

LRFD Design Example for:

CFCC Prestressed Precast Concrete Box-Beam with Cast-In-Place Concrete Slab

Disclaimer

"This publication is disseminated in the interest of information exchange. The Michigan Department of Transportation (hereinafter referred to as MDOT) expressly disclaims any liability, of any kind, or for any reason, that might otherwise arise out of any use of this publication or the information or data provided in the publication.
MDOT further disclaims any responsibility for typographical errors or accuracy of the information provided or contained within this information. MDOT makes no warranties or representations whatsoever regarding the quality, content, completeness, suitability, adequacy, sequence, accuracy or timeliness of the information and data provided, or that the contents represent standards, specifications, or regulations."
"This material is based upon work supported by the Federal Highway Administration under SPR-1690. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Federal Highway Administration."

About this Design Example

Description

This document provides guidance for the design of CFCC prestressed precast concrete beams according to AASHTO LRFD Bridge Design Specifications with the neccessary ammendmets where applicable, based on available literature and experimental data from tests conducted by Grace et. al at Lawrence Technological University. The cross-section of the bridge is Type B as described by
AASHTO Table 4.6.2.2.1-1.

Standards

The following design standards were utilized in this example:

- AASHTO LRFD Bridge Design Specification, 7th Edition, 2014
- Michigan Department of Transportation Bridge Design Manual, Volume 5
- Michigan Department of Transportation Bridge Design Guide
- ACI 440.4R-04, Prestressing Concrete Structures with FRP Tendons

Code \& AASHTO LRFD UPDATES

This Mathcad sheet is developed based on available design guidelines and available AASHTO LRFD edition at the time of writing the sheet. Designer shall check and update design equations according to the latest edition of AASHTO LRFD

General notes

The following notes were considered in this design example:
1- Guarnateed strength of CFRP is reduced to account for environmental effect. The design guarnateec strength is taken as $0.9 \times$ guarnateed strength recommended by manufacturer

2- Initial prestressing stress is limited to 65% of the design (reduced) guaranteed strength according to current ACI 440.4R-04. This limit is subject to change. Check the latest recommendations for initial/jacking stress in CFRP strands

3- CFCC strength immediately following transfer is limited to 60% of the design (reduced) guaranteed strength according ccording to current ACI 440.4R-04. This limit is subject to change. Check the latest recommendations

4- The depth of the haunch is ignored in calculating section properties or flexural capacity, while is included in calculating the dead loads

5-In strength limit state flanged section design, the concrete strength of the beam portion participating i the stress block was conservatively assumed equal to the concrete strength of the deck (AASHTO LRF C5.7.2.2)

6- Barrier weight was taken as $475 \mathrm{lb} / \mathrm{ft}$. While, weight of midspan diaphragm was $500 \mathrm{lb} / \mathrm{beam}$
7- In the Mathcad sheet, the option of debonding as well as top prestressing strands are offered as
means of reducing the end tensile stresses of the beams
8-The example provided herein is a box beam with varying web thickness from a maximum of 12 in . at the beam ends to a minimum of 4.5 in . at midspan. This is the same cs that was used in the construction of M-102 bridge in Southfield, MI. Shear requirements necessitated the increase in the web thickenss near the ends of the span

9-The box beam in this example is also provided with end diaphragms, which affect the stress calculations at beam ends at prestress release

10- In strength limit state check, the design addresses six different failure modes as follows: Tension controlled rectangular section (depth of stress block is less than or equal the depth of the deck slab and the reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled rectangular section (depth of stress block is less than or equal the depth of the deck slab and the reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Tension controlled flanged section (depth of stress block is larger than the depth of the deck slab but less than the combined depth of the deck slab and beam top flange. The reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled flanged section (depth of stress block is larger than the depth of the deck slab but less than the combined depth of the deck slab and beam top flange. The reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Tension controlled double flanged section (depth of stress block is larger than the combined depth of the deck slab and beam top flange. The reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled double flanged section (depth of stress block is larger than the combined depth of the deck slab and beam top flange. The reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Designer is advised to check the ductility of the beam and the deflection at failure in case of double flanged section because in that case, the N.A. of the section lies within the web of the beam and the ductility of the section may be compromised

11- This design example is developed based on allowable jacking strength and stress immediately after transfer according to the limits presented in the ACI 440.4R-04. The document can be updated using other prestress limits such as those presented in MDOT SPR-1690 research report and guide

$$
\mathrm{L}_{\text {RefToRef }}:=75 \mathrm{ft}
$$

$$
\mathrm{D}_{\text {RefAtoBearing }}:=50.5 \mathrm{in}
$$

$$
\mathrm{D}_{\text {RefBtoBearing }}:=50.5 \mathrm{in}
$$

$$
L_{n}:=L_{\text {RefToRef }}-D_{\text {RefAtoBearing }}-D_{\text {RefBtoBearing }}=66.583 \mathrm{ft} \quad \text { Center to center span Length }
$$

$$
\operatorname{brg}_{\text {off }}:=8 \text { in } \quad \text { Center of bearing offset to end of beam (same vaLue at both ends is }
$$

assumed)

$$
\mathrm{L}_{\text {beam }}:=\mathrm{L}+2 \cdot \mathrm{brg}_{\text {off }}=67.917 \cdot \mathrm{ft} \quad \text { TotaL length of beam }
$$

$$
\begin{array}{ll}
1_{\text {ship }}:=12 \cdot \text { in } & \begin{array}{l}
\text { Distance from support to the end of the beam after force transfer } \\
\text { and durina shioping and handlina }
\end{array}
\end{array}
$$

and during shipping and handling

$$
\mathrm{L}_{\text {ship }}:=\mathrm{L}_{\text {beam }}-1_{\text {ship }} \cdot 2=65.917 \mathrm{ft} \text { Distance between supports during handling and shipping }
$$

$$
\text { deck }_{\text {width }}:=61 \mathrm{ft}+8.5 \mathrm{in} \quad \text { Out to out deck width }
$$

$$
\text { clear }_{\text {roadway }}:=52 \mathrm{ft}+0 \text { in } \quad \text { CLear roadway width }
$$

$$
\text { deck }_{\text {thick }}:=9 \text { in } \quad \text { Deck slab thickness }
$$

$\mathrm{t}_{\text {wear }}:=0$ in	Wearing surface is included in the structural deck thickness only when designing the deck as per MDOT BDM 7.02.19.A.4. It is not used when designing the beam.
$\mathrm{t}_{\text {fws }}:=2$ in	Future wearing surface is applied as dead laod to accuant for additional deck thickness if a thicker rigid overlay is placed on deck
walk $_{\text {width }}:=6 \mathrm{ft}+0$ in	sidewalk width
sidewalk thickness (0" indicates no separate sidewalk pour)	

overhang $:=2 \mathrm{ft}+11.5 \mathrm{in}$	Deck overhang width (same vaLue on both overhangs is assumed) Barrier width; include offset from back of barrier to edge of deck
$\mathrm{S}_{\text {exterior }}:=56 \mathrm{ft}+0 \mathrm{in}$	Hz distance between center of gravity of two exterior girders
Lanes $:=1 \mathrm{ft}+2.5 \mathrm{in}$	floor $\left(\frac{\text { clear }_{\text {roadway }}}{12 \mathrm{ft}}\right)=4.00$ The number of design traffic Lanes can be $_{\text {caLcuLated as }}$
$\theta_{\text {skew }}:=90 \mathrm{deg}-$ angle $_{\text {crossing }}=44.65 \cdot \mathrm{deg}$	Angle measured from centerline of bridge to the reference line
Angle measured from a line perpendicular to	
the centerline of bridge to the reference line	

Concrete Material Properties

$\mathrm{f}_{\mathrm{c} _ \text {deck }}:=5 \mathrm{ksi} \quad$ Deck concrete compressive strength
$\mathrm{f}_{\mathrm{c} \text { _beam }}:=8 \mathrm{ksi} \quad$ FinaL beam concrete compressive strength
$\mathrm{f}_{\text {ci_beam }}:=0.8 \mathrm{f}_{\mathrm{c} _ \text {beam }}=6.4 \cdot \mathrm{ksi}$ Beam concrete compressive strength at reLease
$\omega_{\text {conc }}:=0.150 \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \quad$ Unit weight of reinforced concrete for load calculations
barrier $_{\text {weight }}:=0.475 \frac{\text { kip }}{\mathrm{ft}} \quad \begin{aligned} & \text { Weight per foot of barrier (aesthetic parapet tube, see MDOT BDG } \\ & 6.29 .10 \text {) }\end{aligned}$

Unit weights of concrete used for modulus of eLasticity calculations, AASHTO Table 3.5.1-1

$$
\gamma_{\mathrm{c}}\left(\mathrm{f}_{\mathrm{c}}\right):=\left\{\begin{array}{l}
0.145 \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \text { if } \mathrm{f}_{\mathrm{c}} \leq 5 \mathrm{ksi} \\
0.140 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}+0.001 \cdot\left(\frac{\mathrm{f}^{\mathrm{c}}}{\mathrm{ksi}}\right) \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
& \gamma_{\mathrm{c} . \text { deck }}:=\gamma_{\mathrm{c}}\left(\mathrm{f}_{\mathrm{c} _ \text {deck }}\right)=145 \cdot \mathrm{pcf} \\
& \gamma_{\mathrm{c} . \text { beam }}:=\gamma_{\mathrm{c}}\left(f_{\mathrm{c}_{\mathrm{c} \text { beam }}}\right)=148 \cdot \mathrm{pcf} \\
& \gamma_{\text {ci.beam }}:=\gamma_{\mathrm{c}}\left(\mathrm{f}_{\text {ci_beam }}\right)=146.4 \cdot \mathrm{pcf}
\end{aligned}
$$

Concrete Modulus of Elasticity

Elastic modulus for concrete is as specified by AASHTO A 5.4.2.4 with a correction factor of 1.0

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{c} . \text { beam }}:=120000 \cdot\left(\frac{\gamma_{\mathrm{c} . \mathrm{beam}}}{\left.\frac{\mathrm{kip}}{\mathrm{ft}^{3}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {beam }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=5220.65 \cdot \mathrm{ksi} \quad \text { Beam concrete at } 28 \text { days }}\right. \\
& \mathrm{E}_{\mathrm{c} . \text { deck }}:=120000 \cdot\left(\frac{\gamma_{\mathrm{c} . \mathrm{deck}}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {deck }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=4291.19 \cdot \mathrm{ksi} \quad \text { Deck concrete at } 28 \text { days }
\end{aligned}
$$

CFCC Material Properties

$\mathrm{d}_{\mathrm{s}}:=15.2 \mathrm{~mm}=0.6 \cdot \mathrm{in}$	Prestressing strand diameter
$\mathrm{A}_{\text {strand }}:=0.179 \cdot \mathrm{in}^{2}$	Effective cross sectionaL area
$\mathrm{E}_{\mathrm{p}}:=21000 \mathrm{ksi}$	Tensile elastic modulus
$\mathrm{T}_{\text {guts }}:=60.70 \mathrm{kip}$	Guaranteed ultimate tensile capacity
$\mathrm{f}^{\prime}{ }_{\text {pu }}:=\frac{\mathrm{T}_{\text {guts }}}{\mathrm{A}_{\text {strand }}}=339.11 \cdot \mathrm{ksi}$	Calculated ultimate tensile stress

$\mathrm{C}_{\text {Ese }}:=0.9$
$\mathrm{f}_{\text {pu.service }}:=\mathrm{C}_{\text {Ese }} \cdot \mathrm{f}_{\mathrm{pu}}^{\prime}=305.2 \cdot \mathrm{ksi}$

$$
\begin{array}{ll}
\mathrm{C}_{\text {Est }}:=0.9 & \begin{array}{l}
\text { Environmental reduction factor for prestressed concrete } \\
\text { exposed to weather for strength limit state calculations }
\end{array}
\end{array}
$$

Environmental reduction factor for prestressed concrete exposed to weather for service limit state calculations

$$
\mathrm{f}_{\mathrm{pu}}:=\mathrm{C}_{\mathrm{Est}} \cdot \mathrm{f}_{\mathrm{pu}}=305.2 \cdot \mathrm{ksi}
$$

Modular Ratio

$\mathrm{n}:=\frac{\mathrm{E}_{\mathrm{c} . \text { beam }}}{\mathrm{E}_{\mathrm{c} . \text { deck }}}=1.217 \quad$ Modular ratio for beam
$n_{p}:=\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{c} . \text { deck }}}=4.89 \quad$ Modular ratio for Prestressing CFCC

Box-Beam Section Properties:

$\mathrm{b}_{\mathrm{ft}}:=48 \mathrm{in}$	Width of top flange
$\mathrm{d}_{\mathrm{ft}}:=6 \mathrm{in}$	Thickness of top flange
$\mathrm{b}_{\mathrm{fb}}:=48 \mathrm{in}$	Width of bottom flange

$\mathrm{d}_{\mathrm{fb}}:=6 \mathrm{in}$	Thickness of bottom flange
$\mathrm{b}_{\text {web.min }}:=4.5 \mathrm{in}$	Minimum web thickness
$\mathrm{b}_{\text {web.max }}:=12 \mathrm{in}$	Maximum web thickness
$\mathrm{L}_{\text {end }}:=32 \cdot \mathrm{in}$	Length of the solid end block at beam end
$\mathrm{L}_{\text {var }}:=176 \cdot \mathrm{in}$	Length where web is tabered from maximum to minimum width
$\mathrm{d}:=33 \mathrm{in}$	Depth of beam
$\mathrm{b}_{\text {webf }}(\mathrm{x}):=\left\lvert\, \begin{aligned} & (24 \cdot \mathrm{in}) \\ & {\left[\begin{array}{l} b_{\text {web }} \\ b_{\text {web. }} \end{array}\right.} \end{aligned}\right.$	$\left.\mathrm{b}_{\text {web.min }} \cdot \frac{\mathrm{x}-\mathrm{L}_{\text {end }}}{L_{\text {var }}}\right] \text { if } L_{\text {end }} \leq \mathrm{x} \leq \mathrm{L}_{\mathrm{end}}+\mathrm{L}_{\text {var }}$
$\mathrm{A}_{\text {beamf }}(\mathrm{x}):=\left\lvert\, \begin{aligned} & \mathrm{b}_{\mathrm{ft}} \cdot \mathrm{~d} \\ & {\left[\mathrm{~b}_{\mathrm{ft}}\right.} \end{aligned}\right.$	$\begin{aligned} & \mathrm{x}<\mathrm{L}_{\text {end }} \\ & \mathrm{ft}^{\left.\left.-2 \cdot \mathrm{~b}_{\text {webf }}(\mathrm{x})\right)+17.4375 \cdot \mathrm{in}^{2}\right] \text { if } L_{\text {end }} \leq \mathrm{x}} \end{aligned}$
$\mathrm{I}_{\text {beamf }}(\mathrm{x}):=\left\{\begin{array}{l} \mathrm{b}_{\mathrm{ft}} \frac{\mathrm{~d}^{3}}{12} \\ \mathrm{~b}_{\mathrm{ft}} \cdot \frac{\mathrm{~d}^{3}}{12} \end{array}\right.$	$) \cdot \frac{\left(d-d_{f t}-d_{f b}\right)^{3}}{12}+1485 \cdot \text { in }^{4} \text { if } L_{\text {end }} \leq x$
$y_{t}:=16.5$ in	Depth from centroid to top of beam
$\mathrm{y}_{\mathrm{b}}:=16.5 \mathrm{in}$	Depth from centroid to soffit of beam
$\mathrm{S}_{\mathrm{Tf}}(\mathrm{x}):=\frac{\mathrm{I}_{\text {beamf }}(\mathrm{x})}{\mathrm{y}_{\mathrm{t}}}$	Section modulus about top flange
$\mathrm{S}_{\mathrm{Bf}}(\mathrm{x}):=\frac{\mathrm{I}_{\text {beamf }}(\mathrm{x})}{\mathrm{y}_{\mathrm{b}}}$	Section modulus about bottom flange

Properties of the section at midspan (minimum concrete area)

$$
\begin{aligned}
& \mathrm{A}_{\text {beam }}:=\mathrm{A}_{\text {beamf }}\left(\frac{\mathrm{L}_{\text {beam }}}{2}\right)=782.437 \cdot \text { in }^{2} \quad \text { Minimum area of beam section } \\
& \mathrm{b}_{\text {web }}:=\mathrm{b}_{\text {webf }}\left(\frac{\mathrm{L}_{\text {beam }}}{2}\right)=4.5 \cdot \text { in } \quad \text { width of the web at midspan } \\
& \left(\mathrm{L}_{\text {beam }}\right) \text { combined web width at midspan } \\
& \mathrm{b}_{\mathrm{v}}:=2 \cdot \mathrm{~b}_{\text {webf }}\left(\frac{\mathrm{L}_{\text {beam }}}{2}\right)=9.00 \cdot \text { in } \quad \text { (two webs per beam) } \\
& \omega_{\text {beam }}:=\mathrm{A}_{\text {beam }} \cdot(150 \mathrm{pcf})=815.04 \cdot \mathrm{plf} \quad \text { Beam weight per foot } \\
& I_{\text {beam }}:=I_{\text {beamf }}\left(\frac{L_{\text {beam }}}{2}\right)=1.151 \times 10^{5} \cdot \text { in }^{4} \quad \text { Minimum moment of inertia } \\
& y_{\text {sta }}:=16.5 \text { in } \\
& y_{b}:=16.5 \mathrm{in} \\
& \mathrm{~S}_{\mathrm{T}}:=\frac{\mathrm{I}_{\text {beam }}}{\mathrm{y}_{\mathrm{t}}}=6.978 \times 10^{3} \cdot \text { in }^{3} \\
& S_{B}:=\frac{I_{\text {beam }}}{y_{b}}=6977.86 \cdot \text { in }^{3} \\
& \text { Depth from centroid to top of beam } \\
& \text { Depth from centroid to soffit of beam } \\
& \text { Minimum section modulus about top flange } \\
& \text { Minimum section modulus about bottom flange }
\end{aligned}
$$

Effective Flange Width of Concrete Deck Slab, AASHTO A 4.6.2.6

Beam_Design := "Interior"	Choose the design of the beam either "Interior" or "Exterior"
$\mathrm{b}_{\text {eff.int }}:=\mathrm{S}=8.00 \mathrm{ft}$	Effective flange width of deck slab for interior beams
$\mathrm{b}_{\text {eff.ext }}:=\frac{1}{2} \cdot \mathrm{~S}+\text { overhang }=6.96 \mathrm{ft}$	Effective flange width of deck slab for exterior beams
$\mathrm{b}_{\text {eff }}:=\left\lvert\, \begin{array}{ll} \mathrm{b}_{\text {eff.int }} & \text { if Beam_Design }= \\ \mathrm{b}_{\text {eff.ext }} & \text { if Beam_Design }= \end{array}\right.$	"Interior" $=2.438$ "Exterior"

$d_{\text {total }}:=$ deck $_{\text {thick }}+d=42$.in \quad Total depth of section including deck

Dynamic load Allowance

Dynamic load allowance from AASHTO Table 3.6.2.1-1 is applied as an increment to the static wheel loads to account for wheel load impacts from moving vehicles.

$\mathrm{IM}:=1+33 \%=1.33$

Design Factors

These factors are related to the ductility, redundancy and operational importance of the bridge structure components and are applied to the strength limit state.

Ductility

For Strength limit State, a factor of 1.05 is used for nonductile components and connections, 1.00 for conventional designs and details complying with these specifications, and 0.95 for components and connections for which additional ductility-enhancing measures have been specified beyond those required by these specifications, AASHTO A 1.3.3.
$\eta_{D}:=1.00$

Redundancy

For Strength limit State, a factor of 1.05 is used for nonredundant members, 1.00 for conventional levels of redundancy, foundation elements where ϕ already accounts for redundancy as specified in AASHTC A 10.5, and 0.95 for exceptional levels of redundancy beyond girder continuity and a torsionally-closed cross-section, AASHTO A 1.3.4.
$\eta_{\mathrm{R}}:=1.00$

Operational Importance

For the Strength limit State, a factor of 1.05 is used for critical or essential bridges, 1.00 for typical bridges, and 0.95 for relatively less important bridges, AASHTO A 1.3.5.
$\eta_{\mathrm{I}}:=1.00$

Ductility, redundancy, and operational classification considered in the load modifier, AASHTO Eqn.
1.3.2.1-2.
$\eta_{\mathrm{i}}:=\eta_{\mathrm{D}} \cdot \eta_{\mathrm{R}} \cdot \eta_{\mathrm{I}}=1.00$

Composite Section Properties

This is the moment of inertia resisting superimposed dead loads.

Elastic Section Properties - Composite Section: k=2

$\mathrm{k}_{\mathrm{sdl}}:=2$

$\mathrm{A}_{\text {haunchkn }}:=\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k}_{\mathrm{sdl}} \mathrm{n}} \cdot$ haunch $=0 \cdot \mathrm{in}^{2} \quad \quad$ effective area of haunch
$d_{\text {haunchkn }}:=d+\frac{\text { haunch }}{2}=33 \cdot$ in \quad Depth of centroid of haunch to bottom of beam

$$
\text { Ad }_{\text {haunchkn }}:=\mathrm{d}_{\text {haunchkn }} \cdot \mathrm{A}_{\text {haunchkn }}=0 \cdot \text { in }^{3}
$$

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{effkn}}:=\frac{\mathrm{b}_{\mathrm{eff}}}{\mathrm{k}_{\mathrm{sdl}} \mathrm{n}}=39.45 \cdot \mathrm{in} \\
& \mathrm{~d}_{\text {slabkn }}:=\mathrm{d}+\text { haunch }+\frac{\text { deck }_{\text {thick }}-\mathrm{t}_{\text {wear }}}{2}=37.5 \cdot \text { in } \\
& A_{\text {slabkn }}:=\text { deck }_{\text {thick }} \cdot \mathrm{b}_{\text {effkn }}=355.09 \cdot \text { in }^{2} \\
& \operatorname{Ad}_{\text {slabkn }}:=\mathrm{A}_{\text {slabkn }} \cdot \mathrm{d}_{\text {slabkn }}=13315.82 \cdot \mathrm{in}^{3} \\
& \text { Transformed deck width } \\
& d_{k}:=\frac{A_{\text {beam }} \cdot y_{b}+A d_{\text {slabkn }}+A d_{\text {haunchkn }}}{A_{\text {beam }}+A_{\text {slabkn }}+A_{\text {haunchkn }}}=23.06 \cdot \text { in } \\
& \text { Depth from center of deck to beam soffit } \\
& \mathrm{A}_{\text {slabkn }}:=\operatorname{deck}_{\text {thick }} \cdot \mathrm{b}_{\text {effkn }}=355.09 \cdot \mathrm{in}^{2} \\
& \text { Area of transformed deck section } \\
& \text { Static moment of inertia of transformed } \\
& \text { section about soffit of beam } \\
& \mathrm{I}_{\text {oslabkn }}:=\frac{\mathrm{b}_{\text {effkn }} \cdot \text { deck }_{\text {thick }}{ }^{3}}{12}=2396.85 \cdot \mathrm{in}^{4} \\
& \text { Depth of CG of composite section from beam } \\
& \text { soffit } \\
& \mathrm{I}_{\text {haunchkn }}:=\frac{\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k}_{\mathrm{sdl} \cdot \mathrm{n}}} \cdot \text { haunch }^{3}}{12}=0 \cdot \mathrm{in}^{4} \\
& \text { Moment of inertia of transformed deck about } \\
& \text { centroid } \\
& \text { Effective moment of interia of the haunch }
\end{aligned}
$$

Moment of inertia of composite section to resist superimposed dead loads calculated using parallel axis theorem
$\mathrm{I}_{3 \mathrm{n}}:=\mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot\left(\mathrm{d}_{\mathrm{k}}-\mathrm{y}_{\mathrm{b}}\right)^{2}+\mathrm{I}_{\text {oslabkn }}+\mathrm{A}_{\text {slabkn }} \cdot\left(\mathrm{d}_{\text {slabkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}+\mathrm{I}_{\text {haunchkn }} \ldots=225243.5 \cdot \mathrm{in}^{4}$ $+A_{\text {haunchkn }} \cdot\left(d_{\text {haunchkn }}-d_{k}\right)^{2}$
$y_{b 3 n}:=d_{k}=23.055 \cdot$ in
Depth of CG of composite section from beam soffit
$\mathrm{S}_{\mathrm{b} 3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{b} 3 \mathrm{n}}}=9769.69 \cdot \mathrm{in}^{3}$
Section modulus about bottom of beam
$y_{t . b m .3 n}:=d-y_{b 3 n}=9.94 \cdot$ in
$\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}=22649.67 \cdot \mathrm{in}^{3}$
$y_{t 3 n}:=d+$ haunch + deck $_{\text {thick }}-t_{\text {wear }}-y_{b 3 n}=18.94 \cdot$ in
$\mathrm{S}_{\mathrm{t} 3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{t} 3 \mathrm{n}}}=11889.54 \cdot \mathrm{in}^{3}$

Depth of CG of composite section from top of beam

Section modulus about top of beam

Depth of CG of composite section from top of deck

Section modulus about top of deck

Elastic Section Properties - Composite Section: k=1

These properties are used to evaluate the moment of inertia for resisting live loads

Assumed wearing surface not included in the structural design deck thickness, per MDOT BDM 7.02.19.A.4 \qquad

$$
\mathrm{k}:=1
$$

$\mathrm{A}_{\text {hannahka }}:=\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{kn}} \cdot$ haunch $=0 \cdot \mathrm{in}^{2}$	effective area of haunch
$\mathrm{d}_{\text {hamablan: }}:=\mathrm{d}+\frac{\text { haunch }}{2}=33 \cdot$ in	Depth of centroid of haunch to bottom of beam

$$
\text { Ad }_{\text {hammohkan }}:=d_{\text {haunchkn }} \cdot \mathrm{A}_{\text {haunchkn }}=0 \cdot \mathrm{in}^{3}
$$

$$
\mathrm{d}_{\text {mslablan: }}:=\mathrm{d}+\text { haunch }+\frac{\text { deck }_{\text {thick }}-\mathrm{t}_{\text {wear }}}{2}=37.5 \cdot \mathrm{in} \quad \text { Depth from center of deck to beam soffit }
$$

$$
\mathrm{A}_{\text {slablami }}:=\text { deck }_{\text {thick }} \cdot \mathrm{b}_{\text {effkn }}=710.18 \cdot \mathrm{in}^{2}
$$

Area of transformed deck section

$$
\mathrm{Ad}_{\text {slabkan }}:=\mathrm{A}_{\text {slabkn }} \cdot \mathrm{d}_{\text {slabkn }}=26631.64 \cdot \mathrm{in}^{3}
$$

Static moment of inertia of transformed section about soffit of beam

$$
\mathrm{d}_{\mathrm{dkw}}:=\frac{\mathrm{A}_{\text {beam }} \cdot \mathrm{y}_{\mathrm{b}}+\mathrm{Ad}_{\text {slabkn }}+A d_{\text {haunchkn }}}{A_{\text {beam }}+A_{\text {slabkn }}+A_{\text {haunchkn }}}=26.49 \cdot \text { in }
$$

Depth of CG of composite section from beam soffit

$$
\mathrm{I}_{\text {aslabkm }}:=\frac{\mathrm{b}_{\text {effkn }} \cdot \mathrm{deck}_{\text {thick }}{ }^{3}}{12}=4793.7 \cdot \mathrm{in}^{4}
$$

Moment of inertia of transformed deck about centroid

$$
\mathrm{I}_{\text {haunchkn: }}:=\frac{\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k} \cdot \mathrm{n}} \cdot \text { haunch }^{3}}{12}=0 \cdot \mathrm{in}^{4}
$$

Moment of inertia of composite section to resist superimposed dead loads calculated using parallel axis theorem

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{n}}:=\mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot\left(\mathrm{d}_{\mathrm{k}}-\mathrm{y}_{\mathrm{b}}\right)^{2}+\mathrm{I}_{\text {oslabkn }}+\mathrm{A}_{\text {slabkn }} \cdot\left(\mathrm{d}_{\text {slabkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}+\mathrm{I}_{\text {haunchkn }} \ldots=284103.5 \cdot \mathrm{in}^{4} \\
& +A_{\text {haunchkn }} \cdot\left(d_{\text {haunchkn }}-d_{k}\right)^{2} \\
& \mathrm{y}_{\mathrm{bn}}:=\mathrm{d}_{\mathrm{k}}=26.492 \cdot \text { in } \quad \text { Depth of } C G \text { of composite section from } \\
& \text { beam soffit }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{bn}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{bn}}}=10724.26 \cdot \mathrm{in}^{3} \\
& \mathrm{y}_{\mathrm{t} . \mathrm{bm} \cdot \mathrm{n}}:=\mathrm{d}-\mathrm{y}_{\mathrm{bn}}=6.51 \cdot \mathrm{in} \\
& \mathrm{~S}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{t} \cdot \mathrm{bm} \cdot \mathrm{n}}}=43652.33 \cdot \mathrm{in}^{3} \\
& \mathrm{y}_{\mathrm{tn}}:=\mathrm{d}+\text { haunch }+ \text { deck }_{\text {thick }}-\mathrm{t}_{\text {wear }}-\mathrm{y}_{\mathrm{bn}}=15.51 \cdot \mathrm{in} \\
& \mathrm{~S}_{\mathrm{tn}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{tn}}}=18319.42 \cdot \mathrm{in}^{3}
\end{aligned}
$$

Depth of CG of composite section from top of beam

Section modulus about top of beam

Depth of CG of composite section from top of deck

Section modulus about top of deck

live load lateral Distribution Factors

Cross-section classification. \qquad Type B

Distribution of live loads from the deck to the beams is evaluated based on the AASHTO specified distribution factors. These factors can only be used if generally, the following conditions are met;

- Width of deck is constant.
- Unless otherwise specified, the number of beams is not less than three
- Beams are parallel and have approximately the same stiffness.
- \quad Curvature in plan is less than the limit specified in AASHTO A 4.6.1.2.4.
- Unless otherwise specified, the roadway part of the overhang does not exceed 3.0 ft .
- \quad Cross-section is consistent with one of the cross-sections shown in AASHTO Table 4.6.2.2.1-1.

Distribution of live loads for Moment in Interior Beams, AASHTO Table 4.6.2.2.2b-1

Range of Applicability. \qquad
if $(6 \mathrm{ft}<\mathrm{S} \leq 18 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $(18 \mathrm{in}<\mathrm{d} \leq 65 \mathrm{in}$, "ok", "not ok" $)=$ "ok"

$$
\text { if }(20 \mathrm{ft}<\mathrm{L} \leq 140 \mathrm{ft}, \text { "ok" }, \text { "not ok" })=\text { "ok" }
$$

$$
\text { if }\left(\mathrm{NO}_{\text {beams }} \geq 3, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" }
$$

One lane loaded

$$
\mathrm{M}_{\text {lane1_int }}:=\left(\frac{\mathrm{S}}{3.0 \mathrm{ft}}\right)^{0.35} \cdot\left(\frac{\mathrm{~S} \cdot \mathrm{~d}}{12.0 \mathrm{~L}^{2}} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.25}=0.374
$$

Two or more lanes loaded

$\mathrm{M}_{\text {lane2_int }}:=\left(\frac{\mathrm{S}}{6.3 \mathrm{ft}}\right)^{0.6} \cdot\left(\frac{\mathrm{~S} \cdot \mathrm{~d}}{12.0 \mathrm{~L}^{2}} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.125}=0.595$

live load moment disribution factor for interior beam

$\mathrm{M}_{\text {lane_int }}:=\max \left(\mathrm{M}_{\text {lane1_int }}, \mathrm{M}_{\text {lane2_int }}\right)=0.595$

Distribution of live loads for Moment in Exterior Beams, AASHTO Table 4.6.2.2.2d-1

One lane loaded (using the lever rule)

The lever rule involves the use of statics to determine the lateral distribution to the exterior girder by summing moments about the adjacent interior girder to determine the wheel-load reaction at the exterio girder assuming the concrete deck is hinged at the interior girder. A wheel cannot be closer than 2'-0" to the toe of barrier, and the standard wheel spacing is $6^{\prime}-0 "$. The evaluated factor is multiplied by the multiple presence factor, AASHTO Table 3.6.1.1.2-1.

Summing moments about the center of the interior beam

This factor is based on the lever arm rule considring the wheel load and not the resultant of both wheel

Moment distribution factor for exterior beam, one load loaded. The 1.2 accounts for the multiple presence factor, m from AASHTO Table 3.6.1.1.2-1 for one lane loaded
$\mathrm{M}_{\text {lane1_ext }}:=\mathrm{R} \cdot 1.2=0.713$

Two or more lanes loaded

Horizontal distance from the centerline of the exterior web of exterior beam at deck level to the interior web edge of curb or traffic barrier must be greater than $0^{\prime}-0^{\prime \prime}$

$$
\mathrm{d}_{\mathrm{e}}:=\max \left[\text { overhang }- \text { barrier }_{\text {width }}-\left(0.5 \mathrm{~b}_{\mathrm{fb}}-0.5 \mathrm{~b}_{\mathrm{web}}\right), 0 \mathrm{ft}\right]=0.00 \mathrm{ft}
$$

Range of Applicability

$$
\text { if }\left(-1 \mathrm{ft} \leq \mathrm{d}_{\mathrm{e}} \leq 5.5 \mathrm{ft}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" }
$$

lane fraction

$$
\underset{m}{e}:=0.97+\frac{\mathrm{d}_{\mathrm{e}}}{28.5 \mathrm{ft}}=0.97
$$

Moment distribution factor for exterior beam, two or more lanes loaded

$$
\mathrm{M}_{\text {lane2_ext }}:=\mathrm{M}_{\text {lane_int }} \cdot \mathrm{e}=0.577
$$

Distribution of live loads for Moment in Exterior Beams, AASHTO C4.6.2.2.2d

AASHTO LRFD 2014 recommends the rigid plate analysis only for steel beam-slab bridges. This was a change from ealier versions of AASHTO. It is up to the designed to ignore the rigid plate analysis or take it into consideration when calculating the DF for exterior beam

Additional special analysis investigation is required because the distribution factor for multigirder in cross section was determined without consideration of diaphragm or cross frames. The multiple presence factors are used per AASHTO Table 3.6.1.1.2-1. This analysis should be done by sketching the cross section to determine the variables required for this example, the defined deck geometry is used. For any other geometry, these variables should be hand computed and input:
Horizontal distance from center of gravity of the pattern of girders to the exterior girder
$\mathrm{X}_{\mathrm{ext}}:=\frac{\mathrm{S}_{\text {exterior }}}{2}=28.00 \mathrm{ft}$
Eccentricity of the center line of the standard wheel from the center of gravity of the pattern of girders
$\mathrm{e}_{1}:=\mathrm{X}_{\mathrm{ext}}+$ overhang - barrier $_{\text {width }}-2 \mathrm{ft}-\frac{6 \mathrm{ft}}{2}=24.75 \mathrm{ft}$
$\mathrm{e}_{2}:=\mathrm{e}_{1}-12 \mathrm{ft}=12.75 \mathrm{ft}$
$e_{3}:=e_{2}-12 \mathrm{ft}=0.75 \mathrm{ft}$
$\mathrm{e}_{4}:=\mathrm{e}_{3}-12 \mathrm{ft}=-11.25 \mathrm{ft}$

Summation of eccentricities for number of lanes considered:

$\mathrm{e}_{\mathrm{NL} 1}:=\mathrm{e}_{1}=24.75 \mathrm{ft}$	One lane loaded
${ }^{\mathrm{e}_{\mathrm{NL} 2}:=\mathrm{e}_{1}+\mathrm{e}_{2}=37.5 \mathrm{ft}}$	Two lanes loaded
${ }^{\mathrm{e}_{\mathrm{NL}}}:=\mathrm{e}_{\mathrm{NL} 2}+\mathrm{e}_{3}=38.25 \mathrm{ft}$	Three lanes loaded
${ }^{\mathrm{e}} \mathrm{NL}:=\mathrm{e}_{\mathrm{NL}}+\mathrm{e}_{4}=27 \mathrm{ft}$	Four lanes loaded

Horizontal distances from the center of gravity of the pattern of girders to each girder
$\mathrm{X}_{\text {beams }}:=\left(\begin{array}{c}\text { for } \mathrm{i} \in 0 . . \mathrm{NO}_{\text {beams }}-1 \\ \mathrm{X}_{\mathrm{i}} \leftarrow \mathrm{X}_{\mathrm{ext}}-(\mathrm{i} \cdot \mathrm{S}) \\ \mathrm{X} \\ 20.00 \\ 12.00 \\ 4.00 \\ -4.00 \\ -12.00 \\ -20.00 \\ -28.00\end{array}\right) \mathrm{ft}$

Summation of horizontal distances from the center of gravity of the pattern of girders to each girder
$\mathrm{X}_{\mathrm{NB}}:=\sum \mathrm{X}_{\text {beams }}^{2}=2688.00 \cdot \mathrm{ft}^{2}$
$\mathrm{m}_{1 \mathrm{R}}:=1.2 \cdot\left(\frac{1}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot{ }^{\cdot} \mathrm{NL1}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.459$
$\mathrm{m}_{2 \mathrm{R}}:=1.0 \cdot\left(\frac{2}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\text {ext }} \cdot \mathrm{e}_{\mathrm{NL}}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.641$

Reaction on exterior beam when one lane is loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1

Reaction on exterior beam when two lanes are loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1

$$
\begin{aligned}
& \mathrm{m}_{3 \mathrm{R}}:=0.85 \cdot\left(\frac{3}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot \mathrm{e}_{\mathrm{NL}}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.657 \\
& \mathrm{~m}_{4 \mathrm{R}}:=0.65 \cdot\left(\frac{4}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot{ }^{\mathrm{e}} \mathrm{NL} 4}{\mathrm{X}_{\mathrm{NL}}}\right)=0.508 \\
& \text { loaded enhanced with the appropriate multiple lane } \\
& \text { factor from AASHTO Table 3.6.1.1.2-1 }
\end{aligned} \quad \begin{aligned}
& \text { Reaction on exterior beam when four lanes are } \\
& \text { loaded enhanced with the appropriate multiple lane } \\
& \text { factor from AASHTO Table 3.6.1.1.2-1 }
\end{aligned}
$$

live load moment disribution factor for exterior beam

$$
\mathrm{M}_{\text {lane_ext }}:=\max \left(\mathrm{M}_{\text {lane1_ext }}, \mathrm{M}_{\text {lane2_ext }}, \mathrm{m}_{1 \mathrm{R}}, \mathrm{~m}_{2 \mathrm{R}}, \mathrm{~m}_{3 \mathrm{R}}, \mathrm{~m}_{4 \mathrm{R}}\right)=0.713
$$

Reduction of load Distribution Factors for Moment in Iongitudinal Beams on Skewed Supports

When the line supports are skewed and the difference between skew angles of two adjacent lines of supports does not exceed 10 degrees, the bending moments and shear forces are reduced in accordance with AASHTO Table 4.6.2.2.2e-1 and 4.6.2.2.3c-1 respectively.

Moment

Range of Applicability
$\theta_{\text {mskenn }}:=\left\lvert\, \begin{array}{ll}\theta_{\text {skew }} \text { if } \theta_{\text {skew }} \leq 60 \cdot \mathrm{deg}=44.652 \cdot \mathrm{deg} \\ 60 \cdot \text { deg } & \text { if } \theta_{\text {skew }}>60 \cdot \mathrm{deg}\end{array}\right.$
Mcorr $_{\text {factor }}:=\min \left(1.05-0.25 \cdot \tan \left(\theta_{\text {skew }}\right), 1.0\right)=0.803 \quad$ Correction factor for moment

Reduced distribution factors at strength limit state for interior girders due to skew

$\mathrm{DF}_{\text {strength_moment_int }}:=\mathrm{M}_{\text {lane_int }}$ Mcorr $_{\text {factor }}=0.477 \quad$ Moment

Reduced distribution factors at strength limit state for exterior girders due to skew

$\mathrm{DF}_{\text {strength_moment_ext }}:=\mathrm{M}_{\text {lane_ext }} \cdot$ Mcorr $_{\text {factor }}=0.572 \quad$ Moment

Design distribution factors for service and strength limit states

Distribution factor for moment at strength limit state

$$
\mathrm{DF}_{\text {strength_moment }}:=\left\{\begin{array}{l}
\mathrm{DF}_{\text {strength_moment_int }} \text { if Beam_Design = "Interior" }=0.477 \\
\mathrm{DF}_{\text {strength_moment_ext }} \text { if Beam_Design = "Exterior" }
\end{array}\right.
$$

live load Analysis

Flexure

As per AASHTO A 3.6.1.2.1, vehicular live loading designated by the standard HI-93 truck shall be a combination of the design truck or design tandem, and the design lane load. To produce extreme force effects, the spacing between the two 32 -kip axles are taken as 14 ft .

Calculate the maximum moment due to the truck load. Maximum truck load moment occurs when the middle axle is positioned at distance 2.33 ft from the midspan. Maximum momment occurs under the middle axle load. Moment due to distributed load occurs at midspan.

Unless more detailed analysis is performed to determine the location and value for the maximum moment under combined truck and distributed loads at both service and strength limit state, the maximum moment from the truck load at distance 2.33 ft from midspan can be assumed to occur at the midspan and combined with the maximum moment from other dead and live distributed loads

Calculate the reaction at the end of the span
$\mathrm{R}:=\frac{8 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}-16.33 \mathrm{ft}\right)+32 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}-2.33 \mathrm{ft}\right)+32 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}+11.67 \mathrm{ft}\right)}{\mathrm{L}}=38.527 \cdot \mathrm{kip}$
Calculate the maximum moment
$M_{\text {truck }}:=R \cdot\left(\frac{L}{2}+2.33 \mathrm{ft}\right)-32 \cdot \mathrm{kip} \cdot 14 \cdot \mathrm{ft}=924.387 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to design lane load, AASHTO A 3.6.1.2.4
$\mathrm{X}:=\frac{\mathrm{L}}{2}=33.292 \mathrm{ft}$
$\mathrm{M}_{\text {lane }}:=\frac{0.64 \mathrm{klf} \cdot \mathrm{L} \cdot \mathrm{X}}{2}-0.64 \mathrm{klf} \cdot \frac{\mathrm{X}^{2}}{2}=354.67 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to design tandem, MDOT BDM 7.01.04.A
$\mathrm{M}_{\text {tandem }}:=\frac{60 \mathrm{kip} \cdot \mathrm{L}}{4}=998.75 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to vehicular live loading by the modified $\mathrm{HI}-93$ design truck and tandem per MDOT BDM 7.01.04.A. Modification is by multiplying the load effects by a factor of 1.20. Dynamic load allowance is considered only for the design truck and tandem, AASHTO A 3.6.1.2.2, 3.6.1.2.3 \& 3.6.1.2.4.
$\mathrm{M}_{\text {LLI }}:=\left[1.20 \mathrm{M}_{\text {lane }}+\mathrm{IM} \cdot\left(1.20 \cdot \max \left(\mathrm{M}_{\text {truck }}, \mathrm{M}_{\text {tandem }}\right)\right)\right] \cdot \mathrm{DF}_{\text {strength_moment }}=964.28 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Dead load Analysis

Noncomposite Dead load (DC ${ }_{1}$)

$\mathrm{w}_{\text {webf }}(\mathrm{x}):=\left(\mathrm{A}_{\text {beamf }}(\mathrm{x})-\mathrm{A}_{\text {beamf }}\left(\frac{\mathrm{L}_{\text {beam }}}{2}\right)\right) \cdot \omega_{\text {conc }}$
$\mathrm{w}_{1}:=\mathrm{w}_{\text {webf }}(0 \cdot \mathrm{in})=0.834 \cdot \frac{\text { kip }}{\mathrm{ft}} \quad$ acting on $\quad \mathrm{L}_{\mathrm{end}}=2.667 \mathrm{ft} \quad$ as uniform load
$\mathrm{w}_{2}:=\mathrm{w}_{\text {webf }}\left(\mathrm{L}_{\mathrm{end}}\right)=0.328 \cdot \frac{\mathrm{kip}}{\mathrm{ft}} \quad$ acting on $\quad \mathrm{L}_{\mathrm{var}}=14.667 \mathrm{ft} \quad$ as triangular load

Additional moment at mid-span due to weight of varying web width
$\mathrm{M}_{\text {sw.web }}:=\mathrm{w}_{1} \cdot \frac{\mathrm{~L}_{\text {end }}}{2}+0.5 \cdot \mathrm{w}_{2} \cdot \mathrm{~L}_{\text {var }} \cdot\left(\mathrm{L}_{\text {end }}+\frac{\mathrm{L}_{\text {var }}}{3}\right)=21.15 \cdot \mathrm{kip} \cdot \mathrm{ft}$

$$
\begin{array}{ll}
\mathrm{M}_{\text {beam }}:=\frac{\omega_{\mathrm{beam}} \cdot \mathrm{~L}^{2}}{8}=451.67 \cdot \mathrm{kip} \cdot \mathrm{ft} & \begin{array}{l}
\text { Total moment due to selfweight of beam } \\
\text { without the varying width }
\end{array} \\
\mathrm{M}_{\text {swbeam }}:=\mathrm{M}_{\mathrm{sw} \cdot \mathrm{web}}+\mathrm{M}_{\text {beam }}=472.82 \cdot \mathrm{kip} \cdot \mathrm{ft} & \begin{array}{l}
\text { Total moment due to selfweight of } \\
\text { beam }
\end{array} \\
\text { deck }:=\left(\text { deck }_{\mathrm{thick}} \cdot \mathrm{~b}_{\mathrm{eff}}+\text { haunch }_{\mathrm{d}} \cdot \mathrm{~b}_{\mathrm{ft}}\right) \cdot 0.15 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}=1.00 \cdot \mathrm{klf} & \begin{array}{l}
\text { Selfweight of deck and haunch on } \\
\text { beam }
\end{array} \\
\mathrm{M}_{\text {deck }}:=\frac{\text { deck } \cdot \mathrm{L}^{2}}{8}=554.17 \cdot \mathrm{kip} \cdot \mathrm{ft} & \begin{array}{l}
\text { Moment due to selfweight of deck and } \\
\text { haunch }
\end{array} \\
\hline \operatorname{sip}:=15 \mathrm{psf} \cdot\left(\mathrm{~b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right)=0.06 \cdot \mathrm{klf} & \begin{array}{l}
15 \text { psf weight included for stay-in-place } \\
\text { forms per MDOT BDM 7.01.04.I }
\end{array} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \mathrm{M}_{\text {sip }}:=\frac{\text { sip } \cdot \mathrm{L}^{2}}{8}=33.25 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \text { dia }_{\text {int }}:=0 \cdot \mathrm{kip} \\
& \text { dia }_{\text {ext }}:=0 \cdot \mathrm{kip} \\
& \text { diaphragm }:=\left\lvert\, \begin{array}{l}
\text { dia }_{\text {int }} \text { if Beam_Design }=\text { "Interior" } \quad=0 \cdot \mathrm{kip} \\
\text { dia }_{\text {ext }} \text { if Beam_Design }=\text { "Exterior" }
\end{array}\right.
\end{aligned}
$$

Moment due to stay-in-place forms

$$
\operatorname{spa}_{\mathrm{dia}}:=2\left(\mathrm{~S}-\mathrm{b}_{\mathrm{fb}}\right) \cdot \tan \left(\theta_{\text {skew }}\right)=7.904 \mathrm{ft}
$$

$$
\mathrm{M}_{\mathrm{dia}}:=\operatorname{diaphragm} \cdot \frac{\mathrm{L}}{4}=0 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

$$
\mathrm{DC}_{1}:=\omega_{\text {beam }}+\text { deck }+ \text { sip }=1.875 \cdot \mathrm{klf}
$$

One row of diaphragms at midspan are used.

Dead load (wt of beam+ deck+ SIP forms) acting on non-composite section

$$
M_{D C 1}:=M_{\text {swbeam }}+M_{\text {deck }}+M_{\text {sip }}+M_{\text {dia }}=1060.23 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Total midspan moment acting

Composite Dead load (DC_{2})

$$
\begin{array}{ll}
\text { util }:=\frac{1}{2} \cdot(0 \text { plf })=0 \cdot \mathrm{klf} & \begin{array}{l}
\text { No utilities are supported by the } \\
\text { superstructure }
\end{array} \\
\text { barrier }_{\text {weight }}:=0.475 \frac{\mathrm{kip}}{\mathrm{ft}} & \begin{array}{l}
\text { Weight per foot of first barrier (aesthetics } \\
\text { parapet tube, MDOT BDG 6.29.10) }
\end{array} \\
{\text { barrier } 2_{\text {weight }}:=0.475 \frac{\mathrm{kip}}{\mathrm{ft}}}^{\begin{array}{l}
\text { Weight per foot of first barrier (aesthetics } \\
\text { parapet tube, MDOT BDG 6.29.10) }
\end{array}}
\end{array}
$$

$$
\text { sidewalk }:=\frac{2 \cdot \text { walk }_{\text {width }} \cdot \text { walk }_{\text {thick }} \cdot \omega_{\text {conc }}}{\mathrm{NO}_{\text {beams }}}=0.00 \cdot \mathrm{klf}
$$

$$
\text { barrier }:=\frac{\text { barrier } 1^{\text {weight }}+\text { barrier } 2^{\text {weight }}}{} \mathrm{NO}_{\text {beams }} \quad=0.12 \cdot \mathrm{klf}
$$

$$
\text { soundwall }_{\text {weight }}:=0.0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}
$$

Weight of diaphragm at mid-span per each interior beam. Zero if no diaphragm is used

Weight of diaphragm at mid-span per each exterior beam. Zero if no diaphragm is used
on the non-composite section

Weight to due extra thickness of sidewalk per beam

Total barrier weight per beam

Weight of the sound wall, if there is a sound wall

Weight of the sound wall for exterior beam design assuming lever arm and an inetremiate hinge on the first interior beam
soundwall $:=\left\lvert\, \begin{aligned} & 0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}} \text { if Beam_Design }=\text { "Interior" } \\ & {\left[\text { soundwall }_{\text {weight }} \cdot \frac{(\mathrm{S}+\text { overhang })}{\mathrm{S}}\right] \text { if Beam_Design }=\text { "Exterior" }}\end{aligned}\right.$
$\mathrm{DC}_{2}:=$ sidewalk + barrier + util + soundwall $=0.119 \cdot \mathrm{klf}$
Total dead load acting on the composite section
$\mathrm{M}_{\mathrm{DC} 2}:=\frac{\mathrm{DC}_{2} \cdot \mathrm{~L}^{2}}{8}=65.81 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Total midspan moment acting on the composite section

(DW) Wearing Surface load

$$
\mathrm{DW}:=\left(\mathrm{b}_{\mathrm{eff}}\right) \cdot 0.025 \frac{\mathrm{kip}}{\mathrm{ft}^{2}}=0.2 \cdot \mathrm{klf}
$$

Self weight of future wearing surface

Maximum unfactored dead load moments

$M_{D C}:=M_{D C 1}+M_{D C 2}=1126.04 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Total midspan moment due to loads acting on the composite and non-composite section

Midspan moment due to weight of future wearing surface

Wind load on the sound wall

If a tall sound wall is provided, wind effect shall be calculated and considered in the design. Assuming lever arm rule and an intermediate hinge at the first interior beam after the exterior beam, the wind load will affect the loads on the exterior beam and the first interior beam. In the following set of calculations, the wind effect was calculated as a concentrated moment at the end of the overhang of the bridge.
$\mathrm{M}_{\text {wind }}:=0.0 \cdot \mathrm{ft} \cdot \frac{\mathrm{kip}}{\mathrm{ft}} \quad$ Moment due to wind acting at the sound
$\mathrm{M}_{\text {wind }}:=0.0 \cdot \mathrm{ft} \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$ wall
$\mathrm{W}:=\frac{\mathrm{M}_{\text {wind }}}{\mathrm{S}}=0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$
$\mathrm{M}_{\mathrm{WS}}:=\frac{\mathrm{W} \cdot \mathrm{L}^{2}}{8}=0 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Extra load on the interior/exterior beam due to wind load assuming lever arm analysis and an intermediate hinge at the first interior beam

Interior beam moment due to wind acting at the sound wall

load Combinations

Load Combinations: Strength, Extreme Event, Service and Fatigue load combinations are defined per AASHTO 3.4.1. Verify which combination are appropriate. For this concrete box beam design, wind load is not evaluated, and no permit vehicle is specified. However, the design live loading is MDOT HL-93 Modified which accounts for Michigan's inventory of legal and permit vehicles.

Strength I, III, IV and Strength V limit states are considered for the design of this beam. Load combinations factors according to AASHTO LRFD 2016 Interim revision are used (Check for latest AASHTO LRFD edition)

$$
\begin{aligned}
& \mathrm{M}_{-} \text {Strength }_{\mathrm{I}}:=\eta_{\mathrm{i}}\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.75 \mathrm{M}_{\mathrm{LLI}}\right)=3261.28 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \mathrm{M}_{-} \text {Strength }{ }_{\mathrm{III}}:=\eta_{\mathrm{i}}\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.0 \mathrm{M}_{\mathrm{WS}}\right)=1573.80 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \text { M_Strength }_{I V}:=\eta_{\mathrm{i}}\left[1.50 \cdot\left(\mathrm{M}_{\mathrm{DC}}+\mathrm{M}_{\mathrm{DW}}\right)\right]=1855.31 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \mathrm{M}_{-} \text {Strength }_{\mathrm{V}}:=\eta_{\mathrm{i}}\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.35 \mathrm{M}_{\mathrm{LLI}}+1.0 \cdot \mathrm{M}_{\mathrm{WS}}\right)=2875.57 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \mathrm{M}_{\mathrm{u}_{\text {_strength }}}:=\max \left(\mathrm{M}_{-} \text {Strength }_{\mathrm{I}}, \mathrm{M}_{-} \text {Strength }_{\mathrm{III}}, \mathrm{M}_{-} \text {Strength }_{\mathrm{IV}}, \mathrm{M}_{-} \text {Strength }_{\mathrm{V}}\right)=3261.28 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Number of Prestressing Strands

The theoretical number of strands required is calculated using the Service III limit state

$$
\mathrm{f}_{\mathrm{b}}:=\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{~S}_{\mathrm{b} 3 \mathrm{n}}}+\frac{0.8 \mathrm{M}_{\mathrm{LLI}}}{\mathrm{~S}_{\mathrm{bn}}}=2.9 \cdot \mathrm{ksi}
$$

Tensile stress in bottom flange due to applied loads

Allowable stress limits for concrete

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{ti}}:=0.24 \cdot \sqrt{\mathrm{f}_{\mathrm{ci}} \mathrm{bbeam} \cdot \mathrm{ksi}}=0.61 \cdot \mathrm{ksi} \\
& \mathrm{f}_{\mathrm{ci}}:=-0.65 \cdot \mathrm{f}_{\mathrm{ci}} \text { _beam }=-4.16 \cdot \mathrm{ksi}
\end{aligned}
$$

Initial allowable compressive stress (according to AASHTO LRFD 2016 interim revision)
$\mathrm{f}_{\mathrm{tf}}:=0 \cdot \sqrt{\mathrm{f}_{\mathrm{c} _} \text {beam } \cdot \mathrm{ksi}}=0.00 \cdot \mathrm{ksi}$
Final allowable tensile stress (allowing no tension)

No tension is allowed under service III limit state to avoid potential cracks and shear action on the strands

$$
\mathrm{f}_{\mathrm{cfp}}:=-0.45 \cdot \mathrm{f}_{\mathrm{c} _ \text {beam }}=-3.60 \cdot \mathrm{ksi} \quad \text { Final allowable compressive stress in the beam due to }
$$ sum of effective prestress and permanent loads

Final allowable compressive stress in the slab due to permanent loads

Final allowable compressive stress in the beam due to sum of effective prestress, permanent loads, \& transient loads

Final allowable compressive stress in the beam due to sum of permanent loads and transient loads

Excess tension in the bottom flange due to applied loads

Assuming strand pattern center of gravity is midway between the bottom two rows of strands, i.e. the same number of strands are used in the top and bottom rows of the bottom flange.

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{bs}}:=3 \mathrm{in} & \text { Distance from soffit of beam to center of gravity of strands } \\
\mathrm{e}_{\mathrm{st}}:=\mathrm{y}_{\mathrm{b}}-\mathrm{y}_{\mathrm{bs}}=13.50 \cdot \mathrm{in} & \text { Eccentricity of strands from the centroid of beam }
\end{array}
$$

Final prestressing force required to counteract excess tension in the bottom flange. Set allowable stress equal to the excess tension, solve for P_{e}.

