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CHAPTER 1 INTRODUCTION

1.1 Background and Organisation of Report

Bridge management is an important activity of transportation agencies in the US
and in many other countries. A critical aspect of bridge management is to reliably predict
the deterioration of bridge structures, so that appropriate or optimal actions can be
selected to reduce or minimize the deterioration rate and maximize the effect of spending
for replacement or maintenance, repair, and rehabilitation (MR&R). In the US, Pontis is
the most popular bridge management system used among the state transportation
agencies. Its deterioration model uses the Markov Chain, with a statistical regression to
estimate the required transition probabilities. This is the core part of deterioration
prediction in Pontis.

This report focuses on the Markov Chain model used in Pontis, which is vital to
the understanding and implementation of the Pontis software. Emphasis has been made
on the limitations of Pontis methodology, and establishing a new method for transition
probability estimation. This is because predicting deterioration is the basis for decision-
making with respect to MR&R. The next portion of this chapter presents a literature
review on the subject of estimating transition probability matrix using Markov Chain for
modeling deterioration in civil engineering facilities, such as bridges, pavements, and
waste water systems.

This report consists of seven additional chapters. Chapter 2 will present the results

of a survey regarding the application of bridge management in the US and Canadian



transportation agencies. In Chapter 3, the basic concept of Markov Chain will be
introduced in a simplified way with an emphasis on application. Simple examples are
included to facilitate easy understanding. That chapter covers both homogeneous and
non-homogeneous Markov chains for background information and comparison. Pontis
uses a homogenous Markov chain model.

Chapter 4 presents a simple arithmetic algorithm for quickly estimating the
transition probabilities, which will aid in understanding the concept of “transition”.
However, this approach is not appropriate or proposed for routine application for
predicting deterioration, since it lacks a capability to statistically cover possible random
variation in condition data. This is to be seen in the examples included in this report.
Chapter 5 discusses the approach used in Pontis for estimating the transition probability
matrix. Chapter 6 highlights the issues associated with the Pontis approach for updating
the transition probabilities, especially for Michigan. Chapter 7 presents the proposed
method for transition probability estimation, based on the concept of non-homogenous
Markov Chain. Here the proposed method will be compared with the existing Pontis
approach, and the arithmetic method. Chapter 8 offers a summary for this research effort

and the conclusions reached.

1.2 Literature Review:

The Markov Chain has been the most commonly used methodology to predict the
deterioration of bridge structures and elements. The core of Markov Chain is the
transition probability matrix because it is the basis for deterioration prediction. Thus,

realistically estimating this matrix is critical. To understand the state of the art in the



estimation of the transition probability matrix in Markov Chain a literature review was
performed particularly for transportation application facilities such as bridges and
pavements. As a result three relevant papers are summarized below. There were also

other papers found to be helpful, which are included in the reference list of this report.

1.2.1 Review

(D) José J. Ortiz-Garcia; Seésamh B. Costello, and Martin S. Snaith (2006),
“Derivation of Transition Probability Matrices for Pavement Deterioration Modeling,”
Journal of Transportation Engineering, Vol. 132, No. 2, Feb 1, 2006

In this paper pavement deterioration modeling in general is divided into two broad
groups, the deterministic- and the probabilistic-based approaches. Mathematical models
are used to predict the deterioration (or the future condition state) as a fixed value in the
deterministic approach, and as a probability for a particular condition in the probabilistic
approach. It was pointed out in the paper that out of these two broadly classified models,
the probabilistic modeling using Markov prediction is more frequently used.

This research effort attempted to compare methods for estimating the transition
probabilities. Three candidate methods were tested on six sets of artificial data
specifically synthesized for this purpose.

The first method directly uses historical condition data of the system for selecting
the optimal transition probabilities available. The second utilizes a regression curve
obtained from the original data as a criterion for estimation, and the third assumes that the

distributions of condition are available to assist in the process. More details are to be



presented and discussed below about these different methods for estimating the transition
probabilities.

The six artificial data sets were generated using the same basic concepts for
condition rating. The system’s condition is defined on a scale ranging from O to 100, with
0 for intact condition and 100 for complete disintegration. The score range is further
divided into 10 intervals each having a width of 10 and defined as a condition state. The
midpoints of these intervals are taken as the names of the condition states, namely 95, 85,
75, 65, 55, 45, 35, 25, 15, and 5. So data cj is the condition State j at time ¢. Each data set
is to simulate annually collected conditions for 30 sites of a network over a 20-year
period. Data Set 1 represents an S-shaped deterioration curve typical of the trend
associated with either cracking or raveling progression in pavements. Data Set 2
represents a deterioration curve where the rate of progression starts slowly but increases
with age. Data Sets 3 to 5 represent deterioration curves where the rate of progression
starts fast but decreases with age, with each of the data sets representing a different rate
of deterioration. Finally, Data Set 6 represents a completely random rate of progression.

Method A — This method is to find the transition probabilities by minimizing the
sum of the squared differences between each of the data points and the average condition
calculated from the distributions of condition. The objective of the estimation is to
minimize

Objective Function Z = Z Z [cj, - ;(I)T (1.1)

J
where c;; 1s the condition data for State j at time ¢ as defined earlier, and ;(t) is the

condition at time ¢ weighted by the distribution vector using the estimated transition

probabilities



¥ =a(.c (1.2)
where ¢ = (95, 85, 75, 65, 55, 45, 35, 25, 15, 5) is the vector indicating the midpoints of
the condition intervals between 90 and 100, 80 and 90, 70 and 80, 60 and 70, 50 and 60,
40 and 50, 30 and 40, 20 and 30, 10 and 20, 0 and 10, respectively. In other words, these
midpoints can be viewed as the nominal values for the 10 condition level in the Markov
Chain. a(t) is the probability distribution at time t.

a(t)={a,(1),a,(t),a,(1),....... ,a, (1)) (1.3)
where a;(t) fori=1, 2, ...... , 10 are the probabilities for the respective states at time ¢,
V(1) = 95a;(t) + 85ax(t) + 75as(t) +65a4(t) +55as(t) +45a4(t) +35a7(t) +25as(t) +15a0(t) +
Sajo(t) . Vector a(t) depends on the estimated transition probability matrix P, which is
selected to minimize the objective function Z in Equation (1.1)

Method B - In this method, a regression is performed first using the collected data
cjr. This results in y(t) as a relation between the condition (defined as 95, 85, 75, 65, ....,
and 5 as above) and time ¢. The objective function Z for this case is defined to be

minimized as follows:

Objective Function  Z = Y[ y() - y(0) | (1.4)

The objective of this method is to minimize this function as the squared distance between
the regression curve y(¢) and the transition-probability-matrix-fitted curve ;( t).

Method C - In this method, the raw data are presented in the form of distributions.

The objective function Z is calculated as



Objective Function Z =Y 3 [a,()~a, ()] (1.5)

where a.(t) has been defined in Equation (1.3), and al.' (t) fori =1,2,3,4,....... ,10 are

probabilities for condition i at time ¢ obtained using raw data cj.

For all the test data sets, Method C yielded distributions closer to the “observed”
distributions (i.e., distributions based on the synthesized inspection data) than Methods A
and B. The distributions determined from Method C were also comparable, in many cases
almost identical, to the “observed” ones. It is thus concluded that Method C is most

appropriate for estimating the transition probability matrix.

Note that Method C directly used the observed distributions a, (¢) for i=1, 2, 3, ...,
10 in the optimization requirement “Z” defined in Equation (1.5), and Methods B and C
does not. Therefore, the above conclusion is not surprising. Furthermore using «, () as a

criterion for estimating the transition probabilities is a realistic and thus reasonable
approach, because it is important to determine the transition probabilities to be able to

reliably predict future conditions of the system.

) G. Morcous (2006), “Performance Prediction of Bridge Deck Systems
Using Markov Chains,” Journal of Performance of Constructed Facilities, Vol. 20, No. 2,
May 1, 2006.

In this work it is stated that the stochastic Markov-Chain models are used in
current bridge management systems for performance prediction because of their ability to
capture the time dependence in predicting bridge deterioration. The required life-cycle

cost assessment of bridges is based on these predictions. It is a decision making process



based on the total cost for the bridge over its lifetime depending on the need for
maintenance or demolition. The various costs involved in bridge management are
construction cost, maintenance cost, demolition cost, and the user cost (indirect costs
caused by detour, accidents, etc).

Bridge management systems such as Pontis and BRIDGIT adopt the Markov-
Chain model for performance prediction of components, systems, and networks. The

criterion used in this research for transition probability estimation is to minimize

Objective Function  Z = Y"|C(t) - E(1)|

subjectto 0 < Py <1 i,j=12,..,n (1.6)

d>p;=1 i=1,2,...,n
J

where C(¢)is the system condition rating at time ¢ based on regression. This function
describes a statistical relation between the condition and time 7, obtained by regression
analysis using data from inspection of the bridges. E(¢)is the expected rating at time ¢
based on the Markov Chain using the estimated transition probabilities. This method

appears to be similar to Method B in (Ortiz-Gorcia et.al 2006) discussed earlier.

3) Hyeon-Shik Baik; Hyung Seok (David) Jeong; and Dulcy M. Abraham
(2006) “Estimating Transition Probabilities in Markov Chain-Based Deterioration
Models for Management of Wastewater Systems,” Journal of Water Resources Planning
and Management, Vol. 132, No. 1, January 1, 2006.

The so called ordered probit model was used in this work to estimate the

transition probabilities for a Markov Chain based deterioration model for wastewater



systems. It uses a non-homogeneous Markov Chain for this purpose. The condition
assessment data set used to evaluate the developed method was obtained from the City of
San Diego. It was concluded that the ordered probit model approach seemed to provide a
theoretically and statistically more robust model as compared to the nonlinear
optimization-based approach for the estimation of transition probabilities. In the non-
linear optimization based approach, the transition probabilities are estimated by

minimizing the following objective function,

Objective Function Z= Y Y |Y(t)— E(n,P)|

subjectto 0< p, <1 i,j=1,2,..5 (1.7)
Spy =l =125
7

where ¢ is the system’s age, n is the number of transitions and P is the transition
probability matrix. Y (t) is the average condition rating at ¢ based on a regression

analysis:
Y (t) — €—0.949+0.044t (18)

using the condition data. E(n,P) is the predicted condition rating after n transitions based
on the Markov Chain model using the estimated transition probabilities in P. This
approach appears to be also similar to that used in Equation (1.6).

It was also pointed out that, for developing accurate models using the ordered
probit model, it is necessary to have panel data that span over multiple time periods. In

order to predict more accurate and detailed deterioration patterns of wastewater systems,



factors such as the depth of the installation, the soil condition, the groundwater level, and
the frequency of sewage overflows should be collected and evaluated.

A major drawback that has been discussed in this paper is that, in the current
inspection practices, the information discussed here is not readily available for
wastewater systems. It is emphasized that a standardized condition rating system is
required to generate a more robust deterioration model and to evaluate the deterioration
processes of wastewater systems among different municipalities. By employing a
standardized condition rating system, current management practices and future
investment planning can be evaluated. Another problem is that, currently each
municipality uses a different rating system for its wastewater systems. These different
condition-rating systems prevent comparison of the effects of maintenance and
information sharing regarding condition assessment among municipalities.

Based on this discussion, the ordered probit model does not appear to be suitable
for current practice of bridge management, due to its higher requirement for a large

amount of data to allow modeling non-homogenous stochastic processes.

1.2.2 Summary

The literature review shows that Markov Chain is a popular and plausible tool to
model system or element deterioration and improvement. For bridge management, it
appears to be reasonable as well. In addition, the computation effort for using Markov
Chain is also affordable for bridge management, considering several to tens of thousand

bridges involved in a typical state.



In applying the Markov Chain model, the critical step is to estimate the transition
probability matrix based on observation data. Several approaches have been proposed for
this purpose. It seems to be agreeable that the ability to reliably predict deterioration
comparable with observed deterioration is required. On the other hand, it should be
emphasized that this requirement can only be used for the time period in which
observation or inspection data have been collected. Predictions to the future beyond this

time period cannot be evaluated until more data become available.
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CHAPTER 2 STATE OF THE PRACTICE IN BRIDGE
MANAGEMENT SYSTEM

In this chapter the experiences of US and Canadian transportation agencies with
bridge management system is reviewed based on their response to a questionnaire. The
questionnaire developed in this project included two parts. The first one had a set of 13
questions categorized under “General Questions”. The second one was framed as
“Additional Information and Comments”. The complete questionnaire is included in the
appendix to this report. A total of thirty one agencies responded to the survey. The
details of these two categories and the agency responses are presented in this chapter.

In the “General Questions” groups, there were a total of 13 questions aimed to
understand various aspects of bridge management system application. These questions
are further categorized below for analysis. The first sub-category of questions is to gather
general information on the type of bridge management system (BMS) and on the bridge

condition data available. There are 3 questions in this sub-category as follows:

1. Which BMS does your agency use?
2. Approximately how many years of bridge condition data (inspection and/or asset
management data) does your agency have in your database?

