CMDOT

Improving Bridges with Prefabricated Precast Concrete Systems APPENDICES

FINAL REPORT – DECEMBER 2013

Western Michigan University Department of Civil & Construction Engineering College of Engineering and Applied Sciences

Improving Bridges with Prefabricated Precast Concrete Systems Appendices

Project Manager: Mr. David Juntunen, P.E.

Submitted by

Dr. Haluk Aktan, P.E. Professor & Chair (269) 276 – 3206 haluk.aktan@wmich.edu Dr. Upul Attanayake, P.E. Assistant Professor (269) 276 – 3217 upul.attanayake@wmich.edu

Western Michigan University

Department of Civil & Construction Engineering College of Engineering and Applied Sciences Kalamazoo, MI 49008 Fax: (269) 276 – 3211

DISCLAIMER

"This publication is disseminated in the interest of information exchange. The Michigan Department of Transportation (hereinafter referred to as MDOT) expressly disclaims any liability, of any kind, or for any reason, that might otherwise arise out of any use of this publication or the information or data provided in the publication. MDOT further disclaims any responsibility for typographical errors or accuracy of the information provided or contained within this information. MDOT makes no warranties or representations whatsoever regarding the quality, content, completeness, suitability, adequacy, sequence, accuracy or timeliness of the information and data provided, or that the contents represent standards, specifications, or regulations."

TABLE OF CONTENT

APPENDIX A: Prefabricated Bridge Elements and Systems

APPENDIX B: Connection Details between Prefabricated Elements

APPENDIX C: Performance of Bridges Constructed using ABC Techniques

APPENDIX D: ABC Challenges and Lessons Learned

APPENDIX E: Mi-ABCD User Manual

APPENDIX F: Drawings of Full-Depth Deck Panels from Utah DOT

APPENDIX G: Drawings of Bulb-Tee Girders from Utah DOT

APPENDIX H: Details of NEXT D Beam from PCI-NE

APPENDIX I: Standard Longitudinal Connection Details

APPENDIX J: Special Provision for Grouting PBES Connections

APPENDIX A

PREFABRICATED BRIDGE ELEMENTS AND SYSTEMS

Girders

Element			Project(s)	Attributes	Benefits	Limitations	Remarks
Precast concrete (PC) I-girders			Standardized as AASHTO type sections. Used in several projects by the State DOT's since 1950's. Recent projects: I-5 Southbound Truck Route Undercrossing, CA. (Superstructure replacement) (2007) Parkview Avenue over U.S. 131, Kalamazoo, MI. (Bridge replacement) (2008)	Following attributes are presented based on the information provided in the listed references. Span range: refer the table beside Depth to span(D/S) ratio: 0.055 Typical girder depth ranges from 28 in. to 54 in. However, there are state specific girders that are much deeper than the standard sections. One such example is the70.9 in. deep MI-1800 girder. Concrete strength:	Standard sections. Designers, fabricators, and contractors are familiar with the sections. Forms are available at most of the prefabrication plants. Performance is well documented.	Implementation in ABC is only possible with partial-depth or full- depth deck panels. Girder sweep needs to be controlled when used with full-depth deck panels. Special details and cast-in-place construction is needed to develop continuity over piers. Identified as structurally inefficient compared to bulb-tee, Washington, and Colorado girders in terms of cost effectiveness (Bardow et al. 1997;	Have been used in rapid bridge replacements by using heavy equipment such as SPMT (Ralls 2008) Sources of information: Chung et al. (2008); Abudayyeh (2010); MDOT- BDM (2011); Attanayake et al. (2012).
Girder	Depth (in.)	Span (ft)	28-day concrete strength (psi)	MDOT–I beams (AASHTO types I to IV) span up to 114 ft		TFHRC 2006) Cannot extend over long spans without using post-	
PC - I (Type I - IV)	28 - 54	~114	5,000 - 7,000	MDOT-70 in. deep		tensioning.	
PC-I (Wisconsin type)	70	~120	5,000 - 7,000	1 beams span up to 120 ft		use of straight	
PC – I (MI 1800) 70.9 ~145		5,000 - 7,000	MDOT–70.9 in. deep I beam (MI- 1800girder) spans		girders. High probability of cracking at transfer		
				up to 145 ft		prestressing strands. (Vadivelu 2009)	

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Steel girders	Used in several projects by the State DOT's since early 19 th century. Recent projects: Oakland Eastbound I-580 Connector, CA (Superstructure replacement) (2007) Route 3 Mosquito bridge over Lake Winnisquam, Sanbornton & Belmont, NH (Deck replacement) (2004)	Following attributes are presented based on the information provided in the listed references. Span range up to 300 ft Depth to span (D/S) ratio: 0.04 to 0.045 which is smaller than D/S ratio of precast prestressed concrete girders.	Could be used on curved bridges. Continuous spans can be developed using the same section. Customized (built- up) sections can be developed to satisfy project requirements Weathering steel is a solution for controlling corrosion provided that there is no accumulation of water, chloride exposure, damages to the girder, etc. Material properties are well known and defined.	Implementation in ABC is only possible with partial-depth or full- depth deck panels. Welding of connections subject to fatigue Require more detailed inspection and maintenance for fatigue and corrosion Costly compared to precast concrete girders Field welding may be required Customized sections are very costly Maintenance requires painting, thus expensive and non-eco-friendly. Use of weathering steel in salt-laden environments is highly discouraged, since the protective layer may not stabilize but rather corrode more rapidly. Moreover, weathering steel is not rustproof in itself; therefore, if water is allowed to accumulate on it, corrosion rate sharply increases.	Has already been used in rapid bridge replacements using heavy equipment such as SPMT (Ralls et al. 2004; Ralls 2008) Sources of information: Chung et al. (2008); Richardson et al. (2009).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
<image/>	Used by States such as: New England, Washington, Colorado, Florida, New Mexico, Idaho, Oregon, etc. since several decades. Jetport Interchange, Maine (Bridge replacement) (1999) I 40 Bridge project, CA (Bridge replacement) (2006)	Following attributes are presented based on the information provided in the listed references. Spans range: up to 186 ft (UDOT 2010) Depth to span (D/S) ratio: 0.05 which is smaller than D/S ratio of precast concrete I- girder Depth range: 42 in. to 98 in. Concrete strength range: 6500 psi to 8000 psi Prestressing strands: 0.6 in. dia.	Provides greater capacity than standard precast concrete I-girders. Efficient than AASHTO type V and VI girders (Bardow et al. 1997; TFHRC 2006) Feasible for long spans.	Implementation in ABC is only possible with partial-depth or full-depth deck panels. Girder sweep needs to be controlled when used with full- depth deck panels. Controlling girder sweep is critical due to slenderness of the section compared to standard girders. Special details and cast-in-place construction are needed to develop continuity over piers. Curved spans require use of straight girders.	High Performance Concrete (HPC) with 10,000 psi 28-day strength, could be used to obtain longer spans and more durable structure. Sources of information: Lavallee and Cadman (2001); Fouad et al. (2006); Chung et al. (2008); UDOT (2010).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast spread box girders	Spread box- girders have not been used in any ABC projects.	Following attributes are presented based on the information provided in the listed references. Spans up to 140 ft. Depth ranges from 12 in. to 60 in. Width: 36 in. and 48 in. Concrete strength: 5,000 psi to 7,000 psi. There are records of using high performance concrete (HPC) with 28-day strength of 8,000 psi.	Shallow depth enables using at sites with tight underclearance. High torsional stiffness of the sections.	Implementation in ABC is only possible with partial-depth or full- depth deck panels Special details and cast- in-place construction are needed to develop continuity over piers. Box-beams are difficult to fabricate as they involve multi-step fabrication process (Culmo & Seraderian 2010) Access to confined space inside the box is not possible because of the Styrofoam blocks used during fabrication (Smith and Hendy 2002) Weep holes are required at the bottom flange. Not possible to detect deterioration inside the concrete box until rust stain is visible at the weep holes or girders crack. Spread box girders require formwork between the girders to form the deck.	Source of information: MDOT-BDM (2011).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast NU I-girders For NU I-girders with 60 - 0.6 in. diameter prestressing strands:	Bow river bridges in Calgary, Alberta,	Following attributes are presented based on the information	The NU I-girders have sections that can span up to 300 ft with longitudinal	Implementation in ABC is only possible with partial-depth or full-depth deck	Flexural capacity of NU 900 I-girder with 28-day
Depth Span 28 day conce (in.) (ft) (psi)	Canada	provided in the listed references.	post-tensioning Provides shorter deck	panels Special details and	concrete strength of 15,000 psi
94.5 ~200 12,000	Pacific street	Span: refer the	transverse direction	cast-in-place	ranges from
78.7 ~180 8,000 - 12,00	0 I-680 in	table beside	due to wide top	needed to develop	5800 kip-ft to
70.9 ~172 8,000 - 12,00	0 Omaha,	Depths: refer the	flange. Increased stability	continuity over	Shear capacity
63.0 ~155 8,000 - 12,00	0 INeoraska.	table beside	during shipping and	piers.	of NU 900
53.1 ~135 8,000 - 12,00	0 14th street	concrete strength: refer the table	handling due to	The lack of readily	girder with 28-
$43.3 \sim 118 8,000 - 12,00$	bridge over	beside	top flange and thick	available hold	strength of
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	I-80, Lincoln, Nebraska 3.3) 1350 (53.1) Image: state sta	Specified 28 day compressive strength of minimum 12000 psi is required if 0.7 in. diameter strands are used. Prestressing strands: 0.5 in., 0.6 in., and 0.7 in. diameter 270 ksi low-relaxation steel. Typically, prestressing strands are spaced 2 in. horizontally and 2.5 in. vertically.	and wide bottom flange compared to AASHTO girders (see figure below for dimensions). The reinforcement details are standardized such that the amount of post-tensioning, girder span, or girder spacing does not affect the reinforcement The large span-to- depth ratio allows for using these sections in lieu of steel plate girders without increasing the superstructure depth	depressing 0.7 in. diameter strands is an obstacle These girder sections are not widely implemented; hence, local fabricators may not have the resources and/or expertise because the fabrication requires new forms. Also, devices with adequate capacity to accommodate 0.7 stands.	15,000 psi ranges from 780 kip to 800 kip The NU 750 I- girder has not been used in any bridge projects. The NU 2400 I- girder has been generally used with post- tensioning.

	#3	Cap Bar			
	$1^{1} \cdot 0^{1}_{4}$ $1^{5} \cdot 5^{3}_{4}$ $1^{-1} \cdot 0^{-1}_{4}$				
6	$\frac{9^{1}}{R^{2}4}$ $\frac{2^{2}}{WWM Confin}$ (See Table for	VARIED (See Table))		
Girder	Sussified Confinement	Confinement I	Reinforcement		
Designation	specified Commement	WWM	Cap Bar		
1	2008 NDOR BOPP	D4 @ 4" entire length	#3 @ 12" entire length		
2	2004 AASHTO LRFD	D11 @ 6" for 72" each end	#3 @ 6" for 72" each end		
3	AASHTO + NDOR	D11 @ 6" for 72" each end D4 @ 4" middle	#3 @ 6" for 72" each end #3 @ 12" middle		

Decks

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Full-depth deck panels Two types are commonly used:	Lake Koocanusa Bridge, Lincoln	Following attributes are presented based on the information	Full-depth deck panels have been implemented in	Post-tension is required to achieve durable	At least 2 leveling devices per girder in each panel is required
<image/> <image/> <caption></caption>	County, Montana (Deck replacement) (2001) I-70 Bridge over Eagle Canyon, UT (Deck replacement) (2007) I-215 over 3900 South, UT (Deck replacement) (2007) I-80 Silver creek, UT (Deck replacement) (2010) Parkview Avenue over U.S. route 131, Kalamazoo, MI (Bridge replacement) (2008)	provided in the listed references. Length (in the direction of traffic) varies from 8 ft to 16 ft Width (in the transverse direction to traffic) varies from 24 ft to 40 ft. Nominal thickness: 8.5 in. Deck panel concrete used in the listed projects was required to have the strength of 4,000 psi at release and 5,000 psi in 28 days. Girder spacing for panels with transverse prestressing varies from 8 ft to 12 ft. Girder spacing for panels without transverse prestressing varies up to 10 ft.	several ABC projects and the lessons learned reports are documented. Several states have experience with the system. Full-depth deck panel systems have been implemented long before the ABC concept was introduced and performance of the system is well documented. For skewed bridges, the end panels could be customized to accommodate the skew, while keeping the middle panels rectangular to alleviate fabrication Better workmanship and high quality could be achieved with plant fabrication	transverse connections between panels. When repair, retrofit, and demolition are considered, use of post- tensioning is not desirable. Grouting prefabricated Element joints is challenging. The system consists of too many grouted connections thus make the construction challenging. Tighter tolerances and quality assurance are required during the fabrication process. Proper panel support is required until haunch grout achieves required strength. Reinforcing steel	required. Round PT ducts with 2 in. inside diameter are preferred over flat ducts to avoid difficulty in strand placement (Badie et al. 2006) Sources of information: Hieber et al. (2005); Badie et al. (2006); Higgins (2010); UDOT (2010); Attanayake et al. (2012).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
<text><text><text><figure></figure></text></text></text>	Three full scale bridge specimens with four steel girders, four NU 1800 girders, and four bulb-tee girders, respectively, were successfully tested at the laboratory of University of Nebraska- Lincoln under the subcontract with George Washington, University, Washington, D.C.	Following attributes are presented based on the information provided in the listed references. Length: 8 ft (in the direction of traffic) Width: 44ft (perpendicular to traffic direction) Thickness: 8.25 in., wherein 8 in. is structural slab thickness and 0.25 in. is for a sacrificial layer. Supporting girders spacing: 12 ft Normal weight concrete with unit weight of 150 lb/ft ³ has been used until now. 28-day compressive strength of 6000 psi was used in the project.	Configuration 1 and 2 provides similar details except at the transverse panel connections. Panel with configuration 2 details is vertically placed and a 24.5 in. long splice bar is dropped through the top slot to complete the joint connection. Hence, constructability is enhanced through this detail. Eliminating the post-tension shortens the construction duration, lowers the cost of the deck, and simplifies the construction process. CIP joints between the panels could utilize rapid set concrete mix which will eliminate the limitations	New concept and details; hence, no past performance records. Connections without post-tensioning have proven to be ineffective in terms of durability. Hence, details need to be evaluated before implementing in multiple projects. The deck panels with bulged HSS (configuration 1 details) need to be tilted during placement to insert the extended reinforcement into the grouted pocket of the adjacent panel. HSS tubes incur additional cost of fabrication. The 48 in. shear stud cluster spacing is not yet included in LRFD specifications; hence, horizontal shear needs to be evaluated to determine	Following details are exclusively from the bridge specimens that are discussed in Badie and Tadros (2008). Transverse steel: Eight 0.5 in. diameter prestressed strands, 12 No. 5 bars, and 4 No. 4 bars are placed in two layers. A 2 in. top and bottom clear cover is provided. Longitudinal reinforcement: No. 6 bars at 13.3 in. spacing. Clusters of three 1.25 in. diameter double-headed steel studs are used as shear connectors. The clusters are spaced at 48 in. The clusters spaced at 48 in. were found sufficient for bridges with spans from 60 ft to 130

