MICHIGAN
STATE HIGHWAY DEPARTMENT
Charles M. Ziegler
State Highway Commissioner

INVESTIGATION OF BICHLBR BROTHERS GRAVEL

Myron G. Brown

Highway Research Project 54 A-16

First Progress Report

Research Laboratory
Testing and Research Division
Report No. 234
July 12, 1955

The purpose of this progress report is to summarize the work done thus far by the Research Laboratory in regard to an investigation of Bichler coarse aggregate and, in particular, its possible weakening sffect on pavement and bridge projects utilizing this source. The resulta of a field survey of construetion projects using this material are contained in this report.

This investigation was initiated by a letter from W. W. McLaughlin dated March 31, 1954 concerning below specification flexurel strengths of Bichler concrete field test beams on Project SSB2 of 49-4m3,01. Similar low results on other bridge and pavement projects, notably 21-8, 03, 21-6,013 and 21-32,03 were reported in a letter from B. W. Krause to the Research Laboratory, dated December 16, 1953.

The project files at Ann Arbor were examined and a summary of the available field beam strength results is given in Table 1 . The majority of these tosts meet Department specifications but a few are unusually low. Frratic molding and testing procedure probably was to blame for some of these low strengths, together with low temperature curing. This was found to be especially true on Projects B1 and B2 of 21-9-12.

Samples of $2 N S$ sand and $6 A$ gravel were received August $13^{-}, 1953$ and also on December 18, 1953. Numerous teats were performed on this material and also on airmentrained concrete beams molded from it. Test results were reported by $16 t$ esr dated March 29, 1954. The freeze and thew beams heve now gone through 300 cyclea of slow freezing and thawing in water with the results shown in Table 2.

CONSTRUCTION PROJFCTS UTILIZING BIGHLBR GRAVBE IN DELTA COUNTY
Field Beam Test Data

Note: All strengths measured at 7 and 28 days field curing excevt where indicated ().

DURABILITY OF LABORATORY MOLDED SPECIMNES

| Number of
 Cycles | Percent of Original
 Dynamic Modulus | Weight
 Change
 $\%$ | Length
 Change
 $\%$ |
| :---: | :---: | :---: | :---: | :---: |
| 100 | 89 | -0.84 | .011 |
| 200 | 89 | -1.46 | .023 |
| 260 | 71 | -2.50 | .050 |
| 280 | 65 | -2.69 | .061 |
| 300 | 54 | -3.05 | .062 |

These beams held up quite well for over 260 cycles of freeze and thaw before dropping to 70 percent of original dynamic modulus. When compared to the performance of other gravel sources as graphed in Research Report 195, dated September 3, 1953, the Bichler gravel beams would be among the best in durability insofar as resistance to slow freezing and thawing in water is concerned. Two of the three beams are shown in Figure 1 after 300 cydes. One of the three beams failed at about 260. At the conclusion of this test the beams had lost three percent of their original weight from scaling and small pop-outs.

The Bicher gravel pit, (21-12), was visited on July 15, 1954, and the gravel deposit was studied. The present area of better material was being depleted and it was learned that in the apring of 1955 the plant will be located $1 / 4$-mile to the east where gravel from that area will be used for production. In the southwest corner of the present locality, there appeared to be a darker coloration to the gravel bank due, presumably, to leaching and oxidation by swamp or marsh water in this area. Soms of the absorbent stong in this spot could be broken up in the hands. This location is shown in Figure 2. The 1954 production was coming from gravel to the east of this bad area and along the south portion of the pit, Figure 3.

The upper portion of this gravel deposit is a mixture of fine sand and gravel laid down in on old river delta or alluvial fen on the shore of postglacial Lake Algonquin. The lower portion contains coarser sand and gravel. A good share of this stone was originally part of the underlying upper Cambrian and lower Ordovicien sandstones and limestones which generally would be absorptive and somewhat soft in nature. This softness is apparent in the los Angeles abrasion lass of 33.5 percent on gravel samples received at this laboratory in August and December of 1953. This material was examined and separated petrographically with a breakdown of rock types shown in Teble 3. As a comparison, the average results of a similar petrographic sorting on six typical natural grevels from the Lower Peninsula are also included in the table.