$\mathrm{f}_{\mathrm{j} \cdot \max }:=0.65 \cdot \mathrm{f}_{\text {pu.service }}=198.377 \cdot \mathrm{ksi}$
$\mathrm{P}_{\mathrm{j}}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{j} \cdot \max }=35.51 \cdot \mathrm{kip}$
$\mathrm{f}_{\mathrm{t}}:=0.64 \mathrm{f}_{\text {pu.service }}=195.33 \cdot \mathrm{ksi}$
$\mathrm{P}_{\mathrm{in}}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{t}}=34.96 \cdot \mathrm{kip}$

Maximum allowable Jacking stress, ACI 440.4R Table 3.3

Maximum Jacking prestressing force per strand

Initial prestressing stress immediately prior to transfer. shall be less than or equal to the maximum jacking strength, and shall be adjusted accordingly to make sure the stress immedietely following transfer is not exceeding 0.6 times guaranteed strength as shown on the following page
Initial prestressing force per strand prior to transfer

$$
\begin{array}{ll}
\mathrm{P}_{\text {pet }}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{t}} \cdot 0.75=26.22 \cdot \text { kip } & \begin{array}{l}
\text { Effective prestressing force assuming } 25 \% \text { final } \\
\text { prestress losses per } 0.6 " \text { diameter strand }
\end{array} \\
\mathrm{NO}_{\text {strands_i }}:=\operatorname{ceil}\left(\frac{\mathrm{P}_{\text {et }}}{\mathrm{P}_{\text {pet }}}\right)=35 & \text { Minimum number of strands required }
\end{array}
$$

Strand distribution per row. Row 0 is the bottom most row in the beam. Start adding strands from the bottom row going up until the number of strands is reached. do not skip rows inbetween. Extra rows with zero strands will be eliminated in the analysis.

row $_{0}:=15$	row $:=18$	row2 $:=4$	row3 $:=2$	row4 $:=0$	row5 $:=0$
row $6:=0$	row7 $:=0$	row8 $:=0$	row9 $:=0$		
			row $=\left(\begin{array}{c}15 \\ 18 \\ 4 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$		

$\mathrm{NO}_{\text {strands }}:=\sum$ Row $=39.00$

Row $=\left(\begin{array}{c}15 \\ 18 \\ 4 \\ 2\end{array}\right)$

Total number of prestressing strands

$$
\mathrm{d}_{\text {strand }}:=\left(\begin{array}{l}
\text { for } \mathrm{i} \in 0 . . \text { length(Row) }-1 \\
\mathrm{~d}_{\mathrm{s}_{\mathrm{i}}} \leftarrow \mathrm{~d}-(2 \mathrm{in})-(2 \mathrm{in}) \mathrm{i} \\
\mathrm{~d}_{\mathrm{s}}
\end{array}=\left(\begin{array}{l}
31.00 \\
29.00 \\
27.00 \\
25.00
\end{array}\right) \cdot \begin{array}{l}
\text { in } \begin{array}{l}
\text { Depth of CFCC strands in each layer from } \\
\text { the top of the beam section. This calculation } \\
\text { assumes a 2" vertical spacing of the strand } \\
\text { rows }
\end{array}
\end{array}\right.
$$

$$
\mathrm{CG}:=\frac{\left[\operatorname{Row} \cdot\left(\mathrm{d}-\mathrm{d}_{\text {strand }}\right)\right]}{\sum \text { Row }}=3.64 \cdot \mathrm{in}
$$

Center of gravity of the strand group measured from the soffit of the beam section
$\mathrm{d}_{\mathrm{f}}:=(\mathrm{d}-\mathrm{CG})+$ haunch + deck $_{\text {thick }}=38.36 \cdot$ in
Depth from extreme compression fiber to centroid of CFCC tension reinforcement
$\mathrm{e}_{\mathrm{s}}:=\mathrm{y}_{\mathrm{b}}-\mathrm{CG}=12.86 \cdot \mathrm{in}$
Eccentricity of strands from centroid of beam
$\mathrm{A}_{\mathrm{ps}}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{NO}_{\text {strands }}=6.98 \cdot \mathrm{in}^{2}$
Total area of prestressing CFCC strands

Prestress losses

loss due to Elastic Shortening, AASHTO Eqn. C5.9.5.2.3a-1

$$
\Delta f_{\text {PES }}:=\frac{A_{p s} \cdot f_{t} \cdot\left(I_{\text {beam }}+e_{s}^{2} \cdot A_{\text {beam }}\right)-e_{s} \cdot M_{\text {swbeam }} \cdot A_{\text {beam }}}{A_{p s} \cdot\left(I_{\text {beam }}+e_{s}^{2} \cdot A_{\text {beam }}\right)+\frac{A_{\text {beam }} \cdot I_{\text {beam }} \cdot E_{\text {c.beam_i }}}{E_{p}}}=12.52 \cdot k s i
$$

$$
\mathrm{F}_{\mathrm{pt}}:=\mathrm{f}_{\mathrm{t}}-\Delta \mathrm{f}_{\mathrm{PES}}=182.80 \cdot \mathrm{ksi} \quad \text { Prestressing stress immediately following transfer }
$$

$$
\mathrm{P}_{\mathrm{t}}:=\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{~F}_{\mathrm{pt}}=1276.141 \cdot \mathrm{kip}
$$

According to ACl 440.4 R , Table 3.3, the allowable stress immediately after transfer shall not exceed 0.6 fpu
$0.6 \cdot \mathrm{f}_{\text {pu.service }}=183.117 \cdot \mathrm{ksi}$
if $\left(\mathrm{F}_{\mathrm{pt}} \leq 0.6 \cdot \mathrm{f}_{\text {pu.service }}\right.$, "Ok", "Not Ok" $)=$ "Ok"

Approximate Estimate of Time dependent losses, AASHTO A 5.9.5.3

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{N}}:=75 & \text { Average annual ambient relative humidity } \\
\gamma_{\mathrm{h}}:=1.7-0.01 \cdot \mathrm{H}=0.95 & \text { Correction factor for relative humidity of ambient air } \\
\gamma_{\mathrm{st}}:=\frac{5}{1+\frac{\mathrm{f}_{\mathrm{ci}} \mathrm{~b}_{\mathrm{beam}}}{\mathrm{ksi}}}=0.68 & \begin{array}{l}
\text { Correction factor for specified concrete strength at time } \\
\text { of prestress transfer to the concrete member }
\end{array} \\
\Delta \mathrm{f}_{\mathrm{pR}}:=\mathrm{f}_{\mathrm{t}} \cdot 1.75 \%=3.42 \cdot \mathrm{ksi} & \begin{array}{l}
\text { Relaxation loss taken as } 1.75 \% \text { of the initial pull } \\
\text { per experimental results from Grace et. al based } \\
\text { on } 1,000,000 \text { hours }(114 \text { years) }
\end{array} \\
\Delta \mathrm{f}_{\mathrm{pLT}}:=10 \cdot \frac{\mathrm{f}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{ps}}}{\mathrm{~A}_{\mathrm{beam}}} \cdot \gamma_{\mathrm{h}} \cdot \gamma_{\mathrm{st}}+12 \mathrm{ksi} \cdot \gamma_{\mathrm{h}} \cdot \gamma_{\mathrm{st}}+\Delta \mathrm{f}_{\mathrm{pR}}=22.31 \cdot \mathrm{ksi} \quad \text { long term prestress loss }
\end{array}
$$

Difference in thermal coefficient expansion between concrete and CFCC
$\alpha:=6 \cdot 10^{-6} \cdot \frac{1}{\mathrm{~F}}$
$t_{a m b}:=68 \mathrm{~F}$
$t_{\text {low }}:=-10 \mathrm{~F}$
$\Delta \mathrm{t}:=\mathrm{t}_{\mathrm{amb}}-\mathrm{t}_{\mathrm{low}}=78 \mathrm{~F}$
$\Delta f_{p t}:=\alpha \cdot \Delta t \cdot E_{p}=9.83 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{pe}}:=\mathrm{f}_{\mathrm{t}}-\Delta \mathrm{f}_{\mathrm{pLT}}-\Delta \mathrm{f}_{\mathrm{PES}}-\Delta \mathrm{f}_{\mathrm{pt}}=150.67 \cdot \mathrm{ksi}$
$\mathrm{P}_{\mathrm{e}}:=\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{f}_{\mathrm{pe}}=1051.81 \cdot \mathrm{kip}$
$\mathrm{f}_{\mathrm{t}}=195.33 \cdot \mathrm{ksi}$

$$
\mathrm{f}_{\mathrm{pe}}=150.67 \cdot \mathrm{ksi}
$$

loss $:=\frac{f_{t}-f_{p e}}{f_{t}}=22.86 . \%$

Difference in coefficient of thermal expansion between concrete and CFCC

Ambient temperature
lowest temperature in Michigan according to AASHTO IRFD 3.12.2

Change in the temperature
Prestress losses due to temp. effect
Effective prestressing stress after all losses

Effective prestressing force after all losses
Initial prestress prior to transfer, not including anchorage losses

Prestress level after all losses

Total prestress loss

Debonding Criteria

Estimate the location from each beam end where top prestressing or debonding is no longer needed The vectors are developed for possible two different deboning lengths per row. Enter the number of debonded strands and the estimated debonding length in the vectors below per each row location Location: number of strands: debonding length:

For debonding pattern, follow staggering guidelines in MDOT BDM 7.02.18.A. 2

$$
\text { row }_{\mathrm{db}}:=\left|\begin{array}{l}
\text { for } \mathrm{i} \in 0 . .2 \text { length(Row) }-1 \\
\mathrm{D}_{\mathrm{i}} \leftarrow \text { Row }_{\mathrm{db}}^{\mathrm{i}}
\end{array} \quad \mathrm{~N}_{\mathrm{db}}:=\right| \begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { length }\left(\text { row }_{\mathrm{db}}\right)-1 \\
& \mathrm{D}
\end{aligned} \quad \begin{aligned}
& \mathrm{D}_{\mathrm{i}} \leftarrow \mathrm{n}_{\mathrm{db}} \mathrm{i} \\
& \mathrm{D}
\end{aligned}
$$

$$
\mathrm{L}_{\mathrm{db}}:=\left\lvert\, \begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { length }\left(\operatorname{row}_{\mathrm{db}}\right)-1 \\
& \mathrm{D}_{\mathrm{i}} \leftarrow 1_{\mathrm{db}_{\mathrm{i}}} \\
& \mathrm{D}
\end{aligned}\right.
$$

$$
\sum N_{d b}=11
$$

Debond $_{\text {tot }}:=\frac{\sum \mathrm{N}_{\mathrm{db}}}{\mathrm{NO}_{\text {strands }}}=28.21 \%$
Portion of partially debonded strands in beam section
if $\left(\right.$ Debond $_{\text {tot }} \leq 40 \%$, "ok" , "No Good" $)=$ "ok"

Total number of debonded strands in rows

$$
\text { if }\left(\max \left(\text { Debond }_{\text {row }}\right) \leq 40 \%, \text { "ok" }, \text { "No Good" }\right)=\text { "ok" }
$$

The limit of 40% is taken according to MDOT BDM 7.02.18. A2

Optional: only needed if debonding scheme is not sufficient to eliminate the tensile stresses at beam ends either at transfer or due to handling and shipping

CFCC strand transfer length, ACI 440.4R Table 6.1

$$
\mathrm{L}_{\mathrm{t}}:=50 \mathrm{~d}_{\mathrm{s}}=2.49 \mathrm{ft}
$$

Number of top prestressing strands in the top flange

$$
\text { Row }_{\text {top }}:=\binom{5}{0}
$$

Depth of the top prestressing strands from the top surface of the beam

$$
\mathrm{d}_{\text {top }}:=\binom{3}{0} \cdot \text { in }
$$

Initial prestressing stress/force at the top prestressing strands

$$
\mathrm{F}_{\mathrm{p}_{\mathrm{t}} \text { top }}:=50 \cdot \mathrm{ksi}
$$

Distance from the end of the beam to the point where the top prestressing is no longer needed

$$
\mathrm{x}_{\mathrm{p} \text { _top }}:=15 \cdot \mathrm{ft}
$$

Top prestressing strands shall not extend the the middle third of the beam. Otherwise, it could affect the stresses at service limit state
Check_Top_prestressing_Length $:=\left\{\begin{array}{l}\text { "Okay" if } x_{p_{-} \text {top }} \leq \frac{L_{\text {beam }}}{3} \\ \text { "Check service stress @ x.p_top" if } x_{p _t o p ~}>\frac{L_{\text {beam }}}{3}\end{array} \quad\right.$ "Okay"

Distance from the end of the beam to the pocket where top prestressing strand is cut after concrete pouring. The middle region between the cut pockets shall be dobonded to avoid force transfer to the middle region

$$
\mathrm{x}_{\text {pocket }}:=\mathrm{x}_{\mathrm{p} \text { _top }}+\mathrm{L}_{\mathrm{t}}=17.493 \mathrm{ft}
$$

Serviceability Checks

Stress check locations along the beam

Stress locations after the transfer length for bonded and de-bonded strands
Since this beam is provided with and end block, it is important to check the stresses at the end of the end block. Therefore, L.end was added to the x.release
$\mathrm{X}_{\text {release }}:=\operatorname{sort}\left[\operatorname{stack}\left[\mathrm{L}_{\mathrm{t}}, \mathrm{L}_{\text {end }},\left(\mathrm{L}_{\mathrm{db}}+\mathrm{L}_{\mathrm{t}}\right), \mathrm{x}_{\mathrm{p} _ \text {top }}, \mathrm{x}_{\text {pocket }}\right]\right]=\left(\begin{array}{c}2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 2.667 \\ 7.493 \\ 7.493 \\ 12.493 \\ 15 \\ 17.493 \\ 17.493\end{array}\right) \mathrm{ft}$

Extracting repreated X from the vector

$$
\mathrm{x}_{\text {release }}:=\left\lvert\, \begin{aligned}
& \mathrm{k} \leftarrow 0 \\
& \mathrm{x}_{0} \leftarrow \mathrm{~L}_{\mathrm{t}} \\
& \text { for } \mathrm{i} \in 1 \ldots \text { length }\left(\mathrm{X}_{\text {release }}\right)-1 \\
& \\
& \begin{array}{l}
\mathrm{k} \leftarrow \mathrm{k}+1 \text { if }\left(\mathrm{X}_{\text {release }_{\mathrm{i}}} \neq \mathrm{X}_{\text {release }_{\mathrm{i}-1}}\right) \\
\mathrm{x}_{\mathrm{k}} \leftarrow \mathrm{X}_{\text {release }_{\mathrm{i}}} \\
\mathrm{x}
\end{array}
\end{aligned}\right.
$$

$\mathrm{x}_{\text {release }}=\left(\begin{array}{c}2.493 \\ 2.667 \\ 7.493 \\ 12.493 \\ 15 \\ 17.493\end{array}\right) \cdot \mathrm{ft}$
Area of strands in each row at each stress check location

Beam stresses at release due to prestressing only

Sign convention; negative and positive stresses/forces for compression and tension respectively
$\mathrm{P}_{\mathrm{ps}}:=-\mathrm{F}_{\mathrm{pt}} \cdot \mathrm{A}_{\mathrm{db}}=\left(\begin{array}{cccc}-327.22 & -392.66 & -130.89 & -65.44 \\ -327.22 & -392.66 & -130.89 & -65.44 \\ -392.66 & -523.55 & -130.89 & -65.44 \\ -392.66 & -588.99 & -130.89 & -65.44 \\ -392.66 & -588.99 & -130.89 & -65.44 \\ -490.82 & -588.99 & -130.89 & -65.44\end{array}\right) \cdot$ kip
Midspan moment due to prestressing at release

$$
M_{p s}:=P_{p s} \cdot\left(d_{\text {strand }}-y_{t}\right)=\left(\begin{array}{c}
-965.286 \\
-965.286 \\
-1180.703 \\
-1248.873 \\
-1248.873 \\
-1367.489
\end{array}\right) \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Top and bottom concrete stresses at check locations due to prestressing ONLY
$\mathrm{f}_{\mathrm{ps}}:=\mid$ for $\mathrm{i} \in 0 .$. length $\left(\mathrm{x}_{\text {release }}\right)-1$
$\mathrm{M} \leftarrow \mathrm{M}_{\mathrm{ps}_{\mathrm{i}}}$

$$
\mathrm{P} \leftarrow \sum_{j=0}^{\operatorname{cols}\left(\mathrm{P}_{\mathrm{ps}}\right)^{-1}} \mathrm{P}_{\mathrm{ps}_{\mathrm{i}, \mathrm{j}}}
$$

$$
\mathrm{A} \leftarrow \mathrm{~A}_{\text {beamf }}\left(\mathrm{x}_{\text {release }_{\mathrm{i}}}\right)
$$

$$
\mathrm{S}_{\text {top }} \leftarrow \mathrm{S}_{\mathrm{Tf}}\left(\mathrm{x}_{\text {release }_{\mathrm{i}}}\right)
$$

$$
\mathrm{S}_{\text {bott }} \leftarrow \mathrm{S}_{\mathrm{Bf}}\left(\mathrm{x}_{\text {release }_{\mathrm{i}}}\right)
$$

$$
\mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\text {top }}}+\frac{\mathrm{P}}{\mathrm{~A}}
$$

$$
\mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{bott}}}+\frac{\mathrm{P}}{\mathrm{~A}}
$$

f

Beam stresses at release due to selfweight

For the selfweight moment due to the varying web thickness, assume a linear varying moment from the end of the beam to the point of constant web thickness. This will result in a slight under-estimation of the self weight in the area of the varying web thickness.

Moment due to self weight of beam at check locations

Top and bottom concrete stresses at check locations due to beam self weight ONIY

$$
\begin{gathered}
\text { top } \quad \text { bottom } \\
\mathrm{f}_{\mathrm{sw}}=\left(\begin{array}{cc}
-104 & 104 \\
-125 & 125 \\
-328 & 328 \\
-511 & 511 \\
-593 & 593 \\
-655 & 655
\end{array}\right) \cdot \mathrm{psi}
\end{gathered}
$$

Area of top prestressing strands at distance X.release from the end

$$
A_{\text {top }}:=\left\lvert\, \begin{gathered}
\text { for } i \in 0 . . \text { length }\left(x_{\text {release }}\right)-1 \\
\text { for } z \in 0 . . \text { length }\left(\text { Row }_{\text {top }}\right)-1
\end{gathered}\right.
$$

$$
\left\{\begin{array}{l}
A_{i, z} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }} \cdot \frac{x_{\text {release }_{i}}}{L_{t}} \text { if } x_{\text {release }_{i}} \leq L_{t} \\
A_{i, z} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }} \text { if } L_{t}<x_{\text {release }_{i}} \leq x_{p_{p} \text { top }}
\end{array}\right.
$$

$$
\begin{aligned}
& A_{i, z} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }}-\frac{\mathrm{x}_{\text {release }_{i}}-\mathrm{x}_{\mathrm{p}_{-} \text {top }}}{L_{t}} \cdot\left(\operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }}\right) \text { if } x_{p_{-} \text {top }}<\mathrm{x}_{\text {release }_{i}} \leq \mathrm{x} \\
& \mathrm{~A}_{\mathrm{i}, \mathrm{z}} \leftarrow 0 \text { if } \mathrm{x}_{\text {release }_{i}}>\mathrm{x}_{\mathrm{p}_{-} \text {top }}+\mathrm{L}_{\mathrm{t}}
\end{aligned}
$$

$$
\mathrm{A}_{\text {top }}=\left(\begin{array}{cc}
0.895 & 0 \\
0.895 & 0 \\
0.895 & 0 \\
0.895 & 0 \\
0.895 & 0 \\
0 & 0
\end{array}\right) \cdot \mathrm{in}^{2} \quad \mathrm{x}_{\text {release }}=\left(\begin{array}{c}
2.493 \\
2.667 \\
7.493 \\
12.493 \\
15 \\
17.493
\end{array}\right) \mathrm{ft}
$$

$$
\begin{aligned}
& f_{s W}:=\mid \text { for } i \in 0 . . \text { length }\left(x_{\text {release }}\right)-1 \\
& \left\{\begin{array}{c}
\mathrm{M} \leftarrow \mathrm{M}_{\mathrm{SW}}\left(\mathrm{x}_{\text {release }_{i}}\right) \\
\mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\mathrm{Tf}}\left(\mathrm{x}_{\text {release }_{i}}\right)} \\
\mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{Bf}}\left(\mathrm{x}_{\text {release }}{ }_{\mathrm{i}}\right)}
\end{array}\right.
\end{aligned}
$$

P $_{\text {p_top }}:=-F_{p_{-} \text {top }} \cdot A_{\text {top }}=\left(\begin{array}{cc}-44.75 & 0.00 \\ -44.75 & 0.00 \\ -44.75 & 0.00 \\ -44.75 & 0.00 \\ -44.75 & 0.00 \\ -0.00 & 0.00\end{array}\right) \cdot$ kip

$f_{p _ \text {top }}:=\mid$ for $i \in 0 .$. length $\left(x_{\text {release }}\right)-1$

$$
\left\{\begin{array}{l}
\mathrm{M} \leftarrow \mathrm{M}_{\mathrm{p}_{-} \text {top }}^{\mathrm{i}} \\
\\
\mathrm{P} \leftarrow \sum_{\mathrm{j}=0}^{\operatorname{cols}\left(\mathrm{P}_{\mathrm{p}_{-} \text {top }}\right)^{-1}} \mathrm{P}_{\mathrm{p}_{-} \text {top }_{\mathrm{i}, \mathrm{j}}} \\
\mathrm{~A} \leftarrow \mathrm{~A}_{\text {beamf }}\left(\mathrm{x}_{\text {release } \left._{i}\right)}\right) \\
\mathrm{S}_{\text {top }} \leftarrow \mathrm{S}_{\mathrm{Tf}}\left(\mathrm{x}_{\text {release } \left._{\mathrm{i}}\right)}\right. \\
\mathrm{S}_{\text {bott }} \leftarrow \mathrm{S}_{\mathrm{Bf}}\left(\mathrm{x}_{\text {release } \left._{i}\right)}\right. \\
\mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\text {top }}}+\frac{\mathrm{P}}{\mathrm{~A}} \\
\mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\text {bott }}}+\frac{\mathrm{P}}{\mathrm{~A}}
\end{array}\right.
$$

Stresses in the beam due to the top prestressing strands only
$\mathrm{f}_{\mathrm{p} \text { _top }}=\left(\begin{array}{cc}-97.605 & 41.083 \\ -119.445 & 37.891 \\ -126.137 & 36.076 \\ -134.283 & 33.311 \\ -138.965 & 31.464 \\ -5.399 \times 10^{-14} & 1.103 \times 10^{-14}\end{array}\right) \mathrm{psi}$

Check for beam stresses at release against allowable stresses

Beam stresses at release

	top bottom			
$\mathrm{f}_{\text {c.release }}:=\mathrm{f}_{\mathrm{ps}}+\mathrm{f}_{\text {SW }}+\mathrm{f}_{\mathrm{p} \text { _top }}=$	$\left(\begin{array}{cc}549.472 & -1763.229 \\ 428.6 & -2179.869 \\ 328.515 & -2657.588 \\ 104.021 & -2862.927 \\ -32.475 & -2904.826 \\ 66.177 & -3328.14\end{array}\right) \cdot$	psi	$\mathrm{x}_{\text {release }}=$	$\left(\begin{array}{c}2.49 \\ 2.67 \\ 7.49 \\ 12.49 \\ 15.00 \\ 17.49\end{array}\right)$ ft

$\mathrm{f}_{\text {ti.release }}:=\max \left(\mathrm{f}_{\mathrm{c} . \text { release }}\right)=549 \mathrm{psi}$
$\mathrm{f}_{\text {ci.release }}:=\min \left(\mathrm{f}_{\mathrm{c} \text {.release }}\right)=-3328 \mathrm{psi}$
if $\left(\mathrm{f}_{\mathrm{ti}} \geq \mathrm{f}_{\text {ti.release }}\right.$, "ok", "not ok" $)=$ "ok"
if $\left(-f_{c i} \geq-f_{\text {ci.release }}, "\right.$ ok", "not ok" $)=$ "ok"

Maximum tensile stress at release
Maximum compressive stress at release Allowable tension check $\quad f_{t i}=607 \mathrm{psi}$

Allowable compression check $\quad \mathrm{f}_{\mathrm{ci}}=-4160 \mathrm{psi}$

Camber immediately after transfer

Camber calculations ignores the variable cross section

Camber due to prestressing assuming constant maximum force (ignore debonding)

$$
\frac{-\min \left(\mathrm{M}_{\mathrm{ps}}\right) \cdot \mathrm{L}_{\text {beam }}{ }^{2}}{8 \cdot \mathrm{E}_{\mathrm{c} . \text { beam_}} \mathrm{i}_{\mathrm{b}} \mathrm{I}_{\text {beam }}}=2.494 \cdot \text { in }
$$

Deflection due to top prestressing assuming constant maximum force (including debonding transfer length)
$\delta_{p_{-} \text {top }}:=\frac{M_{p_{-} \text {top }} \cdot{ }^{x_{p _ \text {top }}}{ }^{2}}{2 \cdot\left(E_{\text {c.beam_i }}{ }^{\text {I }} \text { beam }\right)}=0.018 \cdot$ in
Deflection due to selfweight of the beam

$$
\frac{-5 \cdot \omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }}{ }^{4}}{384 \cdot \mathrm{E}_{\text {c.beam_i }} \cdot \mathrm{I}_{\text {beam }}}=-0.714 \cdot \text { in }
$$

$\delta_{\mathrm{db}}:=\frac{\left[\mathrm{N}_{\mathrm{db}} \cdot \mathrm{A}_{\text {strand }} \cdot \mathrm{F}_{\mathrm{pt}} \cdot\left(\mathrm{d}_{\text {strand } \mathrm{db}}-\mathrm{y}_{\mathrm{t}}\right) \cdot\left(\mathrm{L}_{\mathrm{db}}+\mathrm{L}_{\mathrm{t}}\right)^{2}\right]}{2 \cdot \mathrm{E}_{\mathrm{c} \cdot \text { beam }{ }_{-} \mathrm{i} \mathrm{I}_{\mathrm{b}} \mathrm{beam}}}=\left(\begin{array}{c}0.057 \\ 7.021 \times 10^{-3} \\ 0.017 \\ 0.012 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right) \cdot$ in
$\sum \delta_{\mathrm{db}}=0.093 \cdot \mathrm{in}$
Camber $_{\mathrm{tr}}:=\frac{-\min \left(\mathrm{M}_{\mathrm{ps}}\right) \cdot \mathrm{L}_{\text {beam }}{ }^{2}}{8 \cdot \mathrm{E}_{\mathrm{c} \cdot \text { beam_}} \mathrm{i}^{\mathrm{I}} \mathrm{b}_{\text {beam }}}-\frac{5 \cdot \omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }}{ }^{4}}{384 \cdot \mathrm{E}_{\text {c.beam_ }} \mathrm{i}_{\text {beam }}}-\sum \delta_{\mathrm{db}}-\delta_{\mathrm{p}_{-} \text {top }}=1.668 \cdot \mathrm{in}$
Positive sign indicates camber upwards. Negative sign indeicates deflection

Check the stresses of the beam during shipping and handling, where the supports are not at the ends of the beam (Find the exact location of the supports during shipping and handling)

Moment due to self weight of beam at check locations

$$
\begin{aligned}
& M_{\text {sw.ship }}(x):=\left\lvert\,-\left(\omega_{\text {beam }}+w_{1}\right) \cdot \frac{x^{2}}{2}\right. \text { if } 0 \leq x<L_{\text {end }} \wedge 0 \cdot \text { in } \leq x \leq 1_{\text {ship }} \\
& -\left[\omega_{\text {beam }} \cdot \frac{x^{2}}{2}+w_{1} \cdot L_{\text {end }} \cdot\left(x-\frac{L_{\text {end }}}{2}\right)+0.5 \cdot \mathrm{w}_{2} \cdot \frac{\left(\mathrm{x}-\mathrm{L}_{\mathrm{end}}\right)^{2}}{2}\right] \text { if } \mathrm{L}_{\mathrm{end}} \leq \mathrm{x}<\mathrm{L}_{\text {var }}+\mathrm{L}_{\text {end }} \\
& -\left[\omega_{\text {beam }} \cdot \frac{x^{2}}{2}+w_{1} \cdot L_{\text {end }} \cdot\left(x-\frac{L_{\text {end }}}{2}\right)+0.5 \cdot w_{2} \cdot L_{\text {var }} \cdot\left(x-L_{\text {end }}-\frac{L_{\text {var }}}{3}\right)\right] \text { if } x \geq L_{\text {var }}+L_{e} \\
& \left(\omega_{\text {beam }} \cdot \frac{\mathrm{L}_{\text {beam }}}{2}+\mathrm{w}_{1} \cdot \mathrm{~L}_{\text {end }}+0.5 \cdot \mathrm{w}_{2} \cdot \mathrm{~L}_{\text {var }}\right) \cdot\left(\mathrm{x}-\mathrm{l}_{\text {ship }}\right)-\left(\omega_{\text {beam }}+\mathrm{w}_{1}\right) \cdot \frac{\mathrm{x}^{2}}{2} \text { if } 0 \leq \mathrm{x}<\mathrm{L}_{\text {}} \\
& \left(\omega_{\text {beam }} \cdot \frac{\mathrm{L}_{\text {beam }}}{2}+\mathrm{w}_{1} \cdot \mathrm{~L}_{\text {end }}+0.5 \cdot \mathrm{w}_{2} \cdot \mathrm{~L}_{\text {var }}\right) \cdot\left(\mathrm{x}-1_{\text {ship }}\right)-\left[\omega_{\text {beam }} \cdot \frac{\mathrm{x}^{2}}{2}+\mathrm{w}_{1} \cdot \mathrm{~L}_{\text {end }} \cdot\left(x-\frac{\mathrm{L}_{\text {enc }}}{2}\right.\right. \\
& \left(\omega_{\text {beam }} \cdot \frac{\mathrm{L}_{\text {beam }}}{2}+\mathrm{w}_{1} \cdot \mathrm{~L}_{\text {end }}+0.5 \cdot \mathrm{w}_{2} \cdot \mathrm{~L}_{\text {var }}\right) \cdot\left(\mathrm{x}-\mathrm{l}_{\text {ship }}\right)-\left[\omega_{\text {beam }} \cdot \frac{\mathrm{x}^{2}}{2}+\mathrm{w}_{1} \cdot \mathrm{~L}_{\text {end }} \cdot\left(\mathrm{x}-\frac{\mathrm{L}_{\text {enc }}}{2}\right.\right.
\end{aligned}
$$

Top and bottom concrete stresses at check locations due to beam self weight ONIY

$\mathrm{f}_{\text {sw.ship }}:=$	$\begin{aligned} & \text { for } \mathrm{i} \in 0 \text {.. length }\left(\mathrm{x}_{\text {release }}\right)-1 \\ & \qquad \begin{array}{l} \mathrm{M} \leftarrow \mathrm{M}_{\text {sw.ship }}\left(\mathrm{x}_{\text {release }}{ }_{\mathrm{i}}\right) \\ \mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\mathrm{Tf}}\left(\mathrm{x}_{\text {release } \left._{\mathrm{i}}\right)}\right)} \\ \mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{Bf}}\left(\mathrm{x}_{\text {release }_{\mathrm{i}}}\right)} \end{array} \end{aligned}$
	f

$$
\mathrm{f}_{\text {SW.ship }}=\left(\begin{array}{cc}
\text { top bottom } \\
-59 & 59 \\
-75 & 75 \\
-276 & 276 \\
-458 & 458 \\
-538 & 538 \\
-599 & 599
\end{array}\right) \cdot \mathrm{psi}
$$

Check for beam stresses during handling \& shipping against allowable stresses
Beam stresses during shipping @ handling

> top bottom

$$
\begin{aligned}
& \mathrm{f}_{\text {ti.ship }}:=\max \left(\mathrm{f}_{\mathrm{c} . \text { ship }}\right)=594 \mathrm{psi} \\
& \mathrm{f}_{\text {ci.ship }}:=\min \left(\mathrm{f}_{\mathrm{c} . \text { ship }}\right)=-3384 \mathrm{psi}
\end{aligned}
$$

Maximum tensile stress at release

Maximum compressive stress at release

$$
\begin{aligned}
& \text { if }\left(\mathrm{f}_{\mathrm{ti}} \geq \mathrm{f}_{\text {ti.ship }}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" } \\
& \text { if }\left(-\mathrm{f}_{\mathrm{ci}} \geq-\mathrm{f}_{\text {ci.ship }}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" }
\end{aligned}
$$

Allowable tension check

$$
\mathrm{f}_{\mathrm{ti}}=607 \mathrm{psi}
$$

$$
\text { Allowable compression check } \quad \mathrm{f}_{\mathrm{ci}}=-4160 \mathrm{psi}
$$

Service I limit State - Check for compressive stresses at top of deck at service conditions due to permanent loads only

Compressive stress at top of deck due to loads on composite section
$f_{c f _a c t u a l _m i d}:=\frac{-\left(\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}\right)}{\mathrm{S}_{\mathrm{t} 3 \cdot} \cdot \mathrm{k}_{\mathrm{sdl}} \cdot \mathrm{n}}=-73 \mathrm{psi}$

Service I limit State - Check for compressive stresses at top flange of beam at service conditions due to prestress and permament loads only

Compressive stress at top flange of beam due to prestressing and permanent loads
fafmactualwmidv: $=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{S}}}{\mathrm{S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}=-1323 \mathrm{psi}$
if $\left(-f_{c f p}>-f_{c f _a c t u a l _m i d}\right.$, "ok" , "not ok" $)=$ "ok" Allowable stress check

Service I limit State - Check for compressive stresses at top of deck at service conditions due to permanent and transient loads

Compressive stress at top of deck due to loads on composite section including wind effect according to AASHTO LRFD 2016 Interim revision

Service I limit State - Check for compressive stresses at top flange of beam at service conditions due to prestress, permanent, and transient loads

Compressive stress at top flange of beam due to prestressing and all loads. \qquad

$$
\underset{\text { nofmactualumpidv }}{\mathrm{f}_{2}}:=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{~A}_{\mathrm{beam}}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{~S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{~S}_{\mathrm{t} \cdot \mathrm{bm} .3 \mathrm{n}}}-\frac{\mathrm{M}_{\mathrm{LLI}}}{\mathrm{~S}_{\mathrm{t} \cdot \mathrm{bm} \cdot \mathrm{n}}}-\frac{1.0 \cdot \mathrm{M}_{\mathrm{WS}}}{\mathrm{~S}_{\mathrm{t} \cdot \mathrm{bm} \cdot \mathrm{n}}}=-1588 \mathrm{psi}
$$

$$
\text { if }\left(-\mathrm{f}_{\mathrm{cf}}>-\mathrm{f}_{\mathrm{cf} \text { _actual_mid }}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" } \quad \text { Allowable stress check }
$$

Service III limit State - Check for tensile stresses at bottom flange of beam at service conditions

Tensile stress at bottom flange of beam due to prestressing and all loads
$\mathrm{f}_{\mathrm{tf} \text { _actual_mid }}:=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}-\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{b} 3 \mathrm{n}}}+\frac{0.8 \mathrm{M}_{\text {LLI }}}{\mathrm{S}_{\mathrm{bn}}}=-379 \cdot \mathrm{psi}$
if $\left(\mathrm{f}_{\mathrm{tf}}>\mathrm{f}_{\mathrm{tf} \text { _actual_mid }}\right.$, "ok" , "not ok" $)=$ "ok" Allowable stress check

Calculate bar area required to resist tension in the top flange at release, AASHTO Table

 5.9.4.1.2-1:$$
\begin{aligned}
& \mathrm{f}_{\text {ti.ship }}=593.974 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{c}}:=\operatorname{vlookup}\left(\mathrm{f}_{\mathrm{ti} . \text { ship }}, \mathrm{f}_{\mathrm{c} . \text { ship }}, 1\right) 0=-1.808 \times 10^{3} \mathrm{psi} \\
& \mathrm{i}_{\mathrm{c}}:=\operatorname{match}\left(\mathrm{f}_{\mathrm{ti} . \text { ship }}, \mathrm{f}_{\mathrm{c} . \text { ship }}\right) 0=\binom{0}{0} \\
& \mathrm{x}_{\mathrm{c}}:=\mathrm{x}_{\text {release }}\left(\mathrm{i}_{\mathrm{c}_{0}}\right)=2.493 \mathrm{ft} \\
& \text { slope }_{\mathrm{m}}:=\frac{\mathrm{f}_{\mathrm{ti} . \operatorname{ship}}-\mathrm{f}_{\mathrm{c}}}{\mathrm{~d}}=72.779 \cdot \frac{\mathrm{psi}}{\mathrm{in}} \\
& \mathrm{x}_{\mathrm{o}}:=\frac{\mathrm{f}_{\mathrm{ti} . \mathrm{ship}}}{\text { slope }_{\mathrm{m}}}=8.161 \cdot \mathrm{in}
\end{aligned}
$$

Maximum top flange tensile stress at release or handling, whichever is larger (usually, handling stresses are larger)

Bottom flange compressive stress corresponding to the maximum top flange tensile stress at release/shipping

Finding the location of the maximum tensile stresses to calculate the section dimensions

Slope of the section stress over the depth of the beam

Distance measured from the top of the beam to the point of zero stress

Calculate the width of the beam where the tensile stresses are acting

$$
b_{\text {ten }}:=\left\{\begin{array}{l}
\text { for } i \in 0 . . \operatorname{ceil}\left(\frac{x_{0}}{\text { in }}\right) \\
\\
\begin{array}{l}
x_{\mathrm{i}} \leftarrow \frac{\mathrm{x}_{\mathrm{o}} \cdot \mathrm{i}}{\operatorname{ceil}\left(\frac{\mathrm{x}_{\mathrm{o}}}{\text { in }}\right)} \\
\mathrm{b}_{\mathrm{i}} \leftarrow \mathrm{~b}_{\mathrm{ft}} \text { if } 0 \leq \mathrm{x}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{ft}} \\
\mathrm{~b}_{\mathrm{i}} \leftarrow 2 \cdot \mathrm{~b}_{\mathrm{webf}}\left(\mathrm{x}_{\mathrm{c}}\right) \text { if } \mathrm{x}_{\mathrm{i}}>\mathrm{d}_{\mathrm{ft}}
\end{array}
\end{array}\right.
$$

Calculate the tensile stress values every inch of depth starting from the top surface of the beam

$$
\begin{aligned}
& \mathrm{f}:=\mid \text { for } i \in 0 . . \text { ceil }\left(\frac{x_{0}}{\mathrm{in}}\right) \\
& \mathrm{x}_{\mathrm{i}} \leftarrow \frac{\mathrm{x}_{\mathrm{o}} \cdot \mathrm{i}}{\operatorname{ceil}\left(\frac{\mathrm{x}_{\mathrm{O}}}{\mathrm{in}}\right)} \\
& \mathrm{f}_{\mathrm{i}} \leftarrow \mathrm{f}_{\text {ti.ship }}-\text { slope }_{\mathrm{m}} \cdot \mathrm{x}_{\mathrm{i}} \\
& \text { f }
\end{aligned}
$$

$\mathrm{f}=\left(\begin{array}{c}593.974 \\ 527.977 \\ 461.98 \\ 395.983 \\ 329.986 \\ 263.989 \\ 197.991 \\ 131.994 \\ 65.997 \\ 0\end{array}\right) \mathrm{psi}$
$\mathrm{b}_{\text {ten }}=\left(\begin{array}{c}48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48 \\ 48\end{array}\right) \cdot$ in

Calculate the tensile force that shall be resisted by top reinforcement
$T_{i}:=\sum_{i=0}^{\text {length }(f)-2}\left[\frac{1}{4} \cdot\left(f_{i}+f_{i+1}\right) \cdot\left(b_{\text {ten }_{i}}+b_{\text {ten }}^{i+1}, ~\right) \cdot \frac{x_{0}}{\text { ceil }\left(\frac{x_{0}}{i n}\right)}\right]=116.343 \cdot k i p$

$$
\mathrm{A}_{\text {s.top }}:=\frac{\mathrm{T}}{30 \cdot \mathrm{ksi}}=3.878 \cdot \mathrm{in}^{2}
$$

Calculate area of tensile reinforcement required in the top of the beam. The stress in bars is limited to 30ksi per AASHTO 5.9.4.1.2. See Figure C.5.9.4.1.2-1 which is based upon . $5 \mathrm{f} . \mathrm{y}$ of steel rebar

$$
\mathrm{A}_{\text {bar.top }}:=0.44 \cdot \mathrm{in}^{2}
$$

$$
\mathrm{n}_{\text {bar.release }}:=\text { Ceil }\left(\frac{\mathrm{A}_{\text {s.top }}}{\mathrm{A}_{\text {bar.top }}}, 1\right)=9
$$

number of No. 6 bars provided in the top flange to resist tension at release in the beam ends.

Calculation of minimum length of top tensile reinforcement

AASHTO LRFD Table 5.9.4.1.2-1 specifies a maximum concrete tensile stress of $0.0948 \cdot \sqrt{\mathrm{f}_{\text {ci_beam }}} \leq 0.2 \mathrm{ksi}$ for tensile zones without bonded reinforcement

$$
\mathrm{f}_{\mathrm{t} . \max }:=\min \left(0.0948 \cdot \sqrt{\frac{\mathrm{f}_{\mathrm{ci}} \quad \text { beam }}{\mathrm{ksi}}}, 0.2\right) \cdot \mathrm{ksi}=0.2 \cdot \mathrm{ksi}
$$

Calculate the minimum required length of top reinforcement based on the stress calculated at distances x.release during release or shipping and handling, whichever is greater. If all the stresses are larger tha f.t.max, estimate the stress after the last point of debonding. The change in the web width is ignored

$$
\begin{aligned}
& \mathrm{L}_{\text {topr }}:=\mid \mathrm{h} \leftarrow \mathrm{x}_{\text {release }} \\
& \mathrm{f} \leftarrow \mathrm{f}_{\mathrm{c} \text {. ship }}{ }^{\langle 0\rangle} \\
& \mathrm{i} \leftarrow \text { length }(\mathrm{f})-1 \\
& \text { while } \mathrm{f}_{\mathrm{i}}<\mathrm{f}_{\mathrm{t} \text {. max }} \\
& \text { break if } \mathrm{i}=0 \\
& \mathrm{i} \leftarrow \mathrm{i}-1 \\
& \mathrm{x} \leftarrow 1 \cdot \mathrm{ft} \\
& \mathrm{f}_{\mathrm{ps}} \leftarrow \mathrm{f}_{\mathrm{ps}}{ }_{\text {rows }}\left(\mathrm{f}_{\mathrm{ps}}\right)^{-1,0} \\
& \mathrm{~S}(\mathrm{x}) \leftarrow \mathrm{f}_{\mathrm{ps}}-\mathrm{f}_{\mathrm{t} . \max }-\frac{\frac{\omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }} \cdot\left(\mathrm{x}-1_{\text {ship }}\right)}{2}-\frac{\left(\omega_{\text {beam }} \cdot \mathrm{x}^{2}\right)}{2}}{\mathrm{~S}_{\mathrm{T}}} \\
& \mathrm{~g} \leftarrow \operatorname{root}(\mathrm{~S}(\mathrm{x}), \mathrm{x}) \\
& \left.g \text { if } f_{\text {length(}} \mathrm{f}\right)-1>f_{\text {t.max }} \\
& \frac{L_{\text {beam }}}{2} \text { if } \operatorname{Im}(g) \neq 0 \wedge f_{\text {length }}(\mathrm{f})-1>f_{\text {t.max }} \\
& \mathrm{h}_{\mathrm{i}+1} \text { otherwise }
\end{aligned}
$$

$$
\mathrm{L}_{\text {topr }}=12.493 \mathrm{ft}
$$

$$
\mathrm{L}_{\text {topR }}:=\mathrm{L}_{\text {topr }}+\mathrm{l}_{\mathrm{d}}=13.86 \mathrm{ft}
$$

Calculate the tension development length required for the tensile reinforcement in the top of the beam. As provided AASHTO 5.11.2.1.1 taking into account 1.4 modification factor per AASHTO 5.11.2.1.2

Minimum length required for the top reinforcement from each end

Flexural Capacity

Stress block factor, AASHTO 5.7.2.2. Assuming depth of neutral axis lies within the deck

$$
\beta_{1}:=\left\lvert\, \begin{array}{ll}
0.65 \text { if } \mathrm{f}_{\mathrm{c} _ \text {deck }} \geq 8000 \mathrm{psi} & =0.8 \\
0.85 \text { if } \mathrm{f}_{\mathrm{c} _ \text {deck }} \leq 4000 \mathrm{psi} \\
{\left[0.85-\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {deck }}-4000 \mathrm{psi}}{1000 \mathrm{psi}}\right)\right.} & 0.05] \\
\text { otherwise } &
\end{array}\right.
$$

$$
\varepsilon_{\mathrm{cu}}:=0.003 \quad \text { Maximum usable concrete compressive strain }
$$

$$
\varepsilon_{\mathrm{pu}}:=\frac{\mathrm{f}_{\mathrm{pu}}}{\mathrm{E}_{\mathrm{p}}}=0.0145
$$

$$
\varepsilon_{\mathrm{pe}}:=\frac{\mathrm{f}_{\mathrm{pe}}}{\mathrm{E}_{\mathrm{p}}}=0.0072
$$

$$
\varepsilon_{0}:=\varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}}=0.0074
$$

$$
\mathrm{d}_{\mathrm{i}}:=\mathrm{d}_{\text {strand }}+\text { haunch }+ \text { deck }_{\text {thick }}=\left(\begin{array}{l}
40.00 \\
38.00 \\
36.00 \\
34.00
\end{array}\right) \cdot \text { in }
$$

$$
\mathrm{A}_{\mathrm{f}}:=\mathrm{A}_{\text {strand }} \cdot \text { Row }=\left(\begin{array}{c}
2.69 \\
3.22 \\
0.72 \\
0.36
\end{array}\right) \cdot \text { in }^{2} \quad \text { Area of strands in rows }
$$

$\mathrm{P}_{\text {row }}:=\mathrm{A}_{\mathrm{f}} \cdot \mathrm{f}_{\mathrm{pe}}=\left(\begin{array}{c}404.54 \\ 485.45 \\ 107.88 \\ 53.94\end{array}\right) \cdot$ kip Effective prestressing force of strands in rows
$\mathrm{s}_{\mathrm{i}}:=\left(\begin{array}{l}\text { for } \mathrm{i} \in 0 . . \text { length(Row) }-1 \\ \mathrm{si}_{\mathrm{i}} \leftarrow \mathrm{d}_{\mathrm{i}_{0}}-\mathrm{d}_{\mathrm{i}_{\mathrm{i}}} \\ \mathrm{s}\end{array}=\left(\begin{array}{l}0 \\ 2 \\ 4 \\ 6\end{array}\right) \cdot\right.$ in
Distance from each layer of prestressing strands to the bottom prestressting layer

$$
\operatorname{deck}_{\text {eff }}:=\text { deck }_{\text {thick }}-t_{\text {wear }}=9 \cdot \text { in }
$$

Effective deck thickness (total thickness minus assumed sacrificial wearing surface thickness)

Depth of neutral axis at balanced failure

$$
\mathrm{c}_{\mathrm{bal}}:=\frac{\varepsilon_{\mathrm{cu}}}{\varepsilon_{\mathrm{cu}}+\varepsilon_{0}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}=11.585 \cdot \mathrm{in}
$$

Balanced reinforcement ratio assuming Rectangular section

$$
\rho_{\mathrm{R}_{-} \mathrm{bal}}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}=0.0046
$$

Balanced reinforcement ratio assuming Flanged section

$$
\rho_{\mathrm{Fl} _ \text {bal }}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c} _} \mathrm{deck} \cdot \mathrm{deck}_{\mathrm{eff}} \cdot\left(\mathrm{~b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c} _} \text {deck } \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{ft}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}=0.0045
$$

Balanced reinforcement ratio assuming Double Flanged section

$\rho_{\text {DFl_bal }}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \operatorname{deck}_{\mathrm{eff}} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{v}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \mathrm{d}_{\mathrm{ft}} \cdot\left(\mathrm{b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{v}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{v}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{d}_{\mathrm{i}_{0}}}=$

$$
\begin{aligned}
& \text { Fl_T }:=\mid \mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_} \mathrm{~s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \begin{array}{l}
\mathrm{A}_{\text {eq_f }} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
\mathrm{~N} \leftarrow \operatorname{length}\left(\mathrm{~d}_{\mathrm{i}}\right)-1
\end{array} \\
& \text { while }\left|A_{\text {eq_s }}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{eq} _\mathrm{s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq}_{_} \mathrm{s}}+\mathrm{P}_{\mathrm{e}}-0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right) \cdot \mathrm{deck}_{\mathrm{eff}}}{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{ft}}} \\
& \mathrm{~A}_{\text {eq_f }} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\mathrm{eff} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}} \\
& \binom{\frac{c}{\text { in }}}{\rho} \\
& \text { Fl_T }=\binom{1.5268}{0.0017} \\
& { }^{\mathrm{c}_{\mathrm{Fl}}^{-} \mathrm{T}}:=\mathrm{Fl}_{-} \mathrm{T}_{0} \cdot \mathrm{in}=1.527 \cdot \text { in } \\
& \rho_{\mathrm{Fl} _\mathrm{T}}:=\mathrm{Fl}_{-} \mathrm{T}_{1}=0.0017
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Rectangular Tension contorlled section

$$
\begin{aligned}
& \text { R_T }:=\mid \mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
& \begin{array}{l}
\mathrm{A}_{\text {eq } _\mathrm{s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
\mathrm{~A}_{\text {eq } _\mathrm{f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
\mathrm{~N} \leftarrow \operatorname{length}\left(\mathrm{~d}_{\mathrm{i}}\right)-1
\end{array} \\
& \text { while }\left|A_{e_{\text {eq_s }}}-A_{\text {eq }} f\right|>0.01 \cdot \text { in }^{2} \\
& \left\lvert\, \mathrm{A}_{\text {eq } _s} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]\right. \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq}} \mathrm{~s}+\mathrm{P}_{\mathrm{e}}}{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{eff}}} \\
& A_{e_{e q _} f} \leftarrow \sum_{i=0}^{N}\left[\left(1-\frac{s_{i_{i}}}{d_{i_{0}}-c}\right) \cdot A_{f_{i}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\text {eff }} \cdot \mathrm{d}_{\mathrm{i}}} \\
& \binom{\frac{c}{\text { in }}}{\rho} \\
& \text { R_T }=\binom{6.366119}{0.001729} \quad \begin{array}{l}
\mathrm{c}_{\mathrm{R}_{-} \mathrm{T}}:=\mathrm{R}_{-} \mathrm{T}_{0} \cdot \mathrm{in}=6.366 \cdot \mathrm{i} \\
\\
\rho_{\mathrm{R}_{-} \mathrm{T}}:=\mathrm{R}_{-} \mathrm{T}_{1}=0.0017
\end{array}
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Double-Flanged Tension contorlled section. The depth of the stress block is deeper than the depth of the deck and the top flange together.

$$
\begin{aligned}
& \text { DFI_T }:=\left\lvert\, \begin{array}{l}
\mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
\mathrm{~A}_{\text {eq_s }} \leftarrow 1.0 \cdot \mathrm{in}^{2}
\end{array}\right. \\
& \mathrm{~A}_{\text {eq } _\mathrm{f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~N} \leftarrow \operatorname{length}\left(\mathrm{~d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|A_{\text {eq_s }}-A_{\text {eq }} f\right|>0.01 \cdot \text { in }^{2} \\
& \mathrm{~A}_{\text {eq } _s} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\text {eq_s }}+\mathrm{P}_{\mathrm{e}}-0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }}\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{v}}\right) \cdot \operatorname{deck}_{\text {eff }}-0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{v}}\right) \cdot \mathrm{d}_{\mathrm{ft}}}{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{v}}} \\
& \mathrm{~A}_{\text {eq } _} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\text {eff }} \mathrm{d}_{\mathrm{i}_{0}}} \\
& \binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho} \\
& (\text { DFl_T })=\binom{-72.1350}{0.0018} \\
& \left(\mathrm{c}_{\text {DFl_T }}:=\text { DFl_T }_{0} \cdot \text { in }=-72.135 \cdot \mathrm{in}\right) \\
& \left(\rho_{\text {DFl_T }}:=\text { DFl_T }_{1}=0.0018\right.
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Flanged Compression contorlled section

$$
\varepsilon_{0}(\mathrm{c}):=\varepsilon_{\mathrm{cu}} \cdot\left(\frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}}\right)
$$

$$
\text { Fl_C }:=\left\lvert\, \begin{aligned}
& \mathrm{c} \leftarrow 1 \cdot \mathrm{in} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_}} \leftarrow \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|\mathrm{A}_{\mathrm{eq} \mathrm{_s}}-\mathrm{A}_{\mathrm{eq} \mathrm{_f}}\right|>0.01 \cdot \mathrm{in}^{2} \\
& \left.\quad \begin{array}{l}
\mathrm{A}_{\mathrm{eq} \mathrm{_}} \mathrm{~s} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]
\end{array}\right]
\end{aligned}\right.
$$

$$
\mathrm{f}(\mathrm{c}) \leftarrow 0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right) \cdot \text { deck }_{\mathrm{eff}}+0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{~b}_{\mathrm{ft}} \cdots
$$

$$
+\left(-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\mathrm{eq} _\mathrm{s}}-\mathrm{P}_{\mathrm{e}}\right)
$$

$$
\mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{f}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{~d}_{\mathrm{i}_{0}}\right)
$$

$$
\mathrm{A}_{\mathrm{eq} _\mathrm{f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]
$$

$$
\begin{aligned}
& \rho \leftarrow \frac{\mathrm{A}_{\mathrm{eq}} \mathrm{f}}{\mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}}} \\
& \binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho}
\end{aligned}
$$

$F l_{-} C=\binom{7.086548}{0.001727}$

$$
\mathrm{c}_{\mathrm{Fl}} \mathrm{C}_{\mathrm{C}}:=\mathrm{Fl}_{-} \mathrm{C}_{0} \cdot \mathrm{in}=7.087 \cdot \mathrm{in}
$$

$$
\rho_{\mathrm{Fl} _\mathrm{C}}:=\mathrm{Fl}_{-} \mathrm{C}_{1}=0.0017
$$

Depth of the N.A. and reinforcement ratio assuming Rectangular Compression contorlled section

$$
\text { R_C }=\binom{8.1876}{0.0017} \quad \quad \text { c }_{\text {R_C }}:=\text { R_C }_{0} \cdot \cdot \mathrm{in}=8.188 \cdot \mathrm{in}
$$

$$
\rho_{\mathrm{R}_{-} \mathrm{C}}:=\mathrm{R}_{-} \mathrm{C}_{1}=0.0017
$$

Depth of the N.A. and reinforcement ratio assuming Double Flanged Compression contorlled section

$$
\begin{aligned}
& \text { R_C }:=\mid \mathrm{c} \leftarrow 1 \cdot \mathrm{in} \\
& \begin{array}{l}
\mathrm{A}_{\text {eq } _\mathrm{s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
\mathrm{~A}_{\text {eq } _\mathrm{f}} \leftarrow 2.0 \cdot \mathrm{in}^{2}
\end{array} \\
& \mathrm{~N} \leftarrow \operatorname{length}\left(\mathrm{~d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|\mathrm{A}_{\text {eq_s }}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \text { in }^{2} \\
& \mathrm{~A}_{\text {eq } _s} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{g}(\mathrm{c}) \leftarrow 0.85 \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{~b}_{\text {eff }}-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\text {eq_s }}-\mathrm{P}_{\mathrm{e}} \\
& \mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{~g}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{~d}_{\mathrm{i}_{0}}\right) \\
& \mathrm{A}_{\text {eq } _} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\text {eff }} \cdot \mathrm{d}_{\mathrm{i}_{0}}} \\
& \binom{\frac{c}{\text { in }}}{\rho}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{0}(\mathrm{c}):=\varepsilon_{\mathrm{cu}} \cdot\left(\frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}}\right) \\
& \text { DFI_C }:=\mid c \leftarrow 1 \cdot \text { in } \\
& \mathrm{A}_{\text {eq_s }} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\text {eq } _\mathrm{f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|\mathrm{A}_{\text {eq } _\mathrm{s}}-\mathrm{A}_{\text {eq } _} \mathrm{f}\right|>0.01 \cdot \text { in }^{2} \\
& \left\lvert\, \mathrm{A}_{\text {eq } _s} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{i_{i}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]\right. \\
& \mathrm{f}(\mathrm{c}) \leftarrow 0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\text {eff }}-\mathrm{b}_{\text {web }}\right) \cdot \text { deck }_{\text {eff }}+0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }}\left(\mathrm{b}_{\mathrm{ft}}-\mathrm{b}_{\text {web }}\right) \cdot \mathrm{d}_{\mathrm{ft}} \cdots \\
& +0.85 \cdot \overline{\mathrm{f}}_{\mathrm{c} _} \text {deck } \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{~b}_{\text {web }}-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\text {eq_s }}{ }^{-} \mathrm{P}_{\mathrm{e}} \\
& \mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{f}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{~d}_{\mathrm{i}_{0}}\right) \\
& A_{e_{\text {eq }} f} \leftarrow \sum_{i=0}^{N}\left[\left(1-\frac{s_{i_{i}}}{d_{i_{0}}-c}\right) \cdot A_{f_{i}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\text {eff }} \cdot \mathrm{d}_{\mathrm{i}_{0}}} \\
& \binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho} \\
& \text { DFl_C }=\binom{4.154495}{0.001735} \quad \begin{array}{r}
\mathrm{c}_{\text {DFI_C }}:=\mathrm{DFl}_{-} \mathrm{C}_{0} \cdot \text { in }=4.154 \cdot \text { in } \\
\rho_{\text {DFl_C }}:=\text { DFl_C }_{1}=0.0017
\end{array}
\end{aligned}
$$