	imposed by grout	required number	ft and with girder
	properties (e.g.,	of studs.	spacing up to 11 ft
	depth of fill).		(designed in
	Ease of demolition		accordance with
	or removal of		the LRFD
	panels by saw		specifications)
	cutting the		- /
	transverse joints		Source of information:
			Badie and Tadros (2008).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
NU-deck full-depth panels	First generation NU-deck: Skyline Bridge, Omaha, NE. Superstructure was replaced in 2003. Second generation NU-deck: 176 th Street bridge over I- 80, east of Lincoln, NE. Full bridge was replaced in 2009.	Following attributes are presented based on the information provided in the listed references. Length: 12 ft in the direction of traffic. Width: full bridge width Thickness: 7 in. Concrete strength: Release strength of 4500 psi and 28- day strength of 8000 psi Overlay: 1.5 in. CIP topping with 8000 psi Supporting girder spacing: 12 ft Skew: up to 30° Full length channels: 1ft at each beam location Prestressing or post-tensioning strands: Uncoated, 0.6 in. diameter, 7- wire, 270 ksi low relaxation steel. Reinforcing steel: Grade 60	All materials required for fabrication are non- proprietary. The prestressing in panels helps in preventing cracks that may develop during fabrication and handling. Also, helps in reducing the panel thickness. Tolerance issues do not arise because the shear studs are arranged in single row. The 2 nd Gen NU- deck has increased construction speed and ease of fabrication, as the crown is moved to a girder line location.	Durability is a major concern as the prestress and post-tensioning strands are placed in cast-in-place concrete joints. New concept and details; hence, past performance data is limited. Girder spacing (i.e., post-tensioning spacing) and post- tensioning sequence (i.e., releasing tendons after grouting the channels over the girders) may not compress the transverse connections which will yield to durability problems During fabrication of the 2 nd Gen Nu- deck, crown forming in the channel is a challenge because the bars across open channel needs to be cut and welded.	Usually, the panels cover full-width of the bridge. 1st Gen: 1.5 in. CIP concrete overlay with 8000 psi. 2nd Gen: No concrete overlay but the panels are cast with 0.5 in. additional thickness. The deck is finally diamond ground and an asphalt overlay is used as the riding surface. All strands are post-tensioned with final force of 38.9 kips regardless of sequence. Structural steel angles are used to set the panel elevation.

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Modified NU-deck panel s Partial width, full-depth deck panels developed by the Iowa State University Image: State University	In 2006, the Mackey Bridge on 120 th Street over Squaw Creek, Boone County, Iowa was replaced with a superstructure comprising of NU-deck panels (partial width, full- depth).	Following attributes are presented based on the information provided in the listed references. Width: Half-width of the bridge. Length: 10 ft Thickness: 8.25 in. Skew: Up to 60°. Concrete release strength of 4000 psi and 28-day strength of 6000 psi. Punching shear capacity of the panel is 135 kips. Flexural capacity of the panel is 263 kip- ft	The panels are partial width. Hence, it is easy to develop the crown during deck placement. Longitudinal closure allows using this system for staged construction. The panels span from centerline to edge of the bridge, thus eliminate the overhang formwork The open channels provide adequate space for grouting the post-tensioning strands Panel supporting leveling devices are easily accessible from the	Threading of post- tensioning strands through existing reinforcement is time consuming Durability is a major concern as the prestress and post-tensioning strands are placed in cast-in- place concrete joints. New concept and details; hence, past performance data is limited. Staggering of protruding reinforcement from deck panels at the longitudinal	The channel consists of 2- layers of prestressing strands, 2-layers of mild steel reinforcement, 6- No. 2-layers of post-tensioning strands, and the leveling devices. According to the information provided in the literature related to the Mackey Bridge project, concrete mix for the channels contained the maximum aggregate size of
	Grade 60 mild reinforcing bars. Modulus of elasticity of 29,000 ksi is used in the	channels	closure is a challenge Effectiveness of post-tensioning for compressing transverse joints	5/8 in. and 35% cement replaced with ground granulated blast furnace slag (GGBFS). The	
		design. Prestressing strands: Uncoated, 0.5 in. diameter, 7-wire, 270 ksi low relaxation steel	Partial width panels allow using smaller cranes.	needs to be evaluated because the post- tensioning is applied after grouting the	water- cementitious material ratio of the mix was 0.38. After adding a high-

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Partial-depth deck panels	SH 249/ Louetta Road Overpass, Houston, TX (Bridge replacement) (1994) I-45/Pierce Elevated, Houston, TX (Bridge replacement) (1997) I-5/South 38 th St Interchange, Tacoma, WA (Deck replacement) (2001) SH 66/Lake Ray Hubbard, Dallas, TX (Bridge replacement) (2002) SH 36/Lake Belton, Waco, TX (Bridge replacement) (2004)	Following attributes are presented based on the information provided in the listed references. Uncoated, 0.375 in. diameter transverse prestressing strands are provided at the mid-depth of the panels. Length: 8 ft Width: girder-to- girder span + 3in. to 3.5in. bearing on each girder Thickness: 3.5in. (typical) Thickness of CIP concrete deck on top: 4.5in. (typical) Concrete release strength of 4000 psi and 28-day strength of 6000 psi has been used. Skew: up to 15° has been implemented, based on the information provided in listed references.	Requires no formwork for the CIP deck. Hence, disruption to feature intersected traffic can be minimized. Partial-depth panels can improve work-zone safety and construction speed. Fabrication and handling is simple compared to full-depth deck panels Construction is simple when compared to full-depth deck panels.	Reflective cracks in CIP deck over the transverse and longitudinal joints leads to durability problems and significantly reduce the bridge service life. CIP concrete deck requires extended bridge closure. Panels are typically fragile; therefore moving them frequently during precasting operations may result in a potential damage. The deck overhangs require formwork. The haunches need to be grouted and left intact to achieve required strength, before placing the CIP concrete; hence, there is a slight increase in the construction duration.	Mild steel reinforcement is provided in the cast- in-place concrete deck. The top surface of these panels is roughened to amplitude of 0.06 in. Grouting of haunches can be performed using high density low slump concrete, including high range water reducing admixture. Sources of information: Burkett et al. (2004); Hieber et al. (2005); PCI-NER (2001).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
NU-deck stay-in-place panels (NU-deck SIP panels) (Developed and tested at University of Nebraska in 1998)	This detail has not been used in any bridge projects.	Following attributes are presented based on the information provided in the listed references.	Due to continuity in longitudinal and transverse directions, these panels may eliminate the patential of	New concept and details; hence, past performance data is limited. Durability of the system is a	Panels are prestressed in the transverse direction. Prestressing strand arrangement is
4-0° 12-0° 12° CIP Topping 12° 13° 14.5° Precast Continuous Panel 4.5° Precast Continuo	6-0"	Width: Full-width of the bridge. Length: 4 to 12 ft Thickness: 4.5 in. Thickness of cast- in-place concrete overlay ranges from 3.5 in. to 4.5 in. Self-consolidated concrete was used with the release strength of 4000 psi and 28-day strength of 10,000 psi.	potential of reflective cracking. These panels eliminate the need of overhang formwork. Wide channels provided over the girders facilitate grouting operation. Since a cast-in-place concrete deck is placed over the partial depth deck panels, use of a high quality grout may not be needed. Deck crown can be formed during cast-	concern because the prestressing strands run through cast- in-place concrete. Using CIP concrete requires extended bridge closure.	arrangement is similar to the NU deck full depth panels. Prestressing helps the entire panel acts as a transversely continuous member over the girders. Reinforced pockets and shear keys are used to maintain continuity in longitudinal
		oottom clear cover of 1 inch was used. Width of the longitudinal channel over the girders is 8 in. Compressive strength of grout used to fill the channel was 4000	in-place concrete placement. Increased load capacity due to continuity and prestressing compared to traditional partial depth deck panel systems.		direction. A spiral splice is used to provide full bar yield strength of 60,000 psi.

Modular Superstructure Elements and Systems

Element	Attributes	Benefits	Limitations	Remarks
Trapezoidal box girder Cast-in-place concrete 15mm Ferrocement panel 123 123 124 Note: All dimensions are in mm. Project(s) The open-top trapezoidal box girder has been used in several projects in Canada (CPCI 2006). But based on the data currently available, this system has not been implemented in any of the projects in the U.S.	Following attributes are presented based on the information provided in the listed references. Spans range: up to 95 ft Depth range: 20 in. to 28 in. Width range: 6.5 ft to 12 ft Concrete strength of the trapezoidal box section: 7400 psi. at release and 9000 psi at 28-day	Good for up to short-to- medium span bridges. Trapezoidal box girders could cover the entire bridge with relatively few girders compared to AASHTO box girders. Feature intersected is not disturbed during construction of the cast-in-place concrete deck. Transverse post- tensioning is not required. The relatively low weight of the girder (55 tons for a girder with 28 in. depth, 12 ft width, and 95 ft length) makes it feasible to be lifted with conventional lifting equipment.	New concept and details; hence, past performance data is limited. Requires cast-in- place deck which extends the project duration. Access to confined space of the box is limited. Hence, difficult to inspected deterioration that will initiate at the interior walls of the section. Trapezoidal box girders are limited to 95 ft span.	Sources of information: Badie et al. (1999).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
	Seven mile bridge in Monroe County, Florida (built 1982) Ramp I over I-75 in Florida (built 1984) I-75/SR 826 (5 bridges) in Florida (built 1986)	The sections are standardized as AASHTO-PCI- ASBI segmental box girders. Following attributes are presented based on the information provided in Freyermuth (1997). Span: up to 200 ft Depth: 6 ft to 8 ft Width: 27 ft to 44 ft Specified length is 10 ft for each segment to facilitate shipping. Concrete strength: 5000 psi. Post-tensioning: 7- wire, 0.5 in or 0.6 in. diameter, grade 270 low relaxation strands	A cost effective option for very large projects. Segmental construction techniques are feasible for crossing large waterways Feasible for longitudinal launching applications Optimum for design-build projects A large number of bridges in service. (e.g., by year 2010 there are 68 bridges in Florida. Segmental bridges are widely used in California also.) Hence, data is available to evaluate the performance and improve the design.	Qualified personnel or inspectors required for quality grouting and post- tensioning Durability problems associated with post-tensioning systems. Challenges in inspecting post- tensioning system.	The publication Freyermuth (1997) contains standard section details in metric system. The publication Freyermuth (1997) specifies a span range of 100 ft to 150 ft, for span-by- span construction, and a span range of 100 ft to 200 ft, for the balanced cantilever construction. Sources of information: Freyermuth (1997); Blanchard et al. (2010).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
<image/>	This section was the earliest development in the precast prestressed concrete sections. Used in several projects since 1950's, but low-volume roads only. Recent project: Russian River Bridge (Superstructure replacement) (2006)	Following attributes are presented based on the information provided in the listed references. Standard span range: 32 ft to 65 ft Depth range: 27 in. to 36 in. Width range: 5 ft to 8ft Concrete strength: 4000 psi. at release and 7000 psi at 28- day	Most of the prefabricators are familiar with the section as it is widely used in parking structures. Top flange servers as formwork for CIP concrete deck and working surface for the construction crew Single pour production; hence, it is easy to fabricate compared to box- beams Can accommodate utilities	Requires a CIP concrete deck which extend duration of bridge closure Producers / manufacturers reported vertical and diagonal cracks in the stems of double- tee girder, developed during handling process due to lateral force on the stem. Extreme care should be taken during handling, so that lateral forces are not applied (PCI Committee 1983)	Sources of information: PCI committee (1983); Bergeron et al. (2005); Chung et al. (2008); Li (2010).
		Prestressing strands: 0.5 in. or 0.6 in. dia.	underneath	The deck slab without transverse post- tension may be a source of durability concern due to potential cracking. Limited for short span bridges with low traffic- volume.	