The limestone and dolomite in the Bichler gravel was very heterogeneous as compared to that found in other natural gravels. Almost all of it contained non-calcareous granular particles ranging in size from clay to sand. Usually, in other natural gravels, the limestone and dolomite are more uniform in texture and harder, this being the reason for placing them among the "hard" rock types in Table 3. The ratio of "hard" to "soft" stone in the Bichler gravel can be seen to be about l:l where, in the average of six other gravels, the ratio runs about $9: 1$ or 8:1 assuming that some of the limestone would be considered partially soft in nature.

Figld Survey of Mxisting Pavements

A field survey has been made in Delta County of eleven paving projects which contain Bichler aggrgates. See Table 4. The older pavements contain6d quite a bit of transverse and longitudinal cracks as shown in Figures 4 and 5. The first four projects having 100 foot slabs and all expansion joints

TABLIS 3
Pir Rographic separation of bichlir gravela No. 4 to 1 -inch Material

Rock Typs

Porcont of Sample
Bichler* Aver, of Six Natural Gravels

Mors durabl6, hard stone

granite	16.7	7.0
diorite	5.6	6.6
felsite	1.9	6.7
rhyolite	4.1	-
basalt	17.4	6.1
quartzite	4.3	7.0
limestone and dolomit6	-	51.7
chert	-0.7	6.9
		50.7

Softer rock types

sandstone and conglomerate	4.8	3.3
argillaceous limestons and dolomite	27.9	-
yellow sandy limestone	15.4	\cdots
caicarsous - purple sandstone	1.2	-
calcartous sandstone	-	4.6
shale	-	0.8
iron bearing clay	$=$	0.8
Total soft stone	49.3	9.5

* Note: Los Angeles abrasion loss was 33.5 percent on this material.

TABLT 4
PAVEMEMM PHOJGOS UPILIZING BICHLER AGGRGATES

Project	Year Built	Joint Spacing	Condition ObsErvations				
			Scaling	Pop-Outs	Transverse Gracking	Longitudinal Cracking	Remarks
Non Air-Entrained Concrete							
$21-6,02$	1928	200' expn.	Many spots of med. to heavy scale	Occasional	Many	Occasional	Slabs broken up into 8 or 10^{\prime} pieces. Scaling also along cracks.
21-6, 63	1929	100^{\prime} Expn.	Moderate - mostly along join̄s and cracks	Few	Nune:ous	```Occasional - connecting transverse cracks```	Some joints and cracks faulted
21-6,010	1931	100^{\prime} Expn.	Mainly along cracks and joints	Wumerous - but small sized.	$\begin{aligned} & \text { Nune rous - } \\ & 2 \text { to } 3 \text { per } \\ & \text { slab } \end{aligned}$	Occasional	
21-16,02	1932	100' expn.	Mostly at joints and cracks	Many small ones	About 2 per slab	Very few	Badly scaled and cracked limestone section.
$21-28,02$	1935	60^{\prime} expn. 30' dumay	Some along joints and cracks	Very few	Quite a few toward esst end of Project	None	
21-15, 03	1936	Covered with	bituminous concrete	cap.			
21-32,02	1936	$\begin{aligned} & 30^{\prime} \text { slabs } \\ & 60^{\prime} \text { exon. } \end{aligned}$	Sližh品, at joints	$V \in r y f \in W$	None	None	

Air-entrained Concrete

21-16,04	1948		100^{\prime}	None		None	None	Changed to Ambeau ageregate toward end of Project.
21-6,011	1951		$100{ }^{\prime}$	None	Non	None	None	Good condition throughout.
21-c, 03	1952							
$21-6,013$ $21-32,03$	1953	\bigcirc	Miden	$a 11$	ion.			