Check the mode of failure

Section_Mode :=	"Rectangular_Tension" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{R}_{-} \mathrm{T}} \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{\mathrm{R}_{-} \mathrm{T}}<\rho_{\mathrm{R}_{-} \text {bal }}$ "Rectangular_Compression" if $\beta_{1} \cdot c_{R_{-}} C \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{R_{-}} C \rho_{R_{-} \text {bal }}$ "Flanged_Tension" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}}^{-\mathrm{T}}$ $>\operatorname{deck}_{\mathrm{eff}} \wedge \beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}}^{-\mathrm{T}}$ $\leq \operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{Fl}} \mathrm{T}^{\mathrm{T}}<\rho_{\mathrm{Fl}}$ "Flanged_Compression" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}}^{-\mathrm{C}}{ }^{>}$deck $_{\mathrm{eff}} \wedge \beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}} \mathrm{C} \leq \operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{Fl}} \mathrm{C}^{>}$ "Double_Flanged_Tension" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{DF}}^{-\mathrm{T}}$ $>\operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{DFl}} \mathrm{T}<\rho_{\mathrm{DFl}}$ bal "Double_Flanged_Compression" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{DFl} \mathrm{C}}>\operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{DFl} \mathrm{C}}>\rho_{\mathrm{DFl} \text { bal }}$

(Section_Mode) = "Rectangular_Tension"

Select the correct depth of the N.A.

$$
\begin{aligned}
& c_{m}^{c}:=\mid c_{R_{-} T} \text { if } \beta_{1} \cdot c_{R_{-} T} \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{R_{-} T}<\rho_{R_{-} \text {bal }} \\
& { }^{c_{R_{-}} C} \text { if } \beta_{1} \cdot c_{R_{-} C} \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{R_{-} C}>\rho_{R_{-} \text {bal }}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{c_{\text {DFl_T }}} \text { if } \beta_{1} \cdot c_{\text {DFl_T }}>\operatorname{deck}_{\text {eff }}+d_{f t} \wedge \rho_{\text {DFl_T }}<\rho_{\text {DFl_bal }} \\
& { }^{c_{D F l}}{ }^{C} \text { if } \beta_{1} \cdot c_{\text {DFl_C }}>\text { deck }_{\text {eff }}+d_{f t} \wedge \rho_{\text {DFl_C }}>\rho_{\text {DFl_bal }}
\end{aligned}
$$

$\mathrm{c}=6.366 \cdot$ in

Disclaimer: The design of the section as a dobule flanged section, while theoretically possible, indicates that the depth of the N.A. is in the web of the beam. That could lead to an over-reinforced section that has little or no ductility. Designer is advised to avoid designing the section as a dobule flanged section if possible to ensure proper ducitliy and significant cracking.deflection before failure
Calculate the strain in the extreme CFRP based on the mode of failure

$$
\varepsilon_{0}:=\left\lvert\, \begin{aligned}
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Rectangular_Tension" } \\
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Flanged_Tension" } \\
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Double_Flanged_Tension" } \\
& \mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c} \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Rectangular_Compression" } \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Flanged_Compression" } \\
& \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Double_Flanged_Compression" }
\end{aligned}\right.
$$

$$
\left.\varepsilon:=\left\lvert\, \begin{array}{l}
\text { for } \mathrm{i} \in 0 . . \text { length(Row) }-1 \\
\varepsilon_{\mathrm{i}} \leftarrow \varepsilon_{0} \cdot\left(\frac{\mathrm{~d}_{\mathrm{i}_{\mathrm{i}}}-\mathrm{c}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \\
\varepsilon
\end{array}\right.\right)=\left(\begin{array}{l}
0.0074 \\
0.0069 \\
0.0065 \\
0.0060
\end{array}\right)
$$

strain in ith layer of prestressing strands

$$
\varepsilon_{\mathrm{c}}:=\varepsilon_{0} \cdot\left(\frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right)=0.00139
$$

strain in the concrete top of the deck

Strength limit state Flexural Resistance:

$$
\begin{aligned}
& M_{n}:=\left\lvert\, E_{p} \cdot \overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \ldots \quad\right. \text { if } \operatorname{deck}_{e f f}<\beta_{1} \cdot c \leq \operatorname{deck}_{e f f}+d_{f t} \\
& +0.85 f_{c _d e c k} \cdot\left(b_{\text {eff }}-b_{f t}\right) \cdot \text { deck }_{\text {eff }} \cdot\left(\frac{\beta_{1} \cdot c}{2}-\frac{\text { deck }_{\text {eff }}}{2}\right) \\
& \begin{array}{l}
E_{p} \cdot\left(\varepsilon \cdot A_{f}\right) \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \ldots \\
+0.85 f_{c} \text { _deck } \cdot\left(b_{\text {eff }}-b_{v}\right) \cdot \operatorname{deck}_{\text {eff }} \cdot\left(\frac{\beta_{1} \cdot c}{2}-\frac{\text { deck }_{\text {eff }}}{2}\right) \ldots
\end{array} \\
& +0.85 f_{c _d e c k} \cdot\left(\mathrm{~b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{v}}\right) \cdot \mathrm{d}_{\mathrm{ft}} \cdot\left(\frac{\beta_{1} \cdot \mathrm{c}}{2}-\operatorname{deck}_{\mathrm{eff}}-\frac{\mathrm{d}_{\mathrm{ft}}}{2}\right) \\
& E_{p} \cdot \overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \text { if } \beta_{1} \cdot c \leq \operatorname{deck}_{\text {eff }}
\end{aligned}
$$

Nominal moment capacity

$\phi:=\left\lvert\,$| 0.85 if $\varepsilon_{0} \geq 0.005$ |
| :--- |
| $0.5167+66.67 \cdot \varepsilon_{0}$ if $0.002 \leq \varepsilon_{0} \leq 0.005$ |
| 0.65 if $\varepsilon_{0} \leq 0.002$ |$=0.85\right.$

$$
\mathrm{M}_{\mathrm{r}}:=\phi \cdot \mathrm{M}_{\mathrm{n}}=5277.14 \cdot \mathrm{kip} \cdot \mathrm{ft} \quad \mathrm{M}_{\mathrm{u}_{_} \text {strength }}=3261.28 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

$$
\text { if }\left(\mathrm{M}_{\mathrm{r}}>\mathrm{M}_{\mathrm{u} _ \text {strength }}, \text { "ok" }, \text { "no good" }\right)=\text { "ok" }
$$

$\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{u}_{\text {_strength }}}}=1.62$

Minimum reinforcement against cracking moment

$$
\mathrm{f}_{\mathrm{r}}:=0.24 \cdot \sqrt{\mathrm{f}_{\mathrm{c} _} \text {beam } \cdot \mathrm{ksi}}=678.823 \mathrm{psi} \quad \text { Modulus of rupture of beam concrete, AASHTO A 5.4.2.6 }
$$

$\gamma_{1}:=1.6$	Flexural variability factor
$\gamma_{2}:=1.1$	Prestress viariability factor
$\gamma_{3}:=1.0$	Reinforcement strength ratio
$\mathrm{f}_{\mathrm{cpe}}:=\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\mathrm{beam}}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{B}}}=3282.56 \mathrm{psi}$	Compressive stress in concrete due to effective prestress forces only (after allowance for all prestress losses) at extreme fiber of section where tensile stress is caused by externally applied loads (ksi)

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{cr}}:=\gamma_{3} \cdot\left[\left(\gamma_{1} \cdot \mathrm{f}_{\mathrm{r}}+\gamma_{2} \cdot \mathrm{f}_{\mathrm{cpe}}\right) \cdot \mathrm{S}_{\mathrm{bn}}-\mathrm{M}_{\mathrm{DC} 1} \cdot\left(\frac{\mathrm{~S}_{\mathrm{bn}}}{\mathrm{~S}_{\mathrm{B}}}-1\right)\right]=3628.36 \cdot \mathrm{kip} \cdot \mathrm{ft} \quad \text { Cracking moment } \\
& \operatorname{if}\left(\mathrm{M}_{\mathrm{r}}>\min \left(\mathrm{M}_{\mathrm{cr}}, 1.33 \cdot \mathrm{M}_{\mathrm{u} _ \text {strength }}\right), \text { "ok" }, \text { "not ok" }\right)=\text { "ok" }
\end{aligned}
$$

Approximate mid-span deflection at failure

The deflection calculations follows the approach outlined in the paper " Flexural behaviour of CFRP precast Decked Bulb T beams " by Grace et al. in May/June 2012, Journal of Composites for Construction. In order to calculate the deflection at failure, the moment capacity of the composite section is used as the bending moment. The stress level in the bottom most row is used to calculate the flexural rigidity. The deflection calculated below is approximate, but will give an indication of the deformbility and the level of warning exhibited near failure of the beam.
$\mathrm{d}_{\mathrm{i}_{0}}=40.00 \cdot \mathrm{in}$
$\mathrm{c}=6.37 \cdot \mathrm{in}$
$\mathrm{y}_{\mathrm{S}}:=\mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c}=33.63 \cdot \mathrm{in}$
EI $:=\frac{\mathrm{M}_{\mathrm{n}} \cdot \mathrm{y}_{\mathrm{S}}}{\varepsilon_{0}}=340524382.74 \cdot \mathrm{kip} \cdot \mathrm{in}^{2}$
$\omega_{\mathrm{f}}:=8 \cdot \frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{L}^{2}}=11.203 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$
$\delta_{\mathrm{f}}:=\frac{5 \cdot \omega_{\mathrm{f}} \cdot \mathrm{L}^{4}}{384 \mathrm{EI}}=14.549 \cdot \mathrm{in}$

Depth of the bottom row of strands to the extreme compression fiber

Depth of the neutral axis to the extreme compression fiber

Distance from neutral axis to the bottom row of strands

Flexural rigidity of the beam/deck section based on the stress level in the bottom row of prestressing strands

Failure load (dead and live loads) uniformly dirstibuted over th ϵ entire span

Midspan deflection at strength limit state

$$
\wedge 0 \cdot \text { in } \leq x \leq 1_{\text {ship }}
$$

$$
\mathrm{nd} \wedge 0 \cdot \mathrm{in} \leq \mathrm{x} \leq 1_{\text {ship }}
$$

$$
\text { end } \wedge 1_{\text {ship }} \leq x \leq L_{\text {ship }}
$$

$$
\left.\left.-\frac{\mathrm{l}}{-}\right)+0.5 \cdot \mathrm{w}_{2} \cdot \frac{\left(\mathrm{x}-\mathrm{L}_{\mathrm{end}}\right)^{2}}{2}\right] \text { if } \mathrm{L}_{\mathrm{end}} \leq \mathrm{x}<\mathrm{L}_{\mathrm{var}}+\mathrm{L}_{\mathrm{end}} \wedge \mathrm{l}_{\text {ship }} \leq \mathrm{x} \leq \frac{\mathrm{L}_{\text {beam }}}{2}
$$

$$
\left.\left.\frac{1}{-}\right)+0.5 \cdot w_{2} \cdot L_{\text {var }} \cdot\left(x-L_{\text {end }}-\frac{L_{\text {var }}}{3}\right)\right] \text { if } x \geq L_{\text {var }}+L_{\text {end }} \wedge 1_{\text {ship }} \leq x \leq \frac{L_{\text {beam }}}{2}
$$

\square

LRFD Design Example for:

CFCC Prestressed Precast Concrete Bulb T-Beam with Cast-In-Place Concrete Slab

Disclaimer

"This publication is disseminated in the interest of information exchange. The Michigan Department of Transportation (hereinafter referred to as MDOT) expressly disclaims any liability, of any kind, or for any reason, that might otherwise arise out of any use of this publication or the information or data provided in the publication.
MDOT further disclaims any responsibility for typographical errors or accuracy of the information provided or contained within this information. MDOT makes no warranties or representations whatsoever regarding the quality, content, completeness, suitability, adequacy, sequence, accuracy or timeliness of the information and data provided, or that the contents represent standards, specifications, or regulations."
"This material is based upon work supported by the Federal Highway Administration under SPR-1690. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Federal Highway Administration."

About this Design Example

Description

This document provides guidance for the design of CFCC prestressed precast concrete beams according to AASHTO LRFD Bridge Design Specifications with the neccessary ammendmets where applicable, based on available literature and experimental data from tests conducted by Grace et. al at Lawrence Technological University. The example provided herein is a bulb T beam with a constant we thickness of 8 in.

Standards

The following design standards were utilized in this example:

- AASHTO LRFD Bridge Design Specification, 7th Edition, 2014
- Michigan Department of Transportation Bridge Design Manual, Volume 5
- Michigan Department of Transportation Bridge Design Guide
- ACI 440.4R-04, Prestressing Concrete Structures with FRP Tendons

Code \& AASHTO LRFD UPDATES

This Mathcad sheet is developed based on available design guidelines and available AASHTO LRFD edition at the time of writing the sheet. Designer shall check and update design equations according to the latest edition of AASHTO LRFD

General notes

The following notes were considered in this design example:
1- Guarnateed strength of CFRP is reduced to account for environmental effect. The design guarnateec strength is taken as $0.9 \times$ guarnateed strength recommended by manufacturer

2- Initial prestressing stress is limited to 65% of the design (reduced) guaranteed strength according to current ACI 440.4R-04. This limit is subject to change. Check the latest recommendations for initial/jacking stress in CFRP strands

3- CFCC strength immediately following transfer is limited to 60\% of the design (reduced) guaranteed strength according ccording to current $\mathrm{ACl} 440.4 \mathrm{R}-04$. This limit is subject to change. Check the latest recommendations

4- The depth of the haunch between the dck slab and the beam is ignored in calculating section properties or flexural capacity, while is included in calculating the dead loads

5- In strength limit state flanged section design, the concrete strength of the beam portion participating i the stress block was conservatively assumed equal to the concrete strength of the deck (AASHTO LRF C5.7.2.2)

6- Barrier weight was taken as $475 \mathrm{lb} / \mathrm{ft}$. While, weight of midspan diaphragm was $500 \mathrm{lb} / \mathrm{beam}$. Change according to the design

7- In the Mathcad sheet, the option of debonding as well as top prestressing strands are offered as means of reducing the end tensile stresses of the beams. designer may utilize either or both methods

8- In strength limit state check, the design addresses six different failure modes as follows:
Tension controlled rectangular section (depth of stress block is less than or equal the depth of the deck slab and the reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled rectangular section (depth of stress block is less than or equal the depth of the deck slab and the reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Tension controlled flanged section (depth of stress block is larger than the depth of the deck slab but less than the combined depth of the deck slab and beam top flange. The reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled flanged section (depth of stress block is larger than the depth of the deck slab but less than the combined depth of the deck slab and beam top flange. The reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Tension controlled double flanged section (depth of stress block is larger than the combined depth of the deck slab and beam top flange. The reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled double flanged section (depth of stress block is larger than the combined depth of the deck slab and beam top flange. The reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Designer is advised to check the ductility of the beam and the deflection at failure in case of double flanged section because in that case, the N.A. of the section lies within the web of the beam and the ductility of the section may be compromised

9- This design example is developed based on allowable jacking strength and stress immediately after transfer according to the limits presented in the ACI 440.4R-04. The document can be updated using other prestress limits such as those presented in MDOT SPR-1690 research report and guide

$$
\begin{array}{ll}
\mathrm{f}_{\text {ci_beam }}:=0.8 \mathrm{f}_{\text {c_beam }}=8 \cdot \mathrm{ksi} & \text { Beam concrete compressive strength at reLease } \\
\omega_{\text {conc }}:=0.150 \frac{\mathrm{kip}}{\mathrm{ft}^{3}} & \text { Unit weight of reinforced concrete for load calculations } \\
\text { barrier }_{\text {weight }}:=0.475 \frac{\mathrm{kip}}{\mathrm{ft}} & \begin{array}{l}
\text { Weight per foot of barrier (aesthetic parapet tube, see MDOT BDG } \\
6.29 .10)
\end{array}
\end{array}
$$

Unit weights of concrete used for modulus of eLasticity calculations, AASHTO Table 3.5.1-1

$$
\gamma_{\mathrm{c}}\left(\mathrm{f}_{\mathrm{c}} \mathrm{c}\right):=\left\{\begin{array}{l}
0.145 \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \text { if } \mathrm{f}_{\mathrm{c}}^{\prime} \leq 5 \mathrm{ksi} \\
0.140 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}+0.001 \cdot\left(\frac{\mathrm{f}^{\prime}}{\mathrm{ksi}}\right) \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \text { otherwise }
\end{array}\right.
$$

Concrete Modulus of Elasticity

$$
\begin{aligned}
& \gamma_{\text {c.deck }}:=\gamma_{c}\left(f_{\mathrm{c}_{\text {_deck }}}\right)=145 \cdot \mathrm{pcf} \\
& \gamma_{\text {c.beam }}:=\gamma_{c}\left(\mathrm{f}_{\mathrm{c} \text { _beam }}\right)=150 \cdot \mathrm{pcf} \\
& \gamma_{\text {ci.beam }}:=\gamma_{\mathrm{c}}\left(\mathrm{f}_{\mathrm{ci} \text { _beam }}\right)=148 \cdot \mathrm{pcf}
\end{aligned}
$$

Elastic modulus for concrete is as specified by AASHTO A 5.4.2.4 (2015 Interim revision) with a correction factor of 1.0

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{c} . \text { beam_i }}:=120000 \cdot\left(\frac{\gamma_{\text {ci.beam }}}{\left.\frac{\mathrm{kip}}{\mathrm{ft}^{3}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{ci}} \text { beam }}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=5220.65 \cdot \mathrm{ksi} \quad \text { Beam concrete at reLease }}\right. \\
& \mathrm{E}_{\mathrm{c} . \text { beam }}:=120000 \cdot\left(\frac{\gamma_{\mathrm{c} . \text { beam }}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {beam }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=5772.5 \cdot \mathrm{ksi} \quad \text { Beam concrete at } 28 \text { days } \\
& \mathrm{E}_{\mathrm{c} . \text { deck }}:=120000 \cdot\left(\frac{\gamma_{\mathrm{c} . \mathrm{deck}}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {deck }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=4291.19 \cdot \mathrm{ksi} \quad \text { Deck concrete at } 28 \text { days }
\end{aligned}
$$

CFCC Material Properties

$\mathrm{d}_{\mathrm{S}}:=15.2 \mathrm{~mm}=0.6 \cdot \mathrm{in}$	Prestressing strand diameter
$\mathrm{A}_{\text {strand }}:=0.179 \cdot \mathrm{in}^{2}$	Effective cross sectionaL area
$\mathrm{E}_{\mathrm{p}}:=21000 \mathrm{ksi}$	Tensile elastic modulus
$\mathrm{T}_{\text {guts }}:=60.70 \mathrm{kip}$	Guaranteed ultimate tensile capacity
$\mathrm{f}_{\mathrm{pu}}:=\frac{\mathrm{T}_{\text {guts }}}{\mathrm{A}_{\text {strand }}}=339.11 \cdot \mathrm{ksi}$	Calculated ultimate tensile stress
$\mathrm{C}_{\text {Ese }}:=0.9$	Environmental reduction factor for prestressed concrete exposed to weather for service limit state calculations
$\mathrm{f}_{\text {pu.service }}:=\mathrm{C}_{\text {Ese }} \cdot \mathrm{f}^{\prime}{ }_{\text {pu }}=305.2 \cdot \mathrm{ksi}$	
$\mathrm{C}_{\text {Est }}:=0.9$	Environmental reduction factor for prestressed concrete exposed to weather for strength limit state calculations
$\mathrm{f}_{\mathrm{pu}}:=\mathrm{C}_{\mathrm{Est}}{ }^{\text {f }}{ }^{\prime}{ }^{\text {du }}=305.2 \cdot \mathrm{ksi}$	

Modular Ratio

$$
\begin{array}{ll}
\mathrm{n}:=\frac{\mathrm{E}_{\text {c.beam }}}{\mathrm{E}_{\text {c.deck }}}=1.345 & \text { Modular ratio for beam/deck slab } \\
\mathrm{n}_{\mathrm{p}}:=\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{c} . \text { deck }}}=4.89 & \text { Modular ratio for Prestressing CFCC/beam }
\end{array}
$$

Bulb T Beam Section Properties: 72 inch beam depth

$A_{\text {beam }}:=1166.3 \text { in }^{2}$	Minimum area of beam section
$\mathrm{d}:=72 \mathrm{in}$	Depth of beam
$\mathrm{b}_{\text {web }}:=8 \mathrm{in}$	Minimum web thickness
$\mathrm{b}_{\text {web.max }}:=8$ in	Maximum web thickness
$\mathrm{b}_{\mathrm{ft}}:=49 \mathrm{in}$	Width of top flange
$\mathrm{d}_{\mathrm{ft}}:=5 \mathrm{in}$	Thickness of top flange
$\mathrm{d}_{\mathrm{h} 1}:=3$-in	Depth of the first haunch under the top flange
$\mathrm{b}_{\mathrm{h} 1}:=14 \cdot \mathrm{in}$	bottom width of the first haunch under the top flange
$\mathrm{d}_{\mathrm{h} 2}:=3 \cdot \mathrm{in}$	Depth of the second haunch under the top flange
$\mathrm{b}_{\mathrm{fb}}:=40 \mathrm{in}$	Width of bottom flange
$\mathrm{d}_{\mathrm{fb}}:=5.5 \mathrm{in}$	Thickness of bottom flange
$\mathrm{b}_{\mathrm{v}}:=\mathrm{b}_{\text {web }}=8.00 \cdot \mathrm{in}$	Shear width (equal to web thickness)
$\omega_{\text {beam }}:=\mathrm{A}_{\text {beam }} \cdot(150 \mathrm{pcf})=1214.9 \cdot \mathrm{plf}$	Beam weight per foot
$\mathrm{I}_{\text {beam }}:=844069 \mathrm{in}^{4}$	Minimum moment of inertia
$\mathrm{y}_{\mathrm{t}}:=36.2 \mathrm{in}$	Depth from centroid to top of beam
$\mathrm{y}_{\mathrm{b}}:=35.8 \mathrm{in}$	Depth from centroid to soffit of beam
$\mathrm{S}_{\mathrm{T}}:=\frac{\mathrm{I}_{\text {beam }}}{\mathrm{y}_{\mathrm{t}}}=23316.82 \cdot \mathrm{in}^{3}$	Minimum section modulus about top flange
$\mathrm{S}_{\mathrm{B}}:=\frac{\mathrm{I}_{\text {beam }}}{\mathrm{y}_{\mathrm{b}}}=23577.35 \cdot \mathrm{in}^{3}$	Minimum section modulus about bottom flange

Effective Flange Width of Concrete Deck Slab, AASHTO 4.6.2.6

Beam_Design $:=$ "Interior"	Choose the design of the beam either "Interior" or "Exterior"
$\mathrm{b}_{\text {eff.int }}:=\mathrm{S}=6.42 \mathrm{ft}$	Effective flange width of deck slab for interior beams
$\mathrm{b}_{\text {eff.ext }}:=\frac{1}{2} \cdot \mathrm{~S}+$ overhang $=6.02 \mathrm{ft}$	Effective flange width of deck slab for exterior beams

$\mathrm{b}_{\mathrm{eff}}:=|$| $\mathrm{b}_{\text {eff.int }}$ if Beam_Design $=$ "Interior" $=1.956$ |
| :--- |
| $\mathrm{~b}_{\text {eff.ext }}$ if Beam_Design $=$ "Exterior" |

$$
\mathrm{d}_{\text {total }}:=\text { deck }_{\text {thick }}+\mathrm{d}=81 \cdot \text { in } \quad \text { Total depth of section including deck }
$$

Dynamic load Allowance

Dynamic load allowance from AASHTO Table 3.6.2.1-1 is applied as an increment to the static wheel loads to account for wheel load impacts from moving vehicles.

$$
\mathrm{IM}:=1+33 \%=1.33
$$

Design Factors

These factors are related to the ductility, redundancy and operational importance of the bridge structure components and are applied to the strength limit state.

Ductility

For Strength limit State, a factor of 1.05 is used for nonductile components and connections, 1.00 for conventional designs and details complying with these specifications, and 0.95 for components and connections for which additional ductility-enhancing measures have been specified beyond those required by these specifications, AASHTO A 1.3.3.
$\eta_{D}:=1.00$

Redundancy

For Strength limit State, a factor of 1.05 is used for nonredundant members, 1.00 for conventional levels of redundancy, foundation elements where ϕ already accounts for redundancy as specified in AASHTC A 10.5, and 0.95 for exceptional levels of redundancy beyond girder continuity and a torsionally-closed cross-section, AASHTO A 1.3.4.
$\eta_{\mathrm{R}}:=1.00$

Operational Importance

For the Strength limit State, a factor of 1.05 is used for critical or essential bridges, 1.00 for typical bridges, and 0.95 for relatively less important bridges, AASHTO A 1.3.5.
$\eta_{\mathrm{I}}:=1.00$
Ductility, redundancy, and operational classification considered in the load modifier, AASHTO Eqn. 1.3.2.1-2.

$$
\eta_{\mathrm{i}}:=\eta_{\mathrm{D}} \cdot \eta_{\mathrm{R}} \cdot \eta_{\mathrm{I}}=1.00
$$

Composite Section Properties

This is the moment of inertia resisting superimposed dead loads.

Elastic Section Properties - Composite Section: k=2

$\mathrm{k}_{\mathrm{sdl}}:=2$
$\mathrm{A}_{\text {haunchkn }}:=\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k}_{\mathrm{sdl}} \mathrm{n}} \cdot$ haunch $=0 \cdot \mathrm{in}^{2} \quad \quad$ effective area of haunch
$d_{\text {haunchkn }}:=d+\frac{\text { haunch }}{2}=72 \cdot$ in \quad Depth of centroid of haunch to bottom of beam
Ad $_{\text {haunchkn }}:=\mathrm{d}_{\text {haunchkn }} \cdot \mathrm{A}_{\text {haunchkn }}=0 \cdot \mathrm{in}^{3}$
$\mathrm{b}_{\text {effkn }}:=\frac{\mathrm{b}_{\text {eff }}}{\mathrm{k}_{\mathrm{Sdl}} \mathrm{n}}=28.62 \cdot$ in
Transformed deck width
$d_{\text {slabkn }}:=d+$ haunch $+\frac{\text { deck }_{\text {thick }}-t_{\text {wear }}}{2}=76.5 \cdot$ in \quad Depth from center of deck to beam soffit
$\mathrm{A}_{\text {slabkn }}:=$ deck $_{\text {thick }} \cdot \mathrm{b}_{\text {effkn }}=257.58 \cdot$ in $^{2} \quad$ Area of transformed deck section

$$
\operatorname{Ad}_{\text {slabkn }}:=\mathrm{A}_{\text {slabkn }} \cdot \mathrm{d}_{\text {slabkn }}=19705.08 \cdot \mathrm{in}^{3}
$$

Static moment of inertia of transformed section about soffit of beam

$$
\mathrm{d}_{\mathrm{k}}:=\frac{\mathrm{A}_{\text {beam }} \cdot \mathrm{y}_{\mathrm{b}}+\mathrm{Ad}_{\text {slabkn }}+{A d_{\text {haunchkn }}}^{A_{\text {beam }}+A_{\text {slabkn }}+A_{\text {haunchkn }}}=43.16 \cdot \text { in }}{}
$$

Depth of CG of composite section from beam soffit
$I_{\text {oslabkn }}:=\frac{\mathrm{b}_{\text {effkn }} \cdot \text { deck }_{\text {thick }}{ }^{3}}{12}=1738.68 \cdot \mathrm{in}^{4}$
Moment of inertia of transformed deck about centroid
$\mathrm{I}_{\text {haunchkn }}:=\frac{\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k}_{\mathrm{sdl} \cdot} \cdot \mathrm{n}^{2}} \cdot \text { haunch }^{3}}{12}=0 \cdot \mathrm{in}^{4}$
Effective moment of interia of the haunch

Moment of inertia of composite section to resist superimposed dead loads calculated using parallel axis theorem
$\mathrm{I}_{3 \mathrm{n}}:=\mathrm{I}_{\text {beam }}+A_{\text {beam }} \cdot\left(\mathrm{d}_{\mathrm{k}}-\mathrm{y}_{\mathrm{b}}\right)^{2}+\mathrm{I}_{\text {oslabkn }}+\mathrm{A}_{\text {slabkn }} \cdot\left(\mathrm{d}_{\text {slabkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}+\mathrm{I}_{\text {haunchkn }} \ldots=1195303.3 \cdot \mathrm{in}^{4}$ $+A_{\text {haunchkn }} \cdot\left(d_{\text {haunchkn }}-d_{k}\right)^{2}$

$\mathrm{y}_{\mathrm{b} 3 \mathrm{n}}:=\mathrm{d}_{\mathrm{k}}=43.163 \cdot \mathrm{in}$	Depth of CG of composite section from beam soffit
$\mathrm{S}_{\mathrm{b} 3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{b} 3 \mathrm{n}}}=27692.97 \cdot \mathrm{in}^{3}$	Section modulus about bottom of beam
$\mathrm{y}_{\text {t.bm.3n }}:=\mathrm{d}-\mathrm{y}_{\mathrm{b} 3 \mathrm{n}}=28.84 \cdot \mathrm{in}$	Depth of CG of composite section from top of beam
$\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}=41449.9 \cdot \mathrm{in}^{3}$	Section modulus about top of beam
$y_{t 3 n}:=d+$ haunch + deck $_{\text {thick }}-t_{\text {wear }}-y_{b 3 n}=37.84 \cdot$ in	Depth of CG of composite section from top of deck
$\mathrm{S}_{\mathrm{t} 3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{t} 3 \mathrm{n}}}=31590.61 \cdot \mathrm{in}^{3}$	Section modulus about top of deck

Elastic Section Properties - Composite Section: k=1

These properties are used to evaluate the moment of inertia for resisting live loads Assumed wearing surface not included in the structural design deck thickness, per MDOT BDM 7.02.19.A.4
$\mathrm{k}:=1$

$$
\begin{array}{ll}
\mathrm{A}_{\text {haunohkm }}:=\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{kn}} \cdot \text { haunch }=0 \cdot \mathrm{in}^{2} & \text { effective area of haunch } \\
\mathrm{d}_{\text {hamohkm }}:=\mathrm{d}+\frac{\text { haunch }}{2}=72 \cdot \text { in } & \begin{array}{l}
\text { Depth of centroid of haunch to bottom } \\
\text { of beam }
\end{array}
\end{array}
$$

$$
\text { Ad }_{\text {haumolakan }}:=\mathrm{d}_{\text {haunchkn }} \cdot \mathrm{A}_{\text {haunchkn }}=0 \cdot \mathrm{in}^{3}
$$

$$
\mathrm{b}_{\text {effkma }}:=\frac{\mathrm{b}_{\mathrm{eff}}}{\mathrm{kn}}=57.24 \cdot \mathrm{in} \quad \quad \text { Transformed deck width }
$$

$$
{\underset{\text { Mslablana }}{ }:=\mathrm{d}+\text { haunch }+\frac{\text { deck }_{\text {thick }}-\mathrm{t}_{\text {wear }}}{2}=76.5 \cdot \text { in } \quad \text { Depth from center of deck to beam soffit }}_{2}
$$

$$
\mathrm{A}_{\text {slabkan: }}:=\operatorname{deck}_{\text {thick }} \cdot \mathrm{b}_{\mathrm{effkn}}=515.17 \cdot \mathrm{in}^{2} \quad \text { Area of transformed deck section }
$$

$$
\mathrm{Ad}_{\text {slabkan }}:=\mathrm{A}_{\text {slabkn }} \cdot \mathrm{d}_{\text {slabkn }}=39410.17 \cdot \mathrm{in}^{3}
$$

$$
\begin{array}{ll}
\mathrm{d}_{\mathrm{kw}}:=\frac{\mathrm{A}_{\text {beam }} \cdot \mathrm{y}_{\mathrm{b}}+\mathrm{Ad}_{\text {slabkn }}+\mathrm{Ad}_{\text {haunchkn }}}{A_{\text {beam }}+\mathrm{A}_{\text {slabkn }}+\mathrm{A}_{\text {haunchkn }}}=48.27 \cdot \text { in } & \begin{array}{l}
\text { Depth of CG of composite section } \\
\text { from beam soffit }
\end{array} \\
\mathrm{I}_{\text {Moslabkman }}:=\frac{\mathrm{b}_{\text {effkn }} \cdot \text { deck }_{\text {thick }}{ }^{3}}{12}=3477.37 \cdot \mathrm{in}^{4} & \begin{array}{l}
\text { Moment of inertia of transformed deck about } \\
\text { centroid }
\end{array}
\end{array}
$$

$\mathrm{I}_{\text {hawhechkan }}:=\frac{\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k} \cdot \mathrm{n}} \cdot \text { haunch }^{3}}{12}=0 \cdot \mathrm{in}^{4}$ Effective moment of interia of the haunch

Moment of inertia of composite section to resist superimposed dead loads calculated using parallel axis theorem

$$
\begin{aligned}
\mathrm{I}_{\mathrm{n}}:= & \mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot\left(\mathrm{d}_{\mathrm{k}}-\mathrm{y}_{\mathrm{b}}\right)^{2}+\mathrm{I}_{\text {oslabkn }}+\mathrm{A}_{\text {slabkn }} \cdot\left(\mathrm{d}_{\text {slabkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}+\mathrm{I}_{\text {haunchkn }} \ldots=1439459.5 \cdot \mathrm{in}^{4} \\
& +A_{\text {haunchkn }} \cdot\left(\mathrm{d}_{\text {haunchkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{bn}}:=\mathrm{d}_{\mathrm{k}}=48.27 \cdot \mathrm{in} & \begin{array}{l}
\text { Depth of CG of composite section from beam } \\
\text { soffit }
\end{array} \\
\mathrm{S}_{\mathrm{bn}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{bn}}}=29821.23 \cdot \mathrm{in}^{3} & \text { Section modulus about bottom of beam } \\
\mathrm{y}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}:=\mathrm{d}-\mathrm{y}_{\mathrm{bn}}=23.73 \cdot \mathrm{in} & \begin{array}{l}
\text { Depth of } \mathrm{CG} \text { of composite section from top of } \\
\text { beam }
\end{array}
\end{array}
$$

$$
\mathrm{S}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}}=60658.93 \cdot \mathrm{in}^{3} \quad \text { Section modulus about top of beam }
$$

$$
\mathrm{y}_{\mathrm{tn}}:=\mathrm{d}+\text { haunch }+ \text { deck }_{\text {thick }}-\mathrm{t}_{\text {wear }}-\mathrm{y}_{\mathrm{bn}}=32.73 \cdot \mathrm{in} \quad \text { Depth of CG of composite section from }
$$

$$
\mathrm{S}_{\mathrm{tn}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{tn}}}=43979.31 \cdot \mathrm{in}
$$

top of deck

Section modulus about top of deck

live load lateral Distribution Factors

Cross-section classification... Type K
Distribution of live loads from the deck to the beams is evaluated based on the AASHTO specified distribution factors. These factors can only be used if generally, the following conditions are met;

- Width of deck is constant.
- Unless otherwise specified, the number of beams is not less than four.
- Beams are parallel and have approximately the same stiffness.
- \quad Curvature in plan is less than the limit specified in AASHTO A 4.6.1.2.4.
- Unless otherwise specified, the roadway part of the overhang does not exceed 3.0 ft .
- Cross-section is consistent with one of the cross-sections shown in AASHTO Table 4.6.2.2.1-1.

Unless otherwise stated, stiffness parameters for area, moments of inertia and torsional stiffness used shall be taken as those of the cross-section to which traffic will be applied (composite section)

Distance between the centers of gravity of the basic beam and deck

$$
\mathrm{e}_{\mathrm{g}}:=\mathrm{d}+\left(\frac{\text { deck }_{\text {thick }}}{2}\right)+\text { haunch }-\mathrm{y}_{\mathrm{b}}=40.7 \cdot \text { in }
$$

logitudinal stiffness parameter
$\mathrm{K}_{\mathrm{g}}:=\mathrm{n} \cdot\left(\mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot \mathrm{e}_{\mathrm{g}}{ }^{2}\right)=3734316.14 \cdot \mathrm{in}^{4}$
Distribution of live loads for Moment in Interior Beams, AASHTO Table 4.6.2.2.2b-1
Range of Applicability. \qquad
if $(3.5 \mathrm{ft}<\mathrm{S} \leq 16 \mathrm{ft}$, "ok" , "not ok" $)=$ "ok"
if $\left(4.5\right.$ in $<$ deck $_{\text {thick }} \leq 12$ in, "ok", "not ok" $)=$ "ok"
if $(20 \mathrm{ft}<\mathrm{L} \leq 240 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $\left(\mathrm{NO}_{\text {beams }} \geq 4\right.$, "ok" , "not ok" $)=$ "ok"
if $\left(10000\right.$ in $^{4}<K_{g} \leq 7000000$ in 4, "ok" , "not ok" $)=$ "ok"
One lane loaded
$\mathrm{M}_{\text {lanel_int }}:=0.06+\left(\frac{\mathrm{S}}{14 \mathrm{ft}}\right)^{0.4} \cdot\left(\frac{\mathrm{~S}}{\mathrm{~L}}\right)^{0.3} \cdot\left(\frac{\mathrm{~K}_{\mathrm{g}}}{12 \cdot \mathrm{~L} \cdot \text { deck }_{\text {thick }} 3} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.1}=0.387$

Two or more lanes loaded

$$
\mathrm{M}_{\text {lane2_int }}:=0.075+\left(\frac{\mathrm{S}}{9.5 \mathrm{ft}}\right)^{0.6} \cdot\left(\frac{\mathrm{~S}}{\mathrm{~L}}\right)^{0.2} \cdot\left(\frac{\mathrm{~K}_{\mathrm{g}}}{12.0 \cdot \mathrm{~L} \cdot \text { deck }_{\text {thick }} 3} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.1}=0.555
$$

live load moment disribution factor for interior beam
$\mathrm{M}_{\text {lane_int }}:=\max \left(\mathrm{M}_{\text {lane1_int }}, \mathrm{M}_{\text {lane2_int }}\right)=0.555$

Distribution of live loads for Moment in Exterior Beams, AASHTO Table 4.6.2.2.2d-1

One lane loaded (using the lever rule)

The lever rule involves the use of statics to determine the lateral distribution to the exterior girder by summing moments about the adjacent interior girder to determine the wheel-load reaction at the exterio girder assuming the concrete deck is hinged at the interior girder. A wheel cannot be closer than 2'-0" to the toe of barrier, and the standard wheel spacing is $6^{\prime}-0 "$. The evaluated factor is multiplied by the multiple presence factor, AASHTO Table 3.6.1.1.2-1.

Summing moments about the center of the interior beam

This factor is based on the lever arm rule considring the wheel load and not the resultant of both wheel

Moment distribution factor for exterior beam, one load loaded. The 1.2 accounts for the multiple presence factor, m from AASHTO Table 3.6.1.1.2-1 for one lane loaded
$\mathrm{M}_{\text {lane1_ext }}:=\mathrm{R} \cdot 1.2=0.475$

Two or more lanes loaded

Horizontal distance from the centerline of the exterior web of exterior beam at deck level to the interior web edge of curb or traffic barrier must be greater than $0^{\prime}-0^{\prime \prime}$

$$
\mathrm{d}_{\mathrm{e}}:=\max \left(\text { overhang }- \text { barrier }_{\text {width }}, 0 \mathrm{ft}\right)=1.13 \mathrm{ft}
$$

Range of Applicability

$$
\text { if }\left(-1 \mathrm{ft} \leq \mathrm{d}_{\mathrm{e}} \leq 5.5 \mathrm{ft}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" }
$$

lane fraction
$\mathrm{e}_{\mathrm{m}}:=0.77+\frac{\mathrm{d}_{\mathrm{e}}}{9.1 \mathrm{ft}}=0.894$
Moment distribution factor for exterior beam, two or more lanes loaded
$\mathrm{M}_{\text {lane2_ext }}:=\mathrm{M}_{\text {lane_int }} \cdot \mathrm{e}=0.496$
Distribution of live loads for Moment in Exterior Beams, AASHTO C4.6.2.2.2d

AASHTO LRFD 2014 recommends the rigid plate analysis only for steel beam-slab bridges. This was a change from ealier versions of AASHTO. It is up to the designed to ignore the rigid plate analysis or take it into consideration when calculating the DF for exterior beam

Additional special analysis investigation is required because the distribution factor for multigirder in cross section was determined without consideration of diaphragm or cross frames. The multiple presence factors are used per AASHTO Table 3.6.1.1.2-1. This analysis should be done by sketching the cross section to determine the variables required for this example, the defined deck geometry is used. For any other geometry, these variables should be hand computed and input:
Horizontal distance from center of gravity of the pattern of girders to the exterior girder
$\mathrm{X}_{\mathrm{ext}}:=\frac{\mathrm{S}_{\text {exterior }}}{2}=28.88 \mathrm{ft}$
Eccentricity of the center line of the standard wheel from the center of gravity of the pattern of girders

$$
\begin{aligned}
& \mathrm{e}_{1}:=\mathrm{X}_{\mathrm{ext}}+\text { overhang }- \text { barrier }_{\text {width }}-2 \mathrm{ft}-\frac{6 \mathrm{ft}}{2}=25 \mathrm{ft} \\
& \mathrm{e}_{2}:=\mathrm{e}_{1}-12 \mathrm{ft}=13 \mathrm{ft} \\
& \mathrm{e}_{3}:=\mathrm{e}_{2}-12 \mathrm{ft}=1 \mathrm{ft} \\
& \mathrm{e}_{4}:=\mathrm{e}_{3}-12 \mathrm{ft}=-11 \mathrm{ft} \\
& \mathrm{e}_{5}:=\mathrm{e}_{4}-12 \mathrm{ft}=-23 \mathrm{ft}
\end{aligned}
$$

Summation of eccentricities for number of lanes considered:

$$
\mathrm{e}_{\mathrm{NL} 1}:=\mathrm{e}_{1}=25 \mathrm{ft} \quad \text { One lane loaded }
$$

${ }^{\mathrm{e}} \mathrm{NL}:=\mathrm{e}_{1}+\mathrm{e}_{2}=38 \mathrm{ft}$	Two lanes loaded
${ }^{\mathrm{e}} \mathrm{NL} 3:=\mathrm{e}_{\mathrm{NL} 2}+\mathrm{e}_{3}=39 \mathrm{ft}$	Three lanes loaded
${ }^{\mathrm{e}} \mathrm{NL}:=\mathrm{e}_{\mathrm{NL}}+\mathrm{e}_{4}=28 \mathrm{ft}$	Four lanes loaded
${ }^{\mathrm{e}} \mathrm{NL}:=\mathrm{e}_{\mathrm{NL} 4}+\mathrm{e}_{5}=5 \mathrm{ft}$	Five lanes loaded

Horizontal distances from the center of gravity of the pattern of girders to each girder

Summation of horizontal distances from the center of gravity of the pattern of girders to each girder
$\mathrm{X}_{\mathrm{NB}}:=\sum \mathrm{X}_{\text {beams }}^{2}=3396.82 \cdot \mathrm{ft}^{2}$
$\mathrm{m}_{1 \mathrm{R}}:=1.2 \cdot\left(\frac{1}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot \mathrm{e}_{\mathrm{NL} 1}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.375$
$\mathrm{m}_{2 \mathrm{R}}:=1.0 \cdot\left(\frac{2}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\text {ext }} \cdot \mathrm{e}_{\mathrm{NL} 2}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.523$
$\mathrm{m}_{3 \mathrm{R}}:=0.85 \cdot\left(\frac{3}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot \mathrm{e}_{\mathrm{NL}}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.537$
$\mathrm{m}_{4 \mathrm{R}}:=0.65 \cdot\left(\frac{4}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot \mathrm{e}_{\mathrm{NL}}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.415$

Reaction on exterior beam when one lane is loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1

Reaction on exterior beam when two lanes are loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1

Reaction on exterior beam when three lanes are loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1

Reaction on exterior beam when four lanes are loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1

$$
\mathrm{m}_{5 \mathrm{R}}:=0.65 \cdot\left(\frac{5}{\mathrm{NO}_{\mathrm{beams}}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot{ }^{\mathrm{e}} \mathrm{NL} 5}{\mathrm{X}_{\mathrm{NB}}}\right)=0.353
$$

Reaction on exterior beam when five lanes are loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1
live load moment disribution factor for exterior beam
$\mathrm{M}_{\text {lane_ext }}:=\max \left(\mathrm{M}_{\text {lane1_ext }}, \mathrm{M}_{\text {lane2_ext }}, \mathrm{m}_{1 \mathrm{R}}, \mathrm{m}_{2 \mathrm{R}}, \mathrm{m}_{3 \mathrm{R}}, \mathrm{m}_{4 \mathrm{R}}, \mathrm{m}_{5 \mathrm{R}}\right)=0.537$

Reduction of load Distribution Factors for Moment in longitudinal Beams on Skewed Supports

When the line supports are skewed and the difference between skew angles of two adjacent lines of supports does not exceed 10 degrees, the bending moments and shear forces are reduced in accordance with AASHTO Table 4.6.2.2.2e-1 and 4.6.2.2.3c-1 respectively.

Moment

Range of Applicability
if $\left(30 \operatorname{deg} \leq \theta_{\text {skew }} \leq 60 \mathrm{deg}\right.$, "ok", "Check C1 and θ skew below" $)=$ "Check C 1 and θ skew below"
if $(3.5 \mathrm{ft}<\mathrm{S} \leq 16 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $(20 \mathrm{ft}<\mathrm{L} \leq 240 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $\left(\mathrm{NO}_{\text {beams }} \geq 4\right.$, "ok", "not ok" $)=$ "ok"
$\theta_{\text {mskenm }}:=\left\lvert\, \begin{aligned} & \theta_{\text {skew }} \text { if } \theta_{\text {skew }} \leq 60 \cdot \operatorname{deg}=0 \cdot \text { deg } \\ & 60 \cdot \text { deg if } \theta_{\text {skew }}>60 \cdot \text { deg }\end{aligned}\right.$

$\mathrm{C}_{1}:=|$| 0 if $\theta_{\text {skew }}<30 \cdot \mathrm{deg}$ | $=0$ |
| :--- | :--- |
| $\left[0.25 \cdot\left(\frac{\mathrm{~K}_{\mathrm{g}}}{12.0 \cdot \mathrm{~L} \cdot \text { deck }_{\text {thick }} 3} \cdot \frac{\mathrm{ft}}{\text { in }}\right)^{0.25} \cdot\left(\frac{\mathrm{~S}}{\mathrm{~L}}\right)^{0.5}\right]$ otherwise | |

$\operatorname{Mcorr}_{\text {factor }}:=1-\mathrm{C}_{1} \cdot \tan \left(\theta_{\text {skew }}\right)^{1.5}=1 \quad$ Correction factor for moment

Reduced distribution factors at strength limit state for interior girders due to skew

$\mathrm{DF}_{\text {strength_moment_int }}:=\mathrm{M}_{\text {lane_int }}$ Mcorr $_{\text {factor }}=0.555 \quad$ Moment

Reduced distribution factors at strength limit state for exterior girders due to skew

$\mathrm{DF}_{\text {strength_moment_ext }}:=\mathrm{M}_{\text {lane_ext }} \cdot$ Mcorr $_{\text {factor }}=0.537 \quad$ Moment

Design distribution factors for service and strength limit states

Distribution factor for moment at strength limit state
$\mathrm{DF}_{\text {strength_moment }}:=\left\{\begin{array}{l}\mathrm{DF}_{\text {strength_moment_int }} \text { if Beam_Design = "Interior" }=0.555 \\ \mathrm{DF}_{\text {strength_moment_ext }} \text { if Beam_Design = "Exterior" }\end{array}\right.$

live Ioad Analysis

Flexure

As per AASHTO A 3.6.1.2.1, vehicular live loading designated by the standard HI-93 truck shall be a combination of the design truck or design tandem, and the design lane load. To produce extreme force effects, the spacing between the two 32-kip axles are taken as 14 ft .

Calculate the maximum moment due to the truck load. Maximum truck load moment occurs when the middle axle is positioned at distance 2.33 ft from the midspan. Maximum momment occurs under the middle axle load. Moment due to distributed load occurs at midspan.

Unless more detailed analysis is performed to determine the location and value for the maximum moment under combined truck and distributed loads at both service and strength limit state, the maximum moment from the truck load at distance 2.33 ft from midspan can be assumed to occur at the midspan and combined with the maximum moment from other dead and live distributed loads

Calculate the reaction at the end of the span
$\mathrm{R}:=\frac{8 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}-16.33 \mathrm{ft}\right)+32 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}-2.33 \mathrm{ft}\right)+32 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}+11.67 \mathrm{ft}\right)}{\mathrm{L}}=37.228 \cdot \mathrm{kip}$
Calculate the maximum moment due to truck load
$\mathrm{M}_{\text {truck }}:=\mathrm{R} \cdot\left(\frac{\mathrm{L}}{2}+2.33 \mathrm{ft}\right)-32 \cdot \mathrm{kip} \cdot 14 \cdot \mathrm{ft}=2.189 \times 10^{3} \cdot \mathrm{kip} \cdot \mathrm{ft}$
at distance 2.33 ft from midspan but can be assumed to occur at the midspan

Maximum moment due to design lane load, AASHTO A 3.6.1.2.4
$X:=\frac{\mathrm{L}}{2}=68.5 \mathrm{ft}$
$\mathrm{M}_{\text {lane }}:=\frac{0.64 \mathrm{klf} \cdot \mathrm{L} \cdot \mathrm{X}}{2}-0.64 \mathrm{klf} \cdot \frac{\mathrm{X}^{2}}{2}=1501.52 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to design tandem, MDOT BDM 7.01.04.A
$\mathrm{M}_{\text {tandem }}:=\frac{60 \mathrm{kip} \cdot \mathrm{L}}{4}=2055 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to vehicular live loading by the modified $\mathrm{HI}-93$ design truck and tandem per MDOT BDM 7.01.04.A. Modification is by multiplying the load effects by a factor of 1.20. Dynamic load
allowance is considered only for the design truck and tandem, AASHTO A 3.6.1.2.2, 3.6.1.2.3 \& 3.6.1.2.4

$$
\mathrm{M}_{\mathrm{LLI}}:=\left[1.20 \mathrm{M}_{\text {lane }}+\mathrm{IM} \cdot\left(1.20 \cdot \max \left(\mathrm{M}_{\text {truck }}, \mathrm{M}_{\text {tandem }}\right)\right)\right] \cdot \mathrm{DF}_{\text {strength_moment }}=2938.78 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Dead load Analysis

Noncomposite Dead load (DC $\mathbf{1}_{1}$)

$M_{\text {swbeam }}:=\frac{\omega_{\text {beam }} \cdot \mathrm{L}^{2}}{8}=2850.30 \cdot \mathrm{kip} \cdot \mathrm{ft}$ Total moment due to selfweight of beam
deck $:=\left(\right.$ deck $_{\text {thick }} \cdot \mathrm{b}_{\text {eff }}+$ haunch $\left._{\mathrm{d}} \cdot \mathrm{b}_{\mathrm{ft}}\right) \cdot 0.15 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}=0.82 \cdot \mathrm{klf}$
$\mathrm{M}_{\text {deck }}:=\frac{\text { deck } \cdot \mathrm{L}^{2}}{8}=1933.11 \cdot \mathrm{kip} \cdot \mathrm{ft}$
sip $:=15 \mathrm{psf} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right)=0.035 \cdot \mathrm{klf}$
$M_{\text {sip }}:=\frac{\operatorname{sip} \cdot \mathrm{L}^{2}}{8}=82.11 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Selfweight of deck and haunch on beam

Moment due to selfweight of deck and haunch

15 psf weight included for stay-in-place forms per MDOT BDM 7.01.04.I

Moment due to stay-in-place forms
Weight of steel diaphragms at mid-span per each interior beam

Weight of steel diaphragms at mid-span per each exterior beam

diaphragm := $|$| dia $_{\text {int }}$ if Beam_Design $=$ "Interior" $=0.5 \cdot \mathrm{kip}$ |
| :--- |
| dia $_{\text {ext }}$ if Beam_Design $=$ "Exterior" |

$$
\operatorname{spa}_{\mathrm{dia}}:=2\left(\mathrm{~S}-\mathrm{b}_{\mathrm{fb}}\right) \cdot \tan \left(\theta_{\text {skew }}\right)=0 \mathrm{ft}
$$

$\mathrm{M}_{\mathrm{dia}}:=$ diaphragm $\cdot \frac{\mathrm{L}}{4}=17.125 \cdot \mathrm{kip} \cdot \mathrm{ft}$
One row of diaphragms at midspan are used.