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Decked bulb-tee girder $5' \cdot 11\frac{5}{8}'$ $6' - 10''$ $1' \cdot 4\frac{1}{8} - \frac{1}{4} + \frac{1}{8} - \frac{1}{8} + \frac{1}{8} - \frac{1}{8} + \frac{1}{8} - \frac{1}{8} + \frac{1}$	This section emerged from the bulb-tee girder section. States like Utah and New England utilized this section in several projects. Recent projects: Graves avenue over I-4, Florida (Superstructure replacement) (2006) Route 31 bridge in Lyons, New York State (Bridge replacement) (2009)	The section is standardized. Following attributes are presented based on the information provided in PCI-BDM (2001) and UDOT (2010). Span range: up to 180 ft (UDOT 2010) Depth range: 35 in. to 98 in. Top flange width range: 4 ft to 8ft Concrete strength range: 6500 psi to 8500 psi Prestressing strands: 0.5 in. or 0.6 in. dia.	Can accelerate construction because only a wearing surface is needed over the girders. Section has been used in several projects; hence, structural durability performance data is available. Single pour production; hence, it is easy to fabricate compared to box- beams Can accommodate utilities underneath. More capacity and efficiency than AASHTO type V and VI girders (Bardow et al. 1997) Due to modular nature of the units, the entire bridge superstructure can be prefabricated and kept ready for installation, before closing the traffic	Depth of about 8 ft, not feasible for bridges with underclearance limitations Limited to roadways with ADT up to 30,000 (UDOT 2010) Possibility of flange-to-flange connection failure unless moment transfer connections are used.	Developed in 1969 by Arthur Anderson based on the standard tee girder section details. Standardized as AASHTO/ PCI deck bulb-tee in 1988. Commonly used flange-to-flange connection: Female-to-female grouted shear key or flange-to-flange welded plate connection Sources of information: PCI-BDM (2001); Shah et al. (2006); Graybeal (2010); UDOT (2010); CPMP (2011); Culmo (2011).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Element Decked box-beam (Source: Michigan M-25 Bridge over White River 5'-42'' 3'' 6 Spa. @ 9 3/4 " = 4' - 10 1/2" 4 $3'' Min2'' Min Lap$	Project(s) M-25 Bridge over White river, Michigan (Bridge replacement) (2011). CAD) 3"	AttributesFollowing attributes are presented based on the information provided in MDOT M-25 Bridge plans.Design is similar to that of a spread- box girder bridge, but with additional connection detailing.Span: 47 ft Depth of the module including the deck is 3 ft Top flange width of the module is 5 ft - 5 in.Specified compressive strength of decked box-beam modules at 28-day is 7000 psi.Post-tensioning: 7- wire, 0.6 in. diameter, grade 270 low relaxation strands	Benefits Shallow depth enables using at sites with tight underclearance. Does not require a cast-in-place concrete deck. High torsional stiffness. Can be used for constructing aesthetically pleasing structures. Feasible for carrying utilities underneath.	Limitations New concept and connection details; hence, past performance data is limited. Not possible to inspect box-beam interior. Special details and cast- in-place construction are needed to develop continuity over piers. Hard to replace a damaged module when grouted post- tensioning is used through the cast-in- place diaphragms. Box-beams are difficult to fabricate as they involve multi-step fabrication process (Culmo & Seraderian 2010) Not possible to detect deterioration inside the concrete box. Deck reinforcing and casting process should be performed promptly, before the box-beam concrete starts setting.	Remarks During the manufacturing process, primarily the box-beam is casted, then the deck reinforcement is placed on top of box-beam, and finally the deck is casted. Source of information: MDOT M-25 Bridge plans (2010); MDOT- BDM (2011).
Source: Michigan M 25 Bridge over White Piver	$\begin{array}{c} 1 - 3 \\ \hline \end{array}$				
(Source: Michigan M-25 Bridge over White River	Bridge plans 2010)				

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
<image/>	Projects listed here are Bridge replacements. Truck Highway (T.H.) 8 bridge over Center lake channel, Center City, MN (2005). T.H. 72 bridge over Tamarac river, Waskish, MN (2005). T.H. 65 bridge over Groundhouse river, Kanabec county, MN (2007). T.H. 65 bridge over Ann river, Kanabec county, MN (2007). T.H. 76 bridge over South fork of Root river, Houston county, MN (2007). T.H. 238 bridge over Swan river, Morrison county, MN (2009). T.H. 238 bridge over Swan river, Morrison county, MN (2009). T.H. 60 bridge over Cannon river, Rice county, MN (2009).	Following attributes are presented based on the information provided in the listed references. Span range: 20 ft to 65 ft Width: 6 ft Structure depth: 30 in. for 65 ft span. Structural depth includes a 24 in. deep precast section and 6 in. thick cast-in-place concrete deck Concrete strength of the precast slab element is 6,500psi. Cast-in-place concrete deck strength is 4,000psi. Prestressing	High span-to- depth ratio; hence ideal for projects with underclearance limitations. Does not require formwork for the cast-in- place concrete deck.	New concept and details; hence, past performance data is limited. Requires cast-in- place deck which extends the project duration. Degree of moment continuity provided by the longitudinal connection detail needs to be evaluated. Limited to short span bridges due to individual Element weight.	Composite action between precast section and CIP deck is established through shear reinforcement (#6 bars). The longitudinal reinforcement detail used at the longitudinal joint is expected to alleviate reflective deck cracking. Transverse hooks with 90° angle protruding from webs enables connectivity between reinforcement cage and the girder. Source of information: Bell II et al.
		strands: 0.5 in. dia.			et al. (2011).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Northeast Extreme Tee (NEXT) beam	NEXT F –Route 103 bridge over York river in York, Maine (Bridge replacement) (2011) NEXT F – Queen's Blvd over Van Wyck Expressway in New York City (Bridge replacement) (2012) NEXT D – White Boulevard Bridge, Florida (Bridge replacement) (2011)	The cross-section dimensions and span length of both F and D sections shown below are based on the information provided in the listed references. Span ranges from 40 ft to 90 ft Depth of the section ranges from 24 in. to 36 in. with 4 in. increment. Width of the section ranges from 8 ft to 12 ft Stem spacing is 3 ft for 8 ft wide section and 6 ft for 9 ft –12 ft wide sections Stem thickness ranges from 11 in. to 13 in. Prestressing strands: 0.6 in. dia. According to PCI NE (2011) span charts, concrete strength is as follows: 8000 psi at release and 10,000 psi. at release and 8000 psi. at release and 8000 psi. at release and 6000 psi. at 28-day.	Ideal for projects with underclearance limitations. Greater load carrying capacity than standard double tee and box girders. The stem could incorporate more prestressing strands compared to standard double tee girders. Single pour production A range of beam sizes could be produced with one set of formwork. Since the depth, spacing, and size of stems are standardized. No intermediate diaphragms Due to modular nature of the units, the entire bridge superstructure can be prefabricated before closing the traffic. Good for short and up to short-to-	New concept and details; hence, past performance data is limited. NEXT F beam requires 8 in. CIP concrete deck which extends project duration Durability of the longitudinal connections between NEXT F and D beams is a concern. Shipping and handling limitations due to heavy weight.	Approved in CT, MA, ME, NH, RI, VT, DE, MD, NJ NEXT F beam weighs 120 kips for 90 ft length with 4 in. thick flange NEXT D beam weighs 160 kips for 90 ft length Sources of information: Calvert (2010); Culmo and Seraderian (2010); PCI NE (2011); Culmo (2011).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Pi-girder 2 nd generation UHPC pi-girder	Jakway Park Bridge, Buchanan County, Iowa (Bridge replacement) (2008)	Following attributes are presented based on the information provided in the listed references. Span: up to 65 ft (computed based on limiting tensile stresses to the cracking threshold) Graybeal (2009) estimated maximum span of 87 ft with increased prestressing force. Depth: 33 in. Weight: 932 lb/ft Compressive strength of Pi- girder UHPC at release is 12,500 psi and at 28-day is 21,500 psi. Steel tube diaphragms at 1/4 ^{rth} span and midspan.	Can accelerate construction because only a wearing surface is needed over the girders. The system is good for sites with underclearance limitations. Good for short and up to short-to-medium span bridges. The unhydrated cement content of UHPC would provide crack- sealing capabilities through secondary hydration. Cost savings could be achieved by using partial prestressing in UHPC pi-girder design (i.e., allowing cracking on the bottom of the bulbs under maximum service loads). Transverse mild steel reinforcement could be used in the pi-girder deck, if needed	New concept and details; hence, past performance data is limited. Expensive due to proprietary UHPC. Investigation of torsional properties of 2 nd generation pi-girder and its ability to resist eccentric loading, for longer spans is required. Lighter and slender section may amplify dynamic loads on the bridge and need be investigated.	1 st generation UHPC pi-girder was developed at Massachusetts Institute of Technology in 2002. For fabricating the UHPC pi- girder, batching of UHPC is performed in the ready-mix concrete trucks In the pilot project, the pi- girder ends were seated on neoprene bearing pads and were encased in CIP concrete diaphragms The girders are steam cured using thermal blankets for 48 hrs at 195°F Sources of information: Graybeal (2009); Matt et al. (2011).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast modified beam in slab Longitudinal joint: Image: Complete bridge: Image: Complete bridge:	Mt. Vernon road bridge, Black Hawk County, Iowa (Bridge replacement) (2006) Marquis road bridge, Black Hawk County, Iowa (Bridge replacement) (2007)	Following attributes are presented based on the information provided in the listed references. Span: 40ft to 50ft Width: 4.5ft to 5.5ft Consists of embedded W14 sections spaced at 2 ft-9 in. Depth of the module: 17.25 in. at girders and 7 in. in between Skew: up to 45° Compressive strength at 28-day is 5000 psi Structural steel strength: 50,000 psi	Can accelerate construction because only a wearing surface is needed over the modules. The system is good for sites with underclearance limitations. The steel girders are embedded in concrete, therefore protected against corrosion and maintenance.	New concept and details; hence, past performance data is limited. Good for short span bridges only.	Original module was developed in 1997 and finally modified in 2004 to formally known as precast modified beam in slab bridge module. The module was developed by the Iowa State University Bridge Engineering Center in cooperation with Blackhawk county. Before placing concrete in the longitudinal joints, 14 in. long #4 bars are placed at the center of #4 reinforcing bars protruding from
1 5'-6" 2" #4 BARS 2" #6 BARS #6 BARS #6 B	on of the module:				each module. The #4 protruding reinforcing bars are spaced at 15 in. center-to-center for each module. Source of information: Klaiber et al. (2009).

System	Project(s)	Attributes	Benefits	Limitations	Remarks
INVERSETTM system (Proprietary) Developed in Oklahoma in early 1980's and tested in 1997 (PennDOT 1997)	Used in several projects in New York and Pennsylvania, since 2000. Creek Road	It is a standard proprietary module. Following attributes are presented based on the	Had been used in several projects, thus performance data is available. Can accelerate construction because only a	Increased cost due to proprietary nature. The pre-compressed deck of the module could not be replaced in the field, thus requires removal of the ontire module	The INVERSET system is casted upside-down; hence, the deck is precompressed due to self-
	Creek Road over I-295, Burlington county, NJ (Superstructure replacement) (2010) Eastern Ave Bridge over Kenilworth	refer I-295, urlington unty, NJ uperstructure placement)information provided in the listed references.wearing surfa needed over t module.Span: up to 100 ftSpan: up to 100 ftThe system is g for sites with underclearand limitationsstern Ave ridge over milworthSteel girder: W 30x99Good for short a up to short-to medium span	 wearing surface is needed over the module. The system is good for sites with underclearance limitations Wouth of the entire mod Steel girders are this system; he is expensive to maintain than girders. Weathering steel useful for corrr prevention; ho not good for st where deicing 	ing surface is ed over the ule.the entire modulestem is good ites with erclearance ationsSteel girders are used in this system; hence, it is expensive to maintain than concrete girders.Steel girders are used in this system; hence, it is expensive to maintain than concrete girders.Steel girders are used in this system; hence, it is expensive to maintain than concrete girders.Steel girders are used in this system; hence, it is expensive to maintain than concrete girders.Steel girders are used in this system; hence, it useful for corrosion prevention; however, not good for states where deicing salts are used, as it is sensitive to salt-laden environments. Further, there are several durability concerns with regard to fabrication and maintenance, such as: special welding requirements, and maintenance of the nearby structures that develop rust stains due	weight of the module Sources of information: Versace and Ramirez (2004); Pate (2008); Fort Miller Co. (1998; 2010);
	Ave, NE (Bridge replacement) (2010)	Depth of the module: girder depth + deck thickness.	bridges in non- corrosive environments. The deck of the system will be in compression under its own		NJDOT (2010); Chamberland and Patel (2011).
		Deck thickness: 7.5 in. Width: up to 12 ft	 weight, therefore, prevents transverse deck cracking; hence, and improves the deck durability. Due to modular nature, the entire bridge superstructure can be prefabricated and kept ready for installation, before closing the traffic 		
		Skew: up to 60° Deck compressive strength at 28- day is 8500 psi		60° Due to modular 60° nature, the entire bridge superstructure can be prefabricated and kept ready for installation, before psi	to normal surface weathering of the weathering steel.

System	Project(s)	Attributes	Benefits	Limitations	Remarks
Decked steel girder system (also referred as decked steel girder module)	I-93 Fast 14 Project, Medford, MA. Superstructure s were replaced using this system in 2011. Keg Creek Bridge Replacement	Following attributes are presented based on the information provided in the listed references. Longest span used until now is 73.2 ft	Can accelerate construction because only a wearing surface is needed over the module. The system is good for sites with underclearance limitations Good for short and up to short-to- medium snan	New concept and details; hence, past performance data is limited. Steel girders are used in this system; hence, it is expensive to maintain than concrete girders. Weathering steel is useful for corrosion prevention:	The module was developed under SHPR II project and is non-proprietary. In MassDOT project, the modules were placed adjacently and connected through a reinforced high-early strength concrete closure pour: 2000 psi
Above pictures are from the MassDOT Fast14 project	In Pottawattamie County, IA. Used for the superstructure of a full structure replacement project in 2011.	(MassDOT 2011) Steel girder: W 30x99 (depth: 29.7 in.), ASTM A709 grade 50W	bridges in non- corrosive environments. The decked steel girder modules are more biddable by contractors, as they can be prefabricated with conventional	however, not good for states where deicing salts are used, as it is sensitive to salt- laden environments. Further, there are several durability concerns with	was achieved within 4 hrs of final set and 4000 psi at 28-day. Iowa project used full, moment-resisting ultra-high performance concrete (UHPC) joints at piers and between deck panels.
The following detail is used in the Iowa project.		Width: 8 ft to 9 ft Precast deck: 7.5 in. to 8 in. thick Deck compressive strength at 28-day is 4000 psi to 5000 psi	designs and processes (non- proprietary). Due to modular nature of the units, the entire bridge superstructure can be prefabricated and kept ready for installation, before closing the traffic	regard to fabrication and maintenance, such as: special welding requirements, and maintenance of the nearby structures that develop rust stains due to normal surface weathering of the weathering steel.	The bridge deck was diamond grind for profile improvement after UHPC closure pour reached minimum of 14,000 psi. Sources of information: Shutt (2009); LaViolette (2010); MassDOT (2011); IowaDOT (2011); Moyer (2011).

