

SUPERELEVATED FINISHED SECTION

(TWO-WAY SHOWN)

LEGEND

NC = NORMAL CROWN RATE

W = DISTANCE IN FEET FROM POINT OF ROTATION TO FARTHEST OUTSIDE EDGE

 $D = W \times NC$

e = RATE OF SUPERELEVATION

i = W x e

C = CROWN RUNOUT / TANGENT RUNOUT (ADVERSE CROWN REMOVED)

TRANSITION LENGTH OR SUPERELEVATION RUNOFF OF INSIDE OR OUTSIDE EDGE OF PAVEMENT

\(\) = SUPERELEVATION TRANSITION SLOPE OF PAVEMENT EDGES

HIGH SII	DE SHOULDER CHART					
WHEN RATE OF FULL SUPERELEVATION IS	SHOULDER SLOPE AT FULL SUPERELEVATION EQUALS					
FROM 2% TO 3%	RATE OF SUPERELEVATION MINUS NORMAL SHOULDER SLOPE					
3% TO AND INCLUDING 5%	RATE OF SUPERELEVATION 1% SHOULDER					
OVER 5%	RATE OF SUPERELEVATION SHOULDER					

NOTES:

THE CROWN POINT AND POINT OF ROTATION WILL NORMALLY BE AT THE CENTER OF TWO-LANE AND FOUR-LANE UNDIVIDED PAVEMENTS AND AT THE EDGE OF AN INSIDE LANE OF FIVE-LANE UNDIVIDED PAVEMENTS. THE POINT OF ROTATION WILL NORMALLY BE AT THE INSIDE EDGES OF DIVIDED PAVEMENTS.

THE CROWN IS TO BE REMOVED IN SUPERELEVATION SECTIONS.

ON URBAN SERVICE ROADS AND URBAN FREE ACCESS TRUNKLINE CURVES WHERE DRIVEWAYS ARE PREVALENT. AND WHERE NORMAL SUPERELEVATION CANNOT BE OBTAINED, A MINIMUM OF 1.5% TO 2% SUPERELEVATION IN THE DIRECTION OF THE CURVE MAY BE USED TO REMOVE THE ADVERSE CROWN.

DESIGN MODIFICATION OF TRANSITIONS, POINT OF ROTATION, AND CROWNS MAY BE NECESSARY TO IMPROVE RIDING QUALITY AND APPEARANCE.

THE LOCATION, LENGTH OF SUPERELEVATION TRANSITIONS, CROWN RUNOFF LENGTHS, SUPERELEVATION RATES, AND POINT OF ROTATION WILL BE AS SPECIFIED ON THE PLANS.

SPIRAL LENGTHS WILL BE EQUAL TO OR LONGER THAN TRANSITION SLOPE LENGTHS.

SPIRAL TRANSITIONS SHOULD BE USED ON NEW ALIGNMENTS, BASED ON THE DESIGN SPEED OF THE CURVE AND THE RADIUS AS SHOWN IN THE TABLE. THE TABLE GIVES THE MAXIMUM RADIUS IN WHICH A SPIRAL SHOULD BE USED.

BEGIN THE HIGH SIDE SHOULDER TRANSITION AT THE PAVEMENT CROWN RUN OUT POINT (CROWN REMOVED). TRANSITION THE SHOULDER IN THE DISTANCE "L" TO THE SHOULDER SLOPE RATE REQUIRED AT FULL PAVEMENT SUPERPIE (VALIDA).

IF THE RATE OF FULL PAVEMENT SUPERELEVATION IS GREATER THAN THE NORMAL SHOULDER SLOPE, BEGIN THE LOW SIDE SHOULDER TRANSITION WHEN THE PAVEMENT REACHES THE SAME PLANE AND SLOPE RATE AS THE NORMAL SHOULDER.