Moment due to diaphragm weight
Dead load (selfweight of beam+ deck+

$$
\mathrm{DC}_{1}:=\omega_{\text {beam }}+\text { deck }+ \text { sip }=2.074 \cdot \mathrm{klf} \quad \begin{aligned}
& \text { SIP forms) acting on non-composite } \\
& \text { section }
\end{aligned}
$$

$$
M_{D C 1}:=M_{\text {swbeam }}+M_{\text {deck }}+M_{\text {sip }}+M_{\text {dia }}=4882.65 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Total midspan moment acting on the non-composite section

Composite Dead load (DC $\underline{2}_{2}$)

util $:=\frac{1}{2} \cdot(0$ plf $)=0 \cdot \mathrm{klf} \quad \begin{aligned} & \text { Weight of utilities upported by the } \\ & \text { superstructure }\end{aligned}$
barrier ${ }_{\text {weight }}:=0.475 \frac{\mathrm{kip}}{\mathrm{ft}} \quad \begin{aligned} & \text { Weight per foot of first barrier } \\ & \text { (aesthetics parapet tube, MDOT }\end{aligned}$
BDG 6.29.10)
barrier2 ${ }_{\text {weight }}:=2.25 \cdot \mathrm{in} \cdot 40 \cdot \mathrm{in} \cdot \omega_{\text {conc }}+0.475 \frac{\mathrm{kip}}{\mathrm{ft}}=0.569 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$
Weight per foot of second barrier (modified aesthetics parapet tube, MDOT BDG 6.29.10)

$$
\begin{aligned}
& \text { sidewalk }:=\frac{2 \cdot \text { walk }_{\text {width }} \cdot \text { walk }_{\text {thick }} \cdot \omega_{\text {conc }}}{\mathrm{NO}_{\text {beams }}}=0.00 \cdot \mathrm{klf} \\
& \text { barrier }:=\frac{\text { barrier } 1_{\text {weight }}+\text { barrier }{ }_{\text {weight }}}{\mathrm{NO}_{\text {beams }}}=0.10 \cdot \mathrm{klf}
\end{aligned}
$$

Weight to due extra thickness of sidewalk per beam

Total barrier weight per beam
soundwall $_{\text {weight }}:=0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$
Weight of the sound wall, if there is a sound wall

Weight of the sound wall for exterior beam design assuming lever arm and an inetremiate hinge on the first interior beam

soundwall $:=|$| $0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$ if Beam_Design $=$ "Interior" |
| :--- |
| $\left[\right.$ soundwall $\left._{\text {weight }} \cdot \frac{(\mathrm{S}+\text { overhang })}{\mathrm{S}}\right]$ if Beam_Design $=$ "Exterior" |

$\mathrm{DC}_{2}:=$ sidewalk + barrier + util + soundwall $=0.104 \cdot \mathrm{klf} \quad$ Total dead load acting on the composite section
$M_{D C 2}:=\frac{D C_{2} \cdot L^{2}}{8}=244.88 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Total midspan moment acting on the composite section

(DW) Wearing Surface load

DW $:=\left(\mathrm{b}_{\mathrm{eff}}\right) \cdot 0.025 \frac{\mathrm{kip}}{\mathrm{ft}^{2}}=0.16 \cdot \mathrm{klf}$
Self weight of future wearing surface

Maximum unfactored dead load moments

$$
\begin{aligned}
& M_{D C}:=M_{D C 1}+M_{D C 2}=5127.52 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& M_{D W}:=\frac{D W \cdot L^{2}}{8}=376.36 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Total midspan moment due to loads acting on the composite and non-composite section

Midspan moment due to weight of future wearing surface

Wind load on the sound wall

If a tall sound wall is provided, wind effect shall be calculated and considered in the design. Assuming lever arm rule and an intermediate hinge at the first interior beam after the exterior beam, the wind load will affect the loads on the exterior beam and the first interior beam. In the following set of calculations, the wind effect was calculated as a concentrated moment at the end of the overhang of the bridge.

$$
\begin{aligned}
& \mathrm{M}_{\text {wind }}:=0.0 \cdot \mathrm{ft} \cdot \frac{\mathrm{kip}}{\mathrm{ft}} \\
& \mathrm{~W}:=\frac{\mathrm{M}_{\text {wind }}}{\mathrm{S}}=0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}} \\
& \mathrm{M}_{\mathrm{WS}}:=\frac{\mathrm{W} \cdot \mathrm{~L}^{2}}{8}=0 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Moment due to wind acting at the sound wall

Extra load on the interior/exterior beam due to wind load assuming lever arm analysis and an intermediate hinge at the first interior beam

Interior beam moment due to wind acting at the sound wall

load Combinations

Load Combinations: Strength, Extreme Event, Service and Fatigue load combinations are defined per AASHTO 3.4.1. Verify which combination are appropriate. For this concrete box beam design, wind load is not evaluated, and no permit vehicle is specified. However, the design live loading is MDOT HL-93 Modified which accounts for Michigan's inventory of legal and permit vehicles.

Strength I, III, IV and Strength V limit states are considered for the design of this beam. Load combinations factors according to AASHTO LRFD 2016 Interim revision are used (Check for latest AASHTO LRFD edition)

$$
\begin{aligned}
& \text { M_Strength }_{I}:=\eta_{\mathrm{i}} \cdot\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.75 \mathrm{M}_{\mathrm{LLI}}\right)=12116.81 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \text { M_Strength }_{\mathrm{III}}:=\eta_{\mathrm{i}} \cdot\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.0 \mathrm{M}_{\mathrm{WS}}\right)=6973.94 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \text { M_Strength }_{\mathrm{IV}}:=\eta_{\mathrm{i}}\left[1.50 \cdot\left(\mathrm{M}_{\mathrm{DC}}+\mathrm{M}_{\mathrm{DW}}\right)\right]=8255.82 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \text { M_Strength }_{\mathrm{V}}:=\eta_{\mathrm{i}} \cdot\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.35 \mathrm{M}_{\mathrm{LLI}}+1.0 \cdot \mathrm{M}_{\mathrm{WS}}\right)=10941.29 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

```
M
```


Number of Prestressing Strands

The theoretical number of strands required is calculated using the Service III limit state

$$
\mathrm{f}_{\mathrm{b}}:=\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{~S}_{\mathrm{b} 3 \mathrm{n}}}+\frac{0.8 \mathrm{M}_{\mathrm{LLI}}}{\mathrm{~S}_{\mathrm{bn}}}=3.7 \cdot \mathrm{ksi}
$$

Tensile stress in bottom flange due to applied loads

Allowable stress limits for concrete

$\mathrm{f}_{\mathrm{ti}}:=0.24 \cdot \sqrt{\mathrm{f}_{\mathrm{ci}}{ }_{\text {_beam }} \cdot \mathrm{ksi}}=0.68 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{ci}}:=-0.65 \cdot \mathrm{f}_{\mathrm{ci}}$ _beam $=-5.20 \cdot \mathrm{ksi}$
Initial allowable tensile stress
Initial allowable compressive stress (according to AASHTO LRFD 2016 interim revision)
$\mathrm{f}_{\mathrm{tf}}:=0 \cdot \sqrt{\mathrm{f}_{\mathrm{c} _} \text {beam } \cdot \mathrm{ksi}}=0.00 \cdot \mathrm{ksi}$
Final allowable tensile stress (allowing no tension)
No tension is allowed under service III limit state to avoid potential cracks and shear action on the strands
$\mathrm{f}_{\mathrm{cfp}}:=-0.45 \cdot \mathrm{f}_{\mathrm{c} _ \text {beam }}=-4.50 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{cf} . \text { deckp }}:=-0.45 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }}=-2.25 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{cf}}:=-0.6 \cdot \mathrm{f}_{\mathrm{c} _ \text {beam }}=-6.00 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{cf.deck}}:=-0.6 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }}=-3.00 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{p}}:=\mathrm{f}_{\mathrm{b}}-\mathrm{f}_{\mathrm{tf}}=3.7 \cdot \mathrm{ksi}$

Final allowable compressive stress in the beam due to sum of effective prestress and permanent loads

Final allowable compressive stress in the slab due to permanent loads

Final allowable compressive stress in the beam due to sum ot effective prestress, permanent loads, \& transient loads

Final allowable compressive stress in the beam due to sum of permanent loads and transient loads

Excess tension in the bottom flange due to applied loads

Assuming strand pattern center of gravity is midway between the bottom two rows of strands, i.e. the
same number of strands are used in the top and bottom rows of the bottom flange.

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{bs}}:=3 \mathrm{in} & \text { Distance from soffit of beam to center of gravity of strands } \\
\mathrm{e}_{\mathrm{st}}:=\mathrm{y}_{\mathrm{b}}-\mathrm{y}_{\mathrm{bs}}=32.80 \cdot \text { in } & \text { Eccentricity of strands from the centroid of beam }
\end{array}
$$

Final prestressing force required to counteract excess tension in the bottom flange. Set allowable stress equal to the excess tension, solve for P_{e}.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{et}}:=\frac{\mathrm{f}_{\mathrm{p}}}{\left(\frac{1}{\mathrm{~A}_{\mathrm{beam}}}+\frac{\mathrm{e}_{\mathrm{st}}}{\mathrm{~S}_{\mathrm{B}}}\right)}=1645.631 \cdot \mathrm{kip} \\
& \mathrm{f}_{\mathrm{j} . \max }:=0.65 \cdot \mathrm{f}_{\text {pu.service }}=198.377 \cdot \mathrm{ksi}
\end{aligned}
$$

Maximum allowable Jacking stress, ACI 440.4R Table 3.3

$$
P_{\mathrm{j}}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{j} . \max }=35.51 \cdot \text { kip } \quad \text { Maximum Jacking force per strand }
$$

$$
\mathrm{f}_{\mathrm{t}}:=0.637 \mathrm{f}_{\text {pu.service }}=194.41 \cdot \mathrm{ksi}
$$

Initial prestressing stress immediately prior to transfer. shall be less than or equal to the maximum jacking strength, and shall be adjusted accordingly to make sure the stress immedietely following transfer is not exceeding 0.6 times guaranteed strength as shown on the following page
$\mathrm{P}_{\text {in }}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{t}}=34.80 \cdot$ kip \quad Initial prestressing force per strand prior to transfer

$$
\mathrm{P}_{\text {pet }}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{t}} \cdot 0.75=26.10 \cdot \mathrm{kip}
$$

Effective prestressing force assuming 25\% final prestress losses per 0.6" diameter strand

Minimum number of strands required

Strand distribution per row. Row 0 is the bottom most row in the beam. Start adding strands from the bottom row going up until the number of strands is reached. do not skip rows inbetween. Extra rows with zero strands will be eliminated in the analysis.

$$
\mathrm{A}_{\mathrm{ps}}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{NO}_{\text {strands }}=11.28 \cdot \mathrm{in}^{2}
$$

Prestress losses

loss due to Elastic Shortening, AASHTO Eqn. C5.9.5.2.3a-1

$$
\Delta f_{\text {PES }}:=\frac{A_{p s} \cdot f_{t} \cdot\left(I_{\text {beam }}+e_{s}^{2} \cdot A_{\text {beam }}\right)-e_{s} \cdot M_{\text {swbeam }} \cdot A_{\text {beam }}}{A_{p s} \cdot\left(I_{\text {beam }}+e_{s}{ }^{2} \cdot A_{\text {beam }}\right)+\frac{A_{\text {beam }} \cdot \mathrm{I}_{\text {beam }} \cdot E_{\text {c.beam_i }}}{E_{p}}}=11.54 \cdot \mathrm{ksi}
$$

$$
\mathrm{F}_{\mathrm{pt}}:=\mathrm{f}_{\mathrm{t}}-\Delta \mathrm{f}_{\mathrm{PES}}=182.87 \cdot \mathrm{ksi} \quad \text { Prestressing stress immediately following transfer }
$$

$$
\mathrm{P}_{\mathrm{t}}:=\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{~F}_{\mathrm{pt}}=2062.271 \cdot \mathrm{kip}
$$

According to ACl 440.4 R , Table 3.3, the allowable stress immediately after transfer shall not exceed 0.6 fpu
$0.6 \cdot \mathrm{f}_{\text {pu.service }}=183.117 \cdot \mathrm{ksi}$

$$
\text { if }\left(\mathrm{F}_{\mathrm{pt}} \leq 0.6 \cdot \mathrm{f}_{\mathrm{pu}} \text { service }, " \mathrm{Ok} ", " \mathrm{Not} \mathrm{Ok} "\right)=\text { "Ok" }
$$

Approximate Estimate of Time dependent losses, AASHTO A 5.9.5.3

$\mathrm{H}:=75$	Average annual ambient relative humidity
$\gamma_{\mathrm{h}}:=1.7-0.01 \cdot \mathrm{H}=0.95$	Correction factor for relative humidity of ambient air

$$
\gamma_{\mathrm{st}}:=\frac{5}{1+\frac{\mathrm{f}_{\text {ci_beam }}}{\mathrm{ksi}}}=0.56
$$

$$
\Delta \mathrm{f}_{\mathrm{pR}}:=\mathrm{f}_{\mathrm{t}} \cdot 1.75 \%=3.40 \cdot \mathrm{ksi}
$$

$$
\Delta \mathrm{f}_{\mathrm{pLT}}:=10 \cdot \frac{\mathrm{f}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{ps}}}{A_{\text {beam }}} \cdot \gamma_{\mathrm{h}} \cdot \gamma_{\mathrm{st}}+12 \mathrm{ksi} \cdot \gamma_{\mathrm{h}} \cdot \gamma_{\mathrm{st}}+\Delta \mathrm{f}_{\mathrm{pR}}=19.66 \cdot \mathrm{ksi} \quad \text { long term prestress loss }
$$

Relaxation loss taken as 1.75% of the initial pull per experimental results from Grace et. al based on $1,000,000$ hours (114 years)
Correction factor for specified concrete strength at time of prestress transfer to the concrete member

Difference in thermal coefficient expansion between concrete and CFCC

$$
\alpha:=6 \cdot 10^{-6} \cdot \frac{1}{F}
$$

Difference in coefficient of thermal expansion between concrete and CFCC

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{amb}}:=68 \mathrm{~F} \\
& \mathrm{t}_{\mathrm{low}}:=-10 \mathrm{~F} \\
& \Delta \mathrm{t}:=\mathrm{t}_{\mathrm{amb}}-\mathrm{t}_{\mathrm{low}}=78 \mathrm{~F} \\
& \Delta \mathrm{f}_{\mathrm{pt}}:=\alpha \cdot \Delta \mathrm{t} \cdot \mathrm{E}_{\mathrm{p}}=9.83 \cdot \mathrm{ks} \\
& \mathrm{f}_{\mathrm{pe}}:=\mathrm{f}_{\mathrm{t}}-\Delta \mathrm{f}_{\mathrm{pLT}}-\Delta \mathrm{f}_{\mathrm{PES}} \\
& \mathrm{P}_{\mathrm{e}}:=\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{f}_{\mathrm{pe}}=1729.77 \cdot \mathrm{k} \\
& \mathrm{f}_{\mathrm{t}}=194.41 \cdot \mathrm{ksi} \\
& \mathrm{f}_{\mathrm{pe}}=153.39 \cdot \mathrm{ksi} \\
& \operatorname{loss}:=\frac{\mathrm{f}_{\mathrm{t}}-\mathrm{f}_{\mathrm{pe}}}{\mathrm{f}_{\mathrm{t}}}=21.10 \cdot \%
\end{aligned}
$$

Ambient temperature
lowest temperature in Michigan according to AASHTO IRFD 3.12.2

Change in the temperature

Prestress losses due to temp. effect
Effective prestressing stress after all losses
Effective prestressing force after all losses

Initial prestress prior to transfer
Prestress level after all losses

Total prestress loss

Debonding Criteria

Estimate the location from each beam end where top prestressing or debonding is no longer needed The vectors are developed for possible two different deboning lengths per row. Enter the number of debonded strands and the estimated debonding length in the vectors below per each row location
Location: number of strands: debonding length:

For debonding pattern, follow staggering guidelines in MDOT BDM 7.02.18.A. 2

$$
\mathrm{L}_{\mathrm{db}}:=\left\lvert\, \begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { length }\left(\text { row }_{\mathrm{db}}\right)-1 \\
& \mathrm{D}_{\mathrm{i}} \leftarrow 1_{\mathrm{db}_{\mathrm{i}}} \\
& \mathrm{D}
\end{aligned}\right.
$$

$\sum \mathrm{N}_{\mathrm{db}}=19$
Debond $_{\text {tot }}:=\frac{\sum \mathrm{N}_{\mathrm{db}}}{\mathrm{NO}_{\text {strands }}}=30.16 \% \quad$ Portion of partially debonded strands in beam section if $\left(\right.$ Debond $_{\text {tot }} \leq 40 \%$, "ok" , "No Good" $)=$ "ok"
Total number of debonded strands in rows

$$
\text { if }\left(\max \left(\text { Debond }_{\text {row }}\right) \leq 40 \%, \text { "ok" }, \text { "No Good" }\right)=\text { "ok" }
$$

The limit of 40% is taken according to MDOT BDM 7.02.18. A2

Optional: only needed if debonding scheme is not sufficient to eliminate the tensile stresses at beam ends either at transfer or due to handling and shipping

CFCC strand transfer length, ACI 440.4R Table 6.1

$$
\mathrm{L}_{\mathrm{t}}:=50 \mathrm{~d}_{\mathrm{s}}=2.49 \mathrm{ft}
$$

Number of top prestressing strands in the top flange

$$
\text { Row }_{\text {top }}:=\binom{2}{2}
$$

Depth of the top prestressing strands from the top surface of the beam

$$
\mathrm{d}_{\text {top }}:=\binom{3}{5} \text {.in }
$$

Initial prestressing stress/force at the top prestressing strands
$\mathrm{F}_{\mathrm{p} \text { _top }}:=50 \cdot \mathrm{ksi}$

Distance from the end of the beam to the point where the top prestressing is no longer needed
$\mathrm{x}_{\mathrm{p} \text { _top }}:=10 \cdot \mathrm{ft}$
Top prestressing strands shall not extend the the middle third of the beam. Otherwise, it could affect the stresses at service limit state

Check_Top_prestressing_Length $:=\left\lvert\,$| "Okay" if $x_{p _t o p} \leq \frac{L_{\text {beam }}}{3}$ |
| :--- |
| "Check service stress @ x.p_top" if $x_{p _t o p}>\frac{L_{b e a m}}{3}$ |$=\right.$ "Okay"

Distance from the end of the beam to the pocket where top prestressing strand is cut after concrete pouring. The middle region between the cut pockets shall be dobonded to avoid force transfer to the middle region
$\mathrm{x}_{\text {pocket }}:=\mathrm{x}_{\mathrm{p} \text { _top }}+\mathrm{L}_{\mathrm{t}}=12.493 \mathrm{ft}$

Serviceability Checks

Stress check locations along the beam
Stress locations after the transfer length for bonded and de-bonded strands
$X_{\text {release }}:=\operatorname{sort}\left[\operatorname{stack}\left[\mathrm{L}_{\mathrm{t}},\left(\mathrm{L}_{\mathrm{db}}+\mathrm{L}_{\mathrm{t}}\right), \mathrm{x}_{\mathrm{p} _ \text {top }}, \mathrm{x}_{\text {pocket }}\right]\right]=\left(\begin{array}{c}2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 10 \\ 10.493 \\ 10.493 \\ 10.493 \\ 12.493 \\ 14.493 \\ 18.493 \\ 22.493\end{array}\right)$

Extracting repreated X from the vector

$\mathrm{x}_{\text {release }}:=\left(\begin{array}{l}\mathrm{k} \leftarrow 0 \\ \mathrm{x}_{0} \leftarrow \mathrm{~L}_{\mathrm{t}} \\ \text { for } \mathrm{i} \in 1 . . \text { length }\left(\mathrm{X}_{\text {release }}\right)-1 \\ \left\lvert\, \begin{array}{l}\mathrm{k} \leftarrow \mathrm{k}+1 \text { if }\left(\mathrm{X}_{\text {release }_{\mathrm{i}}} \neq \mathrm{X}_{\left.\text {release }_{\mathrm{i}-1}\right)}\right) \\ \mathrm{x}_{\mathrm{k}} \leftarrow \mathrm{X}_{\text {release }_{\mathrm{i}}} \\ \mathrm{x}\end{array}\right. \\ \mathrm{x}_{\text {release }}=\left(\begin{array}{c}2.493 \\ 10 \\ 10.493 \\ 12.493 \\ 14.493 \\ 18.493 \\ 22.493\end{array}\right) \cdot \mathrm{ft} \\ \text { Area of strands in each row at each stress check location }\end{array}\right.$

$$
\begin{aligned}
& A_{d b}:=\mid \text { for } i \in 0 . . \text { length }\left(x_{\text {release }}\right)-1 \\
& \text { for } \mathrm{z} \in 0 \text {.. length(Row) }-1 \\
& \mathrm{~A}_{\mathrm{i}, \mathrm{z}} \leftarrow \mathrm{Row}_{\mathrm{Z}} \cdot \mathrm{~A}_{\text {strand }} \\
& \text { for } j \in 0 \text {.. length }\left(N_{d b}\right)-1 \\
& \mathrm{n} \leftarrow \mathrm{~N}_{\mathrm{db}}^{\mathrm{j}} \\
& \text { row } \leftarrow \text { row }_{\mathrm{db}_{\mathrm{j}}} \\
& \mathrm{~L} \leftarrow \mathrm{~L}_{\mathrm{db}} \\
& A_{i}, \text { row }-1 \leftarrow\left(A_{i}, \text { row-1 }-n \cdot A_{\text {strand }}\right) \cdot \frac{\text { xrelease }_{i}}{L_{t}} \text { if } x_{\text {release }}^{i} \text { }<L_{t} \\
& \mathrm{~A}_{\mathrm{i}, \text { row }-1} \leftarrow \mathrm{~A}_{\mathrm{i}, \text { row-1 }}-\mathrm{n} \cdot \mathrm{~A}_{\text {strand }} \text { if } \mathrm{L}_{\mathrm{t}} \leq \mathrm{x}_{\text {release }} \mathrm{i}_{\mathrm{i}} \leq \mathrm{L} \\
& \mathrm{~A}_{\mathrm{i}, \text { row }-1} \leftarrow \mathrm{~A}_{\mathrm{i}} \text {, row-1 }-\mathrm{n} \cdot \mathrm{~A}_{\text {strand }} \cdots \quad \text { if } \mathrm{L}<\mathrm{x}_{\text {release }}^{\mathrm{i}} \text { } \leq \mathrm{L}+\mathrm{L}_{\mathrm{t}} \\
& +n \cdot A_{\text {strand }} \cdot \frac{\left(\mathrm{X}_{\text {release }_{i}}-\mathrm{L}\right)}{L_{t}} \\
& \text { A }
\end{aligned}
$$

$\mathrm{A}_{\mathrm{db}}=\left(\begin{array}{ccccc}1.97 & 2.15 & 1.61 & 1.97 & 0.18 \\ 1.97 & 2.58 & 2.47 & 1.97 & 0.18 \\ 1.97 & 2.69 & 2.69 & 1.97 & 0.18 \\ 1.97 & 2.83 & 2.69 & 1.97 & 0.18 \\ 1.97 & 3.40 & 2.69 & 1.97 & 0.18 \\ 2.68 & 3.40 & 2.69 & 1.97 & 0.18 \\ 3.04 & 3.40 & 2.69 & 1.97 & 0.18\end{array}\right) \cdot \mathrm{in}^{2}$

Beam stresses at release due to prestressing only

Sign convention; negative and positive stresses/forces for compression and tension respectively

$$
\mathrm{P}_{\mathrm{ps}}:=-\mathrm{F}_{\mathrm{pt}} \cdot \mathrm{~A}_{\mathrm{db}}=\left(\begin{array}{cccccc}
-360.08 & -392.81 & -294.61 & -360.08 & -32.73 \\
-360.08 & -471.58 & -452.15 & -360.08 & -32.73 \\
-360.08 & -491.02 & -491.02 & -360.08 & -32.73 \\
-360.08 & -516.93 & -491.02 & -360.08 & -32.73 \\
-360.08 & -621.95 & -491.02 & -360.08 & -32.73 \\
-491.02 & -621.95 & -491.02 & -360.08 & -32.73 \\
-556.49 & -621.95 & -491.02 & -360.08 & -32.73
\end{array}\right) \cdot \mathrm{kip}
$$

Midspan moment due to prestressing at release

$$
\mathrm{M}_{\mathrm{ps}}:=\mathrm{P}_{\mathrm{ps}} \cdot\left(\mathrm{~d}_{\text {strand }}-\mathrm{y}_{\mathrm{t}}\right)=\left(\begin{array}{l}
-3691.356 \\
-4291.316 \\
-4439.338 \\
-4508.004 \\
-4786.323 \\
-5155.131 \\
-5339.535
\end{array}\right) \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Top and bottom concrete stresses at check locations due to prestressing ONLY

Beam stresses at release due to selfweight

Moment due to self weight of beam at check locations

$$
\mathrm{M}_{\mathrm{SW}}(\mathrm{x}):=\frac{\omega_{\text {beam }} \cdot \mathrm{x}}{2} \cdot\left(\mathrm{~L}_{\text {beam }}-\mathrm{x}\right)
$$

Top and bottom concrete stresses at check locations due to beam self weight ONIY

$$
\mathrm{f}_{\mathrm{SW}}:=\left\lvert\, \begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { length }\left(\mathrm{x}_{\text {release }}\right)-1 \\
& \\
& \begin{array}{l}
\mathrm{M} \leftarrow \mathrm{M}_{\mathrm{SW}}\left(\mathrm{x}_{\text {release }}\right) \\
\left.\mathrm{f}_{\mathrm{i}, 0}\right) \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\mathrm{T}}} \\
\mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{B}}}
\end{array} \\
& \mathrm{f}
\end{aligned}\right.
$$

Area of top prestressing strands at distance X.release from the end

$$
\begin{aligned}
& A_{\text {top }}:=\mid \text { for } i \in 0 . . \text { length }\left(x_{\text {release }}\right)-1 \\
& \text { for } z \in 0 \text {.. length }\left(\text { Row }_{\text {top }}\right)-1 \\
& \left\{\begin{array}{l}
A_{i, z} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }} \cdot \frac{\mathrm{x}_{\text {release }_{i}}}{L_{t}} \text { if } x_{\text {release }}^{i} \\
A_{i, z} \leftarrow L_{t} \\
\operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }} \text { if } L_{t}<x_{\text {release }_{i}} \leq x_{p_{-} \text {top }}
\end{array}\right. \\
& \begin{array}{l}
\mathrm{A}_{\mathrm{i}, \mathrm{z}} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot \mathrm{~A}_{\text {strand }-\frac{\mathrm{x}_{\text {release }_{i}}-\mathrm{x}_{\mathrm{p}_{-} \text {top }}}{\mathrm{L}_{\mathrm{t}}} \cdot\left(\operatorname{Row}_{\text {top }_{z}} \cdot \mathrm{~A}_{\text {strand }}\right) \text { if } \mathrm{x}_{\mathrm{p}_{-} \text {top }}<\mathrm{x}_{\text {release }_{i}} \leq \mathrm{x}}^{\mathrm{A}_{\mathrm{i}, \mathrm{z}} \leftarrow 0 \text { if } \mathrm{x}_{\text {release }_{i}}>\mathrm{x}_{\mathrm{p}_{-} \text {top }}+\mathrm{L}_{\mathrm{t}}}
\end{array} \\
& \mathrm{~A}_{\text {top }}=\left(\begin{array}{cc}
0.358 & 0.358 \\
0.358 & 0.358 \\
0.287 & 0.287 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \cdot \text { in }^{2} \quad \mathrm{x}_{\text {release }}=\left(\begin{array}{c}
2.493 \\
10 \\
10.493 \\
12.493 \\
14.493 \\
18.493 \\
22.493
\end{array}\right) \mathrm{ft} \\
& \text { Pp_top }:=-\mathrm{F}_{\text {p_top }} \cdot \mathrm{A}_{\text {top }}=\left(\begin{array}{cc}
-17.90 & -17.90 \\
-17.90 & -17.90 \\
-14.36 & -14.36 \\
-0.00 & -0.00 \\
0.00 & 0.00 \\
0.00 & 0.00 \\
0.00 & 0.00
\end{array}\right) \cdot \mathrm{kip} \\
& M_{p_{-} \text {top }}:=P_{p_{-} \text {top }} \cdot\left(d_{\text {top }}-y_{t}\right)=\left(\begin{array}{c}
96.063 \\
96.063 \\
77.053 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

$\mathrm{f}_{\mathrm{p} \text { _ top }}:=$	

Stresses in the beam due to the top prestressing strands only
fe_top $=\left(\begin{array}{cc}-80.134 & 18.197 \\ -80.134 & 18.197 \\ -64.276 & 14.596 \\ -2.821 \times 10^{-14} & 6.407 \times 10^{-15} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$ psi

Check for beam stresses at release against allowable stresses
Beam stresses at release

| | top bottom |
| :--- | :--- | :--- |
| Grace et al. | Lawrece Tech. University
 College of Engineering
 $21000 ~ W ~ 10 ~ M i l e ~ R d ., ~ S o u t h f i e l d, ~ M I ~$
 48075, U.S.A. |

Camber immediately after transfer

Camber due to prestressing assuming constant maximum force (ignore debonding)
$\frac{-\min \left(\mathrm{M}_{\mathrm{ps}}\right) \cdot \mathrm{L}_{\text {beam }^{2}}{ }^{2}}{8 \cdot \mathrm{E}_{\text {c.beam_i }} \mathrm{I}_{\text {beam }}}=4.978 \cdot \mathrm{in}^{2}$
Deflection due to top prestressing assuming constant maximum force (including debonding transfer length)
$\delta_{p_{-} \text {top }}:=\frac{\mathrm{M}_{\mathrm{p}_{-} \text {top }} \cdot{ }^{\cdot \mathrm{x}_{\mathrm{p}}}{ }^{\text {top }}{ }^{2}}{2 \cdot\left(\mathrm{E}_{\text {c.beam_i }} \mathrm{I}_{\text {beam }}\right)}=1.884 \times 10^{-3} \cdot$ in
Deflection due to selfweight of the beam
$\frac{-5 \cdot \omega_{\text {beam }} \cdot{ }^{L_{\text {beam }}}{ }^{4}}{384 \cdot \mathrm{E}_{\text {c.beam_i }} \mathrm{I}_{\text {beam }}}=-2.244 \cdot$ in

Considering the reduced camber due to the effect of debonding

$\sum \delta_{\mathrm{db}}=0.073 \cdot \mathrm{in}$
Camber $_{\text {tr }}:=\frac{-\min \left(\mathrm{M}_{\mathrm{ps}}\right) \cdot \mathrm{L}_{\text {beam }}{ }^{2}}{8 \cdot \mathrm{E}_{\mathrm{c} . \text { beam_i }} \mathrm{I}_{\text {beam }}}-\frac{5 \cdot \omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }}{ }^{4}}{384 \cdot \mathrm{E}_{\text {c.beam_i }} \mathrm{i}_{\text {beam }}}-\sum \delta_{\mathrm{db}}-\delta_{\mathrm{p}_{-} \text {top }}=2.659 \cdot$ in
Positive sign indicates camber upwards. Negative sign indeicates deflection

Check the stresses of the beam during shipping and handling, where the supports are not at the ends of the beam (Find the exact location of the supports during shipping and handling)

Moment due to self weight of beam at check locations

$$
\begin{array}{|l|l}
M_{\text {SW.ship }}(x):= & \frac{-\omega_{\text {beam }} \cdot x^{2}}{2} \text { if } 0 \cdot \text { in } \leq x \leq 1_{\text {ship }} \\
\frac{\omega_{\text {beam }} \cdot L_{\text {beam }} \cdot\left(x-1_{\text {ship }}\right)}{2}-\frac{\left(\omega_{\text {beam }} \cdot x^{2}\right)}{2} \text { if } 1_{\text {ship }} \leq x \leq \frac{L_{\text {beam }}}{2}
\end{array}
$$

Top and bottom concrete stresses at check locations due to beam self weight ONIY

$\mathrm{f}_{\text {sw.ship }}:=$	$\begin{aligned} & \text { for } \mathrm{i} \in 0 . . \text { length }\left(\mathrm{x}_{\text {release }}\right)-1 \\ & \left\{\begin{array}{l} \mathrm{M} \leftarrow \mathrm{M}_{\text {sw.ship }}\left(\mathrm{x}_{\text {release }}^{\mathrm{i}} \text { }\right) \\ \mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\mathrm{T}}} \\ \mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{B}}} \end{array}\right. \end{aligned}$

$$
\begin{gathered}
\text { top } \begin{array}{c}
\text { bottom } \\
\mathrm{f}_{\text {SW.ship }}=\left(\begin{array}{cc}
2 & -2 \\
-249 & 246 \\
-267 & 264 \\
-339 & 335 \\
-408 & 404 \\
-540 & 534 \\
-661 & 653
\end{array}\right) \cdot \mathrm{psi}
\end{array},
\end{gathered}
$$

Check for beam stresses during handling \& shipping against allowable stresses

Beam stresses during shipping @ handling

Service I limit State - Check for compressive stresses at top of deck at service conditions due to permanent loads only

Compressive stress at top of deck due to loads on composite section
$\mathrm{f}_{\text {cf_actual_mid }}:=\frac{-\left(\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}\right)}{\mathrm{S}_{\mathrm{t} 3 n} \cdot \mathrm{k}_{\mathrm{sdl}} \cdot \mathrm{n}}=-88 \mathrm{psi}$
if $\left(-\mathrm{f}_{\mathrm{cf} . \operatorname{deckp}}>-\mathrm{f}_{\text {cf_actual_mid }}\right.$, "ok", "no good" $)=$ "ok"
Service I limit State - Check for compressive stresses at top flange of beam at service conditions due to prestress and permament loads only
Compressive stress at top flange of beam due to prestressing and permanent loads
$\mathrm{f}_{\text {fefmactualumidn }}:=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC}}}{\mathrm{S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}=-1871 \mathrm{psi}$
if $\left(-\mathrm{f}_{\mathrm{cfp}}>-\mathrm{f}_{\mathrm{cf}}\right.$ _actual_mid, "ok" , "not ok" $)=$ "ok" \quad Allowable stress check

Service I limit State - Check for compressive stresses at top of deck at service conditions due to permanent and transient loads

Compressive stress at top of deck due to loads on composite section including wind effect according to AASHTO LRFD 2016 Interim revision
feffurctualumide: $=\frac{-\left(\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}\right)}{\mathrm{S}_{\mathrm{t} 3 \mathrm{n}} \cdot \mathrm{k}_{\mathrm{sdl}} \cdot \mathrm{n}}-\frac{1.0 \mathrm{M}_{\mathrm{LLI}}}{\mathrm{S}_{\mathrm{tn}} \cdot \mathrm{k} \cdot \mathrm{n}}-\frac{1.0 \mathrm{M}_{\mathrm{WS}}}{\mathrm{S}_{\mathrm{tn}} \cdot \mathrm{k} \cdot \mathrm{n}}=-684 \mathrm{psi}$

$$
\text { if }\left(-\mathrm{f}_{\mathrm{cf} . \text { deck }}>-\mathrm{f}_{\mathrm{cf} \text { _actual_mid }, ~ " o k ", ~ " n o ~ g o o d " ~}\right)=\text { "ok" } \quad \text { Allowable stress check }
$$

Service I limit State - Check for compressive stresses at top flange of beam at service conditions due to prestress, permanent, and transient loads

Compressive stress at top flange of beam due to prestressing and all loads. \qquad

Service III limit State - Check for tensile stresses at bottom flange of beam at service conditions

Tensile stress at bottom flange of beam due to prestressing and all loads

$$
\mathrm{f}_{\mathrm{tf} \text { _actual_mid }}:=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{~A}_{\mathrm{beam}}}-\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{~S}_{\mathrm{b} 3 \mathrm{n}}}+\frac{0.8 \mathrm{M}_{\mathrm{LLI}}}{\mathrm{~S}_{\mathrm{bn}}}=-62 \cdot \mathrm{psi}
$$

if $\left(\mathrm{f}_{\mathrm{tf}}>\mathrm{f}_{\mathrm{tf} \text { _actual_mid }}\right.$, "ok", "not ok" $)=$ "ok" Allowable stress check

Calculate bar area required to resist tension in the top flange at release, AASHTO Table

5.9.4.1.2-1:

$$
\begin{array}{ll}
\mathrm{f}_{\text {ti.ship }}=586.62 \mathrm{psi} & \begin{array}{l}
\text { Maximum top flange tensile stress at } \\
\text { release or handling, whichever is larger } \\
\text { (usually, handling stresses are larger) }
\end{array} \\
\mathrm{f}_{\mathrm{c}}:=\text { vlookup }\left(\mathrm{f}_{\mathrm{ti} . \text { ship }}, \mathrm{f}_{\mathrm{c} . \text { ship }}, 1\right) 0=-3.097 \times 10^{3} \mathrm{psi} & \begin{array}{l}
\text { Bottom flange compressive stress } \\
\text { corresponding to the maximum top flange } \\
\text { tensile stress at release/shipping }
\end{array} \\
\text { slope }_{\mathrm{m}}:=\frac{\mathrm{f}_{\text {ti.ship }}-\mathrm{f}_{\mathrm{c}}}{\mathrm{~d}}=51.167 \cdot \frac{\mathrm{psi}}{\mathrm{in}} & \begin{array}{l}
\text { Slope of the section stress over the depth } \\
\text { of the beam }
\end{array}
\end{array}
$$

$\mathrm{x}_{\mathrm{O}}:=\frac{\mathrm{f}_{\text {ti.ship }}}{\text { slope }_{\mathrm{m}}}=11.465 \cdot$ in
Distance measured from the top of the beam to the point of zero stress

Calculate the width of the beam where the tensile stresses are acting
$b_{\text {ten }}:=\mid$ for $i \in 0$.. ceil $\left(\frac{x_{0}}{i n}\right)$

$$
\mathrm{x}_{\mathrm{i}} \leftarrow \frac{\mathrm{x}_{\mathrm{o}} \cdot \mathrm{i}}{\operatorname{ceil}\left(\frac{\mathrm{x}_{\mathrm{o}}}{\mathrm{in}}\right)}
$$

$$
\mathrm{b}_{\mathrm{i}} \leftarrow \mathrm{~b}_{\mathrm{ft}} \text { if } 0 \leq \mathrm{x}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{ft}}
$$

$$
\mathrm{b}_{\mathrm{i}} \leftarrow\left[\mathrm{~b}_{\mathrm{ft}}-\frac{\mathrm{x}_{\mathrm{i}}-\mathrm{d}_{\mathrm{ft}}}{\mathrm{~d}_{\mathrm{h} 1}} \cdot\left(\mathrm{~b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{h} 1}\right)\right] \text { if } \mathrm{d}_{\mathrm{ft}}<\mathrm{x}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{ft}}+\mathrm{d}_{\mathrm{h} 1}
$$

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{i}} \leftarrow\left[\mathrm{~b}_{\mathrm{h} 1}-\frac{\mathrm{x}_{\mathrm{i}}-\mathrm{d}_{\mathrm{ft}}-\mathrm{d}_{\mathrm{h} 1}}{\mathrm{~d}_{\mathrm{h} 2}} \cdot\left(\mathrm{~b}_{\mathrm{h} 1}-\mathrm{b}_{\mathrm{v}}\right)\right] \text { if } \mathrm{d}_{\mathrm{ft}}+\mathrm{d}_{\mathrm{h} 1}<\mathrm{x}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{ft}}+\mathrm{d}_{\mathrm{h} 1}+\mathrm{d}_{\mathrm{h} 2} \\
& \mathrm{~b}_{\mathrm{i}} \leftarrow \mathrm{~b}_{\mathrm{v}} \text { if } \mathrm{d}_{\mathrm{ft}}+\mathrm{d}_{\mathrm{h} 1}+\mathrm{d}_{\mathrm{h} 2}<\mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

Calculate the tensile stress values every inch of depth starting from the top surface of the beam

$$
\begin{aligned}
& f:=\left\{\begin{array}{l}
\text { for } i \in 0 \ldots \text { ceil }\left(\frac{x_{0}}{\text { in }}\right) \\
\\
x_{i} \leftarrow \frac{x_{0} \cdot i}{\operatorname{ceil}\left(\frac{x_{0}}{\text { in }}\right)}
\end{array}\right. \\
& \mathrm{f}_{\mathrm{i}} \leftarrow \mathrm{f}_{\text {ti.ship }}-\text { slope }_{\mathrm{m}} \cdot \mathrm{x}_{\mathrm{i}} \\
& \text { f }
\end{aligned}
$$

$\mathrm{f}=\left(\begin{array}{c}586.62 \\ 537.735 \\ 488.85 \\ 439.965 \\ 391.08 \\ 342.195 \\ 293.31 \\ 244.425 \\ 195.54 \\ 146.655 \\ 97.77 \\ 48.885 \\ 0\end{array}\right) \mathrm{psi}$
$\mathrm{b}_{\text {ten }}=\left(\begin{array}{c}49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 49 \\ 40.456 \\ 29.31 \\ 18.163 \\ 12.803 \\ 10.892 \\ 8.981 \\ 8\end{array}\right) \cdot$ in

Calculate the tensile force that shall be resisted by top reinforcement
$\mathrm{T}_{\mathrm{m}}:=\sum_{\mathrm{i}=0}^{\text {length }(\mathrm{f})-2}\left[\frac{1}{4} \cdot\left(\mathrm{f}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}+1}\right) \cdot\left(\mathrm{b}_{\text {ten }}+\mathrm{b}_{\mathrm{ten}}^{\mathrm{i}+1}, ~\right) \cdot \frac{\mathrm{x}_{\mathrm{o}}}{\operatorname{ceil}\left(\frac{\mathrm{x}_{\mathrm{O}}}{\mathrm{in}}\right)}\right]=141.041 \cdot \mathrm{kip}$
$\mathrm{A}_{\text {s.top }}:=\frac{\mathrm{T}}{30 \cdot \mathrm{ksi}}=4.701 \cdot \mathrm{in}^{2}$
$\mathrm{A}_{\text {bar.top }}:=0.44 \cdot$ in 2
$\mathrm{n}_{\text {bar.release }}:=\operatorname{Ceil}\left(\frac{\mathrm{A}_{\mathrm{s} \text {.top }}}{\mathrm{A}_{\text {bar.top }}}, 1\right)=11$

Calculate area of tensile reinforcement required in the top of the beam. The stress in bars is limited to 30ksi per AASHTO 5.9.4.1.2. See Figure C.5.9.4.1.2-1 which is based upon . 5 f.y of steel rebar

Cross sectional area of No. 6 steel rebars

Calculation of minimum length of top tensile reinforcement

AASHTO LRFD Table 5.9.4.1.2-1 specifies a maximum concrete tensile stress of
$0.0948 \cdot \sqrt{\mathrm{f}_{\text {ci_beam }}} \leq 0.2 \mathrm{ksi}$ for tensile zones without bonded reinforcement
$\mathrm{f}_{\text {t. } \max }:=\min \left(0.0948 \cdot \sqrt{\frac{\mathrm{f}_{\text {ci_beam }}}{\mathrm{ksi}}}, 0.2\right) \cdot \mathrm{ksi}=0.2 \cdot \mathrm{ksi}$
Calculate the minimum required length of top reinforcement based on the stress calculated at distances x.release during release or shipping and handling, whichever is greater. If all the stresses are larger tha f.t.max, estimate the stress after the last point of debonding

$$
\mathrm{L}_{\text {topr }}:=\left\lvert\, \begin{aligned}
& \mathrm{h} \leftarrow \mathrm{x}_{\text {release }} \\
& \mathrm{f} \leftarrow \mathrm{f}_{\mathrm{c} . \text { ship }}\langle 0\rangle \\
& \mathrm{i} \leftarrow \text { length }(\mathrm{f})-1 \\
& \text { while } \mathrm{f}_{\mathrm{i}}<\mathrm{f}_{\mathrm{t} \text {.max }} \\
& \left\lvert\, \begin{array}{l}
\text { break if } \mathrm{i}=0 \\
\mathrm{i} \leftarrow \mathrm{i}-1 \\
\mathrm{x} \leftarrow 1 \cdot \mathrm{ft} \\
\mathrm{f}_{\mathrm{ps}} \leftarrow \mathrm{f}_{\mathrm{ps}}
\end{array}\right. \\
& \text { rows }\left(\mathrm{f}_{\mathrm{ps}}\right)^{-1,0}
\end{aligned}\right.
$$

$$
\begin{aligned}
& \mathrm{S}(\mathrm{x}) \leftarrow \mathrm{f}_{\mathrm{ps}}-\mathrm{f}_{\mathrm{t} \text {.max }}-\frac{\frac{\omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }} \cdot\left(\mathrm{x}-1_{\text {ship }}\right)}{2}-\frac{\left(\omega_{\text {beam }} \cdot \mathrm{x}^{2}\right)}{2}}{\mathrm{~S}_{\mathrm{T}}} \\
& \mathrm{~g} \leftarrow \operatorname{root}(\mathrm{~S}(\mathrm{x}), \mathrm{x}) \\
& \mathrm{g} \text { if } \mathrm{f}_{\text {length }}(\mathrm{f})-1>\mathrm{f}_{\text {t.max }} \\
& \frac{\mathrm{L}_{\text {beam }}}{2} \text { if } \operatorname{Im}(\mathrm{g}) \neq 0 \wedge \mathrm{f}_{\text {length }}(\mathrm{f})-1>\mathrm{f}_{\text {t.max }} \\
& \mathrm{h}_{\mathrm{i}+1} \text { otherwise }
\end{aligned}
$$

$\mathrm{L}_{\text {topr }}=26.789 \mathrm{ft}$

$\mathrm{L}_{\text {topR }}:=\mathrm{L}_{\text {topr }}+\mathrm{l}_{\mathrm{d}}=28.012 \mathrm{ft}$

Calculate the tension development length required for the tensile reinforcement in the top of the beam. As provided AASHTO 5.11.2.1.1 taking into account 1.4 modification factor per AASHTO 5.11.2.1.2

Minimum length required for the top reinforcement from each end, if larger than half the length of the beam, then the top reinforcement shall continue through the enitre beam length from end to end.

Flexural Capacity

Stress block factor, AASHTO 5.7.2.2. Assuming depth of neutral axis lies within the deck

$\beta_{1}:=\left\lvert\,$| 0.65 if $\mathrm{f}_{\mathrm{c} _ \text {deck }} \geq 8000 \mathrm{psi}$ |
| :--- |
| 0.85 if $\mathrm{f}_{\mathrm{c} _ \text {deck }} \leq 4000 \mathrm{psi}$ |
| $\left[0.85-\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {deck }}-4000 \mathrm{psi}}{1000 \mathrm{psi}}\right) 0.05\right]$ otherwise |$\quad=0.8\right.$

$\varepsilon_{\mathrm{cu}}:=0.003 \quad$ Maximum usable concrete compressive strain
$\varepsilon_{\mathrm{pu}}:=\frac{\mathrm{f}_{\mathrm{pu}}}{\mathrm{E}_{\mathrm{p}}}=0.0145 \quad$ Ultimate tensile strain of CFCC strand
$\varepsilon_{\mathrm{pe}}:=\frac{\mathrm{f}_{\mathrm{pe}}}{\mathrm{E}_{\mathrm{p}}}=0.0073 \quad$ Effective CFCC prestressing strain
$\varepsilon_{0}:=\varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}}=0.0072 \quad$ Reserve strain in CFCC
$\mathrm{d}_{\mathrm{i}}:=\mathrm{d}_{\text {strand }}+$ haunch + deck $_{\text {thick }}=\left(\begin{array}{c}79.00 \\ 77.00 \\ 75.00 \\ 73.00 \\ 71.00\end{array}\right) \cdot$ in
$\mathrm{A}_{\mathrm{f}}:=\mathrm{A}_{\text {strand }} \cdot$ Row $=\left(\begin{array}{c}3.04 \\ 3.40 \\ 2.69 \\ 1.97 \\ 0.18\end{array}\right) \cdot$ in 2
$\mathrm{P}_{\text {row }}:=\mathrm{A}_{\mathrm{f}} \cdot \mathrm{f}_{\mathrm{pe}}=\left(\begin{array}{c}466.76 \\ 521.68 \\ 411.85 \\ 302.02 \\ 27.46\end{array}\right) \cdot$ kip

$\mathrm{s}_{\mathrm{i}}:=\left\lvert\,$| for $\mathrm{i} \in 0 .$. length(Row) -1 |
| :--- |
| $\mathrm{~s}_{\mathrm{i}} \leftarrow \mathrm{d}_{\mathrm{i}_{0}}-\mathrm{d}_{\mathrm{i}_{\mathrm{i}}}$ |
| s |\(=\left(\begin{array}{l}0

2

4

6

8\end{array}\right) \cdot\right.\) in

$$
\operatorname{deck}_{\text {eff }}:=\text { deck }_{\text {thick }}-t_{\text {wear }}=9 \cdot \text { in }
$$

Effective deck thickness (total thickness minus assumed sacrificial wearing surface thickness)

Balanced reinforcement ratio

$c_{\text {bal }}:=\frac{\varepsilon_{\mathrm{cu}}}{\varepsilon_{\mathrm{cu}}+\varepsilon_{0}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}=23.17 \cdot$ in
Depth of neutral axis at balanced failure

Balanced reinforcement ratio assuming Rectangular section
$\rho_{\mathrm{R}_{-} \text {bal }}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{d}_{\mathrm{i}_{0}}}=0.0047$

Balanced reinforcement ratio assuming Flanged section

$$
\rho_{\mathrm{Fl}}^{-} \mathrm{bal}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \mathrm{deck}} \cdot \mathrm{deck}_{\mathrm{eff}} \cdot\left(\mathrm{~b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{ft}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}=0.0035
$$

Balanced reinforcement ratio assuming Double Flanged section

$$
\rho_{\text {DFl_bal }}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \mathrm{deck}_{\text {eff }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{web}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \mathrm{deck}} \cdot \mathrm{~d}_{\mathrm{ft}} \cdot\left(\mathrm{~b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{web}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{web}} \cdot \mathrm{c}_{\mathrm{b}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}
$$

$$
\begin{aligned}
& \mathrm{Fl} \text { T }:=\mid \mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
& \begin{array}{l}
\mathrm{A}_{\mathrm{eq} _\mathrm{s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
\mathrm{~A}_{\mathrm{eq} \mathrm{_f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
\mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1
\end{array} \\
& \text { while }\left|\mathrm{A}_{\text {eq_s }}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq} _\mathrm{s}}+\mathrm{P}_{\mathrm{e}}-0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right) \cdot \mathrm{deck}_{\mathrm{eff}}}{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{ft}}} \\
& \mathrm{~A}_{\text {eq_f }} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\mathrm{eff} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}} \\
& \binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho} \\
& \mathrm{Fl}-\mathrm{T}=\binom{13.7991}{0.0018} \\
& { }^{\mathrm{c}_{\mathrm{Fl} _\mathrm{T}}}:=\mathrm{Fl}_{-} \mathrm{T}_{0} \cdot \mathrm{in}=13.799 \cdot \mathrm{in} \\
& \rho_{\mathrm{Fl} _\mathrm{T}}:=\mathrm{Fl}_{-} \mathrm{T}_{1}=0.0018
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Rectangular Tension contorlled section

R_T $:=\mid \mathrm{c} \leftarrow 1.0 \cdot \mathrm{in}$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{eq} _\mathrm{s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|\mathrm{A}_{\mathrm{eqq}}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \mathrm{in}^{2}
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{eq} _\mathrm{s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]
$$

$$
\mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq}_{_} \mathrm{s}}+\mathrm{P}_{\mathrm{e}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \mathrm{deck}} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{eff}}}
$$

$$
\mathrm{A}_{\mathrm{eq} \mathrm{_f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]
$$

$$
\rho \leftarrow \frac{\mathrm{A}_{\mathrm{eqqf}}}{\mathrm{~b}_{\mathrm{eff} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}}
$$

$$
\binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho}
$$

$$
\mathrm{R}_{-} \mathrm{T}=\binom{12.876102}{0.001777}
$$

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{R}_{-} \mathrm{T}}:=\mathrm{R}_{-} \mathrm{T}_{0} \cdot \text { in }=12.876 \cdot \text { in } \\
& \rho_{\mathrm{R}_{-} \mathrm{T}}:=\mathrm{R}_{-} \mathrm{T}_{1}=0.0018
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Double-Flanged Tension contorlled section. Tr depth of the stress block is deeper than the depth of the deck and the top flange together.

$$
\begin{aligned}
& \text { DFI_T }:=\left\lvert\, \begin{array}{l}
\mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
\mathrm{~A}_{\text {eq_s }} \leftarrow 1.0 \cdot \mathrm{in}^{2}
\end{array}\right. \\
& \mathrm{~A}_{\text {eq_f }} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|A_{\text {eq_s }}-\mathrm{A}_{\text {eq }} \mathrm{f}\right|>0.01 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\text {eq } _s} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq} _\mathrm{s}}+\mathrm{P}_{\mathrm{e}}-0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\text {eff }}-\mathrm{b}_{\mathrm{web}}\right) \cdot \operatorname{deck}_{\text {eff }}-0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{web}}\right) \cdot \mathrm{d}_{\mathrm{ft}}}{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{web}}} \\
& \mathrm{~A}_{\text {eq } _} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\text {eff }} \cdot \mathrm{d}_{\mathrm{i}_{0}}} \\
& \binom{\frac{c}{\text { in }}}{\rho} \\
& \text { DFl_T }=\binom{-4.5819}{0.0018} \\
& \mathrm{c}_{\mathrm{DFl}}^{-\mathrm{T}}:=\mathrm{DFl}_{-} \mathrm{T}_{0} \cdot \text { in }=-4.582 \cdot \text { in } \\
& \rho_{\text {DFl_T }}:=\text { DFl_T }{ }_{1}=0.0018
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{0}(\mathrm{c}):=\varepsilon_{\mathrm{cu}} \cdot\left(\frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}}\right) \\
& \text { Fl_C }:=\mid c \leftarrow 1 \cdot \text { in } \\
& \mathrm{A}_{\text {eq_s }} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \begin{array}{l}
\mathrm{A}_{\text {eq } _\mathrm{f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
\mathrm{~N} \leftarrow \operatorname{length}\left(\mathrm{~d}_{\mathrm{i}}\right)-1
\end{array} \\
& \text { while }\left|\mathrm{A}_{\text {eq_s }}-\mathrm{A}_{\text {eq } _} \mathrm{f}\right|>0.01 \cdot \mathrm{in}^{2} \\
& \left\lvert\, A_{e_{\text {eq }} s} \leftarrow \sum_{i=0}^{N}\left[\left(1-\frac{s_{i_{i}}}{d_{i_{0}}-c}\right) \cdot A_{f_{i}}\right]\right. \\
& \mathrm{f}(\mathrm{c}) \leftarrow 0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right) \cdot \text { deck }_{\text {eff }}+0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{~b}_{\mathrm{ft}} \ldots \\
& +\left(-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\text {eq_s }}-\mathrm{P}_{\mathrm{e}}\right) \\
& \mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{f}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{~d}_{\mathrm{i}_{0}}\right) \\
& A_{\text {eq } _} \leftarrow \sum_{i=0}^{N}\left[\left(1-\frac{s_{i_{i}}}{d_{i_{0}}-c}\right) \cdot A_{f_{i}}\right] \\
& \left\{\begin{array}{l}
\rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\text {eff }} \cdot \mathrm{d}_{\mathrm{i}_{0}}} \\
\binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho}
\end{array}\right.
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Rectangular Compression contorlled section

$$
\begin{aligned}
& \text { R_C }:=\mid c \leftarrow 1 \cdot \text { in } \\
& \mathrm{A}_{\mathrm{eq} _\mathrm{s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\text {eq_f }} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~N} \leftarrow \operatorname{length}\left(\mathrm{~d}_{\mathrm{i}}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{eq}_{_} \mathrm{s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{g}(\mathrm{c}) \leftarrow 0.85 \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{~b}_{\mathrm{eff}}-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\text {eq_s }}-\mathrm{P}_{\mathrm{e}} \\
& \mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{~g}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{~d}_{\mathrm{i}_{0}}\right) \\
& \mathrm{A}_{\mathrm{eq} \mathrm{_f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\mathrm{eq} / \mathrm{f}}}{\mathrm{~b}_{\mathrm{eff} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}} \\
& \binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho} \\
& \text { R_C }_{-}=\binom{16.4643}{0.0018} \quad \mathrm{c}_{\mathrm{R}_{-} \mathrm{C}}:=\mathrm{R}_{-} \mathrm{C}_{0} \cdot \mathrm{in}_{=16.464 \cdot \text { in }} \\
& \rho_{\mathrm{R}_{-} \mathrm{C}}:=\mathrm{R}_{-} \mathrm{C}_{1}=0.0018
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Double Flanged Compression contorlled section
$\varepsilon_{0}(\mathrm{c}):=\varepsilon_{\mathrm{cu}} \cdot\left(\frac{\mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}}\right)$

$$
\begin{aligned}
& \text { DFl_C }:=\mid \mathrm{c} \leftarrow 1 \cdot \mathrm{in} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_} _} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\text {eq_f }} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|A_{e_{\text {eq }}}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{eq} _\mathrm{s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{f}(\mathrm{c}) \leftarrow 0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\text {web }}\right) \cdot \text { deck }_{\text {eff }}+0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{web}}\right) \cdot \mathrm{d}_{\mathrm{ft}} \cdots \\
& +0.85 \cdot \mathrm{f}_{\mathrm{c} \text { _deck }} \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{~b}_{\text {web }}-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\mathrm{eq} _} \mathrm{s}-\mathrm{P}_{\mathrm{e}} \\
& \mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{f}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{~d}_{\mathrm{i}_{0}}\right) \\
& \mathrm{A}_{\text {eq } _} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}} \\
& \binom{\frac{c}{\mathrm{in}}}{\rho} \\
& \text { DFl_C }=\binom{18.151975}{0.001771} \quad{ }^{\mathrm{c}_{\mathrm{DFl}}^{2}} \mathbf{C}:=\mathrm{DFl}_{-} \mathrm{C}_{0} \cdot \mathrm{in}=18.152 \cdot \text { in } \\
& \rho_{\text {DFl_C }}:=\text { DFl_C }_{1}=0.0018
\end{aligned}
$$