Substructure Elements

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast abutment stem/wall (a) Precast abutment stem segments on piles (Source: Culmo 2009) (Definition of the segments on footing (a) Precast abutment wall segments on footing (also known as cantilever abutment) (Source: Michigan M-25 Bridge CAD drawing)	Precast abutment stem segments on piles – Upton Maine Bridge, Maine (2004) Precast abutment wall segments on footing – Epping, New Hampshire (2005) Precast abutment wall segments on footing – M-25 Bridge over White river, Michigan (2011)	The sections are not standardized. Following attributes are presented based on the information provided in the listed references. Height of abutment stem: 4ft Height of abutment wall: 7ft to 10ft Length of each segment: up to 14 ft Thickness: 2 ft for abutment wall, and 3 ft to 4 ft for abutment stem 28-day compressive strength of precast abutment segments is 5,000 psi.	Abutments precast in segments will alleviate the shipping and handling limitations. Abutment weight can be reduced by creating redundant cavities. This concept helps to achieve light- weight components for alleviated shipping and handling. Large prefabricated elements are advantageous for remote locations where access to the ready-mix concrete is difficult.	Abutment segments usually weigh 60 kips or greater; therefore, transportation and mobility of large cranes should be investigated. Grouting large cavities will be challenging because the grout manufacturers may limit the fill depth. A level subbase is required for the abutments on piles. The pile cavity forms makes the fabrication process challenging. Tighter tolerances are required for the pile driving operation. Tighter tolerances are required for proper fit-up between the precast elements while using grouted splice sleeve connections. Proper grouting of the channel in spread footing, at the abutment stem connection is	The abutments could be integral, or semi- integral, based on the design. However, it is encouraged to use semi-integral abutments because it is easy to replace bridge superstructure as needed and also minimize the stresses developed in the system due to thermal loads. The abutment wall segments on spread footing use grouted splice sleeve connections. The redundant pile cavities in an abutment stem can be filled with grout only.

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
<image/>	Mackey Bridge on 120 th Street, over Squaw Creek, Boone County, Iowa (2006)	The sections are not standardized. Following attributes are presented based on the information provided in the listed references. Height: 3ft to 3ft-6 in. Length: varies (usually full- width of superstructure) Width: 3ft to 4ft 28-day compressive strength unusually specified is 5000 psi or greater. Yield strength of reinforcing steel is 60,000 psi.	Potential for using as a bent cap as well as a pile cap. Good for bridges with shallow embankments and abutments. Could accommodate large tolerances. Potential of precasting the pile caps at a staging area near the bridge site. The CMP cavities allow easy and effective grouting/ concreting of the connection. The use of full- depth CMP cavities in a component also provides the benefit of achieving light- weight component, for alleviated shipping and handling.	Large amount of grout/concrete is required, leading to additional curing and setting time. May face challenges if grout is to be used because manufacturers limit fill depth for neat grouts. Shipping and handling limitations due to wide and heavy section. If used as a bent, formwork is necessary for supporting the section until the grout/concrete achieves required strength. The CMP cavities in the section were observed to create localized tensile stresses on sides; this aspect requires further investigation (Wipf et al. 2009a)	Projects where an integral abutment is desired, a CIP portion is constructed on top of the precast pile cap to form the integral abutment. Mechanical splices are embedded in the pile cap for connecting the reinforcement of the CIP portion. The CMP cavities in a pile cap or bent cap can be filled with either grout or high early strength self-consolidating concrete. Sources of information: Wipf et al. (2009a); Wipf et al. (2009b); IowaDOT (2011).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast pile cap with embedded wide flange sections	Mt. Vernon Road bridge, Black Hawk County, Iowa (2006) Marquis road bridge, Black Hawk County, Iowa (2007)	The sections are not standardized. Following attributes are presented based on the information provided in the listed references. Height: 1 ft-2.5 in. + $\frac{1}{2}$ flange-width of W 12 section Length: varies (usually full-width of superstructure) Width: 1 ft-6 in. 28-day compressive strength usually specified is 5000 psi	The pile cap section could be used at abutments and bent caps at the bridge site with shorter substructure (e.g., trestles over streams or bays). The concrete section in composite action with W- section allows for increased load carrying capacity with reduced section depth (reduced weight), compared to conventional concrete section.	Suitable for connecting steel sections. Difficult to establish connection with circular sections or concrete sections. Shipping and handling limitations due to wide and heavy section. As the W section is exposed to the environment, corrosion limitations are likely. Field cutting and welding operation of the piles require certified workers. Precision is required in field cutting and grinding of the piles, to obtain required elevation of the pile cap. Overhead field welding is a challenging process.	The pile caps are fabricated by casting concrete around the upper half of W 12 section oriented for weak axis bending. During fabrication, holes are torched in the flange portion which is to be embedded into the concrete. Stirrups are inserted, and concrete is allowed to flow through these holes. After pile driving is completed, the piles are cut off to the desired elevation and then field welded with W section of the pile cap. Sources of information: Klaiber et al. (2009a); Wipf et al. (2009a)

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast columns (a) Octagonal section (Source: UDOT 2010)	I-section (Figure- b): U.S41/ Edison Bridge over Caloosahatchee River, Fort Myers, FL (1991) Octagonal section (Figure-a): I-287 in Westchester County, NY (1999) Circular section (Figure-c): Parkview Avenue over U.S. route 131, Kalamazoo, MI. (2008) Circular section (Figure-c): I-5, Grand Mount Interchange Bridge, WA (2011) Rectangular/square section (Figure-d): Keg Creek Bridge Replacement in Pottawattamie County, IA (2011) Octagonal section (Figure-a): used by FDOT, TXDOT, UDOT, and PCI- NE in several projects.	The sections are not standardized. Dimensions: vary based on the bridge configuration. Conventional material strengths and design procedures are used. 28-day compressive strength usually specified is 4000 psi.	Octagonal and rectangular columns are easy to fabricate as they can be casted in a horizontal position. Octagonal and rectangular columns are easy to transport. Fabricators could build long forms and cast multiple columns at one time. Octagonal column's seismic performance is identical to a round column. I-section columns are good for tall structures where increased moment of inertia is required, complying the weight limitations. Prestressing could be used for more durable and taller columns. Great durability in corrosive environments. The I-section precast columns are optimal for supporting inverted-U section	Shipping and handling may be a limitation depending on the height and weight of column. Fabrication of round column is challenging due to the vertical casting requirement. Rectangular section is not an optimal cross-section due to redundant material. Tighter tolerances are required to avoid tilting of columns and for aligning splice bars with the sleeves. If prefabricated bent cap is used, feasibility of slight tilting of columns during assembly should be considered. This may be considered when specifying bent cap tolerances.	Round columns show better seismic performance compared to other sections. Octagonal shaped columns are preferred instead of round columns due to complex fabrication and vertical casting process of the latter. The columns are connected to the foundation and pier- cap using grouted splice sleeves. Sources of information: LoBuono (1996); Shahawy (2003); UDOT (2010); Khaleghi (2011); Attanayake et al. (2012).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast segmental columns Elevation: Precast Template Precast, match cast column segments Column segments Section details: Variable Short span bridge with precast segmental columns:	Seven mile bridge, FL (1982) Linn Cove viaduct, NC (1983) SH-249/ Louetta Road overpass, Houston, TX (1994) U.S. route 183 elevated Austin, TX (1997) Victory Bridge, NJ (2005)	The sections are not standardized. Following attributes are presented based on the information provided in the listed references. Height of each segment: varies from 3 ft to 6 ft Length of cross-section: varies from 4 ft to 10 ft Width of cross-section: 4 ft 28-day compressive strength usually specified is 5000 psi	 Weight of the segments can be limited to match the available resources. Good for short and short- to-medium span bridges. Desired column height could be achieved easily by increasing/ decreasing the number of segments and their individual heights. Potential of eliminating the bent cap beam. Provides ease in shipping and handling compared to full height precast columns. The match-cast joints between the segments allow accelerated construction. The column segments consist of hollow core that leads to reduced weight and thus can be erected using standard construction equipments and alleviates assembling process. The precast template helps in aligning the pier with bent cap or the girder elevation. Hollow portion of the segment could accommodate drainage ducts. 	Vertical post- tensioning is required to connect all the segments including the foundation. The footing should be specifically designed to accommodate PT ducts. Requires match- casting of the segments during fabrication. If the segments are not match-cast, then they should be connected through a grout layer which requires forms and curing at the site. Appropriately labeling and delivering the segments is necessary, which may otherwise lead to fit-up limitations and extended project duration. A challenging construction process.	This is an outcome of FHWA and TxDOT research. The first column segment is placed and aligned on the adjustable supports on the footing. Post- tensioning (PT) ducts are spliced and the PT bars are tied. The connection is completed by a CIP concrete joint. The precast segments are coupled together using PT bars and epoxy. The complete column is post- tensioned with PT strands that run through the ducts. The precast template is aligned with the bent cap or girder elevation using the adjustable supports on the top precast segment. The joint between the top precast segment and precast template is filled with high-strength epoxy grout. Sources of information: Billington et al. (2001); Shahawy (2003).

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
<image/>	Bent cap with grouted pockets (Figure-a): Red Fish Bay project, TX (1994) Bent cap with grouted ducts (Figure-b): Lake Belton Bridge over SH 66, Bell County, TX (2004) Bent cap with grouted ducts (Figure-b): Mountain Valley Road Bridge over I- 40, New Mexico (2004)	Most of the sections are not standardized. Following attributes are presented based on the information provided in the listed references. Height: 3ft to 4ft-6in. Length: varies (usually full- width of superstructure) Width: 3ft to 4ft 28-day compressive strength usually specified is 5000 psi or greater	Bent caps with grouted pockets are easy to align with the column slices. Pier caps are beneficial for bridge sites with features such as power lines, waterways, and a parallel roadway underneath. Use of pier caps reduces number of prefabricated columns and footings. To retain the bent cap weight within limits for a wide bridge superstructure, multiple bent caps can be utilized as shown in Figure-d (next page). Further, tapered cantilever shaped bent caps can be utilized to achieve reduced weight compared to a rectangular bent cap; thus alleviating shipping and handling process.	The pockets/ ducts in the bent cap should be filled completely with pumped grout. Temporary supports should be used to set the elevation, and must remain in position until the grout achieves required strength. Shipping and handling limitations may arise due to heavy weight. Tighter tolerances are required for the bent caps with grouted ducts.	Most commonly prefabricated substructure element in a bridge. Standardized as single column hammer head bent, two column bent or three column bent (UDOT 2010). Prestressing is used to reduce the height of the segment, thus, reducing the weight. Connection details are available from research projects: Matsumoto et al. (2001); Restrepo et al. (2011). Sources of information: LoBuono (1996); Matsumoto et al. (2001); Ralls et al. (2004); Unlu (2010); UDOT (2010); Restrepo et al. (2011).

(c) Rectangular bent cap (Source: http://facilities.georgetown.org/2009):

(e) Inverted-U section bent cap (Source: Culmo 2009)

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast pier/bent cap (a) Inverted-T bent cap (Source: Shahawy 2003)	Inverted-T bent cap (Figure-a): Dallas/Fort Worth International Airport- elevated people mover, TX (2004) Inverted-T bent cap with canted ledges (Figure-b – next page): Austin- Bergstrom International Airport, Austin, TX (2000) Precast bent cap with cavities (Figure-c – next page): Conway Bypass Highway Bridge, Horry County, SC (2001)	Following attributes are presented based on the information provided in Shahawy (2003). Height: 4 ft to 5 ft (height of Inverted-T bent cap is 6ft-10in. including the flange) Length: varies (usually full- width of superstructure) Width: 4ft (width of Inverted-T bent cap is 4 ft at the web and 7ft-6in. at the flange) 28-day compressive strength usually specified is 5000 psi or greater	For the inverted-T bent cap, based on the flow of forces the unnecessary material can be removed to create box void and canted edges at bottom corners (Figure-a), or canted ledges (Figure-b – section A-A). Thus the bent cap weight and the amount of reinforcement is reduced compared to conventional bent cap design. The cavities in the precast bent cap (Figure-c) are casted to reduce the concrete material in the tension zone and achieve reduced weight of the component. Reduced weight of the components alleviates shipping and handling limitations.	New concept and details; hence, past performance data is limited. Temporary supports should be used to set the elevation, and must remain in position until the grout achieves required strength. Fabrication and reinforcement detailing may be challenging because of the hollow core.	Inverted-T bent cap could extend up to a length of 42.7 ft for a single bent. Sources of information: Billington et al. (1999); Powell and Powell (2000); Billington et al. (2001); Shahawy (2003); Culmo (2009).

(c) Precast bent cap with cavities (Source: Culmo 2009)

Element	Project(s)	Attributes	Benefits	Limitations	Remarks
Precast footings Footing on subbase: Spread footing on piles: Spread footing on subbase: Spread footing on subbase:	Spread footing on subbase: South Maple Street Bridge over Scantic River, Enfield, CT (2011)	Most of the sections are not standardized. Following attributes are presented based on the information provided in the listed references. Conventional material strengths and design procedures are used. Thickness: 3ft Width: 8ft to 10 ft Length: varies	Good for small footings. Large footings could be developed by combining small segments. Good for bridges with shallow footings. Shallow footings have a potential to be supported on piles, in regions where piles are necessary.	A level concrete subbase preparation is necessary, which is an additional operation. Shipping and handling limitations may arise due to heavy weight. The connection between spread footing segments is a CIP closure which extends project duration. Special leveling screws are necessary for aligning the segments of a spread footing. Each individual leveling screw should be capable to withstand entire weight of the segment, without bending. A grout layer is required to ensure full bearing contact with the subbase. Significant amount of grout is required for this operation.	The precast footings serve as shallow foundations for a bridge. Very few projects utilized this element. This is due to requirement of preparing, roughening, and curing the subbase, which is an additional operation while using precast footings. UDOT (2010) developed standard footing designs, but till date, have not implemented on significant projects. Sources of information: UDOT (2010); Unlu (2010); Swanson (2011).