WHEN TRANSITIONING THE SHOULDER SLOPE TO/FROM A BRIDGE SECTION, CALCULATE THE TRANSITION DISTANCE USING THE SUPERLEVATION TRANSITION SLOPE ($\Delta \%$) REQUIRED FOR THE CURVE, OR IN TANGENT SECTIONS, USE THE MINIMUM VALUE FOR SUPERLEVATION TRANSITION SLOPE ($\Delta \%$) GIVEN IN THE TABLE, IN THE COLUMN FOR THE SPEED OF THE ROADWAY. (TRANSITION DISTANCE = SHOULDER WIDTH X (RATE OF BRIDGE SHOULDER SUPERRLEVATION MINUS RATE OF ROAD SHOULDER SUPERRLEVATION) X 100 / $\Delta \%$)

EMDOT Huchsgen Department of Transportation

> PREPARED BY DESIGN DIVISION

DRAWN BY: B.L.T.

CHECKED BY: W.K.P.

DEPARTMENT DIRECTOR
Kirk T. Steudle

APPROVED BY: Mail a Van Part flee

ENGINEER OF DEVELOPMENT

MICHIGAN DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DEVELOPMENT STANDARD PLAN FOR

SUPERELEVATION AND PAVEMENT CROWNS

9-10-2010 10-19-2009 F.H.W.A. APPROVAL PLAN DATE R-107-H

SHEET 1 OF 7

	RATE OF SUPERELEVATION AND SUPERELEVATION TRANSITION SLOPE																					
RADIUS (FEET)			35 MPH		40 MPH		45 MPH		50 MPH		50 PERELE		60 MPH		65 MPH		FREEWAYS 70 MPH			URBAN FREEWAYS AND URBAN RAMPS 60 MPH		
	e %	Δ%	e %	Δ%	e %	Δ%	e %	Δ%	e %	Δ%	e %	Δ%	e %	Δ%	e %	Δ%	e %	MPH A%	e %	MPH A%	e %	MPH Δ%
23000	NC	Δ%	NC	Δ/•	NC	Δ/6	NC	Δ /6	NC	Δ/6	NC	Δ/•	NC	Δ%	NC	Δ /6	NC	Δ /6	NC	Δ /•	NC	Δ /6
20000	NC		NC NC		NC		NC		NC NC		NC		NC NC		NC NC		NC NC		NC NC		NC NC	
												-										
17000	NC		NC NC		NC NC		NC		NC NC		NC		NC		NC NC		NC		NC 0.0		NC NC	
14000	NC						NC				NC		NC				2.0	0.31	2.0	0.30		
12000	NC		NC		NC		NC		NC		NC		NC		2.0	0.32	2.0	0.31	2.0	0.30	NC	
10000	NC		NC		NC		NC		NC		NC		2.0	0.36	2.0	0.32	2.1	0.31	2.3	0.31	2.0	0.34
8000	NC		NC		NC		NC		2.0	0.40	2.0	0.38	2.1	0.36	2.3	0.33	2.6	0.32	2.9	0.31	2.0	0.34
6000	NC		NC		NC		2.0	0.40	2.0	0.40	2.3	0.39	2.7	0.37	3.0	0.34	3.3	0.33	3.7	0.33	2.4	0.36
5000	NC		NC		2.0	0.40	2.0	0.40	2.3	0.41	2.7	0.39	3.1	0.38	3.5	0.35	3.9	0.34	4.4	0.34	2.8	0.37
4000	NC		2.0	0.45	2.0	0.40	2.4	0.41	2.8	0.42	3.3	0.40	3.8	0.39	4.2	0.37	4.7	0.36	5.3	0.35	3.3	0.39
3500	NC		2.0	0.45	2.2	0.41	2.6	0.42	3.1	0.42	3.6	0.41	4.2	0.40	4.7	0.38	5.2	0.37	5.9	0.36	3.5	0.40
3000	2.0	0.50	2.0	0.45	2.5	0.42	3.0	0.43	3.5	0.43	4.1	0.42	4.7	0.41	5.2	0.39	5.9	0.38	6.5	0.37	3.8	0.41
2500	2.0	0.50	2.4	0.46	2.9	0.43	3.5	0.44	4.1	0.44	4.7	0.43	5.3	0.42	5.9	0.41	6.5	0.39	7.0	0.38	4.2	0.42
2000	2.3	0.51	2.9	0.48	3.5	0.45	4.1	0.46	4.7	0.45	5.4	0.44	6.1	0.43	6.6	0.42	7.0	0.40	R MIN.	= 2344′	4.6	0.44
1800	2.5	0.52	3.1	0.49	3.8	0.46	4.4	0.47	5.1	0.46	5.7	0.45	6.4	0.44	6.9	0.43	R MIN.	= 1922′			4.8	0.44
1600	2.7	0.52	3.4	0.50	4.1	0.48	4.8	0.48	5.4	0.47	6.1	0.45	6.7	0.44	7.0	0.43					4.9	0.45
1400	3.0	0.53	3.7	0.51	4.5	0.49	5.1	0.49	5.8	0.48	6.5	0.46	6.9	0.45	R MIN.	= 1565′					R MIN.	= 1412′
1200	3.4	0.54	4.1	0.52	4.9	0.50	5.6	0.50	6.3	0.49	6.8	0.47	R MIN.	= 1263′								
1150	3.5	0.55	4.3	0.53	5.0	0.51	5.7	0.50	6.4	0.49	6.9	0.47										
1000	3.8	0.56	4.6	0.54	5.4	0.52	6.1	0.52	6.7	0.49	R MIN.	= 1008'										
900	4.1	0.57	4.8	0.55	5.7	0.53	6.4	0.52	6.9	0.50												
820	4.3	0.57	5.1	0.55	5.9	0.54	6.6	0.53	7.0	0.50	1											
800	4.4	0.58	5.1	0.56	6.0	0.54	6.7	0.53	7.0	0.50	1	NOTES:										
720	4.6	0.58	5.4	0.57	6.3	0.55	6.9	0.54	R MIN	= 794'	1	LOOP RA	MPS SH	ALL HAV	/F A 7%	RATE	OF SUPE	RFLEVA	TION.			
700	4.7	0.59	5.5	0.57	6.3	0.56	6.9	0.54					5 511		,		J. JOI L					
600	5.0	0.60	5.9	0.58	6.7	0.57	R MIN	= 614'	1			THE RAT								AMP TER	MINALS	
500	5.4	0.61	6.4	0.60	7.0	0.58			,			(STOPP)	NG CON	חווטא	SHOOL	n RF F	IWIIFD	10 5%	MAX.			
450	Г 7	0.00		0.04			1					1E DEL 1		FC FD01		ULDT A	ANNOT F			OD THE	DECTON	

