

MICHIGAN STATE HIGHWAY COMMISSION

Charles H. Hewitt Chairman Wallace D. Nun Vice Chairman Louis A. Fisher Member Claude J. Tobin Member

A TRAFFIC ACCIDENT ANALYSIS
OF HIGH ACCIDENT LOCATIONS

IN OSCEOLA COUNTY

Report TSD-SS-137-70

by
OSCAR E. VARGAS

MICHIGAN DEPARTMENT OF STATE HIGHWAYS

Henrik E. Stafseth State Highway Director J. P. Woodford Deputy Director -Chief Engineer G. J. McCarthy Asst. Deputy Director for Engineering and Operations
J. G. Hautala. Chief, Bureau of Operations H. H. Cooper Engineer of Traffic and Safety Max R. Hoffman Traffic Safety and Surveillance Engineer

Department of State Highways
State Highways Building - P.O. Drawer K Lansing, Michigan 48904

STUDY CONDUCTED BY THE
 Safety \& Surveillance Section Traffic \& Safety Division
 Bureau of Operations Michigan Department of State Highways

in cooperation with
National Highway Safety Bureau Department of Transportation
"The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the National Highway Safety Bureau."

ACKNOWLEDGMENTS

Michigan Department of State Police
Captain Amthor
Sgt. Hathaway
Cp1. Harrison

Osceola County Road Commission
Dale Eastlund - County Engineer

Michigan Department of State Highways

Ivan V. Bartha - Supervising Engineer of Accident Analysis Unit Ursel L. Savage - Project Engineer Donald J. McDonald - Assisting Technician

Office of Highway Safety Planning Noe1 C. Bufe - Director

NHSB PROJECT 非IS-69-3-001

$$
\begin{aligned}
& \text { LIBRARY } \\
& \text { michigan dopariment of } \\
& \text { state highways } \\
& \text { LANSING }
\end{aligned}
$$

TABLE OF CONTENTS

Table of Contents cont. Page
FIGURE 4 Collision Diagram - Mackinaw Trail Road @ Grand Road 554A Photo - Mackinaw Trail Road @ GrandRoad567 Collision Diagram - Diamond Road @Peck Lake Road577A Photo - Diamond Road @ Peck LakeRoad8 Collision Diagram - Mackinaw Trail
Road @ 10 Mile Road 59
8A Photo - Mackinaw Trail Road @ 10
Mile Road 609 Collision Diagram - Twin Lake Road @Hersey Road61
9A Photo - Twin Lake Road @ Hersey Road 62
12 Collision Diagram - Cedar Road 63
12A Photo - Cedar Road 64
APPENDIX - II. Excerpts from Section C, Michigan Manual of Uniform Traffic Control Devices 65

LIST OF FIGURES

Page

FIGURE 1 Collision Diagram - Dillman Road and River Road 16
1A Photo - Southbound Dil1man Road 17
1B Photo - Dil1man Road @ River Road 18
2 Collision Diagram - Marion Road 20
2A Photo - Marion Road 21Collision Diagram - Cedar Road @ TwinCreek Road24
3A Photo - Northbound Cedar Road 25
Photo - Southbound Cedar Road 26
5 Collision Diagram - Mackinaw Trail Road 28
5A Photo - Mackinaw Trail Road 29
6 Collision Diagram - Norman Road atForest Hill Road31
6A Photo - Norman Road @ Forest Hill Road 3210 Collision Diagram - Roselake Road @Mackinaw Trail Road10A Photo - Roselake Road @ Mackinaw TrailRoad3611 Collision Diagram - Marion Road West of
Patterson Road 39
11A Photo - Westbound Marion Road 40
11B Photo - Eastbound Marion Road 4111C Photo - Eastbound Marion Road andPatterson Road42

LIST OF MAPS

PageMAP 1 Osceola County in Relation to the State ofMichigan 6
2 Osceola County Road System 8
3 Spot Map of High Accident Locations 13

INTRODUCTTON

The Highway Safety Act of 1966 was enacted by the Congress of the United States in order to promote Highway Safety Programs. Subsequently, various Highway Safety Standards were developed to assure the orderly implementation of the Act.

Highway Safety Standard 4.4.9, Identification and Surveillance of Accident Locations, is one of those standards. The purpose of Standard 4.4.9 is to identify specific locations or sections of streets and highways which have high or potentially high accident experience as a basis for establishing priorities for improvement, selective enforcement or other operational practices that wi11 eliminate or reduce accidents and potential hazards at the location so identified.

The State of Michigan carries out a program of this type on the State trunkline system; however, many of the State's city and county agencies lack the financial and technical prerequisites necessary to pursue similar programs with similarly defined objectives. To insure that this Highway Safety Standard is met and to improve the overall evaluation of the accident picture in Michigan, the Michigan Department of State Highways requested and received through the Office of Highway Safety Planning in the Executive Office of the Governor a federally funded

Abstract

project entitled "Traffic Accident Analysis for Cities and Counties". The intent of this new project is to provide a special traffic engineering field service for cities and counties. In cooperation with participating cities and counties, the proposed service under the direction of Department personnel will make a traffic engineering evaluation of the factors causing traffic accidents and will recommend engineering corrections to those conditions which may be contributing to accidents.

SCOPE
As highway engineers, we have very little influence on changing or correcting the motorist's ability to drive (driver education, experience and enforcement) or for the condition of the vehicle (manufacturer's design and owner responsibility). We do have; however, the responsibility to construct, operate and maintain the roadway environment within feasible economic and design limits so that the driver and vehicle can function safely within the environment.