Check the mode of failure

Section_Mode :=	"Rectangular_Tension" if $\beta_{1} \cdot \mathrm{c}_{R_{-} T} \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{R_{-} T}<\rho_{R_{-} \text {bal }}$ "Rectangular_Compression" if $\beta_{1} \cdot c_{R_{-}} \mathrm{C} \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{R_{-}} \mathrm{C}>\rho_{R_{-} \text {bal }}$ "Flanged_Tension" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}} \mathrm{T}$, deck $_{\mathrm{eff}} \wedge \beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}}^{-} \mathrm{T} \leq \operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{Fl}_{-} \mathrm{T}}<\rho_{\mathrm{Fl}}$ "Flanged_Compression" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}} \mathrm{C}>$ deck $_{\mathrm{eff}} \wedge \beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}}^{-\mathrm{C}}, ~ \operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{Fl}} \mathrm{C}>$ "Double_Flanged_Tension" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{DFl}}^{-\mathrm{T}}, ~>\operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{DFl}} \mathrm{T}<\rho_{\mathrm{DFl}}$ bal "Double_Flanged_Compression" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{DFl}} \mathrm{C}$ $>\operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{DFl}} \mathrm{C}>\rho_{\mathrm{DFl}}$ bal

Section_Mode = "Flanged_Tension"

Select the correct depth of the N.A.

$$
\begin{aligned}
& \underset{m}{c}:=\mid{ }^{c_{R_{-}} T} \text { if } \beta_{1} \cdot c_{R_{-}} T \leq \text { deck }_{\text {eff }} \wedge \rho_{R_{-}} T<\rho_{R_{-}} \text {bal } \\
& { }^{c_{R_{-}} C} \text { if } \beta_{1} \cdot c_{R_{-}} \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{R_{-}} C>\rho_{R_{-} \text {bal }}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{c_{\text {DFl_C }}} \text { if } \beta_{1} \cdot \mathrm{c}_{\text {DFl_C }}>\operatorname{deck}_{\text {eff }}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\text {DFl_C }}>\rho_{\text {DFl_bal }}
\end{aligned}
$$

$\mathrm{c}=13.799 \cdot \mathrm{in}$

Disclaimer: The design of the section as a dobule flanged section, while theoretically possible, indicates that the depth of the N.A. is in the web of the beam. That could lead to an over-reinforced section that has little or no ductility. Designer is advised to avoid designing the section as a dobule flanged section if possible to ensure proper ducitliy and significant cracking.deflection before failure

Calculate the strain in the extreme CFRP based on the mode of failure

$$
\varepsilon_{0}:=\left\lvert\, \begin{aligned}
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Rectangular_Tension" } \\
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Flanged_Tension" } \\
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Double_Flanged_Tension" } \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Rectangular_Compression" } \\
& \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Flanged_Compression" } \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Double_Flanged_Compression" }
\end{aligned}\right.
$$

$$
\varepsilon:=\left\lvert\, \begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { length(Row) }-1 \\
& \varepsilon_{\mathrm{i}} \leftarrow \varepsilon_{0} \cdot\left(\frac{\mathrm{~d}_{\mathrm{i}_{\mathrm{i}}}-\mathrm{c}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \\
& \varepsilon
\end{aligned}=\left(\begin{array}{l}
0.0072 \\
0.0070 \\
0.0068 \\
0.0066 \\
0.0063
\end{array}\right)\right.
$$

$$
\varepsilon_{\mathrm{c}}:=\varepsilon_{0} \cdot\left(\frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{i}_{n}}-\mathrm{c}}\right)=0.00153 \quad \text { strain in the concrete top of the deck }
$$

Strength limit state Flexural Resistance:

Nominal moment capacity

$$
\begin{aligned}
& \phi:=\left\lvert\, \begin{array}{ll}
0.85 \text { if } \varepsilon_{0} \geq 0.005 \\
0.5167+66.67 \cdot \varepsilon_{0} \text { if } 0.002 \leq \varepsilon_{0} \leq 0.005 \\
0.65 \text { if } \varepsilon_{0} \leq 0.002
\end{array}\right. \\
& M_{r}:=\phi \cdot M_{n}=16975.10 \cdot \mathrm{kip} \cdot \mathrm{ft} \quad M_{u_{-} \text {strength }}=12116.81 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \text { if }\left(M_{r}>M_{\left.u_{-} \text {strength, "ok" }, \text { "no good" }\right)=\text { "ok" }}\right.
\end{aligned}
$$

$$
\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{u}_{-} \text {strength }}}=1.40
$$

$$
\begin{aligned}
& M_{n}:=\left\lvert\, E_{p} \cdot \overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \ldots \quad\right. \text { if } \operatorname{deck}_{\text {eff }}<\beta_{1} \cdot c \leq \operatorname{deck}_{e f f}+d_{f t} \\
& +0.85 f_{\mathrm{c}_{-} \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right) \cdot \text { deck }_{\text {eff }} \cdot\left(\frac{\beta_{1} \cdot \mathrm{c}}{2}-\frac{\text { deck }_{\text {eff }}}{2}\right) \\
& E_{p} \cdot \overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \ldots \\
& +0.85 \mathrm{f}_{\mathrm{c} \text { _deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\text {web }}\right) \cdot \text { deck }_{\text {eff }} \cdot\left(\frac{\beta_{1} \cdot \mathrm{c}}{2}-\frac{\text { deck }_{\text {eff }}}{2}\right) \ldots \\
& +0.85 f_{c _d e c k} \cdot\left(\mathrm{~b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{web}}\right) \cdot \mathrm{d}_{\mathrm{ft}} \cdot\left(\frac{\beta_{1} \cdot \mathrm{c}}{2}-\operatorname{deck}_{\mathrm{eff}}-\frac{\mathrm{d}_{\mathrm{ft}}}{2}\right) \\
& E_{p} \cdot\left(\overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \text { if } \beta_{1} \cdot c \leq \operatorname{deck}_{e f f}\right.
\end{aligned}
$$

Minimum reinforcement against cracking moment

$$
\mathrm{f}_{\mathrm{r}}:=0.24 \cdot \sqrt{\mathrm{f}_{\mathrm{c} _ \text {beam }} \cdot \mathrm{ksi}}=758.947 \mathrm{psi} \quad \text { Modulus of rupture of beam concrete, AASHTO A 5.4.2.6 }
$$

$$
\gamma_{1}:=1.6 \quad \text { Flexural variability factor }
$$

$$
\gamma_{2}:=1.1 \quad \text { Prestress viariability factor }
$$

$$
\gamma_{3}:=1.0 \quad \text { Reinforcement strength ratio }
$$

$\mathrm{f}_{\mathrm{cpe}}:=\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{B}}}=3762.60 \mathrm{psi}$
Compressive stress in concrete due to effective prestress forces only (after allowance for all prestress losses) at extreme fiber of section where tensile stress is caused by externally applied loads (ksi)
$M_{c r}:=\gamma_{3} \cdot\left[\left(\gamma_{1} \cdot f_{r}+\gamma_{2} \cdot f_{c p e}\right) \cdot S_{b n}-M_{D C 1} \cdot\left(\frac{S_{b n}}{S_{B}}-1\right)\right]=12010.14 \cdot \mathrm{kip} \cdot \mathrm{ft} \quad$ Cracking moment

Approximate mid-span deflection at failure

The deflection calculations follows the approach outlined in the paper " Flexural behaviour of CFRP precast Decked Bulb T beams " by Grace et al. in May/June 2012, Journal of Composites for Construction. In order to calculate the deflection at failure, the moment capacity of the composite section is used as the bending moment. The stress level in the bottom most row is used to calculate the flexural rigidity. The deflection calculated below is approximate, but will give an indication of the deformbility and the level of warning exhibited near failure of the beam.
$\mathrm{d}_{\mathrm{i}_{0}}=79.00 \cdot \mathrm{in}$
$\mathrm{c}=13.80 \cdot \mathrm{in}$
$\mathrm{y}_{\mathrm{S}}:=\mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c}=65.20 \cdot \mathrm{in}$
EI $:=\frac{M_{n} \cdot y_{S}}{\varepsilon_{0}}=2161517999.84 \cdot \mathrm{kip} \cdot \mathrm{in}^{2}$
$\omega_{\mathrm{f}}:=8 \cdot \frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{L}^{2}}=8.512 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$

$$
\delta_{\mathrm{f}}:=\frac{5 \cdot \omega_{\mathrm{f}} \cdot \mathrm{~L}^{4}}{384 \mathrm{EI}}=31.214 \cdot \mathrm{in}
$$

Depth of the bottom row of strands to the extreme compression fiber

Depth of the neutral axis to the extreme compression fiber

Distance from neutral axis to the bottom row of strands

Flexural rigidity of the beam/deck section based on the stress level in the bottom row of prestressing strands

Failure load (dead and live loads) uniformly dirstibuted over the entire span

Midspan deflection at strength limit state

CFCC Prestressed Precast Concrete Double-T beam with Cast-In-Place Concrete Slab

Disclaimer

"This publication is disseminated in the interest of information exchange. The Michigan Department of Transportation (hereinafter referred to as MDOT) expressly disclaims any liability, of any kind, or for any reason, that might otherwise arise out of any use of this publication or the information or data provided in the publication.
MDOT further disclaims any responsibility for typographical errors or accuracy of the information provided or contained within this information. MDOT makes no warranties or representations whatsoever regarding the quality, content, completeness, suitability, adequacy, sequence, accuracy or timeliness of the information and data provided, or that the contents represent standards, specifications, or regulations."
"This material is based upon work supported by the Federal Highway Administration under SPR-1690. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Federal Highway Administration."

About this Design Example

Description

This document provides guidance for the design of CFCC prestressed precast concrete beams according to AASHTO LRFD Bridge Design Specifications with the neccessary ammendmets where applicable, based on available literature and experimental data from tests conducted by Grace et. al at Lawrence Technological University. The example provided herein is a double-T beam. The cross-section of the bridge is Type I as described by AASHTO Table 4.6.2.2.1-1.

Standards

The following design standards were utilized in this example:

- AASHTO LRFD Bridge Design Specification, 7th Edition, 2014
- Michigan Department of Transportation Bridge Design Manual, Volume 5
- Michigan Department of Transportation Bridge Design Guide
- ACI 440.4R-04, Prestressing Concrete Structures with FRP Tendons

Code \& AASHTO LRFD UPDATES

This Mathcad sheet is developed based on available design guidelines and available AASHTO LRFD edition at the time of writing the sheet. Designer shall check and update design equations according to the latest edition of AASHTO LRFD

General notes

The following notes were considered in this design example:
1- Guarnateed strength of CFRP is reduced to account for environmental effect. The design guarnateec strength is taken as $0.9 \times$ guarnateed strength recommended by manufacturer

2- Initial prestressing stress is limited to 65% of the design (reduced) guaranteed strength according to current ACI 440.4R-04. This limit is subject to change. Check the latest recommendations for initial/jacking stress in CFRP strands

3- CFCC strength immediately following transfer is limited to 60\% of the design (reduced) guaranteed strength according ccording to current ACI 440.4R-04. This limit is subject to change. Check the latest recommendations

4- The depth of the haunch is ignored in calculating section properties or flexural capacity, while is included in calculating the dead loads

5- In strength limit state flanged section design, the concrete strength of the beam portion participating i the stress block was conservatively assumed equal to the concrete strength of the deck (AASHTO LRF C5.7.2.2)

6- Barrier weight was taken as $475 \mathrm{lb} / \mathrm{ft}$. While, weight of midspan diaphragm was $500 \mathrm{lb} / \mathrm{beam}$
7- In srength limit state, the effective height considered for the flanged section equal to the effective deck thickness and the beam top flange

8- In the Mathcad sheet, the option of debonding as well as top prestressing strands are offered as means of reducing the end tensile stresses of the beams

9- This design example is developed based on allowable jacking strength and stress immediately after transfer according to the limits presented in the $\mathrm{ACl} 440.4 \mathrm{R}-04$. The document can be updated using other prestress limits such as those presented in MDOT SPR-1690 research report and guide

overhang $:=3 \mathrm{ft}+6 \mathrm{in}$
barrier $_{\text {width }}:=1 \mathrm{ft}+2.5 \mathrm{in}$
$\mathrm{S}_{\text {exterior }}:=21 \mathrm{ft}+0 \mathrm{in}$
Lanes $:=$ floor $\left(\frac{\text { clear }_{\text {roadway }}}{12 \mathrm{ft}}\right)=1.00$
angle $_{\text {crossing }}:=60 \mathrm{deg}$

Deck overhang width (same value on both overhangs is assumed)
Barrier width; include offset from back of barrier to edge of deck
Hz distance between center of gravity of two exterior girders

The number of design traffic Lanes

Angle measured from centerline of bridge to the reference line
$\theta_{\text {skew }}:=90 \mathrm{deg}-$ angle $_{\text {crossing }}=30.00 \cdot \mathrm{deg} \quad \begin{aligned} & \text { Angle measured from a line perpendicular to the } \\ & \text { centerline of bridge to the reference line }\end{aligned}$

Concrete Material Properties

$\mathrm{f}_{\mathrm{c} _ \text {deck }}:=5 \mathrm{ksi}$	Deck concrete compressive strength
$\mathrm{f}_{\mathrm{c} _ \text {beam }}:=8 \mathrm{ksi}$	FinaL beam concrete compressive strength
$\mathrm{f}_{\text {ci_beam }}:=0.8 \mathrm{f}_{\mathrm{c} _ \text {beam }}=6.4 \cdot \mathrm{ksi}$	Beam concrete compressive strength at reLease
$\omega_{\text {conc }}:=0.150 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}$	Unit weight of reinforced concrete for load calculations

barrier $_{\text {weight }}:=0.475 \frac{\mathrm{kip}}{\mathrm{ft}} \quad$ Weight per foot of barrier (aesthetic parapet tube, see MDOT BDG 6.29.10)

Unit weights of concrete used for modulus of eLasticity calculations, AASHTO Table 3.5.1-1

$$
\gamma_{\mathrm{c}}\left(\mathrm{f}_{\mathrm{c}}\right):=\left\{\begin{array}{l}
0.145 \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \text { if } \mathrm{f}_{\mathrm{c}} \leq 5 \mathrm{ksi} \\
0.140 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}+0.001 \cdot\left(\frac{\mathrm{f}^{\prime} \mathrm{c}}{\mathrm{ksi}}\right) \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
& \gamma_{\mathrm{c} . \text { deck }}:=\gamma_{\mathrm{c}}\left(\mathrm{f}_{\mathrm{c} _ \text {deck }}\right)=145 \cdot \mathrm{pcf} \\
& \gamma_{\text {c.beam }}:=\gamma_{\mathrm{c}}\left(f_{\mathrm{c} \text { _beam }}\right)=148 \cdot \mathrm{pcf} \\
& \gamma_{\text {ci.beam }}:=\gamma_{c}\left(f_{\text {ci_beam }}\right)=146.4 \cdot \mathrm{pcf}
\end{aligned}
$$

Concrete Modulus of Elasticity

Elastic modulus for concrete is as specified by AASHTO A 5.4.2.4 with a correction factor of 1.0

$$
\begin{aligned}
& \mathrm{E}_{\text {c.beam_i }}:=120000 \cdot\left(\frac{\gamma_{\text {ci.beam }}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\text {ci_beam }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=4745.73 \cdot \mathrm{ksi} \quad \text { Beam concrete at reLease } \\
& \mathrm{E}_{\text {c.beam }}:=120000 \cdot\left(\frac{\gamma_{\text {c.beam }}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {beam }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=5220.65 \cdot \mathrm{ksi} \quad \text { Beam concrete at } 28 \text { days } \\
& \mathrm{E}_{\mathrm{c} . \text { deck }}:=120000 \cdot\left(\frac{\gamma_{\text {c.deck }}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {deck }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=4291.19 \cdot \mathrm{ksi} \quad \text { Deck concrete at } 28 \text { days }
\end{aligned}
$$

CFCC Material Properties

$\mathrm{d}_{\mathrm{s}}:=15.2 \mathrm{~mm}=0.6 \cdot \mathrm{in}$	Prestressing strand diameter
$\mathrm{A}_{\text {strand }}:=0.179 \cdot \mathrm{in}^{2}$	Effective cross sectionaL area
$\mathrm{E}_{\mathrm{p}}:=21000 \mathrm{ksi}$	Tensile elastic modulus
$\mathrm{T}_{\text {guts }}:=60.70 \mathrm{kip}$	Guaranteed ultimate tensile capacity
$\mathrm{f}_{\text {pu }}:=\frac{\mathrm{T}_{\text {guts }}}{\mathrm{A}_{\text {strand }}}=339.11 \cdot \mathrm{ksi}$	Calculated ultimate tensile stress

$\mathrm{C}_{\text {Ese }}:=0.9 \quad$ Environmental reduction factor for prestressed concrete $\mathrm{f}_{\text {pu.service }}:=\mathrm{C}_{\text {Ese }} \cdot \mathrm{f}^{\mathrm{f}}{ }^{\mathrm{pu}}=305.2 \cdot \mathrm{ksi}$
$\mathrm{C}_{\text {Est }}:=0.9$

$$
\mathrm{f}_{\mathrm{pu}}:=\mathrm{C}_{\mathrm{Est}} \cdot \mathrm{f}_{\mathrm{pu}}=305.2 \cdot \mathrm{ksi}
$$

exposed to weather for service limit state calculations

Environmental reduction factor for prestressed concrete exposed to weather for strength limit state calculations

Modular Ratio

$\mathrm{n}:=\frac{\mathrm{E}_{\text {c.beam }}}{\mathrm{E}_{\text {c.deck }}}=1.217 \quad$ Modular ratio for beam
$\mathrm{n}_{\mathrm{p}}:=\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{c} . \text { deck }}}=4.89 \quad$ Modular ratio for Prestressing CFCC

Double-T Beam Section Properties:

$\mathrm{A}_{\text {beam }}:=1470 \text { in }^{2}$	Minimum area of beam section	
$\mathrm{d}:=48 \mathrm{in}$	Depth of beam	
$\mathrm{b}_{\text {web }}:=11 \mathrm{in}$	Minimum web thickness (at the bottom)	
$\mathrm{b}_{\text {web.max }}:=12 \mathrm{in}$	Maximum web thickness (at the top)	
$\mathrm{b}_{\mathrm{ft}}:=84 \mathrm{in}$	Width of top flange	
$\mathrm{d}_{\mathrm{ft}}:=6 \mathrm{in}$	Thickness of top flange	
$\mathrm{b}_{\mathrm{fb}}:=0.0 \mathrm{in}$	Width of bottom flange	
$\mathrm{d}_{\mathrm{fb}}:=0.0 \mathrm{in}$	Thickness of bottom flange	
$\mathrm{b}_{\mathrm{v}}:=\frac{\mathrm{b}_{\mathrm{web}}+\mathrm{b}_{\mathrm{web} \cdot \mathrm{max}}}{2} \cdot 2=23.00 \cdot \mathrm{in}$	Total web shear width	
$\omega_{\text {beam }}:=\mathrm{A}_{\text {beam }} \cdot(150 \mathrm{pcf})=1531.25 \cdot \mathrm{plf}$	Beam weight per foot	
$\mathrm{I}_{\text {beam }}:=328802.29 \mathrm{in}^{4}$	Minimum moment of inertia	
$\mathrm{y}_{\mathrm{t}}:=18.81 \mathrm{in}$	Depth from centroid to top of beam	
$\mathrm{y}_{\mathrm{b}}:=29.19 \mathrm{in}$	Depth from centroid to soffit of beam	
$\mathrm{S}_{\mathrm{T}}:=\frac{\mathrm{I}_{\text {beam }}}{\mathrm{y}_{\mathrm{t}}}=17480.19 \cdot \mathrm{in}^{3}$	Minimum section modulus about top flange	
$\mathrm{S}_{\mathrm{B}}:=\frac{\mathrm{I}_{\mathrm{beam}}}{\mathrm{y}_{\mathrm{b}}}=11264.21 \cdot \mathrm{in}^{3}$	Minimum section modulus about bottom flange	
Effective Flange Width of Concrete Deck Slab, AASHTO A 4.6.2.6		
Grace et al. La 21000	rence Tech. University ollege of Engineering 10 Mile Rd., Southfield, MI 48075, U.S.A	7/1/2019

\(\left.$$
\begin{array}{ll}\text { Beam_Design }:=\text { "Interior" } & \begin{array}{l}\text { Choose the design of the beam either } \\
\text { "Interior" or "Exterior" }\end{array} \\
\mathrm{b}_{\text {eff.int }}:=\mathrm{S}=7.00 \mathrm{ft} & \text { Effective flange width of deck slab for interior beams } \\
\mathrm{b}_{\text {eff.ext }}:=\frac{1}{2} \cdot \mathrm{~S}+\text { overhang }=7.00 \mathrm{ft} & \text { Effective flange width of deck slab for exterior beams }\end{array}
$$ \mathrm{b}_{eff}:=\left\lvert\, \begin{array}{ll}\mathrm{b}_{eff.int} if Beam_Design="Interior"=2.134

\mathrm{~b}_{eff.ext} if Beam_Design="Exterior"\end{array}\right.\right]\)| $\mathrm{d}_{\text {total }}:=$ deck $_{\text {thick }}+\mathrm{d}=51 \cdot \mathrm{in}$ | Total depth of section including deck |
| :--- | :--- |

Dynamic load Allowance

Dynamic load allowance from AASHTO Table 3.6.2.1-1 is applied as an increment to the static wheel loads to account for wheel load impacts from moving vehicles.
IM :=1+33\% = 1.33

Design Factors

These factors are related to the ductility, redundancy and operational importance of the bridge structure components and are applied to the strength limit state.

Ductility

For Strength limit State, a factor of 1.05 is used for nonductile components and connections, 1.00 for conventional designs and details complying with these specifications, and 0.95 for components and connections for which additional ductility-enhancing measures have been specified beyond those required by these specifications, AASHTO A 1.3.3.
$\eta_{D}:=1.00$

Redundancy

For Strength limit State, a factor of 1.05 is used for nonredundant members, 1.00 for conventional levels of redundancy, foundation elements where ϕ already accounts for redundancy as specified in AASHTC A 10.5, and 0.95 for exceptional levels of redundancy beyond girder continuity and a torsionally-closed cross-section, AASHTO A 1.3.4.

$$
\eta_{\mathrm{R}}:=1.00
$$

Operational Importance

For the Strength limit State, a factor of 1.05 is used for critical or essential bridges, 1.00 for typical bridges, and 0.95 for relatively less important bridges, AASHTO A 1.3.5.
$\eta_{\mathrm{I}}:=1.00$

Ductility, redundancy, and operational classification considered in the load modifier, AASHTO Eqn. 1.3.2.1-2.

$$
\eta_{\mathrm{i}}:=\eta_{\mathrm{D}} \cdot \eta_{\mathrm{R}} \cdot \eta_{\mathrm{I}}=1.00
$$

Composite Section Properties

This is the moment of inertia resisting superimposed dead loads.

Elastic Section Properties -Composite Section: k=2

$\mathrm{k}_{\mathrm{sdl}}:=2$
$\begin{array}{ll}\mathrm{A}_{\text {haunchkn }}:=\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k}_{\text {sdl }} \mathrm{n}} \cdot \text { haunch }=0 \cdot \text { in }^{2} & \text { effective area of haunch } \\ d_{\text {haunchkn }}:=\mathrm{d}+\frac{\text { haunch }}{2}=48 \cdot \text { in } & \text { Depth of centroid of haunch to bottom of beam }\end{array}$

$$
\mathrm{Ad}_{\text {haunchkn }}:=\mathrm{d}_{\text {haunchkn }} \cdot \mathrm{A}_{\text {haunchkn }}=0 \cdot \text { in }^{3}
$$

$$
\mathrm{b}_{\mathrm{effkn}}:=\frac{\mathrm{b}_{\mathrm{eff}}}{\mathrm{k}_{\mathrm{sdl}} \mathrm{n}}=34.52 \cdot \mathrm{in}
$$

Transformed deck width
$\mathrm{d}_{\text {slabkn }}:=\mathrm{d}+$ haunch $+\frac{\text { deck }_{\text {thick }}-\mathrm{t}_{\text {wear }}}{2}=49.5 \cdot$ in \quad Depth from center of deck to beam soffit
$\mathrm{A}_{\text {slabkn }}:=$ deck $_{\text {thick }} \cdot \mathrm{b}_{\text {effkn }}=103.57 \cdot$ in $^{2} \quad$ Area of transformed deck section

$$
\begin{array}{ll}
\mathrm{Ad}_{\text {slabkn }}:=\mathrm{A}_{\text {slabkn }} \cdot \mathrm{d}_{\text {slabkn }}=5126.59 \cdot \text { in }^{3} & \begin{array}{l}
\text { Static moment of inertia of transformed } \\
\text { section about soffit of beam }
\end{array} \\
\mathrm{d}_{\mathrm{k}}:=\frac{\mathrm{A}_{\text {beam }} \cdot \mathrm{y}_{\mathrm{b}}+\mathrm{Ad}_{\text {slabkn }}+\mathrm{Ad}_{\text {haunchkn }}}{\mathrm{A}_{\text {beam }}+\mathrm{A}_{\text {slabkn }}+\mathrm{A}_{\text {haunchkn }}}=30.53 \cdot \text { in } & \begin{array}{l}
\text { Depth of CG of composite section from beam } \\
\text { soffit }
\end{array}
\end{array}
$$

$$
\mathrm{I}_{\text {oslabkn }}:=\frac{\mathrm{b}_{\text {effkn }} \cdot \text { deck }_{\text {thick }}{ }^{3}}{12}=77.68 \cdot \mathrm{in}^{4} \quad \begin{aligned}
& \text { Moment of inertia of transformed deck about } \\
& \text { centroid }
\end{aligned}
$$

$$
I_{\text {haunchkn }}:=\frac{\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k}_{\mathrm{sdl}} \cdot \mathrm{n}^{2}} \text {.haunch }^{3}}{12}=0 \cdot \mathrm{in}^{4}
$$ Effective moment of interia of the haunch

Moment of inertia of composite section to resist superimposed dead loads calculated using parallel axis theorem

$$
\begin{aligned}
\mathrm{I}_{3 \mathrm{n}}:= & \mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot\left(\mathrm{d}_{\mathrm{k}}-\mathrm{y}_{\mathrm{b}}\right)^{2}+\mathrm{I}_{\text {oslabkn }}+\mathrm{A}_{\text {slabkn }} \cdot\left(\mathrm{d}_{\text {slabkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}+\mathrm{I}_{\text {haunchkn }} \cdots=368789.4 \cdot \mathrm{in}^{4} \\
& +\mathrm{A}_{\text {haunchkn }} \cdot\left(\mathrm{d}_{\text {haunchkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}
\end{aligned}
$$

$y_{b 3 n}:=d_{k}=30.527$.in \quad| Depth of CG of composite section from |
| :--- |
| beam soffit |

$$
\mathrm{S}_{\mathrm{b} 3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{h} 3 \mathrm{n}}}=12080.86 \cdot \mathrm{in}^{3} \quad \text { Section modulus about bottom of beam }
$$

$\mathrm{y}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}:=\mathrm{d}-\mathrm{y}_{\mathrm{b} 3 \mathrm{n}}=17.47 \cdot \mathrm{in}$	Depth of CG of composite section from top of beam
$\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}=21105.93 \cdot \mathrm{in}^{3}$	Section modulus about top of beam
$\mathrm{y}_{\mathrm{t} 3 \mathrm{n}}:=\mathrm{d}+$ haunch + deck $_{\text {thick }}-\mathrm{t}_{\text {wear }}-\mathrm{y}_{\mathrm{b} 3 \mathrm{n}}=20.47 \cdot \mathrm{in}$	Depth of CG of composite section from top of deck
$\mathrm{S}_{\mathrm{t} 3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{t} 3 \mathrm{n}}}=18013.23 \cdot \mathrm{in}^{3}$	Section modulus about top of deck

Elastic Section Properties - Composite Section: k=1

These properties are used to evaluate the moment of inertia for resisting live loads Assumed wearing surface not included in the structural design deck thickness, per MDOT BDM 7.02.19.A.4
$\mathrm{k}:=1$

$$
\begin{array}{ll}
\mathrm{A}_{\text {hamohakn }}:=\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{kn}} \cdot \text { haunch }=0 \cdot \mathrm{in}^{2} & \text { effective area of haunch } \\
\mathrm{d}_{\text {hanumakne }}:=\mathrm{d}+\frac{\text { haunch }}{2}=48 \cdot \text { in } & \begin{array}{l}
\text { Depth of centroid of haunch to bottom of } \\
\text { heam }
\end{array}
\end{array}
$$

$$
\text { Ad }_{\text {haunehkm }}:=\mathrm{d}_{\text {haunchkn }} \cdot \mathrm{A}_{\text {haunchkn }}=0 \cdot \mathrm{in}^{3}
$$

$$
{\underset{\text { weffkna }}{ }:=\frac{\mathrm{b}_{\text {eff }}}{\mathrm{kn}}=69.05 \cdot \mathrm{in} \quad \quad \text { Transformed deck width }}_{\text {in }} \quad \text {. }
$$

$$
\mathrm{d}_{\text {slablann: }}:=\mathrm{d}+\text { haunch }+\frac{\text { deck }_{\text {thick }}-\mathrm{t}_{\text {wear }}}{2}=49.5 \cdot \text { in } \quad \text { Depth from center of deck to beam soffit }
$$

$$
\mathrm{A}_{\text {slabkan: }}:=\operatorname{deck}_{\text {thick }} \cdot \mathrm{b}_{\text {effkn }}=207.14 \cdot \mathrm{in}^{2} \quad \text { Area of transformed deck section }
$$

$$
\mathrm{Ad}_{\text {slabkann }}:=\mathrm{A}_{\text {slabkn }} \cdot \mathrm{d}_{\text {slabkn }}=10253.18 \cdot \mathrm{in}^{3}
$$

Static moment of inertia of transformed section about soffit of beam

$$
\mathrm{d}_{\mathrm{kv}}:=\frac{\mathrm{A}_{\text {beam }} \cdot \mathrm{y}_{\mathrm{b}}+\mathrm{Ad}_{\text {slabkn }}+\mathrm{Ad}_{\text {haunchkn }}}{A_{\text {beam }}+\mathrm{A}_{\text {slabkn }}+\mathrm{A}_{\text {haunchkn }}}=31.7 \cdot \text { in }
$$

Depth of CG of composite section from beam soffit

$$
\mathrm{I}_{\text {Oslablam }}:=\frac{\mathrm{b}_{\mathrm{effkn}} \cdot \mathrm{deck}_{\text {thick }}^{3}}{12}=155.35 \cdot \mathrm{in}^{4}
$$

Moment of inertia of transformed deck about centroid

I dauwnchkm $:=\frac{\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k} \cdot \mathrm{n}} \cdot \text { haunch }^{3}}{12}=0 \cdot \mathrm{in}^{4}$
Effective moment of interia of the haunch

Moment of inertia of composite section to resist superimposed dead loads calculated using parallel axis theorem

$$
\begin{aligned}
\mathrm{I}_{\mathrm{n}}:= & \mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot\left(\mathrm{d}_{\mathrm{k}}-\mathrm{y}_{\mathrm{b}}\right)^{2}+\mathrm{I}_{\text {oslabkn }}+\mathrm{A}_{\text {slabkn }} \cdot\left(\mathrm{d}_{\text {slabkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}+\mathrm{I}_{\text {haunchkn }} \cdots=403847.4 \cdot \mathrm{in}^{4} \\
& +\mathrm{A}_{\text {haunchkn }} \cdot\left(\mathrm{d}_{\text {haunchkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}
\end{aligned}
$$

$\mathrm{y}_{\mathrm{bn}}:=\mathrm{d}_{\mathrm{k}}=31.698 \cdot \mathrm{in} \quad$ Depth of CG of composite section from beam
$\mathrm{S}_{\mathrm{bn}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{bn}}}=12740.31 \cdot \mathrm{in}^{3}$
soffit
Section modulus about bottom of beam

Depth of CG of composite section from top of beam

Section modulus about top of beam

Depth of CG of composite section from top of deck

Section modulus about top of deck
$\mathrm{S}_{\mathrm{tn}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{tn}}}=20922.99 \cdot \mathrm{in}^{3}$

live load lateral Distribution Factors

Cross-section classification \qquad

Type I with beams sufficiently connected to act as a unit

Distribution of live loads from the deck to the beams is evaluated based on the AASHTO specified distribution factors. These factors can only be used if generally, the following conditions are met;

- Width of deck is constant.
- Unless otherwise specified, the number of beams is not less than four.
- Beams are parallel and have approximately the same stiffness.
- Curvature in plan is less than the limit specified in AASHTO A 4.6.1.2.4.
- Unless otherwise specified, the roadway part of the overhang does not exceed 3.0 ft .
- Cross-section is consistent with one of the cross-sections shown in AASHTO Table 4.6.2.2.1-1.

Unless otherwise stated, stiffness parameters for area, moments of inertia and torsional stiffness used shall be taken as those of the cross-section to which traffic will be applied (composite section)

Distance between the centers of gravity of the basic beam and deck

$$
\mathrm{e}_{\mathrm{g}}:=\mathrm{d}+\left(\frac{\text { deck }_{\text {thick }}}{2}\right)+\text { haunch }-\mathrm{y}_{\mathrm{b}}=20.31 \cdot \text { in }
$$

logitudinal stiffness parameter
$K_{g}:=n \cdot\left(I_{\text {beam }}+A_{\text {beam }} \cdot e_{g}{ }^{2}\right)=1137727.64 \cdot$ in 4

Distribution of live loads for Moment in Interior Beams, AASHTO Table 4.6.2.2.2b-1

Range of Applicability
if $(3.5 \mathrm{ft}<\mathrm{S} \leq 16 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $\left(4.5\right.$ in deck $_{\text {thick }} \leq 12$ in, "ok", "not ok" $)=$ "not ok"
if $(20 \mathrm{ft}<\mathrm{L} \leq 240 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $\left(\mathrm{NO}_{\text {beams }} \geq 4\right.$, "ok" , "not ok" $)=$ "ok"
if $\left(10000\right.$ in $^{4}<K_{g} \leq 7000000$ in 4, "ok", "not ok" $)=$ "ok"

One lane loaded

$\mathrm{M}_{\text {lane1_int }}:=0.06+\left(\frac{\mathrm{S}}{14 \mathrm{ft}}\right)^{0.4} \cdot\left(\frac{\mathrm{~S}}{\mathrm{~L}}\right)^{0.3} \cdot\left(\frac{\mathrm{~K}_{\mathrm{g}}}{12 \cdot \mathrm{~L} \cdot \text { deck }_{\text {thick }} 3} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.1}=0.646$

live load moment disribution factor for interior beam

$\mathrm{M}_{\text {lane_int }}:=\max \left(\mathrm{M}_{\text {lane1_int }}\right)=0.646$

Distribution of live loads for Moment in Exterior Beams, AASHTO Table 4.6.2.2.2d-1

One lane loaded (using the lever rule)

The lever rule involves the use of statics to determine the lateral distribution to the exterior girder by summing moments about the adjacent interior girder to determine the wheel-load reaction at the exterio girder assuming the concrete deck is hinged at the interior girder. A wheel cannot be closer than 2'-0" to the toe of barrier, and the standard wheel spacing is $6^{\prime}-0{ }^{\prime \prime}$. The evaluated factor is multiplied by the multiple presence factor, AASHTO Table 3.6.1.1.2-1.
Summing moments about the center of the interior beam

This factor is based on the lever arm rule considring the wheel load and not the resultant of both wheel

Moment distribution factor for exterior beam, one load loaded. The 1.2 accounts for the multiple
presence factor, m from AASHTO Table 3.6.1.1.2-1 for one lane loaded
$\mathrm{M}_{\text {lane1_ext }}:=\mathrm{R} \cdot 1.2=0.736$

Distribution of live loads for Moment in Exterior Beams, AASHTO C4.6.2.2.2d

AASHTO LRFD 2014 recommends the rigid plate analysis only for steel beam-slab bridges. This was a change from ealier versions of AASHTO. It is up to the designed to ignore the rigid plate analysis or take it into consideration when calculating the DF for exterior beam

Additional special analysis investigation is required because the distribution factor for multigirder in cross section was determined without consideration of diaphragm or cross frames. The multiple presence factors are used per AASHTO Table 3.6.1.1.2-1. This analysis should be done by sketching the cross section to determine the variables required for this example, the defined deck geometry is used. For any other geometry, these variables should be hand computed and input:
Horizontal distance from center of gravity of the pattern of girders to the exterior girder
$\mathrm{X}_{\mathrm{ext}}:=\frac{\mathrm{S}_{\text {exterior }}}{2}=10.50 \mathrm{ft}$

Eccentricity of the center line of the standard wheel from the center of gravity of the pattern of girders

$$
\mathrm{e}_{1}:=\mathrm{X}_{\mathrm{ext}}+\text { overhang - barrier }{ }_{\text {width }}-2 \mathrm{ft}-\frac{6 \mathrm{ft}}{2}=7.792 \mathrm{ft}
$$

Summation of eccentricities for number of lanes considered:

$$
\mathrm{e}_{\mathrm{NL} 1}:=\mathrm{e}_{1}=7.792 \mathrm{ft} \quad \text { One lane loaded }
$$

$X_{\text {beams }}:=\left\lvert\, \begin{aligned} & \text { for } i \in 0 . . \mathrm{NO}_{\text {beams }}-1 \\ & \mathrm{X}_{\mathrm{i}} \leftarrow \mathrm{X}_{\mathrm{ext}}-(\mathrm{i} \cdot \mathrm{S}) \\ & \mathrm{X}\end{aligned}=\left(\begin{array}{c}10.50 \\ 3.50 \\ -3.50 \\ -10.50\end{array}\right) \mathrm{ft}\right.$

Summation of horizontal distances from the center of gravity of the pattern of girders to each girder

$$
\mathrm{X}_{\mathrm{NB}}:=\sum \mathrm{X}_{\mathrm{beams}}^{2}=245.00 \cdot \mathrm{ft}^{2}
$$

$\mathrm{m}_{1 \mathrm{R}}:=1.2 \cdot\left(\frac{1}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot \mathrm{e}_{\mathrm{NL} 1}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.701$

Reaction on exterior beam when one lane is loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1
live load moment disribution factor for exterior beam
$\mathrm{M}_{\text {lane_ext }}:=\max \left(\mathrm{M}_{\text {lane1_ext }}, \mathrm{m}_{1 \mathrm{R}}\right)=0.736$

Reduction of load Distribution Factors for Moment in longitudinal Beams on Skewed Supports

When the line supports are skewed and the difference between skew angles of two adjacent lines of supports does not exceed 10 degrees, the bending moments and shear forces are reduced in accordance with AASHTO Table 4.6.2.2.2e-1 and 4.6.2.2.3c-1 respectively.

Moment

Range of Applicability
if $\left(30 \operatorname{deg} \leq \theta_{\text {skew }} \leq 60 \mathrm{deg}\right.$, "ok", "Check below for adjustments of C 1 and θ skew" $)=$ "ok"
if $(3.5 \mathrm{ft}<\mathrm{S} \leq 16 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $(20 \mathrm{ft}<\mathrm{L} \leq 240 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $\left(\mathrm{NO}_{\text {beams }} \geq 4\right.$, "ok", "not ok" $)=$ "ok"

$$
\theta_{\text {Mskenn }}:=\left\lvert\, \begin{aligned}
& \theta_{\text {skew }} \text { if } \theta_{\text {skew }} \leq 60 \cdot \operatorname{deg}=30 \cdot \text { deg } \\
& 60 \cdot \text { deg if } \theta_{\text {skew }}>60 \cdot \mathrm{deg}
\end{aligned}\right.
$$

$\mathrm{C}_{1}:=|$| 0 if $\theta_{\text {skew }}<30 \cdot \mathrm{deg}$ | $=0.228$ |
| :--- | :--- |
| $\left[0.25 \cdot\left(\frac{\mathrm{~K}_{\mathrm{g}}}{12.0 \cdot \mathrm{~L} \cdot \text { deck }_{\text {thick }} 3} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.25} \cdot\left(\frac{\mathrm{~S}}{\mathrm{~L}}\right)^{0.5}\right]$ otherwise | |

$$
\operatorname{Mcorr}_{\text {factor }}:=1-\mathrm{C}_{1} \cdot \tan \left(\theta_{\text {skew }}\right)^{1.5}=0.9
$$

Correction factor for moment

Reduced distribution factors at strength limit state for interior girders due to skew

$\mathrm{DF}_{\text {strength_moment_int }}:=\mathrm{M}_{\text {lane_int }}$ Mcorr $_{\text {factor }}=0.582 \quad$ Moment

Reduced distribution factors at strength limit state for exterior girders due to skew

$$
\mathrm{DF}_{\text {strength_moment_ext }}:=\mathrm{M}_{\text {lane_ext }} \cdot \text { Mcorr }_{\text {factor }}=0.662
$$

Moment

Design distribution factors for service and strength limit states

Distribution factor for moment at strength limit state
$\mathrm{DF}_{\text {strength_moment }}:=\left\lvert\, \begin{aligned} & \mathrm{DF}_{\text {strength_moment_int }} \text { if Beam_Design = "Interior" }=0.582 \\ & \mathrm{DF}_{\text {strength_moment_ext }} \text { if Beam_Design = "Exterior" }\end{aligned}\right.$

live load Analysis

Flexure

As per AASHTO A 3.6.1.2.1, vehicular live loading designated by the standard HI-93 truck shall be a combination of the design truck or design tandem, and the design lane load. To produce extreme force effects, the spacing between the two 32-kip axles are taken as 14 ft .

Calculate the maximum moment due to the truck load. Maximum truck load moment occurs when the middle axle is positioned at distance 2.33 ft from the midspan. Maximum momment occurs under the middle axle load. Moment due to distributed load occurs at midspan.

Unless more detailed analysis is performed to determine the location and value for the maximum moment under combined truck and distributed loads at both service and strength limit state, the maximum moment from the truck load at distance 2.33 ft from midspan can be assumed to occur at the midspan and combined with the maximum moment from other dead and live distributed loads

Calculate the reaction at the end of the span
$\mathrm{R}:=\frac{8 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}-16.33 \mathrm{ft}\right)+32 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}-2.33 \mathrm{ft}\right)+32 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}+11.67 \mathrm{ft}\right)}{\mathrm{L}}=38.67 \cdot \mathrm{kip}$
Calculate the maximum moment
$M_{\text {truck }}:=R \cdot\left(\frac{L}{2}+2.33 \mathrm{ft}\right)-32 \cdot \mathrm{kip} \cdot 14 \cdot \mathrm{ft}=860.222 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to design lane load, AASHTO A 3.6.1.2.4
$\mathrm{X}:=\frac{\mathrm{L}}{2}=31.5 \mathrm{ft}$
$\mathrm{M}_{\text {lane }}:=\frac{0.64 \mathrm{klf} \cdot \mathrm{L} \cdot \mathrm{X}}{2}-0.64 \mathrm{klf} \cdot \frac{\mathrm{X}^{2}}{2}=317.52 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to design tandem, MDOT BDM 7.01.04.A
$M_{\text {tandem }}:=\frac{60 \mathrm{kip} \cdot \mathrm{L}}{4}=945 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to vehicular live loading by the modified $\mathrm{HI}-93$ design truck and tandem per MDOT BDM 7.01.04.A. Modification is by multiplying the load effects by a factor of 1.20. Dynamic load allowance is considered only for the design truck and tandem, AASHTO A 3.6.1.2.2, 3.6.1.2.3 \& 3.6.1.2.4.
$\mathrm{M}_{\text {LLI }}:=\left[1.20 \mathrm{M}_{\text {lane }}+\mathrm{IM} \cdot\left(1.20 \cdot \max \left(\mathrm{M}_{\text {truck }}, \mathrm{M}_{\text {tandem }}\right)\right)\right] \cdot \mathrm{DF}_{\text {strength_moment }}=1098.62 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Dead load Analysis

Dead load calculations are slightly adjusted for exterior beam design.

Noncomposite Dead load (DC ${ }_{1}$)

$$
\mathrm{M}_{\text {swbeam }}:=\frac{\omega_{\mathrm{beam}} \cdot \mathrm{~L}^{2}}{8}=759.69 \cdot \mathrm{kip} \cdot \mathrm{ft} \quad \text { Total moment due to selfweight of beam }
$$

$$
\text { deck }:=\left(\text { deck }_{\text {thick }} \cdot \mathrm{b}_{\mathrm{eff}}+\text { haunch }_{\mathrm{d}} \cdot \mathrm{~b}_{\mathrm{ft}}\right) \cdot 0.15 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}=0.26 \cdot \mathrm{klf} \quad \begin{aligned}
& \text { Selfweight of deck and haunch on } \\
& \text { beam }
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{deck}}:=\frac{\mathrm{deck} \cdot \mathrm{~L}^{2}}{8}=130.23 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

$$
\operatorname{sip}:=15 \mathrm{psf} \cdot\left(\mathrm{~b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right)=0 \cdot \mathrm{klf}
$$

Moment due to selfweight of deck and haunch

15 psf weight included for stay-in-place forms per MDOT BDM 7.01.04.I

$$
\mathrm{M}_{\text {sip }}:=\frac{\operatorname{sip} \cdot \mathrm{L}^{2}}{8}=0.00 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

$$
\operatorname{dia}_{\text {int }}:=0.5 \cdot \mathrm{kip}
$$

$$
\operatorname{dia}_{\mathrm{ext}}:=0.25 \cdot \mathrm{kip}
$$

Moment due to stay-in-place forms

Weight of steel diaphragms at mid-span per each interior beam

Weight of steel diaphragms at mid-span per each exterior beam
diaphragm := $\left\lvert\, \begin{aligned} & \text { dia }_{\text {int }} \text { if Beam_Design = "Interior" }=0.5 \cdot \mathrm{kip} \\ & \text { dia }_{\text {ext }} \text { if Beam_Design = "Exterior" }\end{aligned}\right.$
$\operatorname{spa}_{\text {dia }}:=2\left(\mathrm{~S}-\mathrm{b}_{\mathrm{v}}\right) \cdot \tan \left(\theta_{\text {skew }}\right)=5.87 \mathrm{ft} \quad$ One row of diaphragms at midspan are used.
$\mathrm{M}_{\mathrm{dia}}:=$ diaphragm $\cdot \frac{\mathrm{L}}{4}=7.875 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$\mathrm{DC}_{1}:=\omega_{\text {beam }}+$ deck + sip $=1.794 \cdot \mathrm{klf}$
Dead load (o.wt of beam+ deck+ SIP forms) acting on non-composite section
$M_{D C 1}:=M_{\text {swbeam }}+M_{\text {deck }}+M_{\text {sip }}+M_{\text {dia }}=897.80 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Total midspan moment acting on the non-composite section

Composite Dead load (DC $\underline{2}_{2}$)

util $:=\frac{1}{2} \cdot(0$ plf $)=0 \cdot \mathrm{klf} \quad$ No utilities are supported by the
util $:=\frac{1}{2} \cdot(0 \mathrm{plf})=0 \cdot \mathrm{klf}$ superstructure
barrier $1_{\text {weight }}:=0.475 \frac{\mathrm{kip}}{\mathrm{ft}}$
Weight per foot of first barrier (aesthetics parapet tube, MDOT BDG 6.29.10)
barrier $2_{\text {weight }}:=2.25 \cdot \mathrm{in} \cdot 40 \cdot \mathrm{in} \cdot \omega_{\text {conc }}+0.475 \frac{\mathrm{kip}}{\mathrm{ft}}=0.569 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$
sidewalk $:=\frac{2 \cdot \text { walk }_{\text {width }} \cdot \text { walk }_{\text {thick }} \cdot \omega_{\text {conc }}}{\mathrm{NO}_{\text {beams }}}=0.31 \cdot \mathrm{klf}$
barrier $:=\frac{\text { barrier } 1_{\text {weight }}+\text { barrier }{ }_{\text {weight }}}{\mathrm{NO}_{\text {beams }}}=0.26 \cdot \mathrm{klf}$
Weight per foot of second barrier (modified aesthetics parapet tube, MDOT BDG 6.29.10)

Weight to due extra thickness of sidewalk per beam

Total barrier weight per beam
soundwall $_{\text {weight }}:=0.0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$
Weight of the sound wall, if there is a sound wall

Weight of the sound wall for exterior beam design assuming lever arm and an inetremiate hinge on the first interior beam

$\mathrm{DC}_{2}:=$ sidewalk + barrier + util + soundwall $=0.575 \cdot \mathrm{klf}$
$\mathrm{M}_{\mathrm{DC} 2}:=\frac{\mathrm{DC}_{2} \cdot \mathrm{~L}^{2}}{8}=285.27 \cdot \mathrm{kip} \cdot \mathrm{ft}$

(DW) Wearing Surface load

$\mathrm{DW}:=\left(\mathrm{b}_{\mathrm{eff}}\right) \cdot 0.025 \frac{\mathrm{kip}}{\mathrm{ft}^{2}}=0.175 \cdot \mathrm{klf}$

Maximum unfactored dead load moments

$$
\mathrm{M}_{\mathrm{DC}}:=\mathrm{M}_{\mathrm{DC} 1}+\mathrm{M}_{\mathrm{DC} 2}=1183.07 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

$$
\mathrm{M}_{\mathrm{DW}}:=\frac{\mathrm{DW} \cdot \mathrm{~L}^{2}}{8}=86.82 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Wind load on the sound wall

$$
\mathrm{M}_{\text {wind }}:=0.0 \cdot \mathrm{ft} \cdot \frac{\mathrm{kip}}{\mathrm{ft}}
$$

$$
\underset{\mathrm{W}}{\mathrm{~W}}:=\frac{\mathrm{M}_{\text {wind }}}{\mathrm{S}}=0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}
$$

$$
\mathrm{M}_{\mathrm{WS}}:=\frac{\mathrm{W} \cdot \mathrm{~L}^{2}}{8}=0 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Total dead load acting on the composite section

Total midspan moment acting on the composite section

Self weight of future wearing surface

Total midspan moment due to loads acting on the composite and non-composite section

Midspan moment due to weight of future wearing surface

Moment due to wind acting at the sound wall

Extra load on the interior beam due to wind load assuming lever arm analysis and an intermediate hinge at the first interior beam

Interior beam moment due to wind acting at the sound wall

load Combinations

Load Combinations: Strength, Extreme Event, Service and Fatigue load combinations are defined per AASHTO 3.4.1. Verify which combination are appropriate. For this concrete box beam design, wind load is not evaluated, and no permit vehicle is specified. However, the design live loading is MDOT HL-93 Modified which accounts for Michigan's inventory of legal and permit vehicles.

Strength I, III, IV and Strength V limit states are considered for the design of this beam. Load combinations factors according to AASHTO LRFD 2016 Interim revision are used

$$
\begin{aligned}
& \mathrm{M}_{-} \text {Strength } \mathrm{I}_{\mathrm{I}}:=\eta_{\mathrm{i}} \cdot\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.75 \mathrm{M}_{\mathrm{LLI}}\right)=3531.65 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \mathrm{M}_{-} \text {Strength }{ }_{\mathrm{III}}:=\eta_{\mathrm{i}}\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.0 \mathrm{M}_{\mathrm{WS}}\right)=1609.07 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \text { M_Strength }_{I V}:=\eta_{i}\left[1.50 \cdot\left(M_{D C}+M_{D W}\right)\right]=1904.84 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \mathrm{M}_{-} \text {Strength }_{\mathrm{V}}:=\eta_{\mathrm{i}} \cdot\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.35 \mathrm{M}_{\mathrm{LLI}}+1.0 \cdot \mathrm{M}_{\mathrm{WS}}\right)=3092.21 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
& \mathrm{M}_{\mathrm{u}_{-} \text {strength }}:=\max \left(\mathrm{M}_{-} \text {Strength }_{\mathrm{I}}, \mathrm{M}_{-} \text {Strength }_{\mathrm{III}}, \mathrm{M}_{-} \text {Strength }_{\mathrm{IV}}, \mathrm{M}_{-} \text {Strength }_{\mathrm{V}}\right)=3531.65 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Number of Prestressing Strands

The theoretical number of strands required is calculated using the Service III limit state
$\mathrm{f}_{\mathrm{b}}:=\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{b} 3 \mathrm{n}}}+\frac{0.8 \mathrm{M}_{\mathrm{LLI}}}{\mathrm{S}_{\mathrm{bn}}}=2.15 \cdot \mathrm{ksi}$

Tensile stress in bottom flange due to applied loads

Allowable stress limits for concrete (ACI 440.4R Table 3.2)

$\mathrm{f}_{\mathrm{ti}}:=0.24 \cdot \sqrt{\mathrm{f}_{\mathrm{ci}}{ }_{\mathrm{b}} \text { beam } \cdot \mathrm{ksi}}=0.61 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{ci}}:=-0.65 \cdot \mathrm{f}_{\mathrm{ci}}$ beam $=-4.16 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{tf}}:=0 \cdot \sqrt{\mathrm{f}_{\mathrm{c} _} \text {beam } \cdot \mathrm{ksi}}=0.00 \cdot \mathrm{ksi}$

Initial allowable tensile stress
Initial allowable compressive stress (according to AASHTO LRFD 2016 interim revision)

Final allowable tensile stress (allowing no tension)

No tension is allowed under service III limit state to avoid potential cracks and shear action on the strands

$$
\mathrm{f}_{\mathrm{cfp}}:=-0.45 \cdot \mathrm{f}_{\mathrm{c} _ \text {beam }}=-3.60 \cdot \mathrm{ksi}
$$

$$
\mathrm{f}_{\mathrm{cf} . \text { deckp }}:=-0.45 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }}=-2.25 \cdot \mathrm{ksi}
$$

$$
\mathrm{f}_{\mathrm{cf}}:=-0.6 \cdot \mathrm{f}_{\mathrm{c} _ \text {beam }}=-4.80 \cdot \mathrm{ksi}
$$

$$
\mathrm{f}_{\mathrm{cf.deck}}:=-0.6 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }}=-3.00 \cdot \mathrm{ksi}
$$

Final allowable compressive stress in the beam due to sum of effective prestress and permanent loads

Final allowable compressive stress in the slab due to permanent loads

Final allowable compressive stress in the beam due to sum of effective prestress, permanent loads, \& transient loads

Final allowable compressive stress in the beam due to sum of permanent loads and transient loads

$$
\mathrm{f}_{\mathrm{p}}:=\mathrm{f}_{\mathrm{b}}-\mathrm{f}_{\mathrm{tf}}=2.15 \cdot \mathrm{ksi} \quad \text { Excess tension in the bottom flange due to applied loads }
$$

Assuming strand pattern center of gravity is midway between the bottom two rows of strands, i.e. the same number of strands are used in the top and bottom rows of the bottom flange.

$$
\mathrm{y}_{\mathrm{bs}}:=3 \mathrm{in}
$$

Distance from soffit of beam to center of gravity of strands

$$
\mathrm{e}_{\mathrm{st}}:=\mathrm{y}_{\mathrm{b}}-\mathrm{y}_{\mathrm{bs}}=26.19 \cdot \text { in } \quad \text { Eccentricity of strands from the centroid of beam }
$$

Final prestressing force required to counteract excess tension in the bottom flange. Set allowable stress equal to the excess tension, solve for P_{e}.