3. What bridge condition data are used within your BMS?

Table 2.1 exhibits the responses to these questions. It shows Pontis as the most
popular system currently being used. Also more agencies (16) have data between 4 to 10

years, compared with 11 agencies with more than 10 years of data. For those agencies

11



that use Pontis, all of them use both the NBI and the CoRe formats except Florida that

uses CoRe only. Note that six US agencies using Pontis are also using data other than

NBI and CoRe.
Table 2.1: Bridge Management Systems in and Condition Data Available
States 1 2 3
Which BMs is | NO gfri\ézaers of Type of
o e
used ? condition data condition data
Alaska Pontis >10 NBI / CoRe
Alberta In-House system >10 Other
Arizona In-House system 41010 NBI / CoRe
Arkansas Pontis 1t03 NBI / CoRe
Colorado Pontis 41010 NBI / CoRe / Other
Delaware Pontis 410 10 NBI / CoRe / Other
District of Columbia 410 10 NBI / CoRe
Florida Pontis 410 10 CoRe
Georgia Pontis Oto1 NBI / CoRe
Hawaii Pontis 410 10 NBI / CoRe
lllinois Pontis >10 NBI / CoRe
In-House system
lowa (Code Sheets) 1t03 NBI
Kansas Pontis >10 NBI / CoRe
Maine Pontis >10 NBI / CoRe / Other
Maryland In-House system 41010 NBI / CoRe / Other
Minnesota Pontis 41010 NBI / CoRe
Mississipi Pontis 41010 NBI / CoRe

12




Montana Pontis > 10 NBI / CoRe

Nevada Pontis >10 NBI / CoRe
New Mexico Pontis 410 10 NBI / CoRe
In-House system
New York (Bridge Needs >10 Other
Assessment Model)
Ohio In-House system >10 Other

Other (element

Ontario In-House system 41010 condition state)
Puerto Rico Pontis 4to0 10 NBI / CoRe
South Carolina Pontis >10 NBI / CoRe
Tennessee Pontis > 10 NBI / CoRe
Utah Pontis 1103 NBI / CoRe / Other
Vermont Pontis 4to0 10 NBI / CoRe
Virginia Pontis 410 10 NBI / CoRe
Washington Pontis 410 10 NBI / Other
Wyoming Pontis 410 10 NBI / CoRe / Other

The second sub-category of questions was to know the practice in agency-specific
application. Such application involves element definition, development of maintenance,
rehabilitation, and repair (MR&R) policies, and cost estimation. These are questions

were used to gather relevant information:

4. If your agency is a Pontis user, have you made modifications to the AASHTO

CoRe elements, and/or have you added additional elements?

13



Has you agency developed bridge preservation policies, for maintenance,
rehabilitation, and repair (MR&R)?
What cost data do you use to determine cost parameters for projects in your

BMS?

Table 2.2: Agency Specific Application or Modification

States 4 5 6
2
(If Pontis user) developed? Cost Data
Past Bid /
Alaska Yes No Bridge Maintenance
Crew
Alberta No Past Bid
Arizona No
Arkansas Yes No Past Bid
Colorado Yes No Past Bid
Delaware Yes Yes Past Bid
District of Columbia No Past Bid
Florida Yes No Past Bid
Georgia Yes No Past Bid
Hawaii No No Past Bid
lllinois Yes Yes Past Bid
lowa No Past Bid
Kansas Yes No Past Bid
Maine Yes Yes Past Bid
Maryland Not a Pontis user No
Minnesota Yes Yes Past Bid
Mississippi Yes No

14



Montana Yes Yes Past Bid

Nevada Yes No Default data

in Pontis
New Mexico No Yes Past Bid
New York No Past Bid
Ohio Past Bid
Ontario Yes Past Bid
Puerto Rico No No Past Bid

MR&R cost -
South Carolina Yes Yes SCDOT,
Others — contract

Tennessee Yes No Past Bid

Past bid compared
Utah Yes Yes with annual cost and
average MRR costs

Vermont No No Past Bid
Virginia Yes Yes Past Bid
Washington Yes Yes Past Bid
Wyoming Yes No Past Bid

Table 2.2 shows that 19 out of the 23 Pontis states have modified the CoRe
definitions and 4 have not. On the other hand, only about a half (11) of them have
develop their own MR&R policies. A vast majority (26) of the 31 agencies are using bid
prices for cost estimation, only one is using the Pontis default cost values.

The next sub-category questions focused on the transition probabilities in the
Markov Chain modeling. There were three questions on how the transition probabilities
are obtained or estimated, and the satisfaction associated with it. The three questions in

this sub-category are:

15



7. Does your agency use deterioration rates based on transition probabilities?

If your agency is a Pontis user, are you satisfied with the resulting transition
probabilities or deterioration rates (Do you think they model the situation
realistically)?
How does your agency determine the transition probabilities or deterioration rates
for a bridge element?
Table 2.3 Generation and Application of Condition Transition Probabilities
States 7 8 9
Deterioration Satisfied with How to determine
rates based on Transition Transition Probability
Transition Probabilities? or Deterioration
Probabilities? (If Pontis User) rate?
Historic and Expert
Alaska Yes Need to evaluate Elicitation
Historic and Expert
Alberta No Elicitation
Arizona No
Arkansas Yes Yes Expert Elicitation
Colorado No Not implemented Not implemented
Delaware Yes Yes Expert Elicitation
District of Yes Historic and Expert
Columbia Elicitation
Florida Yes Yes Expert Elicitation
. Historic and Expert
Georgia No Elicitation
Hawaii Yes Under development| Expert Elicitation
. Historic and Expert
lllinois Yes Yes Elicitation
lowa No
Historic and Expert
Kansas Yes Yes Elicitation
Maine No Yes / Partially Historic

16



Maryland No No
Minnesota Yes Partially Expert Elicitation
Mississipi No
Historic and Expert
Montana Yes Yes Elicitation
Nevada As in Pontis Not yet started
using
. e T Historic and Expert
New Mexico No Haven't Tried Elicitation
New York No Historic Data
Ohio Historic only
Ontario Yes Expert Elicitation
Puerto Rico No
. , Historic and Expert
South Carolina Yes Yes / Partially Elicitation
Historic and Expert
Tennessee No Yes Elicitation
Utah Yes No Expert Elicitation
: Historic and Expert
Vermont Yes Partially Elicitation
Virginia Yes Partially Expert Elicitation
. Historic and Expert
Washington Elicitation
. Historic and Expert
Wyoming Yes Yes Eloitation

Sixteen agencies here use deterioration rates based on the transition probabilities,
and 11 said not using. This seems to indicate that the condition transition probabilities
are considered important to the agencies. Out of the 23 Pontis states, 8 reported
satisfaction with the transition probabilities produced in Pontis, 5 said partially satisfied,
3 said not satisfied, and 5 yet to evaluate (or not responding to the question). This
distribution of response indicates a reasonable success with Pontis but also some room

for improvement as well. For estimating the transition probabilities, 13 out of the 23

17



Pontis states use historic data and elicitation, 7 use elicitation only, and the rest either did
not respond or have not reached this stage of implementation. This situation of a large
number of agencies using elicitation is perhaps because the available historic data still do
not meet the need for reliable estimation of the transition probabilities.

The last sub-category of questions in the general questions section included

miscellaneous subjects related to application and satisfaction as follows:

10. Has your agency compared your BMS with your traditional approach for bridge
management decision making?

11. Do you think your agency’s BMS fully meets your need for bridge management?

12. Please describe how your agency determines the discount rate for project cost
projection to the future.

13. How does your agency perform rulemaking and project prioritization within the

BMS?

Table 2.4 shows the responses received to these questions. Fourteen agencies out
of the 31 that responded reported experience with comparison of the BMS and
traditional approaches, 15 said not, and the rest did not respond and most likely did
not have such experience. We believe such an experience is important for the
calibration of the BMS. As to the question whether the BMS meets the agency’s
needs, 17 out of 31 said no in addition to one that did not respond to this particular
question. For comparison, 12 confirmed that the BMS does meet their needs. This

large number of negative response to the question deserves attention. One possible

18



explanation to this situation is that, as mentioned earlier, available data are not
adequate to model the behavior of the bridges and thus to help decision making.

For determining the discount rate, only very few agencies spend an effort to
estimate the rate, many agencies use the Pontis default, and a large number (17) of the
agencies do not use it, yet to determine it, or did not respond. To the last question in
this group of general questions, most (20) agencies either did not respond or reported
that rulemaking and project prioritization are not done currently. Others reported
some traditional ways of practice, including “Collaboration between main
office and field staff’, “BMS, maintenance engineers and bridge review team”,
“Rules based on bridge administrative manual”, “NBI ratings”, “Cost benefit analysis
& bridge condition index”, “Bridge Condition ratio along with engineering
judgment”, etc.

For the second group of questions for additional information and comments,
including whether the agencies are familiar with other relevant work and have
additional comments, a few agencies responded positively. We then followed up by
phone calls or e-mails to clarify and/or locate the specific information to acquire
written documentations for the specific experience. In addition, 25 out of the 31
agencies that responded answered positively to the question whether they would like

to have the results of this survey. It shows a strong interest in this research work.
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Table 2.4:

Changes Made for Prioritization

States 10 11 12 13
B‘I,V;S Dog?\nysour How rule making
Traditional meet Discount rate and project
methodology prioritization
Approach | all your is performed?
Compared | needs? )
Alaska No no Default used Not done
Alberta Yes No 4% based on Not done
Historic Data
Arizona Yes
Arkansas No Yes
Colorado Yes Yes Not implemented Not done
Rules are written so as
Delaware Yes to be compatible with
Pontis
District of
Columbia No No Not used
. Work program
Florida No No Office
Georgia No Yes Not Determined Not Determined
Hawaii Yes As in Pontis Under implementation
lllinois Yes Yes Limited by design | Top down approach
Collaboration  between
lowa No No National Inflation |main
Index office and field staff
Kansas Yes Yes As in Pontis As in Pontis
Default used -
Its thought that BMS, maintenance
Maine Yes No Pontis is not engineers and bridge
sensitive review team
to this value
Maryland No Yes
Minnesota Yes No As in Pontis Not done
Mississipi No No
Rules based on
Montana Yes No Bonding rate bridge administrative
manual
Nevada No No
New Mexico No Yes Guessing NBI ratings
New York No No No
Ohio No No
L ' Cost benefit analysis
. Provincial govt.'s : o
Ontario No Yes finance ministry & brldge condition
index
Puerto Rico No

20




Pontis MR&R and

Bridge Condition ratio

South Carolina Yes Yes Own inflation rate along m?gﬁqngr!?eermg
Tennessee Yes No Yet to set up Not done
Concept Report ( Scope,
Utah Yes No Inflation Rate (4%) | schedule and budget is
defined)
Vermont Yes Yes Work is being done| Work is being done
Virginia Yes No As in Pontis In the dsalgleopment
Washington No Yes
Wyoming No No As in Pontis Not done

21




CHAPTER 3 MARKOV CHAIN

This chapter presents the basic framework of Markov Chain as a modeling tool
for bridge management. It summarizes the concept and defines the symbols used, with

simple examples for illustration.

3.1 Markov Chain as A Stochastic Process

The Markov Chain is a stochastic process as a mathematical model for a system
or an element that has random outcomes. These outcomes are viewed as a function of
independent variables such as a temporal or spatial factor. For example, the condition of a
bridge element is modeled in Pontis as a stochastic process with time ¢ as the independent
variable, because the future condition cannot be predicted with certainty. A stochastic

process can be formally defined as follows.

Consider a series of discrete time points {z, }for k = 1, 2,..... and let £, be a
random variable as the condition of a bridge element, which describes its state at time 7, .

The family of random variables {&,, } k =1, 2,... is then said to form a stochastic

process. The total number of considered states, in general, may be finite or infinite. For
application in bridge management, a finite number of states is used. For example in
Pontis, up to 5 states are used to describe the condition of a bridge element, with 1 for the

best and 5 for the worst condition.
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A Markov Chain is a stochastic process for which a future state depends only on

the immediately preceding state, not any further previous states. This Markovian property

for {£,, } can be mathematically expressed as

P{S, =x,

n

& =% g =x = P{g =x,

n-1 n

S :'xn—l} (3.1)

n-1

Here symbol | means ‘“the given condition”, and P means the probability

and x,,x,,x,,....,x,_,,and x, are states of f,o,f,l,ftz---,f, » and

n-1

é: ¢, + Equation (3.1) reads as “the probability of é‘: ¢, being equal to X, given that

é‘:t >+++> and é‘: t, areequalto X,_;,....,and X, is equal to the probability of

n—-1

é‘: ¢, being equal to X, only if é‘: t,_, isequalto X,_;”. Namely, the conditions at

-1

time t,.2, #,-3 ..., tp do not affect the condition at #,, only the condition at #,.; does.

