EICHIGAR
GRATE bIGmay DEPARTMEAT
Charles n. Zieglor
State Hichway Cominesioner

ON PROJECT M8-31:C1
bj E. in. Finney and L. A. Fickes

Research Project 49F-20
Progrese Report No. 1 .

Research Leboratory Tosting and Research Division Eeport ivo. 135 September 12, 1.949

$$
\begin{aligned}
& \text { PLACFHENT OF DONELS BY THE }
\end{aligned}
$$

ON PLOSECI HB-31, C1

The development of a machine to install dowel bars mechanicully in concrete pavenents to eliminate the use of metal baskets or other holding devices has attracted the attention of highay equipnent manufacturers for some time. This is the second undertakink by the Department to try out mechanical dowel bar installing eufipment. The first experiment was made in 1938 on Project $75-31$, Cl on US..2 in the Upper Peninsula. In this case the dowel-installing device was hand operated. It reeted on the forms and held the do:ele in proper position and alignment during placement of the concrete, after which the dowels were released, the machine renoved and carried to the next joint location. The device vas not successful in holdine the dowels in correct alignment and consequently was not recommended for use.

This report covers observations on the placenent of dovel bare by the Flex-plane wechenical Dowel Bar Installer on Construction Project h8-31, 01 located on County Foad extendins north from 143 in hastings approximately one-half mile. (See cover). The experinental work was initiated by the Construction Divicion who reyuested that the Research Laboratory establish the experiment as a research project.

The concrete pavenent on Project wh-31, 01 js 2% feet wide and 3 inches thick with contraction joints at 50-foot intervals. In this case $52.5-$-jound steel reinforcing mesh was used. Transverse dowels consisted of 1 -inch by 15 -inch round bars spaced at 12 -inch centers. The longitudinal tie Dars vere $1 / 2$-inch by 48 -inch rods spaced at $40-$ inch conters. The Contractor wa Fiay Sablain of Lensing michigen.

The Flex-plane wechanical Dowel Bar Installex wes mede by the Flexible foad Joint machine Company of Warren, Ohio. The machine was capable of installing both transveree dowels and loneitudinal jojnt tie bars. A general view of the equipment is shom in Figure 1 . The approximate weight of the machine is 9500 pounds. It is understood that equipment manufactured by the same company has been used with consideruble success on airport work where penent design called for $20-$ foot contraction joint spacine and no reinforcement in the slab. We also understand that the machine has been used to a limited extent in Texas on normal highvay paving work. The operation of the machine is rather simple. The dowel bars are supported in proper position above the surface of the slab, as show in Figures 2 and 3, and then subsecuently forced dow into the fresh concrete by the dowel-placing fingers through direct prescure and vibratory action of the members supportine the fingers. The machine also contains a steel dumy joint cuttine bar which descende when the transverge dovel bars are placed to displace the aggregste and thereby facilitate subsequent placement of the bars wich form the contraction joint groove. Higure 4 shows the condition of the pavement surface upon removal of the transverse and longtudinal dowel-placing fingers and also the durny joint cutting bar. These demarcations in the fresh concrete are readily removed by the longitudinal float which follows this machine. Figure 5 shows the method of placing steel templates to mold contraction joint grooves. Figure 6 shows two uncovered trensverse dowel bars after placenent.

Efficacy of Machine in Placine Transverce Dovels
On August 4, 2, and 10 neasurements were made by the authors with
a striding level to check the alignment of the dowel bars imediately after their placement in the concrete. The measurements obtafned and presented in Table 1 indicate that the dowel baxs varied considerably from apecification tolerances of $1 / 4$-inch slope per foot maximun. The figures in Table in inicate vertical dispatcement of the dowels, from a postition parallel to the longitudinal surface or grade line of the pavement. The figures are given in gixteenths of an jnch. A positive number indicates that the bar was tilted upwara rith respect to grade and a negative numbex indicates theit the bar bas tilted commard.

Theoretically the machine should place the dowels at the proper depth and parallel with the longitudinal. gurface of the pavement. All dowels which were tilted more than $1 / 4$ inch, or $4 / 16$, were examined for cause of displacenent by carefully removing the concote from above them. The followine conditions were noted:

1. In every case where the dowels were tilted as much as one inch or more, it was oboerved thet one end of the bar was resting on a transverse wre of the reinforeine mat. This condition ceused the dorel to rotate in a verticel plane about the adjacent domel-placing finger, forcing ite opposite end to a greater that nomal depti in the concrete. When this condition was first recognized an atterpt was made to have the mesh placed so that the wires would not come in contact with the dowels. However, in the pressume of actwel production, Epparently the mesh camot be laid with enough accurecy as to verticai position in the slab or spacing at joint locations to guarantee always puficient clearance for the dowels.

Two other conditions inherent in the concrete mixture itself which, apparently, caused similar misalignment of the dowels were: (1) the presence of large pieces of aggregate directly under a dowel end which would offer greater recistance than the concrete at the other end and (2) heterogeneity of the concrete mix. In several cases the concrete appeared more dense at one end of a bar than at the other end. when this occurred the end of the dovel in the less dense concrete would come to rest lower in the slab.

This rotary movement of the dowels is due to the fact that the dowel-placing fingers which force the dowels into the concrete are apaced only $11-3 / 8$ inches center to center, whereas tine dowel bars are 15 inches long. Thus, the ends of the dowels extend $1--5 / 8$ inches beyond the outside edge of the fingers. It can readily be seen that a fixed object under either of the extreme ends of a dowel would cause a rotary motion about the adjacent placing finger which acts as a fulcrum thus resulting in considerable vertical rotation and consequent misalignment of the dowel. In some instances it was observed that the dowels were considerably off in horizontal alignment as well as vertical alicnment. This is due to the fact that once the dowel has dropped a very slight distance below the stabiliaing influence of the notch in the placing finger, it is free to rotate horizontally. The greater the amount of vertical displacenent, the greater the horizontal displacement can becone. These conditions can no doubt be easilly corrected by making changes in the spacine and derign of the dowel-placing fingers.