Miscellaneous

Construction technology	Project(s)	Attributes	Benefits	Limitations	Remarks
<image/> <caption><caption></caption></caption>	SPMT move – Utah I-215 at 4500 South, UT (Bridge replacement) (2007) SPMT move – I-80 State street to 1300 E. multiple structure, Salt Lake city, UT (Bridge replacement) (2008) Slide-in – San Francisco Yerba Buena Island Viaduct (Bridge replacement) (2007)	Design attributes are similar to designing a prestressed concrete girder with a deck, a steel girder with a deck, or a modular superstructure system. But design considerations should also concentrate on the lifting and moving aspects of the structure.	Least disruption to traffic and improved work-zone safety. Bridge can be replaced overnight. Feasibility of maintaining high quality.	A large staging area adjacent to the site is required. Extremely tight tolerances are required. Support points should maintain their relative elevations. SPMT and Roll-in operations' cost are extremely higher than the cost of typical CIP and other ABC construction methods. While the SPMT and roll-in operations can be completed in days or hours, the preparation and construction of new structure still requires extended amount of time. Slide-in is not feasible for, skew or horizontally curved or superelevated structures. Not feasible if utilities are present in the moving path. Require continuous monitoring of carrier beams and deflections.	Light weight concrete is used to reduce the required number of modular transporters. Roll-in operation max. span: 177ft (till date) Sources of information: Baker (2007); Peterson and Ralls (2008); Chung et al. (2008).

Material									Remarks	
High Performance Concrete (HPC)Proportioning of High Performance Concrete, Class AA low cement requirements as per Vermont AOT (2011) are shown below:		Central Pre-Mix Prestress (CPMP 2011) utilizes the concrete mixes as shown below to achieve 10,000 psi strength:								
HPC Class	Req. ⁴ Cem. M (lbs./	** Maximum at. Water- cy) Cem. Mat. Ratio	Max. Slump (in.)	Air Content (%)	Coarse Aggregat Gradatio Table	e Co n Str (r	-Day* 28-Day* omp. Modulus c ength Rupture osi) (psi)	f	Materials Cement type III	Quantity 685 lbs/cy
AA Low Cement	611	0.44	6	7.0 ± 1.5	704.02A	4	000 650		Slag cement	65 lbs/cy
* The li	sted 2	8-day compres	sive s	trength	or modu	lus	of rupture wil	.1	Fine aggregate 1	449 lbs/cy
** See tak	oles lo	cated below fo	or requ	ired cer	nentitiou	s mat	erials.		Fine aggregate 2	800 lbs/cy
Cement		Fly Ash		Silic	a Fume		Cementitious		Coarse aggregate (AASHTO # 67)	548 lbs/cy
		(105/07)		(1b	s/cy)		(lbs/cy)		Coarse aggregate (AASHTO # 8)	1210 lbs/cy
449	+	122	+	OR	40	=	611		Water	260 lbs/cy
Cement (lbs/cy)		GGBFS (lbs/cy)		Silic Admi	a Fume xture		Cementitious Materials		Air entrainer	As required
/19		153	<u> </u>	(lb	s/cy)		(lbs/cy)	-	High-range water-reducing admixture	As required
410	T	100	T	OR	10		011		Water-cementitious materials ratio	0.35 per cy
Blended	Silic (8. (lbs)	a Fume Cement 0%) /cy)		Fly (lb	′Ash s/cy)		Cementitious Materials (lbs/cy)			11
	48	9	+	1	.22	=	611]		
Blended	Silica (8. (lbs	a Fume Cement 0%) /cy)		OR GG (1b	;BFS s/cy)		Cementitious Materials (lbs/cy)]		
	45	8	+	1	.53	$\sim = \circ$	611]		

Ultra High Performance Concrete (UHPC)	Concrete (UHPC)	Ultra High Performance Concrete
--	-----------------	---------------------------------

Material

Typical field-cast UHPC mix composition (Graybeal 2010):

Material	Amount	Percent by weight
Portland cement	1200 lbs/cy	28.5
Fine sand	1720 lbs/cy	40.8
Silica fume	390 lbs/cy	9.3
Ground quartz	355 lbs/cy	8.4
Super plasticizer	51 lbs/cy	1.2
Steel fibers	263 lbs/cy	6.2
Water	218 lbs/cy	5.2

Remarks

Average material properties of UHPC are shown below (Graybeal 2009; Graybeal 2010):

UHPC material properties (average)		
Property	Value	
Unit weight	156 lbs/ft ³	
Modulus of elasticity	6200 ksi – 8000 ksi	
Compressive strength	18 ksi – 35 ksi	
Post-cracking tensile strength	1.0 ksi –1.5 ksi	
Chloride ion penetrability (ASTM C1202)	Negligible	

Design values for material properties of UHPC are shown below (Graybeal 2009; Graybeal 2010):

UHPC material properties (design)				
Property	Value			
Modulus of elasticity at release	5800 ksi			
Modulus of elasticity final	7800 ksi			
Nominal compressive strength at release	12.5 ksi			
Nominal compressive strength final	21.5 ksi			
Nominal tensile strength final	1.2 ksi			
Allowable compressive release stress 60% of 12.5 ksi	7.5 ksi			
Allowable compressive stress at service 60% of 21.5 ksi	12.9 ksi			
Allowable tensile stress at service 70% of 1.2 ksi	0.84 ksi			

APPENDIX B

CONNECTION DETAILS BETWEEN PREFABRICATED ELEMENTS

COMMONLY USED PBES CONNECTION DETAILS

CONNECTION DETAILS LIBRARY

Rank description

- Rank 1 : Represents connection details that have either been used on multiple projects or have become standard practice by at least one owner agency.
- Rank 2 : Represents connection details that have been used only once and were found to be practical.
- Rank 3 : Represents connection details that are either experimental or conceptual.

Deck level transverse connection

Panel-to-panel transverse connection

Performance data might be available at the respective DOT.

Deck level longitudinal connection (closure)

Panel-to-panel longitudinal connection (closure)

Panel-to-panel longitudinal connection (closure)

FULL-DEPTH DECK PANELS Panel-to-panel longitudinal connection (closure)

3

Rank

Joint details

Note: the figure shown is not a full-depth deck panel. It is a prefabricated module of steel girders and a precast panel used in MassDOT Fast 14 project. The figure shown here is only to present the concept.

Description/Comments

Use of threaded inserts with straight steel secured at the site is an option to eliminate space issues while placing the precast elements. Benefits should be justified with the time and effort

Formwork supports can be attached to the panels to reduce construction time

Connection is designed to transmit shear and moment

Detail is <u>not yet implemented</u> with full-depth deck panels.

Challenges:

Threading a large number of steel bars at the filed.

Minimize the impact of vibration during staged construction (hydrated cementitious material bond breaks when subjected to vibration after initial setting).

Minimize shrinkage cracking.

Deck-to-girder connection (shear connection and haunch)

Deck panel-to-steel girder connection

Deck panel-to-prestressed concrete girder connection

Deck panel-to-prestressed concrete girder connection

Decked Bulb Tee Girder-to-girder connection

DBT girder-to-girder connection

DBT girder-to-girder connection

Tee Girder connections

PREFABRICATED SUPERSTRUCTURE MODULES Double tee girder-to-girder connection

Side-by-side box-beam

Side-by-side box-beam: longitudinal connection

Rank	Joint details	Description/Comments
1		Implemented project: A large number of projects in Michigan and other states.
		Michigan DOT transverse connection include full-depth grouted shear-keys, transverse post-tensioning, and a 6 in. cast-in-place concrete deck.
		Deck is placed after post-tensioning the girders. Reflective deck cracking has been observed even before opening to traffic.
	Cracks observed on Oakland over I-94 on June 21, 2007 (before opening to traffic)	Durability is a concern in states like Michigan.
	Analysis and design procedures are given in Attanayake and Aktan (2009) - TRB09-3420.	Staged post-tension through top and bottom flanges with spacing requirements similar to full-depth deck panels need to
	Analysis and design procedures presented in the paper are applicable to most of the modular systems currently used in ABC.	be considered for enhanced durability.

Decked steel girder system: longitudinal connection

Rank	Joint details	Description/Comments
2		Implemented in the MassDOT Fast 14 project.
		Designed to transmit moment and shear.
		Once the units were placed, longitudinal joints were formed with field cast high early strength concrete.
		Specialty closure pour concrete needed immediate curing and protection. Polyethylene covering was used to keep the moisture.
		A MassDOT requirement was to produce a concrete mix of 2000 psi strength within 4 hours.
		Performance data will be available in near future.

Decked steel girder system: longitudinal connection

CONTINUITY DETAIL OVER PIER OR BENT

CONTINUITY DETAIL AT PIER

CONTINUITY DETAIL AT PIER

LINK SLABS

> Detailing over piers (negative moment continuity)

Link slab has already been implemented with ABC

LINK SLABS

> Detailing over piers (negative moment continuity)

(resultant force is in tension)

Bearing arrangement should be critically reviewed

LINK SLABS

> Detailing over piers (negative moment continuity)

- 1. Combined effect of live and thermal gradient loads should be considered for link slab design.
- 2. Link slab should be designed considering flexural interaction with axial loads for RHHR support configuration.
- 3. Both top and bottom layer reinforcement should be continued.

4. Link-slab analysis and design procedures explained in TRB paper 09-3577 is recommended.

CONTINUITY DETAIL AT THE ABUTMENT

CONTINUITY DETAIL AT ABUTMENT

SEMI-INTEGRAL ABUTMENT

CONTINUITY DETAIL AT ABUTMENT

SEMI-INTEGRAL ABUTMENT

SUBSTRUCTURE CONNECTIONS

Precast pier cap to round CIP piles

Precast pier cap to precast concrete piles

Precast pier cap to CIP concrete columns

Precast bent cap to CIP concrete column

Precast bent cap or pile cap to pre-stressed concrete column or pile

Precast pier column to precast pier cap

Precast pier column to CIP footing

Description/Comments Implemented project: Route 70 over Manasquan River, Brielle, NJ

The project was designed with Inclined columns with a trumpet shaped anchorages, which allowed strand to be placed and grouted after the column has been erected.

All post-tensioning was accomplished with threaded post-tension bars in place of the strand tendons. Once the precast cap beam was installed, the cap was sealed with a cast-in-place concrete cap.

Designed to transmit shear, moment, compression, tension and torsion.

Pre-stressed concrete cylinder pile to Precast pile cap

Precast pier cap to precast piles

Precast concrete pier column to precast concrete pier column

Precast cap beam to precast pier column

Precast pier column to precast pier column

Precast pier column to CIP footing

Precast concrete pier column to CIP concrete footing

Precast cap beam to precast column

SUBSTRUCTURE ABUTMENT CONNECTIONS

Precast concrete abutment wall to precast concrete footing

Precast concrete abutment wall to abutment seat

Rank	Joint details	Description/Comments
2	CAST-IN-PLACE BACKWALL	Implemented project: under NHDOT - Bureau of Bridge Design, Epping, New Hampshire
	PRECAST APPROACH SLAB	This detail is similar to the NH wall stem to footing detail. The connection is made with grouted slice sleeves.
		Care needs to be taken with the casting elements within tolerance (about 1/2") so that
	ABUTMENT SEAT REINFORCING EXTENDS INTO BACKWALL GROUT ED DOWEL SPLICE (TYP.) BEAM SEAT	the splice sleeves line up with the extended bars. This was not a problem during construction.
	PRECAST CONCRETE ABUTMENT SEAT	The design of the connection was according to ACI Manual on Emulation Design. This connection is also used to transfer longitudinal seismic forces from the superstructure to the substructure.
		Designed to transmit shear, moment and compression
	Source: FHWA Connection Manual	

Precast concrete integral abutment to steel pile

Precast abutment cap to pre-stressed concrete pile

Diaphragms-to-Precast Spread Girders

Inverted Tee beam-to-Inverted Tee beam at pier

Steel I-Girder-to-Steel I-Girder connection at pier or abutment

Steel box girder-to-Steel box girder connection at pier

Rank	Joint details	Description/Comments
1	CONTRETE BLAMBAGA	 Implemented projects: N2 Over I-80, Near Grand Island Nebraska The end of girders consists of plates welded to top flanges and thick plates welded to bottom flange of box. The end shown is placed over the pier. The two adjacent box girders contact over the pier via plates welded to the bottom flanges. The steel bulkhead shown serves two purposes. It stabilizes the box ends and provides a formwork for placing the concrete diaphragm over the pier. The continuity for the live loads are achieved through reinforcement placed over the pier prior to casting the deck panel. Designed to transmit shear and compression

Precast panel unit to precast panel unit over steel girder

APPENDIX C

PERFORMANCE OF BRIDGES CONSTRUCTED USING ABC TECHNIQUES

Full-Depth Deck Panel Systems

Bridge Description	Design Details	Observations
I-84 Bridge, Weber Canyon,	, Utah, Built 2009	
Deck replacement using	Three span bridge with a	Joint Type: Between panels the joint is a welded tie.
precast deck panels.	superstructure of prestressed	
	AASTHO I girders with	Observations: Efflorescence and staining was found on the underside of
	precast deck panels.	the deck at the transverse joints.
		Inspected 1- year after construction.
		(Culmo 2010)

I-15 Bridge, Payson, Utah, I	Built 2009	
ABC Feature is the full-	Three span bridge with a	Joint Type: Longitudinal post-tensioning to compress the transverse
depth deck panels with	superstructure of prestressed	joints. Transverse dowels spaced at 9" centers between panels develop
post-tensioning.	AASTHO I girders with	the longitudinal closure. Polymer overlay is used to increase the water-
Polymer overlay is used.	precast deck panels.	tightness.
		Observations: Very little efflorescence found, the joint's performance is
		good. Less staining than on bridges with a welded tie connection. The
		deck is in good condition and the post-tensioning and polymer overlay
		keep the joints water-tight.
		Inspected 1- year after construction.
		(Culmo 2010)

I-80 Silver Creek Canyon B	ridge, Utah, Built 2007	
Precast full-depth deck	Four simple span bridge	Joint Connection: Welded Tie connection between panels and a
panels used as an ABC	with steel girders and a	bituminous overlay.
feature.	continuous deck.	
		Observations: Efflorescence staining found at the joints and active water
		leakage seen through the joints. The joint at the abutment is showing
		heavy leakage. The continuous deck panels subjects them to negative
		moment over the piers which could be a cause of the leakage. The deck
		panels are also integrated into the backwall and does not allow for thermal
		movement which is cause for the leakage at the abutments.
		Inspected two years after construction.
		(Culmo 2010)

I-84; US-89 to SR-167, Web	per Canyon, Utah, Built 2008	
ABC feature is the use of	Eight span bridge, two	Joint Connection: The connection between panels is a welded tie with a
full-depth precast deck	continuous spans and six	polymer overlay.
panels.	simple spans. The	
	superstructure consists of	Observations: Efflorescence seen at the transverse joints and the haunches
	steel girders and precast	and the closure pours. Staining seen on the underside of the deck panels.
	deck panels.	Placement of the deck panels during construction was not monitored and
		the fit of the panels was difficult. The spacing of the panels was increased
		to accommodate tolerance issues.