3.2  Transition Probability in Markov Chain
The probability P defined in Equation (3.1) is called the transition probability

which can be written in short as follows

P{& =x,

6[1171 = xn_l} = px”71 X

(3.2)

This is the conditional probability of the system or element being in statex, at ¢ ,
given that it was in statex, , at ¢,_,. This probability is also referred to as the one-step
transition probability, since it describes the transition of the condition between times ¢, _,

and 7, over one time step or one time interval.
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For example, p3s = 30% for a bridge element means that the probability that this
element will be in State 4 at ¢, if it was in State 3 at #,.;,is 30 percent. Here ¢, can be, for
example, Year 1997, and #,.; Year 1996. This also indicates that the prediction based on
the Markov Chain is probabilistic, or with uncertainty taken into account. Note also that a
30% transition probability over one year from State 3 to State 4 in reality means a very
high deterioration rate, because State 4 is considered a poor condition and State 3
significantly more acceptable.

Similarly an m-step transition probability is thus defined as

p. .. =Pl&

n n+m

= xn+m‘§tn = xn} (3.3)

n+m

Here (n + m)-n = m steps indicating the time difference between t,., and #, Each step
here can be defined as a day, a month, a year, 2 years, 10 years, etc., depending on the
system and its states of interest. For bridge management, Pontis uses a year as a typical
time step. Namely the transition probability matrices for bridge elements are implicitly
for 1-year periods.

In Pontis, a total of 5 condition states are used to describe the condition of bridge

elements. Initially at time ¢, the system may be in any one of these states. Pontis uses
T
X = {xl ,xz,....,xj} to express the probability distribution for an element at the

“before” time or at the last inspection. Superscript “ 7~ here means transpose (to a
column vector). For example, using the MODT Pontis data for Element 107 of bridge

01200001000B030 in Environment 1 and inspected in 1997, this distribution is expressed

as X = {xl Xy, Xy, Xy, Xs }T = {0, 0, 0, 100, 0}". It indicates that Element 107 has 0% in
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State 1, State 2, State 3, 100% 1n State 4, and 0% in State 5. This means that Element 107

of this bridge is entirely in State 4.

Pontis also uses Y = { VisYysee Vs }T to express the probability distribution for
the system or the element at the “after” time or at the later inspection. For the same
Element 107 above in Environment 1 but inspected in 2001, this distribution is
Yo={y .50, 95. 9405 }T = {0, 0, 0, 82.3, 17.7}". Tt indicates that Element 107 still has
0% in State 1, State 2, State 3, but 82.3% in State 4, and 17.7% in State 5. Here 1, is 2001
as the later inspection time, and 7,4 1s 1997 as the previous inspection time. Namely over

4 years, part (17.7%) of the bridge element has deteriorated from State 4 to State 5, which

is the worst state in the Pontis condition rating system.

Figure 3.1:  Example Infomaker Screen For Probability Distribution For Element 107
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In Figure 3.1 this example is shown in InfoMaker. The first column “Brkey”
shows the bridge identification number. “Inspdate 1” indicates the “before” inspection
date, which is at time 7 ,.4 (1997). “Quantity X 1” to “Quantity X 5 are probabilities in
the distribution {x;, X, X3, X4, Xs}.“Inspdate 2” indicates the “after” inspection date, which

is at time 7, (2001). “Quantity Y 17 to “Quantity Y 5™ are probabilities in the distributions

{y1. ¥2.¥3. ya.¥s}-
If the stochastic process is assumed Markovian, then according to Equation (3.2)
py= P&, = J|é. =i} ij=n2345 (3.4)
are the 4-year transition probabilities for the system to change from State i at 7 _,

(1997) to State j at ¢, (2001). These transition probabilities can be more conveniently

arranged in the matrix form P as follows

To State at year 2001
1 2 3 4 5
From 1 Pu P12 P13 P4 Pis
P = State 2 P P D3 P Pos (3.5)
at 3 P31 Ps P33 P34 Pss
year 4 Py Py Py Py Dss
1997 5 Psi Ps> Ps3 Psa Pss

In general, the size of this transition probability matrix depends on the total number of
possible outcomes considered. For the cases of Pontis the possible outcomes are the 5

condition states, thus the size of the matrix is 5 x 5.
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Some of the transition probabilities for Element 107 can be estimated as shown in

the following matrix

To State at year 2001
1 2 3 4 5
P From 1 )20 Pia Dis zn Pis (3.6)
State 2 P P P P Pos
at 3 P P3 P33 P34 Pss
82.3 17.7
ear 4 0 0 0 =— =
Y “7 100 7100
1997 5 Psi Ps» Ps3 Ps4 Pss

Many transition probabilities in Equation (3.6) could not be estimated except pai, p42, P43,
Paa, and pys, and thus no value has been given for them. It is because no data are provided
for States 1, 2, 3, and 5. Based on the data given for Element 107 of Bridge
01200001000B030, paa is estimated as 82.3 / 100 because out of the 100% of Element
107, 82.3% remained in State 4 (or transferred from State 4 to State 4). Similarly, pass
=17.7/100 because 17.7% out of the 100% of Element 107 deteriorated from State 4 to
State 5 (or transferred from State 4 to State 5). pa1 = ps2= pa3= 0 because over the 4-year
period, no repair or rehabilitation work was done, not possible to cause the condition state
to become better.

The above simple example also shows how a bridge element may deteriorate and
such deterioration may be modeled using a Markov Chain with estimated transition
probabilities over a time interval. In general, such deterioration may vary with time.
When this time-dependent variation is not significant, we use the so-called homogenous

Markov Chain to approximately model the situation, which is to be discussed next.
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33 Homogeneous Markov Chain

A Markov Chain is called homogeneous if its transition probabilities p;; defined in
Equations (3.1) to (3.3) are constant or independent of time. That means, for example, for
the same length of 2 years as a time step, the deterioration follows the same pattern no

matter when it started (i.e., no matter in which year the transition started):

Pig, =g, =i}=P{¢ =il¢ . =i} (3.7)

for n # k. Note that Pontis uses (or assumes) homogenous Markov Chains for all bridge
elements. Namely, it uses all inspection data to estimate one transition probability matrix
for one element in one environment, no matter when the inspections were done as long as
the same amount of time or approximately same amount of time has elapsed between two
inspections. Then this matrix is used in predicting or projecting future condition in the
probability sense for the same environment. This assumption for homogenous
deterioration is actually questionable because the environment condition for an element
does vary with time, especially when a long time period is concerned, such as the typical

life span of bridge.

3.4  Non-Homogeneous Markov Chain

By the name, the non-homogeneous Mark Chain model does not assume a
homogeneous behavior of the stochastic process. In other words, the transition
probability matrix P is not a constant but a function of time. Time here can be the
absolute calendar time, age, or both. Age can be viewed as a relative measure of time,
independent from the absolute time. For bridge management application, we consider the

age of the bridge element in this report. Including the absolute time represents a further
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more general treatment of the subject. An example appropriate for such a treatment is a
scenario of special climate in a certain year that significantly alters the mechanism of
bridge element deterioration, such as a very warm winter that accelerates steel corrosion.
Since bridge elements have relatively long lives in tens to hundreds of years, an
individual year of such abnormal condition may still have limited or little influence on
deterioration and can be “averaged” out in modeling. Therefore, we include only age as

the factor to account for non-homogeneity.

3.5  Properties of Transition Probabilities
It also should be noted that p;;defined in Equations (3.1) to (3.3) must satisfy the

following conditions,

> p, =1 for all 7, (3.8)

p; 20 for all jand j

Equation (3.8) means that 1) each row of the transition probability matrix adds to 1 and
2) all probabilities are non-negative. They are valid because p; is a non-negative
probability of transition from condition State i to State j, and from a State i the condition
can only become 1, 2, 3, 4, or 5. Thus the total probability (i.e., the sum) of all these
possibilities has to be 1. For example, Equation (3.6) shows the transition probabilities
for Element 107 from State 4 in Row 4, for a time period of 4 years. The sum of these p;;
in that row is 1.0, because the total probability for Element 107 to transfer from State 4 to

all these states is 1.0.
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3.6  “Do-Nothing” Transition Probabilities

Note that the matrix in Equation (3.5) in Pontis appears as a matrix for “Do-
nothing” mixed with other transition probability matrices for other MR&R options. One
example is shown in Figure 3.2. The five rows of p;jfor one-year marked as “Do-nothing”
are shown as:

0.00  0.00 0.00 |
4.21 0.00 0.00
73.95 26.05 0.00
0.00 91.29 8.71
0.00 0.00 1.00

[97.56
0.00
0.00
0.00

| 0.00

2.44
95.79
0.00
0.00
0.00

(3.9)

By comparison, one can see that this matrix being the transition probabilities for “Do-
nothing” for one-year is taken out from the other transition probabilities for other
different MR&R options. It should be noted that for searching for the optimal MR&R
strategy, an elicitation is needed for the last transition probability (pss here for this
example) (AASHTO Pontis Manual).

Figure 3.2:  An Example Pontis Screen of Transition Probabilities
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Further note that in InfoMaker, the transition probabilities in Equation (3.5) is
shown as a vector {p,,, Pyy» Pss» Pass Pss ) fOr convenience. An example screen of this is

shown in Figure 3.3. As seen the probabilities in the vector are 94.8305, 98.6094,
99.1111, 100.00, 0. Note that Pontis has a 1.0 for pss because an element already in State
5 will never change its state if no maintenance work is done to it. Actually, other p;;’s do
not need to be shown, as seen in Figure 3.3 because the transition probability matrix is set
to have pi3 = pis = pis= p21= p24= p25= P31= Pn= P35 = P41= P42= Ps3= Psi=
Ps2 = ps3 = ps4= 0. This means that 1) transition can only occur between two consecutive
states (or no transition skipping a state can take place) and 2) improvement in condition
state is impossible under the “do-nothing” assumption. The second assertion is based on
an assumption of deterioration if nothing such as repair or rehab is done. Thus the
controlling or independent items in the matrix are those on the diagonal (i.e., pi1, p22, p33.
paa,and pss), and pi2, p23, p3a.and pascan be obtained using pi1, p2o, p33. and pas according

to Equation (3.8), namely

p,=1-p,
Py =1-py (3.10)
Py =1=ps;
Pis =1=py
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Figure 3.3:  An Example InfoMaker Screen of Transition Probabilities in A Vector
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CHAPTER 4 AN ARITHMETIC METHOD FOR
ESTIMATING TRANSITION PROBABILITIES

As seen above, the transition probability matrix is an important component in the
Markov Chain model. Therefore, the criticality of reliably estimating the transition
probabilities cannot be over-emphasized. This chapter presents a simple algorithm for
quickly estimating the transition probabilities. It should be emphasized that this
estimation approach suffers from lack of a statistical basis. On the other hand, its simple
structure offers a quick estimation and understanding of the transition nature.

This simple method uses the observed condition change data over a period of time
and thereby estimates the transition probabilities. The estimation is done by creating a

transition probability matrix that can produce exactly the observed condition changes.

To illustrate the arithmetic method, let us consider an example for Element 12
(Concrete Deck — Bare in Environment 3, in square meters) for all MDOT bridges with
an inspection interval of 2 years. The condition state distributions for these bridges are

given in Table 4.1.

Table 4.1 Condition State Distributions for Element 12 in Environment 3 for

MDOT
{ X(O) } x(o) x(o) x(o) x(o) x(o)
1 2 3 4 5
in square meters 24896 34104. 15800 10300 5200
{ Y(l) } y(l) y(l) y(l) y(l) y(l)
1 2 3 4 5
in square meters 17399 34801 17200 13200 7700
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This table indicates that for these bridges at the beginning of the 2-year period, 24896 sq.m
of the bare concrete deck was in State 1, 34104 in State 2, 15800 in State 3, 10300 in State
4, and 5200 in State 5. Two years later, the same concrete bare decks now have 17399 in

State 1, 34801 in State 2, 17200 in State 3, 13200 in State 4 and 7700 in State 5. Note that
{X@} and { Y } here are given in physical quantity unit (square meters), note that this

can also be represented by percentage. These two ways of presentation actually are
equivalent with a difference of multiplicative factor. All the physical quantities can be
transferred to percentage or probability by dividing each of the 5 components of the two
vectors in Table 4.1 by the total quantity. Since the total quantity

(0) (0)

(0)
X t+Xx,

+ x| (0

+ 0 4 x = @ 4y 4y 4y 4y s 90300 sq.m, dividing {X}
and { YV} in Table 4.1 by 90300 will give the vectors in percentage or probability.