In cose of the longitudinal tie barc any internal resistance encountered in their domward travel from aggregate particles, very dense
concrete, or from the reinforceinent would result in bending of the bars. It is imperative that the ateel nesh be placed uniformly and at proper depth, at all.times.

Furthermore, it was observed that the vibration process involved in placing the do:rels resulted at times in considerable puddling of the concrete in the joint area. In some instances it reduced the concrete to a fluid consistency. Such a condition of the concrete would be undesirable from the tandpoint of unform strength and subsequent durabillity. This conaition can no doubt be successfully overcome by changes in the technique of placing the dowels perhaps using leas vibration, more pressure, and possibly slowex insertion speeds.

It will be observed in Table 1 that the dowels in contraction joint at Station $1+25$ were in exceptionclly good alienment. The concrete at this point had been poured just prior to the lunch period of the paving crew and the dowels were inserted about 1 hour after pouring when the concete had reched a relatively thick consistency. Very little pudding of the concrete occurved from vibration during inctallation of the dowels. This might indicate the desirability of using as little vibration as possible in placing dowels to minimize any local disturbance to the concrete.

The data in Table 1 also shows a preponderance of negative values which would indicate a general downard tipping of the dowels toward the mixer. We have reason to believe that this condition was due to the fact that the vertical axis of the dovel-placing aspembly, including the supporting member and dowelwhacine fingers, was not perpendicular to the grade. The construction of the machine is such that a very slight
deviation of the vertical axis of the supporting menber with respect to the axes passing through the centers of the wheels which ride on the forms can cause a magnifying error in dowel alignment. heasurgments taken on the first day, but not included in Table l, indicated that the whole dovel-placing assembly was tilted with respect to the grade approximately $1 / 4$ inch. This matter was called to the attention of the manufacturer's representative present who supponedly corrected the condition by proper adjustments.

Figure 1. General Vien of Flex-plane Dechanical Dowel Bar Installer

Figure 2. Showing Transverse Dowel Bars in Place ready to be puched into concrete by dovel-placing fingers directly above them.

Figure 3. Shoring Longitudinal lie Bars in place ready to be inserted in fresh concrete by dowel-placing fingers.

Figure 4. Condition of pavement surface upon removal of dowel-placing fingers and dumy joint-cutting bar.

Figure 5. Wethod of placing steel template to mold contraction joint groove.

Figure 6. Two uncovered dovel bars after placement
tathe I
SUMARY OF ALIGNEMT SEASURETERTS ON DOMEL BARS INSTALIED BY FLEX-PLAER ZECHANICAL DOMEL INSTALLER BASTIMGS - PROJECT H O-31, Cl

	(Left)						DOWEL EAR WUCERE																$\begin{aligned} & \text { NO. OF } \\ & \text { DOWELS } \\ & \text { OVRR 变: } \end{aligned}$	$\begin{aligned} & \text { PER } \\ & \text { CENT } \end{aligned}$
STATION	1	2	3	4	5	6	7.	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
$14+55$	-2	6	6	6	2	2	3	3	3	0	-2	8	-26	-30	-6	0	-24	-10	- 4	-8	6	2	11	50
14*05	-4	0	8	- 1	- 4	-11	- 4	2		- 5	-7	- 4	0	- 1	-19	- 2	-2	- 4	- 4	- 3	- 4	2	5	23
$13+55$	- 2	- 2	- 5	- 3	-11	- 5	- 4	3	-1	-11	0.1	1	-31	-11	-17	-23	-15	1	- 7	- 1	6	3	11	50
5.75	- 4	3	- 1	- 4	- 2	-1	0	-11	-19	-7	5	- 1	0	-12	011	-9	- 4	- 3	$=1$	- 4	5	- 4	8	36
5425	2	-15	- 2	- 1	-9	- 1	- 1	0	1	-18	0	1	- 1	3	0	- 1	- 1	- 2	0	- 3	- 1	- 2	3	14
$4+75$	-9	1	- 2	- 7	-10	-6	-20	-19	- 6	- 6	-22.	1	- 1	-20	-20	-19	2	-1	- \pm	- 1	- 2	- 4	10	45
$4 \cdot 25$	3	6	5	-18	1	4	0	2			Read	s Ta			-23	- 3	- 1	- 1	- 1	- 1	-15	- 4	5	23
$3-75$	- 2	1	- 4	-27	-31	-4	-22.	- 6	-6	2	-10	-22	-6	-12	- 2	$-32^{\text {* }}$	- 2	- 7	-13	6	- 4	- 4	13	59
$2 \& 75$	7	6	-2	- 7	0	- 1	-18	-3	1	-4	3	3	4	-32**	- 1	-2	- 3	2	-2	- 4	- 1	- 1		23
$2=25$	5	- 1	-. 5	- 2	-18	-13	-7	-20	-11	- 6	- 7	- 2	-2	- 5	- 5	-13	- 1	-11	-11	-6	-3	- 6	16	73
$1+75$	- 1	1	5	- 4	1	-5	0	-7	-4	-12	- 5	3	- 0	2	- 4	1	3	1	0	- 4	3	- 6	6	27
$1+25$	1	0	2	3	3	1	-11	- 3	-11	0	-6	1	2	2	1	-1	0	0	0	- 1	- 1	- 3	3	14

NOTE: Values given are in 16 ths of an inch. Kaximum specification tolerance is $4 / 16$ of an inch.

* Beyond limits of level which is 2 inches.