$\mathrm{P}_{\mathrm{et}}:=\frac{\mathrm{f}_{\mathrm{p}}}{\left(\frac{1}{\mathrm{~A}_{\text {beam }}}+\frac{\mathrm{e}_{\mathrm{st}}}{\mathrm{~S}_{\mathrm{B}}}\right)}=716.682 \cdot \mathrm{kip}$	
$\mathrm{f}_{\mathrm{j} . \mathrm{act}}:=0.65 \cdot \mathrm{f}_{\text {pu.service }}=198.377 \cdot \mathrm{ksi}$	Actual Jacking stress
$\mathrm{f}_{\mathrm{j} . \max }:=0.65 \cdot \mathrm{f}_{\text {pu.service }}=198.377 \cdot \mathrm{ksi}$	Maximum allowable Jacking stress, ACI 440.4R Table 3.3
if $\left(\mathrm{f}_{\mathrm{j} . \text { act }} \leq \mathrm{f}_{\mathrm{j} . \text { max }}\right.$, "Ok", "Not Ok" $)=$ "Ok"	
$\mathrm{P}_{\mathrm{j}}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{j} . \mathrm{act}}=35.51 \cdot \mathrm{kip}$	Maximum Jacking prestressing force per strand
$\mathrm{f}_{\mathrm{t}}:=0.622 \mathrm{f}_{\text {pu.service }}=189.83 \cdot \mathrm{ksi}$	Initial prestressing stress immediately prior to transfer. shall be less than or equal to the maximum jacking strength, and shall be adjusted accordingly to make sure the stress immedietely following transfer is not exceeding 0.6 times guaranteed strength as shown on the following page
$\mathrm{P}_{\text {in }}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{t}}=33.98 \cdot \mathrm{kip}$	Initial prestressing force per strand prior to transfer
$\mathrm{P}_{\text {pet }}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{t}} \cdot 0.75=25.48 \cdot \mathrm{kip}$	Effective prestressing force assuming 25% final prestress losses per 0.6" diameter strand
$\mathrm{NO}_{\text {strands_i }}:=$ ceil $\left(\frac{\mathrm{P}_{\text {et }}}{\mathrm{P}_{\text {pet }}}\right)=29$	Minimum number of strands required

Strand distribution per row. Row 0 is the bottom most row in the beam. Start adding strands from the

$$
\begin{array}{ll}
\hline \mathrm{d}_{\mathrm{f}}:=(\mathrm{d}-\mathrm{CG})+\text { haunch }+ \text { deck }_{\text {thick }}=46.43 \cdot \text { in } & \begin{array}{l}
\text { Depth from extreme compression fiber to centroid of } \\
\text { CFCC tension reinforcement }
\end{array} \\
\mathrm{e}_{\mathrm{s}}:=\mathrm{y}_{\mathrm{b}}-\mathrm{CG}=24.62 \cdot \text { in } & \text { Eccentricity of strands from centroid of beam }
\end{array}
$$

Prestress losses

loss due to Elastic Shortening, AASHTO Eqn. C5.9.5.2.3a-1

$\Delta \mathrm{f}_{\text {PES }}:=\frac{\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{f}_{\mathrm{t}} \cdot\left(\mathrm{I}_{\text {beam }}+\mathrm{e}_{\mathrm{s}}{ }^{2} \cdot \mathrm{~A}_{\text {beam }}\right)-\mathrm{e}_{\mathrm{s}} \cdot \mathrm{M}_{\text {swbeam }} \cdot A_{\text {beam }}}{A_{\text {pr }} \cdot\left(I_{\text {beam }}+\mathrm{e}_{\mathrm{s}}{ }^{2} \cdot \mathrm{~A}_{\text {beam }}\right)+\frac{\mathrm{A}_{\text {beam }} \cdot \mathrm{I}_{\text {beam }} \cdot E_{\text {c.beam_i }}}{E_{p}}}=7.20 \cdot \mathrm{ksi}$
$\mathrm{F}_{\mathrm{pt}}:=\mathrm{f}_{\mathrm{t}}-\Delta \mathrm{f}_{\mathrm{PES}}=182.63 \cdot \mathrm{ksi} \quad$ Prestressing stress immediately following transfer
$\mathrm{P}_{\mathrm{t}}:=\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{F}_{\mathrm{pt}}=915.344 \cdot \mathrm{kip}$

According to ACI 440.4 R , Table 3.3, the allowable stress immediately after transfer shall not exceed 0.6 fpu
$0.6 \cdot \mathrm{f}_{\text {pu.service }}=183.117 \cdot \mathrm{ksi}$
if $\left(\mathrm{F}_{\mathrm{pt}} \leq 0.6 \cdot \mathrm{f}_{\text {pu.service }}, " \mathrm{Ok} ", " N o t \mathrm{Ok} "\right)=$ "Ok"

Approximate Estimate of Time dependent losses, AASHTO A 5.9.5.3

$\mathrm{H}:=75$	Average annual ambient relative humidity
$\gamma_{\mathrm{h}}:=1.7-0.01 \cdot \mathrm{H}=0.95$	Correction factor for relative humidity of ambient air

$$
\begin{array}{ll}
\gamma_{\mathrm{st}}:=\frac{5}{1+\frac{\mathrm{f}_{\mathrm{ci}} _ \text {beam }}{\mathrm{ksi}}}=0.68 & \begin{array}{l}
\text { Correction factor for specified concrete strength at time } \\
\text { of prestress transfer to the concrete member }
\end{array} \\
\Delta \mathrm{f}_{\mathrm{pR}}:=\mathrm{f}_{\mathrm{t}} \cdot 1.75 \%=3.32 \cdot \mathrm{ksi} & \begin{array}{l}
\text { Relaxation loss taken as } 1.75 \% \text { of the initial pull } \\
\text { per experimental results from Grace et. al based } \\
\text { on } 1,000,000 \text { hours (114 years) }
\end{array} \\
\Delta \mathrm{f}_{\mathrm{pLT}}:=10 \cdot \frac{\mathrm{f}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{ps}}}{\mathrm{~A}_{\mathrm{beam}}} \cdot \gamma_{\mathrm{h}} \cdot \gamma_{\mathrm{st}}+12 \mathrm{ksi} \cdot \gamma_{\mathrm{h}} \cdot \gamma_{\mathrm{st}}+\Delta \mathrm{f}_{\mathrm{pR}}=15.18 \cdot \mathrm{ksi} \quad \text { long term prestress loss }
\end{array}
$$

Difference in thermal coefficient expansion between concrete and CFCC

$$
\begin{aligned}
& \alpha:=6 \cdot 10^{-6} \cdot \frac{1}{\mathrm{~F}} \\
& \mathrm{t}_{\mathrm{amb}}:=68 \mathrm{~F} \\
& \mathrm{t}_{\mathrm{low}}:=-10 \mathrm{~F} \\
& \Delta \mathrm{t}:=\mathrm{t}_{\mathrm{amb}}-\mathrm{t}_{\mathrm{low}}=78 \mathrm{~F}
\end{aligned}
$$

$$
\mathrm{t}_{\mathrm{low}}:=-10 \mathrm{~F} \quad \text { lowest temperature in Michigan according to AASHTO }
$$

IRFD 3.12.2

$$
\Delta f_{p t}:=\alpha \cdot \Delta t \cdot E_{p}=9.83 \cdot \mathrm{ksi} \quad \text { Prestress losses due to temp. effect }
$$

$$
\mathrm{f}_{\mathrm{pe}}:=\mathrm{f}_{\mathrm{t}}-\Delta \mathrm{f}_{\mathrm{pLT}}-\Delta \mathrm{f}_{\mathrm{PES}}-\Delta \mathrm{f}_{\mathrm{pt}}=157.62 \cdot \mathrm{ksi} \quad \text { Effective prestressing stress after all losses }
$$

$$
\mathrm{P}_{\mathrm{e}}:=\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{f}_{\mathrm{pe}}=790.01 \cdot \mathrm{kip} \quad \text { Effective prestressing force after all losses }
$$

$$
\mathrm{f}_{\mathrm{t}}=189.83 \cdot \mathrm{ksi} \quad \text { Initial prestress prior to transfer, not including }
$$

anchorage losses
Prestress level after all losses
Total prestress loss

Debonding Criteria

Estimate the location from each beam end where top prestressing or debonding is no longer needed The vectors are developed for possible two different deboning lengths per row. Enter the number of debonded strands and the estimated debonding length in the vectors below per each row location

Location: number of strands: debonding length:

Optional: only needed if debonding scheme is not sufficient to eliminate the tensile stresses at beam ends either at transfer or due to handling and shipping

CFCC strand transfer length, ACI 440.4R Table 6.1

$$
\mathrm{L}_{\mathrm{t}}:=50 \mathrm{~d}_{\mathrm{s}}=2.49 \mathrm{ft}
$$

Number of top prestressing strands in the top flange
Row $_{\text {top }}:=\binom{2}{2}$
Depth of the top prestressing strands from the top surface of the beam
$d_{\text {top }}:=\binom{3}{5} \cdot$ in

Initial prestressing stress/force at the top prestressing strands
$\mathrm{F}_{\mathrm{p} \text { _top }}:=50 \cdot \mathrm{ksi}$

Distance from the end of the beam to the point where the top prestressing is no longer needed
$\mathrm{x}_{\mathrm{p} \text { _top }}:=10 \cdot \mathrm{ft}$
Top prestressing strands shall not extend the the middle third of the beam. Otherwise, it could affect th stresses at service limit state

Check_Top_prestressing_Length $:=\left\lvert\,$| "Okay" if $x_{p _t o p ~} \leq \frac{L_{\text {beam }}}{3}$ | |
| :--- | :--- |
| | "Check service stress @ x.p_top" if $x_{p _t o p}>\frac{L_{\text {beam }}}{3}$ |$=\right.$ "Okay"

Distance from the end of the beam to the pocket where top prestressing strand is cut after concrete pouring. The middle region between the cut pockets shall be dobonded to avoid force transfer to the middle region
$\mathrm{x}_{\text {pocket }}:=\mathrm{x}_{\mathrm{p} \text { _top }}+\mathrm{L}_{\mathrm{t}}=12.493 \mathrm{ft}$

Serviceability Checks

CFCC strand transfer length, ACI 440.4R Table 6.1

Stress check locations along the beam

Stress locations after the transfer length for bonded and de-bonded strands
$X_{\text {release }}:=\operatorname{sort}\left[\operatorname{stack}\left[\mathrm{L}_{\mathrm{t}},\left(\mathrm{L}_{\mathrm{db}}+\mathrm{L}_{\mathrm{t}}\right), \mathrm{x}_{\mathrm{p} \text { _top }}, \mathrm{x}_{\text {pocket }}\right]\right]=\left(\begin{array}{c}2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 10 \\ 12.493\end{array}\right) \mathrm{ft}$

Extracting repreated X from the vector

$$
\begin{aligned}
& \mathrm{x}_{\text {release }}:=\left(\begin{array}{l}
\mathrm{k} \leftarrow 0 \\
\mathrm{x}_{0} \leftarrow \mathrm{~L}_{\mathrm{t}} \\
\text { for } \mathrm{i} \in 1 . . \text { length }\left(\mathrm{X}_{\text {release }}\right)-1 \\
\left\lvert\, \begin{array}{l}
\mathrm{k} \leftarrow \mathrm{k}+1 \text { if }\left(\mathrm{X}_{\text {release }_{\mathrm{i}}} \neq \mathrm{X}_{\text {release }_{\mathrm{i}-1}}\right) \\
\mathrm{x}_{\mathrm{k}} \leftarrow \mathrm{X}_{\text {release }_{\mathrm{i}}} \\
\mathrm{x}
\end{array}\right. \\
\mathrm{x}_{\text {release }}=\left(\begin{array}{c}
2.493 \\
10 \\
12.493
\end{array}\right) \cdot \mathrm{ft}
\end{array}\right.
\end{aligned}
$$

Area of strands in each row at each stress check location

```
\(A_{d b}:=\mid\) for \(i \in 0 .\). length \(\left(x_{\text {release }}\right)-1\)
    for \(\mathrm{z} \in 0\).. length(Row) -1
    \(\mathrm{A}_{\mathrm{i}, \mathrm{z}} \leftarrow \mathrm{Row}_{\mathrm{Z}} \cdot \mathrm{A}_{\text {strand }}\)
        for \(\mathrm{j} \in 0\).. length \(\left(\mathrm{N}_{\mathrm{db}}\right)-1\)
            \(\mathrm{n} \leftarrow \mathrm{N}_{\mathrm{db}}^{\mathrm{j}}\)
            row \(\leftarrow\) row \(_{\mathrm{db}}^{\mathrm{j}}\)
            \(\mathrm{L} \leftarrow \mathrm{L}_{\mathrm{db}_{\mathrm{j}}}\)
                \(A_{i, \text { row }-1} \leftarrow\left(A_{i, \text { row-1 }}-n \cdot A_{\text {strand }}\right) \cdot \frac{\mathrm{x}_{\text {release }_{i}}}{L_{t}}\) if \(x_{\text {release }_{i}}<L_{t}\)
                \(\mathrm{A}_{\mathrm{i}, \text { row }-1} \leftarrow \mathrm{~A}_{\mathrm{i}, \text { row }-1}-\mathrm{n} \cdot \mathrm{A}_{\text {strand }}\) if \(\mathrm{L}_{\mathrm{t}} \leq \mathrm{x}_{\text {release }} \mathrm{i}_{\mathrm{i}} \leq \mathrm{L}\)
                \(\mathrm{A}_{\mathrm{i}, \text { row }-1} \leftarrow \mathrm{~A}_{\mathrm{i} \text {, row }-1}-\mathrm{n} \cdot \mathrm{A}_{\text {strand }} \cdots \quad\) if \(\mathrm{L}<\mathrm{x}_{\text {release }}^{\mathrm{i}}\) \(\leq \mathrm{L}+\mathrm{L}_{\mathrm{t}}\)
                    \(+n \cdot A_{\text {strand }} \cdot \frac{\left(\mathrm{X}_{\text {release }_{i}}-\mathrm{L}\right)}{L_{t}}\)
    A
```

$\mathrm{A}_{\mathrm{db}}=\left(\begin{array}{llll}1.43 & 1.43 & 1.43 & 0.72 \\ 1.43 & 1.43 & 1.43 & 0.72 \\ 1.43 & 1.43 & 1.43 & 0.72\end{array}\right) \cdot \mathrm{in}^{2}$

Beam stresses at release due to prestressing only

Sign convention; negative and positive stresses/forces for compression and tension respectively
$\mathrm{P}_{\mathrm{ps}}:=-\mathrm{F}_{\mathrm{pt}} \cdot \mathrm{A}_{\mathrm{db}}=\left(\begin{array}{rrrr}-261.53 & -261.53 & -261.53 & -130.76 \\ -261.53 & -261.53 & -261.53 & -130.76 \\ -261.53 & -261.53 & -261.53 & -130.76\end{array}\right) \cdot \mathrm{kip}$

Midspan moment due to prestressing at release
$M_{p s}:=P_{p s} \cdot\left(d_{\text {strand }}-y_{t}\right)=\left(\begin{array}{l}-1877.872 \\ -1877.872 \\ -1877.872\end{array}\right) \cdot$ kip $\cdot f t$

Top and bottom concrete stresses at check locations due to prestressing ONLY

$$
\mathrm{f}_{\mathrm{ps}}:=\left\{\begin{array}{l}
\text { for } \mathrm{i} \in 0 . . \text { length }\left(\mathrm{x}_{\text {release }}\right)-1 \\
\mathrm{M} \leftarrow \mathrm{M}_{\mathrm{ps}} \\
\mathrm{P} \leftarrow \sum_{\mathrm{j}=0} \sum_{\mathrm{cols}\left(\mathrm{P}_{\mathrm{ps}}\right)-1} \mathrm{P}_{\mathrm{ps}_{\mathrm{i}, \mathrm{j}}} \\
\mathrm{~A} \leftarrow \mathrm{~A}_{\text {beam }} \\
\mathrm{S}_{\text {top }} \leftarrow \mathrm{S}_{\mathrm{T}} \\
\mathrm{~S}_{\text {bott }} \leftarrow \mathrm{S}_{\mathrm{B}} \\
\mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\text {top }}}+\frac{\mathrm{P}}{\mathrm{~A}} \\
\mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\text {bott }}}+\frac{\mathrm{P}}{\mathrm{~A}}
\end{array}\right.
$$

Beam stresses at release due to selfweight

Moment due to self weight of beam at check locations
$\mathrm{M}_{\mathrm{sw}}(\mathrm{x}):=\frac{\omega_{\text {beam }} \cdot \mathrm{x}}{2} \cdot\left(\mathrm{~L}_{\text {beam }}-\mathrm{x}\right)$

Top and bottom concrete stresses at check locations due to beam self weight ONIY

$$
\mathrm{f}_{\mathrm{sw}}:=\left\{\begin{array}{l}
\text { for } \mathrm{i} \in 0 . . \text { length }\left(\mathrm{x}_{\text {release }}\right)-1 \\
\begin{array}{l}
\mathrm{M} \leftarrow \mathrm{M}_{\mathrm{sw}}\left(\mathrm{x}_{\text {release }}\right) \\
\mathrm{f}_{\mathrm{i}}, 0 \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\mathrm{T}}} \\
\mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{B}}}
\end{array}
\end{array}\right.
$$

$$
\mathrm{f}_{\mathrm{sw}}=\left(\begin{array}{cc}
\text { top } & \text { bottom } \\
-81 & 125 \\
-284 & 440 \\
-338 & 525
\end{array}\right) \cdot \mathrm{psi}
$$

Area of top prestressing strands at distance X.release from the end

$$
\begin{aligned}
& A_{\text {top }}:=\mid \text { for } i \in 0 \text {.. length }\left(x_{\text {release }}\right)-1 \\
& \text { for } z \in 0 \text {.. length }\left(\text { Row }_{\text {top }}\right)-1 \\
& \left\{\begin{array}{l}
A_{i, z} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }} \cdot \frac{\mathrm{x}_{\text {release }_{i}}}{L_{t}} \text { if } x_{\text {release }_{i}} \leq L_{t} \\
A_{i} \leftarrow \text { Row }
\end{array}\right. \\
& \mathrm{A}_{\mathrm{i}, \mathrm{z}} \leftarrow \operatorname{Row}_{\text {top }_{\mathrm{z}}} \cdot \mathrm{~A}_{\text {strand }} \text { if } \mathrm{L}_{\mathrm{t}}<\mathrm{x}_{\text {release }_{\mathrm{i}}} \leq \mathrm{x}_{\mathrm{p} \text { _top }} \\
& \begin{array}{l}
A_{i, z} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }}-\frac{\mathrm{x}_{\text {release }_{i}}-\mathrm{x}_{\mathrm{p}_{-} \text {top }}}{L_{t}} \cdot\left(\operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }}\right) \text { if } \mathrm{x}_{\mathrm{p}_{-} \text {top }}<\mathrm{x}_{\text {release }_{i}} \leq \mathrm{x} \\
\mathrm{~A}_{\mathrm{i}, \mathrm{z}} \leftarrow 0 \text { if } \mathrm{x}_{\text {release }_{i}}>\mathrm{x}_{\mathrm{p}_{-} \text {top }}+\mathrm{L}_{\mathrm{t}}
\end{array} \\
& A_{\text {top }}=\left(\begin{array}{cc}
0.358 & 0.358 \\
0.358 & 0.358 \\
0 & 0
\end{array}\right) \cdot \text { in }^{2} \quad x_{\text {release }}=\left(\begin{array}{c}
2.493 \\
10 \\
12.493
\end{array}\right) \mathrm{ft} \\
& P_{p_{-} \text {top }}:=-F_{p_{-} \text {top }} \cdot A_{\text {top }}=\left(\begin{array}{cc}
-17.90 & -17.90 \\
-17.90 & -17.90 \\
-0.00 & -0.00
\end{array}\right) \cdot \text { kip } \\
& M_{p_{-} \text {top }}:=P_{p_{-} \text {top }} \cdot\left(d_{\text {top }}-y_{t}\right)=\left(\begin{array}{c}
44.183 \\
44.183 \\
0
\end{array}\right) \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Stresses in the beam due to the top prestressing strands only
$\mathrm{f}_{\text {p_top }}=\left(\begin{array}{cc}-54.685 & 22.716 \\ -54.685 & 22.716 \\ -1.925 \times 10^{-14} & 7.997 \times 10^{-15}\end{array}\right)$ psi

Check for beam stresses at release against allowable stresses

Beam stresses at release

top | bottom |
| :---: |
| $\mathrm{f}_{\mathrm{c} . \text { release }}:=\mathrm{f}_{\mathrm{ps}}+\mathrm{f}_{\mathrm{sw}}+\mathrm{f}_{\mathrm{p} _ \text {top }}=\left(\begin{array}{rr}531.169 & -2475.416 \\ 327.954 & -2160.061 \\ 328.243 & -2098.363\end{array}\right) \cdot \mathrm{psi}$ |\(\quad \quad \mathrm{x}_{release}=\left(\begin{array}{c}2.49

10.00

12.49\end{array}\right) \mathrm{ft}\)

$$
\begin{aligned}
& \mathrm{f}_{\text {ti.release }}:=\max \left(\mathrm{f}_{\mathrm{c} \text {.release }}\right)=531 \mathrm{psi} \\
& \text { Maximum tensile stress at release } \\
& \mathrm{f}_{\text {ci.release }}:=\min \left(\mathrm{f}_{\mathrm{c} . \text { release }}\right)=-2475 \mathrm{psi} \quad \text { Maximum compressive stress at release } \\
& \text { if }\left(\mathrm{f}_{\mathrm{ti}} \geq \mathrm{f}_{\text {ti.release }}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" } \\
& \text { Allowable tension check } \\
& \mathrm{f}_{\mathrm{ti}}=607 \mathrm{psi}
\end{aligned}
$$

$$
\text { if }\left(-\mathrm{f}_{\mathrm{ci}} \geq-\mathrm{f}_{\text {ci.release }}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" } \quad \text { Allowable compression check } \quad \mathrm{f}_{\mathrm{ci}}=-4160 \mathrm{psi}
$$

Camber immediately after transfer

Camber due to prestressing assuming constant maximum force (ignore debonding)
$\frac{-\mathrm{min}\left(\mathrm{M}_{\mathrm{ps}}\right) \cdot \mathrm{L}_{\text {beam }}{ }^{2}}{8 \cdot \mathrm{E}_{\mathrm{c} . \text { beam_i }} \mathrm{I}_{\text {beam }}}=1.065 \cdot$ in

Deflection due to top prestressing assuming constant maximum force (including debonding transfer length)
$\delta_{p_{-} \text {top }}:=\frac{M_{p_{-} \text {top }}^{0} \cdot}{} \cdot{ }_{\mathrm{p}_{-} \text {top }}{ }^{2}{ }_{2 \cdot\left(\mathrm{E}_{\text {c.beam_i }} \mathrm{I}_{\text {beam }}\right)}=2.446 \times 10^{-3} \cdot$ in

Deflection due to selfweight of the beam
$\frac{-5 \cdot \omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }}^{4}}{384 \cdot \mathrm{E}_{\text {c.beam_i }} \mathrm{I}_{\text {beam }}}=-0.37 \cdot$ in

Considering the reduced camber due to the effect of debonding
$d_{\text {strand. }} d b:=\left(\begin{array}{l}\text { for } i \in 0 . . \text { length }\left(\text { row }_{d b}\right)-1 \\ d_{S_{i}} \leftarrow d-(2 i n) \text { row }_{d b_{i}} \\ d_{S}\end{array}=\left(\begin{array}{l}46.00 \\ 46.00 \\ 44.00 \\ 44.00 \\ 42.00 \\ 42.00 \\ 40.00 \\ 40.00\end{array}\right) \cdot\right.$ in

$$
\delta_{\mathrm{db}}:=\frac{\left[\mathrm{N}_{\mathrm{db}} \cdot \mathrm{~A}_{\text {strand }} \cdot \mathrm{F}_{\mathrm{pt}} \cdot\left(\mathrm{~d}_{\text {strand }} \mathrm{db}-\mathrm{y}_{\mathrm{t}}\right) \cdot\left(\mathrm{L}_{\mathrm{db}}+\mathrm{L}_{\mathrm{t}}\right)^{2}\right]}{2 \cdot \mathrm{E}_{\mathrm{c} . \text { beam }} \mathrm{i} \mathrm{I}_{\text {beam }}}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \cdot \text { in }
$$

$\sum \delta_{\mathrm{db}}=0 \cdot \mathrm{in}$
Camber $_{\mathrm{tr}}:=\frac{-\min \left(\mathrm{M}_{\mathrm{ps}}\right) \cdot \mathrm{L}_{\text {beam }}{ }^{2}}{8 \cdot \mathrm{E}_{\mathrm{c} \cdot \text { beam_i }} \mathrm{I}_{\text {beam }}}-\frac{5 \cdot \omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }}{ }^{4}}{384 \cdot \mathrm{E}_{\mathrm{c} \cdot \text { beam_}} \mathrm{i}_{\text {beam }}}-\sum \delta_{\mathrm{db}}-\delta_{\mathrm{p}_{-} \text {top }}=0.692 \cdot \mathrm{in}^{2}$
Positive sign indicates camber upwards. Negative sign indeicates deflection

Check the stresses of the beam during shipping and handling, where the supports are not at the ends of the beam (Find the exact location of the supports during shipping and handling)

Moment due to self weight of beam at check locations

$$
M_{\text {sw.ship }}(x):=\left\lvert\, \begin{aligned}
& \frac{-\omega_{\text {beam }} \cdot x^{2}}{2} \text { if } 0 \cdot \text { in } \leq x \leq 1_{\text {ship }} \\
& \frac{\omega_{\text {beam }} \cdot L_{\text {beam }} \cdot\left(x-1_{\text {ship }}\right)}{2}-\frac{\left(\omega_{\text {beam }} \cdot x^{2}\right)}{2} \text { if } 1_{\text {ship }} \leq x \leq \frac{L_{\text {beam }}}{2}
\end{aligned}\right.
$$

Top and bottom concrete stresses at check locations due to beam self weight ONIY

$$
\mathrm{f}_{\text {sw.ship }}:=\left\lvert\, \begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { length }\left(\mathrm{x}_{\text {release }}\right)-1 \\
& \\
& \begin{array}{l}
\mathrm{M} \leftarrow \mathrm{M}_{\text {sw.ship }}\left(\mathrm{x}_{\text {release } \left._{\mathrm{i}}\right)}\right) \\
\mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\mathrm{T}}} \\
\mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{B}}}
\end{array}
\end{aligned}\right.
$$

top bottom

$$
\mathrm{f}_{\text {sw.ship }}=\left(\begin{array}{cc}
-13 & 21 \\
-217 & 336 \\
-271 & 420
\end{array}\right) \cdot \mathrm{psi}
$$

Check for beam stresses during handling \& shipping against allowable stresses

Beam stresses during shipping @ handling
$\mathrm{f}_{\mathrm{c} \text {.ship }}:=\mathrm{f}_{\mathrm{ps}}+\mathrm{f}_{\text {sw.ship }}+\mathrm{f}_{\mathrm{p} \text { _top }}=\left(\begin{array}{cc}\text { top } & \text { bottom } \\ 598.445 & -2579.818 \\ 395.23 & -2264.463 \\ 395.519 & -2202.765\end{array}\right) \cdot \mathrm{psi} \quad \mathrm{x}_{\text {release }}=\left(\begin{array}{c}2.49 \\ 10.00 \\ 12.49\end{array}\right) \mathrm{ft}$

$$
\begin{array}{ll}
\mathrm{f}_{\text {ti.ship }}:=\max \left(\mathrm{f}_{\mathrm{c} . \text { ship }}\right)=598 \mathrm{psi} & \text { Maximum tensile stress at release } \\
\mathrm{f}_{\text {ci.ship }}:=\min \left(\mathrm{f}_{\mathrm{c} . \text { ship }}\right)=-2580 \mathrm{psi} & \text { Maximum compressive stress at release }
\end{array}
$$

$$
\begin{array}{lll}
\text { if }\left(\mathrm{f}_{\mathrm{ti}} \geq \mathrm{f}_{\text {ti.ship }}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" } & \text { Allowable tension check } & \mathrm{f}_{\mathrm{ti}}=607 \mathrm{psi} \\
\text { if }\left(-\mathrm{f}_{\mathrm{ci}} \geq-\mathrm{f}_{\text {ci.ship }}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" } & \text { Allowable compression check } & \mathrm{f}_{\mathrm{ci}}=-4160 \mathrm{psi}
\end{array}
$$

Service I limit State - Check for compressive stresses at top of deck at service conditions

 due to permanent loads onlyCompressive stress at top of deck due to loads on composite section
$\mathrm{f}_{\mathrm{cf} \text { _actual_mid }}:=\frac{-\left(\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}\right)}{\mathrm{S}_{\mathrm{t} 3 \mathrm{n}} \cdot \mathrm{k}_{\mathrm{sdl}} \cdot \mathrm{n}}=-102 \mathrm{psi}$

Service I limit State - Check for compressive stresses at top flange of beam at service conditions due to prestress and permament loads only

Compressive stress at top flange of beam due to prestressing and permanent loads
$\mathrm{f}_{\text {Nefuctualumidv }}:=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}=-253 \mathrm{psi}$

Service I limit State - Check for compressive stresses at top of deck at service conditions due to permanent and transient loads

Compressive stress at top of deck due to loads on composite section including wind effect
according to AASHTO LRFD 2016 Interim revision
$\mathrm{f}_{\text {fefmadumide }}:=\frac{-\left(\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}\right)}{\mathrm{S}_{\mathrm{t} 3 \mathrm{n} \cdot} \cdot \mathrm{k}_{\mathrm{sdl}} \cdot \mathrm{n}}-\frac{1.0 \mathrm{M}_{\mathrm{LLI}}}{\mathrm{S}_{\mathrm{tn}} \cdot \mathrm{k} \cdot \mathrm{n}}-\frac{1.0 \mathrm{M}_{\mathrm{WS}}}{\mathrm{S}_{\mathrm{tn}} \cdot \mathrm{k} \cdot \mathrm{n}}=-620 \mathrm{psi}$
if $\left(-\mathrm{f}_{\text {cf.deck }}>-\mathrm{f}_{\text {cf_actual_mid }}\right.$, "ok" , "no good" $)=$ "ok" Allowable stress check

Service I limit State - Check for compressive stresses at top flange of beam at service conditions due to prestress, permanent, and transient loads

Compressive stress at top flange of beam due to prestressing and all loads. \qquad
$\underset{\text { factuahmaid: }}{\mathrm{f}}=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}-\frac{\mathrm{M}_{\mathrm{LLI}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}}-\frac{1.0 \cdot \mathrm{M}_{\mathrm{WS}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}}=-785 \mathrm{psi}$
if $\left(-\mathrm{f}_{\mathrm{cf}}>-\mathrm{f}_{\mathrm{cf} \text { _actual_mid }}\right.$, "ok", "not ok" $)=$ "ok"
Allowable stress check

Service III limit State - Check for tensile stresses at bottom flange of beam at service conditions

Tensile stress at bottom flange of beam due to prestressing and all loads
$\mathrm{f}_{\mathrm{tf} \text { _actual_mid }}:=\frac{-\mathrm{P}_{e}}{A_{\text {beam }}}-\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{S}}}{\mathrm{S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{b} 3 \mathrm{n}}}+\frac{0.8 \mathrm{M}_{\text {LLI }}}{S_{b n}}=-110 \cdot \mathrm{psi}$
if $\left(\mathrm{f}_{\mathrm{tf}}>\mathrm{f}_{\mathrm{tf} \text { _actual_mid }}\right.$, "ok" , "not ok" $)=$ "ok" Allowable stress check

Calculate bar area required to resist tension in the top flange at release, AASHTO Table

 5.9.4.1.2-1:$$
\begin{aligned}
& \mathrm{f}_{\text {ti.ship }}=598.445 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{c}}:=\operatorname{vlookup}\left(\mathrm{f}_{\text {ti.ship }}, \mathrm{f}_{\mathrm{c} . \text { ship }}, 1\right) 0=-2.58 \times 10^{3} \mathrm{psi} \\
& \text { slope }_{\mathrm{m}}:=\frac{\mathrm{f}_{\text {ti.ship }}-\mathrm{f}_{\mathrm{c}}}{\mathrm{~d}}=66.214 \cdot \frac{\mathrm{psi}}{\mathrm{in}}
\end{aligned}
$$

$$
x_{0}:=\frac{\mathrm{f}_{\mathrm{ti} . \operatorname{ship}}}{\text { slope }_{\mathrm{m}}}=9.038 \cdot \mathrm{in}
$$

Maximum top flange tensile stress at release or handling, whichever is larger (usually, handling stresses are larger)

Bottom flange compressive stress corresponding to the maximum top flange tensile stress at release/shipping

Slope of the section stress over the depth of the beam

Distance measured from the top of the beam to the point of zero stress

Calculate the width of the beam where the tensile stresses are acting

$$
\mathrm{b}_{\text {ten }}:=\left\{\begin{array}{l}
\text { for } \mathrm{i} \in 0 \text {...ceil }\left(\frac{\mathrm{x}_{\mathrm{o}}}{\text { in }}\right) \\
\underbrace{\mathrm{x}_{\mathrm{i}} \leftarrow \frac{\mathrm{x}_{\mathrm{o}} \cdot \mathrm{i}}{\left(\mathrm{x}_{0}\right)}}_{\mathrm{b}} \begin{array}{l}
\operatorname{ceil}\left(\frac{\mathrm{x}_{\mathrm{o}}}{\mathrm{in}}\right) \\
\mathrm{b}_{\mathrm{i}} \leftarrow \mathrm{~b}_{\mathrm{ft}} \text { if } 0 \leq \mathrm{x}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{ft}} \\
\mathrm{~b}_{\mathrm{i}} \leftarrow \mathrm{~b}_{\mathrm{v}} \quad \text { if } \mathrm{d}_{\mathrm{ft}}<\mathrm{x}_{\mathrm{i}}
\end{array}
\end{array}\right.
$$

Calculate the tensile stress values every inch of depth starting from the top surface of the beam

$$
\begin{aligned}
& f:=\left\{\begin{array}{r}
\text { for } i \in 0 \text {.. ceil }\left(\frac{x_{0}}{\text { in }}\right) \\
\\
x_{i} \leftarrow \frac{x_{0} \cdot i}{\operatorname{ceil}\left(\frac{x_{0}}{i n}\right)}
\end{array}\right. \\
& \mathrm{f}_{\mathrm{i}} \leftarrow \mathrm{f}_{\text {ti.ship }}-\text { slope }_{\mathrm{m}} \cdot \mathrm{x}_{\mathrm{i}} \\
& \text { f }
\end{aligned}
$$

$\mathrm{f}=\left(\begin{array}{c}598.445 \\ 538.6 \\ 478.756 \\ 418.911 \\ 359.067 \\ 299.222 \\ 239.378 \\ 179.533 \\ 119.689 \\ 59.844 \\ 6.754 \times 10^{-14}\end{array}\right) \mathrm{b}_{\mathrm{ten}}=\left(\begin{array}{l}84 \\ 84 \\ 84 \\ 84 \\ 84 \\ 84 \\ 84 \\ 23 \\ 23 \\ 23 \\ 23\end{array}\right) \cdot$ in

Calculate the tensile force that shall be resisted by top reinforcement
$\mathrm{T}_{\mathrm{m}}:=\sum_{\mathrm{i}=0}^{\text {length }(\mathrm{f})-2}\left[\frac{1}{4} \cdot\left(\mathrm{f}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}+1}\right) \cdot\left(\mathrm{b}_{\text {ten }_{\mathrm{i}}}+\mathrm{b}_{\left.\text {ten }_{\mathrm{i}+1}\right)}\right) \cdot \frac{\mathrm{x}_{\mathrm{o}}}{\operatorname{ceil}\left(\frac{\mathrm{x}_{\mathrm{o}}}{\mathrm{in}}\right)}\right]=206.548 \cdot \mathrm{kip}$

$$
\mathrm{A}_{\mathrm{s} . \mathrm{top}}:=\frac{\mathrm{T}}{30 \cdot \mathrm{ksi}}=6.885 \cdot \mathrm{in}^{2}
$$

Calculate area of tensile reinforcement required in the top of the beam. The stress in bars is limited to 30ksi per AASHTO 5.9.4.1.2. See Figure C.5.9.4.1.2-1 which is based upon . 5 f.y of steel rebar
$\mathrm{A}_{\text {bar.top }}:=0.44 \cdot$ in 2
Cross sectional area of No. 6 steel rebars
$n_{\text {bar.release }}:=\operatorname{Ceil}\left(\frac{\mathrm{A}_{\text {s.top }}}{\mathrm{A}_{\text {bar.top }}}, 1\right)=16$
number of No. 6 bars provided in the top flange to
resist tension at release in the beam ends.

Calculation of minimum length of top tensile reinforcement

AASHTO LRFD Table 5.9.4.1.2-1 specifies a maximum concrete tensile stress of $0.0948 \cdot \sqrt{\mathrm{f}_{\mathrm{ci}} \text { beam }} \leq 0.2 \mathrm{ksi}$ for tensile zones without bonded reinforcement
$\mathrm{f}_{\text {t.max }}:=\min \left(0.0948 \cdot \sqrt{\frac{\mathrm{f}_{\text {ci_beam }}}{\mathrm{ksi}}}, 0.2\right) \cdot \mathrm{ksi}=0.2 \cdot \mathrm{ksi}$
Calculate the minimum required length of top reinforcement based on the stress calculated at distances x.release during release or shipping and handling, whichever is greater. If all the stresses are larger tha f.t.max, estimate the stress after the last point of debonding

$$
\begin{aligned}
& \mathrm{L}_{\text {topr }}:=\left\lvert\, \begin{array}{l}
\mathrm{h} \leftarrow \mathrm{x}_{\text {release }} \\
\mathrm{f} \leftarrow \mathrm{f}_{\mathrm{c} \text {. }{ }^{2}{ }^{\langle 0\rangle}}{ }^{\langle 0\rangle}
\end{array}\right. \\
& \mathrm{i} \leftarrow \text { length }(\mathrm{f})-1 \\
& \text { while } \mathrm{f}_{\mathrm{i}}<\mathrm{f}_{\text {t. } \text { max }} \\
& \text { break if } \mathrm{i}=0 \\
& \mathrm{i} \leftarrow \mathrm{i}-1 \\
& \mathrm{x} \leftarrow 1 \cdot \mathrm{ft} \\
& \mathrm{f}_{\mathrm{ps}} \leftarrow \mathrm{f}_{\mathrm{ps}}^{\operatorname{rows}\left(\mathrm{f}_{\mathrm{ps}}\right)-1,0} \\
& \begin{array}{l}
\mathrm{S}(\mathrm{x}) \leftarrow \mathrm{f}_{\mathrm{ps}}-\mathrm{f}_{\mathrm{t} \text {.max }}-\frac{\frac{\omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }} \cdot\left(\mathrm{x}-\mathrm{l}_{\text {ship }}\right)}{2}-\frac{\left(\omega_{\text {beam }} \cdot \mathrm{x}^{2}\right)}{2}}{\mathrm{~S}_{\mathrm{T}}} \\
\mathrm{~g} \leftarrow \operatorname{root}(\mathrm{~S}(\mathrm{x}), \mathrm{x}) \\
\mathrm{g} \text { if } \mathrm{f}_{\text {length }}(\mathrm{f})-1>\mathrm{f}_{\text {t.max }} \\
\frac{\mathrm{L}_{\text {beam }}}{2} \text { if } \operatorname{Im}(\mathrm{g}) \neq 0 \wedge \mathrm{f}_{\text {length }(f)-1}>\mathrm{f}_{\text {t.max }} \\
\mathrm{h}_{\mathrm{i}+1} \text { otherwise }
\end{array}
\end{aligned}
$$

$$
\mathrm{L}_{\text {topr }}=29.083 \mathrm{ft}
$$

Calculate the tension development length required for the tensile reinforcement in the top of the beam. As provided AASHTO 5.11.2.1.1 taking into account 1.4 modification factor per AASHTO 5.11.2.1.2

$$
\mathrm{L}_{\text {topR }}:=\mathrm{L}_{\text {topr }}+\mathrm{l}_{\mathrm{d}}=30.45 \mathrm{ft}
$$

Minimum length required for the top reinforcement from each end

Flexural Capacity

Stress block factor, AASHTO 5.7.2.2. Assuming depth of neutral axis lies within the deck

$\beta_{1}:=\left\lvert\,$| 0.65 if $\mathrm{f}_{\mathrm{c} _ \text {deck }} \geq 8000 \mathrm{psi}$ |
| :--- |
| 0.85 if $\mathrm{f}_{\mathrm{c} _ \text {deck }} \leq 4000 \mathrm{psi}$ |
| $\left[0.85-\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {deck }}-4000 \mathrm{psi}}{1000 \mathrm{psi}}\right) 0.05\right]$ otherwise |$\quad=0.8\right.$

$$
\varepsilon_{\mathrm{cu}}:=0.003
$$

$$
\varepsilon_{\mathrm{pu}}:=\frac{\mathrm{f}_{\mathrm{pu}}}{\mathrm{E}_{\mathrm{p}}}=0.0145
$$

$$
\varepsilon_{\mathrm{pe}}:=\frac{\mathrm{f}_{\mathrm{pe}}}{\mathrm{E}_{\mathrm{p}}}=0.0075
$$

$$
\varepsilon_{\mathrm{m}} 0:=\varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}}=0.007
$$

Maximum usable concrete compressive strain

Ultimate tensile strain of CFCC strand Effective CFCC prestressing strain

Reserve strain in CFCC

$\mathrm{A}_{\mathrm{f}}:=\mathrm{A}_{\text {strand }} \cdot \operatorname{Row}=\left(\begin{array}{c}1.43 \\ 1.43 \\ 1.43 \\ 0.72\end{array}\right) \cdot$ in 2
$\mathrm{P}_{\text {row }}:=\mathrm{A}_{\mathrm{f}} \cdot \mathrm{f}_{\mathrm{pe}}=\left(\begin{array}{c}225.72 \\ 225.72 \\ 225.72 \\ 112.86\end{array}\right) \cdot \mathrm{kip}$
$s_{i}:=\left\lvert\, \begin{aligned} & \text { for } i \in 0 \ldots \text { length(Row) }-1 \\ & \mathrm{~s}_{\mathrm{i}} \leftarrow \mathrm{d}_{\mathrm{i}_{0}}-\mathrm{d}_{\mathrm{i}_{\mathrm{i}}} \\ & \mathrm{s}\end{aligned}=\left(\begin{array}{l}0 \\ 2 \\ 4 \\ 6\end{array}\right)\right.$.in

$$
\mathrm{h}_{\mathrm{eff}}:=\operatorname{deck}_{\text {thick }}+\mathrm{d}_{\mathrm{ft}}-\mathrm{t}_{\text {wear }}=9 \cdot \mathrm{in}
$$

Distance from each layer of prestressing strands to the bottom prestressting layer

Effective thickness (total thickness minus assumed sacrificial wearing surface thickness)

Balanced reinforcement ratio

$c_{\mathrm{bal}}:=\frac{\varepsilon_{\mathrm{cu}}}{\varepsilon_{\mathrm{cu}}+\varepsilon_{0}} \cdot \mathrm{~d}_{0}=14.66 \cdot$ in

Balanced reinforcement ratio assuming flanged section

$\rho_{\mathrm{Fl} \text { _bal }}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \mathrm{h}_{\mathrm{eff}} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{v}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{v}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{d}_{\mathrm{i}_{0}}}=0.0044$
Balanced reinforcement ratio assuming rectangular section

$$
\rho_{\mathrm{R}_{-} \mathrm{bal}}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}=0.0056
$$

$$
\begin{aligned}
& \text { Fl_T }:=\left\lvert\, \begin{array}{l}
\mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
\mathrm{~A}_{\text {eq_s }} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
\mathrm{~A}_{\text {eq_f }} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
\mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1 \\
\text { while }\left|\mathrm{A}_{\text {eq_s }}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \mathrm{in}^{2}
\end{array}\right. \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_} \mathrm{~s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq}_{_} \mathrm{s}}+\mathrm{P}_{\mathrm{e}}-0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{v}}\right) \cdot \mathrm{h}_{\mathrm{eff}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{v}}} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\mathrm{eq}} \mathrm{f}}{\mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}} \\
& \binom{\frac{c}{\text { in }}}{\rho} \\
& \text { Fl_T }=\binom{-10.6832}{0.0012} \quad \quad \mathrm{c}_{\mathrm{Fl}} \text { _T }:=\mathrm{Fl}_{-} \mathrm{T}_{0} \cdot \mathrm{in}=-10.683 \cdot \text { in } \\
& \rho_{\mathrm{Fl} _\mathrm{T}}:=\mathrm{Fl}_{-} \mathrm{T}_{1}=0.0012
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Rectangular Tension contorlled section

Depth of the N.A. and reinforcement ratio assuming Flanged Compression contorlled section
$\varepsilon_{0}(c):=\varepsilon_{c u} \cdot\left(\frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}}\right)$
Fl_C $:=\mid \mathrm{c} \leftarrow 1 \cdot$ in
$\mathrm{A}_{\mathrm{eq} \mathrm{_}} \leftarrow 1.0 \cdot \mathrm{in}^{2}$
$\mathrm{~A}_{\mathrm{eq} \mathrm{_f}} \leftarrow 2.0 \cdot \mathrm{in}^{2}$
$\mathrm{N} \leftarrow$ length $\left(\mathrm{d}_{\mathrm{i}}\right)-1$
while $\left|\mathrm{A}_{\text {eq_s }}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \mathrm{in}^{2}$
$\mathrm{A}_{\mathrm{eq} \mathrm{_s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]$
$\mathrm{f}(\mathrm{c}) \leftarrow 0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{v}}\right) \cdot \mathrm{h}_{\mathrm{eff}}+0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{b}_{\mathrm{v}} \cdots$
$+\left(-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\mathrm{eq} \mathrm{_}}-\mathrm{P}_{\mathrm{e}}\right)$
$\mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{f}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{d}_{\mathrm{i}_{0}}\right)$
$\mathrm{A}_{\mathrm{eq} \mathrm{_f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]$
$\rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\mathrm{eff} \cdot \mathrm{d}_{\mathrm{i}_{0}}}}$
$\binom{\frac{c}{\text { in }}}{\rho}$

Fl_C $=\binom{6.245089}{0.001144} \quad{ }^{\mathrm{c}_{\mathrm{Fl}}} \mathrm{C}:=\mathrm{Fl}_{-} \mathrm{C}_{0} \cdot \mathrm{in}=6.245 \cdot \mathrm{in}$

$$
\rho_{\mathrm{Fl} _\mathrm{C}}:=\mathrm{Fl}_{-} \mathrm{C}_{1}=0.0011
$$

Depth of the N.A. and reinforcement ratio assuming Rectangular Compression contorlled section

$$
\begin{aligned}
& \mathrm{R}_{-} \mathrm{C}=\binom{8.0426}{0.0011} \quad \mathrm{c}_{\mathrm{R}_{-} \mathrm{C}}:=\mathrm{R}_{-} \mathrm{C}_{0} \cdot \mathrm{in}=8.043 \cdot \text { in } \\
& \rho_{\text {R_C }^{C}}:=\text { R_C }_{1}=0.0011
\end{aligned}
$$

Check the mode of failure

Section_Mode :=	"Rectangular_Tension" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{R}_{-}} \mathrm{T} \leq \mathrm{h}_{\mathrm{eff}} \wedge \rho_{\mathrm{R}_{-} \mathrm{T}}<\rho_{\mathrm{R}_{-} \text {bal }}$ "Rectangular_Compression" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{R}_{-}} \mathrm{C} \leq \mathrm{h}_{\mathrm{eff}} \wedge \rho_{\mathrm{R}_{-} \mathrm{C}}>\rho_{\mathrm{R}_{-} \text {bal }}$ "Flanged_Tension" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}}^{-\mathrm{T}}$ $>\mathrm{h}_{\text {eff }} \wedge \rho_{\mathrm{Fl}} \mathrm{T}<\rho_{\mathrm{Fl}}$ bal "Flanged_Compression" if $\beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}} \mathrm{C}>\mathrm{h}_{\text {eff }} \wedge \rho_{\text {Fl_C }}>\rho_{\text {Fl_bal }}$

(Section_Mode) = "Rectangular_Tension"

Select the correct depth of the N.A.

$$
\begin{aligned}
& \mathrm{c}:=\mid \mathrm{c}_{\mathrm{R}_{-} \mathrm{T}} \text { if } \beta_{1} \cdot \mathrm{c}_{\mathrm{R}_{-} \mathrm{T}} \leq \mathrm{h}_{\text {eff }} \wedge \rho_{\mathrm{R}_{-} \mathrm{T}}<\rho_{\mathrm{R}_{-} \text {bal }} \\
& { }^{c_{R_{-}} C} \text { if } \beta_{1} \cdot c_{R_{-}} C=h_{e f f} \wedge \rho_{R_{-}} C>\rho_{R_{-} \text {bal }} \\
& { }^{\mathrm{c}_{\mathrm{Fl}}^{-\mathrm{T}}} \mathrm{~T} \text { if } \beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}}^{-\mathrm{T}} \text { }>\mathrm{h}_{\mathrm{eff}} \wedge \rho_{\mathrm{Fl}_{-} \mathrm{T}}<\rho_{\mathrm{Fl}} \text { bal } \\
& { }^{\mathrm{c}} \mathrm{Fl}_{-} \mathrm{C} \text { if } \beta_{1} \cdot \mathrm{c}_{\mathrm{Fl}} \mathrm{C}>\mathrm{h}_{\mathrm{eff}} \wedge \rho_{\mathrm{Fl}} \mathrm{C}>\rho_{\mathrm{Fl}} \text { bal }
\end{aligned}
$$

Calculate the strain in the extreme CFRP based on the mode of failure

$$
\varepsilon_{0}:=\left\lvert\, \begin{aligned}
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Rectangular_Tension" } \\
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Flanged_Tension" } \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Rectangular_Compression" } \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Flanged_Compression" }
\end{aligned}\right.
$$

 strain in ith layer of prestressing strands

$$
\varepsilon_{\mathrm{c}}:=\varepsilon_{0} \cdot\left(\frac{\mathrm{c}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right)=0.00083 \quad \text { strain in the concrete top of the deck }
$$

Strength limit state Flexural Resistance:

$$
M_{n}:=\left\lvert\, \begin{aligned}
& E_{p} \cdot \overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \ldots \quad \text { if } \beta_{1} \cdot c>h_{e f f} \\
& +0.85 f_{c_{-} _d e c k} \cdot\left(b_{e f f}-b_{v}\right) \cdot h_{e f f} \cdot\left(\frac{\beta_{1} \cdot c}{2}-\frac{h_{e f f}}{2}\right) \\
& E_{p} \cdot \overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \quad \text { if } \beta_{1} \cdot c \leq h_{e f f}
\end{aligned}\right.
$$

$M_{n}=5498.407 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Nominal moment capacity

$\phi:=\left\lvert\,$| 0.85 if $\varepsilon_{0} \geq 0.005$ |
| :--- |
| $0.5167+66.67 \cdot \varepsilon_{0}$ if $0.002 \leq \varepsilon_{0} \leq 0.005$ |
| 0.65 if $\varepsilon_{0} \leq 0.002$ |$=0.85\right.$

if $\left(M_{r}>M_{u_{-} \text {strength }}\right.$, "ok", "no good" $)=$ "ok"
$\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{u}_{-} \text {strength }}}=1.32$

Minimum reinforcement against cracking moment

$\mathrm{f}_{\mathrm{r}}:=0.24 \cdot \sqrt{\mathrm{f}_{\mathrm{c} _ \text {beam }} \cdot \mathrm{ksi}}=678.823 \mathrm{psi}$	Modulus of rupture of beam concrete, AASHTO A 5.4.2.6
$\gamma_{1}:=1.6$	Flexural variability factor
$\gamma_{2}:=1.1$	Prestress viariability factor
$\gamma_{3}:=1.0$	Reinforcement strength ratio

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{cpe}}:=\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{~A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{~S}_{\mathrm{B}}}=2264.03 \mathrm{psi} \quad \begin{array}{l}
\text { Compressive stress in concrete due to effective prestress } \\
\text { forces only (after allowance for all prestress losses) at } \\
\text { extreme fiber of section where tensile stress is caused by } \\
\text { externally applied loads (ksi) }
\end{array} \\
& \mathrm{M}_{\mathrm{cr}}:=\gamma_{3} \cdot\left[\left(\gamma_{1} \cdot \mathrm{f}_{\mathrm{r}}+\gamma_{2} \cdot \mathrm{f}_{\mathrm{cpe}}\right) \cdot \mathrm{S}_{\mathrm{bn}}-\mathrm{M}_{\mathrm{DC} 1} \cdot\left(\frac{\mathrm{~S}_{\mathrm{bn}}}{\mathrm{~S}_{\mathrm{B}}}-1\right)\right]=3679.54 \cdot \mathrm{kip} \cdot \mathrm{ft} \quad \text { Cracking moment }
\end{aligned}
$$

Approximate mid-span deflection at failure

The deflection calculations follows the approach outlined in the paper "Flexural behaviour of CFRP precast Decked Bulb T beams " by Grace et al. in May/June 2012, Journal of Composites for Construction. In order to calculate the deflection at failure, the moment capacity of the composite section is used as the bending moment. The stress level in the bottom most row is used to calculate the flexural rigidity. The deflection calculated below is approximate, but will give an indication of the deformbility and the level of warning exhibited near failure of the beam.
$\mathrm{d}_{\mathrm{i}_{0}}=49.00 \cdot \mathrm{in}$
$\mathrm{c}=5.20 \cdot \mathrm{in}$
$\mathrm{y}_{\mathrm{S}}:=\mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c}=43.80 \cdot \mathrm{in}$
EI $:=\frac{\mathrm{M}_{\mathrm{n}} \cdot \mathrm{y}_{\mathrm{S}}}{\varepsilon_{0}}=411215285.27 \cdot \mathrm{kip} \cdot \mathrm{in}^{2}$
$\omega_{\mathrm{f}}:=8 \cdot \frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{L}^{2}}=11.083 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$
$\delta_{\mathrm{f}}:=\frac{5 \cdot \omega_{\mathrm{f}} \cdot \mathrm{L}^{4}}{384 \mathrm{EI}}=9.553 \cdot \mathrm{in}$

Depth of the bottom row of strands to the extreme compression fiber

Depth of the neutral axis to the extreme compression fiber

Distance from neutral axis to the bottom row of strands

Flexural rigidity of the beam/deck section based on the stress level in the bottom row of prestressing strands

Failure load (dead and live loads) uniformly dirstibuted over th ϵ entire span

Midspan deflection at strength limit state

LRFD Design Example for:

CFCC Prestressed Precast Concrete I-Beam with Cast-In-Place Concrete Slab

Disclaimer

"This publication is disseminated in the interest of information exchange. The Michigan Department of Transportation (hereinafter referred to as MDOT) expressly disclaims any liability, of any kind, or for any reason, that might otherwise arise out of any use of this publication or the information or data provided in the publication.
MDOT further disclaims any responsibility for typographical errors or accuracy of the information provided or contained within this information. MDOT makes no warranties or representations whatsoever regarding the quality, content, completeness, suitability, adequacy, sequence, accuracy or timeliness of the information and data provided, or that the contents represent standards, specifications, or regulations."
"This material is based upon work supported by the Federal Highway Administration under SPR-1690. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Federal Highway Administration."

About this Design Example

Description

This document provides guidance for the design of CFCC prestressed precast concrete beams according to AASHTO LRFD Bridge Design Specifications with the neccessary ammendmets where applicable, based on available literature and experimental data from tests conducted by Grace et. al at Lawrence Technological University. The example provided herein is an I beam with a constant web thickness of 7 in . The cross-section of the bridge is Type K as described by AASHTO Table 4.6.2.2.1-1.