By comparison of {X®} and { Y'"} in Table 4.1, it is seen that 17399 sq.m of
the concrete decks remained in State 1 after 2 years of service. In other words, 7497 sq.m
(= 24896 - 17399) of the 24896 sq.m deteriorated to State 2. Out of the 34104 sq.m of bare
decks that were in State 2, 27304 sq.m [= 34801 - (24896 - 17399)] stayed in State 2 and
6800 sq.m (= 34104 - 27304) became State 3. Out of 15800 sq.m, in State 3, 10400 sq.m [=
17200 - (34104 - 27304)] stayed in State 3 and 5400 sq.m (= 15800 - 10400) moved to
State 4. Out of 10300 sq.m, in State 4, 7800 sq.m [= 13200 - (15800 - 10400)] stayed in
State 4 and 2500 sq.m (= 10300 - 7800) moved to State 5. Finally, 5200 sq.m [= 7700 -
(10300 - 7800)] out of the 5200 sq.m, which was in State 5, stayed in State 5 with 2500

sg.m (= 7700 - 5200) coming from State 4. This analysis is also documented in the last row

of Table 4.2. For convenience of review, Table 4.1 is duplicated in Table 4.2.
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Table 4.2

An Example of Estimating Transition Probabilities

X 0) x(o) x(o) x(o) xft()) X;O)
1 2 3
In square meters 24896 34104 15800 10300 5200
Y(l) y(l) y(l) y(l) )’ftl) ygl)
1 2 3
In square meters 17399 34801 17200 13200 7700
S?auzgt;;yst;j‘fe 17300 | 34801 (24896~ | 17200 (34104 - | 13200 - (15800- | 7700 - (10300 -
yedIn- 17399)= 27304 | 27304)=10400 | 10400)= 7800 7800) =5200

Accordingly, the transition probability p,; = P {f 0= J ‘f fo, T i} for

this element (within the MDOT bridges) to change from State i at z,_, to State j at 7, can

be estimated as follows using the results of Table 4.2

State at 2 year
1 2 3 4 5
P=
State 1 Pu Z% 2 :248?4;%7399 ps=0 pa=0 ps=0
a 2 Py =0 P» Z% Px :341244;;7304 Py =0 P =0
0 year 3 Py =0 =0 Py =% Pu= 158(?5;0400 Ps=0
4 Pu =0 Pyp =0 Py =0 Py :% Ps= 1(3(12;07&0
5 Ps =0 Ps =0 Ps =0 Py =0 Pss Z%
(4.1a)
and thus
State at 2 year
1 2 3 4 5
State 1 p, =087 p,=030113  p,=0 p,=0 ps=0
P= a 2 py=0  p,=080061 p,=01939 p,=0 Py =0
0 year 3 ;=0 =0  p,=06582 p,=034178 p;=0
4 Py =0 P, =0 P =0 P, =07572T p, =024273
5 Py =0 P2 =0 Py =0 Ps=0 Ps =1
(4.1b)
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Note that p,, is the probability for this element to remain in State 1 after 2 years

17399

of service, estimated as 5 =0.69887. p,, is the probability for it to deteriorate to

State 2 from State 1 after 2 years or 1 - 0.69887 = 0.30113, because no transition from

State 1 to States 3, 4, and 5 is observed. Furthermore p,, is the probability for this

27303 = 0.80061 with 27304 found in

element to remain in State 2, estimated as

Table 4.2 as the difference of 34801 sq.m in State 2 after 2 years and 7497 sq.m from
State 1. Similarly p2; =1 - p22 = 1 - 0.80061 = 0.19939. The rest of the matrix in
Equations (4.1) is estimated according to the same concept and results in Table 4.2. It is
also seen that all rows of the matrix in Equation (4.1b) add to 1 satisfying Equation (3.8).

As noted earlier that the matrix in Equation (4.1) is shown as a vector (0.69887,
0.80061, 0.65822, 0.75727, 1.000) instead of a matrix, because all other terms are zero
except pia, P23, P34, and pus that are equal 1 - pyy, 1 - pao, 1 - p33, and 1 — py. Thus the
only independent terms are the diagonal terms, which can be conveniently expressed in a
vector, without losing generality.

Thus this arithmetic method is useful in understanding the concept of transition,
particularly when used for small data sets. When used for a larger data set, it however
loses reliability due to lack of a statistical basis. This fact will be highlighted in Chapter
7 where the arithmetic method is compared with both the Pontis and the proposed non-

homogeneous Markov Chain approaches to estimating transition probabilities.

36



CHAPTER 5 PONTIS METHOD OF TRANSITION
PROBABILITY ESTIMATION

In this chapter the methodology used in Pontis is presented for estimating the
transition probabilities. In Chapter 6, issues related to the Pontis approach are
summarized based on the discussion here.

Pontis updates the transition probabilities using two sources. One is expert
elicitation and the other historical inspection data. The expert elicitation is simply input
by the user, which can be based on experience without use of inspection data at all. Note
that at this early stage of Pontis application most of experience perhaps has to be derived
from inspection data. In this study the focus is on how to use historical inspection data to
estimate or update the transition probabilities (for “do-nothing”) to model the reality for
Michigan.

To determine the transition probability matrix for a bridge element in an
environment in the jurisdiction of an agency, two phases of calculations are used in
Pontis. The first one is to estimate such matrices using inspection data according to their
inspection intervals. The second one is to combine these matrices into one. The need for
the first phase is due to the reality that not all bridges are inspected with a constant time
interval. Section 5.1 presents the Pontis approach for the first phase, and Section 5.2 deals

with the second phase.
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51 Estimation of Transition Probabilities for One Time Step Using Inspection

Data

Estimating the transition probabilities in Pontis for modeling deterioration for one
time step is proceeded as follows: (1) Identifying pairs of the “before” (at ¢ ,.;) and the
“after” (at t,) condition data. (2) Using the identified paired data to compute or estimate
the transition probability matrix by regression. Note that the time step here can be one
year, two years, three years, etc. The first step of identifying data pairs is to prepare
relevant data for the second step of computation based estimation. It includes assembling
pairs of condition inspection data over time for the specific element and making sure of
consistent time intervals between inspections.

For each observation pair of inspection data, vector % ; is used to record the pair

(Pontis technical manual 4.4):
hyo=A{x/,xf, xd,xl xds v/ vl vd vl v} 5.1
where x/ is the bridge element in condition state k that has been observed in the earlier
(“before”) observation of pair j , and y/is the element quantity observed in the K"
condition state in the later (“after”) observation for the same bridge. Hence x/ and y/
(k=1,2,3,4,5) form the pair.
For example, consider a Michigan bridge 0/200001000B030, which has Element

107 (Open Steel Beam Painted) in the condition states as tabulated below for Year 1997

and Year 2001
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Table 5.1 Observed Pair of Condition Ratings for Bridge 01200001000B030’s

Open Steel Beam Painted

Bridge Inspection Percent for State
Date 1 2 3 4 5
01200001000B030 | 9/1/1997 0 0 0 100
01200001000B030 | 5/6/2001 0 0 0 82.3 17.7

For this data set, the observation pair 4 ; is then formed as follows

hj :{xlj = 0,x2j = 0,X3j = 0,X4A :1007x5j =0;

A A A A A (5.2)
v/ =0,y =0,y =0,y =823,y/=17.7}

or

h;={0,0,0,100,0;0,0,0,82.3,17.7}

This pair vector means that Element 107 for bridge 071200001000B030 had 100% of the
element in State 4 at Year 1997 and 4 years later 82.3% and 17.7% in States 4 and 5,
respectively. This also indicates that 17.7% of this element has deteriorated from State 4
to State 5 over the 2-year time period. Note that Equation (5.2) for hjuses percentage,
which can be converted to the physical quantity by simply multiplying /; with the total
quantity. Further note that when those quantities for the same element from different
bridges are summed, all 4; vectors, j =1, 2, ....... need to be in physical quantity, not
percentage. They are then used for estimating the transition probabilities.

For a bridge network and perhaps also a specific environment, there could be M
such observation pairs for a specific element. This results in the following vectors X

and Y
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M
J
= (2

j=1 j=1 j=1 Jj=1 j=1

~

(5.3)

l\4E
"
0
M=
L"H\.
M=
':<\.
M=
u-k\
~

Y = (Y, Y, 9554 Y5)

= QL v v v v (5.4)

j=1 j=1 j=1 j=1 j=1

Note that after the summation these two vectors can be divided by the total quantity

z +2x3+2x4+2x5 Zy{+2y2{ +Zy3/+2yj+2y5/ to express
=1 j=l1 j=1 j=1 j=1 j=1

i Mi

them in percentage or probability. Pontis then uses these vectors to estimate the transition
probabilities through a regression procedure as follows.

Based on the total probability theorem, transition probabilities py; (i = 1, 2, 3, 4, 5)
need to satisfy the following equation according to the total probability theorem.

V= DXyt DXy + PyXyt puiX, + Py Xs (i=1, 2,3, 4,5 (5.5)

Note that there are five such equations in Pontis for i = 1, 2, 3, 4, 5 to include all 25
transition probabilities in the matrix defined in Equation (5.3).

Due to random behavior of deterioration and possible variation in inspection data

yviand x; (i= 1, 2, 3, 4, 5), Equation (5.5) cannot be satisfied exactly. In estimating the
transition probabilities p ,; , Pontis uses the concept of regression, although there can be

other approaches to finding them. Namely, Pontis finds

such p, i (i, j =1,2,3,4,5) values that minimize the differences between the two

sides of Equation (5.5). This is the difference between the predicted and the observed

conditions. This difference is defined as the sum of the squared residuals as follows
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M
=) (¥, PuX) P Xy Py Xy  PuXs PsiXs7)? i=1,2,3,4,5
Z::I Yi PuXi -PaiXy P53 X3 Py Xy P Xs (5.6)

To minimize AI_2 differentiating this quantity with respect to p,., p,,, P;;» P4, and

ps,; » and then equating the partial derivatives to zero, we obtain the following five linear

equations as a set.

M M
ZX1 i = p1zz(x1 )? + Dy ZX1 X, +P3IZX1 X, +P4ZZX1 Xy +Pslzx1 Xs
Jj=1 Jj=1 Jj=1 Jj=1 j=1

Xz yi = thxz X’ +P212(X )’ +P3IZX2 X3 +P4IZX2 Xy +Pslzxz Xs
X3y = P1IZX3 X +pleX3 X, +P3IZ(X )’ +P4IZX3 X4 +Pslzx3 Xs

X4 yi = pI,ZX4 X’ +pleX4 Xz + Ds; ZX4 X3 +P4ZZ(X )’ + Ds; ZX4 Xs

ME TME TME TME JIN

Xsyi = thxs X +pZZZX5 X,’ +P3IZX5 X3 +P4IZX5 Xy +PSIZ(X§)2

Jj=1 Jj=1 J=1 J=1 J=1

(5.7)

~.
Il
—_

for i=1,2,3,4,5

All these linear equations can be expressed in the matrix form as:

M M M M M
2 J J J J J J J J
Z(XI) lexz lex3 ZX1X4 ZXIXS
j=1 j=1 j=1 j=1 j=1
M M M M M
Iy 12 Iy ] J J iy
szxl Z(Xz) szxs ZX2X4 szxs
j=1 j=1 j=1 j=1 j=1
M M M _ M M
_ iy iy iy2? [ i
[XX1=| D> x'%x,) 2 x;'x, Z(X3) D xx, Dy x x| (58)
j=1 j=1 j=1 j=1 j=1
M M M M M
g ] J J J J 12 J J
PIEVRILED IRV SLD IR PSP INCSDEEND I P P
j=1 j=1 j=1 j=1 j=1
M M M M M
Iy J J J J J J 132
PIRTE TP IE TSP IE T PP IR P PP INC S
j=1 j=1 j=1 j=1 j=1




(5.9)

[XY], = X3y, i=1,2,3,4,5

a, =| ps; i =1,2,3,4,5 (510)

We can write the solution for the regression Equation (5.7) as
a, =[XX]1'[XY], i=1,2,3,4,5 (5.11)
where superscript “—1” means inverse of matrix.
For the solution to exist the matrix [XX] must be nonsingular and thus invertible.

Note that vectors [XY]; (i=1, 2, ..., 5) can be assembled to one matrix [XY] as follows:
[xy]=[[xr].[xr],.[xy] .[xr], .[xr],] (5.12)
Then the transition probability matrix P for one-time step can be written as follows
according to Equation (5.11)
la,, a,, a,, a,, a;]=P, =[XX]"'[XY] (5.13)
This is the calculation in Pontis for estimating P over a time step or a time interval
associated with the observation pair X and Y. The estimated matrix is now denoted as P,

with a subscript “e” for “estimated”.
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Figure 5.1:

Example InfoMaker Screen Showing [XY] Matrix for Element 12 in

Environment 3 for MDOT Bridges with 2-year Inspection Interval
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Table 5.2: [XY] Matrix for Element 12 in Environment 3 for MDOT Bridges with 2-

year Inspection Interval
Skey j
1 2 3 4 5

Skey i
1 1739937.3 569698 120000 50000 10000
2 0 2910360 430000.41 60000 10000
3 0 0 1169998.5 380000 30000
4 0 0 0 829997.31 200000
5 0 0 0 0 519998.91
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As an example, Figure 5.1 shows the [XY] matrix for Element 12 in Environment

3 for MDOT bridges with an inspection interval of 2 years. The first column “Elemkey”

identifies the element number, which is 12 for this case. The second column “Envkey”

indicates the environment in which this element is in, and it is 3 for this case. The third

column “Num Years” presents the number of years between two inspections, in this case

2 years is the inspection interval selected. The fourth column “Skey I” refers to the row

for condition State i, in the [XY] matrix and the fifth column “Skey J” the column for

condition State j; these values of [XY] are assembled in Table 5.2 in matrix form for

reference. Namely in Table 5.2 and Figure 5.1, we have

[XY], =

[1739937.3 ]
0

0
0
0

[XY], =

b

[XY], =

50000
60000

380000 |;

829997.31
0

[ 569698 |
2910360

[XY] =

[XY], =

10000

10000

30000
200000

519998.91 |

[ 120000 |
430000.41

1169998.5
0
0

(5.14)

The fifth column “Sum Products” gives these components of the entire matrix [XY] in a

vector format.
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Figure 5.2:

Environment 3 for MDOT Bridges with 2-Yyear Inspection Interval.

