LATERAL OFFSET (SEE STANDARD PLAN R-126-SERIES)
TEMPORARY CONCRETE BARRIER

MINIMUM LENGTH OF Crossover - STOPPING SIGHT DISTANCE

REALIGN PLASTIC DRUMS TO MATCH CROSSOVER TAPER FLARE RATE

MATCH LINE

TEMPORARY CONCRETE BARRIER

WORK AREA

LATERAL OFFSET (SEE STANDARD PLAN R-126-SERIES)

TAPER

FOR CURVE GEOMETRY SEE TABLE (Typ.)

6 SECONDS DRIVING TIME (DESIRABLE)
3 SECONDS DRIVING TIME (MINIMUM)

SINGLE LANE CLOSURE

ONE LANE CROSSOVER

TWO LANE, TWO - WAY CROSSOVER

NOTES:
Crossovers shall be located to provide the maximum advance warning to the driver based on the vertical and horizontal alignments at the site.

Vehicles must be protected from the blunt end of barriers, preferably, connect the temporary concrete barrier to the existing median barrier or place as specified on standard plan R-126-SERIES.

On a two-way crossover, a taper flatter than specified in the Table is to be used if practical.

The maximum deflection (taper) shall be determined from the table as a function of speed.

Super-elevation is not required for the speeds and radii of the curves given.

In wide medians, alignment may be designed into the crossover to shorten its length subject to the minimum radius specified, with the approval of the Engineer. Any proposed radius which is less than that specified in the table shall be reviewed by the traffic and safety support area for design features such as super-elevation, deflection, and reverse alignment.

Plastic drums shall be offset from the line of travel 2'-0" minimum. They may be aligned by eye.

Traffic control devices and pavement markings shall be according to the "Michigan Manual of Uniform Traffic Control Devices".

For stopping sight distance, refer to the current edition of the AASHTO publication "A Policy on Geometric Design of Highways and Streets."

For specific channelization treatments, see the traffic and safety support area.

The minimum design speed for crossovers should be 10 MPH below the posted speed prior to construction. Unless unusual site conditions require that a lower design speed be used.

CROSSOVER TAPER GEOMETRY

<table>
<thead>
<tr>
<th>Design Speed (MPH)</th>
<th>Maximum Deflection (Taper)</th>
<th>Minimum Radius (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>8 : 1</td>
<td>955</td>
</tr>
<tr>
<td>40</td>
<td>11 : 1</td>
<td>1910</td>
</tr>
<tr>
<td>50</td>
<td>14 : 1</td>
<td>2865</td>
</tr>
<tr>
<td>60</td>
<td>17 : 1</td>
<td>3370</td>
</tr>
<tr>
<td>70</td>
<td>20 : 1</td>
<td>3820</td>
</tr>
</tbody>
</table>
TEMPORARY CROSSOVERS
FOR DIVIDED ROADWAYS

MICHIGAN DEPARTMENT OF TRANSPORTATION
BUREAU OF HIGHWAY DEVELOPMENT STANDARDS PLAN FOR

RECOVERY AREA = STOPPING SLOT DISTANCE MINIMUM

MATCH LINE

LANE(S) CLOSE

LANE(S) CLOSE

EXISTING MEDIAN BARRIER

100' MINIMUM

RECOVERY AREA = STOPPING SLOT DISTANCE MINIMUM

6 SECONDS DRIVING TIME (DESIRABLE)
3 SECONDS DRIVING TIME (MINIMUM)

CROSSOVER

WHERE EXISTING MEDIAN BARRIER IS PRESENT

TWO - WAY CROSSOVER

WHERE EXISTING MEDIAN BARRIER IS PRESENT

10' - 2'

10' - 2'

24'

24'

10' - 2'

10' - 2'

48 - 2'

48 - 2'

TEMPORARY CONCRETE BARRIER

STANDARD PLAN R-16-SERIES

TEMPORARY CONCRETE BARRIER USE

PROTECT TRAFFIC FROM EXPLOSION CONCRETE BARRIER RETURN