Standards

The following design standards were utilized in this example:

- AASHTO LRFD Bridge Design Specification, 7th Edition, 2014
- Michigan Department of Transportation Bridge Design Manual, Volume 5
- Michigan Department of Transportation Bridge Design Guide
- ACI 440.4R-04, Prestressing Concrete Structures with FRP Tendons

Code \& AASHTO LRFD UPDATES

This Mathcad sheet is developed based on available design guidelines and available AASHTO LRFD edition at the time of writing the sheet. Designer shall check and update design equations according to the latest edition of AASHTO LRFD

General notes

The following notes were considered in this design example:
1- Guarnateed strength of CFRP is reduced to account for environmental effect. The design guarnateec strength is taken as $0.9 \times$ guarnateed strength recommended by manufacturer

2- Initial prestressing stress is limited to 65% of the design (reduced) guaranteed strength according to current $\mathrm{ACl} 440.4 \mathrm{R}-04$. This limit is subject to change. Check the latest recommendations for initial/jacking stress in CFRP strands

3- CFCC strength immediately following transfer is limited to 60\% of the design (reduced) guaranteed strength according ccording to current $\mathrm{ACI} 440.4 \mathrm{R}-04$. This limit is subject to change. Check the latest recommendations

4- The depth of the haunch is ignored in calculating section properties or flexural capacity, while is included in calculating the dead loads

5- In strength limit state flanged section design, the concrete strength of the beam portion participating i the stress block was conservatively assumed equal to the concrete strength of the deck (AASHTO LRF C5.7.2.2)

6- Barrier weight was taken as $475 \mathrm{lb} / \mathrm{ft}$. While, weight of midspan diaphragm was $500 \mathrm{lb} / \mathrm{beam}$
7- In the Mathcad sheet, the option of debonding as well as top prestressing strands are offered as means of reducing the end tensile stresses of the beams

8- In strength limit state check, the design addresses six different failure modes as follows:
Tension controlled rectangular section (depth of stress block is less than or equal the depth of the deck slab and the reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled rectangular section (depth of stress block is less than or equal the depth of the deck slab and the reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Tension controlled flanged section (depth of stress block is larger than the depth of the deck slab but less than the combined depth of the deck slab and beam top flange. The reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled flanged section (depth of stress block is larger than the depth of the deck slab but less than the combined depth of the deck slab and beam top flange. The reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Tension controlled double flanged section (depth of stress block is larger than the combined depth of the deck slab and beam top flange. The reinforcement ratio is less than balanced reinforcement ratio, CFRP ruptures before concrete crushing)

Compression controlled double flanged section (depth of stress block is larger than the combined depth of the deck slab and beam top flange. The reinforcement ratio is larger than balanced reinforcement ratio, Concrete crushes before CFRP rupture)

Designer is advised to check the ductility of the beam and the deflection at failure in case of double flanged section because in that case, the N.A. of the section lies within the web of the beam and the ductility of the section may be compromised

9- This design example is developed based on allowable jacking strength and stress immediately after transfer according to the limits presented in the ACI 440.4R-04. The document can be updated using other prestress limits such as those presented in MDOT SPR-1690 research report and guide

Unit weights of concrete used for modulus of eLasticity calculations, AASHTO Table 3.5.1-1

$$
\gamma_{\mathrm{c}}\left(\mathrm{f}_{\mathrm{c}}\right):=\left\lvert\, \begin{aligned}
& 0.145 \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \text { if } \mathrm{f}_{\mathrm{c}}^{\prime} \leq 5 \mathrm{ksi} \\
& 0.140 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}+0.001 \cdot\left(\frac{\mathrm{f}^{\prime} \mathrm{c}}{\mathrm{ksi}}\right) \frac{\mathrm{kip}}{\mathrm{ft}^{3}} \text { otherwise }
\end{aligned}\right.
$$

$$
\begin{aligned}
& \gamma_{\text {c.deck }}:=\gamma_{c}\left(\mathrm{f}_{\mathrm{c} \text { _deck }}\right)=145 \cdot \mathrm{pcf} \\
& \gamma_{\text {c.beam }}:=\gamma_{\mathrm{c}}\left(\mathrm{f}_{\mathrm{c} \text { _beam }}\right)=148 \cdot \mathrm{pcf} \\
& \gamma_{\text {ci.beam }}:=\gamma_{\mathrm{c}}\left(\mathrm{f}_{\text {ci_beam }}\right)=146.4 \cdot \mathrm{pcf}
\end{aligned}
$$

Concrete Modulus of Elasticity

Elastic modulus for concrete is as specified by AASHTO A 5.4.2.4 with a correction factor of 1.0
$\mathrm{E}_{\text {c.beam_i }}:=120000 \cdot\left(\frac{\gamma_{\text {ci.beam }}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\text {ci_beam }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=4745.73 \cdot \mathrm{ksi} \quad$ Beam concrete at reLease

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{c} . \text { beam }}:=120000 \cdot\left(\frac{\gamma_{\mathrm{c} . \mathrm{beam}}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {beam }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=5220.65 \cdot \mathrm{ksi} \quad \text { Beam concrete at } 28 \text { days } \\
& \mathrm{E}_{\mathrm{c} . \text { deck }}:=120000 \cdot\left(\frac{\gamma_{\mathrm{c} . \text { deck }}}{\frac{\mathrm{kip}}{\mathrm{ft}^{3}}}\right)^{2.0} \cdot\left(\frac{\mathrm{f}_{\mathrm{c}-\text { deck }}}{\mathrm{ksi}}\right)^{0.33} \cdot \mathrm{ksi}=4291.19 \cdot \mathrm{ksi} \quad \text { Deck concrete at } 28 \text { days }
\end{aligned}
$$

CFCC Material Properties

$\mathrm{d}_{\mathrm{s}}:=15.2 \mathrm{~mm}=0.6 \cdot \mathrm{in}$	Prestressing strand diameter
$\mathrm{A}_{\text {strand }}:=0.179 \cdot \mathrm{in}^{2}$	Effective cross sectionaL area
$\mathrm{E}_{\mathrm{p}}:=21000 \mathrm{ksi}$	Tensile elastic modulus
$\mathrm{T}_{\text {guts }}:=60.70 \mathrm{kip}$	Guaranteed ultimate tensile capacity
$\mathrm{f}_{\text {pu }}^{\prime}:=\frac{T_{\text {guts }}}{\mathrm{A}_{\text {strand }}}=339.11 \cdot \mathrm{ksi}$	Calculated ultimate tensile stress

$C_{\text {Ese }}:=0.9$
$\mathrm{f}_{\text {pu.service }}:=\mathrm{C}_{\text {Ese }} \cdot \mathrm{f}_{\mathrm{pu}}=305.2 \cdot \mathrm{ksi}$
$C_{\text {Est }}:=0.9$
$\mathrm{f}_{\mathrm{pu}}:=\mathrm{C}_{\text {Est }} \cdot{ }^{\mathrm{f}} \mathrm{f}_{\mathrm{pu}}=305.2 \cdot \mathrm{ksi}$

Environmental reduction factor for prestressed concrete exposed to weather for service limit state calculations

Environmental reduction factor for prestressed concrete exposed to weather for strength limit state calculations

Modular Ratio

$\mathrm{n}:=\frac{\mathrm{E}_{\text {c.beam }}}{\mathrm{E}_{\text {c.deck }}}=1.217 \quad$ Modular ratio for beam
$n_{p}:=\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{E}_{\mathrm{c} . \text { deck }}}=4.89 \quad$ Modular ratio for Prestressing CFCC

IBeam Section Properties:

BEAM PROPERTIES					
TYPE	WEIGHT lbs/ft	AREA in ${ }^{2}$	$\begin{aligned} & S_{T} \\ & \operatorname{in}^{3} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{B} \\ & \mathrm{in}^{3} \end{aligned}$	$\begin{gathered} \mathrm{I} \\ \mathrm{in}^{4} \end{gathered}$
I	288	276	1475	1805	22,800
I I	384	369	2530	3220	51,000
II I	583	560	5070	6190	125,000
IV	822	789	8910	10,550	261,000

The values given in the Table are rounded. Exact values can be calculated manually and are given below for section III

$\mathrm{A}_{\text {beam }}:=558.9375 \mathrm{in}^{2}$	Minimum area of beam section	
$\mathrm{d}:=45 \mathrm{in}$	Depth of beam	
$\mathrm{b}_{\text {web }}:=7 \mathrm{in}$	Minimum web thickness	
$\mathrm{b}_{\text {web.max }}:=7 \mathrm{in}$	Maximum web thickness	
$\mathrm{b}_{\mathrm{ft}}:=16 \mathrm{in}$	Width of top flange	
$\mathrm{d}_{\mathrm{ft}}:=7 \mathrm{in}$	Thickness of top flange	
$\mathrm{d}_{\mathrm{h}}:=4.5 \cdot \mathrm{in}$	Depth of a first haunch under the top flange	
$\mathrm{b}_{\mathrm{fb}}:=22 \mathrm{in}$	Width of bottom flange	
$\mathrm{d}_{\mathrm{fb}}:=7 \mathrm{in}$	Thickness of bottom flange	
$\mathrm{b}_{\mathrm{v}}:=\mathrm{b}_{\mathrm{web}}=7.00 \cdot \mathrm{in}$	Total web shear depth	
$\omega_{\text {beam }}:=\mathrm{A}_{\text {beam }} \cdot(150 \mathrm{pcf})=582.23 \cdot \mathrm{plf}$	Beam weight per foot	
$\mathrm{I}_{\text {beam }}:=125164.6 \mathrm{in}^{4}$	Minimum moment of inertia	
$y_{t}:=24.706$ in	Depth from centroid to top of beam	
Grace et al. 21000	rence Tech. University ollege of Engineering 10 Mile Rd., Southfield, MI 48075, U.S.A.	7/1/2019

$$
\begin{array}{ll}
\mathrm{y}_{\mathrm{b}}:=20.2936 \mathrm{in} & \text { Depth from centroid to soffit of beam } \\
\mathrm{S}_{\mathrm{T}}:=\frac{\mathrm{I}_{\mathrm{beam}}}{\mathrm{y}_{\mathrm{t}}}=5066.16 \cdot \mathrm{in}^{3} & \text { Minimum section modulus about top flange } \\
\mathrm{S}_{\mathrm{B}}:=\frac{\mathrm{I}_{\mathrm{beam}}}{\mathrm{y}_{\mathrm{b}}}=6167.69 \cdot \mathrm{in}^{3} & \text { Minimum section modulus about bottom flange }
\end{array}
$$

Effective Flange Width of Concrete Deck Slab, AASHTO A 4.6.2.6

$$
\begin{array}{ll}
\text { Beam_Design }:=\text { "Interior" } & \begin{array}{l}
\text { Choose the design of the beam either } \\
\text { "Interior" or "Exterior" }
\end{array} \\
\mathrm{b}_{\text {eff.int }}:=\mathrm{S}=8.00 \mathrm{ft} & \text { Effective flange width of deck slab for interior beams } \\
\mathrm{b}_{\text {eff.ext }}:=\frac{1}{2} \cdot \mathrm{~S}+\text { overhang }=6.96 \mathrm{ft} & \text { Effective flange width of deck slab for exterior beams }
\end{array}
$$

$$
\mathrm{d}_{\text {total }}:=\text { deck }_{\text {thick }}+\mathrm{d}=54 \cdot \text { in } \quad \text { Total depth of section including deck }
$$

Dynamic load Allowance

Dynamic load allowance from AASHTO Table 3.6.2.1-1 is applied as an increment to the static wheel loads to account for wheel load impacts from moving vehicles.

IM :=1+33\% = 1.33

Design Factors

These factors are related to the ductility, redundancy and operational importance of the bridge structure components and are applied to the strength limit state.

Ductility

For Strength limit State, a factor of 1.05 is used for nonductile components and connections, 1.00 for conventional designs and details complying with these specifications, and 0.95 for components and connections for which additional ductility-enhancing measures have been specified beyond those required by these specifications, AASHTO A 1.3.3.
$\eta_{D}:=1.00$
Redundancy
For Strength limit State, a factor of 1.05 is used for nonredundant members, 1.00 for conventional levels of redundancy, foundation elements where ϕ already accounts for redundancy as specified in AASHTC A 10.5, and 0.95 for exceptional levels of redundancy beyond girder continuity and a torsionally-closed cross-section, AASHTO A 1.3.4.
$\eta_{\mathrm{R}}:=1.00$

Operational Importance

For the Strength limit State, a factor of 1.05 is used for critical or essential bridges, 1.00 for typical bridges, and 0.95 for relatively less important bridges, AASHTO A 1.3.5.
$\eta_{\mathrm{I}}:=1.00$

Ductility, redundancy, and operational classification considered in the load modifier, AASHTO Eqn.
1.3.2.1-2.

$$
\eta_{\mathrm{i}}:=\eta_{\mathrm{D}} \cdot \eta_{\mathrm{R}} \cdot \eta_{\mathrm{I}}=1.00
$$

Composite Section Properties

This is the moment of inertia resisting superimposed dead loads.

Elastic Section Properties - Composite Section: k=2
$\mathrm{k}_{\mathrm{sdl}}:=2$
$\mathrm{A}_{\text {haunchkn }}:=\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k}_{\mathrm{sdl}} \mathrm{n}} \cdot$ haunch $=0 \cdot$ in $^{2} \quad \quad$ effective area of haunch

$$
\begin{aligned}
& \mathrm{d}_{\text {haunchkn }}:=\mathrm{d}+\frac{\text { haunch }}{2}=45 \cdot \text { in } \quad \text { Depth of centroid of haunch to bottom of beam } \\
& \text { Ad }_{\text {haunchkn }}:=d_{\text {haunchkn }} \cdot A_{\text {haunchkn }}=0 \cdot \text { in }^{3} \\
& \mathrm{~b}_{\mathrm{effkn}}:=\frac{\mathrm{b}_{\mathrm{eff}}}{\mathrm{k}_{\mathrm{sdl}} \mathrm{n}}=39.45 \cdot \mathrm{in} \quad \text { Transformed deck width } \\
& \mathrm{d}_{\text {slabkn }}:=\mathrm{d}+\text { haunch }+\frac{\text { deck }_{\text {thick }}-\mathrm{t}_{\text {wear }}}{2}=49.5 \cdot \text { in } \quad \text { Depth from center of deck to beam soffit } \\
& \mathrm{A}_{\text {slabkn }}:=\text { deck }_{\text {thick }} \cdot \mathrm{b}_{\text {effkn }}=355.09 \cdot \mathrm{in}^{2} \quad \text { Area of transformed deck section } \\
& \operatorname{Ad}_{\text {slabkn }}:=\mathrm{A}_{\text {slabkn }} \cdot \mathrm{d}_{\text {slabkn }}=17576.89 \cdot \mathrm{in}^{3} \quad \text { Static moment of inertia of transformed } \\
& \mathrm{d}_{\mathrm{k}}:=\frac{\mathrm{A}_{\text {beam }} \cdot \mathrm{y}_{\mathrm{b}}+\mathrm{Ad}_{\text {slabkn }}+\mathrm{Ad}_{\text {haunchkn }}}{\mathrm{A}_{\text {beam }}+\mathrm{A}_{\text {slabkn }}+\mathrm{A}_{\text {haunchkn }}}=31.64 \cdot \text { in } \\
& \text { section about soffit of beam } \\
& \text { Depth of CG of composite section from beam } \\
& \text { soffit } \\
& \mathrm{I}_{\text {oslabkn }}:=\frac{\mathrm{b}_{\text {effkn }} \cdot \text { deck }_{\text {thick }}{ }^{3}}{12}=2396.85 \cdot \mathrm{in}^{4} \\
& \text { Moment of inertia of transformed deck about } \\
& \text { centroid } \\
& \mathrm{I}_{\text {haunchkn }}:=\frac{\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k}_{\mathrm{sdl} \cdot} \cdot \mathrm{n}^{2}} \cdot \text { haunch }^{3}}{12}=0 \cdot \mathrm{in}^{4} \\
& \text { Effective moment of interia of the haunch } \\
& \text { Moment of inertia of composite section to resist superimposed dead loads calculated using parallel } \\
& \text { axis theorem } \\
& \mathrm{I}_{3 \mathrm{n}}:=\mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot\left(\mathrm{d}_{\mathrm{k}}-\mathrm{y}_{\mathrm{b}}\right)^{2}+\mathrm{I}_{\text {oslabkn }}+\mathrm{A}_{\text {slabkn }} \cdot\left(\mathrm{d}_{\text {slabkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}+\mathrm{I}_{\text {haunchkn }} \ldots=312785.5 \cdot \mathrm{in}^{4} \\
& +A_{\text {haunchkn }} \cdot\left(d_{\text {haunchkn }}-d_{k}\right)^{2} \\
& \mathrm{y}_{\mathrm{b} 3 \mathrm{n}}:=\mathrm{d}_{\mathrm{k}}=31.64 \cdot \mathrm{in} \\
& \mathrm{~S}_{\mathrm{b} 3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{b} 3 \mathrm{n}}}=9885.78 \cdot \mathrm{in}^{3} \\
& y_{t . b m .3 n}:=d-y_{b 3 n}=13.36 \cdot \text { in } \\
& \mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}=23412 \cdot \mathrm{in}^{3} \\
& y_{t 3 n}:=d+\text { haunch }+ \text { deck }_{\text {thick }}-t_{\text {wear }}-y_{b 3 n}=22.36 \cdot \text { in } \\
& \text { Depth of CG of composite section from } \\
& \text { beam soffit } \\
& \text { Section modulus about bottom of beam } \\
& \text { Depth of CG of composite section } \\
& \text { from top of beam } \\
& \text { Section modulus about top of beam } \\
& \text { Depth of CG of composite section } \\
& \text { from top of deck }
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{t} 3 \mathrm{n}}:=\frac{\mathrm{I}_{3 \mathrm{n}}}{\mathrm{y}_{\mathrm{t} 3 \mathrm{n}}}=13988.59 \cdot \mathrm{in}^{3}
$$

Elastic Section Properties -Composite Section: k=1

These properties are used to evaluate the moment of inertia for resisting live loads
Assumed wearing surface not included in the structural design deck thickness, per MDOT BDM 7.02.19.A.4.............
$\mathrm{k}:=1$
$\mathrm{A}_{\text {hawnehkan: }}:=\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{kn}} \cdot$ haunch $=0 \cdot \mathrm{in}^{2} \quad$ effective area of haunch
$\mathrm{d}_{\text {hamablakn: }}: \mathrm{d}+\frac{\text { haunch }}{2}=45 \cdot$ in $\quad \begin{aligned} & \text { Depth of centroid of haunch to bottom of } \\ & \text { beam }\end{aligned}$
Ad $_{\text {haumablami }}:=\mathrm{d}_{\text {haunchkn }} \cdot \mathrm{A}_{\text {haunchkn }}=0 \cdot \mathrm{in}^{3}$
$\mathrm{b}_{\text {efflkm }}:=\frac{\mathrm{b}_{\text {eff }}}{\mathrm{kn}}=78.91 \cdot \mathrm{in} \quad$ Transformed deck width
${\underset{\text { wslabkann }}{ }:=d+\text { haunch }+\frac{\text { deck }_{\text {thick }}-t_{\text {wear }}}{2}=49.5 \cdot \text { in } \quad \text { Depth from center of deck to beam soffit }}^{2}$
$\mathrm{A}_{\text {slabkan: }}:=\operatorname{deck}_{\text {thick }} \cdot \mathrm{b}_{\text {effkn }}=710.18 \cdot \mathrm{in}^{2} \quad$ Area of transformed deck section

$$
\begin{array}{ll}
\mathrm{Ad}_{\text {slabkans }}:=\mathrm{A}_{\text {slabkn }} \cdot \mathrm{d}_{\text {slabkn }}=35153.77 \cdot \mathrm{in}^{3} & \begin{array}{l}
\text { Static moment of inertia of transformed } \\
\text { section about soffit of beam }
\end{array} \\
\mathrm{d}_{\mathrm{kw}}:=\frac{\mathrm{A}_{\text {beam }} \cdot \mathrm{y}_{\mathrm{b}}+\mathrm{Ad}_{\text {slabkn }}+\mathrm{Ad}_{\text {haunchkn }}}{\mathrm{A}_{\text {beam }}+\mathrm{A}_{\text {slabkn }}+\mathrm{A}_{\text {haunchkn }}}=36.64 \cdot \text { in } & \begin{array}{l}
\text { Depth of CG of composite section } \\
\text { from beam soffit }
\end{array} \\
\mathrm{I}_{\text {haslabkm }}:=\frac{\mathrm{b}_{\text {effkn }} \cdot \text { deck }_{\text {thick }} 3^{3}}{12}=4793.7 \cdot \mathrm{in}^{4} & \begin{array}{l}
\text { Moment of inertia of transformed deck about } \\
\text { centroid }
\end{array}
\end{array}
$$

Ihaunchkm: $: \frac{\frac{\mathrm{b}_{\mathrm{ft}}}{\mathrm{k} \cdot \mathrm{n}} \cdot \mathrm{haunch}^{3}}{12}=0 \cdot \mathrm{in}^{4} \quad \quad$ Effective moment of interia of the haunch
Moment of inertia of composite section to resist superimposed dead loads calculated using parallel axis theorem

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{n}}:=\mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot\left(\mathrm{d}_{\mathrm{k}}-\mathrm{y}_{\mathrm{b}}\right)^{2}+\mathrm{I}_{\text {oslabkn }}+\mathrm{A}_{\text {slabkn }} \cdot\left(\mathrm{d}_{\text {slabkn }}-\mathrm{d}_{\mathrm{k}}\right)^{2}+\mathrm{I}_{\text {haunchkn }} \ldots=396757.9 \cdot \mathrm{in}^{4} \\
& +A_{\text {haunchkn }} \cdot\left(d_{\text {haunchkn }}-d_{k}\right)^{2} \\
& \mathrm{y}_{\mathrm{bn}}:=\mathrm{d}_{\mathrm{k}}=36.637 \cdot \mathrm{in} \quad \text { Depth of } \mathrm{CG} \text { of composite section from } \\
& \mathrm{S}_{\mathrm{bn}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{bn}}}=10829.42 \cdot \mathrm{in}^{3} \\
& y_{t . b m . n}:=d-y_{b n}=8.36 \cdot \text { in } \\
& \mathrm{S}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}}=47442.37 \cdot \mathrm{in}^{3} \\
& y_{\text {tn }}:=d+\text { haunch }+ \text { deck }_{\text {thick }}-t_{\text {wear }}-y_{\text {bn }}=17.36 \cdot \text { in } \\
& \mathrm{S}_{\mathrm{tn}}:=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{y}_{\mathrm{tn}}}=22850.84 \cdot \mathrm{in}^{3} \\
& \text { Depth of CG of composite section from } \\
& \text { beam soffit } \\
& \text { Section modulus about bottom of beam } \\
& \text { Depth of CG of composite section } \\
& \text { from top of beam } \\
& \text { Section modulus about top of beam } \\
& \text { Depth of CG of composite section from } \\
& \text { top of deck } \\
& \text { Section modulus about top of deck }
\end{aligned}
$$

live load lateral Distribution Factors

Cross-section classification \qquad
Distribution of live loads from the deck to the beams is evaluated based on the AASHTO specified distribution factors. These factors can only be used if generally, the following conditions are met;

- Width of deck is constant.
- Unless otherwise specified, the number of beams is not less than four.
- Beams are parallel and have approximately the same stiffness.
- \quad Curvature in plan is less than the limit specified in AASHTO A 4.6.1.2.4.
- Unless otherwise specified, the roadway part of the overhang does not exceed 3.0 ft .
- \quad Cross-section is consistent with one of the cross-sections shown in AASHTO Table 4.6.2.2.1-1.

Unless otherwise stated, stiffness parameters for area, moments of inertia and torsional stiffness used shall be taken as those of the cross-section to which traffic will be applied (composite section)

Distance between the centers of gravity of the basic beam and deck

$$
e_{g}:=d+\left(\frac{\text { deck }_{\text {thick }}}{2}\right)+\text { haunch }-y_{b}=29.206 \cdot \text { in }
$$

logitudinal stiffness parameter

$$
\mathrm{K}_{\mathrm{g}}:=\mathrm{n} \cdot\left(\mathrm{I}_{\text {beam }}+\mathrm{A}_{\text {beam }} \cdot \mathrm{e}_{\mathrm{g}}^{2}\right)=732326.17 \cdot \mathrm{in}^{4}
$$

Distribution of live loads for Moment in Interior Beams, AASHTO Table 4.6.2.2.2b-1

Range of Applicability \qquad
if $(3.5 \mathrm{ft}<\mathrm{S} \leq 16 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $\left(4.5\right.$ in $<$ deck $_{\text {thick }} \leq 12$ in, "ok", "not ok" $)=$ "ok"
if $(20 \mathrm{ft}<\mathrm{L} \leq 240 \mathrm{ft}$, "ok", "not ok" $)=$ "ok"
if $\left(\mathrm{NO}_{\text {beams }} \geq 4\right.$, "ok" , "not ok" $)=$ "ok"
if $\left(10000\right.$ in $^{4}<\mathrm{K}_{\mathrm{g}} \leq 7000000$ in 4, "ok", "not ok" $)=$ "ok"

One lane loaded

$\mathrm{M}_{\text {lane1_int }}:=0.06+\left(\frac{\mathrm{S}}{14 \mathrm{ft}}\right)^{0.4} \cdot\left(\frac{\mathrm{~S}}{\mathrm{~L}}\right)^{0.3} \cdot\left(\frac{\mathrm{~K}_{\mathrm{g}}}{12 \cdot \mathrm{~L} \cdot \text { deck }_{\text {thick }} 3} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.1}=0.497$

Two or more lanes loaded

$$
\mathrm{M}_{\text {lane2_int }}:=0.075+\left(\frac{\mathrm{S}}{9.5 \mathrm{ft}}\right)^{0.6} \cdot\left(\frac{\mathrm{~S}}{\mathrm{~L}}\right)^{0.2} \cdot\left(\frac{\mathrm{~K}_{\mathrm{g}}}{12.0 \cdot \mathrm{~L} \cdot \mathrm{deck}_{\text {thick }} 3} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.1}=0.683
$$

live load moment disribution factor for interior beam
$\mathrm{M}_{\text {lane_int }}:=\max \left(\mathrm{M}_{\text {lane1_int }}, \mathrm{M}_{\text {lane2_int }}\right)=0.683$

Distribution of live loads for Moment in Exterior Beams, AASHTO Table 4.6.2.2.2d-1

One lane loaded (using the lever rule)

The lever rule involves the use of statics to determine the lateral distribution to the exterior girder by summing moments about the adjacent interior girder to determine the wheel-load reaction at the exterio girder assuming the concrete deck is hinged at the interior girder. A wheel cannot be closer than 2'-0" to the toe of barrier, and the standard wheel spacing is $6^{\prime}-0^{\prime \prime}$. The evaluated factor is multiplied by the multiple presence factor, AASHTO Table 3.6.1.1.2-1.

Summing moments about the center of the interior beam
$\mathrm{R}:=\frac{\left(\mathrm{S}+\text { overhang }- \text { barrier }_{\text {width }}-2 \cdot \mathrm{ft}-\frac{6 \cdot \mathrm{ft}}{2}\right)}{\mathrm{S}}=0.594$
This factor is based on the lever arm rule considring the wheel load and not the resultant of both wheel

Moment distribution factor for exterior beam, one load loaded. The 1.2 accounts for the multiple presence factor, m from AASHTO Table 3.6.1.1.2-1 for one lane loaded
$\mathrm{M}_{\text {lane1_ext }}:=\mathrm{R} \cdot 1.2=0.713$

Two or more lanes loaded

Horizontal distance from the centerline of the exterior web of exterior beam at deck level to the interior web edge of curb or traffic barrier must be greater than $0^{\prime}-0{ }^{\prime \prime}$
$\mathrm{d}_{\mathrm{e}}:=\max \left(\right.$ overhang - barrier $\left._{\text {width }}, 0 \mathrm{ft}\right)=1.75 \mathrm{ft}$

Range of Applicability
if $\left(-1 \mathrm{ft} \leq \mathrm{d}_{\mathrm{e}} \leq 5.5 \mathrm{ft}\right.$, "ok", "not ok" $)=$ "ok"
lane fraction
$e_{m}^{e}:=0.77+\frac{d_{e}}{9.1 f t}=0.962$

Moment distribution factor for exterior beam, two or more lanes loaded
$\mathrm{M}_{\text {lane2_ext }}:=\mathrm{M}_{\text {lane_int }} \cdot \mathrm{e}=0.658$

Distribution of live loads for Moment in Exterior Beams, AASHTO C4.6.2.2.2d

AASHTO LRFD 2014 recommends the rigid plate analysis only for steel beam-slab bridges. This was a change from ealier versions of AASHTO. It is up to the designed to ignore the rigid plate analysis or take it into consideration when calculating the DF for exterior beam

Additional special analysis investigation is required because the distribution factor for multigirder in cross section was determined without consideration of diaphragm or cross frames. The multiple presence factors are used per AASHTO Table 3.6.1.1.2-1. This analysis should be done by sketching the cross section to determine the variables required for this example, the defined deck geometry is
used. For any other geometry, these variables should be hand computed and input:
Horizontal distance from center of gravity of the pattern of girders to the exterior girder
$\mathrm{X}_{\mathrm{ext}}:=\frac{\mathrm{S}_{\text {exterior }}}{2}=28.00 \mathrm{ft}$
Eccentricity of the center line of the standard wheel from the center of gravity of the pattern of girders

$$
\begin{aligned}
& \mathrm{e}_{1}:=\mathrm{X}_{\mathrm{ext}}+\text { overhang - barrier } \text { width }-2 \mathrm{ft}-\frac{6 \mathrm{ft}}{2}=24.75 \mathrm{ft} \\
& \mathrm{e}_{2}:=\mathrm{e}_{1}-12 \mathrm{ft}=12.75 \mathrm{ft} \\
& \mathrm{e}_{3}:=\mathrm{e}_{2}-12 \mathrm{ft}=0.75 \mathrm{ft} \\
& \mathrm{e}_{4}:=\mathrm{e}_{3}-12 \mathrm{ft}=-11.25 \mathrm{ft}
\end{aligned}
$$

Summation of eccentricities for number of lanes considered:

${ }^{\mathrm{e}} \mathrm{NL} 1:=\mathrm{e}_{1}=24.75 \mathrm{ft}$	One lane loaded
$\mathrm{e}_{\mathrm{NL} 2}:=\mathrm{e}_{1}+\mathrm{e}_{2}=37.5 \mathrm{ft}$	Two lanes loaded
${ }^{\mathrm{e}} \mathrm{NL} 3:=\mathrm{e}_{\mathrm{NL} 2}+\mathrm{e}_{3}=38.25 \mathrm{ft}$	Three lanes loaded
${ }^{\mathrm{e}}$ NL4 $:=\mathrm{e}_{\mathrm{NL} 3}+\mathrm{e}_{4}=27 \mathrm{ft}$	Four lanes loaded

Horizontal distances from the center of gravity of the pattern of girders to each girder

Summation of horizontal distances from the center of gravity of the pattern of girders to each girder
$\mathrm{X}_{\mathrm{NB}}:=\sum \mathrm{X}_{\text {beams }}^{2}=2688.00 \cdot \mathrm{ft}^{2}$
$\mathrm{m}_{1 \mathrm{R}}:=1.2 \cdot\left(\frac{1}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot{ }^{\cdot \mathrm{e}_{\mathrm{NL}}}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.459$
Reaction on exterior beam when one lane is loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1
$\mathrm{m}_{2 \mathrm{R}}:=1.0 \cdot\left(\frac{2}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot \mathrm{e}_{\mathrm{NL} 2}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.641$
Reaction on exterior beam when two lanes are loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1
$\mathrm{m}_{3 \mathrm{R}}:=0.85 \cdot\left(\frac{3}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext}} \cdot \mathrm{e}_{\mathrm{NL}} 3}{\mathrm{X}_{\mathrm{NB}}}\right)=0.657$
Reaction on exterior beam when three lanes are loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1
$\mathrm{m}_{4 \mathrm{R}}:=0.65 \cdot\left(\frac{4}{\mathrm{NO}_{\text {beams }}}+\frac{\mathrm{X}_{\mathrm{ext} \cdot \mathrm{e}^{\mathrm{NL}}}}{\mathrm{X}_{\mathrm{NB}}}\right)=0.508$ Reaction on exterior beam when four lanes are loaded enhanced with the appropriate multiple lane factor from AASHTO Table 3.6.1.1.2-1
live load moment disribution factor for exterior beam
$\mathrm{M}_{\text {lane_ext }}:=\max \left(\mathrm{M}_{\text {lane1_ext }}, \mathrm{M}_{\text {lane2_ext }}, \mathrm{m}_{1 \mathrm{R}}, \mathrm{m}_{2 \mathrm{R}}, \mathrm{m}_{3 \mathrm{R}}, \mathrm{m}_{4 \mathrm{R}}\right)=0.713$

Reduction of load Distribution Factors for Moment in longitudinal Beams on Skewed Supports

When the line supports are skewed and the difference between skew angles of two adjacent lines of supports does not exceed 10 degrees, the bending moments and shear forces are reduced in accordance with AASHTO Table 4.6.2.2.2e-1 and 4.6.2.2.3c-1 respectively.

Moment

Range of Applicability

$$
\begin{aligned}
& \text { if }\left(30 \mathrm{deg} \leq \theta_{\text {skew }} \leq 60 \mathrm{deg}, \text { "ok" }, \text { "Check below for adjustments of } \mathrm{C} 1 \text { and } \theta \text { skew" }\right)=\text { "Check below for adjı } \\
& \text { if }(3.5 \mathrm{ft}<\mathrm{S} \leq 16 \mathrm{ft}, \text { "ok" }, \text { "not ok" })=\text { "ok" } \\
& \text { if }(20 \mathrm{ft}<\mathrm{L} \leq 240 \mathrm{ft}, \text { "ok" }, \text { "not ok" })=\text { "ok" } \\
& \text { if }\left(\mathrm{NO}_{\text {beams }} \geq 4, \text { "ok", "not ok" }\right)=\text { "ok" }
\end{aligned}
$$

$$
\theta_{\text {skenenn }}:=\left\lvert\, \begin{array}{ll}
\theta_{\text {skew }} & \text { if } \theta_{\text {skew }} \leq 60 \cdot \mathrm{deg} \\
60 \cdot \text { deg } & \text { if } \theta_{\text {skew }}>60 \cdot \mathrm{deg}
\end{array}\right.
$$

$\mathrm{C}_{1}:=|$| 0 if $\theta_{\text {skew }}<30 \cdot \mathrm{deg}$ | $=0$ |
| :--- | :--- |
| $\left[0.25 \cdot\left(\frac{\mathrm{~K}_{\mathrm{g}}}{12.0 \cdot \mathrm{~L} \cdot \text { deck }_{\text {thick }} 3} \cdot \frac{\mathrm{ft}}{\mathrm{in}}\right)^{0.25} \cdot\left(\frac{\mathrm{~S}}{\mathrm{~L}}\right)^{0.5}\right]$ otherwise | |

$$
\operatorname{Mcorr}_{\text {factor }}:=1-\mathrm{C}_{1} \cdot \tan \left(\theta_{\text {skew }}\right)^{1.5}=1 \quad \text { Correction factor for moment }
$$

Reduced distribution factors at strength limit state for interior girders due to skew

$\mathrm{DF}_{\text {strength_moment_int }}:=\mathrm{M}_{\text {lane_int }}{ }^{\text {Mcorr }}$ factor $=0.683 \quad$ Moment

Reduced distribution factors at strength limit state for exterior girders due to skew

$$
\mathrm{DF}_{\text {strength_moment_ext }}:=\mathrm{M}_{\text {lane_ext }} \cdot \text { Mcorr }_{\text {factor }}=0.713 \quad \text { Moment }
$$

Design distribution factors for service and strength limit states

Distribution factor for moment at strength limit state
$\mathrm{DF}_{\text {strength_moment }}:=\left\{\begin{array}{l}\mathrm{DF}_{\text {strength_moment_int }} \text { if Beam_Design = "Interior" }=0.683 \\ \mathrm{DF}_{\text {strength_moment_ext }} \text { if Beam_Design = "Exterior" }\end{array}\right.$

live load Analysis

Flexure

As per AASHTO A 3.6.1.2.1, vehicular live loading designated by the standard $\mathrm{HI}-93$ truck shall be a combination of the design truck or design tandem, and the design lane load. To produce extreme force effects, the spacing between the two 32 -kip axles are taken as 14 ft .

Calculate the maximum moment due to the truck load. Maximum truck load moment occurs when the middle axle is positioned at distance 2.33 ft from the midspan. Maximum momment occurs under the middle axle load. Moment due to distributed load occurs at midspan.

Unless more detailed analysis is performed to determine the location and value for the maximum moment under combined truck and distributed loads at both service and strength limit state, the maximum moment from the truck load at distance 2.33 ft from midspan can be assumed to occur at
the midspan and combined with the maximum moment from other dead and live distributed loads

Calculate the reaction at the end of the span
$\mathrm{R}:=\frac{8 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}-16.33 \mathrm{ft}\right)+32 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}-2.33 \mathrm{ft}\right)+32 \mathrm{kip} \cdot\left(\frac{\mathrm{L}}{2}+11.67 \mathrm{ft}\right)}{\mathrm{L}}=38.588 \cdot \mathrm{kip}$
Calculate the maximum moment
$M_{\text {truck }}:=R \cdot\left(\frac{L}{2}+2.33 \mathrm{ft}\right)-32 \cdot \mathrm{kip} \cdot 14 \cdot \mathrm{ft}=896.031 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to design lane load, AASHTO A 3.6.1.2.4
$\mathrm{X}:=\frac{\mathrm{L}}{2}=32.5 \mathrm{ft}$
$\mathrm{M}_{\text {lane }}:=\frac{0.64 \mathrm{klf} \cdot \mathrm{L} \cdot \mathrm{X}}{2}-0.64 \mathrm{klf} \cdot \frac{\mathrm{X}^{2}}{2}=338.00 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to design tandem, MDOT BDM 7.01.04.A
$\mathrm{M}_{\text {tandem }}:=\frac{60 \mathrm{kip} \cdot \mathrm{L}}{4}=975 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Maximum moment due to vehicular live loading by the modified HI-93 design truck and tandem per MDOT BDM 7.01.04.A. Modification is by multiplying the load effects by a factor of 1.20. Dynamic load allowance is considered only for the design truck and tandem, AASHTO A 3.6.1.2.2, 3.6.1.2.3 \& 3.6.1.2.4.
$\mathrm{M}_{\text {LLI }}:=\left[1.20 \mathrm{M}_{\text {lane }}+\mathrm{IM} \cdot\left(1.20 \cdot \max \left(\mathrm{M}_{\text {truck }}, \mathrm{M}_{\text {tandem }}\right)\right)\right] \cdot \mathrm{DF}_{\text {strength_moment }}=1340.77 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Dead load Analysis

Dead load calculations are slightly adjusted for exterior beam design.

Noncomposite Dead load (DC ${ }_{1}$)

$M_{\text {swbeam }}:=\frac{\omega_{\text {beam }} \cdot \mathrm{L}^{2}}{8}=307.49 \cdot \mathrm{kip} \cdot \mathrm{ft} \quad$ Total moment due to selfweight of beam

$\text { deck }:=\left(\text { deck }_{\text {thick }} \cdot \mathrm{b}_{\text {eff }}+\text { haunch }_{\mathrm{d}} \cdot \mathrm{~b}_{\mathrm{ft}}\right) \cdot 0.15 \frac{\mathrm{kip}}{\mathrm{ft}^{3}}=0.93 \cdot \mathrm{klf}$	Selfweight of deck and haunch on beam
$M_{\text {deck }}:=\frac{\text { deck } \cdot \mathrm{L}^{2}}{8}=492.92 \cdot \mathrm{kip} \cdot \mathrm{ft}$	Moment due to selfweight of deck and haunch
sip $:=15 \mathrm{psf} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right)=0.1 \cdot \mathrm{klf}$	15 psf weight included for stay-in-place forms per MDOT BDM 7.01.04.I
$\mathrm{M}_{\text {sip }}:=\frac{\operatorname{sip} \cdot \mathrm{L}^{2}}{8}=52.81 \cdot \mathrm{kip} \cdot \mathrm{ft}$	Moment due to stay-in-place forms
$\mathrm{dia}_{\text {int }}:=0.5 \cdot \mathrm{kip}$	Weight of steel diaphragms at mid-span per each interior beam
$\mathrm{dia}_{\text {ext }}:=0.25 \cdot \mathrm{kip}$	Weight of steel diaphragms at mid-span per each exterior beam
$\text { diaphragm }:=\left\lvert\, \begin{aligned} & \text { dia }_{\text {int }} \text { if Beam_Design = "Interior" }=0.5 \\ & \text { dia }_{\text {ext }} \text { if Beam_Design = "Exterior" } \end{aligned}\right.$	
spa $_{\text {dia }}:=2\left(\mathrm{~S}-\mathrm{b}_{\mathrm{fb}}\right) \cdot \tan \left(\theta_{\text {skew }}\right)=0 \mathrm{ft}$	One row of diaphragms at midspan are used.
$\mathrm{M}_{\mathrm{dia}}:=\operatorname{diaphragm} \cdot \frac{\mathrm{L}}{4}=8.125 \cdot \mathrm{kip} \cdot \mathrm{ft}$	
$\mathrm{DC}_{1}:=\omega_{\text {beam }}+$ deck $+\operatorname{sip}=1.616 \cdot \mathrm{klf}$	Dead load (o.wt of beam+ deck+ SIP forms) acting on non-composite section
$\mathrm{M}_{\mathrm{DC} 1}:=\mathrm{M}_{\text {swbeam }}+\mathrm{M}_{\text {deck }}+\mathrm{M}_{\text {sip }}+\mathrm{M}_{\text {dia }}=861.34 \cdot \mathrm{kip} \cdot \mathrm{ft}$	Total midspan moment acting on the non-composite section
Composite Dead load (DC $\underline{2}^{2}$)	
$\text { util }:=\frac{1}{2} \cdot(0 \mathrm{plf})=0 \cdot \mathrm{klf}$	No utilities are supported by the superstructure
$\text { barrier } 1_{\text {weight }}:=0.475 \frac{\mathrm{kip}}{\mathrm{ft}}$	Weight per foot of first barrier (aesthetics parapet tube, MDOT BDG 6.29.10)
$\text { barrier } \text { weight }:=2.25 \cdot \mathrm{in} \cdot 40 \cdot \mathrm{in} \cdot \omega_{\mathrm{conc}}+0.475 \frac{\mathrm{kip}}{\mathrm{ft}}=0.569 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$	Weight per foot of second barrier (modified aesthetics parapet tube, MDOT BDG 6.29.10)
Grace et al. Lawrence Tech. Unive College of Engineeri 21000 W 10 Mile Rd., Sout 48075, U.S.A.	7/1/2019 field, MI

sidewalk $:=\frac{2 \cdot \text { walk }_{\text {width }} \cdot \text { walk }_{\text {thick }} \cdot \omega_{\text {conc }}}{\mathrm{NO}_{\text {beams }}}=0.00 \cdot \mathrm{klf}$
barrier $:=\frac{\text { barrier } 1^{\text {weight }}+\text { barrier }^{2} \text { weight }}{\mathrm{NO}_{\text {beams }}}=0.13 \cdot \mathrm{klf}$
soundwall $_{\text {weight }}:=0.0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}$

Weight to due extra thickness of sidewalk per beam

Total barrier weight per beam

Weight of the sound wall, if there is a sound wall

Weight of the sound wall for exterior beam design assuming lever arm and an inetremiate hinge on the first interior beam

$\mathrm{DC}_{2}:=$ sidewalk + barrier + util + soundwall $=0.13 \cdot \mathrm{klf}$
$\mathrm{M}_{\mathrm{DC} 2}:=\frac{\mathrm{DC}_{2} \cdot \mathrm{~L}^{2}}{8}=68.90 \cdot \mathrm{kip} \cdot \mathrm{ft}$

(DW) Wearing Surface load

$\mathrm{DW}:=\left(\mathrm{b}_{\mathrm{eff}}\right) \cdot 0.025 \frac{\mathrm{kip}}{\mathrm{ft}^{2}}=0.2 \cdot \mathrm{klf}$
Self weight of future wearing surface

Total midspan moment due to loads acting on the composite and non-composite section

Midspan moment due to weight of future wearing surface

Wind load on the sound wall

$$
\begin{aligned}
& \mathrm{M}_{\text {wind }}:=0.0 \cdot \mathrm{ft} \cdot \frac{\mathrm{kip}}{\mathrm{ft}} \\
& \mathrm{~W}_{\mathrm{M}}:=\frac{\mathrm{M}_{\text {wind }}}{\mathrm{S}}=0 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}
\end{aligned}
$$

Total dead load acting on the composite section

Total midspan moment acting on the composite section

Maximum unfactored dead load moments

$M_{D C}:=M_{D C 1}+M_{D C 2}=930.25 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$\mathrm{M}_{\mathrm{DW}}:=\frac{\mathrm{DW} \cdot \mathrm{L}^{2}}{8}=105.63 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Grace et al.

$$
\mathrm{M}_{\mathrm{WS}}:=\frac{\mathrm{W} \cdot \mathrm{~L}^{2}}{8}=0 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Interior beam moment due to wind acting at the sound wall

load Combinations

Load Combinations: Strength, Extreme Event, Service and Fatigue load combinations are defined per AASHTO 3.4.1. Verify which combination are appropriate. For this concrete box beam design, wind load is not evaluated, and no permit vehicle is specified. However, the design live loading is MDOT HL-93 Modified which accounts for Michigan's inventory of legal and permit vehicles.

Strength I, III, IV and Strength V limit states are considered for the design of this beam. Load combinations factors according to AASHTO LRFD 2016 Interim revision are used

```
\(\mathrm{M}_{\text {Strength }}^{\mathrm{I}}:=\eta_{\mathrm{i}}\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.75 \mathrm{M}_{\mathrm{LLI}}\right)=3667.60 \cdot \mathrm{kip} \cdot \mathrm{ft}\)
M_Strength \(_{\text {III }}:=\eta_{\mathrm{i}}\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.0 \mathrm{M}_{\mathrm{WS}}\right)=1321.25 \cdot \mathrm{kip} \cdot \mathrm{ft}\)
```

M_Strength $_{I V}:=\eta_{\mathrm{i}}\left[1.50 \cdot\left(\mathrm{M}_{\mathrm{DC}}+\mathrm{M}_{\mathrm{DW}}\right)\right]=1553.81 \cdot \mathrm{kip} \cdot \mathrm{ft}$
M_{-}Strength $_{\mathrm{V}}:=\eta_{\mathrm{i}}\left(1.25 \mathrm{M}_{\mathrm{DC}}+1.50 \mathrm{M}_{\mathrm{DW}}+1.35 \mathrm{M}_{\mathrm{LLI}}+1.0 \cdot \mathrm{M}_{\mathrm{WS}}\right)=3131.29 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$\mathrm{M}_{\mathrm{u}_{-} \text {strength }}:=\max \left(\mathrm{M}_{-}\right.$Strength $_{\mathrm{I}}, \mathrm{M}_{-}$Strength $_{\mathrm{III}}, \mathrm{M}_{-}$Strength $_{\mathrm{IV}}, \mathrm{M}_{-}$Strength $\left._{\mathrm{V}}\right)=3667.6 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Number of Prestressing Strands

The theoretical number of strands required is calculated using the Service III limit state

$$
\mathrm{f}_{\mathrm{b}}:=\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{~S}_{\mathrm{b} 3 \mathrm{n}}}+\frac{0.8 \mathrm{M}_{\mathrm{LLI}}}{\mathrm{~S}_{\mathrm{bn}}}=3.08 \cdot \mathrm{ksi}
$$

Tensile stress in bottom flange due to applied loads

Allowable stress limits for concrete

$\mathrm{f}_{\mathrm{ti}}:=0.24 \cdot \sqrt{\mathrm{f}_{\text {ci_beam }} \cdot \mathrm{ksi}}=0.61 \cdot \mathrm{ksi} \quad$ Initial allowable tensile stress
$\mathrm{f}_{\mathrm{ci}}:=-0.65 \cdot \mathrm{f}_{\mathrm{ci}}$ beam $=-4.16 \cdot \mathrm{ksi} \quad$ Initial allowable compressive stress (according to AASHTO LRFD 2016 interim revision)

$$
\mathrm{f}_{\mathrm{tf}}:=0 \cdot \sqrt{\mathrm{f}_{\mathrm{c} _} \text {beam } \cdot \mathrm{ksi}}=0.00 \cdot \mathrm{ksi} \quad \text { Final allowable tensile stress (allowing no tension) }
$$

No tension is allowed under service III limit state to avoid potential cracks and shear action on the strands
$\mathrm{f}_{\mathrm{cfp}}:=-0.45 \cdot \mathrm{f}_{\mathrm{c} _ \text {beam }}=-3.60 \cdot \mathrm{ksi}$
$\mathrm{f}_{\text {cf.deckp }}:=-0.45 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }}=-2.25 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{cf}}:=-0.6 \cdot \mathrm{f}_{\mathrm{c} _ \text {beam }}=-4.80 \cdot \mathrm{ksi}$
$\mathrm{f}_{\mathrm{cf.deck}}:=-0.6 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }}=-3.00 \cdot \mathrm{ksi}$

Final allowable compressive stress in the beam due to sum of effective prestress and permanent loads

Final allowable compressive stress in the slab due to permanent loads

$$
\mathrm{f}_{\mathrm{p}}:=\mathrm{f}_{\mathrm{b}}-\mathrm{f}_{\mathrm{tf}}=3.08 \cdot \mathrm{ksi}
$$

Final allowable compressive stress in the beam due to sum of effective prestress, permanent loads, \& transient loads

Final allowable compressive stress in the beam due to sum of permanent loads and transient loads

Excess tension in the bottom flange due to applied loads

Assuming strand pattern center of gravity is midway between the bottom two rows of strands, i.e. the same number of strands are used in the top and bottom rows of the bottom flange.

$$
\mathrm{y}_{\mathrm{bs}}:=3 \mathrm{in}
$$

Distance from soffit of beam to center of gravity of strands $\mathrm{e}_{\mathrm{st}}:=\mathrm{y}_{\mathrm{b}}-y_{\mathrm{bs}}=17.29 \cdot \mathrm{in} \quad$ Eccentricity of strands from the centroid of beam

Final prestressing force required to counteract excess tension in the bottom flange. Set allowable stress equal to the excess tension, solve for P_{e}.