225 7.0 0.66 R MIN. = 222'

6.0 0.63

0.64

300 6.7 0.65 R MIN. = 327'

450 5.7 0.62

265 6.9 0.66

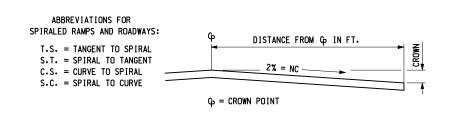
400

350

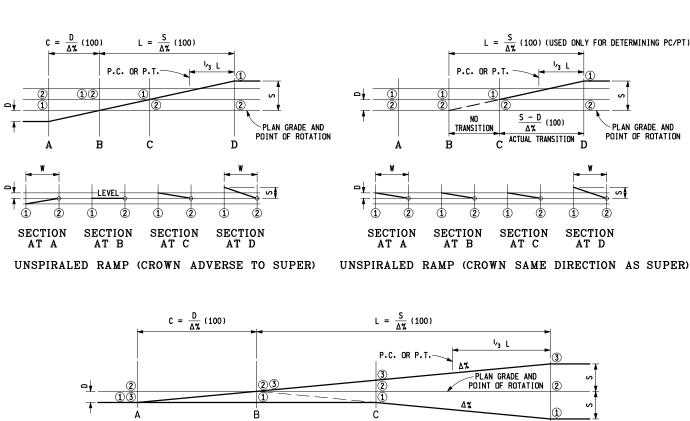
6.6 0.61 R MIN.= 464'