contained most of the transverse cracking, averaging about two to three per slab. The newer air-entrained concrete pavements with the same slab length 6xhibited very little or none of this cracking. However, some of the old projects contained patched sections of limestone concrete which were cracked and scaled as badly or worse than the original pavement (ses Figure 6). Poor subgrade conditions undoubtedly contributed to the very bedly cracked areas in the older pavements. Although the older pevements of long slab length contained a good deal of transverse cracking, the concrete itself appeared to be quite sound. Most of the scaling present was found to occur along the cracks and around some of the transverse and longitudinal joints. An example of an older pavement in good condition is shown in Pigure 7, Project 21-32,02, about 18 years old. The postwar pavement projects appear to be in good condition throughout.

Field Survey of Bridge Projects

In general, the bridge projects, totaling 17 surveyed and listed in Table 5, were in good shape except for eccasional deterioration exemplified by Figures 8, 9 and 10. This sort of breakdown consisted of sporadic areas of yellowish stained cracks and, in some cases, spalling along these cracks. About seven of the seventeen structures contained this type of defect. This condition was probably caused by freeze and thaw action on numerous absorptive sandstone and limestons particles in the coarse aggregate and consequent leaching and oxidation to produce the yellow stain. Figure 11 illustrates one of the ten structures of seventeen surveyed, which wes found to be in sound condition and containing no unusual defects of the concrete in particular.

Project B4 of 21-11-12 exhibited extensive damage due to a feature of design rather than through any fault of the concrete. Figure 12 illustrates the

TABLE 5
BRIDGI PROJJCTS UMILIZING BICHLFR AGGEEGATES

Project	Year	No. of Spans \& Length	Type	Condition Obsexrations					
				Roanway	Sidewalk or Wheelguard	Pllasters	Abutments	Wingwalls	Piers
B_{1} of 21-13-11	1929	7 at 501	1 beam	Black top	Trans, cracks in s.w.	0.K.	iight scale at waterline	Few fine hair cr.	Top of so. sier broten up.
I_{2} of 21-13-11	. 1930	481	3.T.G.	RR tracks	Nons	0.R.	Some breakciown of concrete on tov edge, and cracks in face	O.K.	None
B_{3} of 21-11-2	1931	2 at 401	I. ${ }^{\text {B }}$	Black top	S.W. grod	0.K. some fine hair cracks	Some fine hair cracks, yellowed	0.K.	0.x.
B_{2} of 21- $\mathrm{E}-21$	1932	3 at 601	1.B.	Light scale along $\in \mathrm{d}_{\mathrm{g}} \mathrm{e}$	W.G. good	O.I.	0.R.	0.K.	$0 . \mathrm{K}_{*}$
B_{1} of $21-14-2$	1935	35^{\prime}	I beam	Black top	Y.g. light scale on edges:	Lt. craciking and disinteeration	Lt. \& med. scale on tops	Lg. crack alone base of back:all	None
x_{1} of 21-11-12	1935	$3 \mathrm{at} \mathrm{36'}$	1.B.	Black top	W.G. some small cracks	O.K.	About 4 vert. cracks down abut. face	$0 . \mathrm{K}$.	Some rair line cracking
3_{1} of 21-11-13	1936	60^{1}	I beam	Black top some trans. cracks in botton of	W.G. - o.k.	Some disint. cracks in tops	Some light cracks	Light seale on top	None
B_{1} of 21-12-2	1936	1041	$\begin{aligned} & \text { Stetl } \end{aligned}$	Decke asides steel cons	s all ruction		-Light scale on	ops-	None
B_{2} of 21-12-2	1936	35^{\prime}	I beam	Black top	$\begin{aligned} & \text { Y.G.-lt. } \\ & \text { scaic } \end{aligned}$	Fine yellowed cr.	Light scale on to		None
3_{4} of 21-11-2	1936	5 at 60.	I.B.	Black top	W.G.-It. scale sm. polmouts	Eraclea up thrue deck	Few vert. cracks	Med. scale on tops. Cracking down side	Both ends of pier tops cracked $\%$ disinteprated
B_{2} of 21-9-12	1936	60 \%	I.B.	3lacte top	$\begin{aligned} & \text { W.G.-fey nop- } \\ & \text { outs. } \end{aligned}$	Fine cr. in top surface	0.K.	Fill washed out behind ends. Gracking at base	None
B_{i} of 21-9-12	1936	- 501	$\text { I. } \mathrm{B}$	Black top	V.G. O.K.	0.R.	0.K.	Yellow stained cracks	Noze
X_{1} of 21-6-1	1936	$\begin{aligned} & 1 \text { at } 611 \\ & 2 \text { at } 91 \end{aligned}$	T.P.G.	$\begin{aligned} & \text { RR bed on } \\ & \text { Steel I } \\ & \text { begas } \end{aligned}$	O.K.	- -	2 long cr. down face	Some cracking on top	Some fine yellow cr. in surface of pier columns
B_{1} of $21-4-2$	1940	2 at 24:	c.s.	Lt. scale	$\begin{aligned} & \text { X.G.G- } \\ & \text { lightly } \\ & \text { scaled } \end{aligned}$	Some camer spalling	It. scale : hair cracks on top surfaces	0.I.	0.E.
B_{1} of $21-13-2$	1941	3 at 601	I beam	Name rous sin. poom suts	W.G. O.R.	0.K.	O.R.	Several er. downfaces	0.K.
B_{1} of 21-12-23	1942	3 at 35^{\prime}	C.2.3.	Good condition	W.G. good	0.K.	0.K.	$0 . \mathrm{T}$.	O.R.
3_{1} of 21-8-21	1948	70^{1}	D.P.G.	O.K.	W.G. O.F.	Nunerous : E2 stained cracks	O.	Hany fine yellow cracks	None