$\mathrm{f}_{\mathrm{j} \cdot \text { max }}:=0.65 \cdot \mathrm{f}_{\text {pu.service }}=198.377 \cdot \mathrm{ksi}$
$\mathrm{P}_{\mathrm{j}}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{j} \cdot \max }=35.51 \cdot \mathrm{kip}$
Maximum allowable Jacking stress, ACI 440.4R Table 3.3

Maximum Jacking prestressing force per strand
$\mathrm{f}_{\mathrm{t}}:=0.64 \mathrm{f}_{\text {pu.service }}=195.33 \cdot \mathrm{ksi}$
Initial prestressing stress immediately prior to transfer. shall be less than or equal to the maximum jacking strength, and shall be adjusted accordingly to make sure the stress immedietely following transfer is not exceeding 0.6 times guaranteed strength as shown on the following page

$\mathrm{P}_{\text {in }}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{t}}=34.96 \cdot \mathrm{kip}$		Initial prestressing force per strand prior to transfer		
$\mathrm{P}_{\text {pet }}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{f}_{\mathrm{t}} \cdot 0.75=26.22 \cdot \mathrm{kip}$		Effective prestressing force assuming 25% final prestress losses per 0.6" diameter strand		
$\mathrm{NO}_{\text {stran }}$	s_i $:=$ ceil $\left(\frac{P_{\text {et }}}{P_{\text {pet }}}\right)=26$	Minimum	umber of strands re	
Strand distribution per row. Row 0 is the bottom most row in the beam. Start adding strands from the bottom row going up until the number of strands is reached. do not skip rows inbetween. Extra rows with zero strands will be eliminated in the analysis.				
row0 :=	$8 \quad$ row $_{1}:=10 \quad$ row $_{2}:=8$	row3 : $=0$	row4 :=0 row5	
row6 :=	row7 $:=0 \quad$ row8 $:=0$	row9 := 0		
			$\text { row }=\left(\begin{array}{c} 8 \\ 10 \\ 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right)$	
Row :=	$\begin{aligned} & a \leftarrow 0 \\ & \text { for } i \in 0 . . \text { length(row) }-1 \\ & \left\lvert\, \begin{array}{l} a \leftarrow a+1 \text { if row } i>0 \\ a \leftarrow a \text { otherwise } \end{array}\right. \\ & \text { for } j \in 0 . . a-1 \\ & D_{j} \leftarrow \operatorname{row}_{j} \\ & D \end{aligned}$	Row	$\left(\begin{array}{c} 8 \\ 10 \\ 8 \end{array}\right)$	
$\mathrm{NO}_{\text {strand }}$	$:=\sum$ Row $=26.00$	tal number	prestressing strands	
Grace et al. 2100		Lawrence Tech. University College of Engineering 00 W 10 Mile Rd., Southfield, MI 48075, U.S.A.		7/1/2019

$\mathrm{d}_{\text {strand }}:=\left\lvert\, \begin{aligned} & \text { for } \mathrm{i} \in 0 . . \text { length(Row) }-1=\left(\begin{array}{l} 43.00 \\ 41.00 \\ \mathrm{~d}_{\mathrm{s}_{\mathrm{i}}} \leftarrow \mathrm{~d}-(2 \mathrm{in})-(2 \mathrm{in}) \mathrm{i} \\ 39.00 \end{array}\right) \cdot \text { in } \text {. } \quad \text { d } \mathrm{d}_{\mathrm{s}} \end{aligned}\right.$ Depth of CFCC strands in each layer from the top of the beam section. This calculation assumes a 2 " vertical spacing of the strand rows		
$\mathrm{CG}:=\frac{\left[\operatorname{Row} \cdot\left(\mathrm{d}-\mathrm{d}_{\text {strand }}\right)\right]}{\sum \text { Row }}=4.00 \cdot \mathrm{in}$	Center of gravity of the strand group measured from the soffit of the beam section	
$\mathrm{d}_{\mathrm{f}}:=(\mathrm{d}-\mathrm{CG})+$ haunch + deck $_{\text {thick }}=50.00 \cdot \mathrm{in}$	Depth from extreme compression fiber to centroid of CFCC tension reinforcement	
$\mathrm{e}_{\mathrm{s}}:=y_{\mathrm{b}}-\mathrm{CG}=16.29 \cdot \mathrm{in}$	Eccentricity of strands from centroid of beam	
$\mathrm{A}_{\mathrm{ps}}:=\mathrm{A}_{\text {strand }} \cdot \mathrm{NO}_{\text {strands }}=4.65 \cdot \mathrm{in}^{2}$	Total area of prestressing CFCC strands	

Prestress losses

loss due to Elastic Shortening, AASHTO Eqn. C5.9.5.2.3a-1

$\Delta f_{\text {PES }}:=\frac{A_{p s} \cdot f_{t} \cdot\left(I_{\text {beam }}+e_{s}^{2} \cdot A_{\text {beam }}\right)-e_{s} \cdot M_{\text {swbeam }} \cdot A_{\text {beam }}}{A_{\text {ber }} \cdot I_{l} \cdot E}=12.59 \cdot \mathrm{ksi}$

$$
A_{p s}\left(I_{\text {beam }}+e_{s}^{2} \cdot A_{\text {beam }}\right)+\frac{A_{\text {beam }} \cdot I_{\text {beam }} \cdot E_{c . b e a m _i}}{E_{p}}
$$

$\mathrm{F}_{\mathrm{pt}}:=\mathrm{f}_{\mathrm{t}}-\Delta \mathrm{f}_{\mathrm{PES}}=182.74 \cdot \mathrm{ksi} \quad$ Prestressing stress immediately following transfer

$$
\mathrm{P}_{\mathrm{t}}:=\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{~F}_{\mathrm{pt}}=850.452 \cdot \mathrm{kip}
$$

According to ACl 440.4 R , Table 3.3, the allowable stress immediately after transfer shall not exceed 0.6 fpu
$0.6 \cdot \mathrm{f}_{\text {pu.service }}=183.117 \cdot \mathrm{ksi}$
if $\left(\mathrm{F}_{\mathrm{pt}} \leq 0.6 \cdot \mathrm{f}_{\text {pu.service }}, " \mathrm{Ok}^{\prime}, " N o t \mathrm{Ok} "\right)=$ "Ok"

Approximate Estimate of Time dependent losses, AASHTO A 5.9.5.3

$\mathrm{H}:=75 \quad$ Average annual ambient relative humidity

$$
\begin{array}{ll}
\gamma_{\mathrm{h}}:=1.7-0.01 \cdot \mathrm{H}=0.95 & \text { Correction factor for relative humidity of ambient air } \\
\gamma_{\mathrm{st}}:=\frac{5}{1+\frac{\mathrm{f}_{\text {ci_beam }}}{\mathrm{ksi}}}=0.68 & \begin{array}{l}
\text { Correction factor for specified concrete strength at time } \\
\text { of prestress transfer to the concrete member }
\end{array} \\
\Delta \mathrm{f}_{\mathrm{pR}}:=\mathrm{f}_{\mathrm{t}} \cdot 1.75 \%=3.42 \cdot \mathrm{ksi} & \begin{array}{l}
\text { Relaxation loss taken as } 1.75 \% \text { of the initial pull } \\
\text { per experimental results from Grace et. al based } \\
\text { on } 1,000,000 \text { hours }(114 \text { years) }
\end{array} \\
\Delta \mathrm{f}_{\mathrm{pLT}}:=10 \cdot \frac{\mathrm{f}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{ps}}}{\mathrm{~A}_{\mathrm{beam}}} \cdot \gamma_{\mathrm{h}} \cdot \gamma_{\mathrm{st}}+12 \mathrm{ksi} \cdot \gamma_{\mathrm{h}} \cdot \gamma_{\mathrm{st}}+\Delta \mathrm{f}_{\mathrm{pR}}=21.56 \cdot \mathrm{ksi} \quad \text { long term prestress loss }
\end{array}
$$

Difference in thermal coefficient expansion between concrete and CFCC

$\alpha:=6 \cdot 10^{-6} \cdot \frac{1}{\mathrm{~F}}$	Difference in coefficient of thermal expansion between concrete and CFCC
$\mathrm{t}_{\mathrm{amb}}:=68 \mathrm{~F}$	Ambient temperature
$\mathrm{t}_{\mathrm{low}}:=-10 \mathrm{~F}$	lowest temperature in Michigan according to AASHTO IRFD 3.12 .2
$\Delta \mathrm{t}:=\mathrm{t}_{\mathrm{amb}}-\mathrm{t}_{\mathrm{low}}=78 \mathrm{~F}$	Change in the temperature
$\Delta \mathrm{f}_{\mathrm{pt}}:=\alpha \cdot \Delta \mathrm{t} \cdot \mathrm{E}_{\mathrm{p}}=9.83 \cdot \mathrm{ksi}$	Prestress losses due to temp. effect
$\mathrm{f}_{\mathrm{pe}}:=\mathrm{f}_{\mathrm{t}}-\Delta \mathrm{f}_{\mathrm{pLT}}-\Delta \mathrm{f}_{\mathrm{PES}}-\Delta \mathrm{f}_{\mathrm{pt}}=151.35 \cdot \mathrm{ksi}$	Effective prestressing stress after all losses
$\mathrm{P}_{\mathrm{e}}:=\mathrm{A}_{\mathrm{ps}} \cdot \mathrm{f}_{\mathrm{pe}}=704.37 \cdot \mathrm{kip}$	Effective prestressing force after all losses
$\mathrm{f}_{\mathrm{t}}=195.33 \cdot \mathrm{ksi}$	Initial prestress prior to transfer, not including anchorage losses
$\mathrm{f}_{\mathrm{pe}}=151.35 \cdot \mathrm{ksi}$	Prestress level after all losses

Debonding Criteria

Estimate the location from each beam end where top prestressing or debonding is no longer needed The vectors are developed for possible two different deboning lengths per row. Enter the number of debonded strands and the estimated debonding length in the vectors below per each row location

Location: number of strands: debonding length:

For debonding pattern, follow staggering guidelines in MDOT BDM 7.02.18.A. 2

$$
\mathrm{L}_{\mathrm{db}}:=\left\lvert\, \begin{aligned}
& \text { for } \mathrm{i} \in 0 . . \text { length }\left(\text { row }_{\mathrm{db}}\right)-1 \\
& \mathrm{D}_{\mathrm{i}} \leftarrow \mathrm{l}_{\mathrm{db}_{\mathrm{i}}} \\
& \mathrm{D}
\end{aligned}\right.
$$

$\sum N_{d b}=10$

$$
\begin{aligned}
& \text { Debond }_{\text {tot }}:=\frac{\sum \mathrm{N}_{\mathrm{db}}}{\mathrm{NO}_{\text {strands }}}=38.46 \cdot \% \\
& \text { if }\left(\text { Debond }_{\text {tot }} \leq 40 \%, \text { "ok" }, \text { "No Good" }\right)=\text { "ok" }
\end{aligned}
$$

Total number of debonded strands in rows

$$
\mathrm{N}_{\mathrm{db} . \text { row }}:=\left\{\begin{array}{l}
\text { for } \mathrm{i} \in 0 . . \text { length(Row) }-1 \\
\begin{array}{l}
\mathrm{a}_{\mathrm{i}} \leftarrow 0 \\
\text { for } \mathrm{j} \in 0 . . \text { length }\left(\mathrm{N}_{\mathrm{db}}\right)-1 \\
\mathrm{a}_{\mathrm{i}} \leftarrow \mathrm{a}_{\mathrm{i}}+\mathrm{N}_{\mathrm{db}_{\mathrm{j}}} \text { if } \text { row }_{\mathrm{db}}^{\mathrm{j}}
\end{array}=\mathrm{i}+1 \\
\mathrm{a}
\end{array} \quad=\left(\begin{array}{l}
3.00 \\
4.00 \\
3.00
\end{array}\right)\right.
$$

$$
\text { if }\left(\max \left(\text { Debond }_{\text {row }}\right) \leq 40 \%, \text { "ok" }, \text { "No Good" }\right)=\text { "ok" }
$$

The limit of 40% is taken according to MDOT BDM 7.02.18. A2

Optional: only needed if debonding scheme is not sufficient to eliminate the tensile stresses at beam ends either at transfer or due to handling and shipping

$$
\mathrm{L}_{\mathrm{t}}:=50 \mathrm{~d}_{\mathrm{s}}=2.49 \mathrm{ft}
$$

Number of top prestressing strands in the top flange
Row $_{\text {top }}:=\binom{2}{2}$

Depth of the top prestressing strands from the top surface of the beam

$$
\mathrm{d}_{\text {top }}:=\binom{3}{5} \cdot \mathrm{in}
$$

Initial prestressing stress/force at the top prestressing strands
$\mathrm{F}_{\mathrm{p}_{\text {_top }}}:=50 \cdot \mathrm{ksi}$

Distance from the end of the beam to the point where the top prestressing is no longer needed

$$
\mathrm{x}_{\mathrm{p} _ \text {top }}:=10 \cdot \mathrm{ft}
$$

Top prestressing strands shall not extend the the middle third of the beam. Otherwise, it could affect the stresses at service limit state

Check_Top_prestressing_Length $:=\left\lvert\,$	"Okay" if $x_{p _t o p} \leq \frac{L_{\text {beam }}}{3}$
"Check service stress @ x.p_top" if $x_{p _t o p ~}>\frac{L_{\text {beam }}}{3}$	$=\right.$ "Okay"

Distance from the end of the beam to the pocket where top prestressing strand is cut after concrete pouring. The middle region between the cut pockets shall be dobonded to avoid force transfer to the middle region
$\mathrm{x}_{\text {pocket }}:=\mathrm{x}_{\mathrm{p} \text { _top }}+\mathrm{L}_{\mathrm{t}}=12.493 \mathrm{ft}$

Serviceability Checks

Stress check locations along the beam
Stress locations after the transfer length for bonded and de-bonded strands
$\mathrm{X}_{\text {release }}:=\operatorname{sort}\left[\operatorname{stack}\left[\mathrm{L}_{\mathrm{t}},\left(\mathrm{L}_{\mathrm{db}}+\mathrm{L}_{\mathrm{t}}\right), \mathrm{x}_{\mathrm{p} \text { _top }}, \mathrm{x}_{\text {pocket }}\right]\right]=\left(\begin{array}{c}2.493 \\ 2.493 \\ 2.493 \\ 2.493 \\ 10 \\ 10.493 \\ 12.493 \\ 18.493 \\ 24.493\end{array}\right) \mathrm{ft}$

Extracting repreated X from the vector

$\mathrm{x}_{\text {release }}=\left(\begin{array}{c}2.493 \\ 10 \\ 10.493 \\ 12.493 \\ 18.493 \\ 24.493\end{array}\right) \cdot \mathrm{ft}$

Area of strands in each row at each stress check location

$$
\mathrm{A}_{\mathrm{db}}=\left(\begin{array}{ccc}
0.90 & 1.07 & 0.90 \\
0.90 & 1.07 & 1.33 \\
0.90 & 1.07 & 1.43 \\
0.90 & 1.07 & 1.43 \\
0.90 & 1.79 & 1.43 \\
1.43 & 1.79 & 1.43
\end{array}\right) \cdot \mathrm{in}^{2}
$$

Beam stresses at release due to prestressing only

Sign convention; negative and positive stresses/forces for compression and tension respectively

$$
\mathrm{P}_{\mathrm{ps}}:=-\mathrm{F}_{\mathrm{pt}} \cdot \mathrm{~A}_{\mathrm{db}}=\left(\begin{array}{c}
-163.55 \\
-196.26
\end{array}-163.55\right)\left(\begin{array}{ccc}
-196.26 & -242.26 \\
-163.55 & -196.26 & -261.68 \\
-163.55 & -196.26 & -261.68 \\
-163.55 & -327.10 & -261.68 \\
-261.68 & -327.10 & -261.68
\end{array}\right) \cdot \mathrm{kip}
$$

Midspan moment due to prestressing at release

$$
\mathrm{M}_{\mathrm{ps}}:=\mathrm{P}_{\mathrm{ps}} \cdot\left(\mathrm{~d}_{\text {strand }}-\mathrm{y}_{\mathrm{t}}\right)=\left(\begin{array}{c}
-710.629 \\
-804.385 \\
-827.517 \\
-827.517 \\
-1005.174 \\
-1154.771
\end{array}\right) \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

Top and bottom concrete stresses at check locations due to prestressing ONLY

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{ps}}:=\mid \text { for } \mathrm{i} \in 0 \text {.. length }\left(\mathrm{x}_{\text {release }}\right)-1 \\
& \mathrm{M} \leftarrow \mathrm{M}_{\mathrm{ps}_{\mathrm{i}}} \\
& \operatorname{cols}\left(\mathrm{P}_{\mathrm{ps}}\right)^{-1} \\
& \mathrm{P} \leftarrow \sum_{j=0} \mathrm{P}_{\mathrm{ps}_{\mathrm{i}, \mathrm{j}}} \\
& \mathrm{~A} \leftarrow \mathrm{~A}_{\text {beam }} \\
& \mathrm{S}_{\text {top }} \leftarrow \mathrm{S}_{\mathrm{T}} \\
& \mathrm{~S}_{\text {bott }} \leftarrow \mathrm{S}_{\mathrm{B}} \\
& \mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\text {top }}}+\frac{\mathrm{P}}{\mathrm{~A}} \\
& \mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\text {bott }}}+\frac{\mathrm{P}}{\mathrm{~A}} \\
& \text { f }
\end{aligned}
$$

Beam stresses at release due to selfweight

Moment due to self weight of beam at check locations
$M_{S W}(x):=\frac{\omega_{\text {beam }} \cdot x}{2} \cdot\left(L_{\text {beam }}-x\right)$

Top and bottom concrete stresses at check locations due to beam self weight ONIY

$$
\mathrm{f}_{\mathrm{SW}}:=\left\{\begin{array}{l}
\text { for } \mathrm{i} \in 0 . . \text { length }\left(\mathrm{x}_{\text {release }}\right)-1 \\
\begin{array}{l}
\mathrm{M} \leftarrow \mathrm{M}_{\mathrm{SW}}\left(\mathrm{x}_{\text {release } \left._{\mathrm{i}}\right)}\right) \\
\mathrm{f}_{\mathrm{i}, 0} \leftarrow \frac{-\mathrm{M}}{\mathrm{~S}_{\mathrm{T}}} \\
\mathrm{f}_{\mathrm{i}, 1} \leftarrow \frac{\mathrm{M}}{\mathrm{~S}_{\mathrm{B}}}
\end{array} \\
\mathrm{f}
\end{array}\right.
$$

Area of top prestressing strands at distance X.release from the end

$$
\mathrm{A}_{\text {top }}=\left(\begin{array}{cc}
0.358 & 0.358 \\
0.358 & 0.358 \\
0.287 & 0.287 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \cdot \mathrm{in}^{2} \quad \mathrm{x}_{\text {release }}=\left(\begin{array}{c}
2.493 \\
10 \\
10.493 \\
12.493 \\
18.493 \\
24.493
\end{array}\right) \mathrm{ft}
$$

$$
\mathrm{P}_{\mathrm{p} \text { _top }}:=-\mathrm{F}_{\mathrm{p} \text { _top }} \cdot \mathrm{A}_{\text {top }}=\left(\begin{array}{cc}
-17.90 & -17.90 \\
-17.90 & -17.90 \\
-14.36 & -14.36 \\
-0.00 & -0.00 \\
0.00 & 0.00 \\
0.00 & 0.00
\end{array}\right) \cdot \text { kip }
$$

$$
\begin{aligned}
& \left.A_{\text {top }}:=\mid \text { for } i \in 0 . . \text { length(} x_{\text {release }}\right)-1 \\
& \text { for } z \in 0 \text {.. length }\left(\text { Row }_{\text {top }}\right)-1 \\
& \left\{\begin{array}{l}
A_{i, z} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }} \cdot \frac{\mathrm{x}_{\text {release }_{i}}}{L_{t}} \text { if } x_{\text {release }}^{i} \\
A_{i, z} \leftarrow L_{t} \\
\operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }} \text { if } L_{t}<x_{\text {release }_{i}} \leq x_{p _ \text {top }}
\end{array}\right. \\
& \begin{array}{l}
A_{i, z} \leftarrow \operatorname{Row}_{\text {top }_{z}} \cdot A_{\text {strand }}-\frac{x_{\text {release }_{i}}-x_{p_{-} \text {top }}}{L_{t}} \cdot\left(\operatorname{Row}_{\text {top }}^{z}\right. \\
\left.A_{i, z} \leftarrow 0 \text { if } A_{\text {strand }}\right) \text { if } x_{p_{-} \text {topepe }}<x_{\text {release }_{i}} \leq x_{p_{-} \text {top }}+L_{t}
\end{array}
\end{aligned}
$$

$\mathrm{f}_{\text {c.release }}:=\mathrm{f}_{\mathrm{ps}}+\mathrm{f}_{\text {SW }}+\mathrm{f}_{\mathrm{p} \text { _top }}=\left(\begin{array}{cc}427.481 & -2173.247 \\ 232.212 & -2269.343 \\ 278.436 & -2347.505 \\ 387.969 & -2343.902 \\ 430.179 & -2804.936 \\ 514.094 & -3193.636\end{array}\right) \cdot \mathrm{psi} \quad \mathrm{x}_{\text {release }}=\left(\begin{array}{c}2.49 \\ 10.00 \\ 10.49 \\ 12.49 \\ 18.49 \\ 24.49\end{array}\right) \mathrm{ft}$

$\mathrm{f}_{\text {ti.release }}:=\max \left(\mathrm{f}_{\mathrm{c} . \text { release }}\right)=514 \mathrm{psi}$	Maximum tensile stress at release
$\mathrm{f}_{\text {ci.release }}:=\min \left(\mathrm{f}_{\mathrm{c} . \text { release }}\right)=-3194 \mathrm{psi}$	Maximum compressive stress at release

$$
\text { if }\left(\mathrm{f}_{\mathrm{ti}} \geq \mathrm{f}_{\text {ti.release }}, \text { "ok" }, \text { "not ok" }\right)=\text { "ok" }
$$

Allowable tension check

$$
\mathrm{f}_{\mathrm{ti}}=607 \mathrm{psi}
$$

$$
\text { if }\left(-f_{c i} \geq-f_{\text {ci.release }}, " \text { ok" }, " n o t ~ o k "\right)=\text { "ok" }
$$

Camber immediately after transfer

Camber due to prestressing assuming constant maximum force (not including debonding effect)

$$
\frac{-\min \left(\mathrm{M}_{\mathrm{ps}}\right) \cdot \mathrm{L}_{\text {beam }}{ }^{2}}{8 \cdot \mathrm{E}_{\mathrm{c} \cdot \text { beam_}} \mathrm{i}_{\text {beam }}}=1.825 \cdot \text { in }
$$

Deflection due to top prestressing assuming constant maximum force (including debonding transfer length)
$\delta_{p_{-} \text {top }}:=\frac{M_{p_{-} \text {top }}^{0} \cdot{ }_{x_{p-t o p}}{ }^{2}}{2 \cdot\left(\mathrm{E}_{\text {c.beam_i }} \cdot \mathrm{I}_{\text {beam }}\right)}=8.985 \times 10^{-3} \cdot$ in

Deflection due to selfweight of the beam

$$
\frac{-5 \cdot \omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }}{ }^{4}}{384 \cdot \mathrm{E}_{\text {c.beam_i }} \mathrm{I}_{\text {beam }}}=-0.416 \cdot \mathrm{in}
$$

Considering the reduced camber due to the effect of debonding
$\mathrm{d}_{\text {strand.db }}:=\left(\begin{array}{l}\text { for } \mathrm{i} \in 0 . . \text { length }\left(\operatorname{row}_{\mathrm{db}}\right)-1 \\ \mathrm{~d}_{\mathrm{S}_{\mathrm{i}}} \leftarrow \mathrm{d}-(2 \mathrm{in}) \operatorname{row}_{\mathrm{db}_{\mathrm{i}}} \\ \mathrm{d}_{\mathrm{S}}\end{array}=\left(\begin{array}{l}43.00 \\ 43.00 \\ 41.00 \\ 41.00 \\ 39.00 \\ 39.00\end{array}\right) \cdot\right.$ in
$\delta_{d b}:=\frac{\left[\mathrm{N}_{\mathrm{db}} \cdot \mathrm{A}_{\text {strand }} \cdot \mathrm{F}_{\mathrm{pt}} \cdot\left(\mathrm{d}_{\text {strand.db }}-\mathrm{y}_{\mathrm{t}}\right) \cdot\left(\mathrm{L}_{\mathrm{db}}+\mathrm{L}_{\mathrm{t}}\right)^{2}\right]}{2 \cdot \mathrm{E}_{\mathrm{c} \cdot \text { beam_}} \mathrm{i}^{\mathrm{I}} \text { beam }}=\left(\begin{array}{c}0.131 \\ 0 \\ 0.088 \\ 0 \\ 0.019 \\ 0\end{array}\right) \cdot$ in
$\sum \delta_{\mathrm{db}}=0.238 \cdot \mathrm{in}$
Camber $_{\mathrm{tr}}:=\frac{-\min \left(\mathrm{M}_{\mathrm{ps}}\right) \cdot \mathrm{L}_{\text {beam }}{ }^{2}}{8 \cdot \mathrm{E}_{\mathrm{c} \cdot \text { beam_i }} \mathrm{i}_{\text {beam }}}-\frac{5 \cdot \omega_{\text {beam }} \cdot \mathrm{L}_{\text {beam }}{ }^{4}}{384 \cdot \mathrm{E}_{\mathrm{c} \cdot \text { beam_}} \mathrm{i}_{\text {beam }}}-\sum \delta_{\mathrm{db}}-\delta_{\mathrm{p}_{-} \text {top }}=1.162 \cdot \mathrm{in}^{2}$
Positive sign indicates camber upwards. Negative sign indeicates deflection
Check the stresses of the beam during shipping and handling, where the supports are not at the ends of the beam (Find the exact location of the supports during shipping and handling)

Moment due to self weight of beam at check locations

Top and bottom concrete stresses at check locations due to beam self weight ONIY

$$
\mathrm{f}_{\text {sw.ship }}:=\mid \text { for } \mathrm{i} \in 0 . . \text { length }\left(\mathrm{x}_{\text {release }}\right)-1
$$

$$
\mathrm{f}_{\text {sw.ship }}=\left(\begin{array}{cc}
\text { top } & \text { bottom } \\
-18 & 15 \\
-295 & 242 \\
-310 & 255 \\
-369 & 303 \\
-514 & 422 \\
-609 & 500
\end{array}\right) \cdot \text { psi }
$$

Check for beam stresses during handling \& shipping against allowable stresses

Beam stresses during shipping @ handling
top bottom
$\mathrm{f}_{\text {c.ship }}:=\mathrm{f}_{\mathrm{ps}}+\mathrm{f}_{\text {SW.ship }}+\mathrm{f}_{\mathrm{p} _ \text {top }}=\left(\begin{array}{rr}518.387 & -2247.917 \\ 323.118 & -2344.013 \\ 369.341 & -2422.175 \\ 478.875 & -2418.572 \\ 521.084 & -2879.606 \\ 604.999 & -3268.306\end{array}\right) \cdot \mathrm{psi} \quad \mathrm{x}_{\text {release }}=\left(\begin{array}{c}2.49 \\ 10.00 \\ 10.49 \\ 12.49 \\ 18.49 \\ 24.49\end{array}\right) \mathrm{ft}$
$\mathrm{f}_{\text {ti.ship }}:=\max \left(\mathrm{f}_{\mathrm{c} \text {. ship }}\right)=605 \mathrm{psi} \quad$ Maximum tensile stress at release
$\mathrm{f}_{\mathrm{ci} \text {. ship }}:=\min \left(\mathrm{f}_{\mathrm{c} \text { chhip }}\right)=-3268 \mathrm{psi} \quad$ Allowable tension check
if $\left(\mathrm{f}_{\mathrm{ti}} \geq \mathrm{f}_{\text {ti.ship }}\right.$, "ok", "not ok" $)=$ "ok" Allowable compression check

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{ti}}=607 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{ci}}=-4160 \mathrm{psi}
\end{aligned}
$$

if $\left(-\mathrm{f}_{\mathrm{ci}} \geq-\mathrm{f}_{\mathrm{cc} . \text { ship }}\right.$, "ok", "not ok" $)=$ "ok" \quad Maximum compressive stress at release $\quad \mathrm{f}_{\mathrm{ci}}=-4160 \mathrm{psi}$

Service I limit State - Check for compressive stresses at top of deck at service conditions due to permanent loads only

Compressive stress at top of deck due to loads on composite section
$\mathrm{f}_{\text {cf_actual_mid }}:=\frac{-\left(\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}\right)}{\mathrm{S}_{\mathrm{t} 3 \mathrm{n} \cdot \mathrm{k}_{\mathrm{sdl}} \cdot \mathrm{n}}}=-62 \mathrm{psi}$

$$
\text { if }\left(-\mathrm{f}_{\mathrm{cff} \text {.deckp }}>-\mathrm{f}_{\mathrm{cf} _ \text {actual_mid }}, \text { "ok" }, \text { "no good" }\right)=\text { "ok" }
$$

Service I limit State - Check for compressive stresses at top flange of beam at service conditions due to prestress and permament loads only

Compressive stress at top flange of beam due to prestressing and permanent loads
$\mathrm{f}_{\text {fefuactualumidn }}:=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}=-1125 \mathrm{psi}$
if $\left(-\mathrm{f}_{\mathrm{cfp}}>-\mathrm{f}_{\mathrm{cf}}\right.$ actual_mid, "ok", "not ok" $)=$ "ok" \quad Allowable stress check

Service I limit State - Check for compressive stresses at top of deck at service conditions

Compressive stress at top of deck due to loads on composite section including wind effect according to AASHTO LRFD 2016 Interim revision

Service I limit State - Check for compressive stresses at top flange of beam at service conditions Compressive stress at top flange of beam due to prestressing and all loads \qquad
fefmactualumidel: $=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{T}}}-\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} .3 \mathrm{n}}}-\frac{\mathrm{M}_{\mathrm{LLI}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}}-\frac{1.0 \cdot \mathrm{M}_{\mathrm{WS}}}{\mathrm{S}_{\mathrm{t} . \mathrm{bm} . \mathrm{n}}}=-1464 \mathrm{psi}$
if $\left(-\mathrm{f}_{\mathrm{cf}}>-\mathrm{f}_{\mathrm{cf} \text { _actual_mid }}\right.$, "ok", "not ok" $)=$ "ok"
Allowable stress check

Service III limit State - Check for tensile stresses at bottom flange of beam at service conditions

Tensile stress at bottom flange of beam due to prestressing and all loads
$\mathrm{f}_{\mathrm{tf} \text { _actual_mid }}:=\frac{-\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}-\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 1}}{\mathrm{~S}_{\mathrm{B}}}+\frac{\mathrm{M}_{\mathrm{DC} 2}+\mathrm{M}_{\mathrm{DW}}}{\mathrm{S}_{\mathrm{b} 3 \mathrm{n}}}+\frac{0.8 \mathrm{M}_{\mathrm{LLI}}}{\mathrm{S}_{\mathrm{bn}}}=-45 \cdot \mathrm{psi}$
if $\left(\mathrm{f}_{\mathrm{tf}}>\mathrm{f}_{\mathrm{tf} _ \text {actual_mid }}\right.$, "ok", "not ok" $)=$ "ok" \quad Allowable stress check

Calculate bar area required to resist tension in the top flange at release, AASHTO Table

 5.9.4.1.2-1:$$
\begin{aligned}
& \mathrm{f}_{\mathrm{ti} . \text { ship }}=604.999 \mathrm{psi} \\
& \mathrm{f}_{\mathrm{c}}:=\operatorname{vlookup}\left(\mathrm{f}_{\mathrm{ti} . \operatorname{ship}}, \mathrm{f}_{\mathrm{c} \cdot \text { ship }}, 1\right) 0=-3.268 \times 10^{3} \mathrm{psi} \\
& \text { slope }_{\mathrm{m}}:=\frac{\mathrm{f}_{\mathrm{ti} . \operatorname{ship}}-\mathrm{f}_{\mathrm{c}}}{\mathrm{~d}}=86.073 \cdot \frac{\mathrm{psi}}{\mathrm{in}} \\
& \mathrm{x}_{\mathrm{O}}:=\frac{\mathrm{f}_{\text {ti.ship }}}{\text { slope }_{\mathrm{m}}}=7.029 \cdot \mathrm{in}
\end{aligned}
$$

Maximum top flange tensile stress at release or handling, whichever is larger (usually, handling stresses are larger)

Bottom flange compressive stress corresponding to the maximum top flange tensile stress at release/shipping

Slope of the section stress over the depth of the beam

Distance measured from the top of the beam to the point of zero stress

Calculate the width of the beam where the tensile stresses are acting

$$
b_{\text {ten }}:=\left\{\begin{array}{l}
\text { for } i \in 0 \text {.. ceil }\left(\frac{x_{0}}{\text { in }}\right) \\
x_{\mathrm{i}} \leftarrow \frac{x_{\mathrm{o}} \cdot \mathrm{i}}{\operatorname{ceil}\left(\frac{x_{\mathrm{o}}}{\text { in }}\right)} \\
\mathrm{b}_{\mathrm{i}} \leftarrow \mathrm{~b}_{\mathrm{ft}} \text { if } 0 \leq \mathrm{x}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{ft}} \\
\mathrm{~b}_{\mathrm{i}} \leftarrow\left[\begin{array}{l}
\left.\mathrm{b}_{\mathrm{ft}}-\frac{\mathrm{x}_{\mathrm{i}}-\mathrm{d}_{\mathrm{ft}}}{\mathrm{~d}_{\mathrm{h}}} \cdot\left(\mathrm{~b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{v}}\right)\right] \quad \text { if } \mathrm{d}_{\mathrm{ft}}<\mathrm{x}_{\mathrm{i}} \leq \mathrm{d}_{\mathrm{ft}}+\mathrm{d}_{\mathrm{h}} \\
\mathrm{~b}_{\mathrm{i}} \leftarrow \mathrm{~b}_{\mathrm{v}} \text { if } \mathrm{d}_{\mathrm{ft}}+\mathrm{d}_{\mathrm{h}}<\mathrm{x}_{\mathrm{i}}
\end{array}\right.
\end{array}\right.
$$

Calculate the tensile stress values every inch of depth starting from the top surface of the beam

$$
f:=\left\{\begin{array}{l}
\text { for } \mathrm{i} \in 0 . . \text { ceil }\left(\frac{x_{0}}{\text { in }}\right) \\
\mathrm{x}_{\mathrm{i}} \leftarrow \frac{\mathrm{x}_{\mathrm{o}} \cdot \mathrm{i}}{\operatorname{ceil}\left(\frac{\mathrm{x}_{\mathrm{o}}}{\text { in }}\right)} \\
\mathrm{f}_{\mathrm{i}} \leftarrow \mathrm{f}_{\text {ti.ship }}-\text { slope }_{\mathrm{m}} \cdot \mathrm{x}_{\mathrm{i}}
\end{array}\right.
$$

Calculate the tensile force that shall be resisted by top reinforcement

$$
\mathrm{T}_{\mathrm{m}}:=\sum_{\mathrm{i}=0}^{\text {length }(\mathrm{f})-2}\left[\frac{1}{4} \cdot\left(\mathrm{f}_{\mathrm{i}}+\mathrm{f}_{\mathrm{i}+1}\right) \cdot\left(\mathrm{b}_{\text {ten }_{\mathrm{i}}}+\mathrm{b}_{\text {ten }_{\mathrm{i}+1}}\right) \cdot \frac{\mathrm{x}_{\mathrm{o}}}{\operatorname{ceil}\left(\frac{\mathrm{x}_{\mathrm{O}}}{\mathrm{in}}\right)}\right]=34.019 \cdot \mathrm{kip}
$$

$$
\mathrm{A}_{\text {s.top }}:=\frac{\mathrm{T}}{30 \cdot \mathrm{ksi}}=1.134 \cdot \mathrm{in}^{2}
$$

Calculate area of tensile reinforcement required in the top of the beam. The stress in bars is limited to 30ksi per AASHTO 5.9.4.1.2. See Figure C.5.9.4.1.2-1 which is based upon .5 f.y of steel rebar

$$
\mathrm{A}_{\text {bar.top }}:=0.44 \cdot \mathrm{in}^{2}
$$

Cross sectional area of No. 6 steel rebars

$$
\mathrm{n}_{\text {bar.release }}:=\operatorname{Ceil}\left(\frac{\mathrm{A}_{\text {s.top }}}{\mathrm{A}_{\text {bar.top }}}, 1\right)=3
$$

number of No. 6 bars provided in the top flange to resist tension at release in the beam ends.

Calculation of minimum length of top tensile reinforcement

AASHTO LRFD Table 5.9.4.1.2-1 specifies a maximum concrete tensile stress of
$0.0948 \cdot \sqrt{\mathrm{f}_{\text {ci_beam }}} \leq 0.2$ ksi for tensile zones without bonded reinforcement
$\mathrm{f}_{\text {t.max }}:=\min \left(0.0948 \cdot \sqrt{\frac{\mathrm{f}_{\text {ci_beam }}}{\mathrm{ksi}}}, 0.2\right) \cdot \mathrm{ksi}=0.2 \cdot \mathrm{ksi}$
Calculate the minimum required length of top reinforcement based on the stress calculated at distanct x.release during release or shipping and handling, whichever is greater. If all the stresses are larger th f.t.max, estimate the stress after the last point of debonding

$$
\mathrm{L}_{\text {topr }}=32.958 \mathrm{ft}
$$

$\mathrm{L}_{\text {topR }}:=\mathrm{L}_{\text {topr }}+\mathrm{l}_{\mathrm{d}}=34.325 \mathrm{ft}$

Calculate the tension development length required for the tensile reinforcement in the top of the beam. As provided AASHTO 5.11.2.1.1 taking into account 1.4 modification factor per AASHTO 5.11.2.1.2

Minimum length required for the top reinforcement from each end, if larger than half the length of the beam, then the top reinforcement shall continue through the enitre beam length from end to end.

$$
\begin{aligned}
& \mathrm{L}_{\text {topr }}:=\left\lvert\, \begin{array}{l}
\mathrm{h} \leftarrow \mathrm{x}_{\text {release }} \\
\mathrm{f} \leftarrow \mathrm{f}_{\mathrm{c} \text {.ship }}^{\langle 0\rangle}
\end{array}\right. \\
& \begin{array}{l}
\mathrm{f} \leftarrow \mathrm{f}_{\text {c.ship }} \\
\mathrm{i} \leftarrow \text { length }(\mathrm{f})-1 \\
\text { while } \mathrm{f}_{\mathrm{i}}<\mathrm{f}_{\text {t.max }}
\end{array} \\
& \text { break if } \mathrm{i}=0 \\
& \mathrm{i} \leftarrow \mathrm{i}-1 \\
& \mathrm{x} \leftarrow 1 \cdot \mathrm{ft} \\
& \mathrm{f}_{\mathrm{ps}} \leftarrow \mathrm{f}_{\mathrm{ps}}^{\operatorname{rows}\left(\mathrm{f}_{\mathrm{ps}}\right)^{-1,0}} \\
& \begin{array}{l}
\mathrm{S}(\mathrm{x}) \leftarrow \mathrm{f}_{\mathrm{ps}}-\mathrm{f}_{\mathrm{t} \text {.max }}-\frac{\frac{\omega_{\text {beam }} \cdot L_{\text {beam }} \cdot\left(\mathrm{x}-\mathrm{l}_{\text {ship }}\right)}{2}-\frac{\left(\omega_{\text {beam }} \cdot x^{2}\right)}{2}}{\mathrm{~S}} \\
\mathrm{~g} \leftarrow \operatorname{root}(\mathrm{~S}(\mathrm{x}), \mathrm{x}) \\
\mathrm{g} \text { if } \mathrm{f}_{\text {length }}(\mathrm{f})-1>\mathrm{f}_{\text {t.max }} \\
\frac{\mathrm{L}_{\text {beam }}}{2} \text { if } \operatorname{Im}(\mathrm{g}) \neq 0 \wedge \mathrm{f}_{\text {length }(f)-1}>\mathrm{f}_{\text {t.max }} \\
\mathrm{h}_{\mathrm{i}+1} \text { otherwise }
\end{array}
\end{aligned}
$$

Flexural Capacity

Stress block factor, AASHTO 5.7.2.2. Assuming depth of neutral axis lies within the deck

$$
\beta_{1}:=\left\lvert\, \begin{array}{ll}
0.65 \text { if } \mathrm{f}_{\mathrm{c} _ \text {deck }} \geq 8000 \mathrm{psi} & =0.8 \\
0.85 \text { if } \mathrm{f}_{\mathrm{c} _ \text {deck }} \leq 4000 \mathrm{psi} \\
{\left[0.85-\left(\frac{\mathrm{f}_{\mathrm{c} _ \text {deck }}-4000 \mathrm{psi}}{1000 \mathrm{psi}}\right)\right.} & 0.05]
\end{array}\right. \text { otherwise } \quad l
$$

$$
\varepsilon_{\mathrm{cu}}:=0.003 \quad \text { Maximum usable concrete compressive strain }
$$

$$
\varepsilon_{\mathrm{pu}}:=\frac{\mathrm{f}_{\mathrm{pu}}}{\mathrm{E}_{\mathrm{p}}}=0.0145 \quad \quad \text { Ultimate tensile strain of CFCC strand }
$$

$$
\varepsilon_{\mathrm{pe}}:=\frac{\mathrm{f}_{\mathrm{pe}}}{\mathrm{E}_{\mathrm{p}}}=0.0072 \quad \quad \text { Effective CFCC prestressing strain }
$$

$$
\varepsilon_{0}:=\varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}}=0.0073 \quad \text { Reserve strain in CFCC }
$$

$$
\mathrm{d}_{\mathrm{i}}:=\mathrm{d}_{\text {strand }}+\text { haunch }+ \text { deck }_{\text {thick }}=\left(\begin{array}{c}
52.00 \\
50.00 \\
48.00
\end{array}\right) \cdot \text { in }
$$

Depth of prestressing strands from top of concrete deck
Area of strands in rows
Effective prestressing force of strands in rows

Distance from each layer of prestressing strands to the bottom prestressting layer

Effective deck thickness (total thickness minus assumed sacrificial wearing surface thickness)

Balanced reinforcement ratio

$$
\mathrm{c}_{\mathrm{bal}}:=\frac{\varepsilon_{\mathrm{cu}}}{\varepsilon_{\mathrm{cu}}+\varepsilon_{0}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}=15.107 \cdot \mathrm{in}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{f}}:=\mathrm{A}_{\text {strand }} \cdot \operatorname{Row}=\left(\begin{array}{l}
1.43 \\
1.79 \\
1.43
\end{array}\right) \cdot \mathrm{in}^{2} \\
& P_{\text {row }}:=A_{f} \cdot f_{p e}=\left(\begin{array}{l}
216.73 \\
270.91 \\
216.73
\end{array}\right) \cdot \text { kip } \\
& \mathrm{s}_{\mathrm{i}}:=\left\lvert\, \begin{array}{l}
\text { for } \mathrm{i} \in 0 \ldots \text { length(Row) }-1 \\
\mathrm{~s}_{\mathrm{i}} \leftarrow \mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{d}_{\mathrm{i}_{\mathrm{i}}} \\
\mathrm{~s}
\end{array}=\left(\begin{array}{l}
0 \\
2 \\
4
\end{array}\right) \cdot\right. \text { in } \\
& \text { deck }_{\text {eff }}:=\text { deck }_{\text {thick }}-t_{\text {wear }}=9 \cdot \text { in }
\end{aligned}
$$

Balanced reinforcement ratio assuming Rectangular section

$$
\rho_{\mathrm{R}_{-} \text {bal }}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c} _} \text {deck } \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}=0.0055
$$

Balanced reinforcement ratio assuming Flanged section

$$
\rho_{\mathrm{Fl} _ \text {bal }}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c} _} \mathrm{deck} \cdot \mathrm{deck}_{\mathrm{eff}} \cdot\left(\mathrm{~b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c} _\mathrm{deck}} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{ft}} \cdot \mathrm{c}_{\mathrm{bal}}-\mathrm{P}_{\mathrm{e}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}=0.0041
$$

Balanced reinforcement ratio assuming Double Flanged section

$$
\rho_{\text {DFl_bal }}:=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \mathrm{deck}_{\text {eff }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{web}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c}_{-}} \mathrm{deck} \cdot \mathrm{~d}_{\mathrm{ft}} \cdot\left(\mathrm{~b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{web}}\right)+0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{web}} \cdot \mathrm{c}_{\mathrm{b}}}{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}
$$

Depth of the N.A. and reinforcement ratio assuming Flanged Tension contorlled section

$$
\begin{aligned}
& \text { Fl_T }:=\left\lvert\, \begin{array}{l}
\mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
\mathrm{~A}_{\text {eq } _\mathrm{s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
\mathrm{~A}_{\text {eq } \mathrm{f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
\mathrm{~N} \leftarrow \operatorname{length}\left(\mathrm{~d}_{\mathrm{i}}\right)-1 \\
\text { while }\left|\mathrm{A}_{\mathrm{eq} _\mathrm{s}}-\mathrm{A}_{\mathrm{eq} _\mathrm{f}}\right|>0.01 \cdot \mathrm{in}^{2} \\
\left.\left\lvert\, \begin{array}{l}
\mathrm{A}_{\mathrm{eq} _\mathrm{s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]
\end{array}\right.\right]
\end{array}\right. \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq}_{_} \mathrm{s}}+\mathrm{P}_{\mathrm{e}}-0.85 \cdot \mathrm{f}_{\mathrm{c} \text { _deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{ft}}\right) \cdot \operatorname{deck}_{\text {eff }}}{0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{ft}}} \\
& \mathrm{~A}_{\text {eq } _} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\text {eff }} \cdot \mathrm{d}_{\mathrm{i}_{0}}} \\
& \binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho} \\
& \text { Fl_T }=\binom{-30.4585}{0.0009} \\
& \mathrm{c}_{\mathrm{Fl} _\mathrm{T}}:=\mathrm{Fl}_{-} \mathrm{T}_{0} \cdot \mathrm{in}=-30.459 \cdot \mathrm{in} \\
& \rho_{\mathrm{Fl} _\mathrm{T}}:=\mathrm{Fl}_{-} \mathrm{T}_{1}=0.0009
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}_{-} \mathrm{T}:=\mid \mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
& \begin{array}{l}
\mathrm{A}_{\text {eq_s }} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
\mathrm{~A}_{\text {eq_f }} \leftarrow 2.0 \cdot \mathrm{in}^{2}
\end{array} \\
& \mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|\mathrm{A}_{\text {eq_s }}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{eq} _\mathrm{s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq}_{\perp} \mathrm{s}}+\mathrm{P}_{\mathrm{e}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}_{-}} \mathrm{deck} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{eff}}} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\text {eq_f }}}{\mathrm{b}_{\mathrm{eff} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}} \\
& \binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho} \\
& \left(R_{-} T\right)=\binom{4.259743}{0.000893} \\
& { }^{c_{R_{-}} T}:=R_{-} T_{0} \cdot \text { in }=4.26 \cdot \text { in } \\
& \rho_{\mathrm{R}_{-} \mathrm{T}}:=\mathrm{R}_{-} \mathrm{T}_{1}=0.0009
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Double-Flanged Tension contorlled section. The depth of the stress block is deeper than the depth of the deck and the top flange together.

$$
\begin{aligned}
& \text { DFl_T }:=\mid \mathrm{c} \leftarrow 1.0 \cdot \mathrm{in} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_} \mathrm{~s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\text {eq_f }} \leftarrow 2.0 \cdot \text { in }^{2} \\
& \mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|\mathrm{A}_{\text {eq_s }}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{eq} _\mathrm{s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{c} \leftarrow \frac{\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0} \cdot \mathrm{~A}_{\mathrm{eq} _\mathrm{s}}+\mathrm{P}_{\mathrm{e}}-0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{web}}\right) \cdot \operatorname{deck}_{\mathrm{eff}}-0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{web}}\right) \cdot \mathrm{d}_{\mathrm{ft}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}_{-} \text {deck }} \cdot \beta_{1} \cdot \mathrm{~b}_{\mathrm{web}}} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\mathrm{eq}_{\mathrm{L}} \mathrm{f}}}{\mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}} \\
& \binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho} \\
& \text { DFl_T }=\binom{-95.0130}{0.0009} \quad \begin{array}{l}
\text { c }_{\text {DFl_T }}:=\mathrm{DFl}_{-} \mathrm{T}_{0} \cdot \text { in }=-95.01 \\
\\
\rho_{\text {DFl_T }}:=\mathrm{DFl}_{1} \mathrm{~T}_{1}=0.0009
\end{array}
\end{aligned}
$$

Depth of the N.A. and reinforcement ratio assuming Flanged Compression contorlled section

$$
\mathrm{R}_{-} \mathrm{C}=\binom{7.3612}{0.0009} \quad \mathrm{c}_{\mathrm{R}_{-} \mathrm{C}}:=\mathrm{R}_{-} \mathrm{C}_{0} \cdot \mathrm{in}=7.361 \cdot \text { in }
$$

$$
\rho_{\mathrm{R}_{-} \mathrm{C}}:=\mathrm{R}_{-} \mathrm{C}_{1}=0.0009
$$

Depth of the N.A. and reinforcement ratio assuming Double Flanged Compression contorlled section

$$
\begin{aligned}
& \text { R_C }:=\mid c \leftarrow 1 \cdot \text { in } \\
& \begin{array}{l}
\mathrm{A}_{\text {eq_s }} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
\mathrm{~A}_{\text {eq_f }} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
\mathrm{~N} \leftarrow \text { length }\left(\mathrm{d}_{\mathrm{i}}\right)-1
\end{array} \\
& \text { while }\left|A_{\text {eq_s }}-\mathrm{A}_{\text {eq_f }}\right|>0.01 \cdot \text { in }^{2} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \mathrm{g}(\mathrm{c}) \leftarrow 0.85 \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{~b}_{\mathrm{eff}}-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\text {eq_s }}-\mathrm{P}_{\mathrm{e}} \\
& \mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{~g}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{~d}_{\mathrm{i}_{0}}\right) \\
& \mathrm{A}_{\mathrm{eq} \mathrm{_f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right] \\
& \rho \leftarrow \frac{\mathrm{A}_{\mathrm{eq}} \mathrm{f}}{\mathrm{~b}_{\mathrm{eff} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}} \\
& \binom{\frac{c}{\text { in }}}{\rho}
\end{aligned}
$$

$$
\varepsilon_{0}(\mathrm{c}):=\varepsilon_{\mathrm{cu}} \cdot\left(\frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}}\right)
$$

$$
\text { DFl_C }:=\mid \mathrm{c} \leftarrow 1 \cdot \mathrm{in}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{eq} \mathrm{_s}} \leftarrow 1.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~A}_{\mathrm{eq} \mathrm{_f}} \leftarrow 2.0 \cdot \mathrm{in}^{2} \\
& \mathrm{~N} \leftarrow \operatorname{length}\left(\mathrm{~d}_{\mathrm{i}}\right)-1 \\
& \text { while }\left|\mathrm{A}_{\mathrm{eq} \mathrm{_s}}-\mathrm{A}_{\mathrm{eq} \mathrm{_f}}\right|>0.01 \cdot \mathrm{in}^{2}
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{eq} _\mathrm{L} \mathrm{~s}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]
$$

$$
\mathrm{f}(\mathrm{c}) \leftarrow 0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{eff}}-\mathrm{b}_{\mathrm{web}}\right) \cdot \text { deck }_{\text {eff }}+0.85 \cdot \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{web}}\right) \cdot \mathrm{d}_{\mathrm{ft}} \cdots
$$

$$
+0.85 \cdot \overline{\mathrm{f}}_{\mathrm{c} _ \text {deck }} \cdot \beta_{1} \cdot \mathrm{c} \cdot \mathrm{~b}_{\mathrm{web}}-\mathrm{E}_{\mathrm{p}} \cdot \varepsilon_{0}(\mathrm{c}) \cdot \mathrm{A}_{\mathrm{eq} _\mathrm{s}}-\mathrm{P}_{\mathrm{e}}
$$

$$
\mathrm{c} \leftarrow \operatorname{root}\left(\mathrm{f}(\mathrm{c}), \mathrm{c}, 0.1 \cdot \mathrm{in}, \mathrm{~d}_{\mathrm{i}_{0}}\right)
$$

$$
\mathrm{A}_{\mathrm{eq} \mathrm{_f}} \leftarrow \sum_{\mathrm{i}=0}^{\mathrm{N}}\left[\left(1-\frac{\mathrm{s}_{\mathrm{i}_{\mathrm{i}}}}{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}\right) \cdot \mathrm{A}_{\mathrm{f}_{\mathrm{i}}}\right]
$$

$$
\rho \leftarrow \frac{\mathrm{A}_{\mathrm{eq} / \mathrm{f}}}{\mathrm{~b}_{\mathrm{eff}} \cdot \mathrm{~d}_{\mathrm{i}_{0}}}
$$

$$
\binom{\frac{\mathrm{c}}{\mathrm{in}}}{\rho}
$$

$$
\text { DFl_C }=\binom{4.357204}{0.000893} \quad \begin{array}{r}
{ }^{\mathrm{c}} \mathrm{DFl}_{-} \mathrm{C}:=\mathrm{DFl}_{-} \mathrm{C}_{0} \cdot \text { in }=4.357 \cdot \mathrm{in} \\
\rho_{\text {DFl_C }}:=\mathrm{DFl}_{-} \mathrm{C}_{1}=0.0009
\end{array}
$$

Check the mode of failure

$$
\begin{aligned}
& \text { Section_Mode }:=\mid \text { "Rectangular_Tension" if } \beta_{1} \cdot c_{R_{-}} T \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{R_{-}} T<\rho_{R_{-}} \text {bal } \\
& \text { "Rectangular_Compression" if } \beta_{1} \cdot \mathrm{c}_{\mathrm{R}_{-} \mathrm{C}} \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{\mathrm{R}_{-} \mathrm{C}}>\rho_{\mathrm{R}_{-} \text {bal }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { "Double_Flanged_Tension" if } \beta_{1} \cdot \mathrm{c}_{\mathrm{DFl}}^{-} \mathrm{T}>\operatorname{deck}_{\mathrm{eff}}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{DFl}} \mathrm{~T}<\rho_{\mathrm{DFl}} \text { bal } \\
& \text { "Double_Flanged_Compression" if } \beta_{1} \cdot \mathrm{c}_{\mathrm{DFl}} \mathrm{C}
\end{aligned}
$$

(Section_Mode) $=$ "Rectangular_Tension"

Select the correct depth of the N.A.

$$
\begin{aligned}
& c_{m}^{c}:=\mid c_{R_{-} T} \text { if } \beta_{1} \cdot c_{R_{-} T} \leq \text { deck }_{\text {eff }} \wedge \rho_{R_{-} T}<\rho_{R_{-}} \text {bal } \\
& { }^{c_{R_{-}} C} \text { if } \beta_{1} \cdot c_{R_{-}} \leq \operatorname{deck}_{\text {eff }} \wedge \rho_{R_{-}} C^{>} \rho_{R_{-}} \text {bal }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\mathrm{c}_{\mathrm{DFl}}} \mathrm{~T}^{\mathrm{T}} \text { if } \beta_{1} \cdot \mathrm{c}_{\mathrm{DFl}} \mathrm{D}>\operatorname{deck}_{\text {eff }}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\mathrm{DFl}_{-} \mathrm{T}}<\rho_{\mathrm{DFl}} \text { bal } \\
& { }^{\mathrm{c}} \mathrm{DFl}_{1} \mathrm{C} \text { if } \beta_{1} \cdot \mathrm{c}_{\text {DFl_C }}>\text { deck }_{\text {eff }}+\mathrm{d}_{\mathrm{ft}} \wedge \rho_{\text {DFl_C }}>\rho_{\text {DFl_bal }}
\end{aligned}
$$

$\mathrm{c}=4.26 \cdot$ in

Disclaimer: The design of the section as a dobule flanged section, while theoretically possible, indicates that the depth of the N.A. is in the web of the beam. That could lead to an over-reinforced section that has little or no ductility. Designer is advised to avoid designing the section as a dobule flanged section if possible to ensure proper ducitliy and significant cracking.deflection before failure

Calculate the strain in the extreme CFRP based on the mode of failure

$$
\varepsilon_{0}:=\left\lvert\, \begin{aligned}
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Rectangular_Tension" } \\
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Flanged_Tension" } \\
& \varepsilon_{\mathrm{pu}}-\varepsilon_{\mathrm{pe}} \text { if Section_Mode }=\text { "Double_Flanged_Tension" } \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Rectangular_Compression" } \\
& \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Flanged_Compression" } \\
& \\
& \varepsilon_{\mathrm{cu}} \cdot \frac{\mathrm{~d}_{\mathrm{i}_{0}}-\mathrm{c}}{\mathrm{c}} \text { if Section_Mode }=\text { "Double_Flanged_Compression" }
\end{aligned}\right.
$$

$\varepsilon:=\left\lvert\, \begin{gathered}\text { for } \mathrm{i} \in 0 \text {.. length(Row) }-1 \\ \left(\begin{array}{l}\mathrm{d}_{\mathrm{i}_{\mathrm{i}}}-\mathrm{c}\end{array}\right)\end{gathered}=\left(\begin{array}{l}0.0073 \\ 0.0070 \\ 0.0067\end{array}\right)\right.$ $\varepsilon_{\mathrm{i}} \leftarrow \varepsilon_{0} \cdot\left(\frac{\mathrm{~d}_{\mathrm{i}_{\mathrm{i}}}-\mathrm{c}}{\mathrm{d}_{\mathrm{i}}-\mathrm{c}}\right) \quad(0.0067) \quad$ strain in ith layer of prestressing strands
$\varepsilon_{\mathrm{c}}:=\varepsilon_{0} \cdot\left(\frac{\mathrm{c}}{\mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c}}\right)=0.00065 \quad$ strain in the concrete top of the deck

Strength limit state Flexural Resistance:

$$
\begin{aligned}
& M_{n}:=\left\lvert\, E_{p} \cdot \overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \ldots \quad\right. \text { if } \operatorname{deck}_{\text {eff }}<\beta_{1} \cdot c \leq \operatorname{deck}_{e f f}+d_{f t} \\
& +0.85 f_{c} \text { _deck } \cdot\left(b_{e f f}-b_{f t}\right) \cdot \text { deck }_{\text {eff }} \cdot\left(\frac{\beta_{1} \cdot \mathrm{c}}{2}-\frac{\text { deck }_{\text {eff }}}{2}\right) \\
& E_{p} \cdot \overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \ldots \quad \text { if } \beta_{1} \cdot c>\operatorname{deck}_{e f f}+d_{f t} \\
& +0.85 f_{c_{-} \text {deck }} \cdot\left(b_{\text {eff }}-b_{\text {web }}\right) \cdot \text { deck }_{\text {eff } \cdot}\left(\frac{\beta_{1} \cdot \mathrm{c}}{2}-\frac{\text { deck }_{\text {eff }}}{2}\right) \ldots \\
& +0.85 \mathrm{f}_{\mathrm{c} _ \text {deck }} \cdot\left(\mathrm{b}_{\mathrm{ft}}-\mathrm{b}_{\mathrm{web}}\right) \cdot \mathrm{d}_{\mathrm{ft}} \cdot\left(\frac{\beta_{1} \cdot \mathrm{c}}{2}-\operatorname{deck}_{\mathrm{eff}}-\frac{\mathrm{d}_{\mathrm{ft}}}{2}\right) \\
& E_{p} \cdot\left(\overrightarrow{\left(\varepsilon \cdot A_{f}\right)} \cdot\left(d_{i}-\frac{\beta_{1} \cdot c}{2}\right)+P_{e} \cdot\left(d_{f}-\frac{\beta_{1} \cdot c}{2}\right) \text { if } \beta_{1} \cdot c \leq \operatorname{deck}_{\text {eff }}\right.
\end{aligned}
$$

$M_{n}=5598.92 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Nominal moment capacity

$\phi:=\left\lvert\,$| 0.85 if $\varepsilon_{0} \geq 0.005$ |
| :--- |
| $0.5167+66.67 \cdot \varepsilon_{0}$ if $0.002 \leq \varepsilon_{0} \leq 0.005$ |
| 0.65 if $\varepsilon_{0} \leq 0.002$ |$=0.85\right.$

$$
\mathrm{M}_{\mathrm{r}}:=\phi \cdot \mathrm{M}_{\mathrm{n}}=4759.08 \cdot \mathrm{kip} \cdot \mathrm{ft} \quad \mathrm{M}_{\mathrm{u}_{-} \text {strength }}=3667.60 \cdot \mathrm{kip} \cdot \mathrm{ft}
$$

if $\left(M_{r}>M_{u_{-} \text {strength }}, "\right.$ ok", "no good" $)=$ "ok"
$\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{u} \text { _strength }}}=1.30$

Minimum reinforcement against cracking moment

$\mathrm{f}_{\mathrm{r}}:=0.24 \cdot \sqrt{\mathrm{f}_{\mathrm{c} _} \text {beam } \cdot \mathrm{ksi}}=678.823 \mathrm{psi} \quad$ Modulus of rupture of beam concrete, AASHTO A 5.4.2.6
$\gamma_{1}:=1.6 \quad$ Flexural variability factor
$\gamma_{2}:=1.1 \quad$ Prestress viariability factor
$\gamma_{3}:=1.0 \quad$ Reinforcement strength ratio
$\mathrm{f}_{\mathrm{cpe}}:=\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{A}_{\text {beam }}}+\frac{\mathrm{P}_{\mathrm{e}} \cdot \mathrm{e}_{\mathrm{s}}}{\mathrm{S}_{\mathrm{B}}}=3120.97 \mathrm{psi}$
Compressive stress in concrete due to effective prestress forces only (after allowance for all prestress losses) at extreme fiber of section where tensile stress is caused by externally applied loads (ksi)
$M_{c r}:=\gamma_{3} \cdot\left[\left(\gamma_{1} \cdot f_{r}+\gamma_{2} \cdot f_{c p e}\right) \cdot S_{b n}-M_{D C 1} \cdot\left(\frac{S_{b n}}{S_{B}}-1\right)\right]=3427.32 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Cracking moment

$$
\text { if }\left(\mathrm{M}_{\mathrm{r}}>\min \left(\mathrm{M}_{\mathrm{cr}}, 1.33 \cdot \mathrm{M}_{\mathrm{u}_{-} \text {strength }}\right), \text { "ok" }, \text { "not ok" }\right)=\text { "ok" }
$$

Approximate mid-span deflection at failure

The deflection calculations follows the approach outlined in the paper " Flexural behaviour of CFRP precast Decked Bulb T beams " by Grace et al. in May/June 2012, Journal of Composites for Construction. In order to calculate the deflection at failure, the moment capacity of the composite section is used as the bending moment. The stress level in the bottom most row is used to calculate the flexural rigidity. The deflection calculated below is approximate, but will give an indication of the deformbility and the level of warning exhibited near failure of the beam.

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}_{0}}=52.00 \cdot \mathrm{in} \\
& \mathrm{c}=4.26 \cdot \mathrm{in}
\end{aligned}
$$

Depth of the bottom row of strands to the extreme compression fiber

Depth of the neutral axis to the extreme compression fiber

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{S}}:=\mathrm{d}_{\mathrm{i}_{0}}-\mathrm{c}=47.74 \cdot \mathrm{in} \\
& \text { EI }:=\frac{\mathrm{M}_{\mathrm{n}} \cdot \mathrm{y}_{\mathrm{S}}}{\varepsilon_{0}}=437820996.50 \cdot \mathrm{kip} \cdot \mathrm{in}^{2}
\end{aligned}
$$

$$
\omega_{\mathrm{f}}:=8 \cdot \frac{\mathrm{M}_{\mathrm{n}}}{\mathrm{~L}^{2}}=10.602 \cdot \frac{\mathrm{kip}}{\mathrm{ft}}
$$

$$
\delta_{\mathrm{f}}:=\frac{5 \cdot \omega_{\mathrm{f}} \cdot \mathrm{~L}^{4}}{384 \mathrm{EI}}=9.725 \cdot \mathrm{in}
$$

Distance from neutral axis to the bottom row of strands

Flexural rigidity of the beam/deck section based on the stress level in the bottom row of prestressing strands

Failure load (dead and live loads) uniformly dirstibuted over th ϵ entire span

Midspan deflection at strength limit state

```
astments of C1 and 0skew"
```