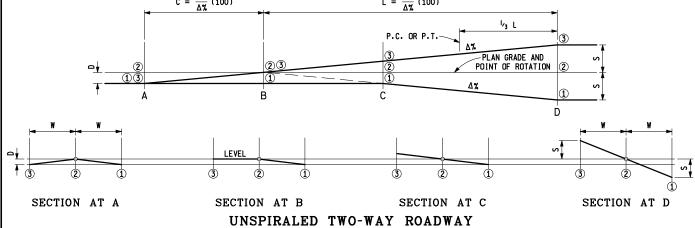
6.8 0.61

7.0 0.62


IF DELTA VALUES FROM THE CHART CANNOT BE OBTAINED FOR THE DESIGN RADIUS, USE THE MAXIMUM DELTA VALUE FOR THE CORRESPONDING SPEED.

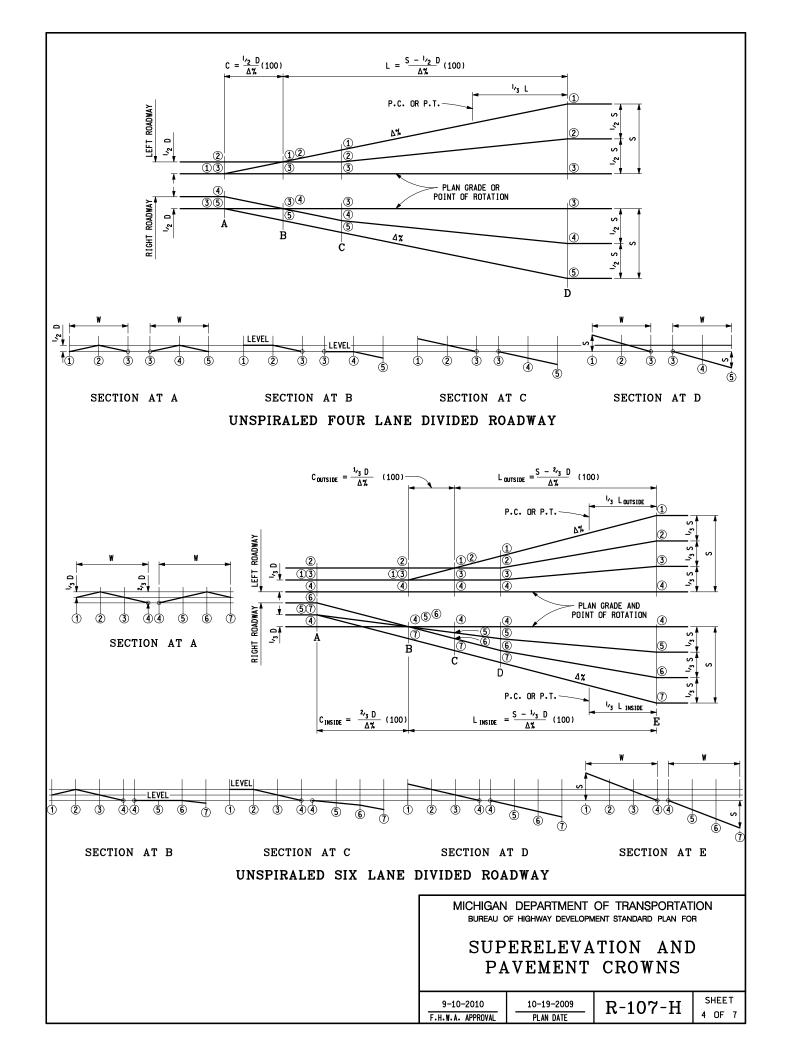
FOR RADII LESS THAN THOSE TABULATED, (BUT NOT LESS THAN R MIN.), USE e max. MAXIMUM SUPERELEVATION FOR URBAN FREEWAYS AND URBAN RAMPS (WITH A 60 MPH DESIGN SPEED) IS 5%, OTHERWISE e max = 7%.