design of the load-bearing portion of all four piers. The use of 100-1b A.R.A. rail for the bearing points in pier tops hes been discontinued for some time. This type of construction has produced large cracks over the entire length on both sides of all four piers along the top corners. Top views of the pier ends are shown in Figures 13 and 14. A side view is shown in Figure 15. These cracks carry right up through the deck edge and many of the pilasters. This damage should be repaired before more advanced deterioration takes place from freezing and thawing within the cracks now present, such as is show in Figure 16 , or additional cracking of the piers occurs.

Summery

In general, the projects, both pavements and bridges, do not show extengive cracking which could be attributed to flexurally weak concrete resulting from an inherent weakness of Bichler coarse aggregate. Fhe quality of the gravel doss seem to xun bad occasionally as is shown by periodic arcas of yel-low-stained cracks and pop-outs in the concrste surfaces of certain structures and in some of the pavements. The presence of higher concentrations of wear thered siliceous limestone and sandstone in gravel produced in the past may have resulted in some of the low flexurg tests of figld beams besides showing up in the form of the yellow cracked areas previously mentioned. This may have been the case in Project B2 of $49-4-3, C 1$ where the 6 A stone had an unusually high absorption of 1.96 percent.

The stone from the new location will probably contain a high percentage of sandstone and siliceous limestone but whether this is badly leached, nondurable, absorbent material is something that will have to be determined from an adequate number of teat samples. It is suspected that this gravel will always tend to give fairly high abrasion losses but not necessarily in excess of the allowed 36 percent.

Apparently this material is satisfactory for 6A aggregate when properly inspected to exclude areas of lower grade material occurring in the pit. The relatively high deleterious particle content makes it unsuitable for 6 in its present condition.

FIGURE I. AIR-ENTRAINED CONCRETE BEAM CONTAINING BICHLER COARSE AGGREGATE AFTER 300 CYCLES OF SLOW FREEZE AND THAW IN WATER

FIGURE 3. SOUTH PORTION OF BICHLER PIT WHERE 1954 PRODUCTION WAS BEING TAKEN.

FIGURE 12. CROSS SECTION OF ALL FOUR PIERS SHOWING LOGATION OF 100 Lb. RAIL IN PIER TOP FOR bearing load of bridge deck.