(Culmo 2010)		First inspected one year after bridge construction.	
(Cullio 2010)	(Culmo 2010)		

I-84; US-89 to SR-167, Web	per Canyon, Utah, Built 2008	
ABC feature is the precast	Six span bridge, five	Joint Connection: The connection between panels is a welded tie and a
full-depth deck panels.	continuous spans and one	polymer overlay.
	simple span. The	
	superstructure consists of	Observations: Efflorescence seen at the transverse connections. Staining
	steel girders and precast	seen on the underside of the deck panels. The simple support span shows
	deck panels.	very little leakage and the continuous spans show active leakage at every
		joint.
		First inspected one year after bridge construction.
		(Culmo 2010)

I-215 East over 3760 South and 3900 South, Utah, Built 2006			
ABC feature is the precast	The bridge consists of three	Joint Connection: The joint connections between panels are post-	
post-tensioned deck	spans. The superstructure	tensioned deck panels with a polymer overlay.	
panels.	consists of steel girders and		
	precast deck panels.	Observations: Connections are performing well. Cracks and leakage is	
		seen in the closure pour.	
		First inspected three years after bridge construction.	
		(Culmo 2010)	

I-15 at Parrish Lane Ramp	and Interchange Improvement	Utah Built 2004
The ABC feature is a	The bridge consists of two	Joint Connection: The connection was welded tie and has a bituminous
widening using precast	continuous spans. The	overlay.
deck panels and precast	superstructure consists of	
bent caps.	steel girders and precast	Observations: Efflorescence is seen on the underside of the deck panels at
	deck panels.	the transverse joints. Active leakage is seen through many joints including
		the closure pour at the backwall abutment, haunches, transverse panel
		joint, longitudinal closure pour and the shear connector pockets.
		Inspected six years after construction.
		(Culmo 2010)

Riverdale Road, I-15 to Was	shington Blvd, Utah, Built 2008	8
The ABC elements to this	The bridge superstructure	Joint Connection: The panels were connected together using longitudinal
bridge were the precast	has two spans with steel	post-tensioning. The overlay was a polymer.
deck panels, approach slab	girders and precast deck	
panels, sleeper slab, and	panels.	Observations: A minor amount of leakage occurred prior to the placement
abutments.		of the overlay. Since the overlay was placed no leakage was observed.
		The overlay is cracking near the backwall and is causing the sleeper slab
		to deteriorate. The leakage that is present is most likely due to the
		shrinkage cracks.
		The bridge was inspected two years after construction.
		(Culmo 2010)
1		

I-80; Kimball Jct to Silver (Creek, Utah, Built 2008	
The ABC technique used	The bridge has one span and	Joint Connection: The connection between panels was a welded tie with a
was a full-depth deck	uses AASHTO I-Girders in	three inch asphalt overlay.
panel to widen the bridge.	the superstructure of the	
	bridge.	Observations: Active leaking was found at the transverse joints. The
		overlay was cracking at the end of the approach slab. The leaking is being
		controlled by the bituminous overlay. The shrinkage of the closure pour
		concrete has caused the deck panels to spread and allow for more leakage.
		The bridge was inspected two years after construction.
		(Culmo 2010)

US-6; MP 200 Bridge Replacement, Utah, Built 2008		
The ABC techniques used	The single span bridge	Joint Connections: The panels were connected with closure pours. The
were precast deck panels,	consists of prestressed	overlay has membrane and bituminous.
approach slab panels,	girders and precast deck	Observations: Minor leakage seen from the underside. Efflorescence seen
sleeper slabs, and	panels in the superstructure.	at the closure pour at abutment to backwall, haunches, transverse panel
abutments.		joints. Shrinkage cracks are seen at the longitudinal closure pour.
		The bridge was inspected two years after construction.
		(Culmo 2010)

County Road over I-80, 1.9 Miles East of Wanship, Utah, Built 2003		
The ABC technique was	The bridge has five spans	Joint Connections: The connections between panels were a closure pour
the use of full-depth deck	and uses steel girders and	with cast concrete. The overlay was a polymer.
panels.	precast deck panels for the	
	superstructure.	Observations: Minimal creaking and leakage has been found. The cracks
		seen on the underside appear to be shrinkage cracks.
		The bridge was inspected seven years after construction of the bridge.
		(Culmo 2010)

I-70; Eagle Canyon Bridge, Utah, Built 2009			
The ABC technique was	The bridge has one span and	Joint Connections: The connections between panels were post-tensioned.	
the use of precast deck	uses a steel deck arch and	The overlay was a polymer.	
panels.	precast deck panels for the		
	superstructure.	Observations: No signs of leakage have been found. The bridge is in good	
		working order.	
		The bridge was inspected one year after construction of the bridge.	
		(Culmo 2010)	

Parrish Lane Railroad Bridge Crossing, Utah, Built 2008			
The ABC techniques were	The bridge has three spans	Joint Connections: The connections between panels were post-tensioned.	
the use of precast deck	and uses a steel plate girder	The overlay was bituminous asphalt.	
panels and precast bent	and precast deck panels for		
caps.	the superstructure.	Observations: The bridge is in good working order. There are minor	

	cracks seen at the joints and shear connector pockets.
	The bridge was inspected two years after construction of the bridge.
	(Culmo 2010)

I-84; US-89 to SR-167, Web	er Canyon, Utah, Built 2009	
The ABC technique was a	The bridge has three spans	Joint Connections: The connections between panels were a welded tie
deck replacement with	and uses prestressed	with a polymer overlay.
precast deck panels.	AASHTO I girders and	
	precast deck panels.	Observations: There is much staining and efflorescence seen on the
		underside of the deck at the transverse joints, haunches, and closure pours.
		No sign of leakage is seen at the shear pockets. The welded tie
		connections do not appear to be performing well.
		The bridge was inspected one year after construction of the bridge.
		(Culmo 2010)

I-15; Bridge Deck Replacements; F-127, F-129 & F-130, Payson, Utah, Built 2009			
The bridge used full depth	AASHTO I girders and	Joint Connections: The connections between panels were longitudinal	
post-tensioned deck panels	precast deck panels were	post- tensioning. Longitudinal closure had transverse dowels spaced at	
as the ABC technique.	used for the superstructure	9". The overlay is a polymer.	
	of this bridge. The bridge		
	consisted of three spans.	Observations: When compared to the welded tie connection there is less	
		efflorescence and leaking seen. The bridge is in good working condition.	

	The bridge was inspected one year after construction of the bridge.
	(Culmo 2010)

SR-89;State Street Railroad	SR-89;State Street Railroad Bridge, Pleasant Grove, Utah, Built 2009		
The bridge used precast	The single span bridge	Joint Connections: The connections between panels were welded tie	
deck panels, approach	superstructure consist of	spaced at 2'centers, perpendicular to beams. Welded ties were used for	
slab, and sleeper slabs.	AASHTO I girders and	longitudinal closure pours at quarter points. The overlay was a polymer.	
	precast deck panels.		
		Observations: The efflorescence and leakage seen is minimal. Some	
		staining is seen at the closure pour. The sleeper slab is not lined up right	
		with the approach slab. The overlay is cracking at every approach slab	
		joint and over the backwalls. The bridge is in good condition but should	
		be inspected again due to the young age of the bridge.	
		The bridge was inspected in less than a year after construction of the	
		bridge.	
		(Culmo 2010)	

US-6; MP 218.7 to Emma Park Road, Utah, Built 2009			
The ABC techniques used	The single span bridge	Joint Connections: The connections between panels were post-tensioned	
were precast post-	superstructure consists of	longitudinally with one longitudinal closure pour at bridge center line.	
tensioned deck panels,	AASHTO I girders and	Also, transverse closure pours at the backwall and approach slab joint was	
post-tensioned approach	precast GRFD deck panels.	used. A polymer overlay is used.	

slab panels, and sleeper	
slab panels.	Observations: Both of the closure pours are leaking and have
	efflorescence. The minor cracking was documented in the closure.
	The bridge was inspected a year after the construction.
	(Culmo 2010)

B-552 Bridge in Bedford county, Everett, Pennsylvania. Built prior to 1973, for a private community.		
One lane simply supported	Designed for a private	Joint type: The panels are held adjacent to each other using slab-girder
bridge with full-width, full-	community access.	connection (tie-downs). Width of the joints between deck panels is
depth precast concrete panels	Prestressing or post-tensioning	0.375 in. typically and 0.44 in. adjacent to the center panel.
designed for low volume	was not used.	
traffic.		Observations: Steel girders were extensively corroded but precast
		concrete panels were in good condition with no leaking, leaching or
		cracking. However, efflorescence was present along slab and curb
		joints. The wearing surface had some areas with exposed aggregate.
		The bridge was inspected during 1993-95.
		(PTC 2012; Issa <i>et al.</i> 1995b)

Dublin 0161 Bridge, Columbus, Ohio. Year built is 1986.		
Two-phase construction was	Thickness varied from 9.5 in	Joint type: Epoxy mortar was used as grout for shear key connection
adopted to replace the six-span	14 in.	between panels in both transverse and longitudinal joints. Panels are
skew bridge deck. Full-depth	Panel width: 28 ft.	post-tensioned longitudinally after erection to secure the joints.

precast reinforced concrete	Panel length: 12 ft 1.5 in., 9 ft	
panels with 2.5 in. asphalt	10.5 in., 9 ft 6.5 in., 9 ft 5.5 in.	Observations: The bridge superstructure was found to be very rigid
concrete wearing surface.	and 10 ft 1 in.	but with random cracks on overlay. No signs of leaking, leaching or
	Panels are not prestressed.	debonding were present. The bridge was inspected during 1993-95
		(i.e., about 7 years after construction).
		(Issa <i>et al.</i> 1995b)

Harriman Interchange Bridge, Orange County, New York. Year built is 1979.		
Three-span, two-lane ramp.	Panel thickness: 8 in.	Joint type: 3 ft wide cast-in-place longitudinal joint connects adjacent
Each span is 75 ft long.	Skew precast concrete panels	panels. Transverse joints were not post-tensioned.
	are not leveled on beam flanges	Deck had a membrane and a 6 in. overlay.
	to control super-elevation.	
	Thus, epoxy mortar bed,	Observations: Reflective cracks on asphalt near transverse joints, and
	thicker on one edge of flange	random cracking and spalling of joints at the bottom side of the
	than other, was used to level it.	panels. The bridge was inspected during 1993-95 (i.e., about 14 years
		after construction). (Biswas 1986; Issa et al. 1995b)

Burlington Bridge over Mississippi river, Illinois – Iowa border. The bridge was built during 1992 – 1993.			
Two cable-stayed spans with	Panel thickness: 10 in.	Joint type: 15 in. gap joints between adjacent precast panels were	
10 in. precast concrete deck	Panel width: 46 ft 8 in, 37 ft 8 in	filled with cast-in-place type-III cement-concrete. Shear pockets and	
covered with 2-in. low	Panel length: 13 ft 9 in	longitudinal joints were filled with class-D concrete. Haunch was	
slump dense concrete	Post-tension spacing: 1 ft 4.75 in.	formed with high flow, high strength, early load-bearing, non-shrink	

overlay. Corrosion inhibitor	Initial post-tension force:	89 and	grout.
admixture was incorporated	166 kips		A group of three panels were post-tensioned in transverse and
in the concrete of precast			longitudinal directions.
concrete deck panels.			
			Observations: No major joint leaking was observed. The fatigue
			cracks were observed which were formed as a result of construction
			equipment vibrations on the deck (note that only three panels were
			connected at a time). Nevertheless, the bridge was performing well.
			The bridge was inspected during 1993-95 (i.e., about 1 year after
			construction).
			(Issa <i>et al.</i> 1995a; Issa <i>et al.</i> 1995b)

Bayview Bridge over Mississippi River, Illinois-Missouri border. Year built is 1986. The bridge was opened to traffic in 1987.		
Three-span cable stayed	Panel thickness: 9 in.	Joint type: Butt joints
bridge. Fourteen continuous	Panel width: 46.5 ft	
approach spans with 9 in.	Panel length: 9 - 11 ft	Observations: No significant problems at the joints although some
cast-in-place concrete deck.	Posttension spacing: 7 in.	presence of rust, indicating some leakage. The bridge was inspected
The main three spans over	Initial stress: 105 ksi	during 1993-95 (i.e., about 6 years after construction).
the river consists of 9 in.	Three to five panels are post-	Major reason for the observed performance is that the cable-stayed
precast deck panels covered	tensioned to form groups.	precast deck is in compression.
with a 1.75 in. waterproofed		(Issa <i>et al.</i> 1995b)

bituminous wearing surface.	