The intent of the "Traffic Accident Analysis for Cities and Counties" program is to improve traffic safety on all Michigan streets and roads by expanding the traffic engineering evaluation of factors causing accidents. This is accomplished by conducting a traffic accident analysis of locations which experience high accident frequencies and then summarizing recommendations for corrective action.

STUDY PROCEDURES

The study procedures for the subject project involve several distinct phases. They may be described as follows: basic data collection, identifying and locating high accident locations, a traffic engineering analysis of accidents, technical evaluation of previously compiled facts and consequent recommendations for improvements.

Since a portion of the data collection phase involves accident records and reports, and since the Michigan Department of State Police is responsible for keeping all accident records in Michigan, the task of identifying and locating high accident locations in Osceola County (and providing an inventory of those locations) was designated as State Police responsibility. Because of the lack of a modern or automatic system of locating accidents on the county road system, the high accident locations for Osceola County were determined by manually extracting and compiling those locations with the highest number of accidents from the 1968 county accident reports. The year 1968 was considered the base year for our study. From this list, the 12 highest accident locations were selected. Once the problem locations were identified, additional accident information for the years 1966,1967 and 1969 was compiled in order to expand the accident base at each location. Upon completion of this portion of the data collection, the Department of State Police documented and transmitted to the

Traffic and Safety Division of the Department of State Highways a list, along with the accident reports, of the high accident locations for Osceola County.

The second portion of the data collection phase, which is the responsibility of the Department of State Highways, involves preparation of collision diagrams and, if necessary, physical condition diagrams and traffic counts for selected locations.

The accident analysis and traffic engineering evaluation phases involve the detailed analysis of the summarized facts and field data and prescribing the proper corrective treatment.

STUDY AREA

Osceola County is located in Michigan's Lower Peninsula in the area designated as the Central High Plains (see map following page). Osceola County is divided into 16 townships with an inland lake area of four square miles and a total area of 581 square miles. It is bordered on the north by Wexford and Missaukee Counties, on the east by Clare County, on the west by Lake County and on the south by Mecosta County.

Population of the County in 1960 was 13,595 with 30% of the total population concentrated in Reed City and Evart. The population projection of the County for the next 30 years indicates an expected average increase lower than the statewide average (see Table I, Appendix I, p. 47). This represents the trend in the rural counties where people are moving to large urban centers. From 1940 to 1960 the population increased only 2.1% while the population projection indicates an increase of 18% over the period 1960 to 1990.

The last century lumber rush brought railways and roads and provided the region with reliable communication and transportation means. The County is agriculturally oriented and there is some commercial production of lumber. However, from 1950 to 1964 there has been a decrease in the number of farms and the percent of land

area in farms has decreased from 65.5% to 47.0%. Osceola County is also important in the production of petroleum, natural gas, sand and gravel.

The employed labor force of Osceola County was 4,472 in 1960 with small manufacturing, agriculture and forestry accounting for 45% of the total employment. The large majority of Osceola residents are employed within the County (82.63% as shown on Table II, Appendix I, P. 48). The County's economic development depends to a great extent on a safe, efficient and reliable transportation system.

According to the Eighteenth Annual Progress Report, as compiled by the Local Government Division of the Michigan Department of State Highways, Osceola County has 1,039.87 miles of highways excluding city and incorporated village streets and roads. This includes 96.52 miles of state trunkline, 227.27 miles of county primary and 715.98 miles of local roads. Of the 943.35 miles of county roads, 170.50 miles are hard surfaced and the remaining mileage is either gravel, graded and drained earth or unimproved road (see County map following page).

Traffic congestion is not a significant problem in Osceola County. An implied indication of this fact is that the population density is 23.4 person per square mile in Osceola County versus 137.2 person per square mile in the State of Michigan.
michigan department of slate highways

LANSNG

The yearly totals of traffic accidents are also fairly constant for the County roads between 1966 and 1969, with the exception of 1968 (see Table III, Appendix I, p. 49).

GLOSSARY

The term "Manua1" when used in this report will refer to the "Michigan Manual of Uniform Traffic Control Devices"; publication prepared by the Michigan Department of State Highways in conjunction with the Michigan State Police.

Excerpts of the Manual are included in Appendix II.

TRAFFIC ENGINEERING ANALYSIS

Compared to the miliions of vehicle miles traveled, accidents are very rare events. However, they are the only present means available to indicate a failure in the driver-road-vehicle environment. Any of these three may be a major contributor to an accident.

In our analysis, we examined the contributing factors from the viewpoint of a highway traffic engineer with special attention to the effect which the highway environment may have had on the accident. At each high accident location, individual accident reports were reviewed in detail and the accident facts were tabulated and grouped in various tables. It was apparent that no unusually high concentration of accidents existed at any one location. In fact, the highest total at one location for the four-year study period was. 11 accidents.

The first step in the traffic engineering analysis phase of Osceola County's high accident locations was the preparation of collision diagrams. At each location accidents were grouped in order to locate the accident in relation to the intersection, approaches to the intersection or section of roadway. The various methods of accident analysis are intended to probe into the detailed aspects of the accidents to determine the reasons for their occurrence.

