
 

 

OR 15-187 

April 30, 2018 

 

 

An Evaluation of Michigan’s Continuous Count 

Station (CCS) Distribution 

FINAL REPORT 

 

Jun-Seok Oh, Valerian Kwigizile, Md Mehedi Hasan  

and Sepideh Mohammadi 

 

 

 

 

 

 

 

 

 

 

 

Transportation Research Center  

for Livable Communities 

Western Michigan University  



 

 

 

Technical Report  
Documentation Page 

1. Report No. 

OR 15-187 
2. Government Accession No. 

N/A 
3. MDOT Project Manager 

Kevin Krzeminski 

4. Title and Subtitle 

An Evaluation of Michigan’s Continuous Count Station 
(CCS) Distribution 

5. Report Date 

April 30, 2018 

6. Performing Organization Code 

N/A 

7. Author(s) 

Jun-Seok Oh, Valerian Kwigizile, Md Mehedi Hasan and 
Sepideh Mohammadi 

8. Performing Org. Report No. 

N/A 

9. Performing Organization Name and Address 

Western Michigan University  
1903 West Michigan Avenue 
Kalamazoo, MI 49008 

10. Work Unit No. (TRAIS) 

N/A 

11. Contract No. 

2016-0069 Z2 

11(a). Authorization No. 

Z2 

12. Sponsoring Agency Name and Address 

Michigan Department of Transportation  
Research Administration 
8885 Ricks Rd. 
P.O. Box 30049 
Lansing MI 48909 

13. Type of Report & Period 
Covered 

Final Report  
04/01/2016 – 04/30/2018 
14. Sponsoring Agency Code 

N/A 

15. Supplementary Notes 

 
16. Abstract 

This report evaluated Michigan’s current continuous counting program and proposed a program 
combining traffic data from Intelligent Transportation Systems (ITS) sites and continuous 
counting stations (CCS) sites. A web-based survey was conducted to understand other states’ 
experience in maintaining their statewide traffic monitoring program. Information on sensor 
type, coverage, number, class, satisfaction rate and use was sought. A detailed evaluation of 
current ITS sensors was performed by comparing them with adjacent CCS sensors for volume, 
speed, and vehicle classification data. An analysis for sufficiency and redundancy of current 
CCS sites was performed. In this study, CCS sites were evaluated by geographical 
classification, functional classification, and MDOT’s locational clusters. The evaluation revealed 
that 37 ITS sensors can be added to the Michigan’s Traffic Management Program (TMP) while 
two CCS sites can be removed. In addition, 12 CCS sites are suitable for replacement with ITS 
sites A cost saving analysis was performed for the proposed TMP sensors. For missing data 
imputation, a DNN based deep learning approach was proposed along with routine sensor 
calibration and a maintenance plan. 
17. Key Words 

Continuous Count Stations (CCS), ITS Site 
Evaluation, Traffic Monitoring Program 

18. Distribution Statement 
No restrictions.  This document is available 
to the public through the Michigan 
Department of Transportation. 

19. Security Classification - 
report 

Unclassified 

20. Security Classification - 
page 
Unclassified 

21. No. of Pages 

 
134 

22. Price 

 
N/A 



 

i | P a g e  

 

Disclaimer 

 
This publication is disseminated in the interest of information exchange.  The Michigan 

Department of Transportation (hereinafter referred to as MDOT) expressly disclaims any liability, 

of any kind, or for any reason, that might otherwise arise out of any use of this publication or the 

information or data provided in the publication.  MDOT further disclaims any responsibility for 

typographical errors or accuracy of the information provided or contained within this information.  

MDOT makes no warranties or representations whatsoever regarding the quality, content, 

completeness, suitability, adequacy, sequence, accuracy or timeliness of the information and data 

provided, or that the contents represent standards, specifications, or regulations. 

 

Acknowledgments 

We would like to thank Mr. Kevin Krzeminski, the project manager, and Mr. Mark Polsdofer, the 

research manager, for their continued support and technical guidance during this project. We also 

would like to thank Mr. Lawrence Whiteside, former project manager, for his initiation of this 

research and continued support on data communication. In addition, we would like to thank the 

Research Advisory Panel members for their comments and suggestions.  

Ms. Wendi Burton, Michigan Department of Transportation  

Ms. Melissa Carswell, Michigan Department of Transportation 

Ms. Elise Feldpausch, Michigan Department of Transportation 

Mr. Jason Firman, Michigan Department of Transportation 

Mr. Laurent Fournier, Michigan Department of Transportation 

Mr. Joseph Gorman, Michigan Department of Transportation 

Mr. Ron Katch, Michigan Department of Transportation 

 

Their comments and suggestions greatly helped the research team in improving the final product 

of this research. This report is based upon work supported by the Michigan Department of 

Transportation under the contract number 2016-0069 Z2. 

 

 



 

ii | P a g e  

 

Table of Contents 

 

Executive Summary ........................................................................................................................ 1 

Chapter 1 Introduction .................................................................................................................... 9 

1.1 Problem Statement and Background ..................................................................................... 9 

1.2  Research Objectives ........................................................................................................... 10 

Chapter 2 Literature Review ......................................................................................................... 12 

2.1 Introduction ......................................................................................................................... 12 

2.2 Continuous Counting Stations (CCS) ................................................................................. 12 

2.2.1 Review of Traffic Monitoring Guide (TMG) .............................................................. 12 

2.2.2  Review of Different CCS Sensors............................................................................... 13 

2.2.3  Review of CCS Site Management and Evaluation ..................................................... 13 

2.3  Intelligent Transport Systems (ITS) and Weigh-in-Motion (WIM) .................................. 17 

2.3.1  Review of Intelligent Transport Systems (ITS) Sensors ............................................. 17 

2.3.2  Review of Weigh-in-Motion (WIM) Sensors ............................................................. 18 

2.4 Review of Traffic Management and Monitoring Systems in Other States ......................... 19 

2.5 Data Maintenance and Calibration...................................................................................... 23 

2.5.1 Review of Data Imputation .......................................................................................... 23 

2.5.2 Review of Data Maintenance and Calibration ............................................................. 24 

2.6 Summary of Findings .......................................................................................................... 25 

Chapter 3 Survey Results .............................................................................................................. 27 

3.1 Introduction ......................................................................................................................... 27 

3.2 Sensors Used for CCS, ITS and Others .............................................................................. 28 

3.3 The Number of Personnel, CCS Stations and Mileage Coverage ...................................... 29 

3.4 Sensors for Volume Data Collection and the Level of Satisfaction ................................... 30 

3.5 Sensors for Vehicle Classification and the Level of Satisfaction ....................................... 31 

3.6 Combining CCS Monitoring Program with Other Data Sources........................................ 32 



 

iii | P a g e  

 

3.7 Traffic Data Management and Sharing System .................................................................. 33 

3.8 Traffic Data Management Plan and Improvement in Strategic Assessment for Sensor 

Locations ................................................................................................................................... 34 

3.9 Reassessment of the Number of Sensors with Evaluating Missing Data ........................... 34 

3.10 Lessons Learned from the Survey..................................................................................... 35 

Chapter 4 Data Collection ............................................................................................................. 36 

4.1 Introduction ......................................................................................................................... 36 

4.2 Data Processing and Availability Computation .................................................................. 36 

4.3 CCS Data Availability ........................................................................................................ 37 

4.3.1 Comparison of CCS Data Availability by Year ........................................................... 37 

4.3.2 Computation and Comparison of Different Factors..................................................... 38 

4.4  ITS Data Availability ......................................................................................................... 40 

4.4.1 ITS Data Received by TOC ......................................................................................... 40 

4.4.2 Comparison of ITS Data Availability by Year and TOC ............................................ 40 

4.5  Summary of Findings ......................................................................................................... 42 

Chapter 5 ITS Data Evaluation ..................................................................................................... 43 

5.1 Introduction ......................................................................................................................... 43 

5.2 Volume Data Evaluation ..................................................................................................... 43 

5.2.1 Approach for Volume Data Evaluation ....................................................................... 43 

5.2.2 Comparable ITS Sites for Volume Comparison .......................................................... 44 

5.2.3 ITS Volume Data Evaluation ....................................................................................... 44 

5.3 Speed and Vehicle Class Data Evaluation .......................................................................... 47 

5.3.1 Approach of Speed and Vehicle Class Evaluation ...................................................... 47 

5.3.2 Comparable ITS Sites for Speed and Vehicle Class Comparison ............................... 48 

5.3.3 Speed Data Evaluation ................................................................................................. 49 

5.4 ITS Data Quality by Locations ........................................................................................... 52 



 

iv | P a g e  

 

5.5 Conclusion and Summary Findings .................................................................................... 53 

Chapter 6 Evaluation of CCS Sites ............................................................................................... 54 

6.1 Introduction ......................................................................................................................... 54 

6.2 Redundancy Analysis.......................................................................................................... 54 

6.2.1 Methodology and Analysis .......................................................................................... 54 

6.2.2 Redundant CCS Sites ................................................................................................... 55 

6.3 Sufficiency Analysis ........................................................................................................... 57 

6.3.1 Methodology ................................................................................................................ 57 

6.3.2 Classification of CCS Sites by Geographical Region and Highway Type .................. 58 

6.3.3 Number of CCS Sites Needed by Geographical Region ............................................. 58 

6.3.4 Number of CCS Sites Needed by Highway Type ........................................................ 60 

6.3.5 Number of CCS Sites Needed by MDOT Clusters ...................................................... 60 

6.4  Summary of Findings ......................................................................................................... 62 

Chapter 7 Combining ITS Sensors into the Traffic Monitoring Program .................................... 63 

7.1 Introduction ......................................................................................................................... 63 

7.2 Proposed Traffic Monitoring Program................................................................................ 64 

7.2.1 CCS Sites Replaceable with ITS Sensors .................................................................... 64 

7.2.2 Addable ITS Sensor Sites ............................................................................................ 66 

7.2.3 Traffic Sensors in the Proposed Traffic Monitoring Program ..................................... 67 

7.3 Cost Analysis in the Proposed Traffic Monitoring Program .............................................. 68 

7.3.1 CCS Costs .................................................................................................................... 68 

7.3.2 ITS-MVDS Costs ......................................................................................................... 69 

7.3.3 Estimation of Cost Savings .......................................................................................... 70 

Chapter 8 Data Maintenance and Implementation Plan ............................................................... 72 

8.1 Data Quality and Management Plan ................................................................................... 72 

8.1.1 Sensor Calibration and Maintenance ........................................................................... 72 



 

v | P a g e  

 

8.1.2 Data Management ........................................................................................................ 73 

8.1.3 Sensor Testbed ............................................................................................................. 73 

8.2 Data Imputation .................................................................................................................. 73 

8.2.1 Data Imputation Approach ........................................................................................... 73 

8.2.2 Performance of the Proposed Data Imputation ............................................................ 74 

8.2.3 Findings and Suggestion .............................................................................................. 76 

8.3 Suggested Implementation Plan .......................................................................................... 76 

8.3.1 Removal of CCS Sites from MDOT’s TMP ................................................................ 76 

8.3.2 Replacing 12 CCS sites with ITS Sensors ................................................................... 76 

8.3.3 Adding ITS Sensors into TMP ..................................................................................... 78 

8.3.4 Utilizing a Comprehensive Sensor Testbed ................................................................. 78 

8.3.5 Incorporation of Data Imputation Method ................................................................... 78 

Chapter 9 Conclusion and Recommendation ................................................................................ 79 

References ..................................................................................................................................... 81 

Appendix 1: Survey Questionnaire ........................................................................................... 85 

Appendix 2: Data Format and Dictionary ................................................................................. 89 

Appendix 3: ITS Data Evaluation ............................................................................................. 94 

 

 

 

 

 

 

 

 

  



 

vi | P a g e  

 

List of Tables 

Table E.1 Summary of Yearly CCS Data Availability by Devices ................................................ 3 

Table E.2 Summary of Yearly ITS Data Availability by Devices .................................................. 3 

Table E.3 Summary of ITS Volume Data Accuracy ...................................................................... 4 

Table E.4 Summary of ITS Speed Data Accuracy ......................................................................... 4 

Table E.5 Summary of ITS Vehicle Classification Data Accuracy ................................................ 5 

Table E.6 Summary of CCS Site Appropriateness by Geographical and Functional types ........... 6 

Table E.7 Summary of CCS site appropriateness by MDOT Clusters ........................................... 6 

Table E.8 Summary of CCS Sites in the Proposed Traffic Monitoring Program ........................... 7 

Table 3.1 Comparison of Staff Members and the Number of CCS by State ................................ 29 

Table 3.2 Comparison of CCS Coverage and Density by State ................................................... 30 

Table 4.1 Comparison of CCS Data Availability by Device ........................................................ 38 

Table 4.2 Total ITS Data Received by TOC................................................................................. 40 

Table 4.3 Comparison of ITS Data Availability by Device .......................................................... 41 

Table 5.1 List of ITS Sites to Compare ........................................................................................ 44 

Table 5.2 Example Format of ITS Volume Data Evaluation........................................................ 45 

Table 5.3 Accuracy Checking of Comparable ITS Sites (2015 and 2016) ................................... 47 

Table 5.4 Vehicle Classes and Description................................................................................... 48 

Table 5.5 List of Sites for Speed and Vehicle Class Comparison ................................................ 49 

Table 5.6 ITS Speed Data Evaluation ........................................................................................... 49 

Table 5.7 Chi-square Test Value for the ITS Speed Distribution ................................................. 50 

Table 5.8 Comparative Percentage of ITS Vehicle Classes for WMTOC ................................... 51 

Table 5.9 Comparative Percentage of ITS Vehicle Classes for STOC ......................................... 52 

Table 5.10 List of ITS Sites at Curve Areas ................................................................................. 52 

Table 6.1 Potentially Redundant CCS Pairs ................................................................................. 56 

Table 6.2 CCS Sites by Geographical and Functional Types ....................................................... 58 

Table 6.3 CCS Sites Needed by Geographical Region ................................................................. 59 

Table 6.4 CCS Sites Needed by Highway Type ........................................................................... 59 

Table 6.5 CCS Sites Needed by MDOT Clusters ......................................................................... 61 

Table 7.1 Replaceable Sensor Sites .............................................................................................. 65 

Table 7.2 Addable ITS Sensor Sites ............................................................................................. 67 



 

vii | P a g e  

 

Table 7.3 Summary of Sensors in the Proposed Traffic Monitoring Program ............................. 68 

Table 7.4 Summary of CCS Construction and Maintenance Costs .............................................. 69 

Table 7.5 Summary of ITS-MVDS Construction and Maintenance Costs ................................... 69 

Table 7.6 Summary of Equivalent Annual Costs.......................................................................... 70 

Table 8.1 List of CCS Sites Replaceable with ITS Sensors and ITS Data Quality ...................... 77 

Table 8.2 ITS Sensor Sites to be Added into TMP ....................................................................... 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

viii | P a g e  

 

List of Figures 

Figure 3.1 Selected states for survey ............................................................................................ 27 

Figure 3.2 Sensors used for CCS, ITS, and others........................................................................ 28 

Figure 3.3 Sensors for volume data collection and the level of satisfaction ................................. 31 

Figure 3.4 Sensors for vehicle classification and the level of satisfaction ................................... 31 

Figure 3.5 Traffic data from other sources ................................................................................... 32 

Figure 3.6 Traffic data sharing systems for different states.......................................................... 33 

Figure 3.7 Traffic data users ......................................................................................................... 33 

Figure 4.1 Flowchart for data processing ..................................................................................... 37 

Figure 4.2 Comparison of CCS data availability by month .......................................................... 38 

Figure 4.3 Yearly trend for CCS data based on MF, MWF, WF and HF ..................................... 39 

Figure 4.4 Comparison of ITS data availability by month ........................................................... 41 

Figure 5.1 Example of volume data comparison .......................................................................... 46 

Figure 5.2 Example of speed data distribution ............................................................................. 50 

Figure 5.3 Comparisons for ITS data quality for curve areas in 2015 .......................................... 53 

Figure 5.4 Comparisons for ITS data quality for curve areas in 2016 .......................................... 53 

Figure 6.1 Example of the matrix formation for correlation-coefficient analysis ........................ 54 

Figure 6.2 Example of distance matrix among CCS..................................................................... 55 

Figure 6.3 Potentially redundant CCS stations for Michigan ....................................................... 56 

Figure 6.4 Highly possible redundant locations ........................................................................... 57 

Figure 6.5 Locations of CCS by MDOT cluster ........................................................................... 60 

Figure 7.1 ITS sensor and CCS sites by the MDOT cluster ......................................................... 63 

Figure 7.2 Location of replaceable ITS sites by MDOT clusters ................................................. 65 

Figure 7.3 Location of addable ITS sites by MDOT clusters ....................................................... 66 

Figure 8.1 Structure of a deep learning neural network................................................................ 74 

Figure 8.2 Data imputation results ................................................................................................ 75 

Figure 8.3 Output for SEMTOC data filling ................................................................................. 75 

 

  



 

ix | P a g e  

 

List of Acronyms and Definitions 

 

AADT Average Annual Daily Traffic (the number of vehicles passing a site in a year 

divided by 365 days) 

AASHTO American Association of State Highway and Transportation Officials 

ADT Average Daily Traffic (the average 24-hr volume at a given location over a 

defined time period less than one year) 

ATMS Advanced Traffic Management System (It is an internal management system to 

coordinate with TOCs to represent real-time traffic data from cameras, speed 

sensors, etc.) 

AVC Automatic Vehicle Classifier (a high speed device which records the side profile 

of the vehicle and classifies it as defined vehicle class, typically used at toll and 

ramp metering) 

CAVC Continuous Automatic Vehicle Classification (Type of permanent automatic 

vehicle classification) 

CCS/ATR Continuous Count Stations/Automatic Traffic Recorders (permanent device in 

the pavement surface that continuously and automatically collects traffic data) 

DDHV Directional Design Hour Volume (Typically the 30th highest hour of the year) 

DNN Deep Neural Network (Typically constitutes with multiple hidden layers in a 

neural network) 

FHWA Federal Highway Administration 

GIS Geographic Information System 

HF Hourly Factors (assess the degree of hourly variation of a day that exists in the 

area for a given year) 

HPMS Highway Performance Monitoring System (a systematic measure encompassing 

the scope, condition, performance, use and operating characteristics of the 

Nation's highways) 

ILD Inductive Loop detectors (Typically detects vehicle by generating an inductive 

(magnetic) field through a set of embedded wires under the pavement) 



 

x | P a g e  

 

IRD International Roadway Dynamics (Portable road tube classifier/counter 

equipment for collecting axle and classification data) 

ITS Intelligent Transportation Systems (A system that applies a broad range of 

diverse modern electronic and communications technologies for traffic) 

LSTM Long Short Term Memory (A specific type of deep learning architecture) 

LTPP Long-Term Pavement Performance (Typically collect pavement performance 

data as one of the major research areas) 

MAPE Mean Absolute Percentage Error 

MDOT Michigan Department of Transportation 

MF Monthly Factors (assess the degree of monthly variation of traffic that exists in 

the area for a given year) 

MPO Metropolitan Planning Organizations 

MS2 Midwestern Software Solutions vs.2 (Cloud-based transportation data 

management software) 

MVDS Microwave Vehicle Detection System (a noninvasive vehicle detection system 

installed above ground on the side of the road to support  ITS  communication 

network 

MWF Monthly Weekday Factors (assess the degree of weekday variation over a month 

that exists in the area) 

O&M Operation and Maintenance 

PTR Portable Traffic Recorders (Temporary device that counts traffic for a short 

period of time) 

QA/QC Quality Assurance (the process used to measure and assure the quality of a 

product) 

RWIS Road Weather Information System (Process weather data from environmental 

sensor stations)  

SEMTOC South-East Michigan Transportation Operations Center (Operated and 

maintained by MDOT, which covers southeast region of Michigan including all 

Metro Detroit Area) 



 

xi | P a g e  

 

STOC Statewide Transportation Operations Center (Operated and maintained by 

MDOT, which covers Southwest, University, Bay, North, and Superior Regions, 

and also provides overnight operations for Grand Region) 

TMG Traffic Monitoring Guideline 

TMP Traffic Monitoring Program 

TOC Transportation Operation Centers (Responsible for traffic operations for a 

particular area) 

TRADAS TRAfficDAta System (implemented and used by Idaho department of 

Transportation) 

TTMS Telemetered Traffic Monitoring Sites (Typically the locations that are polled via 

modem daily by the TOC's central office computers) 

VIP Video Image Processors (Automatically analyze the scene of interest and extract 

information for traffic surveillance and management) 

WF Weekly Factors (assess the degree of daily variation of a week that exists in the 

area for a given year) 

WIM Weigh in Motion (Special type of sensor that weighs vehicles) 

WMTOC West Michigan Transportation Operations Center (Operated and maintained by 

MDOT, which covers west region of Michigan including 13 counties of 

MDOT’s Grand Region) 

 

 

  



 

1 | P a g e  

 

Executive Summary 
 

Traffic data plays an important role in establishing traffic characteristics of roadways, such as 

average annual daily traffic (AADT), average daily traffic (ADT), and directional design hourly 

volume (DDHV). Accurate and reliable measurements of traffic counts, speed, and vehicle 

classification are critical for traffic monitoring, planning, and traffic design.  According to the 

Federal Highway Administration (FHWA)’s Traffic Monitoring Guide (FHWA, 2016), the 

primary objective of a statewide continuous count program is to develop hour of day (HOD), day 

of week (DOW), and month of year (MOY) factors from volume data in addition to collecting 

speed and vehicle classification data. The above time varying factors help to compute short 

duration counts, such as ADT and area wide coverage counts. Moreover, those factors are used to 

determine the appropriate number of statewide continuous count stations as part of the traffic 

monitoring program (TMP) evaluation process. Currently, the Michigan’s TMP needs to be 

evaluated for appropriateness of site locations of MDOT's continuous count stations and to develop 

recommendations on whether they should be relocated. In this research, an extensive evaluation 

of Michigan’s traffic monitoring program, including CCS site appropriateness, site redundancy, 

and incorporating count sites from other sources (e.g. Intelligent Transportation Systems), was 

performed.  