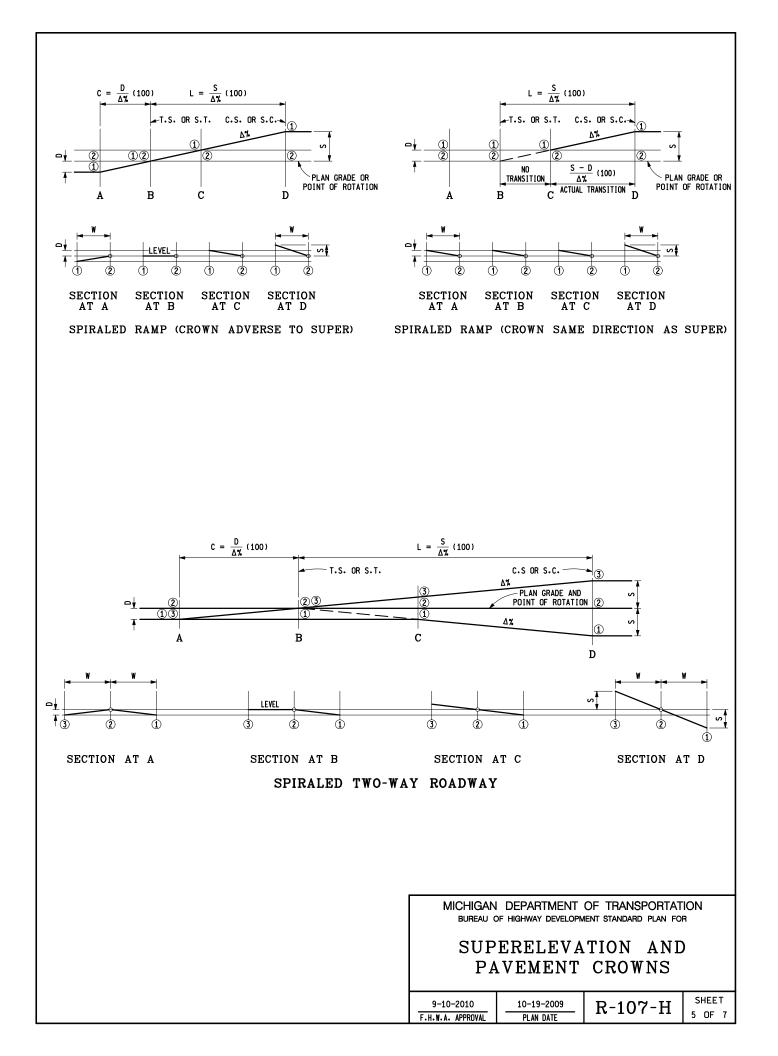

MICHIGAN DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DEVELOPMENT STANDARD PLAN FOR