To further document the various facts present at the 12 high accident locations in Osceola County, the following tables were prepared to analyze the specific data.
IV. Annual Accident Summary
V. Monthly and Daily Accident Occurence
VI. Daily and Hourly Accident Occurrence
VII. Age of Drivers Involved in Accidents
VIII. Residence of Drivers Involved in Accidents
IX. Weather Conditions at Scene of Accidents
X. Pavement Conditions at Scene of Accidents

This report will discuss in detail only the locations for which recommendations are made. Collision diagrams and photographs for each of these will be found on the page following the discussion. The collision diagram and photographs for the remaining locations are found in Appendix I (see following page for map showing the 12 locations within the County).

67

1. Dillman Road @ River Road, Osceola Township

This is a "Y" type intersection of two county primary roads. Dillman Road merges with River Road. The major through traffic movements are from the southwest to the north and from the north to the southwest. The existing traffic controls present are a 24 in. stop sign on westbound River Road and two 24 in. curve signs on eastbound River Road and southbound Dillman Road.

Dillman Road and the paved portion of River Road are 22 ft bituminous with five foot shoulders. There are no center line markings in the vicinity of the intersection. There were a total of eleven accidents at this intersection over the four years studied. Nine of these accidents were ran-off the roadway type and nine occurred at night (see Figures 1, 1 A and 1 B following the recommendations).

It is apparent that the sharpness of the existing curve and the lack of warning speed panels were contributing factors to the occurrence of the majority of accidents. Although the accident experience does not justify major reconstruction (as easing the curve) we should recognize this possibility as the ultimate solution to the problem. However, this possibility could be considered in the County's long range program.

Recommendations: We recommend that the curve signs (W1-2-24, Appendix

II, or p. 82 of Manual) be replaced by 30 in. turn signs. We also recommend that a Wl-7-48 bi-directional target arrow be placed in target position for southbound Dillman Road and that a $W 1-6-48$ target arrow be erected for traffic from the west leg of River Road to northbound Dillman Road.

We further recommend that all turn signs be supplemented with 30 mph advisory curve speed panels. This speed panel value was determined by using a devil level indicator and the criteria outlined in Appendix II, p. 75. The following averages were obtained during field investigation.

	MPH	Devil Level Readings
Northbound	25	10°
	35	12°
		20°
Southbound	25	10°
	35	12°
		18°

SOUTHBOUND DILLMAN ROAD

EASTBOUND

2. Marion Road, 0.8 mile west of $M-115$, Highland Township

This section of Marion Road is gently rolling and on tangent. Marion Road is a 20 ft bituminous road with 6 foot shoulders and center line markings. There were six accidents at this location and all of them were caused by deer (see Figures 2 and 2A).

Recommendation:
We suggest that consideration be given to the erection of warning signs for deer crossing area (W12-8-36, Appendix II, p. 76) at this location for eastbound and westbound traffic. As required by the Manual, a joint investigation must be made by representatives of the Michigan Department of Conservation and the agency having jurisdiction over the highway before this sign is installed.

$$
01966
$$

$\diamond 1967$
$\square 1968$1969

FIGURE 2

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM
	Period: 1966 THRU 1969 QSCEOLA CO. Description HIGHLAND TWA O.8 MI.WEST OF M- 115

EASTBOUND
MARION ROAD

3. Cedar Road @ Twin Creek Road, Cedar Township

Twin Creek Road is a narrow earth road forming almost a "T" intersection with Cedar Road (see Figures 3, 3A and 3B following the recommendations). Traffic controls are a 24 in. stop sign on Twin Creek Road and two 24 in. curve signs on Cedar Road.

Cedar Road is a 20 ft bituminous road with lightly patched edges and four to six foot shoulders. Centerline markings and yellow no passing lines are present throughout the accident location.

There were a total of four accidents at this location during the period 1966 through 1969, and they were all due to the failure of the drivers involved to negotiate the curves. No accidents were reported for Twin Creek Road traffic. The geometrics of the intersection are not considered critical and the amount of traffic is extremely low on Twin Creek Road. Therefore, no pictures are included for Twin Creek Road (see Figures 3A and 3B, pps. 25 and 26 for Cedar Road pictures).

Recommendations:
We recommend that the existing reverse curve signs be replaced by winding road signs (W1-5-30, Appendix II, p. 71 or p. 87 of Manual) to denote the series of curves. Furthermore, we recommend that the winding road signs be supplemented with 30 mph advisory curve speed panels.

The appropriate speed was determined by using a devil level indicator and the criteria outlined in Appendix II, p. 75. The following averages were obtained during field investigation.

			Level Rea	
	MPH	1st Curve	2nd Curve	3rd Curve
	30	8°	10°	10°
Northbound	35	12°	$1.4{ }^{\circ}$	12°
	40	18°	18°	18°
	30	10°	10°	10°
Southbound	35	12°	12°	12°
	40	16°	18°	18°

The first curve southbound corresponds to curve number three northbound, but in both cases the appropriate speed legend recommended is 30 mph .

APPROACHING THE CURVES

NORTHBOUND

CEDAR ROAD
AT TWIN CREEK

NORTHBOUND
CEDAR ROAD
AT THE CURVE
SOUTHBOUND
CEDAR ROAD
APPROACHING THE CURVE

SOUTHBOUND
CEDAR ROAD
AT THE CURVE
4. Mackinaw Trail@ Grand Road, Lincoln Township (see Appendix I, pps. 55 and 56)
$\frac{\text { Total }}{4} \quad \frac{\text { P.D. }}{2} \quad \frac{\text { Inj. }}{2} \quad$ Fat.
5. Mackinaw Trail, 0.1 to 0.2 mile south of County Line, Sherman Township

Throughout the location, Mackinaw Trail is gently rolling and on tangent. The roadway is 20 ft wide with bituminous surface and ten foot shoulders. There were four accidents at this location during the study period 1966 through 1969 and a11 of them were car-deer accidents (see Figures 5 and 5 A following the recommendation).