First, an in-depth literature review and a web-based survey were performed in relation to 

the current CCS program, other monitoring sources (Intelligent Transportation Systems and 

Weigh-in-motion sensors), state-of-the-art practice in managing traffic monitoring and 

management programs. Traffic count data from CCS and other sources were collected and stored 

in an integrated multisource GIS database to allow detailed comparisons between the CCS and 

other ITS data. Then, ITS data was evaluated in terms of volume, speed, and classification level 

in comparison to nearby CCS censors while assuming that CCS stations are the ground truth data. 

Next, the Michigan’s CCS program was evaluated and analyzed to determine the appropriate CCS 

sites. Further, a comprehensive analysis for combining ITS sensors into TMP was conducted and 

its costs were evaluated. Finally, this research drew conclusions and recommendations. In order to 

ensure data quality, the research also provided an ITS sensor calibration and maintenance plan.  
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Literature Review and Survey Results: 

FHWA’s Traffic Monitoring Guideline (TMG) defines Continuous Counting Stations (CCS) as 

permanent traffic counting stations that collect vehicle volume through 24 hours a day, seven days 

a week, and 356 days a year. The statewide CCS program is usually used to develop different time 

varying seasonal factors. Different clustering approaches, including highway functional 

classification and computer-generated clusters, are widely used to determine the existing patterns 

of CCS distribution for evaluating the traffic monitoring program. Data from weigh-in-motion 

(WIM) sensors, ITS sensors and local agencies are typically incorporated into the traffic 

monitoring program for improving the data. Volume, speed, and vehicle class data are usually 

collected by the CCS sites from both intrusive and non-intrusive types of sensors. Inductive loop 

detectors (ILD) and WIM are the most common sensors for CCS. Microwave and ILD are 

commonly used for ITS. State DOTs are trying to improve the CCS program, but most of them are 

facing similar concerns about data quality and maintenance issues. Many states already use or plan 

to use cloud-based traffic data management software, such as MS2 or other kinds, for better data 

management and data quality control.  

 

Data Collection: 

In this study, data was collected from CCS, ITS microwave vehicle detection system (MVDS), 

and WIM sites in the state of Michigan. CCS data was collected for the past 5 years ranging from 

2012 to 2016 on a total of 126 sites. ITS MVDS data was collected from a total of 575 sites in 

2015 and 614 sites in 2016. WIM data was collected from a total of 54 sites in 2015. Data was 

processed for an hourly interval basis for 24 hours in a day for each of the individual devices of 

CCS, ITS-MVDS, and WIM sites. The data availability was assessed for each device by 

considering the yearly available hours over the total possible hours in a year ranging from January 

1st to December 31st. The summary of the yearly CCS and ITS data availability is shown in Table 

E.1 and E.2 respectively. 
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Table E.1 Summary of Yearly CCS Data Availability by Devices 

Criteria 

(% of 

available 

data) 

2012 2013 2014 2015 2016 Total 

# of 

devices 
% 

# of 

devices 
% 

# of 

devices 
% 

# of 

devices 
% 

# of 

devices 
% 

# of 

devices 
% 

>90 100 82.6 103 85.1 108 87.8 108 85.7 118 96.7 537 87.6 

80-90 11 9.1 12 9.9 8 6.5 9 7.1 3 2.4 43 7 

70-80 2 1.6 1 0.8 2 1.6 3 2.3 0 0.0 8 1.3 

60-70 2 1.6 0 0.0 0 0.0 0 0.0 0 0.0 2 0.3 

50-60 0 0.0 1 0.8 2 1.6 0 0.0 0 0.0 3 0.4 

< 50 6 4.9 4 3.3 3 2.4 6 4.7 1 0.8 20 3.2 

Total 121 100 121 100 123 100 126 100 122 100 613 100 

 

Table E.2 Summary of Yearly ITS Data Availability by Devices1 

Criteria 

(% of available 

data) 

SEMTOC 

(# of 

Devices) 

WMTOC 

(# of 

Devices) 

STOC 

(# of 

Devices) 

Overall 

(# of Devices and 

Percentage) 

2015 2016 2015 2016 2015 2016 2015  % 2016 % 

>90 164 220 41 0 0 12 205 47.1 232 42.4 

80-90 23 30 22 0 0 30 45 10.3 60 10.9 

70-80 7 10 8 32 0 14 15 3.4 56 10.2 

60-70 19 6 11 20 0 14 30 6.8 40 7.3 

50-60 3 7 7 24 0 3 10 2.4 34 6.2 

< 50 9 2 21 25 101 98 131 30 125 22.8 

Total 225 275 110 101 101 171 436 100 547 100 

   

 

ITS Data Evaluation: 

ITS MVDS sensor data for volume, speed, and vehicle classification were evaluated to examine if 

ITS data are usable in the CCS program. Data from ITS sites were compared with those from 

adjacent CCS sites by assuming that the data from CCS sites are ground truth data. In the volume 

data comparison, a total of 31 and 37 directional ITS sites were selected for the year of 2015 and 

2016, respectively. For the comparable ITS sites, an individual model based on a scatter plot 

diagram was developed and analyzed for volume data evaluation. The Mean Absolute Percentage 

Error (MAPE) was used to check accuracy of volume data from ITS sensors.  

 

                                                 
1 SEMTOC refers to Southeast Michigan TOC, WMTOC refers to West Michigan TOC, and STOC refers to Statewide 

TOC in Michigan. 
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Table E.3 Summary of ITS Volume Data Accuracy 

MAPE 2015 2016 

Number of Sites % Number of Sites % 

Less than 10% 11 35.5 12 32.4 

11% - 20% 2 6.4 12 32.4 

More than 20% 18 58.1 13 35.1 

Total 31 100 37 100 

 

 

Table E.3 summarizes ITS data accuracy. It should be noted the time frame of the study 

was during a transition to all ITS-MVDS reporting to the central ATMS software, which may have 

caused higher error rates. According to the Traffic Monitoring Guide (TMG) and other related 

resources, an MAPE of 10 percent or less is regarded as good and acceptable in its accuracy. As 

shown in Table E.3, approximately one third (35 percent in 2015 and 32 percent in 2016) of the 

comparable ITS sensors show acceptable accuracy with less than 10 percent of MAPE. That is, 

ITS sensors could provide high quality data when they are well maintained.  

For speed data comparison, a total of 23 directional ITS sites nearby CCS sites were 

selected. The speed distribution of ITS speed data was compared in 16 different speed bins (FHWA, 

2016). A chi-square test was performed to check the similarity of speed distribution between the 

ITS and CCS sites. The chi-square test statistic reveals that around 60 percent of ITS speed data 

yield similar speed distributions compared to the data from nearby CCS sites as shown in Table 

E.4.  

 

Table E.4 Summary of ITS Speed Data Accuracy 

ITS Speed Data Accuracy 

Chi-square goodness of fit test 
2015 2016 

No. % No. % 

Similar speed distribution 

between ITS and CCS 
6 60 7 53 

Non-similar speed distribution 

between ITS and CCS 
4 40 6 47 

Total 10 100 13 100 
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ITS sensors can classify vehicles into four types by length. A total of 7 directional ITS sites 

were available to compare the vehicle classification data. In this comparison, SEMTOC sites were 

not considered due to the unavailability of vehicle classification data. Thirteen vehicle classes in 

CCS classification were combined into 4 classes based on the length and axle size of vehicles. In 

the comparison, although ITS sensors tended to underestimate small vehicles, ITS sensors 

successfully classified vehicles into four types.  

 

Table E.5 Summary of ITS Vehicle Classification Data Accuracy 

2015 2016 

Class CCS ITS Class CCS ITS 

1 64.25% 59.65% 1 73.02% 61.78% 

2 27.20% 27.30% 2 19.42% 21.64% 

3 7.95% 6.90% 3 7.00% 13.86% 

4 0.55% 6.05% 4 0.58% 2.70% 

 

Evaluation of CCS Sites: 

Existing CCS sites were evaluated by two approaches: redundancy analysis and sufficiency 

analysis. Correlation and proximity analyses were performed to identify redundant CCS sites. 

Through the redundant analysis, four CCS sites were identified as possibly redundant and 

potentially removable. Among those four, two on interstate freeways were highly possible to 

remove while the other two on urban arterials were possible but recommended to be kept as 

potential relocation sites when they fail due to the insufficient number of CCS sites on urban 

arterials.  

The number of CCS sites needed was evaluated by quantifying the numbers in each 

category by geographical and functional classifications. The analysis results show that more CCS 

sites are needed in the North region and on rural freeways and urban arterials. More specifically, 

the Rural-North (cluster 4 in MDOT’s classification) needs at least four more CCS sites to meet 

the requirement for monthly factors (MF). When applying the requirement for hourly factors (HF), 

four more sites are needed for cluster 3 and 5, and 10 more sites for cluster 6. Table E.6 and E.7 

show a summary of the findings for CCS site appropriateness by geographical, functional types, 

and MDOT clusters.  
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Table E.6 Summary of CCS Site Appropriateness by Geographical and Functional types 

 

Table E.7 Summary of CCS site appropriateness by MDOT Clusters 

MDOT 

Cluster 

Cluster-1 

(Urban) 

Cluster-2 

(Urban Rural) 

Cluster-3 

(Rural) 

Cluster-4 

(Rural North) 

Cluster-5 

(Recreational) 

Cluster-6 

(Recreational 

Corridor) 

M

F 

W

F 

M

W

F 

H

F 

M

F 

W

F 

M

W

F 

H

F 

M

F 

W

F 

M

W

F 

H

F 

M

F 

W

F 

M

W

F 

H

F 

H

F 

W

F 

M

W

F 

H

F 

M

F 

W

F 

M

W

F 

H

F 

Required 

as 95th 

Percentile 

37 8 3 35 25 5 2 31 5 4 2 17 15 8 4 62 9 13 6 22 5 4 4 18 

# of 

Current 

CCS 

41 27 19 11 18 8 

 

Combining ITS Sensors into Traffic Monitoring Program: 

As shown in Table E.6 and E.7, MDOT’s traffic monitoring program needs more sensors to meet 

the FHWA’s TMG requirements. The gap could be fulfilled by using existing ITS sensors. In this 

research, both CCS sites and ITS sites were analyzed in order to identify ITS sensors that could 

replace existing CCS sites or be added into MDOT’s traffic monitoring program. Those 

replaceable CCS sites and addable ITS sensors were analyzed by the MDOT’s cluster. After 

combining all existing CCS and ITS sensor sites, the study proposes to have a total of 159 sensors 

in MDOT’s traffic monitoring program (TMP) as summarized in Table E.8.  

 

Geographical 

Cluster 

Cluster-1  

(Superior) 

Cluster-2  

(North) 

Cluster-3  

(West) 

Cluster-4  

(East) 

MF WF MWF HF MF WF MWF HF MF WF MWF HF MF WF MWF HF 

Required as 

95th Percentile 
11 4 2 56 11 21 5 34 19 21 4 30 34 13 12 42 

# of Current 

CCS 
16 10 30 66 

  

Functional 

Cluster 

Cluster-1  

(Urban Freeway) 

Cluster-2  

(Rural Freeway) 

Cluster-3  

(Urban Arterial) 

Cluster-4  

(Rural Arterial) 

MF WF MWF HF MF WF MWF HF MF WF MWF HF MF WF MWF HF 

Required as 

95th Percentile 
36 5 9 23 28 8 2 29 37 16 28 25 19 13 6 62 

# of Current 

CCS 
42 22 15 43       
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Table E.8 Summary of CCS Sites in the Proposed Traffic Monitoring Program 

 Cluster-1 

(Urban) 

Cluster-2 

(Urban 

Rural) 

Cluster-3 

(Rural) 

Cluster-4 

(Rural 

North) 

Cluster-5 

(Recreati

onal) 

Cluster-6 

(Recreati

onal 

Corridor) 

Total 

Number of existing CCS 

sites 
41 27 19 11 18 8 124 

Number of CCS sites 

required by MF 
37 25 5 15 9 5 96 

Number of CCS sites 

required by HF 
35 31 17 62 22 18 185 

        
Number of CCS sites 

removable 
2 0 0 0 0 0 2 

Number of CCS sites 

replaceable with ITS 
11 1 0 0 0 0 12 

Number of ITS sites 

addable to TMP 
14 7 2 5 3 6 37 

        
Total number of sites in 

proposed TMP  
53 34 21 16 21 14 159 

 Number of CCS sites  28 26 19 11 18 8 110 

Number of ITS sites  25 8 2 5 3 6 49 

 

As summarized in Table E.9, the proposed MDOT’s TMP includes: 1) removing 2 CCS 

sites; 2) replacing 12 CCS sites with ITS sensors; and 3) adding 37 ITS sensors. Annual equivalent 

cost savings from these changes can be estimated as follows: 

• Annual cost saving from removing 2 CCS sites = $4,771.8 x 2 = $9,544 

• Annual cost saving from replacing 12 CCS sites with ITS = $3,285 x 12 = $39,416 

• Annual cost saving from adding 37 ITS sensors instead of CCS = $4,136 x 37 = $153,031 

The total cost saving from the proposed TMP was estimated to be $201,990 annually for next 20 

years. 

Data Maintenance and Implementation Plan: 

Compared to the conventional inductive loop detectors, ITS MVDS are easy to maintain without 

interruption of traffic. However, in order to continue obtaining high quality data, ITS MVDS 

sensors need routine maintenance and management including checking setup position, on-site 

calibration, data communication, and data management. The research team proposes to conduct 

routine on-site calibration and maintenance at least twice a year (spring and fall) for those ITS 

sensors to be used in the traffic monitoring program. 
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 This research recommends five implementable items including 1) removal of two CCS 

sites, 2) replacing 12 CCS sites with existing ITS sensors, 3) adding 37 ITS sensors into MDOT 

TMP, 4) utilizing a comprehensive sensor testbed, and 5) incorporating a deep learning-based data 

imputation method. In order to ensure data quality, the research also provided an ITS sensor 

calibration and maintenance plan and presented a case example of data imputation method using 

a deep learning approach.  
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Chapter 1 Introduction 

1.1 Problem Statement and Background 

Peter Ferdinand Drucker, a social ecologist, has emphasized the importance of performance 

measures by stating that “You cannot manage what you cannot measure,” and the transportation 

bill, Moving Ahead for Progress in the 21stCentury (MAP-21), emphasized the importance of 

performance measures. Traffic count stations play a key role in measuring highway performances. 

Accurate and reliable measurements of traffic counts, speed, and vehicle classification are critical 

for traffic monitoring, planning, and traffic design. Traffic counts measure the number of vehicles 

passing through a point (or a data collection site) during a specified time period. They are usually 

conducted to monitor and describe traffic characteristics (Garber & Hoel, 1999) such as average 

annual daily traffic (AADT), average daily traffic (ADT), and directional design hourly volume 

(DDHV). They can be further used to infer hourly factors, daily factors, and seasonal factors. The 

reliability and accuracy of this data is greatly dependent on the allocation of data collection sites 

(e.g., CCS, ITS, weigh states, etc.) throughout the system. Generally speaking, as the density of 

data collection sites increases, the coverage of the sampling pool and the accuracy of the estimated 

seasonal factors tend to improve. In reality, however, as data collection sites are limited resources, 

the deployment needs to be optimized given the locational and budgetary restrictions.  

According to the Federal Highway Administration’s Traffic Monitoring Guide (FHWA, 

2013), the primary objective of a statewide continuous count program is to develop hour of day 

(HOD), day of week (DOW), month of year (MOY) and yearly factors to expand short-duration 

counts, such as ADT to AADT. This objective is the basis for determining and evaluating the 

number and location of continuous count sites operated by the state highway agency. In particular, 

the Monthly and DOW patterns are of much greater interest in the refinement of the continuous 

count program since the effectiveness of the seasonal factoring process (and consequently the 

accuracy of most AADT counts) is a function of the seasonal patterns observed around the state. 

Understanding what patterns exist, how those patterns are distributed, and how they can be cost-

effectively monitored is a major portion of the evaluation process.   

The measurements of vehicle speeds are a byproduct of some continuous counting stations. 

For traffic monitoring purposes, the speed information of all the vehicles passing through a single 

point in a roadway can be directly collected or estimated, depending on the type and configuration 
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of traffic monitoring devices (Treiber & Kesting, 2013). The collected speeds are then reported as 

individual vehicle speeds or aggregated during a specific time period (1 minute, 5 minutes, 15 

minutes, 1 hour). Linking speed information with weather information collected from Road 

Weather Information System (RWIS) can be further used to assess the traffic system performance 

under adverse traffic conditions. Relevant research can be found in Shah et al. (2003), and 

Souleyrette et al. (2006).  

In addition to traffic volume and speed, vehicle classification data are also collected at 

some CCS. The current state-of-the-practice vehicle classification methods rely on fixed-location 

sensors such as pneumatic tubes, inductive loop detectors, piezoelectric sensors, and Weigh-in-

motion (WIM) systems, besides manual observation and classification. Depending on the type of 

sensors and classification techniques, the collected vehicle class information may be available for 

the FHWA’s 13-vehicle class scheme, or for regrouped vehicle classes such as 3 classes, 6 classes, 

etc. A comprehensive review of vehicle classification methods can be found in Sun and Ban (2013). 

Since traffic data collected at continuous count stations are subject to discontinuities due to 

equipment malfunctions and errors, data adjustment and imputation methods may need to be 

applied. Obtaining data from other sources (volume, speed and classification) and integrating the 

data with existing sources can be beneficial in this regard.  

Currently, the Michigan’s traffic monitoring program needs evaluation of site location 

appropriateness and develop recommendations on MDOT's continuous count station locations and 

adequacy. This evaluation needs to consider the new traffic volume data from the ITS system sites, 

RWIS sites and other available sources including private sector sources. Strategic plans are needed 

to allow the monitoring program to enhance the pool of traffic information, reducing any possible 

data collection redundancy, and expanding the sampling on roads. 

1.2  Research Objectives  

The objectives of this research include the following:  

1. Evaluate site placement appropriateness and develop recommendations on if they should 

be relocated (126 locations throughout Michigan); and consider traffic volume data from 

the 614 ITS-MVDS system sites, 54 WIM sites and other available sources. 
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2. Provide a strategic implementation plan on how the recommended monitoring sites should 

be located to enhance the pool of traffic information, reducing any possible data collection 

redundancy; and expand the sampling on roads, while considering pavement condition.  

3. Confirm that MDOT's CCS sites are located on road segments, which benefit the 

monitoring program and meet the 2016 Traffic Monitoring Guide recommendations for 

site selection and distributions. 

4. Ensure that the recommended sites are placed in locations most beneficial to the department 

for traffic reporting and other uses; provide a strategy for the development of seasonal 

factors for all roads considering the proposed new traffic devices location. 

5. This research will address the continuous count program network of sites in relation to 

other MDOT traffic volume sources. 
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Chapter 2 Literature Review 

2.1 Introduction 

Continuous Counting Stations (CCS) are permanent traffic counting stations that collect vehicle 

volume through 24 hours a day, seven days a week, and 356 days a year (FHWA, 2014). Some of 

CCSs also collect vehicle speed, classification and weight continuously throughout the year. 

Traffic count stations play a key role in measuring highways’ performance, traffic monitoring, 

planning, and traffic design. Data from the CCS are used to describe the Average Annual Delay 

Traffic (AADT), Average Daily Traffic (ADT), and Directional Design Hourly Volume (DDHV). 

CCS and other traffic count (ITS, WIM etc.) help to determine the number of expected road users 

and the expected loads for designing a safe and adequate road in the future (FHWA, 2014).  

2.2 Continuous Counting Stations (CCS) 

2.2.1 Review of Traffic Monitoring Guide (TMG) 

The main objective of a statewide CCS program is to develop hour of day (HOD), day of week 

(DOW), and month of year (MOY). The DOW and the MOY are of much greater concern. The 

other secondary objectives include the collection of traffic peak hour data and volume with 

directional distribution used by traffic forecasters and roadway designers. The CCS also collects 

an anchor point for using ramp-balancing methods and gathers data to understand geographic 

differences in travel trends. Another secondary objective for CCS is to collect data on roadway 

sections in proxy of portable counters (FHWA, 2014).  

Vehicle volume data is collected by CCS as the part of the state’s Continuous Counting 

Program (FHWA, 2014).  Traffic Monitoring Program (TMG) suggests several steps to monitor 

and evaluate a CCS program to determine the improvements needed. The first step is to review the 

existing continuous count program by checking traffic patterns, data adjustment, and quality 

control.  The next step is to develop an inventory of the available and needed continuous count 

locations and equipment by using existing and other data sources. After that, the traffic patterns 

are examined by analyzing time patterns, monthly factors, hour of day adjustments and day of 

week adjustments. Then, monthly pattern groups are established by using the traditional approach, 

cluster analysis, and volume factor groups. Next, the appropriate number of continuous counting 
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stations are determined by specific locations and, finally, temporal factors are computed to 

complete the evaluation for the CCS (FHWA, 2014).   

Speed data is also frequently collected by many states as part of their CCS program. The 

speed data is used for determining travel time reliability and planning for constructing new lanes. 

TMG suggests collecting the speed data by CCS to address safety issues (FHWA, 2014). CCSs 

are also used for collecting vehicle classification data with determining axle and length of the 

vehicle. The vehicle classification program by CCS could be different from the traditional CCS 

program (FHWA, 2014). The vehicle classification program used by CCS could be maintained in 

a fashion similar to CCS’s volume data collection program. Vehicle weight data is also primarily 

collected by most of the state’s CCS programs. Collection of weight data is difficult and costly in 

comparison to gathering other data by CCS (FHWA, 2014). Traffic performance statistics could 

be derived from most of the CCS, and these statistics are widely used for important analytical tasks. 

Lane occupancy characteristics, which are important for determining congestion scenarios on the 

roadway, are obtained by the CCSs.  

2.2.2 Review of Different CCS Sensors  

Types of sensors vary by size, accuracy, cost, and ease of installation (Oh et al., 2009). Inductive 

loop detectors, pneumatic road tubes, magnetic sensors, non-invasive microloops, and Sensys 

systems are generally used as the in-roadway (intrusive) sensors for CCS. Microwave Radar, 

Active/Passive Infrared, Ultrasonic, Acoustic array, and Video Image Processing (VIP) are 

generally used as non-intrusive sensors for CCS (Leduc 2008).  