InfoMaker Screen Showing the Values of [XX] matrix for Element 12 in

M Pontuser.pbl - InfoMaker - [Database - 1 Connection: (Active Connection - copy2 of wsu)]
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Table 5.3: [XX] Matrix for Element 12 in Environment 3 for MDOT Bridges with
2-Year Inspection Interval
Skey j
1 2 3 4 5

Skey i
1 2489282.3 354.06744 0 0 0
2 354.06744 3410010 0 0 0
3 0 0 1580000 0 0
4 0 0 0 1030000 0
5 0 0 0 0 520000
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In Figure 5.2, the matrix [XX] defined in Equation (5.8) is shown for the same
element on Infomaker screen. The format for [XX] is the same as for [XY]. Table 5.3
shows the [ XX] matrix in the matrix form for reference.

According to Equation (5.11) or (5.13), [XX] needs to be inversed to find the
estimated transition probability matrix P. This inverse is shown in Table 5.4 for the same

example of element.

Table 5.4: Inverse of [ XX] Matrix for Element 12 in Environment 3 for MDOT
Bridges with 2-year Inspection Interval

([XX] matrix shown in Table 5.2)

Skey j
1 2 3 4 5

Skey i
1 0.0000004 0.0000000 0.0000000 0.0000000 0.0000000
2 0.0000000 0.0000003 0.0000000 0.0000000 0.0000000
3 0.0000000 0.0000000 0.0000006 0.0000000 0.0000000
4 0.0000000 0.0000000 0.0000000 0.0000010 0.0000000
5 0.0000000 0.0000000 0.0000000 0.0000000 0.0000019

It is seen that this [XX] matrix is inverted. However, this may not be always the
case for other possible data. For example for the same element in the same environment
for MDOT bridges but with an inspection interval 3 years, the [XX] matrix is non-
invertible. This [XX] matrix is shown in Figure 5.3 from InfoMaker and its matrix form is
shown in Table 5.5 for reference. Apparently, when inadequate data are available, the
[XX] matrix becomes not invertible. Lack of data often occurs to State 5 since usually
not many bridges or elements are kept at this worst state for a long period of time. Non-
invertible [XX] matrix may also occur when the data are not consistent, for example, for a

worst state to become better when no work was done.
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Figure 5.3:

Environment 3 for MDOT Bridges with 3-Year Inspection Interval

Example InfoMaker Screen Showing [XX] Matrix for Element 12 in
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Table 5.5: [XX] Matrix for Element 12 in Environment 3 for MDOT Bridges with 3-
Year Inspection Interval
Skey j
2 3 4

Skey i
1 40000 0 0 0 0
2 0 50000 0 0 0
3 0 0 10000 0 0
4 0 0 0 10000 0
5 0 0 0 0 0
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For the case where [XX] is invertible, i.e., Element 12 in Environment 3 for 2-year

inspection interval, Equation (5.13) gives the following result:

(2489823
340674

(0000000
(0000000

(0.0000004
(00000000

(00000000
(00000000

340644
3410010
(00000000
(00000000
(00000000

(00000000
(0.0000003
(00000000
(00000000
(00000000

(00000000
(00000000
15800000
(0.0000000
(0.0000000

(00000000
(00000000
(00000006
(00000000
(0000000

P. = [XX]'[XY]=

=

Q0000000 0.000000 ]
Q0000000 0.000000
Q0000000 0.000000
1CBO0C00 0.000000
00000000 5200000

(0000000 0.0000000 |
(0000000 0.0000000
(0000000 0.0000000
(0000010 00000000
(0,0000000 Q0000019 |

17399373 5068 120000 50000 10000
0000000 2910360 43000041 60000 10000
0000000 0000000 11699985 380000 30000
0000000 0000000 QO00000 82999731 200000

[070 023 005 002 00 ]
000 085 013 002 000
=000 000 074 024 0O (5.15)
000 000 000 081 019
1000 000 000 000 1.00]

| 0000000 0000000 Q00000 Q00000 51999891 |

17399373 5068 120000 50000 10000
0000000 2910360 43000041 60000 10000
0000000 Q000000 116995 380000 30000
0000000 Q000000 0000000 &9997.31 200000
0000000 Q000000 Q000D 0000000 51999891

This estimated transition probability matrix is for time steps with a length of 2 years.

It is seen in Equation (5.15) that pi3, p1a, P15, P2a. P2s. P3s.P21. P31, P32, P41, P42, P43,

Ds1, Ps2.Ps3.and psa.are not necessarily zero. For example pi3=0.05, p14a= 0.02, pa= 0.02,

p3s = 0.02. This is because the regression process does not require all these terms to be

zero. In addition each row also may not add to 1, again because it is not required in the

regression approach used in Pontis.

Nevertheless, after the calculation shown in Equation (5.15), Pontis takes only the

diagonal terms for the transition probability matrix, sets a zero to pi3, pia, pPis, P24, P25, P3s.
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D21, P31, P32, P41, P42, P43, P51, Ps2, P53, Psa,computel- prias pia, 1- paras pas, 1- p3zas pa,

1- pas as pss, and sets 1 to pss. Now the rows are forced to add to 1.0.

5.2  Combination of Estimated Transition Probability Matrices for Different

Time-Steps

In reality, not all “before” and “after” inspections are done with an exactly same
constant time difference or interval. For example, bridge inspections may be performed
with several months apart to several years apart, although 2 years apart is the norm in the
US. Inspection data obtained with different time intervals should not be mixed in one
estimation calculation as formulated in Equation (5.13). For example, three one-year
transition probability matrices multiplied with each other gives a three-year matrix, which
should not be mixed with one-year matrices.

Instead, the data need to be grouped according to the length of inspection interval.
For each group with the same inspection interval, Equation (5.13) can be computed,
which will result in P for that particular inspection interval or time step. In order to
combine these transition probability matrices estimated using data with different time
intervals, Pontis does offer a function to do just that, which is presented below.

Based on the homogeneous Markov Chain concept, the transition probability
matrix for n-step (over n time intervals) is defined as the product of n one-step (one-time

interval) transition probability matrices:

P" =P"PT....... P’ (5.16)

n matrices multiplied
According to this concept, Pontis determines a transition probability matrix P for one

year as one-step by combining equivalent one-step (one-year) transition matrices. Each of
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the equivalent one-step matrices is obtained from an n-step (n-year) matrix. This
weighted combination is done one row at a time because the weight for each row of each
matrix can be different.

This process can be described as follows

[P],, =[P, w, + [P 1,0y Wy, +[P 0y wy e+ [RPO] Wy (517
(i=1,2,3,4,5)

where P, Pez, Pe3, ........ , and P.'* are the transition probability matrices estimated using
inspection data respectively with 1-year, 2-year, 3-year, ....... , and 10-year time

intervals. Note that in real data, two inspection dates are never exactly n years apart
(n=1,2,3,...). Thus the real intervals are rounded in the Pontis calculation. In Equation
(5.17) Wi s Wy e and o, Are weights for these 10 matrices and row i respectively.
They should satisfy

Wt w, +w, +wy,, =1 (5.18)
Each of the transition probability matrices in Equation (5.17) for different time intervals

can be expressed as follows with their transition probabilities identified:

Pu 1-p, 0 0 0
0 Pxn 1-p, 0 0
P=< 0 0 Py 1=py 0 ¢ (5.19)
0 0 0 p, l-p,
0 0 0 0 Dss
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p112 1- 19112 0 0 0
0 19222 1- p222 0 0
P.’=: 0 0 R TN 0 (5.20)
0 0 0 p442 1- p442
0 0 0 0 p552
X p113 1-3 19113 0 0 0
0 X 19223 1-5 17223 0 0
P.’=: 0 0 Ipe  1-3py’ 0 (5.21)
0 0 0 Y 17443 1-3 19443
0 0 0 0 3 pSS3
2 1-%p/ 0 0 0
0 Py 1=4/py" 0 0
P."= 0 0 \ P33n 1_@ 0 (5.22)
0 0 0 Upu" 1-4p,"
0 0 0 0 U pss”

where pi1, p2. p33. pas and pss are diagonal terms of the transition probability matrix Pe
estimated using inspection data spanning over one year. The regression procedure
described in Section 5.1 (Equation 5.13) is used to find these probabilities. The
probabilities p211, pzzz, p233, p244 and p255 are obtained using data over 2 years for the
“before” and “after” inspections. The exact same procedure in Section 5.1 (Equation

5.13) is supposed to be used to find these terms. Please notice that the superscript “2”
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here indicates the time interval of 2 years, and it is not an exponent. Similarly p"i, p"2.
p33.p" 44, and p'ss are the same except using data over n years.

It is seen in Equations (5.19) to (5.22) that the diagonal terms of the transition
probability matrix for n years are taken n"rootforn=2,3, ....... ,10 to be combined with
the one-year matrix as defined in Equation (5.17). Further, all other probabilities in the
matrices are set to zero except the ones next to the diagonal terms to the immediate right,
as discussed earlier. This is done based on two assumptions: 1) the condition will not
improve without repair or rehabilitation; 2) deterioration will not take place in the form of
skipping a condition state (i.e., from State 1 to 3, from State 2 to 4, or from State 3 to 5).
The second assumption may be true for short time periods such as one or two years, but
questionable for longer periods such as 8, 9, and 10 years. Practically, however, this is
not a serious concern at this point, because perhaps no bridge was inspected that many
years apart. Nevertheless, transition probabilities over 3 or 4 years may very well be non-
zero skipping a state. Equation (5.24) shows an example of a 6.0% transition probability
for States 1 to 3, 6.8% from State 2 to 4, and 8.3% from States 3 to 5, for Element 12 in
Environment 3 of Michigan. Ignoring these (i.e., setting them to zero) apparently will
result in a lower deterioration rate.

The weights in Equation (5.17) are set in Pontis as follows, depending on the

number of data pairs used to estimate P, Pez, P’ e , P.'? for each row, respectively

W, = —=>2— i=1,2,3,...,5; j=1,2,3,...,10 (5.23)

T2 Ny

where Nj; is the number of data pairs with j-years apart and transition (deterioration)

starting from State i, used to estimate probability matrix P.. For example, Figure 5.4
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shows an example of N, for Pe6 and i = 1, 2, 3, 4, 5. The first column “Elemkey”
indicates Element 12, “Envkey” for Environment 3, “Num Years” for inspection interval
6 years, “Skey” for row i =1, 2, 3, 4, 5, and “Weight” for N;in Equation (5.23). In
other words, the more data pairs are used for a transition probability matrix, the heavier
the resulting matrix will be weighted when combined with other matrices for different

years. Also the more data pairs there are for a row in a matrix, that row will be weighted

more when combined with the same row in other matrices.

Figure 5.4:  Example Infomaker Screen for Combination Weights

@ Pontuser.pbl - InfoMaker - [Database - 1 Connection: (Active Connection - copy? of wsu)] L‘..JL@.]H
' File Edit Wiew o©Object Design Rows Tools Window Help o sl [l 6
|ode e FARS &[0 xapBanlx| |[te2ea|r|locngsln] |B8]3-3

: o[ Tables [iﬂTﬁl Object Layaut (¢opy2 of wsu) ol x|

i - actmodls ~

=+ actypdfs =

[+ agencypolrule
=+ B agencypolsets
&+ [ bridge

=+ FER bridge_cmts
- bubblehelp

- B budgmtrx
[ budgsets

- cicocnt!
[ cicamept

&+ B condumdl

&+ condunit34

=+ roptions

[+ costindx L
&+ B costmtrx

- costsets

- datadict

[+ [ dbdescrp

- default_coptions

[ default_scenparam

+-FER dm_act_prob_experts I
[+ dm_cond_state_pairs M
= R dm_control (.J.M 2]
[ dm_dst_matrix_a otk et i

& [ dm_det_matrix_b Elernkey — Emvkey Mum Years  Skey  ProbValue  ‘Weight

[+ [ dm_det_prab_1_bin
= FE dm_det_prob_experts
[ dm_dst_prob_history 12
+-FER dm_det_prab_new_model 12
[+-fE8 dm_det_prob_old_model
- dm_elem_obs_pairs 1
- dm_eleminsp 17
- editcheck_constants
[+ FER editcheck_definitions
1+ editcheck_nbi_layout
[ editcheck_session
+-FER editcheck_session_log
) B edicheck_value_sets || TS Caimne)resurs A
|Ready |Rows 10505 | |* 0001:0063

mw P Fort.. ] (3 draft 5 ' &) TP-50... " 12300 ] @ hittpel... "@ haft... “ ] serze. ., [‘@g @@ s06m

(SN FVRN PV IV )
mom m om W
[ S TR
oo o o o
[ R N =

53



Note that the combined resulting transition matrix is to be applied to the same
element from all the bridges in the same environment and for all the future years, based
on the homogenous Markov Chain assumption discussed in Chapter 3. Since that matrix
is for one-step equal to one year, for n-step (n-year) transition, n one-year matrices will
be multiplied to obtain the n-year transition probability matrix, according to Equation
(5.16). Then it is multiplied by the corresponding initial distribution to find the predicted

condition distributions in the future.
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CHAPTER 6 LIMITATIONS IN THE PONTIS APPROACH

This chapter discusses several issues related to Pontis in estimating the transition
probability matrix for “do-nothing” action to be used in bridge element condition
prediction. As discussed earlier this transition probability matrix is critical because the

predicted long-term deterioration can be significantly affected.