Recommendation:
We suggest that consideration be given to the erection of warning signs for deer crossing area (W12-8-36, Appendix II, p. 76) at this location for north and southbound traffic. As required by the Manual, a joint investigation must be made by representatives of the Michigan Department of Conservation and the agency having jurisdiction over the highway before this sign is installed.

FIGURE 5

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM
	Period: 1966 THRU 1969 OSCEOLA CO. Description SHERMAN TWP. MACKINAL TRALL 0.1 TO 0.2 MILE SOUTH OF COUNTY LINE RD.

NORTHBOUND MACKINAW TRAIL

SOUTHBOUND MACKINAW TRAIL
6. Norman Road @ Forest Hill Road, Lincoln Township

Norman Road is 20 ft bituminous with five foot shoulders and center line markings. It intersects Forest Hill Road at right angles. Forest Hill Road is a gravel road in good condition.

The existing traffic controls are two 24 in. yield signs on Forest Hill Road. There were only two intersectional accidents at this location over the period studied. However, there is a visibility problem at this intersection caused by two garages in the northeast and northwest quadrants (see Figures 6 and 6A following the recommendation). All the traffic on Forest Hill Road has to come to a complete stop before safely entering the intersection.

Recommendation:
We recommend that the existing yield signs be replaced by stop signs.

EASTBOUND

FOREST HILL ROAD

NORTHBOUND
NORMAN ROAD

WESTBOUND
FOREST HILL ROAD
7. Diamond Road @ Peck Lake Road, Richmond Township, (see Appendix I, pps. 57 and 58)

Total	$\frac{\text { P.D. }}{3}$	$\frac{\text { Inj. }}{2}$	$\frac{\text { Fat. }}{0}$

8. Mackinaw Trail @ 10 Mile Road, Sherman Township, (see Appendix I, pps. 59 and 60)

3	1	2	0

9. Twin Lake Road @ Hersey Road, Richmond Township, (see Appendix I, pps. 61 and 62)

Tota1	P.D.	Inj.	Fat.
2	1	0	

10. Mackinaw Trail @ Rose Lake Road, Rose Lake and Burdell Townships

Mackinaw Trail (01d US-131) is a 20 ft wide bituminous roadway with five foot shoulders and center line markings. It intersects Rose Lake Road at right angles (see Figures 10 and 10A). The west portion of Rose Lake Road is a gravel road. The east portion is 20 ft wide bituminous with six foot shoulders and center line markings.

Existing traffic controls are two 36 in. stop ahead signs and two 36 in. stop signs on Rose Lake Road. There is also a 36 in. crossroad warning sign on southbound Mackinaw Trail.

It is difficult to see the intersection from the north approach. This difficulty led to the erection of the crossroad warning sign. However, at the time the field study was made, large tree branches were completely covering the crossroad sign. Some tree trimming is necessary to restore visibility of the warning sign at this location.

Recommendation:
Although there are no reported accidents indicating violation of the stop sign on westbound Rose Lake Road, we recommend that the stop ahead sign be replaced by a new sign, since the existing one is in poor condition and has lost its reflectivity.

EASTBOUND
ROSE LAKE ROAD

SOUTHBOUND
MACKINAW TRAIL ROAD

WESTBOUND

ROSE LAKE ROAD
11. Marion Road, 0.1 mile west of Patterson Road, Burdel1 Township

Marion Road is 20 ft wide bituminous throughout this location with two foot to five foot shoulders and center line markings. The location is characterized by abrupt changes in vertical and horizontal alignment (see Figures 11A through 11C). Also, at this location Marion Road crosses Pine Creek on a high embankment where existing guardrail may not offer the required protection to a vehicle leaving the road near Pine Creek.

The traffic control on eastbound Marion Road is a turn sign (W1-1 24 in., Appendix II, p. 68). On westbound Marion Road the controls are a curve sign (W1-2 24 in.) and a W1-6-48 target arrow (see Appendix II, pps. 69 and 72). There are no speed control signs in the vicinity of the curves and no advisory curve speed panels present on the curve signs.

There were only three accidents at this location during the study period. However, after field investigation, the study team concluded that this location is a potentially hazardous one. The rural nature of the area contributes to high vehicular speeds, and a large percentage of the motorists may try to maintain this speed unaware of the abruptly changing conditions.

Recommendations:

We recommend that the existing curve and turn sign be re-
placed by reverse curve signs (W1-4-30, Appendix II) and that additional reverse curve signs be erected for each direction of traffic. The additional reverse curve signs shall be erected in the vicinity of the river crossing just west of the river for eastbound traffic and east of the river for westbound traffic.

During field investigation, the study team concluded that advisory curve speed panels were desirable at this location. Devil level indicator readings were recorded at various speeds for both directions. The following averages were determined.

	Devil Level Readings				
	MPH	1st Curve	2nd Curve	3rd Curve	4th Curve
	50	120	10°	8°	$8{ }^{\circ}$
Westbound	45	11°	10°	$7{ }^{\circ}$	7°
	40	10°	9°	6°	6°
	50	8°	6°	12°	12°
Eastbound	45	7°	6°	10°	9°

The first curve for eastbound direction is the same as the fourth curve for westbound direction. Based on these readings and indicating the speed on the panel as that of the slowest curve, we recommend advisory curve speed panels with 45 mph legend for both directions of traffic.