Inductive loop detectors, magnetic sensors, microwave radars, and video image processing 

sensors can collect volume, speed, classification, occupancy, and presence of vehicles in roadways. 

However, the pneumatic road tube and active-infrared sensors only collect volume, classification, 

and speed data for the vehicles (Martin 2003).  

2.2.3 Review of CCS Site Management and Evaluation 

Highway functional classification from FHWA is important for grouping CCSs and for calculating 

seasonal factors from the groups. Albright et al. (1989) conducted a study to develop and monitor 

the Automatic Traffic Recorders (ATR) for the state of New Mexico, USA. The traditional 

highway functional classes from the FHWA were considered to group the ATR volume counts and 

seasonal variation. Traffic data that they obtained from ATR counts were drafted, refined, and 
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adopted in terms of standardization. There was a high correlation between functional classification 

and seasonal variation that was obtained from volume counts and corresponding seasonal factors. 

Therefore, annual and monthly factors were calculated from the same highway functional 

classification, and the individual ATRs were used to compute the factor coverage counts 

throughout the state for missing data. The study concluded that the procedures in the TMG were 

very helpful in developing the statewide traffic monitoring standards.  

In another study, Ledbetter et al. (1991) evaluated the existing Automatic Traffic 

Recorders (ATR) stations in Oregon and provided some recommendations to improve the site 

selection of ATR stations with alternative methods for calculating seasonal adjustment factors. 

The volume count data from 115 permanent counters for the years of 1984 through 1988 was 

considered for the analysis. A computer-based cluster analysis was performed to segment the 

ATRs into different groups. Several variables were included to form the cluster analysis. These 

variables included the natural log of AADT of each ATR station, urban or rural classification of 

each ATR station, functional classification of the ATR station that is recommended by TMG, 

latitude and longitude of the ATR station, percent of heavy vehicles in each recorder, design hour 

(highest 30th hour) volume, and a factor index for controlling the range of volume between January 

and August. The optimal number of ATR groups was counted by comparing the coefficient of 

variation for each group. The seasonal adjustment factors were calculated by using four different 

methods including cluster means, cluster specific regression coefficients, triangulation, and ATR 

specific regional adjustment factors. The accuracy of each method was observed by calculating 

the absolute error between “ground truth data” and “point estimation data.” The ATR volumes 

were then compared with the coverage count data for the same groups and revealed large variances 

between permanent count data and coverage volumes in some specific areas. For those specific 

areas, the study suggested to consider a new class of highway called “small urban” for the higher 

volume counts. Moreover, the study suggested to replicate the average count data for the ATR 

counters, which were being recorded by the coverage count locations in the same areas.  

Ritchie et al. (1990) also conducted a study to assess the statewide data collection program 

for the State of Washington including the evaluation of permanent traffic stations. This study 

evaluated volume counts, factoring and data manipulation, vehicle classification, truck weighting, 

and speed data in detail using statistical analysis methods. Seven factor groups were considered 

for analyzing volume data based on highway functional classification and geographical variation. 
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The four-year’s PTR data from 1980 to 1984 was used to analyze the factor groups. Several 

alternative procedures were evaluated for estimating seasonal factors including cluster analysis 

and regression analysis. The study found the cluster analysis was inappropriate in terms of using 

it in different years since the seasonal factors vary from year to year. During the evaluation process, 

regression analysis was used to derive the seasonal factors for each month of the year for all of the 

seven groups. 

In terms of regression analysis, the AADT for each group for each month was used as the 

dependent variable, while the 24-hours short count was used as the independent variable of that 

particular group. The coefficient for the independent variable was considered as the seasonal factor 

for that particular month of the particular group. The outcome of the regression analysis for some 

groups was heteroscedasticity in nature, and therefore a standard transformation was applied to 

make it homogeneous.  The study also calculated the precision level of estimated AADT and found 

that it varies as a function of number of PTRs in each group, whereas the number of PTRs beyond 

six to eight in each group produced better results.  

For evaluating the vehicle classification, about 248 manual short counters were used to 

assess the database for 1980-1981 in the State of Washington. About eight factor groups were 

considered along with six vehicle classifications for evaluating vehicle class and determining 

seasonal factors to the groups. A two-stage (weekdays and weekends) cluster sampling approach 

was used to determine the seasonal factors. The evaluation of truck weight was conducted in 

different manner rather than volume and classification data. The data analysis for vehicle weight 

was performed by using the available axle weights in terms of Equivalent Axle Loadings (EALs) 

for flexible and rigid pavement (Richie et al., 1990).  

A computerized cluster approach was used by the Wisconsin DOT (WSDOT 1987) to 

group their statewide permanent traffic stations for factor analysis. The traditional approach with 

manual functional classification was found to be somewhat difficult (e.g. time constraints) in terms 

of determining factor groups. Consequently, existing volume counts from permanent stations were 

used for cluster analysis to calculate monthly and weekly factors. The results showed that the 

monthly factors were more accurate to estimate AADT instead of weekly factors. It was also found 

that the traditional six factor groups were providing some instability in terms of estimating AADT. 

Therefore, three optimal factor groups were selected as urban highways, rural highways, and 

recreational area highways. The study found that the result of estimating AADT was correct up to 
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9 percent for urban highways, 16 percent for rural highways, and 27 percent for recreational 

highways group.  

Gur and Hocherman (1989) also conducted a study to estimate the AADT by using 

different methods, and found the cluster analysis was more accurate in terms estimating seasonal 

adjustment and growth factors. In another study, Esteve (1987) applied a cluster analysis to 

examine seasonal patterns and to estimate grouping variables by using the data obtained from a 

state’s permanent traffic stations. The mean seasonal factors and coefficient of variations for 

different cluster groups were calculated to compare with the groups that are proposed by traffic 

monitoring guide (TMG). The findings showed that the both groups were statistically reliable in 

terms of estimating seasonal factors. Another cluster analysis was performed to group the rural 

highways in Virginia based on homogeneous characteristics (e.g. AADT and seasonal variations 

in traffic patterns) (Ledbetter et al., 1991). The candidate variables were included with the FHWA 

functional class, functional use, land use and population of the associated link highways, and the 

terrain types. As a result, the new classification for estimating AADT was statistically accurate 

and tested for group factors.  

GDOT (2012) conducted a study to evaluate the traffic monitoring system by selecting the 

criterion for siting the location of a new continuous count station. One primary and several 

secondary criteria were designated in the study for selecting the location of a new CCS site. The 

primary criteria was to select the minimum of five to eight CCS sites per traffic factor group 

depending upon the traffic patterns and precision desired. The other secondary criterion for siting 

the CCS station were to select the critical nodes on high volume roads, to verify adequate coverage 

by satisfying the geographic differences in travel trends, to provide a minimum of one operational 

CCS site per interstate route and other major arterials, and to select an area of particular interest to 

meet specific federal requirements.  

Cheng et al. (1992) conducted a study to optimize the CCSs based on computer-based 

statistical methods by using an exchange algorithm and a two-stage sampling algorithm. CCS sites 

were sequentially added to and deleted from the site design based on the exchange algorithm, while 

optimal weight was being calculated for each cluster based on the sampling algorithm. The random 

sampling was performed to select the optimal CCSs from each cluster based on the weight for the 

two-stage sampling algorithm.  
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2.3 Intelligent Transport Systems (ITS) and Weigh-in-Motion (WIM) 

Different traffic data were obtained from various sources in addition to continuous counting 

stations. FHWA (2013) suggested to incorporate those data to evaluate and compare with the 

continuous counting programs. Among the existing data sources, Intelligent Transport Systems 

(ITS) and Weigh-in-Motion (WIM) have been quintessential in collecting different traffic data sets 

in addition to continuous counting programs.  

2.3.1 Review of Intelligent Transport Systems (ITS) Sensors 

The data from Intelligent Transport Systems (ITS) sensors are designed to improve the existing 

transportation system by improving safety, efficiency, comfort, and adverse environmental effects. 

ITS applications are effective in advanced traffic management systems, vehicle control systems, 

traveler information systems, and advanced commercial vehicle or public transport systems 

(Newman-Askins 2003).  

 Different ITS sensors have been used for collecting data in roadways including inductive 

loop surveillance, machine vision sensors, passive acoustic sensors, remote traffic microwave 

sensors, infrared sensors, and CCTV video camera etc. (USDOT 2007). Different data sets, 

including vehicle volume, classification, and speed data, are collected by the ITS sensors.  

Evaluation of ITS data is important in assessing and improving the efficiency of sensors as 

well as determining their suitability for adoption in other counting programs. Therefore, a 

comprehensive evaluation technique is imperative to examine the empirical impact of the ITS data 

(Kulmala, and Pajunen-Muhonen 1999). In order to effectively plan and implement ITS data, 

conventional roadway project evaluation methods could be implemented to assist the evaluation 

and comparison of ITS alternatives (e.g. permanent traffic counters or short-term traffic counters 

etc.). However, the nature of some ITS data is different from traditional roadway projects (e.g. 

travel time reliability, travel choices, environmental factors etc.). Therefore, it needs an alternative 

project evaluation process that differs from conventional roadway counting systems (Bristow et 

al., 1997).  

Different methods have been suggested by different studies for evaluating ITS data. Turner 

et al. (1998) suggested that the capacity (volume, road network, signal etc.) of ITS data could be 

evaluated by examining the level of service of the roadways. In terms of volume dataset, ITS 

sensors achieve less improvement in comparison to traditional traffic counting systems, and 
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therefore temporal fluctuations of traffic impacts should be incorporated into ITS evaluation 

(Underwood and Gehring 1994). Other approaches of evaluating ITS data could be cost-

effectiveness analysis where monetary values are available (Baum and Schultz 1997), and multi-

criteria analysis where monetary values are not available for major impacts (Bristow et al., 1997).  

2.3.2 Review of Weigh-in-Motion (WIM) Sensors 

Weigh-in-Motion (WIM) sensors are critical not only for overweight commercial vehicle 

enforcement but also for effective transportation infrastructure design, pavement design, and 

overload estimation of roadways (Faruk et al., 2016). Piezoelectric, Bending Plate, and 

Capacitance Mat, which are considered as an on-pavement sensors, are usually used for a Weigh-

in-Motion system.  

As guided by FHWA (2013), the state roadways should be grouped in terms of similar 

characteristics for analyzing WIM data to identify the seasonal pattern of vehicle classification in 

each group. The characteristics for grouping roadways could be based on the combination of 

known geographic, industrial, agricultural, and commercial patterns (FHWA 2013). Moreover, the 

percentage of through trucks and the geographic region based on economic activity could be used 

to group the roadways for analyzing WIM data, where more detailed information is not available. 

From the available WIM sites, at least one permanent WIM station should be available in each 

group to predict the seasonal pattern for all of the roadways in that group.  

 WIM data can be also evaluated by comparing with other counting approaches (e.g. CCSs, 

short-term counters etc.) in terms of vehicle volumes, class, and speed data sets. Faghri et al. (1996) 

conducted a study to monitor and evaluate the traffic data obtained by CCSs and WIM stations for 

the State of Delaware. Through a descriptive statistical analysis, seasonal factors were calculated 

to determine and compare the number and location of CCS and WIM stations. Another study by 

Qi et al. (2013) compared the CCS and WIM program by evaluating data collection technologies, 

transmission and management, users and uses, and collection site selection/prioritization. The 

study was performed to evaluate the statewide CCS and WIM stations for the State of Montana. A 

comprehensive survey was performed from the current practices of selected states (ND, SD and 

ME) for traffic data collection, processing and use. The study provided a series of concluding 

remarks on sensor systems, technological costs, and siting criteria for both CCS and WIM stations. 

The study suggested an optimization approach for selecting sites for WIM and CCS stations with 

prioritization. This allowed more efficient weight enforcement based on identification of problem 
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areas, and provides adequate data, independent of absolute volume of traffic for planning purposes 

throughout the state (Qi et al., 2013).  

2.4 Review of Traffic Management and Monitoring Systems in Other States 

The state of Arizona has almost 14,000 locations for vehicle counting stations on 6,700 miles of 

highways. There are about 175 continuous counting stations throughout the Arizona highway 

system (ADOT, 2011). The overall AADT is obtained by combining the data from CCS with other 

data obtained from short-term counting stations (up to 48 hours). Magnetic induction loops are 

used as the sensors to collect data by all of the 175 CCS in Arizona. The data from the sensors is 

directly monitored by the remote software and available for off-site ADOT employees (ADOT, 

2011). Arizona is currently using the MS2 Transportation Data Management System for its traffic 

count data. This software automatically calculates AADTs, filters count data through numerous 

QA/QC routines, and processes and stores short count and continuous count data including volume, 

classification, weigh-in-motion, speed, gap and vehicle length data.  

The Texas Department of Transportation (TxDOT)’s Traffic Monitoring System consists 

of continuous counter operations as well as short-term traffic monitoring, including pneumatic 

tube counts and manual classification counts. TxDOT has installed and maintains about 350 

permanent continuous traffic data collection sites that include collection of volume, classification, 

speed, and weight data. The 350 CCS sites include an automatic traffic recorder (ATR), automatic 

vehicle classification (AVC), long-term pavement performance (LTPP), weight in motion (WIM), 

and speed data collection sites (TxDOT, 2013). The traffic data is collected remotely via telemetry 

from permanent traffic data collection sites statewide. For continuous counter operations, TxDOT 

currently uses IRD Model ITC rack mount equipment to collect volume and classification data 

with loops and Measurement Specialties Brass Linguini (BL) Sensors. TxDOT also replaced 

landline modems with internet protocol modems at more than 95% of the permanent sites. This 

new idea is more expensive than the former one, but it would pay off within the first six months 

of operation. A secondary benefit of using the IP instead of the landline is that it increased the 

reliability by reducing the number of connection failures. TxDOT also found that changing the 

configuration from the detection array to a loop piezo loop configuration greatly reduced the sensor 

failure, and it also decreases the disruption of traffic flow when repairs are made. On the other 

hand, to improve the pneumatic tube’s short-term operation, TxDOT developed a new software 
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program in three phases to improve the pneumatic tube short-term count program. Regarding the 

short-term operational improvement (manual classification), it was proposed to use video 

technology to record the 24-hour count period. The recourse provided by video analysis can help 

to solve any problem when it rises (FHWA, 2013).  

In Idaho, there are 225 permanent data collection sites. The majority of these sites collect 

a variety of classification, volume, and count data, while 26 sites specifically collect WIM data. In 

addition, Idaho Transportation Department (IDT) lays down over 2,200 portable counts at more 

than 600 stations. The department also works with other states and highway districts for 

comprehensive and consistent information sharing. The traffic monitoring program process begins 

with equipment maintenance before each collection season, followed by scheduling and collection. 

The process continues with data processing, analysis, and results in reporting. ITD has developed 

a specialized tool to schedule, collect, analyze, and report data. Some software has been around 

for many years (such as IDASITE and a host of SAS programs) while other systems have come 

online much more recently (such as ITD’s customized version of TRADAS). In addition, there are 

two main areas where ITD has learned important lessons in maintaining an effective traffic data 

collection and reporting business model. The first involves strong cooperation and coordination of 

work, and the second involves a strong business process around testing. 

Florida has more than 300 CCS that count data for vehicle volume, speed, classification, 

and weight. Single inductive loop and microwave radar sensors are used in Florida for counting 

volume. Loop-piezo-loop array sensors are used for collecting vehicle classification data. Truck 

weight data are collected through the weigh-in-motion equipment. Bending plates, piezoelectric 

axel sensors and quartz piezoelectric sensors are used for measuring weight data through weigh-

in-motion equipment (TMH, 2007). FDOT use Florida Traffic Online, a web-based mapping 

application, that provides traffic count site locations and historical traffic count data. FDOT also 

provides real time traffic information through a web-based mapping application. 

In Georgia, traffic count data is collected by 230 Continuous Count Station (CCS) sites as 

of January 2016 as part of Georgia’s Traffic Monitoring Program. Georgia Department of 

Transportation’s (GDOT’s) Office of Transportation Data (OTD) is currently monitoring and 

retrieving the data from the CCS sites. About 20 percent of CCS stations are not in operation due 

to construction and other external factors throughout the state.  
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In California, PeMS is used as an Internet based data archive system that collects historical 

and real-time traffic data in California to compute freeway performance measures (Baucer et al., 

2016). It collects traffic data, such as counts and occupancies, from freeway detectors, and 

automatically computes speeds, vehicle miles travelled (VMT), vehicle hours traveled (VHT), 

delay, travel time index, and productivity for every detector location every 5 min. The MTC 511 

system is a one-stop source for traffic, transit, ridesharing, along with parking and bicycling data 

for the nine-counties in the San Francisco Bay Area. The traffic section ingests real-time traffic 

speed and travel time information on highways and major arterials from a private data provider. 

The HICOMP report is produced annually and contains a compilation of measured congestion 

data reflecting conditions on urban freeways in California. TASAS is a traffic records system 

containing an accident database linked to a highway database. TEMS is a central database and 

equipment management system for the San Francisco Bay area’s ITS and traffic operational 

devices. It includes a database mapping of ITS inventory along with traffic operation equipment, 

such as changeable message signs, highway advisory radios, control cabins, and associated 

communication. 

In Michigan, Mi Drive is used as an Internet interactive map that can provide real time 

traffic information including freeway incidents, construction, camera feeds, road closure, speed 

data etc. This Mi Drive is regarded as an Advanced Traffic Management System (ATMS) that is 

used by all Traffic Operation Centers (TOCs) in Michigan.  

VDOT (2016) runs a traffic-monitoring program where traffic count data are gathered from 

sensors in or along streets, highways and other sources. This data calculates the average number 

of vehicles that traveled each segment of road. Traffic volume estimates are statistically conducted 

county by county within the State of Virginia.  

Indiana operates two traffic-monitoring systems (INDOT 2016). The first one is a statewide 

traffic monitoring system consisting of over 100 permanent continuous count stations that collect 

volume, speed, and vehicle classification data 24 hours a day, 365 days a year. The second system 

is the Statewide Coverage Count Program that utilizes portable traffic counters to collect 48-hour 

traffic counts on all state highway traffic sections, in rural and small urban areas, and on all 

highway performance-monitoring sections (HPMS). 

The Ohio department of Transportation (ODOT, 2016) maintains about 200 permanent 

count stations and manages a web application tool (TMMS) that holds and delivers traffic 
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monitoring data throughout the state. The TMMS system can provide traffic monitoring data, 

including ODOT’s permanent traffic counts, short term counts, AADT data, and traffic count 

location maps, etc.  

In Illinois, a cloud-based MS2 software automatically calculates AADTs and filters count 

data through numerous QA/QC routines. It also processes and stores short count data and 

continuous count data, including volume, classification, weigh-in-motion, speed, gap and vehicle 

length data (IDOT 2016).  

The New Jersey Department of Transportation (NJDOT) maintains a traffic-monitoring 

program consisting of continuous and short-term elements. The traffic counting program is used 

to produce AADT estimates. This traffic monitoring program consists of approximately 90 

preeminent WIM sites, 95 traffic volume and speed system sites, and 50 major station sites 

throughout the state (NJDOT, 2014).  

The New York Department of Transportation (NYSDOT, 2016) is currently using a Traffic 

Data Viewer (TDV) in order to manage its traffic count data. TDV is a GIS web application for 

viewing the AADT, location of the traffic count, and traffic reports for individual road segments 

or traffic counter. NYSDOT operates two traffic monitoring systems. The first one is a statewide 

traffic monitoring system currently consisting of a 177 permanent continuous count stations that 

collect volume, speed, vehicle classification, and weight in motion data for 24 hours a day. 

Information from this system is used to determine the AADT and its traffic growth factors. The 

second monitoring program is for short-term traffic counts. 

The Wisconsin Department of Transportation (WisDOT) depends on a traffic monitoring 

system that collects continuous count data from 221 permanent data collection stations within the 

state. WisDOT uses an Interactive Traffic Count map that shows a traffic count anywhere in the 

state (WisDOT 2016). 

The Minnesota Department of Transportation (MnDOT) uses a traffic monitoring system 

that consists of a 33,000 portable short volume count sites, and 80 automatic traffic recorder sites. 

Additional 17 WIM sites and more than 240 counting sites are maintained by the regional traffic 

management center. MnDOT is currently using the Traffic Mapping Application to serve as a 

traffic management system. The Traffic Mapping Application is an interactive web tool that allows 

users to explore spatial traffic data (MnDOT 2016).  
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The Washington Department of Transportation (WSDOT 2016) uses a traffic data 

management system called Traffic Data Geoportal. This system allows users to view WSDOT 

annual average daily traffic volumes and truck percentages thought a map interface. 

2.5 Data Maintenance and Calibration 

2.5.1 Review of Data Imputation 

Due to the need and diversity of application scenarios, a wide range of methods was applied for 

traffic data imputation purposes during the last decade (Duan et al., 2016). According to previous 

literatures, traffic data was imputed mainly based on prediction, interpolation and statistical 

learning (Li et al., 2014). The prediction model was used to forecast or predict the missing values 

based on the on-site historical data. Li et al. (2015) developed a prediction model based on 

principal component analysis (PCA) to observe abnormal data detection, data compression, 

missing data imputation, and traffic prediction by using temporal and spatial data patterns. Another 

prediction model was developed by Qu et al. (2009) based on probabilistic principal component 

analysis (PPCA) to impute the missing traffic volume data through a historical data mining 

algorithm. Moreover, Gan et al. (2015) developed a varying-coefficient autoregressive prediction 

model for non-linear and non-stationary time series data, which is based on a gradient radial basis 

function. According to Duan et al. (2016), the autoregressive integrated moving average (ARIMA) 

model is widely used for predicting missing traffic data in a sequential approach.  