B-501 Bridge, Exit ramp for Pennsylvania Turnpike, Somerset County, Pennsylvania. Year built is 1940; Resurfaced in 1970.		
Simple span bridge with full-	Panel thickness: 8.5 in.	Joint type: Panel-to-panel connection - 65% of panel portion from
depth precast concrete	Precast reinforced concrete	bottom forms a dry joint. The depth and width of the remaining 35%
panels and an overlay of	panels (i.e., no prestressing).	of the joint are 3 in. and 0.75 in., respectively. A depth of 1.25 in.
latex modified concrete.	No post-tensioning after erection	from the bottom of the 3 in. deep gap is filled with rubberized joint
	of the panels to compress the	seal material while the rest is covered with neoprene compression
	joints.	joint seal.
		Observations: Steel girders had extensive surface corrosion. Several
		tie-downs, which established the deck panel – girder connections,
		were missing. Excessive leakage was noted at precast deck panel
		joints. Top surface indicated some active cracks although prior
		patching was performed on it. The bridge was inspected during 1993-
		95 (i.e., about 50 years after construction).
		(Issa <i>et al.</i> 1995b; COP 2007)

Waterbury Bridge, Connecticut. Year built is 1965. Entire bridge was reconstructed in 1989.		
Six-span bridge with three Panel thickness: 8 in. Joint type: Transverse joints are formed by filling female-to-female		
continuous spans and a hung	Panel width: 26 ft 8 in.	type joints with high strength non-shrink grout.
span supported by pin and	Panel length: 8 ft	

hanger connections. The	Initial stress: Arbitrary stress of	Observations: No joint cracking or leaking reported. The bridge was
width of the bridge is 27 ft 6	150 psi for simple spans and 300	inspected during 1993-95 (i.e., about 4 years after construction).
in.	psi in the three-span continuous	(Issa, <i>et al.</i> 1995b)
	portion was applied.	
	Panels are covered with a Class I	
	waterproofing membrane and a	
	2.5 in. thick bituminous layer.	

Route 235 Bridge over Dogue	e Creek, Fairfax, Virginia. Year bu	ilt is 1932; Rehabilitated in 1982.
Information related to	Panel dimensions were not	Joint type: Standard configuration of female-to-female type grouted
structural configuration is	available in literature.	shear key joints was provided between panels. Adjacent panels were
not available in literature.	Class I waterproofing covers the	spaced with 0.25 in. gap at the bottom, which is the recommended
	entire deck	practice.
	Precast concrete panels are	
	neither prestressed nor post-	Observations: Leakage, cracking and rust stains visible at joints.
	tensioned longitudinally.	Transverse deck cracks and efflorescence were noted at construction
		joints. The bridge was inspected during 1993-95 (i.e., about 11 years
		after construction).
		(Issa <i>et al</i> . 1995b)

Vischer Ferry Road Bridge, Schenectady County, New York. Year built is 1900, destroyed in 1902 with ice; Rebuilt in 1975; Deck was
rehabilitated in 1980.Information related toHaunch was formed using 0.5 in.Joint type: Panel-to-panel joint details are not available in literature.

structural configuration is	thick stiff grout placed on	
not available in literature.	structural steel members.	Observations: Minor leakage beneath the deck was noted. It is
	No longitudinal post-tensioning	believed that the low volume of traffic is the cause of better
	was provided.	performing deck. The bridge was inspected during 1993-95 (i.e., about
		13 years after construction).
		(Issa <i>et al.</i> 1995b)

Krumkill Road Bridge, Albany County, New York. Year built is 1939; Rehabilitated (i.e., deck replaced along with installing welded		
headed studs to create composite action) in 1977		
Fifty feet long, single span	Panel thickness: 7.5 in.	Joint type: 3 ft wide cast-in-place longitudinal joint.
mainline throughway bridge.	Panel width: 42 ft and 21 ft.	
The bridge consists of two	Panel length: 5 ft 2 in.	Observations: The bridge was under the category of high traffic
structurally separated three-	No post-tensioning was applied	volume bridges. Fracture and spalling was observed at transverse
lane spans supported on	in the longitudinal direction to	joints due to lack of post-tensioning. Moreover, frequent leakage was
common abutments.	compress the transverse joints.	observed through the transverse joints, which was leading to corrosion
	A membrane and a 6 in. thick	of girders. Cracks were also present in the overlay. The bridge was
	asphalt layer were placed on top	inspected during 1993-95 (i.e., about 17 years after construction).
	of the deck panels.	(Biswas 1986; Issa <i>et al.</i> 1995b)

 Batchellerville Bridge, Saratoga County, New York. Year built is 1930. Deck replaced completely in 1982 along with installation of new floor beams.

 Total length of the bridge is
 Panel thickness: 8.5 in.

 3,075 ft. Deck width is 28
 Panel width: 28 ft.

ft.	Panel length: 11 ft 8 in. to 13 ft	Observations: Minor deboning in the joints between precast panels
	variable	and some cracks in asphalt concrete overlay were noted. Low traffic
	Transverse slab joints are located	volume is the cause of the excellent working condition of the
	on top of floor beams. No post-	structure. The bridge was inspected during 1993-95 (i.e., about 10
	tensioning is present.	years after construction).
	Two-inch thick asphalt concrete	(NYState DOT 2012; Issa et al. 1995b)
	overlay was placed on the full-	
	width precast concrete panels	
	that were mounted on the new	
	floor beams.	

Oakland Bay Bridge, San Francisco, California. Rehabilitated during 1960-61.		
Original design was to	Lightweight concrete deck panel	Joint type: 12 in. wide closure pours in between adjacent panels.
accommodate trucks and	dimensions are not given in	
trains on the lower deck and	literature.	Observations: Cracking and leaching present in both precast and cast-
ordinary cars on the upper		in-place areas of deck. However, more cracking and leaching was
deck. During 1960-61, the		visible on the cast-in-place concrete deck. The bridge was inspected
train lines were removed and		during 1993-95 (i.e., about 33 years after construction).
precast deck panels were		(Issa <i>et al.</i> 1995b)
placed adding two additional		
traffic lanes.		
Due to Loma Prieta		

earthquake in 1989, a small		
section of the lower deck		
was damaged and the entire		
width in that section was		
replaced with precast		
concrete panels without an		
overlay.		

Chulitna River Bridge, Over Chulitna River, Alaska. Year built is 1921; Full superstructure rehabilitated in 1992		
The bridge is 790 ft long.	Panel thickness: 10 in. to 7 in.	Joint type: Transverse joints are grouted female-to-female connections
Full-depth, full-width	variable.	without post-tensioning. High strength quick set grout (magnesium
precast panels were placed	Panel width: 21 ft 0.75 in.	phosphate concrete) was used for shear pockets, haunches, and joints.
as part of the rehabilitation	Panel length: 12 ft 0.625 in. to 3	
program. Width of the	ft 0.625 in. variable at edges and	Observations: Underneath the bridge minor leaking and leaching was
bridge is 42 ft 2 in. Stage	8 ft overall at all other locations.	found along with minor debonding at the joints. No overlay cracking
construction was executed to	The deck panels were covered	was observed and was in good condition. There was a concern on
facilitate mobility.	with a waterproofing membrane	possible rotation at the joints due to partial-depth grouting leading to
	and a 2 in. thick asphalt overlay.	debonding, leaking and leaching. The bridge was inspected during
	Width of the waterproofing	1993-95 (i.e., about 1 year after construction).
	membrane was limited to 18 in.	(Issa <i>et al.</i> 1995a; Issa <i>et al.</i> 1995b)
	but placed over all the joints.	

Cochecton Bridge over Delaware River, Sullivan County, New York. Year built is 1950. Deck panel replacement in 1978.		
The three-span, two-lane,	Panel thickness: 7.5 in.	Joint type: Type-II Portland cement with two parts of mortar sand was
truss bridge is 675 feet long.	Panel width: 15ft 4 in. and 13ft	used as a grout to fill transverse and longitudinal joints.
Staged construction	10.5 in.	
techniques were	Panel length: 7ft 6in.	Observations: Reflective cracks were noted along the longitudinal
implemented to facilitate	Deck panels were covered with a	joint. Transverse reflective deck cracking was observed over every
mobility.	waterproofing membrane and a	other panel joint. Minor spalling was also observed under the deck.
	bituminous wearing surface.	The bridge was inspected during 1993-95 (i.e., about 15 years after
	No post-tension across the joints.	construction).
		(Baughn 2012; Issa <i>et al.</i> 1995b)

Route 155 Bridge over Normanskill, Albany County, New York. Year built is 1928 and deck replacement after 1972 with full depth			
precast concrete panels, along with transverse girders held by two trusses.			
Single span bridge. Bridge	Panel thickness: 10 in.	Joint type: 1.75 in. wide female-to-female longitudinal shear key was	
dimensions are not given in	Panel width: 6 ft 4 in.	filled with non-shrink cement grout. Two-inch wide transverse joints	
literature.	Panel length: 12 ft 4 in. and 13 ft	were connected with non-headed 0.75 in. diameter shear studs (4 in.	
	4 in.	long for intermediate panels and 1 in. long for the end panels) and	
	Precast concrete panels were	then filled with grout.	
	placed on transverse steel girders		
	spaced at 12 ft 6 in. that were	Observations: Transverse joints popped out; thus, filled with a foam	
	held by two trusses on either	stopper. Deck was leaking at the transverse joints while asphalt	
	side.	surface showed random cracking. The bridge was inspected during	

	1993-95 (i.e., about 21 years after construction).	
		(Issa et al. 1995b)

Seneca Bridge, Lasalle County, Illinois. Year built is 1932. The deck was replaced in 1986.		
The bridge consists of 13	Panel thickness: 6.5 in.	Joint type: Match cast with epoxy adhesives
spans, of which 9 of them are	Panel width: 23 ft	
approach spans while the	Panel length: 4 ft	Observations: Random cracks at the approach spans, joint
remaining for spans are	Post-tension spacing: 2 ft 10 in.	leakage, and corrosion on steel supporting system were
interior truss spans. Total	One-inch diameter grade 150 deformed	observed. The bridge was inspected during 1993-95 (i.e., about
length of the bridge is 1510	bars were used to post-tension the panels.	7 years after construction).
ft 3 in.	Eight such bars spaced at 2 ft 10 in. were	(Issa <i>et al.</i> 1995b)
	used across the bridge width. Initial	
	stress of 45 ksi was applied.	
	Two-inch thick Class I concrete overlay	
	with a waterproofing membrane cover	
	the panels	

l Bridge over Chesapeake Bay, Sandy Poir	it, Maryland. Year built is 1952. In 1987, deck was replaced
of the spans and the remaining with cast-in	-place slabs.
Panel thickness: 6 in.	Joint type: Female-to-female grouted transverse joints
Panel width: 31 ft 2.5 in.	between precast panels. Bottom portion of the joints are tight
Panel length: 14 to 15 ft	fit; hence, any size irregularities and dimensional growth of
Precast concrete panels were not	panels are not allowed.
prestressed.	
The panels were post-tensioned in	Observations: Both sides of deck were showing diagonal and
longitudinal direction to clamp the joints.	map cracking due to absence of prestress in transverse
Six-inch thick deck with two-inch thick	direction. Though latex modified concrete had been used for
layer of Latex Modified Concrete was	the haunch, concrete popouts were visible where there was no
placed on top of the panels as an overlay.	adhesion between the deck and the supporting structure.
	Joint leakage under the deck at numerous locations with
	deposits and stains were observed; including presence of
	spalling with some steel exposure. The bridge was inspected
	during 1993-95 (i.e., about 6 years after construction).
	(Issa et al. 1995b; Eastern Roads Org. 2009)
	 <i>Bridge over Chesapeake Bay, Sandy Poir</i> of the spans and the remaining with cast-in Panel thickness: 6 in. Panel width: 31 ft 2.5 in. Panel length: 14 to 15 ft Precast concrete panels were not prestressed. The panels were post-tensioned in longitudinal direction to clamp the joints. Six-inch thick deck with two-inch thick layer of Latex Modified Concrete was placed on top of the panels as an overlay.

High Street Overhead Separation Bridge, California. Year built is unknown. In 1978, 29 out of 30 spans were replaced with precast		
concrete deck panels.		
The left and right side of the	Panel thickness: Varies from 6.5 in. to 7	Joint type: All the joints including the longitudinal joint and
bridge was widened in 1955	in.	the 9 in. closure pour between every two adjacent panels and
and 1963, respectively.	Panel width: 14 ft 2 in.	the shear stud pockets were grouted with high alumina cement
Panel length: Varies up to 40 ft.	concrete.	
------------------------------------	--	
No post-tensioning was provided to		
clamp the joints.	Observations: The deck was found with cracking, leaking,	
	leaching and rusting underneath. Transverse cracks spaced 2ft	
	6 in. apart were observed on the deck along with radial cracks	
	and some shear stud pockets popping out on top. The bridge	
	was inspected during 1993-95 (i.e., about 15 years after	
	construction).	
	(Issa <i>et al.</i> 1995b)	

Amsterdam Interchange Bridge, Montgomery County, New York. Year built is 1954. Deck was replaced in 1973.		
The bridge has four spans	Panel thickness: 8 in.	Joint type: Female-to-female transverse joints were filled with
and two lanes. Deck width is	Panel width: 22 ft.	low modulus epoxy mortar to form the shear keys. Shear key
45 ft. In 1973, the deck was	Panel length: 4 ft.	grout was formed by mixing one part resin and two parts
replaced with cast-in-place	Longitudinal post-tensioning was not	aggregate.
concrete slab and precast	provided to secure the joint tightness.	
concrete panels. Only 7	A waterproofed membrane and asphalt	Observations: Joint leakage resulting in other deterioration
precast concrete panels were	concrete overlay was used to protect the	such as spalling, cracking, and corrosion was documented. All
installed on half of span 2.	bridge deck.	spans showed 0.5 in. to 1 in. reflective transverse cracks at
Three panels were connected		both sides of the joints. Width of the reflective longitudinal
to the supporting structure		cracks that were visible in the middle of the bridge deck
using bolted connections		ranged from 0.125 in. to 0.25 in. The bridge was inspected

while the welded connection	during 1993-95 (i.e., about 20 years after construction).
was used for the other four.	(Biswas 1986; Issa et al. 1995b)

Kingston Bridge on Wurts Street, Over Rondout Creek, Ulster County, New York. Year built is 1921; Deck replaced in 1974 on			
existing beams.	existing beams.		
Seven hundred feet long	Panel thickness: Varies from 6 in. to 7 in.	Joint type: V-shape male-to-female joint, with no grouting or	
three span, two lane	from edge to crown.	caulking. Panels were tied together in the longitudinal	
suspension bridge deck was	Panel width: 24 ft	direction using bolted tie rods.	
replaced with full-depth,	Panel length: 9 ft		
full-width precast	Precast panels were transversely	Observations: Transverse cracks were present over the	
prestressed panels covering	prestressed to accommodate transport and	transverse joints. Random leaking was found underneath the	
the 24 ft wide bridge.	handling stresses. Initial prestressing	deck causing the concrete to spall near the leaky joints. The	
	force applied to 0.5 in strands was 28.9	bridge was inspected during 1993-95 (i.e., about 19 years	
	kips.	after construction).	
		(Baughn 2012; Issa et al. 1995b)	

Dalton Highway Bridges, 18 Bridges over Dalton Highway, Alaska. Deck replacement was during 1991-1992.		
Timber decks were replaced Panel thickness: 9.5 in. at midspan and 7.5		Joint type: All bridges had grouted female-to-female
with full-depth, full-width	in. towards edges.	transverse joints.
precast, prestressed concrete Panel width: 27 ft 5.4 in.		
eck panels on new steel Panel length: 4 ft 10 in and 5 ft 7 in.		Observations: The joint over the supports experienced
ringers during 1991-1992. Deck panels were prestressed using 0.5 in.		cracking and loss of material. Most of the joints debonded.
	diameter, seven wire, low relaxation strands	Typically all the transverse joints had cracking that were

spaced at 1 ft 3 in. The effective stress of	visible from top of the deck.
149 ksi, after losses, was expected.	In general, there were no leaks but specific bridges such as
In all the 18 bridges, there was no post-	the Minnie creek bridge showed leaking at the joints. The
tensioning to compress the panel joints.	bridge was inspected during 1993-95 (i.e., about 2 year
There was no overlay on the deck.	after construction).
Traffic was allowed on the bridge with a	(Issa <i>et al.</i> 1995a)
speed of 3 miles/hour during staged	
construction. However, traffic was not	
allowed during grouting.	
	spaced at 1 ft 3 in. The effective stress of 149 ksi, after losses, was expected. In all the 18 bridges, there was no post- tensioning to compress the panel joints. There was no overlay on the deck. Traffic was allowed on the bridge with a speed of 3 miles/hour during staged construction. However, traffic was not allowed during grouting.