6.1 Non-invertible [ XX] Matrix:

Equation (5.13) shows that the [XX] matrix needs to be inverted to obtain the
estimated transition probability matrix Pe. In other words, if [XX] is not invertible, P,
cannot be found. When this occurs it appears that Pontis sets certain values in the [XX]
matrix to make it invertible so that the calculation can proceed. For the example of
Element 12 in Environment 3 discussed in Chapter 5 for 3-year inspection interval the
[XX] matrix is not invertible. This [XX] matrix was shown in Table 5.5.

Though the [XX] matrix is not invertible Pontis still outputs transition
probabilities. Figure 6.1 shows these transition probability values from InfoMaker. The
first column “Elemkey” identifies the element number, which is 12 for this case. The
second column “Envkey” indicates the environment in which this element is in, and it is
3. The third column “Num Years” presents the number of years between two inspections,
in this case 3 years is the inspection interval selected. The fourth column “Skey” refers to
the row of condition States (i.e., first row for State 1, second for State 2, ....., fifth for
State 5). The fifth column “Prob Value” gives the transition probability corresponding to

the respective “Skey”. The last column “Weight” is respective N;, i =1, 2, 3,4, 5.
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Figure 6.1:  InfoMaker Screen Showing Transition Probabilities for Element 12 in
Environment 3 for MDOT Bridges with 3-Year Inspection Interval

([XX] Matrix Non-invertible but Transition Probabilities Obtained)
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It appears that a 1 is added to pssto obtain the inverse of the [XX] matrix and then
the calculation proceeds. This needs to be further investigated to fully understand the
procedure used for making the matrix invertible. Further the implications of this

procedure to the future distribution prediction also need to be fully understood.

6.2  Negative Transition Probabilities
Another issue with the Pontis approach is that negative transition probabilities

may be found in the regression procedure formulated in Equation (5.13). According to
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the theory of probability, no probability should be smaller than O or negative. However
negative transition probabilities may result from Equation (5.13) as shown in the
following example.

Consider Element 107 in Environment 1 for MDOT bridges with an inspection
interval of 2 years. The InfoMaker screen showing the [XY] matrix for this case is given

in Figure 6.2 and the same assembled in the matrix form is shown in Table 6.2.

Figure 6.2:  InfoMaker Screen of [XY] Matrix for Element 107 in Environment 1 for

MDOT Bridges with 2-Year Inspection Interval
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Table 6.2: [XY] Matrix for Element 107 in Environment 1 for MDOT Bridges with 2-

Year Inspection Interval

Skey j
1 2 3 4 5
Skey i
1 3117124.8 644948.13 116792.44 15121.051 0
2 262242.28 1589868.5 289768.38 43271.488 1792.6422
3 44386.844 212238.38 468168.56 51607.371 2168.1489
4 5422.813 25704.6 38155.164 56548.727 748.5258
5 0 1421.549 1212.417 731.744 493.615

The [XX] matrix for this example is given in Figure 6.3 and assembled in the matrix form

in Table 6.3.

Figure 6.3:  InfoMaker Screen of [XX] Matrix for Element 107 in Environment 1 for

MDOT Bridges with 2-year Inspection Interval
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Table 6.3:

[XX] Matrix for Element 107 in Environment 1 for MDOT Bridges with

2-Year Inspection Interval

Skey j
1 2 3 4 5
Skey i
1 3473192.8 347337.09 66410.922 7271.97 0
2 347337.09 1602700 209974.16 25736.615 1597.4
3 66410.922 209974.16 463937.31 37258.941 1088.85
4 7271.97 25736.615 37258.941 55709.68 687.76996
5 0 1597.400 1088.85 687.76996 497.98

For this case the [XX] matrix is invertible and the inverse result is given in Table

6.4 computed using Excel. Transition probabilities for this case is calculated using

Equation (5.13) and the results are presented in Table 6.5.

Table 6.4: Inverse Matrix for [XX] Matrix for Element 107 in Environment 1 for
MDOT Bridges with 2-Year Inspection Interval
Skey j
1 2 3 4 5
Skey i
1 0.0000003 -0.0000001 0.0000000 0.0000000 0.0000002
2 -0.0000001 0.0000007 -0.0000003 -0.0000001 -0.0000014
3 0.0000000 -0.0000003 0.0000024 -0.0000014 -0.0000023
4 0.0000000 -0.0000001 -0.0000014 0.0000192 -0.0000231
5 0.0000002 -0.0000014 -0.0000023 -0.0000231 0.0020497
Table 6.5: Transition Probability Matrix for Element 107 in Environment 1 for
MDOT Bridges with 2-year Inspection Interval
Skey j
1 2 3 4 5
Skey i
1 0.90 0.09 0.01 0.00 0.00
2 -0.03 0.97 0.05 0.01 0.00
3 -0.02 0.01 0.98 0.03 0.00
4 0.01 0.00 0.00 0.99 0.00
5 0.13 -0.28 0.12 0.01 0.99
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Pontis then takes the diagonal terms 0.90, 0.97, 0.98, 0.99, and 0.99 as pi1, p22,
P33, paa and pss. Further it calculates Pio =1 —p11, p3s=1-pxn, psa=1—ps3, pss=1-—
pasa and ignores the negative probabilities.

Although it appears that the transition probabilities shown in Pontis are not
negative, the negative probabilities shown in Table 6.5 actually have affected the
probabilities on the diagonal, because they were obtained from the same process defined

in Equation (5.13).

6.3  Possible Non-zero p13, p14, Pis, P24, P25,D35, D215 P315 P325 Pals P42y Pa3y P515 P52, P53

and/or ps4 values

In Table 6.5, pi3 = 0.01 and pys = 0.01. They show an example of non-zero
probabilities for transitions skipping a state level, namely from State 1 to State 3 and
State 2 to State 4. Recall that we have seen another such case earlier. Apparently, this
situation violates one of the assumptions used in Pontis that such skipping transition is
impossible. As a matter of fact, data showing such skipping are excluded in Pontis in the
stage of valid pair identification i.e., when X and Y are identified in Equation (5.3) and
(5.4). However, the regression procedure defined in Equation (5.13) does not eliminate
such possibility of having transition probabilities become non-zero.

Furthermore, Table 6.5 shows p3» = 0.01, ps; = 0.13, ps3 = 0.12, ps4 = 0.01, which
also violates another assumption in Pontis that the probabilities of transition from a worse
state to a better states are zero indicating no MR&R action is taken. Again these non-zero

values affect the probabilities on the diagonal.
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Note also that theoretically the diagonal terms in the estimated transition
probability matrix P. can become negative, and other off diagonal terms can become non-
zero or even negative. It is because the regression process defined in Equation (5.13) does
not prevent these possibilities. This, situation may also cause the diagonal terms (pi1, p22,
D33, P44, Pss) taken in Pontis for future prediction to become unreliable. Thus, this is a
significant issue related to using the Pontis approach for future condition prediction and

the related optimization for MR&R action.
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CHAPTER 7 PROPOSED METHOD OF TRANSITION
PROBABILITY ESTIMATION

7.1 Optimization Formulation for Estimating Transition Probabilities

The Pontis approach to estimating the homogenous transition probability matrix
focuses on the error or difference between the predicted probabilistic conditions and the
inspection based conditions (or measured conditions). After formulating this sum of
errors for all the inspection data used for estimation, a formal minimization procedure is
applied to find the appropriate transition probabilities such that the error sum is reduced
to the minimum. This process produces the minimizing transition probability matrix.
Again this matrix is constant for all ages of the element.

A similar approach is adopted here for estimating the non-homogeneous transition
probability matrices. Namely the error or the difference between the predicted and
measured bridge element conditions is minimized. Since the element conditions are
associated with a probability distribution, the mean of the distribution is used for this
optimization. Namely, estimating the transition probability matrices is accomplished
here by minimizing the sum of the differences between the inspection based conditions
and the predicted conditions. The prediction process no longer assumes a constant
transition probability matrix as for the homogeneous Markov Chain. Instead, the
following formulation is developed in this project for estimating or identifying the age
dependent (i.e., non-homogeneous) transition probability matrices for each bridge

element:
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Minimize 2, x | ¥; — Predicted [Y:, P(A)]P 7.1

Subject to Zk:],z,..., s px(A;)) =1 forallj

pi(A;) >0 for all k and j

where N = total number of condition transitions used (i.e., the number of data pairs used);
Y; = condition state vector right after the ith transition (for ith pair of transition data);
Predicted [Y;, P(A;)] = Predicted condition state vector for the same element involved in
the ith transition, using the transition probability matrix P(A;) depending on the element’s
age A;. The symbol IxI means the magnitude or modulus of vector x. The transition
probabilities p are the elements of the matrix P. The conditions for them to meet in
Equation (7.1) are there to satisfy Equation (3.8) for consistency. These conditions are
met in Pontis, rather, after the transition probability matrix is found, by simply setting p
values equal to O if obtained negative, or the diagonal terms 1.0 if obtained to be larger
than 1.0.

Note also that the Markov Chain model used here is more general than the Pontis’
homogeneous model, for its non-homogeneity. Therefore, the transition probability
matrices P(A) are shown as functions of age A. It means that P(A;) can be different
according to age A; of the element involved in transition i. For application to bridge
management focused herein, we consider only the effect of age, not the absolute time.

This can be seen more easily in a simple application example in the next section.
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7.2 A Simple Illustrative Example

Consider Element 215 (reinforced concrete abutment) in Environment 1 for the
MDOT bridges with an inspection interval of 2 years. So #, — t,.;1s 2 years for this
example. A sample set of 3 pairs of condition transition data for this element is used in
this example for illustration, as displayed in Table 7.1. For this element, the total number

of condition states is 4 (i.e., S=4).

Table 7.1 Sample Data for Element 215 in Environment 1 for MDOT

Bridge Key age-x | X; | Xo | X3 | Xy |agey| Y Y, Y; | ¥4
16116021000B010| 3 1.00| 0.00|0.00{0.00; 5 0.93 {0.07| 0.00{0.00
15115051000B010] 36 |0.94| 0.06|0.00{0.00f 38 | 0.89 |0.11| 0.00|0.00
05105011000B010] 42 |0.95| 0.05]0.00{0.00f 44 | 0.84 |0.16| 0.00|0.00

In this table, column “Bridge Key” is the identification for each bridge. Column “age-x”
records the age of the element at time #,.; for this case (Year 1995), and similarly “age-y”
the age at time #, (Year 1997). Column X; shows the percentage of element 215 in
Condition State 1 in the bridge at time #,.; (Year 1995). Similarly, X, X3 and Xy, are the
percentages of the element in Condition States 2, 3, and 4 respectively at time t,.;, and Y7,
Y>, Y3, and Yy at time 7, (Year 1997).

For easy illustration without loss of generality, it is assumed that for the age
range of 0 to 20 years, the transition probability matrices for every two years are constant
and designated as Up.2p. The subscript 0-20 indicates the applicable age range. For the

age range of 21 to 40 years, another constant transition probability matrix V>;.4 is used to
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model the transition (deterioration) for every 2 years in the same format. For the age
range of 41 and older, a third transition probability matrix Wy, is used to model transition
(deterioration) for every two years also in the same format but without specifying the
ending age. Since the sample data set includes bridges only up to 42 years of age, no
further transition probability matrices could be used. Otherwise more matrices would be
considered and used for modeling. The indefinite upper age limit for W,;. means that for
ages older than 41 years, this transition probability matrix is to be used for prediction.