 Traffic data imputation through the interpolation technique is slightly different from the 

prediction models, since missing values are replaced by an interpolation model through historical 

and neighboring data points. A history model was developed by Allison (2001) for imputing the 

missing values through same site and daily interval data for previous time periods. For data 

imputation with neighboring data points, the k-nearest neighbor (KNN) model was widely used to 

interpolate corrupted or missing data values. Chang et al. (2012) developed a model based on local 

least squares (LLS), which is an improved version of KNN and predicts the missing values based 

on weighted average of the neighboring data. In another study, Liu et al. (2008) conducted a study 

based on the KNN approach to interpolate the missing data during the holiday periods. This study 

found the output was fruitful for data imputation with consistent and reasonable results for 

different holidays and types of highways. The statistical learning approach is usually used to 
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inference the missing values in an iterative fashion based on an observed learning scheme. The 

Markov Chain Monte Carlo (MCMC) method gas been widely used as a multiple imputation 

statistical approach, where missing values are treated as a combination of multiple imputed values 

instead of a single value. Farhan and Fwa (2013) conducted a study based on MCMC method for 

airport pavement missing data management and concluded with an outperformed success for 

missing values imputation.  

In addition to aforementioned traditional imputation techniques, some researchers have 

used traffic simulation models (such as DynaMIT, DynaSmart, Paramics, etc.) to impute missing 

data (Duan et al., 2016). A neural network was also considered as a promising approach to apply 

for missing data imputation and accuracy estimation. Researchers developed different models 

based on the neural network algorithm and found substantial improvement for missing data 

imputation. For example, Zhong et al. (2004) developed a model based on the neural network 

algorithm and found the algorithm outperformed with an error of 2 percent while traditional 

methods resulted in a 20 percent error.  

In recent years, researchers have been using more advanced techniques for missing data 

imputation through a deep learning architecture. Due to the emerging traffic data, a big database 

is stored and managed through a new technique: the deep neural network. Lv et al. (2015) proposed 

a deep-learning-based traffic flow prediction method for big data analysis using auto-encoders as 

building blocks to represent traffic flow features for prediction. Moreover, Duan et al. (2016) 

conducted a study for missing traffic data imputation by using a deep learning model called de-

noising stacked auto-encoders (DSCE) which treated normal data points and missing data points 

as corrupted vectors, while transforming data imputation into clean data recovering. In another 

study, Cui et al. (2017) proposed a deep-stacked bidirectional and unidirectional long-term short 

memory (LSTM) approach for traffic speed data imputation where both forward and backward 

time series data was used.  

2.5.2 Review of Data Maintenance and Calibration 

According to TMG, calibration and maintenance could occur on a regular basis (daily, monthly, 

and annually as needed) through on-site and in-office calibration processes. The calibration 

process could be initiated by implementing software tools that help to automate the process. In 

addition, checking data daily, along with collecting and storing it in a master database, could be 

performed as the data maintenance and calibration process (FHWA, 2016). Moreover, the, data 



 

25 | P a g e  

 

validation process could be advanced by using monthly and yearly data patterns. A short-duration 

manual count could be performed and checked with sensor accuracy as an on-site calibration 

technique (TMG, 2016).  

In addition, most of the states use both on-site and off-site calibration techniques. Some 

states developed their own software for data calibration, e.g. NYSDOT use Traffic Count Editor 

(TCE) software for calibration. Some other states usually contract to other agencies for processing 

sensor calibration, e.g. VDOT. In Washington, visual comparison and hand tally of vehicles for 5 

minutes or 50 vehicles are checked for on-site calibration. In addition, automated validation 

procedures are checked from an office site location. In New York, sensor calibration is checked 

through consecutive zero hours, midnight/noon comparison, directional split daily/hourly, 

unchanging hours, peak hour zeros, and percent unclassified etc. In Alaska, manual two-hour 

counts are conducted at sites twice annually during the sensor calibration process. 

In addition to state-of-the-practices, several studies were performed for developing new 

techniques on manual and automatic calibration processes. Lai et al. (2000) developed a method 

for a manual calibration technique that addresses vehicle classification and speed data through 

visual-based dimension estimation. In another study, Fung et al. (2003) developed a camera-based 

calibration technique through road lane marking. Videotaping data was also used as part of the 

manual calibration process to track vehicle class and speed in some other studies (Guido et al., 

2014).  

   Recently, Castro and Monzon (2014) conducted a study for manual sensor calibration 

through floating car data by associating GPS coordinates. To explore the automatic calibration 

technique, Kanhere and Sarasua (2008) conducted a study through automatic camera calibration 

using pattern detection for vision-based speed sensing. Moreover, Schoepflin and Dailey (2003) 

conducted an automatic sensor calibration based on a lane activity map and two vanishing points. 

In another study, Song et al. (2007) developed an image-based traffic sensor calibration system 

with a vehicle shadow suppression system.  

2.6 Summary of Findings 

CCS provides important data for determining Average Annual Daily Traffic (AADT), Average 

Daily Traffic (ADT), and Directional Design Hourly Volume (DDHV) in the traffic-monitoring 

program. Volume, speed, and vehicle classification data are typically collected from the CCS sites. 
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Both intrusive and non-intrusive sensors are used at CCS sites to collect vehicle data throughout 

the year. ITS and WIM data could be incorporated to improve the CCS program for better data 

management. Highway functional class and computer-generated clusters are used for clustering 

CCS. Most states follow similar practices for conducting a traffic monitoring program. Many states 

use traffic data management software, such as MS2 or other kinds, for better management. Many 

states use on-site, off-site and automatic sensor calibration systems for data maintenance and 

calibration. Data imputation for missing data values is also needed to maintain a complete data set.  
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Chapter 3 Survey Results 

3.1 Introduction 

A web-based survey was performed to understand other states’ statewide traffic monitoring 

programs. Eleven other states participated in the survey: California, Florida, Idaho, Minnesota, 

New Jersey, New York, Ohio, Oregon, Pennsylvania, Virginia and Washington. Figure 3.1 shows 

the geographical distribution of these states. The survey contained 22 questions (see Appendix 1) 

about types of sensors used and data sources in their traffic monitoring programs, their experience 

with traffic sensors, the number of sensors managed, the coverage of statewide traffic monitoring 

program, the number of staff members for the program, etc. The survey also asked about statewide 

online traffic data management systems, methods of traffic data sharing and data users. 

Furthermore, the survey included questions on plans for improving their traffic monitoring 

program, strategic assessment for sensor location and methods for treating missing data. The 

survey results are presented in this chapter. 

 

 

Figure 3.1 Selected states for survey 
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3.2 Sensors Used for CCS, ITS and Others 

In the survey, inductive loop detectors and weigh-in-motion systems were two sensors used by all 

states for continuous counting purpose. Microwave radar sensors were also used by many states 

(9 out of 11 states) for the purpose. For ITS, microwave radar sensors and inductive loop detectors 

were most commonly used. Surveyed states have used various types of sensors, such as video 

image processing, active/passive sensors, Sensys system, non-intrusive microloops and magnetic 

sensors. Currently inductive loop detectors and weigh-in-motion systems are used for CCS and 

microwave radar detectors are for ITS in Michigan. The survey indicates that microwave radar 

sensors are usable for CCS.   

 

 

 

 

Figure 3.2 Sensors used for CCS, ITS, and others 
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3.3 The Number of Personnel, CCS Stations and Mileage Coverage 

As shown in Table 3.1, the number of personnel for the state traffic-monitoring program was 

typically 3 - 6 members.  California, being the state with the most number of CCS stations, had 

the most number of staff members (25 members) to maintain CCS programs. Pennsylvania and 

New York also had a considerable CCS program with 8 - 9 staff members. In Michigan, four staff 

members are currently assigned to maintain the CCS stations. 

 

Table 3.1 Comparison of Staff Members and the Number of CCS by State 

Name of State 

Number 

of Staff 

Member 

Number of CCS 

(Interstate) 

Number of CCS 

(Highway) 

Number of CCS 

(Local) 

California 25 300 300 0 

Florida 3 59 257 0 

Idaho 3 0 250 0 

Michigan 4 89 35 0 

Minnesota 5 21 47 24 

New Jersey 2 20 80 0 

New York 8 176 0 0 

Ohio 5 100 90 10 

Oregon 5 45 135 0 

Pennsylvania 9 34 72 0 

Virginia 2 554 0 0 

Washington 5 61 125 2 

 

In regard to the number of CCS stations, California maintains the most number of CCS 

stations (about 600 in both interstate freeways and highways). Most of the surveyed states keep 

more CCS stations on their highways than interstate highways while Virginia (554 CCS stations) 

and New York (176 CCS Stations) have all CCS stations along their interstate highways. Only 

Minnesota, Ohio, and Washington maintain CCS stations along their local roadways as shown in 

Table 3.1. In Michigan, the traffic monitoring program manages 89 CCS stations on the interstate 

freeways and 35 CCS stations on other highways. There are no CCS stations on local roads in 

Michigan.  
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The survey also asked the miles covered by the CCS. Table 3.2 compares CCS coverage 

and density by state based on the coverage miles obtained from the survey.  The freeway miles 

covered by CCS ranged from 10.8 percent (Ohio) to 77.9 percent (Virginia), and the distance 

between CCS sites within the coverage area ranged from 13 mile (Ohio) to 100 miles (New Jersey) 

as shown in Table 3.2.  The distance between CCS sites in Michigan was 14.1 mile that is better 

than most states except Virginia (10.5 miles) or Ohio (13.0 miles), but the percentage of coverage 

was relatively low among the states surveyed.  

 

Table 3.2 Comparison of CCS Coverage and Density by State 

Name of 

State 

# of CCS 

(A) 

Total 

Freeway 

Miles (B)1) 

Miles 

Covered by 

CCS (C)2) 

% of CCS 

Coverage 

(C/B) 

Freeway 

Miles per 

CCS (B/A) 

Average 

Distance 

between 

CCS (C/A) 

California 300 25,716 15,208 59.1 85.7 50.7 

Florida 59 11,777 1,495 12.7 199.6 25.3 

Idaho 0 2,993 - - - - 

Michigan 89 9,044 1,254 13.9 101.6 14.1 

Minnesota 21 5,203 916 17.6 247.8 43.6 

New Jersey 20 5,679 2,000 35.2 284.0 100.0 

New York 176 12,638 - - 71.8 - 

Ohio 100 12,070 1,300 10.8 120.7 13.0 

Oregon 45 3,389 730 21.5 75.3 16.2 

Pennsylvania 34 11,524 1,867 16.2 338.9 54.9 

Virginia 554 7,441 5,800 77.9 13.4 10.5 

Washington 61 7,211 4,040 56.0 118.2 66.2 

1) FHWA, Office of Highway Policy Information, Functional System Labe-Length 2017 

 (https://www.fhwa.dot.gov/policyinformation/statistics/2016/hm60.cfm) 

2) Coverage miles were obtained from the survey. 

3.4 Sensors for Volume Data Collection and the Level of Satisfaction 

The survey also asked the level of satisfaction for each sensor type in collecting volume data. As 

shown in Figure 3.4, inductive loop detectors (ILD) and weigh-in-motion sensors (WIM) were 

rated best among all with the highest satisfaction rate (> 4.5 out of 5) in measuring traffic volume. 

Microwave radar, active/passive infrared and video image processing (VIP) sensors were also 

highly rated (around 4 out of 5). In Michigan similarly to other states, inductive loop detectors and 
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weigh-in-motion sensors were very highly rated and followed by magnetic sensors, microwave 

radar and VIP sensors. The level of satisfaction for each sensor was depicted in Figure 3.3. 

However, it should be noted that the comparison was sorely based on the survey respondents’ 

rating without any technical performance evaluation.  

 

 

Figure 3.3 Sensors for volume data collection and the level of satisfaction 

3.5 Sensors for Vehicle Classification and the Level of Satisfaction  

In the survey, most states stated that they used loops and piezoelectric sensors for vehicle class 

data as a part of their traffic monitoring program. As shown in Figure 3.4, Bl, Kristler, and WIM 

sensors were also frequently used by many states for vehicle classification. The overall satisfaction 

rate for loop/piezo sensors was 4.3 out of 5, which is the highest among all.  

 

 

Figure 3.4 Sensors for vehicle classification and the level of satisfaction 
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3.6 Combining CCS Monitoring Program with Other Data Sources 

As shown in Figure 3.5, about 90 percent of states surveyed stated that they used weigh-in-motion 

(WIM) sensor stations in addition to CCS for their statewide traffic-monitoring programs. More 

than 50 percent of states also stated that they used data from local Metropolitan Planning 

Organizations (MPO), cities and townships in addition to state-owned data for traffic monitoring 

purposes. ITS sensors and portable traffic recorder (PTR) stations were also used for traffic data. 

In Michigan, WIM sensors have also been used to collect data for traffic monitoring purposes in 

addition to CCS. 

 

Figure 3.5 Traffic data from other sources  

 

In another question, the survey asked their experiences in reviewing the quality and use of 

other sources of data within their monitoring program. For example, New Jersey indicated that 

they are going to build a new software that will analyze their PVR format data obtained from their 
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they used those data as is. In Pennsylvania, they usually completed annual inspections to check all 

equipment used in the monitoring program. In Virginia, data from ITS sources are collected with 

frequently missing intervals, and therefore they use the same quality checks for ITS sites as used 
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rather than FHWA binned intervals, which limits the ability to do quality checks.  
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3.7 Traffic Data Management and Sharing System 

In the survey, all states stated that they used on-line systems to share their traffic data with others. 

Many of them maintained an online traffic management system. For example, the MS2 web-based 

system has been used in Ohio, and other geoportal websites in Minnesota, Washington and 

California. In addition, most states stated that they used electronic files via email to communicate 

and share their database. Other systems for data sharing were hard copies, xml data feed, direct 

web connection, DVDs,  mobile applications, etc. 

 

 

Figure 3.6 Traffic data sharing systems for different states 

 

 

Figure 3.7 Traffic data users 
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In sharing data, almost all states stated that they shared their data sets with FHWA, MPOs, 

other state government agencies, county and city governments, researchers and consultants. Other 

data users were developers, realtors, and citizens. Like most other states, Michigan have used an 

online system, FTP sites, electronic files, and hard copies for sharing the data with FHWA, other 

divisions in the state DOT,  MPOs, police offices, city and county goverments, researchers and 

citizens.  

3.8 Traffic Data Management Plan and Improvement in Strategic Assessment 

for Sensor Locations 

About 77 percent of the surveyed states shared their plans for improving their traffic management 

system. For example, ODOT is in the process of installing numerous non-intrusive sensors to 

collect vehicle volume, speed, and length data. Other states are continuously looking for ways to 

improve data quality (QA/QC) through improved equipment, materials, and installation techniques 

as well as through improvements in their dataset. Pennsylvania is currently in the process of adding 

new classification (CAVC) and weight (WIM) sites, along with converting pre-existing volume 

sites. Washington is currently upgrading an old, cumbersome database for storing, processing, and 

releasing traffic data with new equipment for data collection in the field.  

From the survey responses, about 67 percent of states maintained their schedule to perform 

strategic assessments for sensor locations as part of the monitoring program. For example, New 

York State has currently three maintenance contractors who repair sites as needed. Ohio usually 

performs strategic assessments for sensor locations on an annual basis. Some states do not follow 

the regular assessment, while they periodically visit their sites as needed. For example, 

Washington State did not maintain any real set schedule, but they occasionally look at their count 

stations to check the best possible location for collecting traffic data.  Currently, Michigan does 

not maintain a schedule to perform strategic assessments for sensor locations.  

3.9 Reassessment of the Number of Sensors with Evaluating Missing Data 

The survey revealed that most of the surveyed states have reassessed and expanded their current 

CCS program based on traffic volumes and other program needs upon funding availability. New 

York expanded their CCS stations from 110 to 176 in 2001 in order to maintain their huge volume 
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on different roadways. In Oregon, they added several interstate sites in 2008 and currently engaged 

in analyzing their data to determine whether they need any more stations for factoring and ramp 

balancing. Following the TMG requirement, they installed an ATR on every 5 interchanges. In 

Minnesota, they expanded their system in 2009 on the county and local roads due to the concerning 

issues from the locals about collecting data of truck volumes and weight.  In Michigan, the program 

was expanded for business needs, with new construction and to serve research purposes.  

Missing data and/or data during traffic incidents were considered and evaluated in different 

ways by state DOT, and several stated missing data were deleted from their database. For example, 

Minnesota took average values of the data from the same day of the week during that month or 

looked at the same week from previous years to evaluate their missing data. In Virginia, days with 

missing data were assigned a quality level of 2 or 3 (for traffic incidents), which is not used for 

AADT calculations. California usually projects growth factors from AASHTO to evaluate and 

recover the missing data. In Oregon, default values or estimates are used in lieu of missing data. 

For Washington State, if one hour of the day is lost, that hour is estimated; moreover, if more than 

one hour in a day (or more than 2 days in week or 4 months in year) is missing, data is lost. For 

the case in Florida, incidents are flagged as "atypical" or "bad" in the TTMS data. Michigan does 

not use surrogate data; rather they keep notes the incident’s time and date in their database.  

3.10 Lessons Learned from the Survey 

From the survey, several lessons were learned. While most state DOTs were trying to improve 

their CCS programs, they faced similar difficulties and had similar concerns. The common issues 

were how to maintain high quality data and treat missing data. Many state DOTs have tried to 

incorporate other sources of data into their traffic monitoring program to improve the data quality. 

Inductive loop detectors and WIMs were the most common sensors for the CCS program while 

microwave and inductive loop detectors were commonly used for the ITS system. Data from WIM, 

ITS sensors and local agencies were typically incorporated into the CCS program. Many states 

were using cloud-based data management systems for a better QA/QC process. Expansion of CCS 

stations was usually implemented on a need basis.  
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Chapter 4 Data Collection 

4.1 Introduction 

In this study, data was collected from CCS, ITS-MVDS, and WIM stations. A total of 126 CCS 

stations were geographically distributed throughout the state of Michigan. CCS data was collected 

for the past 5 years from 2012 to 2016. A total of 614 ITS-MVDS stations were located throughout 

the state, grouped by SEMTOC, WMTOC, and STOC regions. ITS-MVDS data was collected for 

2015 and 2016. 2016 data was added due to missing months in the 2015 data. The WIM data was 

collected for the 2015 period from a total of 54 sites. All of the available data were processed and 

stored in a GIS-based format as an integrated multisource-traffic database.  

4.2 Data Processing and Availability Computation 

CCS data was received as a processed hourly data for volume, speed, and vehicle classification for 

the entire year. On the other hand, the ITS data was received in raw format, and the data format 

varied by TOCs. For example, the data from SEMTOC and STOC regions was collected in 

intervals of 30 seconds and 5 minutes, respectively, while data received from WMTOC were 

collected in hourly basis. Therefore, all data were aggregated to hourly intervals for consistency. 

Figure 4.1 shows the flowchart for processing and aggregating data into hourly intervals. At first, 

the text files were parsed by using python scripts and data were read from the file using a CSV 

reader. The keys were defined in the script’s dictionary by using device ID, year of data, month of 

data, days of data, and hours of data. After that, traffic volume and vehicle class data were 

aggregated in an hourly interval and sorted in an hour, day, month, and year format. For vehicle 

speed, the hourly data was divided into 16 bins after aggregating and processing raw data from 30 

seconds or 5 minutes into an hourly format.  
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Figure 4.1 Flowchart for data processing 

4.3 CCS Data Availability 

The data availability was calculated by considering the yearly available hours over the total 

possible hours in a year, as shown in Equation 4.1.  

 

 

4.3.1 Comparison of CCS Data Availability by Year 

Almost all CCS sensors (121 or more out of 126) provided data during the analysis period (2012 

– 2016). As shown in Table 4.1, 87.6 percent of those sensors provided more than 90 percent of 

data during the five-year period, while only 3.2 percent of CCS sensors provided less than 50 

percent of data. In 2016, 96.7 percent of CCS supplied more than 90 percent of data. In general, 

CCS sensors were very relable in supplying volume data. 

 

Data Availability = Available Hours per year 

Total Hours (24 hr∗365 days)per year
∗ 100………………………………  (4.1) 
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Table 4.1 Comparison of CCS Data Availability by Device 

% of 

Available 

Data  

2012 2013 2014 2015 2016 Total 

# of 

Devices 
Percent 

# of 

Devices 
Percent 

# of 

Devices 
Percent 

# of 

Devices 
Percent 

# of 

Devices 
Percent 

# of 

Devices 
Percent 

>90 100 82.6% 103 85.1% 108 87.8% 108 85.7% 118 96.7% 537 87.6% 

80-90 11 9.1% 12 9.9% 8 6.5% 9 7.1% 3 2.4% 43 7% 

70-80 2 1.6% 1 0.8% 2 1.6% 3 2.3% 0 0.0% 8 1.3% 

60-70 2 1.6% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 2 0.3% 

50-60 0 0.0% 1 0.8% 2 1.6% 0 0.0% 0 0.0% 3 0.4% 

< 50 6 4.9% 4 3.3% 3 2.4% 6 4.7% 1 0.8% 20 3.2% 

Total 121 100% 121 100% 123 100% 126 100% 122 100% 613 100% 

 

Figure 4.2 shows data availability by month. More than 90 percent of CCS data was available for 

most months of the years except a couple of months in 2012. The analysis shows that the CCS 

sensors were reliable in proving volume data in each month.  

 

 

Figure 4.2 Comparison of CCS data availability by month 

 

4.3.2 Computation and Comparison of Different Factors 

The CCS volume data was used to compute the time varying factors for the analysis time period 

from 2012 to 2016. In this study, the time-varying patterns, such as monthly factors (MF), weekly 

factors (WF), monthly weekday factors (MWF) and hourly factors (HF), were carefully calculated 

and studied to analyze the trend of data variations during the analysis periods. The formulas for 
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calculating the time varying patterns are shown in equations 4.2 to 4.5. These factors are used for 

examining the appropriate number of CCS stations in Chapter 6.  

• 𝑀𝐹 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 (𝐴𝐴𝐷𝑇)

Monthly Average Daily Traffic (MADT)
 …………………………………….………..(4.2) 

• 𝑊𝐹 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 (𝐴𝐴𝐷𝑇)

Weekly (the day of week)Average Daily Traffic (WADT)
………………………….(4.3) 

• 𝑀𝑊𝐹 =
Monthly Average Daily Traffic (MADT)

Weekday Average Daily Traffic (WKADT)
…………………………………………(4.4) 

• 𝐻𝐹 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑖𝑡ℎ 𝐻𝑜𝑢𝑟 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 (𝐴𝐻𝑇)

Average of total Daily (24 hrs)Traffic (ATHT)
… … … … … … … … … … … . (4.5) 

During the analysis period, the trend of MF was similar except 2015. As shown in Figure 4.3, some 

of the months showed lower MF for the 2015 period. Moreover, this inconsistent trend for 2015 

appeared in other patterns such as MWF and HF. However, WF showed a similar trend for all 

years. 