We also recommend that target arrows be erected in target position at each curve for both directions of traffic.

WESTBOUND

MARION ROAD

WESTBOUND
MARION ROAD

WESTBOUND

EASTBOUND
 MARION ROAD

EASTBOUND

MARION ROAD

EASTBOUND

MARION ROAD

EASTBOUND

MARION ROAD

EASTBOUND
MARION ROAD

SOUTHBOUND
PATTERSON ROAD
12. Cedar Road, 1.5 miles north of US-10, Hersey Township, (see Appendix I, pps. 63 and 64)

Total P.D. Inj. Fat.
$3 \begin{array}{llll} & 3 & 0 & 0\end{array}$

SUMMARY AND CONCLUSIONS

There was a total of 911 reported traffic accidents on Osceola County roads during the study period 1966 through 1969 for an average of 228 accidents per year. The information sumarized in Table IV shows that during the years 1966 through 1969 a total of 50 accidents occurred at the 12 highest accident locations in osceola County. Of these 20 resulted in personal injury and 30 were property damage. There were no fatalities during this period at the locations studied.

Table V shows that the peak accident month was October accounting for 18% of the accidents. It also shows that Sunday was the peak accident day with Saturday and Sunday accounting for 50% of the total accidents.

The figures in Table VI indicate that the peak accident hour occurs between 8 and 9 p.m. This hour together with the hours between $6-7 \mathrm{p} . \mathrm{m}$. and $12-1$ a.m. accounted for 44% of the accidents.

The information contained in Table VIII shows that 77% of the drivers involved in accidents at the study locations were local residents. Table IX shows that 82% of the accidents occurred when the weather was generally clear. As shown in Table $X, 66 \%$ of the accidents occurred when the pavement was dry; 8% when the pavement was wet and the rest when it was either snowy or icy.

Our analysis of the accident problem on county roads in Osceola County in relationship to spot or high accident locations reveals that there are no critical problems which cannot be eliminated by the modest engineering means related to a spot improvement program.

The accident information summarized in Tables IV through X may yield some basic information needed by those agencies interested in highway safety from the standpoint of driver education, law enforcement and street patrol activities.

APPENDIX I

TABLE I

POPULATION INVENTORY AND FORECAST

Year	Osceola County	Michigan
1940	13,309	5,256,106
1950	13,797	6,371,766
1960	13,595	7,823,194
1990	16,046	11,233,000
	PERCENT CHANGE	
1940-50	+3.7	21.2
1950-60	-1. 5	22.8
1960-90	$+18.0$	43.6

[^0]

REPORTED TRAFFIC ACCIDENTS IN OSCEOLA COUNTY

Year	$\begin{aligned} & \text { Propert } \\ & \text { Damage } \end{aligned}$	Injury	Fatal	Total	County Road	State Route	Interstate	Persons	$\begin{aligned} & \text { persons } \\ & \text { Killed } \end{aligned}$
1966	338	112	4	454	204	250	0	164	4
1967	350	125	10	485	226	259	0	247	13
1968	422	129	7	558	265	293	0	212	10
1969	414	137	9	560	21.6	344	0	273	11

COMPARISON OF ACCIDENT FREQUENCY

Year	0sceola County	Total Accidents
Soads	Stateofinhe	
1966	204	302,880
1967	226	299,004
1968	265	305,495
1969	216	331,223

PERCENT CHANGE FOR ABOVE TOTALS

$1966-67$	10.78%	-1.28
$1967-68$	17.25%	2.17
$1968-69$	-18.49%	8.42

VEHICLE REGISTRATIONS IN OSCEOLA COUNTY

Year	Pass.	Comm.	Farm Vehtcle	Trailer	Trailer Coach	Motor Cycles	Municipal	Total Plates
1966	-	-	-	-	-	-	-	8,575
1967	5,640	1,370	154	1,114	120	247	0	8,645
1968	5,962	1,548	161	1,230	149	257	12	9,313
1969	5,997	1,770	-	-	-	276	10	9,569

Table IV
ANNUAL ACCIDENT SUMMARY
TWELVE HIGH ACCIDENT LOCATIONS IN OSCEOLA COUNTY
Period Studied: 1966 through 1969

* * * * * * * *

Accident Type	Day	Night	Total
Fatal Accident			
Personal Injury Acc.	11	9	20
Property Damage Acc.	7	23	30
Total	18	32	50

Month	Fatal		Injury		Prop. Damage		Sub. Total		Total
	Day	Night	Day	Night	Day	Night	Day	Night	
January			1		3	3	4	3	7
February			1	1			1	1	2
March						1	.	1	1
April			2	2		2	2	4	6
May			1	2		1	1	3	4
June			1	1	1		2	1	3
July			1				1		1
August			2	1		2	2	3	5
September			1				1		1
October			1	2	1	5	2	7	9
November					1	6	1	6	7
December					1	3	1	3	4
S. Total			11	9	7	23	18	32	50
Total			20		30		50.		