Accordingly, Equation (7.1) is specifically formulated as follows for N=3:

Minimize | {0.93, 0.07, 0.00, 0.00} — {1.00, 0.00, 0.00, 0.00} Up.»l*
+1{0.89, 0.11, 0.00, 0.00} — {0.94, 0.06, 0.00, 0.00} V2,4 I
+1{0.84, 0.16, 0.00, 0.00} — {0.95, 0.05, 0.00, 0.00} W,;_ >

(7.2)

Subject to Zk:],z,m,4 Ujk, 0-20 = 1 for allj, and Ujk, 0-20 > 0 forall k andj

Zk:],z,,,,,4 Viks 21-40 = 1 for allj, and ij,2].402 0 forall k andj

Zk:],z,,,,,4 Wik 41- = 1 for allj, and Wik, 41- > 0 forallk andj

The lower case non-bolded letters u, v, and w are the transition probabilities in the
matrices Uyp.20, V2140, and Wy, ., with the age applicability ranges also indicated. The first
term in the magnitude signs l.| is associated with the first bridge “16116021000B010”,

where the first vector {0.93, 0.07, 0.00, 0.00} is the probability distribution of the
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element condition for this bridge after the transition at time #, (Year 1997). The second
half in the magnitude signs (i.e., the terms after the minus sign) is a product of a vector
and the transition probability matrix. The vector in the big brackets is the probability
distribution of the element condition of that bridge at time #,.; (Year 1995). This vector
multiplied with the transition probability matrix U,y gives the predicted probability
distribution of the element condition state at time #, (Year 1997). The following two
magnitudes squared have the same physical meaning and structure as the first one but for
the other two bridges. Then the transition probability matrices Uy.29, V2740, and Wy;. are
to be found to have the sum of the differences or errors minimized. In this example, the

following probabilities are pre-set for impossible transitions and consistency,

respectively.

Ujt, 0-20 =0 ifj > k; Ujt, 0-20 =] - Ujj,0-20 if k-j=1; 0 otherwise
Viks 21-40 =0 lf] > k,' Viks 21-40 =] - Vij21-40 if k—j:],' 0 otherwise
Wik, 41- =0 ifj > k; Wik, 41- =] — Wij41- if k-j=1; 0 otherwise
U4dy0-20 = Vidy 21-40 = Wiagod1- = 1 (7.3)

This makes only the first three diagonal terms in each of the three transition probability
matrices unknown to be found in the minimization process: ujzo.20, U22,0-20, U33,0-20 5
VI1,21-405 V2221405 V33,21-40 S Wil,41-7 W22,41-; W33,41- .

As noted earlier, Equation (7.2) is a simple example of Equation (7.1) in that the
transition probability matrices Uy, V2740, and Wy, are constants respectively for age
ranges 0 to 20 years, 21 to 40 years, and 41 years and older. In other words, the

transition rates or deterioration rates are assumed constant within each of the specified
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age ranges, but variable for the entire service life of the element. In general, the
transition probabilities over each of the 20-year or longer periods may not be very
constant. The model in Equation (7.1), nevertheless, allows more general cases of one
transition probability matrix for each time unit of interest. On the other hand, the number
of unknown transition probabilities to be found will accordingly increase and the required
computation effort. However, for certain bridge elements with low deterioration rates
(i.e., those with long service lives), assuming a constant transition probability matrix for a
number of years is not unreasonable. It is because the rate (or probability) of transition
from a better state to a worse state (or the rate of deterioration) for this situation is
relatively low, and thus variation of this rate from year to year is not significant.
Therefore a constant transition probability matrix for an age range may be realistic and
practical.

It may be also interesting to point out that the Pontis approach based on
homogeneous Markov Chain actually can be viewed as a special case of non-
homogeneous Markov Chain, with only one constant transition probability matrix for all

time periods over the entire life span of the element.

7.3  An Application Example

In this application example, the same Element 215 is used. The inspection data of
the element are taken from the MDOT Pontis database. It is well known that high quality
of input data can never been over-emphasized. We thus have examined the data cleaning
procedure used in Pontis and found that the process is not consistent enough because it

misses invalid pairs. We have thus developed a more rigorous data cleaning procedure,

67



which has been used here to screen out invalid data pairs that were not identified by the

Pontis screening process. A typical example is presented below for illustration:

Table 7.2:  Condition State Distribution for Element 215 in MDOT Bridge

27127022000B030 in Environment 1

X x(O) x(O) x(O) x(O)
1 2 3 4
In % 77.778 14.815 7.407 0
y®d y(l) y(l) y(l) y(l)
1 2 3 4
In % 0 96.296 3.704 0

In this table, as indicated earlier in this report, vectors X © and Y are the

condition state distribution in the previous year and the current years respectively. Note
that the sum of x!” and x{” for condition states 1 and 2 should be greater than or equal to

the sum of y”and y{", because the latter two quantities can only come from the former

two for the do-nothing situation. However, it is not true as seen in Table 7.2, as the sum
of xVand x{” is 92.593, which is less than the sum of y{" and y{"”, 96.296, in Table 7.2.

There is a number of possible causes for the sum of y” and y!" to be larger than that of

x”and x{”. 1) Simple error of input such as typo. 2) Some quantity from x.” has

moved to y!” for improvement in condition, which violates the “Do-Nothing”

assumption. Our screening algorithm targets at such observed inconsistencies.

In this first step of development work, to avoid the issue of collectively using data
with different inspection intervals and weighting them differently, only the pairs with 2-
year inspection interval for Element 215 are used here in this example. So #, — t,.;= 2

years is used with approximation of rounding. Equation (7.1), as specified in Equation
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(7.3), is applied, except that more data pairs are included, using all available MDOT data
up to Year 2000.

It should be noted that Equation (7.1) for estimating non-homogeneous transition
probability matrices can easily accommodate data obtained with different inspection
intervals, such as 2, 3, or any other number of years. In Pontis, in contrast, data from
unevenly intervaled inspections are grouped according to the inspection interval, because
mixing them would cause unacceptable approximation. Namely, data with 1-year
intervals (with rounding) are put in one group, 2-year intervals (also with rounding) in
another group, and so on. Each group is used separately for estimating the transition
probability matrix for that group. Then the resulting matrices for different groups are
averaged with weights proportional to the number of data pairs used in each group. This
approach also requires critical examination, because longer intervaled inspection data
usually are more reliable than those shorter intervaled. For example, a data pair
intervaled by one year is usually not as good in quality as another pair separated for
longer time. It is because for shorter intervals, the condition change is very little and the
inspection results may not reflect such fine changes. In the Pontis approach, however,
this higher quality data pair intervaled longer is treated the same way as another pair
intervaled more closely.

In applying Equation (7.1) to this data set, three transition probability matrices are
used to model the element’s deterioration: Uy.z9, V2140, and Wy, , as done in the small
problem shown previously. They respectively cover age ranges of 0 to 20 years, 21 to 40

years, and 41 years and beyond.
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Using inspection data up to Year 2000, Table 7.3 shows the resulting transition
matrices Up.2g, V2140, and Wy, for Environment 1 in Michigan, compared with the
constant transition probability matrix obtained using the Pontis approach. According to
Equation (7.3) only the 9 probabilities on the diagonal are the unknowns. Table 7.3
displays these 9 terms, along with the last terms in the probability matrices (u4y=
vas=wyy=1). Since this last term is not treated as an unknown for the non-homogeneous
Markov Chain approach, it is shown lightened.

It is seen in Table 7.3 that the Pontis transition probabilities are mostly between
the maximum and minimum values of those in the matrices Uy, V2749, and Wy;. This
actually shows the essence of the homogeneous Markov Chain application here:
modeling a non-homogeneous Markov Chain with compromise. = Nevertheless,
constrained by the homogeneity assumption, it would not be able to realistically model
the non-homogeneous stochastic process. For projecting to a far future, the difference
between the two approaches can be significant.

For other three environments, similar comparisons are observed, showing the
Pontis obtained transition matrices to be a compromise to fit the data. This is seen more
clear in Table 7.4 when the non-homogeneous Markov Chain approach used 6 transition
probability matrices U, V, W, X, Y, and Z (instead of three tried first) to respectively

cover age ranges of 0-10, 11-20, 21-30, 31-40, 41-50, and 51 years and older.

70



Table 7.3 Comparison of Transition Probability Matrices between the Proposed
Method Using 3 Matrices, Pontis Approach, and Arithmetic Method for Element 215 in

Environment 1

Dii D22 P33 D44
Uo.20 0.977 0.986 1.000 1.000
Varao 0.968 0.986 0.941 1.000
Wy 0.960 0.982 1.000 1.000
Pontis 0.963 0.985 0.990 1.000
Arithmetic 0.962 0.963 1.000 1.000
Table 7.4 Comparison of Transition Probability Matrices between the Proposed

Method Using 6 Matrices, Pontis Approach, and Arithmetic Method for Element 215 in

Environment 1

Dii D22 P33 D44

Up10 0.972 0.989 0.995 1.000
Vii-20 0.989 0.980 0.990 1.000
Wai-30 0.973 0.959 0.990 1.000
X340 0.966 0.992 0.978 1.000
Y50 0.949 1.000 0.990 1.000
Zs- 0.967 0.976 0.999 1.000
Pontis 0.963 0.985 0.990 1.000
Arithmetic 0.962 0.963 1.000 1.000

To evaluate the proposed non-homogeneous Markov Chain approach, the
resulting transition probabilities are used to predict the element’s immediate future
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distribution vector at the network level. Then this predicted distribution is compared with
the measured distribution vector using the inspection data. A relative error is then
calculated to quantitatively evaluate the effectiveness of the prediction. It is important to
note that this future distribution vector based on inspection results was not used in the
process of estimation for the transition probabilities. Essentially, this evaluation
simulates a practical application of using the latest inspection data to predict the future
bridge condition at the network level. Tables 7.5 and 7.6 display the results for this
evaluation between the proposed approach and the Pontis approach, using the Element
215 data of MDOT. Largely as expected, the proposed approach has produced smaller
errors, mainly due to the higher modeling resolution using several transition probability
matrices for the entire life span of the element. This is also seen more clearly when
comparing the results of Table 7.5 to those in Table 7.6. It is seen that using 6 transition
probability matrices (each covering about 10 years except the last matrix) has performed
generally better than using 3 matrices (each covering about 20 years except the last
matrix).

Note also that when Year 2002 data are used for evaluation, inspection data up to
Year 2000 are used for estimating the transition probability matrices. When Year 2004
data are used for evaluation, inspection data up to Year 2002 are used for the estimation.
Again this is to simulate a case of realistic practice of bridge management. These cases
are indicated in Tables 7.5 and 7.6.

For comparison, the arithmetic method presented earlier is also applied to this
example, and the results are included in both Tables 7.5 and 7.6. It is seen that that

method did not perform as well as the Pontis and the proposed approaches. It is
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understood that the main reason for this performance is its lack of statistical foundation of

the arithmetic method. That method simply “fits” the data into the assumed structure of

the transition probability matrix. Therefore, it cannot be expected to predict the future

behavior of the element’s deterioration.

Table 7.5 Comparison of Errors (in %) for Proposed Method Using 3 Matrices, Pontis

Approach, and Arithmetic Method — Element 215

Using 2002 | Using 2004 Using 2002 | Using 2004
data for data for data for data for
evaluation evaluation evaluation | evaluation
Proposed Proposed
Approach 2.11 3.05 Approach 5.67 1.01
Envl Pontis Env3 Pontis
Approach 2.89 3.88 Approach 7.11 2.03
Arithmetic Arithmetic
Method 2.72 4.07 Method 7.54 2.19
Proposed Proposed
Approach 3.12 3.95 Approach 1.95 6.10
Pontis Pontis
Env2 | Approach | 3.83 4.48 Envd | Approach | 2.82 6.97
Arithmetic Arithmetic
Method 3.80 4.27 Method 3.7 7.44

Table 7.6 Comparison of Errors (in %) for Proposed Method Using 6 Matrices, Pontis

Approach, and Arithmetic Method — Element 215

Using 2002 | Using 2004 Using 2002 | Using 2004
data for data for data for data for
evaluation evaluation evaluation evaluation
Proposed Proposed
Approach 2.04 3.00 Approach 6.81 0.94
Envl Pontis Env3 Pontis
Approach 2.89 3.88 Approach 7.11 2.03
Arithmetic Arithmetic
Method 2.72 4.07 Method 7.54 2.19
Proposed Proposed
Approach 2.89 2.99 Approach 1.50 5.81
Env2 Pontis Envd Pontis
Approach 3.83 4.48 Approach 2.82 6.97
Arithmetic Arithmetic
Method 3.80 4.27 Method 3.7 7.44
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It is worth mentioning that, again, more transition probability matrices can be
used in the proposed non-homogeneous Markov Chain model to improve modeling when
warranted. Of course, this will increase the requirement for computation effort.

It is also important to note that the Pontis approach for estimating the transition
probability matrix may cause a probability value to become negative and the sum of a
row not to add to 1, especially when the number of valid data pairs is small. This
problem is completely avoided or resolved in formulating the optimization problem of
Equation (7.1), shown in Equation (7.3) for this example as the constraints for
minimization. The condition of Equation (3.8) (i.e., non negative probabilities summed
to 1.0 for each row) can be enforced as in Equation (7.3). The optimization process as
formulated in Equation (7.1) then will not produce those violating values as solutions.
Note that the Pontis approach, though, is different for enforcing these constraints. It
rather solves a least square fitting problem by minimizing the squared error sum without
avoiding these violating values. When such values do result, they are simply deleted and
then replaced by artificially determined values. Therefore, the Pontis approach is not
expected to produce reliable results every time when applied. This is seen in the results in

Tables 7.5 and 7.6. It is also seen in the results for more elements presented next.