 

Figure 4.3 Yearly trend for CCS data based on MF, MWF, WF and HF 
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4.4 ITS Data Availability 

In the analysis of ITS data availability, ITS sensor data were aggregated into hourly rates and the 

same method used in CCS availability was applied. First, the ITS sensor data available from 

devices in SEMTOC, WMTOC and STOC regions were processed for the 2015 and 2016 periods. 

Then, the data availability of individual ITS sensors was analyzed and compared by month and by 

TOC. The time frame of the study was during a transition to all ITS-MVDS reporting to the central 

ATMS software. Therefore, the puller software upgrades limited communications to field devices 

and the overall data availability was lower during the analysis period.  

4.4.1 ITS Data Received by TOC 

Even though there were 614 ITS sensors in Michigan, not all devices provided data. Many sensors 

were not able to supply data due to various reasons including the transition to the central ATMS 

software, highway construction, system maintenance, etc. ITS data received were from totals of 

436 devices in 2015 and 547 devices in 2016, which is 75.8 percent and 89.0 percent of the total 

devices, respectively. As shown in Table 4.2, more ITS sensors provided data in 2016 except 

WMTOC. In 2016, more than 90 percent ITS sensors in SEMTOC and STOC provided data.  

 

Table 4.2 Total ITS Data Received by TOC 

 SEMTOC WMTOC STOC Total 

2015 

Devices 286 128 161 575 

Received 225 110 101 436 

% 78.7% 85.9% 62.7% 75.8% 

2016 

Devices 302 128 184 614 

Received 275 101 171 547 

% 90.05% 78.9% 92.9% 89.0% 

 

4.4.2 Comparison of ITS Data Availability by Year and TOC 

As discussed in 4.4.1, 74.5 percent and 89 percent of ITS sensors provided data in 2015 and 2016, 

respectively. Even though those sensors provided data during the year, portion of data were 

missing for various reasons as discussed in the previous section. In this section, individual ITS 

data were further analyzed to investigate how many hours of data were available in the year. The 

data availability was computed same as the way for CCS data availability (Equation 4.1) among 

all devices that provided data during the period.  
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As depicted in Figure 4.4, the data availability varied by month and by area. In general, 

sensors in SEMTOC provided a higher percentage of data than those in WMTOC and STOC. 

However, the data from SEMTOC was completely missing for three months in 2015.  On average, 

about 75 percent of data were available from WMTOC sensors in 2015, but the data availability 

significantly dropped in 2016, especially in March and June. The data availability in STOC was 

very low (about 20 - 30 percent) in 2015, but it increased to a 50 percent level in 2016.  

 

 

Figure 4.4 Comparison of ITS data availability by month 

 

Table 4.3 Comparison of ITS Data Availability by Device 

Percent of 

available data   

SEMTOC 

(# of Devices) 

WMTOC 

(# of 

Devices) 

STOC 

(# of 

Devices) 

Overall 

(# of Devices and %) 

2015 2016 2015 2016 2015 2016 2015 2016 

>90 164 220 41 0 0 12 205 47.1% 232 42.4% 

80-90 23 30 22 0 0 30 45 10.3% 60 10.9% 

70-80 7 10 8 32 0 14 15 3.4% 56 10.2% 

60-70 19 6 11 20 0 14 30 6.8% 40 7.3% 

50-60 3 7 7 24 0 3 10 2.4% 34 6.2% 

< 50 9 2 21 25 101 98 131 30% 125 22.8% 

Total 225 275 110 101 101 171 436 100% 547 100% 
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The ITS data availability was further analyzed at an individual level. The number of 

individual sensors was tabulated by the data availability in Table 4.3. In SEMTOC, 73 percent of 

sensors in 2015 and 80 percent of sensors in 2016 were able to collect more than 90 percent of 

data. Only 5.3 percent of the devices collected less than 50 percent of data. On the other hand, 

more than 90 percent of data was collected only by 38 percent of the available WMTOC sensors 

in 2015. In STOC, more than 50 percent of sensors collected less than 50 percent of data in 2016. 

Overall, around 45 percent of ITS sensors collected more than 90 percent of data.  

4.5 Summary of Findings 

In this study, CCS data availability was examined for a total of 126 CCS stations. CCS sensors 

were very reliable and robust in supplying traffic volume data. In terms of time varying patterns, 

the trend was similar for almost all years except 2015. Unlike CCS sensor data, ITS sensors 

supplying data ranged between 62 percent and 93 percent. Data availability of those ITS sensors 

varied by month and by area, perhaps because of various reasons, such as the transition to new 

systems, highway constructions, system maintenance, etc. During past five years, less than 50 

percent of ITS sensors were able to provide more than 90 percent of data in a year. This indicates 

that ITS sensors may need better maintenance in general.  
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Chapter 5 ITS Data Evaluation 

5.1   Introduction 

In this chapter, data from ITS MVDS sensors are evaluated and compared to nearby CCS sensors.  

Volume, speed, and vehicle classification data are considered and evaluated in this chapter to 

examine if ITS data are usable in the CCS program. ITS sensor data are evaluated and compared 

with CCS sensors for the years of 2015 and 2016. Data from CCS sensors were regarded as the 

ground truth data in this comparison.  It should be noted that the time frame of the study was during 

a transition to all ITS-MVDS reporting to the central ATMS software. Therefore, the puller 

software upgrades limited communications to field devices and the overall data quality tends to 

lower during the analysis period.  

5.2 Volume Data Evaluation 

The consecutive hourly volume data for a whole year (January 1st to December 31th) was 

considered and evaluated for each comparable ITS sensor. The comparable ITS sensors were 

selected by spatial analysis through GIS mapping. The location of nearby CCS sites, route types, 

curvatures, ramps and access points, lane numbers, and directions were incorporated with the 

spatial analysis. ITS volume data was then compared with comparable CCS sensors and the 

accuracy was examined.  

5.2.1 Approach for Volume Data Evaluation 

Hourly volume data from an ITS sensor was matched with that from the comparable CCS sensor.  

ITS sensor data was compared with CCS data and examined by the model equation and the r-

square value. Data accuracy was examined by following measures: 

• Pearson’s correlation 

• Deviation from the 45 degree slope line 

• Mean Average Percentage Error (MAPE). 

 

The volume data from CCS sensors were considered as the ground truth for checking the 

accuracy of ITS sensors. Pearson’s correlation was obtained through the correlation matrix 

between ITS and CCS volume data. A linear trend line of the relation between ITS and CCS data 
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was observed and evaluated by the deviation from the 45-degree slope. The MAPE was considered 

as a key measure of volume accuracy. The Traffic Monitoring Guide (TMG) and other related 

resources typically regard a 10 percent error or less as acceptable accuracy.  

5.2.2 Comparable ITS Sites for Volume Comparison 

A total of 31 and 37 directional ITS sites were selected for the volume data evaluation for the years 

of 2015 and 2016, respectively. The ITS sites adjacent to CCS sensors were selected through a 

location analysis. Most of the comparable ITS sites identified were located in the SEMTOC region. 

The least number of comparable ITS sites was identified in the WMTOC region. While Table 5.1 

summarizes the list of ITS sites for comparison, a detailed list of comparable ITS and CCS sensors 

for each TOC region is available in Appendix 5.1 - 5.3. 

  

Table 5.1 List of ITS Sites to Compare 

 
2015 2016 

Comparable 

ITS sites 

Total ITS 

Sites 
Percentage 

Comparable 

ITS sites 

Total ITS 

Sites 
Percentage 

SEMTOC 16 286 5.5% 22 302 7.2% 

STOC 10 161 6.2% 10 184 5.4% 

WMTOC 5 128 3.9% 5 128 3.9% 

Total 31 575 5.3% 37 614 6.1% 

 

5.2.3 ITS Volume Data Evaluation 

Each ITS volume data was compared with the data from an adjacent CCS sensor. The evaluation 

was performed through data availability, Pearson’s correlation, deviation from the 45-degree slope, 

and MAPE. An example of data evaluation result is shown in Table 5.2, and the detailed evaluation 

results are available in Appendix 3. 

ITS sensor data in the SEMTOC region showed high data availability (98 percent in 2016; 

77 percent in 2015). However, those in the STOC and WMTOC regions showed low availability. 

Another measure, Pearson’s correlation, explains how well both ITS and CCS data are correlated. 

The 45-degree slope line directly evaluates data accuracy. As shown in Figure 5.1, the higher data 

availability is, the more accurate the data is.  
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Table 5.2 Example Format of ITS Volume Data Evaluation  

CCS 

ID 

ITS 

ID 
Direction 

ITS Data 

Availability (%) 

Data Accuracy 

Pearson's 

Correlation 

Slope for 

dataset 
MAPE 

2015 2016 2015 2016 2015 2016 2015 2016 

9419 406 E 76 99 0.99 0.99 0.90 0.90 4.60 7.40 

9419 407 W 76 99 0.99 0.99 0.96 0.95 2.33 3.10 

           

9499 402 E 75.5 99 0.98 0.96 0.68 0.69 26.10 29.60 

9499 403 W 76 99 0.98 0.97 0.90 0.90 7.90 10.01 

           

9839 354 E 69.3 99 0.97 0.97 0.79 0.7 25.4 24.9 

9839 355 W 70 99 0.96 0.96 0.99 1.1 21.1 14.5 
           

9969 418 E 75.5 99 0.99 0.99 0.9 0.9 6.3 6.2 

9969 419 W 76 99 0.99 0.99 0.96 0.95 2.72 3.3 
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a) Data Availability 99% 

 

b) Data Availability 76% 

  

c) Data Availability 2-3% 

Figure 5.1 Example of volume data comparison  
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5.2.4 Accuracy of ITS Sensors for Volume Data 

The accuracy of ITS sensor data was examined by MAPE. As shown in Table 5.3, around 30 

percent of ITS sensors yielded an error of 10 percent or less while the other 30 percent yielded an 

error of 20 percent or more. More detailed and accurate results are available in Appendix 3. It 

should be noted that the transition to new system during the analysis period may have resulted in 

lower data quality lower than usual.  

 

Table 5.3 Accuracy Checking of Comparable ITS Sites (2015 and 2016)  

MAP

E 

SEMTOC STOC WMTOC Total 

2015 2016 2015 2016 2015 2016 2015 2016 

No % No % No % No % No % No % No % No % 

Less 

than 

10% 

11 69 11 50 0 0 1 10 0 0 0 0 11 35 12 32 

11% 

- 

20% 

1 6 5 23 0 0 6 60 1 20 1 20 2 6 12 32 

More 

than 

20% 

4 25 6 27 10 100 3 30 4 80 4 80 18 58 13 35 

Total 16 100 22 100 10 100 10 100 5 100 5 100 31 100 37 100 

5.3 Speed and Vehicle Class Data Evaluation 

The comparable ITS sites were selected based on the availability of speed and vehicle class data 

from adjacent CCS sites. In this study, speed data from ITS sensors were converted into a 

frequency table and vehicle classification data from CCS data were aggregated into 4 groups based 

on vehicle length.  

5.3.1 Approach of Speed and Vehicle Class Evaluation 

Speed data from ITS sensors were evaluated through speed distribution and accuracy checking 

with MAPE and Chi-square statistics. On the other side, ITS vehicle class data was evaluated 

through a proportional comparison with CCS classes.   

 

Approach of Speed Data Evaluation: 

In this study, 16 different speed bins (FHWA, 2016) were considered, ranging from an initial bin 

of 0 - 20.9 mph (bin 1) to the last bin of 91 mph or above (bin 16).  First, the frequency of ITS 
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speed data was reorganized to match with the same format of CCS data. Accuracy of speed data 

from ITS sensors was examined through a Chi-square goodness of fit test. The mean and standard 

deviation of the speed distribution data were calculated using equation 5.2 and 5.3.  

 

 

 

 

Approach of Vehicle Class Data Evaluation: 

ITS sensors classify vehicles into four classes by vehicle length: small (SM), medium (MD), large 

(LG), and extra-large (EL). In order to compare data, 13 vehicle classes of CCS data were 

aggregated into 4 classes based on vehicle length and axle size (Jessberger, 2012). The vehicle 

classes are shown in Table 5.4, where SM refers to small size vehicles (typically 0 - 18 ft), MD 

refers to medium size vehicles (18-35 ft), LG refers to large size vehicle (truck) with single units 

(35-70 ft), and EL refers to extra large size vehicles (truck) with multiple units (typically more 

than 70 ft). The detail of original 13 classes are explained at Table A-11 in appendix.   

 

 

Table 5.4 Vehicle Classes and Description 

New Class Description of FHWA Combined Classes 

SM Small size vehicle (class 1 and class 2) 

MD Medium size vehicle (class 3 and 4) 

LG Large size vehicle with single units (class 5-10) 

EL Extra Large size vehicle with multiple units (class 11,12, and 13) 

 

5.3.2 Comparable ITS Sites for Speed and Vehicle Class Comparison 

A set of ITS sites comparable for speed evaluation was selected. 10 and 13 directional ITS sites 

were selected from 2015 and 2016, respectively. Due to unavailability of vehicle class data in 

SEMTOC, there was a limitation in selecting sites. Only 7 directional ITS sites (2 in 2015 and 5 

in 2016) in STOC and WMTOC were included in the vehicle class evaluation.  

 

    Average speed (�̅�) = 
∑ 𝑛𝑖𝑆𝑖

𝑁
……………………………………………………………… (5.2) 

    Std. of Speed = √
∑ 𝑛𝑖𝑆𝑖

2−𝑁𝑥2̅̅ ̅̅

𝑁−1
……………………………………………………………. (5.3) 
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Table 5.5 List of Sites for Speed and Vehicle Class Comparison 

 2015 2016 

 Comparable 

sites 

Total ITS 

Sites 
Percentage 

Comparable 

sites 

Total ITS 

Sites 
Percentage 

SEMTOC 8 286 2.8% 8 302 2.6% 

STOC 0 161 0% 3 184 1.63% 

WMTOC 2 128 1.6% 2 128 1.6% 

Total 10 575 1.8% 13 614 2.1% 

 

5.3.3 Speed Data Evaluation 

The average speed from ITS sensors was deviated by 2-5 mph, compared to the average of CCS 

speed data. An example of speed data distribution is shown in Table 5.6. The detailed speed 

evaluation result is available in Appendix 3. The speed distributions between two datasets are 

compared in Figure 5.1   

 

Table 5.6 ITS Speed Data Evaluation 

Speed Distribution 

ID Direction 

Average 

Speed 

(mph) 

Std. of 

Speed 

85th 

Percentile 

of Speed 

Bin with Highest 

Frequency 

ITS Data 

Availability 

Deviation from 

85th percentile 

speed 

CCS-

8209 
E 72.4 11.4 78.3 Bin 13(76-80.9) 

99 2.1 
ITS-

136 
E 67.2 12.9 76.2 Bin12(71-75.9) 

 
CCS-

8209 
W 72.7 10.2 78.1 Bin13(76-80.9) 

99 -1.9 
ITS-

137 
W 74.5 8.57 80 Bin13(76-80.9) 

 

CCS-

8409 
E 69.9 14.2 77.1 Bin12(71-75.9) 

98 3.6 
ITS-

172 
E 68.3 10.1 73.5 Bin12(71-75.9) 

 

CCS-

8409 
W 67.7 19.1 77.5 Bin12(71-75.9) 

98 -3.5 
ITS-

172 
W 75.2 8.78 81 Bin12(71-75.9) 

        
CCS-

8839 
E 78.4 8.9 77.5 Bin13(76-80.9) 

98 4.1 
ITS-

306 
E 71.1 5.8 73.4 Bin12(71-75.9) 
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Figure 5.2 Example of speed data distribution  

Table 5.7 Chi-square Test Value for the ITS Speed Distribution  

SEMTOC 

ID p value test-statistic Decision 

CCS-8209 
0.006 31.7 Sig H0 Reject 

ITS-136 

CCS-8209 
0.972 6.3 Not Sig. H0 Accept 

ITS-137 

CCS-8409 
0.051 23.5 Not Sig. H0 Accept 

ITS-172 

CCS-8409 
0.055 22.4 Not Sig. H0 Accept 

ITS-172 

CCS-8839 
0.004 33 Sig H0 Reject 

ITS-306 

CCS-8839 
0.052 24.8 Not Sig. H0 Accept 

ITS-307 

CCS-9699 
0 80 Sig H0 Reject 

ITS-182 

CCS-9699 
0.599 13 Not Sig. H0 Accept 

ITS-183 

WMTOC 

CCS-9759 
0.001 37.6 Sig H0 Reject 

ITS-303 

CCS-9759 
0 85 Sig H0 Reject 

ITS-303 

STOC 

CCS-6349 
0.058 21.5 Not Sig. H0 Accept 

ITS-3634 

CCS-2199 
0.966 6.6 Not Sig. H0 Accept 

ITS-3740 

CCS-4049 
0 129.5 Sig H0 Reject 

ITS-3642 
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The deviation of the 85th percentile speed value was very low between most of the 

comparable ITS sites and CCS sites, and this was true for both the 2015 and 2016 periods. 

Therefore, the comparable ITS and CCS speed data looked very similar to each other, and these 

ITS sites could be recommended for speed data collection.  

The overall accuracy of ITS speed data was examined by the chi-square goodness of fit 

test. Table 5.7 shows the result of the p value and test statistics as an example. The hypothesis 

examines if two speed distributions from ITS data and CCS data are the same. The results show 

that speed distributions were found to be same for 53 percent of sites (7 out of 13 total sites) in  

2016, and 60 percent (6 out of 10 total sites) in 2015 (see Appendix 3). Therefore, it could be 

concluded that ITS speed data were acceptably accurate.  

 

5.3.4 Vehicle Class Data Evaluation 

ITS vehicle class data were compared with those from CCS. Out of five sites, two sites were from 

WMTOC, and three sites were from STOC. Table 5.8 and 5.9 compare the composition of vehicle 

classes from ITS data and CCS data. Although the overall distribution does not match well due to 

differences in vehicle classification, ITS sensors successfully classified vehicle classes by length. 

 

 

Table 5.8 Comparative Percentage of ITS Vehicle Classes for WMTOC  

WMTOC Vehicle Class Comparison 

2015 2016 

ID 
Dire

ction 
Class 

CCS 

(percent) 

ITS 

(Percent) 
ID 

Dire

ction 
Class 

CCS 

(percent) 

ITS 

(Percent) 

CCS-

9759 & 

ITS-303 

E 

1 62.2% 63.8% 

CCS-

9759 & 

ITS-303 

E 

1 72.8% 58.8% 

2 29.3% 20.0% 2 19.5% 23.2% 

3 7.9% 8.9% 3 7.3% 11.4% 

4 0.5% 7.2% 4 0.4% 6.5% 

Total 100.0% 100.0% Total 100.0% 100.0% 

CCS-

9759 & 

ITS-303 

W 

1 66.3% 55.5% 

CCS-

9759 & 

ITS-303 

W 

1 76.9% 59.1% 

2 25.1% 34.6% 2 14.1% 27.0% 

3 8.0% 4.9% 3 8.5% 6.9% 

4 0.6% 4.9% 4 0.5% 7.0% 

Total 100.0% 100.0% Total 100.0% 100.0% 
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Table 5.9 Comparative Percentage of ITS Vehicle Classes for STOC 

STOC Vehicle Class Comparison-2016 

ID Direction Class CCS (percent) ITS (Percent) 

CCS-6349 

& ITS-

3634 

N 

1 85.5% 70.4% 

2 9.2% 0.0% 

3 5.1% 29.6% 

4 0.2% 0.0% 

Total 100.0% 100.0% 

CCS-2199 

& ITS-

3740 

E 

1 64.8% 42.0% 

2 26.4% 58.0% 

3 7.9% 0.0% 

4 1.0% 0.0% 

Total 100.0% 100.0% 

CCS-4049 

& ITS-

3642 

S 

1 65.1% 78.6% 

2 27.9% 0.0% 

3 6.2% 21.4% 

4 0.8% 0.0% 

Total 100.0% 100.0% 

 

5.4 ITS Data Quality by Locations 

A total of 82 directional ITS sites were selected to evaluate the ITS data quality at curve areas. 

Most ITS sites located at curve areas were found in the SEMTOC and STOC regions.  This section 

investigates if ITS data at curve areas are worse than the data in other areas. 

. 

Table 5.10 List of ITS Sites at Curve Areas 

 2015 2016 
 ITS Sites Total ITS Sites % ITS Sites Total ITS Sites % 

SEMTOC 18 286 6.2% 17 302 5.6% 

STOC 18 161 11.2% 13 184 7.1% 

WMTOC 9 128 7.1% 7 128 5.4% 

Total 45 575 7.8% 37 614 5.9% 

 

As shown in Figure 5.3 and 5.4, there was no evidence that the ITS data at curve areas were 

worse than those at other areas. In fact, the data at curve in SEMTOC showed better than overall 

quality.  
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Figure 5.3 Comparisons for ITS data quality for curve areas in 2015 

 

Figure 5.4 Comparisons for ITS data quality for curve areas in 2016 

5.5 Conclusion and Summary Findings 

In this chapter, data were collected from CCS, ITS, and WIM sensors and incorporated into a 

multi-source GIS database. CCS data were collected for the past five years (2012-2016). ITS 

sensor data were collected for 2015 and 2016. The data availability of ITS sensor data was around 

80 percent, 50 percent, and 30 percent for SEMTOC, WMTOC, and STOC, respectively.  ITS 

sensor data were evaluated and compared with data from adjacent CCS to examine if ITS sensors 

produced good quality data enough to be usable in the traffic monitoring program. In volume data 

comparison, approximately 35 percent of the total comparison sites showed high quality with less 

than 10 percent error. In speed data evaluation, more than 50 percent of the ITS sites yielded 

similar speed distribution with the nearby CCS sites. In vehicle classification, ITS sensors 

successfully classified vehicle classes by length although their accuracy may need further 

improvement. In conclusion, ITS sensors were capable of providing data with a quality high 

enough to support the traffic monitoring program when they are well calibrated and maintained. 
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Chapter 6 Evaluation of CCS Sites 

6.1   Introduction 

In this chapter, existing CCS sites are evaluated by two approaches: redundancy analysis and 

sufficiency analysis. The redundancy analysis is to identify sensor locations that do not benefit the 

traffic-monitoring program. Those sensors that are closely placed and produce similar data are 

regarded as redundant sensors. The traffic-monitoring program will be more cost-effective when 

these sensors are removed. The sufficiency analysis is to examine if the number of sensors in the 

program is statistically sufficient to meet the requirement of TMG. The analyses are conducted 

with the traffic data collected during 2012 to 2016.  

