may be necessary due to site conditions.
- 2. If a stop condition exists on the runaround, minimum design speed may be used.
- 3. Modifications to this layout are required for freeway traffic and/or design speeds greater than 45 mph (70kph).
- 4. The design and location of the runaround should be carefully reviewed to provide the contractor with an adequate working area.
- 5. When the temporary runaround is for a railroad crossing, it is recommended that 60' (18m) be provided between the edge of runaround and the edge of crossing.
- 6. The geometrics shown do not include superelevation. A typical crown slope is used. If it is desired to include superelevation, contact the Region/TSC Traffic and Safety Engineer.
- 7. Locate the beginning of runaround to provide decision sight distance for an approaching motorist. Maintain stopping sight distance along the runaround.
- 8. Normally the runaround should be surfaced with concrete or HMA. An aggregate surface can only be used when none of the following conditions are exceeded.
 - a. Traffic volume during construction 3,000 ADT with less than 8% commercial vehicles or 5,000 ADT with less than 3% commercial vehicles.
 - b. Physical conditions grades of 6% and 300' (90m) in length.
 - c. Duration of time one month.
 - d. Speed 30 mph (50kph)
 - e. Commercial vehicle volume 200 ADT.

When an aggregate surface is used, a pay item should be included for grading, shaping, and adding material (and/or dust palliative), as requested by the engineer to maintain a reasonably smooth drivable surface.

- 9. Where advisory speeds are 35 mph (60kph) or greater, pave 3' (1m) shoulder ribbons.
- 10. The placing of pavement markings, signs, guardrail, and movable barricades should be as directed by the Region/TSC Traffic and Safety Engineer. See the current Michigan Manual of Uniform Traffic Control Devices, Part VI, Construction and Maintenance and current MDOT guidelines.
- 11. Maximum desirable grade is 6%.
- 12. See Standard Plan R-113-Series for lane closures and crossovers.
- 13. See the section on temporary roads of the current Road Design Manual for more information.

MICHIGAN DEPARTMENT OF TRANSPORTATION	TRAFFIC AND SAFETY	GEOMETRIC DESIGN GUIDE	06/03/2010	GE0-690-D	SHEET
FILE:PW RD TS Geo/mdot traf GEO-690-D.	dgn	REV. 03/10/2010	PLAN DATE:	GEU-690-D	2 OF 2