Table V

MONTHLY AND DAILY ACCIDENT OCCURRENCE
TWELVE HIGH ACCIDENT LOCATIONS IN OSCEOLA COUNTY
Period Studied: 1966 through 1969

* * * * * * * * *

Month	Day of the Week							Monthly Total	$\begin{gathered} \% \\ o f \\ \text { Total } \end{gathered}$
	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.		
January	1		1	1		1	3	7	14
February				1		1		2	4
March	1							1	2
April	1			1	2	1	1	6	12
May						1	3	4	8
June	1			1			1	3	6
July						1		1	2
August		1			2	2		5	10
September							1.	1	2
October	2	1			1	1	4	9	18
November	3	1		1	1	1.		7	14
December				1		3		4	8
pay	9.	3	1	6	6	12	13	50	100
\% of	18	6	2	12	12	24	26	100	

Peak Accident Day: Sunday
Peak Accident Month: \qquad

DAILY AND HOURLY ACCIDENT OCCURRENCE
TWELVE HIGH ACĈ́IDENT LOCATIONS IN OSCEOLA COUNTY
Period Studied: 1966 through 1969

* * * * * * * * * *

Hour	Day of the Week							Hour Total	$\%$ of Total
	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.		
12-1AM	1		1				5	7	14
$1-2 \mathrm{AM}$							1	1	2
$2-3 \mathrm{AM}$				1		1		2	4
$3-4 \mathrm{AM}$					1			1	2
4-5AM									
$5-6 \mathrm{AM}$				1	1			2	4
6-7AM	1				1			2	4
$7-8 \mathrm{AM}$									
8-9AM	1							1	2
$9-10 \mathrm{AM}$		1				1	1	3	6
10-11AM									
11-12AM							1	1	2
$12-1 P M$									
1-2PM		1			1		1	3	6
2-3PM						1		1	2
3-4PM				2				2	4
$4-5 \mathrm{PM}$				1		2		3	6
5-6PM						3		3	6
$6-7 \mathrm{PM}$	2	1		1	1.		2	7	14
$7-8 \mathrm{PM}$	1					1		2	4
$8-9 \mathrm{PM}$	2				1	3	2	8	16
9-10PM									
10-11PM	1							1	2
11-12PM									
$\begin{gathered} \text { Not } \\ \text { Stated } \end{gathered}$									
Day Total	9	3	1	6	6	12	13	50	100
$\begin{aligned} & \% \text { of } \\ & \text { Total } \end{aligned}$	18	6	2	12	12	24	26	100	

Peak Accident Hour: \qquad 9:00 PM

Peak Accident Day: Sunday

Table VII
AGE OF DRIVERS INVOLVED IN ACCIDENTS
TWELVE HIGH ACCIDENT LOCATIONS IN OSCEOLA COUNTY
Period Studied: 1966 through 1969

Age Group	Number of Drivers Involved in				Percent
	Fatal	Injury	Prop. Damage	Total	
Under 16		1		1	1.75
16-19		4	9	13	22.81
20-24		7	4	11	19.30
25-34		4	8	12	21.05
35-44		3	7	10	17.55
45-54		3	3	6	10.53
55-64		1		1	1.75
65-74		1	1	2	3.51
. 75 \& Over					
Not Stated			1	1	1.75
Total		24	33	57	100\%

* * * * * * * *

Table VIII
RESIDENCE OF DRIVERS INVOLVED IN ACCIDENTS

Residence	Number of Drivers Involved in				Percent
	Fatal	Injury	Prop. Damage	Total	
Local		16	28	44	77.19
Michigan		5	4	9	15.80
Out of state		3		3	5.26
Not Stated			1	1	1.75
Total		24	33	57	100\%

Table IX
WEATHER CONDITIONS AT SGENE OF ACCIDENTS
TWELVE HIGH ACCIDENT LOCATIONS IN OSCEOLA COUNTY
Period Studied: 1966 through 1969

* * * * * * * * * *

Weather	Severity of Accident.				Percent
	Fatal.	Injury	Prop. Damage	Total	
Clear or Cloudy		19	22	41	82
Rain			1	1	2
Fog		1	3	4	8
Snow or Sleet			4	4	8
Not Stated					
Total		20	30	50	100\%

* * * * * * * * *

TABLE X
PAVEMENI CONDITIONS AT SCENE OF ACCIDENTS

Pavement	Severity of Accident				Percent
	Fatal	Injury	Prop. Damage	Total	
Dry		17	16	33	66
Wet		2	2	4	8
Snowy/Icy		1	12	13	26
Icy					
Not Stated					
Total		20	30	50	100\%

gRAND ROAD

NORTHBOUND

MACKINAW TRAIL

WESTBOUND
GRAND ROAD

SOUTHBOUND
DIAMOND LAKE ROAD

WESTBOUND
PECK LAKE ROAD

NORTHBOUND
DIAMOND LAKE ROAD

WESTBOUND
TEN MILE ROAD

EASTBOUND

HERSEY ROAD

WESTBOUND
HERSEY ROAD

NORTHBOUND
CEDAR ROAD

SOUTHBOUND

CEDAR ROAD

APPENDIX II

Section C. Warning Signs

Introduction

Warning signs shall be used for the purpose of warning traffic of existing or potentially hazardous conditions either on or adjacent to the roadway. Warning signs require caution on the part of the motorist and may call for reduction of speed or other maneuver in the interest of his own safety and that of other motorists and pedestrians. Adequate warnings are of great assistance to the vehicle operator and are valuable in safeguarding and expediting traffic. However, the use of warning signs should be kept to a minimum. Too frequent use of them or their unnecessary use to warn of conditions which are apparent tends to bring disrespect for all signs.