6.2 Redundancy Analysis 

The redundancy analysis was performed against 122 CCS sites where 2016 data were available 

out of all 126 sites distributed throughout the Michigan area.  

6.2.1 Methodology and Analysis 

The redundancy analysis considers two basic elements: correlation of data with other sensors and 

proximity with other sensors. Those sites highly correlated and closely placed were regarded as 

redundant sites. In this redundancy analysis, a correlation-coefficient matrix among 122 CCS sites 

was developed based on monthly factors (MF) and weekly factors (WF) of individual sites. Hourly 

factors (HF) and monthly weekday factors (MWF) were not considered in this analysis.  

 

 

 

 

 

 

 

 

Figure 6.1 Example of the matrix formation for correlation-coefficient analysis 
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Figure 6.1 depicts the result of the correlation analysis. In the figure, those with green 

colors represent a strong correlation while those with red colors represent a weak correlation. A 

pair with a correlation value of 0.85 or above was regarded as strongly correlated.  

 The proximity analysis was performed by developing a distance matrix among the CCS 

sites. The distances between individual CCS sites were computed by employing the GIS network 

analyst tool. Figure 6.2 shows an example of the distance matrix between CCS sites.  Since the 

distances between CCS sites vary by their location type (urban vs. rural), 8 miles and 6 miles were 

considered for proximity analysis between the CCS pairs. 

 

 

 

 

 

 

 

 

 Figure 6.2 Example of distance matrix among CCS 

6.2.2 Redundant CCS Sites  

In order to select potentially redundant CCS sites, following two criteria were applied to the results 

of the correlation and proximity analyses. 

• Correlation coefficient is higher than 0.85. 

• Distance between sensors is less than 8 miles. 

As a result, a total of 8 CCS pairs were identified as potentially redundant. Figure 6.3 shows 

those locations, and Table 6.4 shows characteristics of those pairs. As described in Table 6.1, 

potentially redundant CCS pairs were examined whether they were in the different clusters 

(different roadway types) or special sensors (e.g. WIM sensor or vehicle classifier). After 

excluding those in different clusters or special sensors, four pairs were identified as potentially 

removable. Among those four, two on interstate freeways were highly possible to remove while 

the other two on urban arterials were possible but not recommended to remove due to an 

insufficient number of CCS sites on urban arterials. Out of those four pairs of CCS sites, two highly 

removable sites are depicted Figure 6.4. 
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Figure 6.3 Potentially redundant CCS stations for Michigan 

Table 6.1 Potentially Redundant CCS Pairs  

Pair of CCS 

Stations  

Correlation 

coefficient of 

Pairs 

Distance 

between 

pairs (mile) 

Route Type & Other 

Characteristics 

Same 

Cluster 
Removable 

9419-9969 0.87 5 Both in Urban Interstate Yes 
Highly 

Possible 

6479-9669 0.85 7 
Rural Arterial-Rural 

Collector 
No No 

7119-7329 0.98 6 
Both in Rural Arterial 

(Including WIM) 
Yes No 

8459-8470 0.96 8 Both in Urban Arterial Yes Possible 

9020-9040 0.96 3 Both in Urban Arterial Yes Possible 

9029-9040 0.92 4 
Urban Arterial-Urban 

Interstate 
No No 

9029-9049 0.9 2 Both in Urban Interstate Yes 
Highly 

Possible 

9040-9049 0.88 5 
Urban Arterial-Urban 

Freeway 
No No 
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Figure 6.4 Highly possible redundant locations 

6.3 Sufficiency Analysis 

The sufficiency analysis was to determine the number of sensors needed in each category to meet 

the requirement of FHWA’s TMG. In this study, the appropriate number of CCS sites was 

evaluated based on three different classification types, such as the classifications by geographical 

region, highway functional type, MDOT’s locational type. The appropriate number of CCS sites 

was calculated for 5 years from 2012 to 2016.  

6.3.1 Methodology 

The number of CCS sites required fluctuated by the variation of data in each category. The higher 

the variation of data (monthly factors, weekly factors, monthly weekday factors, and hourly factors) 

in the same category is, the more sites are required. The number of sites needed also varied by the 

desired level of precision.  

This study determines the number of sites required in each category by the following 

equation: 

𝑛 = (𝐶𝑉
𝑡

1−
𝛼
2,𝑛−1

𝐸
)

2

 ………………………………………………………………………… (6.1) 

where n is the number of samples needed; CV is the coefficient of variation associated with the 

CCS data; 𝑡1−
𝛼

2
,𝑛−1 is the t-score associated with the desired confidence level 1 − 𝛼, 𝑛 − 1 degrees 

of freedom; E is the tolerance (in percentage) of the estimated traffic data.  

FHWA’s TMG recommends a 10 percent tolerance with a 95 percent level of confidence 

in determining the appropriate number of CCS sites.  
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6.3.2 Classification of CCS Sites by Geographical Region and Highway Type 

Before analyzing the number of sites needed, CCS sites were classified into groups based on their 

locations (the geographical region) and functional classification (the highway type). As shown in 

Table 6.2, the whole Michigan area was divided into four geographical regions (Superior, North, 

West and East). The geographical regions were based on MDOT’s seven regions while Grand and 

Southwest regions were combined into the West region and Bay, Metro, and University regions 

were grouped as the East region. Furthermore, highways were classified into four types (urban 

freeway, rural freeway, urban arterial, and rural arterial) based their functional characteristics. 

Based on these classifications, CCS sites were grouped into individual categories. Table 6.2 shows 

the number of CCS sites in each category. There were 16, 10, 30, and 66 CCS sites in Superior, 

North, West, and East regions, respectively. When classifying CCS sites by highway types, 42, 22, 

15, and 43 CCS sites were on urban freeways, rural freeways, urban arterials, and rural arterials, 

respectively. 

Table 6.2 CCS Sites by Geographical and Functional Types 

 Superior North West East Total 

Urban Freeway 1 - 8 33 42 

Rural Freeway 2 2 9 9 22 

Urban Arterial 2 1 4 8 15 

Rural Arterial 11 7 9 16 43 

Total 16 10 30 66 122 

 

6.3.3 Number of CCS Sites Needed by Geographical Region 

Table 6.3 and 6.4 summarize the required number of CCS sites based on the data types (monthly 

factors, weekly factors, monthly weekday factors, and hourly factors) by region and by highway 

type during the past five years (2012 – 2016). The tables also provide the mean and the standard 

deviation by the data type as well as the required number of CCS sites by different levels of 

confidence (85th, 90th and 95th percentile) in each region.  

 While the current number of CCS sites in the West or East region was sufficient for all 

data types, those in the Superior region do not meet the requirement for HF, and those in the North 

region do not meet the requirements for MF, WF, and HF. That is, more CCS sites were needed in 

the North region and the Superior region. Even if the ITS sensors in these regions were added into 

CCS, the numbers did not meet the requirements for HF.  
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Table 6.3 CCS Sites Needed by Geographical Region 

Geographical Clusters 

Cluster-1 

(Superior) 

Cluster-2 

(North) 

Cluster-3 

(West) 

Cluster-4 

(East) 

MF WF MWF HF MF WF MWF HF MF WF MWF HF MF WF MWF HF 

2012 9 4 1 39 7 20 4 33 9 19 3 25 24 11 3 20 

2013 9 4 1 38 6 21 4 34 12 21 3 30 21 10 3 21 

2014 6 2 1 33 8 20 4 32 21 20 4 21 36 10 3 20 

2015 10 1 1 59 12 15 3 31 8 21 3 20 15 13 14 47 

2016 11 4 2 43 8 20 5 29 8 20 3 29 12 10 3 19 

 

Average 9 3 1.2 42.4 8.2 19.2 4 31.8 11.6 20.2 3.2 25 21.6 10.8 5.2 25.4 

Standard Deviation 1.8 1.4 0.5 9.9 2.2 2.3 0.7 1.9 5.5 0.8 0.5 4.5 9.3 1.3 4.9 12 

# of required CCS 

(85th Percentile) 
10 4 1 49 10 21 5 33 15 21 3 29 29 12 7 32 

 # of required CCS 

(90th Percentile) 
11 4 2 53 10 21 5 34 17 21 4 30 31 12 10 37 

 # of required CCS 

(95th Percentile) 
11 4 2 56 11 21 5 34 19 21 4 30 34 13 12 42 

# of Current CCS 16 10 30 66 

# of Current ITS 30 15 157 377 

 

Table 6.4 CCS Sites Needed by Highway Type 

Functional clusters 
Cluster-1 

(Urban Freeway) 

Cluster-2 

(Rural Freeway) 

Cluster-3 

(Urban Arterial) 

Cluster-4 

(Rural Arterial) 

Year MF WF MWF HF MF WF MWF HF MF WF MWF HF MF WF MWF HF 

2012 21 5 1 9 18 7 2 28 35 10 1 24 8 11 2 36 

2013 19 4 1 9 7 8 2 28 37 11 1 25 12 12 3 40 

2014 40 4 1 8 30 7 2 29 34 10 1 24 6 11 3 29 

2015 13 5 11 26 5 6 1 21 15 12 35 25 9 13 7 67 

2016 18 4 1 8 5 6 2 20 4 17 1 21 21 12 3 42 

 

Average 22.2 4.4 3 12 13 6.8 1.8 25.2 25 12 7.8 23.8 11.2 11.8 3.6 42.8 

Standard Deviation 10.4 0.5 4.5 7.8 10.9 0.8 0.4 4.3 14.7 2.9 15.2 1.6 5.9 0.8 1.9 14.4 

# of required CCS 

(85th Percentile) 
28 5 5 16 23 8 2 29 36 14 15 25 16 13 5 52 

 # of required CCS 

(90th Percentile) 
32 5 7 19 25 8 2 29 36 15 21 25 17 13 5 57 

 # of required CCS 

(95th Percentile) 
36 5 9 23 28 8 2 29 37 16 28 25 19 13 6 62 

# of Current CCS 42 22 15 43 

# of Current ITS 501 21 28 31 
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6.3.4 Number of CCS Sites Needed by Highway Type 

The same calculation was conducted by the highway types. As shown in Table 6.4, the number of 

CCS sites on urban freeways (cluster-1) met the requirement for all data types. However, more 

CCS sites were needed on rural freeways (cluster-2) to meet the requirements of MF and HF, on 

urban arterials (cluster-3) for all data types, and on rural arterials (cluster-4) for HF. The 

requirements could be fulfilled by adding ITS sensors into CCS.  

6.3.5 Number of CCS Sites Needed by MDOT Clusters 

MDOT classified CCS sites into six categories by their locational characteristics: urban (cluster 1), 

urban rural (cluster 2), rural (cluster 3), rural north (cluster 4), recreational (cluster 5), and 

recreational corridor (cluster 6), taking the recreational areas and corridors into consideration. 

Figure 6.5 depicts CCS sites by cluster with different colors on highway routes.  

 

Figure 6.5 Locations of CCS by MDOT cluster  
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The number of CCS sites required by data type in each cluster is shown in Table 6.5. According 

to the calculation, no additional CCS sites were needed for cluster-1 (Urban) and cluster-3 (Rural) 

for all data types. However, the analysis shows that four additional sites were needed for Cluster-

2 (Urban Rural) to meet the requirement of HF. 

Table 6.5 CCS Sites Needed by MDOT Clusters 

MDOT 

Clusters 

Cluster-1 

(Urban) 

Cluster-2 

(Urban Rural) 

Cluster-3 

(Rural) 

Cluster-4 

(Rural North) 

Cluster-5 

(Recreational) 

Cluster-6 

(Recreational 

Corridor) 

Year MF WF MWF HF MF WF MWF HF MF WF MWF HF MF WF MWF HF HF WF MWF HF MF WF MWF HF 

2012 35 5 1 16 11 5 1 12 3 4 2 14 12 5 1 50 3 11 2 19 3 4 3 13 

2013 21 5 1 15 26 4 1 14 5 4 2 15 12 7 3 59 3 13 2 20 3 4 2 13 

2014 38 6 1 15 23 4 1 11 2 2 1 10 9 3 3 44 2 12 2 15 5 4 2 14 

2015 14 6 4 40 14 5 2 35 3 3 1 17 15 6 3 59 11 11 7 23 5 3 3 19 

2016 14 8 1 14 15 5 1 12 4 4 2 12 14 8 4 63 3 10 2 19 2 3 4 12 

 

Average 24 6 3 20 17 4 1 16 3 3 1 13 12 5 2 55 5 11 3 19 3 3 2 14 

Standard 

Deviation 
24.4 6 1.6 20 17.8 4.6 1.2 16.8 3.4 3.4 1.6 13.6 12.4 5.8 2.8 55 4.4 11.4 3 19.2 3.6 3.6 2.8 14.2 

# of required 

CCS 

(85th 

Percentile) 

11.5 1.2 1.3 11.2 6.4 0.5 0.4 10.2 1.1 0.9 0.5 2.7 2.3 1.9 1.1 7.8 3.7 1.1 2.2 2.9 1.3 0.5 0.8 2.8 

# of required 

CCS 

(90th 

Percentile) 

37 7 3 30 25 5 2 27 5 4 2 16 15 8 4 61 8 13 5 22 5 4 4 17 

# of required 

CCS 

(95th 

Percentile) 

37 8 3 35 25 5 2 31 5 4 2 17 15 8 4 62 9 13 6 22 5 4 4 18 

# of Current 

CCS 
41 27 19 11 18 8 

# of Current 

ITS 
424 88 21 23 8 15 

 

For cluster-4 (Rural North), the number of CCS sites was sufficient for all data types except MF 

and HF. The required number of CCS sites for HF was exceptionally high. It is because the hourly 

factors tend to highly fluctuate when traffic volume is very low. For both cluster-5 (Recreational) 

and cluster-6 (Recreational Corridor), additional CCS sites were required for HF but not for other 

factors. The result indicates that the requirements could be fulfilled when existing ITS sensors 

were added into the CCS program except for cluster 4 (Rural North). 
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6.4 Summary of Findings 

In this chapter, CCS sites were evaluated by employing the redundancy analysis and the 

sufficiency analysis. Correlation and proximity analyses were performed to identify redundant 

CCS sites. Through the redundancy analysis, four CCS sites were identified as possibly redundant 

and potentially removable. Among those four, two on interstate freeways were highly possible to 

remove while the other two on urban arterials were possible but not recommended to remove due 

to a lack of CCS sites on urban arterials. However, these two CCS sites on urban arterials could 

be kept for potential relocation sites when they fail. 

The number of CCS sites needed was evaluated by quantifying the numbers by data type 

and different classifications. The analysis results showed that more CCS sites were needed in the 

North region as well as on rural freeways and urban arterials. More specifically, the Rural-North 

(cluster 4 in MDOT’s classification) needed at least four more CCS sites to meet the requirement 

for MF. When applying the requirement for hourly factors, four more sites were needed for cluster 

3 and 5, and ten more sites for cluster 6.  
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Chapter 7 Combining ITS Sensors into the Traffic 

Monitoring Program 

7.1 Introduction 

The objective of this chapter is to identify the ITS sensors that are usable for the traffic monitoring 

program. As discussed in the previous chapter, MDOT’s traffic monitoring program needs more 

sensors to meet the FHWA’s TMG requirements. The gap could be fulfilled by using existing ITS 

sensors. Even though there are still data quality concerns in using these sensors in the traffic 

monitoring program, the ITS sensors could be a good source of traffic volume data when they are 

well calibrated and maintained as discussed in Chapter 5.  

 

Figure 7.1 ITS sensor and CCS sites by the MDOT cluster 
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 In this research, both CCS sites and ITS sites were analyzed in order to identify CCS sites 

that could be replaced with existing ITS sensors and ITS sensors that could be added into MDOT’s 

traffic monitoring program. Those replaceable CCS sites and addable ITS sensors were analyzed 

by the MDOT’s cluster. Figure 7.1 shows all ITS sensors and CCS sites analyzed by the MDOT’s 

cluster.  

Based on proximity and roadway type, CCS sites that could be replaced with ITS sensors 

were identified. When determining the ITS sensors into MDOT’s traffic monitoring program, the 

following factors were considered (MetroCount, 2002; FDOT, 2007): 

• Consider high volume highways. 

• Consider adequate geographical coverage. 

• Place them away from intersections/ramps. 

• Avoid sharp curves. 

• Avoid acceleration/deceleration areas. 

• Avoid high pedestrian traffic areas. 

7.2 Proposed Traffic Monitoring Program 

7.2.1 CCS Sites Replaceable with ITS Sensors 

Through careful investigation of CCS sites and ITS sensor sites, we identified a total of 12 CCS 

sites replaceable with ITS sensors. Out of 12 sites, 11 of them were those in cluster-1 (Urban), and 

one of them was that in cluster-2 (Urban Rural). Geographical locations of those CCS stations 

replaceable with ITS sensors were shown in Figure 7.2. WIM, vehicle classifiers or other special 

purpose sites were avoided when selecting replaceable CCS sites.  

 Table 7.1 shows a list of CCS sites and corresponding ITS sensors along with the 

percentage of ITS sensors’ data availability. Note that most ITS sensors in the list hold good data 

availability, but a routine calibration and maintenance effort is needed to maintain better data 

quality and availability.  
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Figure 7.2 Location of replaceable ITS sites by MDOT clusters 

 

Table 7.1 Replaceable Sensor Sites 

Replaceable Sensors Device ID 
Data 

Availability 
Total 

Cluster-1 

CCS-9839 and ITS-354&355 99% 

11 

CCS-9969 and ITS-418&419 99% 

CCS-9419 and ITS-406&407 99% 

CCS-9499 and ITS-402&403 99% 

CCS-9489 and ITS-11&12 99% 

CCS-9979 and ITS-160&161 98% 

CCS-9999 and ITS-184&185 99% 

CCS-9729 and ITS-118 50% 

CCS-9739 and ITS-305 25% 

CCS-5069 and ITS-240 25% 

CCS-9769 and ITS-213 91% 

Cluster-2 CCS-9229 and ITS-2412 37% 1 

 

 



 

66 | P a g e  

 

7.2.2 Addable ITS Sensor Sites 

In order to meet the requirement of FHWA’s TMG, ITS sensors were reviewed for possible 

addition into MDOT’s traffic monitoring program. In order to enhance the quality of the traffic 

monitoring program by utilizing existing ITS sensors, a total of 37 ITS sensors were recommended 

for addition into the program. Figure 7.3 depicts all addable ITS sensor sites by cluster along with 

existing CCS sites. Table 7.2 presents all addable ITS sensors and their data availability in each 

cluster. 

 

Figure 7.3 Location of addable ITS sites by MDOT clusters 
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Table 7.2 Addable ITS Sensor Sites 

Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6 

ID Data 

Av. 

ID Data 

Av. 

ID Data 

Av. 

ID Data 

Av. 

ID Data 

Av. 

ID Data 

Av. 

141 99% 116 85% 3491 42% 3535 2% 3052 38% 3636 38% 

413 90% 3136 18% 3497 43% 3743 17% 3741 15% 3637 38% 

424 97% 2412 37% 
  

3749 15% 3168 45% 3638 39% 

104 99% 110 99% 
  

3750 15% 
  

3053 37% 

35 99% 3058 11% 
  

3737 16% 
  

3739 17% 

47 99% 3505 39% 
      

3545 42% 

53 93% 140 36% 
        

36 99% 
          

3151 37% 
          

3156 24% 
          

104 57% 
          

153 53% 
          

151 48% 
          

232 68% 
          

14 7 2 5 3 6 

 

As shown in Table 7.2, out of 37 ITS sensors addable to MDOT’s traffic monitoring 

program, a total of 14 ITS sensors were in cluster 1. Moreover, 7, 2, 5, 3, and 6 ITS sensors were 

in each cluster 2, 3, 4, 5 and 6, respectively. Among 14 ITS sensors in cluster-1, 10 ITS sensors 

were in the Southeast Michigan area, and 4 sensors were in the Grand Rapids area. Unlike other 

clusters, the total number of sensors in cluster-1 exceeded the number of CCS required and met 

the requirement at a tolerance limit of 8 percent instead of 10 percent.  

7.2.3 Traffic Sensors in the Proposed Traffic Monitoring Program 

Combining all existing CCS and ITS sensor sites, the study proposes to have a total of 159 sensors 

in MDOT’s traffic monitoring program (TMP) as summarized in Table 7.3. Out of 124 existing 

CCS sites as of 2017, it is proposed to keep 110 CCS sites by removing 2 CCS sites and replacing 

12 sites with ITS sensors. Meantime, it is also proposed to add 37 ITS sensors into MDOT’s TMP. 

Eventually, MDOT’s TMP will combine existing 110 CCS sites and 49 ITS sensors.  