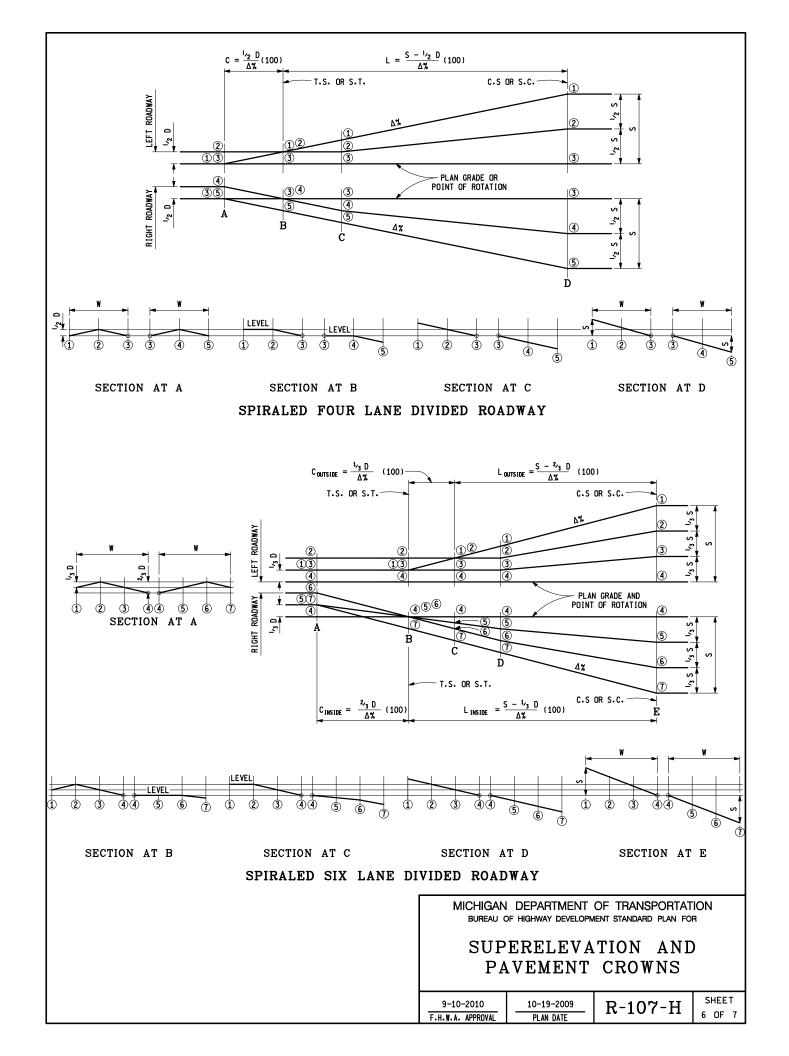

SUPERELEVATION AND PAVEMENT CROWNS

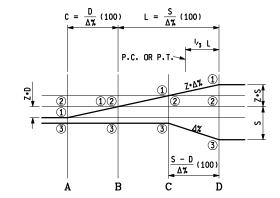
SHEET 9-10-2010 10-19-2009 R-107-H 2 OF 7 F.H.W.A. APPROVAL PLAN DATE

SPIRAL	SPIRAL CURVE TRANSITIONS								
DESIGN SPEED (MPH)	MAXIMUM RADIUS (FEET)	DESIGN SPEED (MPH)	MAXIMUM RADIUS (FEET)						
30	456	60	1822						
35	620	65	2138						
40	810	70	2479						
45	1025	75	2846						
50	1265	80	3238						
55	1531								

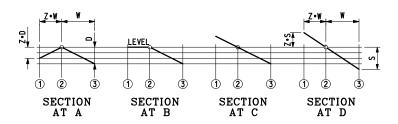


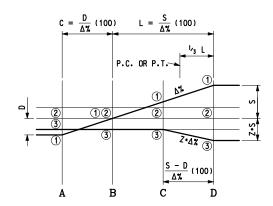


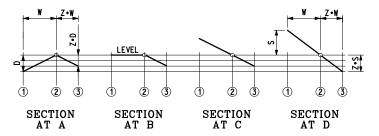

MICHIGAN DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DEVELOPMENT STANDARD PLAN FOR


SUPERELEVATION AND PAVEMENT CROWNS

9-10-2010	10-19-2009	R-107-H	SHEET			
F.H.W.A. APPROVAL	PLAN DATE	10 10 11	3 OF 7			







Z VALUES FOR UNSPIRALED TWO WAY ROADWAYS WITH AN ODD NUMBER OF LANES						
NUMBER OF LANES	Z					
3	1/2					
5	2,3					
7 3/4						

UNSPIRALED TWO WAY ROADWAY WITH ODD NUMBER OF LANES (FARTHEST EDGE ON LOW SIDE)

UNSPIRALED TWO WAY ROADWAY WITH ODD NUMBER OF LANES (FARTHEST EDGE ON HIGH SIDE)

MICHIGAN DEPARTMENT OF TRANSPORTATION BUREAU OF HIGHWAY DEVELOPMENT STANDARD PLAN FOR

SUPERELEVATION AND PAVEMENT CROWNS

9-10-2010	10-19-2009	R-107-H	SHEET		
F.H.W.A. APPROVAL	PLAN DATE	10 10 1 11	7 OF 7		