7.4 More Application Examples and Discussions

More elements are used in this section for application of the proposed non-
homogeneous Markov Chain modeling and prediction. They include Elements 104, 106,
and 210. The results will have both the three and six matrix cases as done above.

Tables 7.7 and 7.8 show the results for Element 104 - Precast Prestressed Box Beams.
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Table 7.7 Comparison of Errors (in %) for Proposed Method Using 3 Matrices,
Pontis Approach, and Arithmetic Method — Element 104
Using . Using Using
2002 Uilmtg %004 2002 2004
data for ata tor data for data for
. evaluation . .
evaluation evaluation | evaluation
Proposed Proposed
Approach 0.06 0.01 Approach 0.69 0.35
Pontis Pontis
Envl Env3
nv Approach 0.06 0.35 nv Approach 1.85 1.04
Arithmetic Arithmetic
Method 0.06 0.35 Method 1.88 1.04
Proposed Proposed
Approach 0.26 0.07 Approach 0.48 0.34
Pontis Pontis
Env2 Approach 0.78 0.03 Env4 Approach 0.44 0.36
Arithmetic Arithmetic
Method 1.08 0.04 Method 0.44 0.44

It is shown in Table 7.7 that the first set of results for Environment 1 using year

2002 data for evaluation involves the same error for all three approaches used. The

reason for this is that there is no deterioration for all the data points (data pairs) used for

estimating the transition probabilities. To be exact, there are 38 data points for this

environment, and all of them have 100% of the element in State 1 before and after

inspection. Thus the estimations of the transition probabilities or their interpretations

using these different methods actually lead to the same result. In other words, the data

show no deterioration, and these different methods have consistent interpretation for the

underlying non-deteriorating mechanism. The 0.06 % error in Table 7.7 is simply due to

the inconsistency of the future (Year 2002) data with those used in estimating the

transition probabilities.

75




Table 7.8 displays the same comparison but using 6 different transition matrices

in the proposed method based on a non-homogeneous Markov Chain. In general, these

results show improvement from those in Table 7.7 with reduced errors for the proposed

method.

Table 7.8 Comparison of Errors (in %) for Proposed Method Using 6 Matrices, Pontis

Approaches, and Arithmetic Method - Element 104
Using 2002 | Using 2004 Using 2002 | Using 2004
data for data for data for data for
evaluation evaluation evaluation evaluation
hpeen | 006 0.02 hpeen | 027 0.01
Envl Aigf;ih 0.06 035 | Env3 Aigf;ih 1.85 1.04
Atmetic | 0,06 0.35 Adthmetic | gg 1.04
[l:g;f;?;i‘lll 0.27 0.10 [l:g;f;?;i‘lll 0.46 0.17
B2 A;ljg?;ih 0.78 003 | Env4 Aigf;ih 0.4 0.36
A;j[teht‘l‘lfgc 1.08 0.04 A;j[teht‘l‘lfgc 0.4 0.4
Table 7.9 Comparison of Errors (in %) for Proposed Method Using 3 Matrices,
Pontis Approach, and Arithmetic Method — Element 210
Using 2002 | Using 2004 Using 2002 | Using 2004
data for data for data for data for
evaluation evaluation evaluation | evaluation
[l:g;f;?;i‘lll 6.73 0.74 [l:g;f;?;i‘lll 2.62 0.64
Envl Aﬁg?é;ih 6.72 8.54 Env3 Aﬁg?é;ih 5.24 2.04
A;j[teht‘l‘lfgc 6.72 7.22 A;j[teht‘l‘lfgc 4381 1.35
i;‘;f;‘;fci 3.89 1.50 [l:;‘;f;‘;fci 6.0 4.60
Env2 Aﬁg?é;ih 3.14 3.27 Envd Aﬁg?é;ih 7.43 7.56
Adthmetic | 344 3.53 Adtmetic |7 46 9.50
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Table 7.9 shows the results for another Element 210 - Reinforced Concrete Pier
Wall. Tt highlights, the vulnerability of the arithmetic method with consistently larger
errors than the other two methods for all four cases of environment. As mentioned earlier,
this vulnerability is due to lack of a statistical basis for the arithmetic method.

Focusing on the proposed method, it is seen that except for Environments 1 and 2
using year 2002 data for evaluation, the proposed method is shown performing more
reliably than the Pontis approach.  Even in these cases, the errors for the proposed
method are not significantly larger (6.73% versus 6.72% and 3.89% versus 3.14%).

Table 7.10 includes the results using 6 transition probability matrix for the
proposed method, for further taking advantage of the non-homogeneous Markov Chain
model. It is seen that, by comparison of Tables 7.8 and 7.9, using more matrices helps in

reducing error for more cases. This also highlights the advantage of the proposed method

in its flexibility for different data sets or its ability to treat a variety of situations.

Table 7.10 Comparison of Errors (in %) for Proposed Method Using 6 Matrices,
Pontis Approach, and Arithmetic Method — Element 210
Using 2002 | Using 2004 Using 2002 | Using 2004
data for data for data for data for
evaluation evaluation evaluation | evaluation
Proposed Proposed
Approach 6.56 1.20 Approach 2.98 0.80
Envl Pontis Env3 Pontis
Approach 6.72 8.54 Approach 5.24 2.04
Arithmetic Arithmetic
Method 6.72 7.22 Method 4.81 1.35
Proposed Proposed
Approach 3.26 1.22 Approach 7.93 4.43
Pontis Pontis
Env2 Approach 3.14 3.27 Envd Approach 7.43 7.56
Arithmetic Arithmetic
Method 3.44 3.53 Method 7.46 9.50
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In the final part of this section, the results for Element 106 — Steel Girder/Beams
Not Painted are presented. Both cases of using 3 and 6 matrices for the non-homogeneous

method are included.

Table 7.11 Comparison of Errors (in %) for Proposed Method Using 3 Matrices,
Pontis Approaches, and Arithmetic Method — Element 106
Using Using Using Using
2002 2004 2002 2004
data for data for data for data for
evaluation | evaluation evaluation | evaluation

Proposed Proposed

Approach ND ND Approach 1.23 11.60

Envl | ,-onts ND ND | Env3 | ,Conts 16.24 12.78
Approach Approach
Arithmetic Arithmetic

Method ND ND Method 14.29 11.69
Proposed Proposed

Approach 4.59 5.56 Approach 40.65 26.12

Env2 | oMU | 959 13.04 | Enva | FOMS 14500 | 3030
Approach Approach
Arithmetic Arithmetic

Method 12.14 13.82 Method 40.49 29.36

ND= No data available
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Table 7.12

Chain Using 6 Matrices, Pontis Approaches, and Arithmetic Method — Element 106

Comparison of Errors (in %) for Proposed Non-homogeneous Markov

. Using Using Using
Uzmtg %002 2004 2002 2004
ata (?r data for data for data for
evaluation ) ) )
evaluation evaluation | evaluation
Proposed Proposed |, 4 11.60
Approach ND ND Approach ' '
Enyl | rontis ND ND | Eny3 | Fonts 16.24 12.78
Approach Approach
Arithmetic Arithmetic
Method ND ND Method 14.29 11.69
Proposed Proposed
Approach 4.59 5.56 Approach 41.45 27.16
Eny2 |  Fonus 7.59 13.04 | Env4 |  Ponus 45.09 30.30
Approach Approach
Arithmetic Arithmetic
Method 12.14 13.82 Method 40.49 29.36

ND - No data available

It is indicated in Tables 7.11 and 7.12 that the first set of results for Evaluation 1 of year

2002 is not given due to lack of data. For the remaining cases, it is seen that the proposed

method performed better than the Pontis approach, showing smaller errors for prediction.

These examples show that the proposed method is more reliable, compared with the other

two.

79




CHAPTER 8 SUMMARY AND CONCLUSIONS

This research effort has gathered information on the current state of art and
practice of bridge management system in the US. Most state agencies use Pontis,
although the level of experience varies. The most experienced states have collected more
than 10 years of condition inspection data. The level of satisfaction with Pontis also
varies among the states. A critical issue is the estimation of the transition probability
matrices, which describe or model the deterioration of bridge elements.

The Pontis bridge management system has been reviewed in this study to present
the technical background and identify areas for improvement. In summary, they include
1) possible negative transition probabilities although set to zero when found through the
regression estimation process; 2) possible larger than 1 transition probabilities, set to 1
when found; 3) inadequate consistency-screening of raw data for more reliable estimation
results; and 4) assumed homogeneity of Markov Chain.

A non-homogeneous Markov Chain model has been developed in this study and
proposed in this report, for improving modeling element deterioration. The homogeneous
Markov Chain model used in Pontis is a special case of this new model and approach.
Application examples show that this new method can better predict bridge element

deterioration trends.
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Appendix
Questionnaire — State use of Bridge Management Systems
Dear Colleagues:

Wayne State University is assisting the Michigan Department of Transportation (MDOT)
calibrate tools and input data for their Bridge Management System (BMS). MDOT uses
National Bridge Inspection (NBI) data, AASHTO Commonly Recognized (CoRe)
Elements, and Michigan specific elements in their BMS. MDOT is a user of the
AASHTOWARE Pontis software. MDOT has been working on implementation of BMS
for several years and is facing a number of tasks and issues in the process. We would
like to learn your experience in these areas to benchmark. We would be very much
grateful if you could kindly complete the following questionnaire and return it by e-mail,
fax, or US mail to:

Dr. Gongkang Fu, PE, Professor and Director,
Center for Advanced Bridge Engineering
Department of Civil and Environmental Engineering
Wayne State University; voice: 313-577-3842;

Fax: 313-577-3881; gfu@eng.wayne.edu

If you have questions about this survey you can also contact:
Dave Juntunen

Engineer of Bridge Operations

Michigan Department of Transportation

Phone (517) 322-5688

E-mail: juntunend @michigan.gov

MDOT will gladly share the results of this questionnaire upon request.
Please return this questionnaire by May 31, 2006.

Name:

Title:
Organization:
Phone:
E-mail:

Name:

Title:
Organization:
Phone:
E-mail:
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In case you are unable to answer some of these questions, you may leave them
unanswered, but please return this questionnaire with the above section filled. Thank
you!

L. General Questions

I-1. Which BMS does your agency use? Pontis __, BRIDGIT__,
an in-house system __ (give name)
, other system (give name)

I-2. Approximately how many years of bridge condition data (inspection and/or asset
management data) does your agency have in your database?
Otol_,1to3_,4to10__, morethan 10__ .

[-3. What bridge condition data are used within your BMS? NBI __, CoRe (Pontis) __,
Other__, (specify):

I-4. If your agency is a Pontis user, have you made modifications to the AASHTO CoRe
elements, and/or have you added additional elements? Yes__ No__. If yes, please list
modified or additional elements, and mark those that have proven to be useful (If you
have more changes or additions that can fit here, please indicate in the last text box):

I-5. Has you agency developed bridge preservation policies, for maintenance,
rehabilitation, and repair (MRR)? Yes__. No__. If yes, please provide a copy of the
policies and/or describe how the policies were developed:

I-6. What cost data do you use to determine cost parameters for projects in your BMS?
Past bid prices for your agency__. Other (please specify and discuss any issues you may
be having).
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I-7. Do you use deterioration rates based on transition probabilities? Yes _ No__. If
yes, how?

I-8. If you are a Pontis user, are you satisfied with the resulting transition probabilities or
deterioration rates (Do you think they model the situation realistically)? Yes_ . No__
Partially__. If not yes, why?

I-9. How do you determine the transition probabilities or deterioration rates for a bridge
element? Use historic data only __ Use expert elicitation only__. Use historic data and
expert elicitation. __ Other (please specify)

I-10. Has your agency compared your BMS with your traditional approach for bridge
management decision making? Yes __ No __. If yes, please describe your comparison
results.

I-11. Do you think your agency’s BMS fully meets your need for bridge management?
Yes __ No__ Ifno, what enhancements would you like to have?

I-12. Please describe how your agency determines the discount rate for project cost
projection to the future.

I-13. How do you perform rulemaking and project prioritization within your BMS?

I1. Additional Information and Comments
II-1. If you are aware of any effort spent towards improving BMS, please kindly provide

contact information below to allow us to have access to the information. Add more
sheets if needed.
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Subject:
Name:
Organization:
Phone:
e-mail:

Subject:
Name:
Organization:
Phone:
E-mail:

II-2. If you have any further comments/questions relevant to this questionnaire or this
synthesis topic, please add them here.

II-3. Would you like to receive a copy of the questionnaire results? Yes__, No __

You have completed this survey. Remember to save your work (We recommend that
you add your state name to the file name)
Please return the survey May 31, 2006.
Thank you very much!
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