The conditions warranting warning signs are classified in the following groups according to the type of conditions to which they are applied:

1. Changes in Horizontal Alignments (W1 Series)
2. Intersections (W2 Series)
3. Advance Warning of Control Devices (W3 Series)
4. Converging Traffic Lanes (W4 Series)
5. Narrow Roadways (W5 Series)
6. Changes in Highway Design (W6 Series)
7. Grades (W7 Series)
8. Roadway Surface Conditions (W8 Series)
9. Schools and Pedestrians (W9 Series)
10. Railroad Crossings (W10 Series)
11. Entrances and Crossings (W11 Series)
12. Miscellaneous (W12 Series)
13. Construction and Maintenance (W13 Series)*

Warning signs with certain exceptions shall be diamond-shaped (square with one diagonal vertical) and shall have a "Highway Yellow" background with black legend. These exceptions are

[^1]the Railroad Crossing signs, the Target Arrow signs, the Curve Speed panel, the Exit Speed sign, the Obstruction panel, and the Lattice Background. Other exceptions to the diamond shape are provided for in the case of temporary signs for highway construction and maintenance.

The use of warning signs should be limited to those standard signs set forth in this section. However, after the Engineer has exhausted all possibilities, it may be found that no standard sign fits the situation and warning signs, other than those specified, may be required. Such signs shall conform with the general specifications for size ($30^{\prime \prime}$ minimum), shape, and color of warning signs. All warning signs having significance during hours of darkness shall be reffectorized or illuminated.
(Rev. 1)

TURN SIGN

Reflectorized
W1-1-30 $30^{\prime \prime} \times 30^{\prime \prime}$
W1-1-36 $36^{\prime \prime} \times 36^{\prime \prime}$
W1-1-48 $48^{\prime \prime} \times 48^{\prime \prime}$
The Turn sign shall be used to denote changes in the horizontal alignment of all roads (except minor roads and streets where in the judgment of the engineer the use of this sign is unnecessary) where a ball bank indicator or Devil Level registers ten degrees or more at a speed of 30 miles per hour or less. Where this sign is warranted, consideration should be given to the use of a Target Arrow (W1-6). Additional protection may be provided by use of the Curve Speed panel (W12-1).

This sign shall be located in advance of the point of curvature at the approximate distance indicated below:

85th Percentile Speed			
$35 \&$ Below	$36-45$	$46-55$	$56 \&$ Over
250^{\prime}	400^{\prime}	550^{\prime}	750^{\prime}

Turns or a turn and a curve that are less than 400 feet apart shall be designated by the W1-3 sign.

For placement see figure 1-11.
(Rev. 1)

CURVE SIGN

Reflectorized

$$
\begin{array}{ll}
\text { W1-2-30 } & 30^{\prime \prime} \times 30^{\prime \prime} \\
\text { W1-2-36 } & 36^{\prime \prime} \times 36^{\prime \prime} \\
\text { W1-2-48 } & 48^{\prime \prime} \times 48^{\prime \prime}
\end{array}
$$

The Curve sign shall be used to denote changes in alignment where a ball bank indicator or Devil Level registers 10° or more at speeds between 30 and 60 miles per hour, and at such other locations where the change in alignment of the roadway is not apparent to the driver. Additional protection may be provided by use of the Curve Speed panel (W12-1).
The Curve sign shall be located in advance of the point of curvature at the approximate distance indicated below:

85th Percentile Speed			
$35 \&$ Below	$36-45$	$45-55$	$56 \&$ Over
250^{\prime}	400^{\prime}	550^{\prime}	750^{\prime}

Curves that are less than 400 feet apart shall be designated by the W1-4 sign.

For placement see figures 1-11 and 1-35.

REVERSE CURVE SIGN

Reflectorized

$$
\begin{array}{ll}
\text { W1-4-30 } & 30^{\prime \prime} \times 30^{\prime \prime} \\
\text { W1-4-36 } & 36^{\prime \prime} \times 36^{\prime \prime} \\
\text { W1-4-48 } & 48^{\prime \prime} \times 48^{\prime \prime}
\end{array}
$$

On all roads (except minor roads and streets, where in the judgment of the engineer the use of this sign is unnecessary) where two curves in opposite directions are separated by a tangent of less than 400 feet a Reverse Curve sign shall be used. Additional protection may be provided by use of the Curve Speed panel (W12-1). The speed indication displayed shall be that of the slower curve.

This sign shall be located in advance of the point of curvature of the first curve at the approximate distance indicated below:

85th Percentile Speed			
35 \& Below	$36-45$	$46-55$	$56 \&$ Over
250^{\prime}	400^{\prime}	550^{\prime}	750^{\prime}

For placement see figure 1-11.

WINDING ROAD SIGN

Reflectorized

$$
\begin{array}{ll}
\text { W1-5-30 } & 30^{\prime \prime} \times 30^{\prime \prime} \\
\text { W1-5-36 } & 36^{\prime \prime} \times 36^{\prime \prime} \\
\text { W1-5-48 } & 48^{\prime \prime} \times 48^{\prime \prime}
\end{array}
$$

The Winding Road sign shall be used (except on minor roads and streets where in the judgment of the engineer the use of this sign is unnecessary) where there is a series of three or more turns or curves, separated by tangent distances of less than 400 feet. Where this sign is warranted, consideration should be given to the use of a target arrow (W1-6) in target position at each turn or curve. Additional protection may be provided by use of the Curve Speed panel (W12-1). The speed indication displayed shall be that of the slower turn or curve.