 The number of sensor sites in TMP will sufficiently meet the requirements of MF for all 

clusters and HF for cluster 1, 2 and 3. The number does not meet the guideline of HF for clusters 

4, 5 and 6 mainly because of low traffic volume and high variations in these clusters. For that 

reason, FHWA’s TMG does not mandate to meet the HF guideline.  
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Table 7.3 Summary of Sensors in the Proposed Traffic Monitoring Program 

 Cluster-

1 

Cluster-

2 

Cluster-

3 

Cluster-

4 

Cluster-

5 

Cluster-

6 
Total 

Number of existing CCS 

sites 
41 27 19 11 18 8 124 

Number of CCS sites 

required by MF 
37 25 5 15 9 5 96 

Number of CCS sites 

required by HF 
35 31 17 62 22 18 185 

        
Number of removable CCS 

sites 
2 0 0 0 0 0 2 

Number of CCS sites 

replaceable with ITS 
11 1 0 0 0 0 12 

Number of ITS sites 

addable to TMP 
14 7 2 5 3 6 37 

        
Total number of sites in 

proposed TMP  
53 34 21 16 21 14 159 

 Number of CCS sites  28 26 19 11 18 8 110 

Number of ITS sites  25 8 2 5 3 6 49 

7.3 Cost Analysis in the Proposed Traffic Monitoring Program 

7.3.1 CCS Costs  

Table 7.4 summarizes the construction costs and the operation & maintenance (O&M) costs for a 

CCS system on a 4-lane divided highway. Four types of costs were included in the construction 

costs: 1) cabinet installation cost, 2) class sensor installation cost, 3) speed sensor installation cost, 

and 4) system connection cost. The costs included required vehicle, supplies, and manpower. 

Multiple bores were added for the required number of lanes, and it was assumed that one iSinc and 

Phoenix installation was enough for multiple lanes. Overall, the CCS construction costs were 

estimated as $73,462 per device.  

In estimating operation and maintenance (O&M) costs, two types of costs were included: 

1) sensor replacement and calibration costs and 2) annual average mowing cost. Vehicle supplies, 

utilities, manpower, and sensor replacement costs were included in sensor replacement and 

calibration costs. In addition, annual mowing cost includes mowing equipment and manpower. 

Accordingly, the total O&M cost for a CCS device was estimated as $6,122 per year. 
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Table 7.4 Summary of CCS Construction and Maintenance Costs 

CCS Construction Costs 

Cost Types Cost-breakdown Total Cost/device 

1. Cabinet Installation  $6,056 

2. 4 lane Class  

(with 1 iSinc and 2 bores) 

4 class @$5,342 each + 1 iSinc @$12,000 

each+2 bores @$2613 each 
$38,594 

3. 4 lane speed  

(with 1 Phoenix and 2 bores) 

4 speed @ $5,037 each+ 1 Phoenix 

@$1800 each+2 bores @$2613 each 
$27,174 

4. System Connection  $1,638 

Total construction cost per device $73,462 
 

CCS Operation &Maintenance Costs 

Cost Types Cost-breakdown Total Cost/device 

1. Sensor Replacement and 

Calibration 

Vehicle supplies + Manpower + 4 sensor 

replacement@$5,342 each 
$5,342 

2. Average Mowing Cost  $780 

Total O&M cost per device per year $6,122 

 

7.3.2 ITS-MVDS Costs  

ITS-MVDS cost data was obtained from a previous MDOT research reports, “Costs and Benefits 

of MDOT ITS Deployments,” conducted by the research team. The average construction cost 

include: 1) design contract cost, 2) construction contract cost, and 3) system manager contract cost.  

As shown in Table 7.5, the average construction cost for an MVDS sensor was estimated as 

$45,845 per device from the average cost of those sensors in the STOC region. ITS-MVDS O&M 

costs were subdivided into maintenance contract, Transportation Operations Center (TOC) 

contract, utility costs and MDOT staff costs. An annual maintenance cost per ITS-MVDS was 

estimated as $1,908.  

Table 7.5 Summary of ITS-MVDS Construction and Maintenance Costs 

ITS-MVDS Construction Costs 

Cost Types  Break-down for Cost Items  Total Cost/device  

Average construction cost 

per device 

Design Contract Cost, Construction 

Contract Cost, and System Manager 

Contract Cost 

$45,845 

 
ITS-MVDS Operation &Maintenance Costs 

Cost Types  Break-down for Cost Items  Total Cost/device  

Average O&M cost per 

device per year 

Maintenance Contract Cost, TOC 

Operation Cost, Utility Cost (Power and 

Communication), and Manpower cost 

$1,908 
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7.3.3 Estimation of Cost Savings 

Based on costs of CCS and ITS sensors, this study estimated the cost saving when using existing 

ITS sensors in the traffic monitoring program. In this cost analysis, an equivalent annual cost was 

calculated in order to reflect the future opportunity costs by applying an annual discount rate. The 

equivalent annual cost is calculated as follows: 

 

𝐸𝐴𝐶 =
∑

𝐹𝑉

(1+𝑖)𝑡
20
𝑡=0

20
 ……………………………………………………………………….... (7.1) 

where: 

EAC= Equivalent annual cost 

FVt = Future value in year t  

i = Discount rate  

t = Year (base year t = 0 and the terminal year t = 20) 

 

The analysis period extended to 20 years from the base year of 2016, and the discount rate 

of 2.5 percent was applied (Executive Office of the President, Office of Management and Budget, 

OMB, 2016). The lifespan of sensors was assumed 20 years for CCS sites and 10 years for ITS 

sensors., respectively. In calculating the equivalent annual costs, ITS sensors were assumed to be 

replaced every 10 years with an initial replacement in five years from the base year. Table 7.6 

summarizes equivalent annual costs for both CCS and ITS MVDS.  

 

Table 7.6 Summary of Equivalent Annual Costs 

 
Annual Costs Equivalent Annual Costs for 20 Years 

Construction O & M Construction O & M Total 

CCS (A) $73,462 $6,122 $3,673.1 $4,771.8 $8,444.9 

ITS MVDS (B) $45,853 $1,908 $2,821.8 $1,487.2 $4,309.0 

A – B $27,609 $4,214 $851.3 $3,284.6 $4,136.0 
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The proposed MDOT’s TMP (Table 7.3) includes: 1) removing 2 CCS stations; 2) replacing 

12 CCS sites with ITS sensors; and 3) adding 37 ITS sensors. The annual equivalent cost savings 

from these changes can be estimated: 

• Annual cost saving from removing 2 CCS sites = $4,771.8 x 2 = $9,544 

• Annual cost saving from replacing 12 CCS sites with ITS = $3,285 x 12 = $39,416 

• Annual cost saving from adding 37 ITS sensors instead of CCS = $4,136 x 37 = $153,031 

  

In summary, the proposed TMP saves $48,959 annually by removing 2 CCS sites and replacing 

12 sites with ITS sensors. When including the savings from using 37 ITS sensors instead of adding 

new CCS sites, the total annual saving is estimated to be $201,990 annually for next 20 years. Note 

that this analysis does not account the possible additional costs for better maintenance of existing 

ITS MVDS.  
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Chapter 8 Data Maintenance and Implementation 

Plan 

8.1 Data Quality and Management Plan 

8.1.1 Sensor Calibration and Maintenance  

As discussed in Chapter 5, ITS MVDS sensors are able to provide data with a good quality when 

they are well maintained and calibrated. Compared to the conventional inductive loop detectors, 

they are easy to maintain without interruption of traffic. Although current MVDS maintenance 

practices may be sufficient for current ITS practices, the ITS MVDS sensors to be used in the CCS 

program will need better calibration and maintenance. In order to continue to obtain good quality, 

ITS MVDS sensors need following routine maintenance and management. 

1) Checking setup position: MVDS sensors use microwave wave radar technology. The 

sensors are supposed to face perpendicular to the direction of traffic, and it is desirable to 

avoid locations with reflecting objects like guidelines that may cause disturbance to the 

sensor system.  

2) On-site calibration: ITS MVDS sensors are easy to calibrate on site. The system allows 

visualization of individual vehicle shapes passing the highway segment. The on-site 

calibration ensures good quality of data.   

3) Data communication: Data loss may occur due to communication problems. Highway 

construction and other highway activities may interrupt data communication. Routine 

checkups on the communication systems will minimize the data loss. 

4) Data management: Currently, ITS sensor data are managed by individual Traffic Operation 

Centers (TOC). A statewide data management system is necessary to store and manage the 

data in a consistent manner. Inconsistency in data format often causes difficulties in 

centralizing the management system.  

 

The research team proposes to conduct routine on-site calibration and maintenance at least 

twice a year (spring and fall) for those ITS sensors to be used in the traffic monitoring program. 

While the spring maintenance entails an on-site system calibration checking if they sense vehicles 
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properly, the fall maintenance includes the on-site system calibration as well as data comparison 

with 24-hour volume data and one-hour samples of speed data manually collected.   

8.1.2 Data Management 

MDOT is in the process of migrating the data management system to the MS2. It is expected to 

provide powerful data management capacity. Even though the traffic monitoring program and the 

ITS sensor data are currently separately managed, it will be desirable to combine both datasets in 

one management system. 

8.1.3 Sensor Testbed 

Traffic sensing technology is evolving every year. MDOT can improve the traffic monitoring 

capacity by adopting new sensing technologies. However, it takes time to examine interoperability 

and effectiveness of new sensing technologies. In order to enhance the testing capacity, it is 

recommended that MDOT routinely test new sensor systems in a sensor testbed that is capable of 

examining new devices and sensors together with existing sensing systems. The sensor testbed 

should be equipped with not only sensors but also a communication and data processing system. 

 

8.2 Data Imputation  

Due to communication failure, or other reasons, the system fails to collect data during a certain 

period. Missing data imputation has been a common problem that data managers often face. In this 

study, a novel deep-stacked unidirectional deep Neural Network (DNN) approach is proposed to 

impute the missing data from CCS and ITS sensors.  

8.2.1 Data Imputation Approach 

This study used two deep learning techniques, LSTM (Long Short Term Memory) and DNN. 

LSTM was considered due to its usefulness in dealing with time series dataset. DNN is a sequential 

model with only feed forward layers. The main difference of these two techniques is the loop for 

each neuron in LSTM where DNN does not have such a loop. 
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Figure 8.1 Structure of a deep learning neural network 

 

8.2.2 Performance of the Proposed Data Imputation 

The proposed methods were tested for CCS and ITS sensors. Two sensor data (CCS ID-8169 and 

ITS ID-8409) were used for testing in three different scenarios: 1) 1-hour data missing, 2) 3-hour 

data missing, and 3) one-day data missing. 

The input data in this study included the week of year (WOY), the day of week (DOW), 

hourly volume, and past immediate two-hour volume (T-2) for 2016. For CCS data imputation, 

data from the past six-years, from 2010 to 2015, were considered as a set of training data. However, 

only 2015 data was considered as training data for the ITS case due to the unavailability of the 

dataset.  

 The results for CCS data were depicted in Figure 8.2. The proposed model successfully 

estimated the missing data: the mean absolute percentage errors (MAPE) for scenario 1, 2 and 3 

were 10.8 percent, 11.39 percent and 12.69 percent, respectively.  
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Figure 8.2 Data imputation results 

The model was also applied to the missing data imputation for ITS data as shown in Figure 

8.3. The last two months (November and December) of data from 2016 was considered as missed 

data to evaluate the Tuesday missing data. MAPE of 11.46 was obtained for the whole day missing 

data. 

  

 

Figure 8.3 Output for SEMTOC data filling  
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8.2.3 Findings and Suggestion 

It was found that the deep learning model for data imputation was a powerful tool in imputing 

missing data as demonstrated in two examples. The proposed model could be directly used in the 

data management system by using historic data. A good feature of the approach is that it can be 

improved when more data are available. Applications of deep learning are expected to enhance the 

traffic monitoring program by allowing better treatment of missing data. It is suggested to 

implement this imputation method after further investigating its applicability and effectiveness in 

the traffic monitoring program. 

8.3 Suggested Implementation Plan 

In order implement the research outcome, the research team presents five implementation items 

by their characteristics in terms of urgency and timeline.  

8.3.1 Removal of CCS Sites from MDOT’s TMP 

According to our analysis, two CCS sites (ID 9029 or 9049; ID 9419 or 9969) were redundant and 

removable. From removing these two CCS sites, the cost saving is expected to be $9,544 annually 

for next 20 years. This removal can be implemented immediately. 

8.3.2 Replacing 12 CCS sites with ITS Sensors 

We have identified a total of 12 CCS sites replaceable with existing ITS sensors. The replacement 

can be implemented in two years after completing the QA/QC of ITS sensors. Replacing those 12 

CCS sites is expected to save $39,416 annually for 20 years. However, not all ITS sensors provide 

data with a good quality as of 2016 as summarized in Table 8.1. Therefore, it is suggested that 

those 12 ITS sensors be recalibrated and evaluated for the replacement. The calibration process 

includes on-site calibration, data comparison, and decision making as follows:   

1) Conduct on-site calibration of 12 replaceable ITS MVDS.  

2) Collect data for a month. 

3) Check data communication. 

4) Compare ITS data with adjacent CCS data. 

5) Develop a performance report (data availability and data quality). 

6) Decide to adopt each ITS sensor to TMP.  
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Table 8.1 List of CCS Sites Replaceable with ITS Sensors and ITS Data Quality 

Device ID ITS Data Availability R-square Value MAPE (%) 

CCS-9839 and ITS-354&355 99% 0.89 11.0% 

CCS-9969 and ITS-418&419 99% 0.96 4.8% 

CCS-9419 and ITS-406&407 99% 0.90 5.3% 

CCS-9499 and ITS-402&403 99% 0.93 15.0% 

CCS-9489 and ITS-11&12 99% 0.92 12.8% 

CCS-9979 and ITS-160&161 98% 0.93 8.3% 

CCS-9999 and ITS-184&185 99% 0.95 8.4% 

CCS-9729 and ITS-118 50% 0.89 13.6% 

CCS-9739 and ITS-305 25% 0.72 15.0% 

CCS-5069 and ITS-240 25% 0.78 11.1% 

CCS-9769 and ITS-213 91% 0.85 12.8% 

CCS-9229 and ITS-2412 37% 0.97 7.6% 

 

 

Table 8.2 ITS Sensor Sites to be Added into TMP 

Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5 Cluster-6 

ID Data 

Avail. 

ID Data 

Avail. 

ID Data 

Avail. 

ID Data 

Avail. 

ID Data 

Avail. 

ID Data 

Avail. 

141 99% 116 85% 3491 42% 3535 2% 3052 38% 3636 38% 

413 90% 3136 18% 3497 43% 3743 17% 3741 15% 3637 38% 

424 97% 2412 37% 
  

3749 15% 3168 45% 3638 39% 

104 99% 110 99% 
  

3750 15% 
  

3053 37% 

35 99% 3058 11% 
  

3737 16% 
  

3739 17% 

47 99% 3505 39% 
      

3545 42% 

53 93% 140 36% 
        

36 99% 
          

3151 37% 
          

3156 24% 
          

104 57% 
          

153 53% 
          

151 48% 
          

232 68% 
          

14 7 2 5 3 6 
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8.3.3 Adding ITS Sensors into TMP 

We have identified a total of 37 ITS sensors that may benefit the MDOT’s TMP. Thanks to the 

ease of ITS sensor calibration and maintenance, the equivalent annual cost for ITS sensors is more 

economic than CCS. As presented before, when adding ITS sensors instead of CCS sensors, the 

annual cost saving is expected to be $153,031 annually for 20 years. To add these ITS sensors into 

TMO, the same calibration process as described in section 8.3.2 is also required. Table 8.2 presents 

ITS sensor sites to be added into TMP. 

 

8.3.4 Utilizing a Comprehensive Sensor Testbed 

As described in section 8.1.3, the sensor testbed can help MDOT in improving the traffic 

monitoring capacity by allowing new sensing technologies to be easily tested. The sensor testbed 

is capable of examining new devices and sensors together with existing sensing systems. As 

MDOT uses many traffic sensors for TMP as well as ITS, continuous investigation of new sensor 

systems benefits MDOT in managing these programs in a cost-effective manner. 

 

8.3.5 Incorporation of Data Imputation Method 

As presented in section 8.2, the artificial intelligence (AI) approach in imputing missing data was 

promising. In order to implement the proposed approach, a further research is needed. The 

proposed research includes data analysis, development of imputation method, model validation, 

and system integration. Success of the incorporation is expected to allow imputing of missing data 

while enhancing data analytics and the prediction capacity with existing data.  
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Chapter 9 Conclusion and Recommendation 
 

Traffic count stations play an important role for measuring the traffic characteristics along the 

roadways and overall transportation systems. Accurate and reliable traffic data are essential for 

transportation research and management as well as for traffic monitoring, planning, and design. 

Among the traffic count stations, continuous count stations (CCS) collect vehicle volume 

throughout 24 hours a day, seven days a week, and 356 days a year. The data obtained from CCS 

stations are usually used to develop hour of day (HOD), day of week (DOW), and month of year 

(MOY) factors to predict ADT for short counts. This study focused on evaluating Michigan’s 

current traffic monitoring program including the site placement appropriateness, redundant count 

locations, incorporating ITS and other system sites with on-site maintenance and a calibration 

implementation plan.  

A web-based online survey was conducted for 11 neighboring states to understand current 

CCS programs, other monitoring sources (ITS and WIM), state-of-the-practices in managing the 

traffic monitoring program. The survey showed that inductive loop, WIM, and microwave 

detectors were the most common sensors for CCS and ITS. Most states typically incorporate WIM, 

ITS and data from local agencies into CCS programs in a way. Many states were using cloud-

based data management systems for better QA/QC process as well as for traffic incidents and 

missing data treatment.  

This research used data collected from CCS, ITS, and WIM sensors, and incorporated into 

a multi-source GIS database. Data used include CCS data for the past five years ranging from 

2012-2016 and ITS sensor data for 2015 and 2016. The data availability of ITS sensor data was 

around 80 percent, 50 percent, and 30 percent for SEMTOC, WMTOC, and STOC, respectively. 

It should be noted that the transition to central ATIM software also affected the overall quality of 

data during the period. ITS data were evaluated and compared with data from adjacent CCS to 

examine if ITS sites are usable in the traffic monitoring program. In volume data comparison, 

approximately 35 percent of the total comparable sites showed high quality with less than 10% 

error. In speed data evaluation, more than 50 percent of comparable ITS sites yielded similar speed 

distribution with nearby CCS sites. In vehicle classification, ITS sensors successfully classified 

vehicle classes by length although their accuracy in classifying vehicles was not great.  
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In this study, CCS sites were evaluated by employing the redundancy analysis and the 

sufficiency analysis. Correlation and proximity analyses were performed to identify redundant 

CCS sites. Through the redundant analysis, four CCS sites were identified as possibly redundant 

and potentially removable. Among those four, two on instate freeways are highly possible to 

remove while the other two on urban arterials are possible but not recommended to remove due to 

insufficient number of CCS sites on urban arterials. These two CCS on urban arterials could be 

kept for potential relocation sites. The number of CCS sites needed was evaluated by quantifying 

the numbers by data type and different classifications. The analysis results showed that more CCS 

sites were needed in the North region, on rural freeways, and on urban arterials. More specifically, 

the Rural-North (cluster 4 in MDOT’s classification) needed at least four more CCS sites to meet 

the requirement for MF. When applying the requirement for hourly factors, four more sites were 

needed for cluster 3 and 5, and ten more sites for cluster 6.  

This research analyzed both CCS sites and ITS sites to identify replaceable CCS sites and 

usable ITS sensor sites. Through careful investigation of CCS sites and ITS sensor sites, this study 

found that a total of 12 CCS sites were replaceable with ITS sensors. In order to enhance the quality 

of the traffic monitoring program by utilizing existing ITS sensors, a total of 37 ITS sensors were 

recommended to add into the program. In sum, this research proposes removing 2 redundant CCS 

sites, replacing 12 CCS sites with ITS sensors, and adding 37 ITS sensors. The cost analysis reveals 

that the proposed TMP saves $48,959 annually by removing 2 CCS sites and replacing 12 sites 

with ITS sensors. When including the saving from using 37 ITS sensors instead of adding new 

CCS sites, the total saving is estimated to be $201,990 annually for next 20 years.  

This research recommended five implementable items: 1) removing 2 CCS sites, 2) 

replacing 12 CCS sites with existing ITS sensors, 3) adding 37 ITS sensors into MDOT TMP, 4) 

utilizing a comprehensive sensor testbed, and 5) incorporating a deep learning-based data 

imputation method. In order to ensure data quality, the research also provided an ITS sensor 

calibration and maintenance plan along with a case example of a data imputation method using a 

deep learning approach.  
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Appendix 1: Survey Questionnaire 

Background Information 

 

1. Which state do you work for? 

 
 

 

2. What types of sensors do you use for your Continuous Counting Stations (CCS), Intelligent Transportation 

Systems (ITS) and other monitoring purposes? (Please check all applicable.) 

 CCS ITS Others  

Inductive Loop Detectors ❏ ❏ ❏ 

Magnetic Sensor ❏ ❏ ❏ 

Non-Invasive Microloops ❏ ❏ ❏ 

Sensys System ❏ ❏ ❏ 

Weigh in motion system ❏ ❏ ❏ 

Microwave Radar ❏ ❏ ❏ 

Active/ Passive Infrared ❏ ❏ ❏ 

 

3. How many staff members are involved in performing CCS data quality? 

 

 

 

4. How many miles of highway does your DOT manage and how many Continuous Count Stations (CCS) does your 

DOT use for the highways by type? 

 Total Coverage 

(mile) 

Number of CCS 

Interstate ❏ ❏ 

Highway ❏ ❏ 

Local road ❏ ❏ 

 

5. How would you rate sensor data quality for obtaining volume data by type of sensor that you have in your CCS 

system? 

 Very satisfied satisfied neutral Not 

satisfied 

Very  

dissatisfied 

Inductive Loop Detectors ❏ ❏ ❏ ❏ ❏ 

Magnetic Sensor ❏ ❏ ❏ ❏ ❏ 

Non-Invasive Microloops ❏ ❏ ❏ ❏ ❏ 

Sensys System ❏ ❏ ❏ ❏ ❏ 

Weigh in motion system ❏ ❏ ❏ ❏ ❏ 

Microwave Radar ❏ ❏ ❏ ❏ ❏ 

Active/ Passive Infrared ❏ ❏ ❏ ❏ ❏ 
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6. What sensor(s) do you use for obtaining vehicle class data? 

 

 

 

7. How would you rate data quality of the sensor (in question 6) for obtaining vehicle class data? 

Very satisfied satisfied neutral Not satisfied Very  

dissatisfied 

❏ ❏ ❏ ❏ ❏ 

 

8. Are you collecting vehicle class data with ITS or other systems? 

a. No 

b. Yes (Please identify the system and the number of vehicle classes) 

9.   Are you combining other sources of information in your CCS monitoring program? Please select all applicable. 

a. None 

b. Intelligent Transportation Systems (ITS) 

c. Road Weather Information System (RWIS) 

d. Portable Traffic Recorder (PTR) 

e. Weigh-in-motion (WIM) sensors 

f. Regulatory monitoring sites such as international border crossings and toll plazas 

g. Data Counts for MPO, City, and Township 

h. Sensors for signalized intersections and/or ramp metering 

i. Other 

10. Do you use other sources in the developing adjustment factors? 

a. No 

b. Yes (Please identify those) 

11. If you use other sources, are they meeting Traffic Monitoring Guide (FHWA, 2013) standards? 

a. No 

b. Yes  

12. Would you please share your experience for reviewing the quality and use of other sources within your monitoring 

program? 

 

 

 

13. Are you collecting vehicle class and speed as part of those other sources in addition to CCS monitoring program? 

a. No 

b. Yes (Please describe about the other sources.) 

14. Do you have on-line traffic data management system incorporated with CCS and other sources? 

a. No 

b. Yes (Would you tell us more details or the web link if accessible by others?) 
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15. How do you share your traffic data? (Check all applicable.) 

a. On-line 

b. FTP site 

c. Electronic files via e-mail 

d. Hard copies 

e. Others (Please Specify): 

16. Who are the data users? (Check all applicable.) 

a. Other divisions in the state DOT 

b. FHWA 

c. Metropolitan Planning Organizations (MPOs) 

d. Other state government agencies (Police, tourisms) 

e. County, city, and town governments 

f. Engineering consultants and researchers 

g. Developers and realtors 

h. Citizens 

i. Others (Please Specify.) 

17. Do you have any plan to improve your traffic monitoring program for CCS? 

a. No 

b. Yes (Please describe those plans.) 

18. Do you have a schedule to perform strategic assessments of your sensor locations (as part of your monitoring 

program)? 

a. No 

b. Yes (Please add more details about the schedule.) 

19. When do you usually expand or change the number of sensors for the network/systems of CCS, and how do you 

re-assess them? 

 

 

 

20. How do you treat missing data or traffic incidents? 

 

 

 

21. Please provide your contact information if you are willing to be contacted regarding your comments: 

Name 

 

 

Affiliation 
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Phone 

 

 

Email Address 

 

 

22. Other comments: (Future plans and anticipated the difficulties in using other sources for the CCS program.) 
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Appendix 2: Data Format and Dictionary 

Data Format: 

Hourly data format is considered for all of the types of counts (CCS, ITS, WIM) for this research.  

Continuous count station data format: 
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Speed Dataset Format 
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Vehicle Class data Format 
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ITS Data Format: 
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WIM data format: 
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(file.CLA data format): 
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Data Dictionary: 

Direction of Travel for CCS and WIM: 

  

Lane of Travel: 

 

 

 

 

 

 

 

 

Month of Year: 

 Month of Year: 

01 January 

02 February 

03 March 

Day of Week: 

01 Sunday 

02 Monday 

03 Tuesday 

04 Wednesday 

05 Thursday 

06 Friday 

07 Saturday 
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04 April 

05 May 

06 June 

07 July 

08 August 

09 September 

10 October 

11 November 

12 December 

 

Hour Code: 

 

Hour Code Description 

0 After 00:00 to 01:00 

1 After 00:00 to 01:00 

2 After 01:00 to 02:00 

3 After 02:00 to 03:00 

4 After 03:00 to 04:00 

5 After 04:00 to 05:00 

6 After 05:00 to 06:00 

7 After 07:00 to 08:00 

8 After 08:00 to 9:00 

9 After 9:00 to 10:00 

10 After 10:00 to 11:00 

11 After 11:00 to 12:00 

12 After 12:00 to 13:00 

13 After 13:00 to 14:00 

14 After 14:00 to 15:00 

15 After 15:00 to 16:00 

16 After 16:00 to 17:00 

17 After 17:00 to 18:00 
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18 After 18:00 to 19:00 

19 After 19:00 to 20:00 

20 After 20:00 to 21:00 

21 After 21:00 to 22:00 

22 After 22:00 to 23:00 

23 After 23:00 to 24:00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Speed Bin: 

Bin Speed limit (mph) 

Bin 1 0-20.9 

Bin 2 21-25.9 

Bin 3 26-30.09 

Bin 4 31-35.9 

Bin 5 36-40.9 

Bin 6 41-45.9 

Bin 7 16-50.9 

Bin 8 51-55.9 

Bin 9 56-60.9 

Bin 10 61-65.9 

Bin 11 66-70.9 

Bin 12 71-75.9 

Bin 13 76-80.9 

Bin 14 81-85.9 

Bin 15 86-90.9 

Bin 16 91+ 
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Appendix 3: ITS Data Evaluation 

Table A-1 Volume Comparison of SEMTOC sensors with corresponding CCS sensors 

Semtoc Region-24 ITS comparison 

Route Type Lane (Per Direction) CCS ITS ITS 

I-96 Urban Interstate 3 8209 136-E 137-W 

M-59 Urban Other Freeways 3 8409 172-E 173-W 
I-696 Urban Interstate 4 9839 354-E 355-W 

I-94 Urban Interstate 3 

9969 418-E 419-W 

9419 406-E 407-W 
9499 402-E 403-W 

9489 11-E 12-W 

8839 306-E 307-W 

I-75 Urban Interstate 3 
9699 182-N 183-S 

9979 160-N 161-S 

M-39  Urban Other Freeways 3 9809 337-N 338-S 

M-8 Urban Other Freeway 5 9999 184-E 185-W 
 

Table A-2 Volume Comparison of STOC sensors with corresponding CCS sensors 

Route Type 
Lane (Per 

Direction) 
CCS ITS ITS WIM 

I-675 Urban Interstate 2 9229 2412-N   

I-69 Rural Interstate 2 6369 3136-E 3135-W 6396 

I96 Urban Interstate 2 9729  3480-W  

  3 8219 2129-E 2134-W 8219 

  3 9369 2334-E 2335-W 9369 

  2 7159  2339-W 7159 

I-496 Urban Interstate 2 9029  3173-W  

 

Table A-3 Volume Comparison of WMTOC sensors with corresponding CCS sensors 

Route Type Lane (Per 

Direction) 

CCS ITS ITS WIM 

M-6 Urban Other Freeway 2 9739 305-E 305-W   

M-6 Urban Other Freeway 2 9759 303-E 303-W 9759 

US-131 Urban Other Freeway 4 5069 240-N 240-S 5069 

    3 9769 213-N     

I-196 Urban Interstate 4 9729 118-E 118-W   



 

95 | P a g e  

 

Table A-4 Volume Data evaluation with corresponding CCS sensor 

A-3.1 ITS 136 and 137 with corresponding CCS for 2015 and 2016 
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A-3.2 ITS 172 and 173 with corresponding CCS for 2015 and 2016 
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A-3.3 ITS 418 and 419 with corresponding CCS for 2015 and 2016 
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A-3.4 ITS 402 and 403 with corresponding CCS for 2015 and 2016 
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A-3.5 ITS 354 and 355 with corresponding CCS for 2015 and 2016 
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A-3.6 ITS 406 and 407 with corresponding CCS for 2015 and 2016 
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A-3.7 ITS 11 and 12 with corresponding CCS for 2015 and 2016 
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A-3.8 ITS 306 and 307 with corresponding CCS for 2015 and 2016 
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A-3.9 ITS 182 and 183 with corresponding CCS for 2016 

  
 

A-3.10 ITS 160 and 161 with corresponding CCS for 2016 
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A-3.11 ITS 184 and 185 with corresponding CCS for 2016 

  

 

 

 

 

 

 

A-3.12 ITS 2129 and 2134 with corresponding CCS for 2015 and 2016 
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A-3.13 ITS 2334 and 2335 with corresponding CCS for 2015 and 2016 
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A-3.14 ITS 3136 and 3135 with corresponding CCS for 2015 and 2016 
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A-3.15 ITS 3137 with corresponding CCS for 2016 
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A-3.16 ITS 3480 with corresponding CCS for 2015 and 2016 

  

 

A-3.17 ITS 2412 with corresponding CCS for 2015 and 2016 
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A-3.18 ITS 2339 with corresponding CCS for 2015 and 2016 

  

 

 
 

 

 

A-3.19 ITS 213 with corresponding CCS for 2015 and 2016 
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A-3.20 ITS 118 with corresponding CCS for 2016 

  

A-3.21 ITS 303 with corresponding CCS for 2016 
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A-3.22 ITS 305 with corresponding CCS for 2015  

  

A-3.23 ITS 303 with corresponding CCS for 2015  
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Table A-5 Summary of ITS SEMTOC Volume Comparison 

Direction 
CCS 

Id 
ITS Id 

Sample 

size/ITS Data 

availability 

(percent) 

Pearson's 

Correlation 
Data Accuracy 

(MAPE) 
Deviation (percent) 

from 45 deg. Slope 

   2015 2016 2015 2016 2015 2016 2015 2016 

E 8209 136 66 99 0.95 0.99 22.04 31.10 20.69 29.79 

W 8209 137 66 99 0.94 0.98 22.74 27.00 22.38 25.11 

           

E 8409 172 74 98 0.99 0.99 4.50 3.38 2.05 0.29 

W 8409 173 74 98 0.99 0.99 4.90 3.80 3.80 0.35 

           

E 9839 354 69.3 99 0.97 0.97 25.40 24.90 18.40 21.09 

W 9839 355 70 99 0.96 0.96 21.10 14.50 1.10 7.29 

           

E 9969 418 75.5 99 0.99 0.99 6.30 6.20 1.05 1.04 

W 9969 419 76 99 0.99 0.99 2.72 3.30 0.42 0.68 

           

E 9419 406 76 99 0.99 0.99 4.60 7.40 2.80 2.44 

W 9419 407 76 99 0.99 0.99 2.33 3.10 0.03 0.80 

           

E 9499 402 75.5 99 0.98 0.96 26.10 29.60 25.90 29.50 

W 9499 403 76 99 0.98 0.97 7.90 10.30 6.90 8.68 

           

E 9489 11 75.3 98 0.97 0.95 7.00 10.50 4.18 1.38 

W 9489 12 75 98 0.97 0.9 5.70 15.00 2.06 1.50 

           

E 8839 306 75.5 98.6 0.99 0.99 6.20 2.90 1.10 0.05 

W 8839 307 75.4 98.6 0.99 0.99 5.47 1.90 0.62 0.06 

 

N 9699 182  99  0.99  4.25  3.18 

S 9699 183  99  0.97  10.80  6.48 

 

N 9979 160  97  0.82  27.71  19.30 

S 9979 161  97  0.81  28.01  19.30 

 

N 9999 184  99  0.97  46.09  40.20 

S 9999 185  99  0.98  8.40  7.66 
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Table A-6 Summary of ITS STOC Volume Comparison 

STOC 

Direction 
CCS 

Id 
ITS Id 

Sample size/ITS 

Data availability 

(percent) 

Pearson's 

Correlation 
MAPE 

Deviation from 45 

degree slope 

(percent) 

   2015 2016 2015 2016 2015 2016 2015 2016 

E 8219.0 2129.0 38.8 66.0 0.70 0.98 56.6 16.3 53.5 13.6 

W 8219.0 2134.0 39.0 66.0 0.78 0.98 59.4 14.7 55.4 11.8 

 

E 9369.0 2334.0 5.7 2.0 0.09 0.61 106.5 82.2 90.5 82.6 

W 9369.0 2335.0 5.7 3.0 0.08 0.20 127.5 84.8 93.2 80.5 

 

E 6369.0 3136.0 40.8 36.0 0.33 0.98 61.8 19.4 19.2 19.0 

W 6369.0 3135.0 40.0 36.0 0.68 0.97 30.5 17.3 27.7 15.5 

 

W 9029.0 3137.0  34.0  0.97  15.8  9.8 

 

W 9729.0 3480.0 34.1 19.0 0.79 0.97 59.2 13.6 56.0 6.7 

 

N 9229.0 2412.0 37.5 70.0 0.73 0.99 36.0 7.6 31.1 6.9 

 

W 7159.0 2339.0 4.9 5.0 0.04 0.70 108.0 80.0 90.5 80.2 
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Table A-7 Summary of ITS WMTOC Volume Comparison 

WMTOC 

Direction 
CCS 

Id 

ITS 

Id 

Sample size/ITS 

Data 

availability 

(percent) 

Pearson's 

Correlation 
MAPE 

Deviation from 

the 45 degree 

slope (percent) 

   2015 2016 2015 2016 2015 2016 2015 2016 

E 9759 303  65  -0.06  418.0  335.5 

W 9759 303  65  -0.04  111.8  15.7 

 

E 9729 118  50  0.98  19.51  8.85 

W 9729 118  52  0.96  22.22  10.8 

 

E 9739 305 25  0.74  77.2  66.49  

W 9739 305 25  0.75  130  123.29  

 

E 5069 240 25  0.76  112  107  

W 5069 240 25  0.78  109  104  

           

N 9769 213 92.1 91 0.99 0.73 12.78 38.8 12.13 0.57 
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Table A-8 Summary of usable ITS SEMTOC sensors 

  2015 2016 

Criteria Total 
Number 
of ITS 

Percentage ITS CCS Total 
number 
of ITS 

Percentage ITS CCS 

Error  
Less 

than10% 

11 68.8% 172-E 
& 173-

W 

8409 11 50.0% 172-E & 
173-W 

8409 

418-E 
& 419-

W 

9969 418-E & 
419-W 

9969 

406-E 
& 407-

W 

9419 406-E & 
407-W 

9419 

403-W 9499 306-E & 
307-W 

8839 

11-E & 
12-W 

9489 182-N & 
183-S 

9699 

306-E 
& 307-

W 

8839 185-S 9999 

Error  
(10-20%) 

1 6.3% 355-W 9839 5 22.7% 11-E & 
12-W 

9489 

-  -  403-W 9499 

 - -  183-S 9699 

 - -  355-W 9839 

Error  
(More 
than 
20%) 

4 25.0% 136-E 
& 137-

W 

8209 6 27.0% 160-N & 
161-S 

9979 

354-E 9839 136-E & 
137-W 

8209 

402-E 9499 402-E 9499 

    1894-N 9999 

Total 16 100.0%     22 100.0%      
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Table A-8 Summary of usable ITS STOC sensors 

  2015 2016 

Criteria Total 
Number 
of ITS 

Percentage ITS CCS Total 
number 
of ITS 

Percentage ITS CCS 

Error  
(Less 
than 
10%) 

0 0% -  -  1 10% 2412-N 9229 

Error  
(10-
20%) 

0 0%  -  - 6 60% 2129-E & 
2134-W 

8219 

 - -  3136-E & 
3135-W 

6369 

 -  - 3480-W 9729 

 -  - 3137-W 9029 

Error  
(More 
than 
20%) 

  
  
  
  
  
  

10 100% 2129-E & 
2134-W 

8219 3 30% 2334-E & 
2335-W 

9369 

2334-E & 
2335-W 

9369 2339-W 7159 

3136-E & 
3135-W 

6369 -  -  

3137-W 9029  - -  

3480-W 9729 -  -  

2412-N 9229  - -  

2339-W 7159  - -  

Total 10 100%     10 100%     
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Table A-8 Summary of usable ITS WMTOC sensors 

  2015 2016 

Criteria Total 
Number 
of ITS 

Percentage ITS CCS Total 
number 
of ITS 

Percentage ITS CCS 

Error  
(Less 
than 
10%) 

0 0%  - -  0 0% -  -  

Error  
(10-20%) 

1 20% 213-
N 

9769 1 20% 118-
E 

9729 

Error  
(More 
than 
20%) 

4 80% 240-
E & 
240-
W 

5069 4 80% 118-
W 

9729 

305-
E & 
305-
W 

9739 213-
N 

9769 

 - -  303-
E & 
303-
W 

9759 

Total 5 100%     5 100%     

 

 

 

  



 

118 | P a g e  

 

Table A-9 Summary of ITS speed distribution for SEMTOC, STOC, and WMTOC 

SEMTOC 

Speed Distribution 

ID 
Direct

ion 

Average Speed 

(mph) 

Std. of 

Speed 

85th Percentile 

of Speed 

Bin with Highest 

Frequency 

ITS Data 

Availability 

Deviation of 85th 

percentile of speed 

CCS-

8209 
E 72.4 11.4 78.3 Bin 13(76-80.9) 

99 2.1 
ITS-

136 
E 67.2 12.9 76.2 Bin12(71-75.9) 

 
CCS-

8209 
W 72.7 10.2 78.1 Bin13(76-80.9) 

99 -1.9 
ITS-

137 
W 74.5 8.57 80 Bin13(76-80.9) 

 
CCS-

8409 
E 69.9 14.2 77.1 Bin12(71-75.9) 

98 3.6 
ITS-

172 
E 68.3 10.1 73.5 Bin12(71-75.9) 

 
CCS-

8409 
W 67.7 19.1 77.5 Bin12(71-75.9) 

98 -3.5 
ITS-

172 
W 75.2 8.78 81 Bin12(71-75.9) 

        
CCS-

8839 
E 78.4 8.9 77.5 Bin13(76-80.9) 

98 4.1 
ITS-

306 
E 71.1 5.8 73.4 Bin12(71-75.9) 

        
CCS-

8839 
W 73.45 7.5 77.5 Bin12(71-75.9) 

98 4.1 
ITS-

307 
W 73.48 5.9 73.4 Bin12(71-75.9) 

        
CCS-

9699 
E 72.4 7.9 77.1 Bin13(76-80.9) 

99 4 
ITS-

182 
E 68.4 7.5 73.1 Bin12(71-75.9) 

        
CCS-

9699 
W 71.3 9.6 77.1 Bin12(71-75.9) 

99 1.1 
ITS-

183 
W 72.27 5.6 76 Bin12(71-75.9) 
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WMTOC 

  Speed Distribution 

ID 
Direct

ion 

Average Speed 

(mph) 

Std. of 

Speed 

85th Percentile 

of Speed 

Bin with Highest 

Frequency 

ITS Data 

Availability 

Deviation of 85th 

percentile of speed 

CCS-

9759 
E 73.69 8.4 77.8 Bin13(76-80.9) 

65 0.7 
ITS-

303 
E 70.1 19.6 77.1 Bin13(76-80.9) 

        
CCS-

9759 
W 68.7 16.1 77.5 Bin12(71-75.9) 

66 -12.5 
ITS-

303 
W 71.5 24.6 90 Bin13(76-80.9) 

 

STOC 

 Speed Distribution 

ID 
Direct

ion 

Average Speed 

(mph) 

Std. of 

Speed 

85th Percentile 

of Speed 

Bin with Highest 

Frequency 

ITS Data 

Availability 

Deviation of 85th 

percentile of speed 

CCS-

6349 
N 73.9 6.8 77.9 Bin12(71-75.9) 

36 4.7 
ITS-

3634 
N 72.1 4.9 73.2 Bin12(71-75.9) 

 
CCS-

2199 
E 61.8 8.2 64 Bin10(61-65.9) 

16 1.9 
ITS-

3740 
E 61.7 5.2 62.1 Bin10(61-65.9) 

 
CCS-

4049 
S 73.3 6.6 76.2 Bin12(71-75.9) 

36 4.1 
ITS-

3642 
S 67.6 6.3 72.1 Bin10(61-65.9) 
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Table A-10 Summary of Chi-square speed distribution for SEMTOC, STOC, and 

WMTOC for 2015 

SEMTOC 

ID p value test-statistic Decision 

CCS-8209 
0.008 21.7 Sig H0 Reject 

ITS-136 

CCS-8209 
1.972 10.3 Not Sig. H0 Accept 

ITS-137 

CCS-8409 
0.085 19.5 Not Sig. 

H0 Accept 

ITS-172 

CCS-8409 
0.065 19.4 Not Sig. 

H0 Accept 

ITS-172 

CCS-8839 
0.001 43 Sig H0 Reject 

ITS-306 

CCS-8839 
0.082 20.8 Not Sig. H0 Accept 

ITS-307 

CCS-9699 
0 78 Sig H0 Reject 

ITS-182 

CCS-9699 
0.699 13 Not Sig. H0 Accept 

ITS-183 

WMTOC 

CCS-9759 
0.51 17.6 Not Sig 

H0 Accept 

ITS-303 

CCS-9759 

0 74 Sig 

H0 Reject 

ITS-303 

ITS-3642 

 

 

Table A-11 Summary of Combining 13 CCS classes to 4 classes for vehicle comparison 

purposes 

(We have 13 classes in current dataset and converting 13 classes to 4 classes for comparison 

purposes as below, since the ITS dataset has 4 classes):  

SM 
Small size vehicle (class 1 and Class 2) 

Size: 0-18 feet 

MD 
Medium size vehicle (class 3 and 4) 

Size: 18-35 feet 

LG 
Large size vehicle (truck) with single units (Class 5-10) 

Size: 35-70 feet 

Extra LG 
Extra Large size vehicle (truck) with multiple units(class 11,12, and 13) 

Size: more than 70 feet 

(Source: Jessberger, S. (2012). Axle and Length classification. FHWA Highway Community 

Exchange (CoP). Federal Highway Administration 2012 Highway Information Seminar Session 

3B. ) 
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Original 13 classes: 

Class 1 Motorcycle 

Class 2 Passenger car 

Class 3 Light Duty (2-axle, four-tire) Pick-up Trucks 

Class 4 Buses 

Class 5 Two-Axle, Six-Tire, Single-Unit Trucks 

Class 6 Three-Axle, Single-Unit Trucks 

Class 7 Four-or-More Axle, Single-Unit Trucks 

Class 8 Four-or-Less Axle, Single-Trailer Trucks 

Class 9 Five-Axle, Single-Trailer Trucks 

Class 10 Six-or-More Axle, Single-Trailer Trucks 

Class 11 Five-or-Less Axle, Multi-Trailer Trucks 

Class 12 Six-Axle, Multi-Trailer Trucks 

Class 13 Seven-or-More Axle, Multi-Trailer Trucks 
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