This sign shall be located in advance of the point of curvature of the first curve or turn at the approximate distance indicated below:

85th Percentile Speed			
35 \& Below	$36-45$	$46-55$	56 \& Over
250^{\prime}	400^{\prime}	550^{\prime}	750^{\prime}

For placement see figure 1-11.
(Rev. 1)

TARGET ARROW SIGN

Reflectorized
W1-6-48 $48^{\prime \prime}$ x $24^{\prime \prime}$
W1-6-96 96" x 48"
This sign may be used as a supplement to a Turn or Curve sign for potentially hazardous turns or curves. To increase its target value and to obscure misleading topography, the sign may be mounted on a Lattice Background (W12-10).

Where further emphasis of the required movement is desired, the W1-6-96 may be used in lieu of the unit consisting of the W1-6-48 and the W12-10.

This sign shall not be used to mark the ends of medians, centerpiers, etc., where there is no change in the direction of travel for all traffic. Further, it shall not be used as a route directional confirmatory marker or in any location where an intersecting street or highway of equal or nearly equal importance presents a choice of movement.

When used, the Target Arrow sign shall be erected in target position and, if possible, mounted high enough to be visible for at least 500 feet. It shall be placed at five feet minimum bottom height and two feet from the edge of the shoulder or curb face.

BI-DIRECTIONAL TARGET ARROW SIGN

Reflectorized
W1-7-48 $48^{\prime \prime} \times 24^{\prime \prime}$
W1-7-96 $96^{\prime \prime} \times 48^{\prime \prime}$
The Bi-Directional Target Arrow sign may be used at "T" or "Y" intersections to inform the driver of the abrupt changes in highway alignment. To increase its target value and to obscure misleading topography, the sign may be mounted on a Lattice Background (W12-10).

This sign shall not be used to mark the ends of medians, centerpiers, etc., where there is no change in the direction of travel for all traffic.

When used, this sign shall be erected in target position and, if possible, it should be mounted high enough to be visible for at least 500 feet. It shall be placed at five feet minimum bottom height and two feet from the edge of the shoulder or curb face.
Where further emphasis of the required movements is desired, the W1-7-96 may be used in lieu of the unit consisting of the W1-7-48 and the W12-10.

STOP AHEAD SIGN

Reflectorized
W3-1-30 $30^{\prime \prime} \times 30^{\prime \prime}$ ($6^{\prime \prime}$ letters)
W3-1-36 $36^{\prime \prime} \times 36^{\prime \prime} \quad$ ($8^{\prime \prime}$ letters)
The "STOP AHEAD" sign shall be erected in advance of an intersection where traffic is required to stop and the "STOP" sign is not visible to motorists for a sufficient distance or where emphasis is needed because of poor observance of the stop. The "STOP AHEAD" sign may also be used in advance of a red flashing beacon.

Where required, the W3-1-30 shall be used in advance of a 24 -inch "STOP" sign and the W3-1-36 in advance of a 30 or 36 -inch "STOP" sign.

Except where used on State trunkline highways at junctions with other State trunkline highways, it shall be located in advance of the required stop at the approximate distance indicated below:

85th Percentile Speed			
35 \& Below	$36-45$	$46-55$	$56 \&$ Over
250^{\prime}	400^{\prime}	550^{\prime}	750^{\prime}

For location on State trunkline highways see figures 1-17 and 1-26.

For placement see figure 1-11.

CURVE SPEED PANEL

35

Reflectorized

W12-1-21	$21^{\prime \prime} \times 21^{\prime \prime}$	(10" and $3^{\prime \prime}$ letters)
W12-1-24	$24^{\prime \prime} \times 24^{\prime \prime}$	(12" and $3^{\prime \prime}$ letters)

The Curve Speed panel may be used as a supplement to the W1-1 through W1-5 signs only and shall display a speed legend in increments of five miles per hour. Since this legend is advisory, no Traffic Control Order is required. The W12-1-21 shall only be used with the appropriate 36 inch W1 sign and the W12-1-24 with the appropriate 48 inch W1 sign.

To determine the accurate negotiable speed on a turn or curve by the use of a ball bank indicator or Devil Level, several runs should be made in the same direction to obtain the most accurate reading possible. Readings obtained from several trial runs in the same direction shall determine the curve speed for that respective direction. Since the comfortable turn or curve speed on a specific turn or curve may vary, depending on direction of travel, the same procedure shall be used to obtain the curve speed for the opposite direction.

The following table indicates the speed to be used on the Curve Speed panel.

Indicator Reading Speedometer Reading

Appropriate

 Panel Legend10°
10°
10°

60,59 , or 58
$57,56,55,54$, or 53
$52,51,50,49$, or 48
50
$47,46,45,44$, or 43
$42,41,40,39$, or 38
45
$37,36,35,34$, or 33
40
$32,31,30,29$, or 28
35
$27,26,25,24$, or 23

DEER AREA SIGN

Reflectorized
W12-8-36 $36^{\prime \prime} \times 36^{\prime \prime} \quad$ ($8^{\prime \prime}$ letters)
This sign may be used in advance of, and at intervals throughout, sections of highway where deer cross in somewhat well defined patterns and evidence exists that such crossings constitute a hazard.

A joint investigation must be made by representatives of the Michigan Department of Conservation and the agency having jurisdiction over the highway before this sign may be installed.

For placement see figure 1-11.

[^0]: Source: United States Department of Commerce Bureau of the Census

[^1]: *Special warning signs for highway construction and maintenance projects are to be found in Part II of this Manual.