-	NB-216 Quakertown Interchange Bridge, Interchange exit for Pennsylvania Turnpike, Bucks County, Pennsylvania. Year built is		
	1940. Deck was replaced in 1981.		
	The suspended cantilever	Panel thickness: 6.5 in.	Joint type: Transverse joints were sealed with latex concrete
	bridge has a composite deck	Panel width: 17 ft 6 in.	grout after post-tensioning in the longitudinal direction.
	on the suspended span while	Panel length: 7 ft 7.5 in.	
	a non-composite deck is on	Each panel covers one-half of the width.	Observations: Full-width cracking was observed directly
	the cantilever span.	Longitudinal post-tensioning was	above each joint and reflected through the latex modified
	Existing deck was removed	provided to secure the transverse joint	concrete overlay.
	in 1981 and full-depth deck	tightness. However, the force magnitudes	Heavy spalling, water stains, and delaminations were
	panels were placed.	and the post-tension spacing are not	documented.
	Existing shear connectors	given in literature.	The bridge was inspected during 1993-95 (i.e., about 12 years
	were left undamaged when		after construction).

the old deck was removed.	(Biswas 1986; Issa <i>et al.</i> 1995b; COP 2007)
The new panels were cast	
with tight tolerances to	
accommodate the existing	
shear connectors.	

NB-750 Clark Summit Bridge, Lackawanna County, Pennsylvania. Deck was replaced in 1980.		
The two-lane, ten-span, 1627 Panel thickness: 6.75 in.		Joint type: Non-shrink cement grout with nominal post-
ft long bridge has two	Panel width: 29 ft	tension was used to form the transverse deck panel joints.
parallel structures.	Panel length: 7 ft	
In 1980, the deteriorated	Elastomeric strips and epoxy mortar	Observations: Cracking present in overlay at every panel
deck was replaced on	grout was used to form the haunch over	joint. Underneath the deck, cracking and spalling at every
existing superstructure	the existing girders.	joint was observed. It is believed that the majority of the
system using full-depth, full-	Issa et al. (1995) states that the nominal	durability problems arose due to inadequate connection
width precast panels.	longitudinal post-tensioning was used	between deck panels and stringers that resulted in significant
	along with non-shrink grout at transverse	vibrations under heavy traffic.
joints. Yet, the transverse post-tension		The bridge was inspected during 1993-95 (i.e., about 13 years
design details such as force magnitude		after construction).
and spacing are not provided.		(Biswas 1986; Issa <i>et al.</i> 1995b)

Route 229 Bridge over Big Indian Run, Culpeper, Virginia. Year built is 1941. Deck was replaced in 1985.		
In 1985, precast concrete	Deck panel design details are not given in	Joint type: Female-to-female type grouted shear key joints
deck panels were installed	literature.	were used between panels. Panels are in contact within the
on the existing steel girders.	There was no longitudinal post-	bottom portion of the joint even though the recommended
Ten-inch wide layer of Class	tensioning present to clamp the joints.	practice is to leave at least a 0.25 in gap.
II waterproofing membrane		
covers the joints.		Observations: No leaking present through the joints, but the
		overlay was not in a good condition. Observing the bridge
		deck from the bottom side, uniform transverse cracks were
		identified approximately 1ft apart near the center portion of
		the bridge deck. Moreover, some percolation was identified at
		the ends of the bridge deck. The bridge was inspected during
		1993-95 (i.e., about 8 years after construction).
		(Issa et al. 1995b)

Bridges Constructed Using SPMT or the Slide-In Technique

Bridge Description	Design Details	Observations
I-80; Mountain Dell to Lam	bs Canyon, Utah, Built 2008	
The superstructure was	The bridge is single span.	Observations: Cracking in the span is essentially nonexistent. Cracking is
prefabricated and moved	The superstructure consists	seen in the overlay at the abutment joints. Leakage is seen at the backwall
using the SPMT.	of steel girders and a cast-	joint. The approach slab has failed and has been repaired. The repairs are
	in-place deck.	also beginning to fail.
		Inspected two years after bridge construction.
		(Culmo 2010)

I-215; 4500 South Structure, Utah, Built 2007		
The superstructure was	The bridge is single span.	Observations: 45 degree cracks are seen starting at each corner of the
prefabricated and moved	The superstructure consists	bridge and continue to the centerline of the bridge. The casting of the
into place using the	of steel girders and a cast-	bridge deck was not coincided with the pick points. This caused cracking
SPMT.	in-place deck.	of the deck and parapets. The cracks in the deck are leaking and the
		parapet cracks show no signs of leakage. The uphill joint is wide open and
		allowed significant moisture ingress.
		The bridge was inspected three years after construction.
		(Culmo 2010)

I-80; State Street to 1300 East, Utah, Built 2008							
The superstructure was	The bridge is single span.	Observations: 45 degree cracks are seen starting at each corner of the					
precast and moved into	The superstructure consists	bridge and continue to the centerline of the bridge. The casting of the					
place using the SPMT.	of steel girders and a cast-	bridge deck was not coincided with the pick points. The deck cracks are					
	in-place deck.	leaking. The cracking in the adjacent span indicates that the leakage is due					
		to shrinkage cracks and not due to the stresses from the SPMT move.					
		The bridge was inspected two years after construction.					
		(Culmo 2010)					

I-80; State Street to 1300 East, Utah, Built 2008							
The superstructure was	The bridge's superstructure	Observations: 45 degree cracks are seen starting at each corner of the					
precast and moved into	consists of steel girders and	bridge and continue to the centerline of the bridge. The casting of the					
place using the SPMT	cast-in-place deck. The	bridge deck was not coincided with the pick points. The deck cracks are					
method.	bridge is single span.	leaking. The cracking in the adjacent span indicates that the leakage is due					
		to shrinkage cracks and not due to the stresses from the SPMT move.					
		The bridge was inspected two years after construction.					
		(Culmo 2010)					

3300 South over I-215 East, Utah, Built 2008							
The ABC technique used	The single span bridge	Observations: Minor 45 degree cracking has occurred at the exterior and					
was a precast	superstructure consists of	interior corner bays of the bridge. Minor leakage has occurred at these					
superstructure with a	steel girders and a cast-in-	cracks but do not seem to be worsening. No overlay was applied; the cast					
SPMT move.	place deck.	-in-place concrete deck is bare. The pick points did not coincide with the					
		casting support, therefore creaking occurred in the deck and the parapets.					
		Due to the pick points being closer to the ends and the use of light weight					
		concrete in the deck, the cracks were minimal in comparison to other					
		SPMT moved bridges. The cracks that formed are leaking only due to					
		there being no waterproofing system in place.					
		The bridge was inspected two years after construction.					
		(Culmo 2010)					

I-80 over Lambs Canyon Road, Utah, Built 2008							
The ABC technique used	The single span bridge Observations: The pick points and the casting supports were coincided.						
was a SPMT move.	consists of AASHTO I-	This resulted in nearly nonexistent cracks. The approach slab joints at the					
	Girders and a cast-in-place	abutments are failing and will need repairs.					
	deck.	The bridge was inspected two years after construction.					
		(Culmo 2010)					

I-15; Widening, 500 North to I-215, Utah, Built 2009						
The ABC techniques used	d The superstructure of the Observations: The pick points were close to the ends of the bridge and					
was a precast	bridge was a bulb tee with a	resulted in minimal cracking in the deck and parapets. Efflorescence is				
superstructure and an	cast-in-place deck. The	seen at these cracks.				
SPMT move.	bridge consists of two	(Culmo 2010)				
	spans.					

I-80; Two Bridges near Echo Junction, Utah, Built 2009							
The ABC techniques used	The single span bridge Observations: Minimal cracking seen on the underside of the deck. The						
was a prefabricated	superstructure consists of approach slabs were placed before the slide-in and minimal cracking is						
superstructure and a	AASHTO I girder with a	seen in those as well. The bridge is in excellent condition still.					
lateral slide-in.	cast-in-place deck.	The bridge was inspected a year after construction of the bridge.					
		(Culmo 2010)					

APPENDIX D

ABC CHALLENGES AND LESSONS LEARNED

Twenty-three bridge projects that utilized ABC concepts were reviewed and summarized. The table given below contains project background, successes, challenges, and lessons learned.

CASE STUDY	BACKGROUND	SUCCESSES	CHALLENGES	LESSONS-LEARNED
Oakland Eastbound I- 580 Connector (Chung et al. 2008)	 Due to the explosion of fuel tanker truck traveling from I-80 to I-880, I-580 collapsed onto the I-880 connector ramp, in the San Francisco Bay Area, CA. Due to the material procurement difficulties (using steel beams on bent caps), the contractor chose precast, post-tensioned concrete bent caps. 	 The designers worked with fabrication experts during the design process to deliver the project fast and safely. Design team proceeded with built-up sections since the prefabricated rolled shapes were not available. The flange plates of girders were kept to one size to simplify the fabrication. 	 Potential shortage of steel plate stock was a challenge since accelerated reconstruction depended on the availability of materials. Restricting proprietary rapid strength concrete was a challenge. The addition of shrinkage-reducing admixture made the other methods of concrete construction difficult due to longer stting times. 	 Availability of materials will dictate the construction method. An emergency response plan for decision making authority, communication protocols, and reporting relationship was needed. It needs to address specification limitations for emergency projects to allow for flexibility in the selection of materials.
Russian River Bridge (Chung et al. 2008)	 The bridge is located over the Russian River in Geyserville,CA. Due to the tight construction schedule and environmental issues, accelerated bridge construction was preferred. Non-standard double T precast and prestressed concrete girders, cast-in- steel-shell piles, and 6 in. cast-in-place concrete 	 Wider precast sections reduced the number of precast girders, resulting in the elimination of deck falsework, and reduction in time and cost of fabrication, delivery, and erection. Multi-stage transverse post-tensioning of precast sections was used due to the compact span-to- depth ratio demands. 	 Calculations of elongations during jacking operation due to staged post- tensisoning. Since a two stage post- tensioning process was used, designing the structures under different stages was challenging. The shortage of steel shells for piles led to the decision to use State furnished materials in the contract. 	 Using wider precast sections was critical in accelerating the construction phase by reducing the number of precast girders, Multi-stage post-tensioning of precast sections is an alternative solution for bridges with compact span-to-depth ratio demands Effective communications and partnering are essential elements for frequent exchange of ideas between designers, constructors, and fabricators.

Table D–1. Summary of Accelerated Bridge Construction Case Studies

	deck were used.			
San Francisco Yerba Buena Island (YBI) Viaduct (Chung et al. 2008)	 The viaduct carries Route 80 traffic across YBI and links the East Span of the San Francisco-Oakland Bay Bridge with the YBI tunnel. A Demo-Out-Move-In construction method was used in the replacement of the VBI viaduct. The new bridge structure was moved with "skid shoes" that ran on oiled steel tracks pushed with hydraulic rams. 	 The Demo-Out-Move-In operation was successfully implemented on this project. The bridge was closed for three days, resulting in an accelerated replacement of the YBI viaduct. The construction of the bridge structure took place away from live traffic, reducing the risk to the traveling public and minimizing traffic disruptions. 	 The moving operation was very expensive. A staging area adjacent to the existing structure was required. The designer had to work with a heavy lift contractor during design to facilitate the moving operation. Falsework had to be cleared out before moving the equipment, requiring the installation of temporary columns. 	 Fitting the new span in between the existing structure requires tight tolerances. A lift test prior to the scheduled move is needed to avoid operational delays. Support points on the superstructure must line up with the tops of the columns. The elevations at support points on the superstructure must match the elevations at the respective tops of columns. The moving operation details must be thoroughly reviewed by the designer. It is helpful to involve a heavy lift contractor during design to facilitate the construction process.
I-70 Over Eagle Canyon (Reasch et al. 2010)	 The Eagle Canyon Arch Bridge is located on I-70 in southern Utah. UDOT decided to replace the deck on the arch and approach spans using full- depth precast deck panels that were post-tensioned as batches of 5 panels at a time. A 600-ton crane with a 	 Lightweight concrete was used for the new full-depth deck panels. To prevent the instability of the arches, the deck panels were removed section by section and replaced with groups of five new full-depth precast concrete panels. 	 Due to the load capacity of the existing structure, no heavy equipment was allowed on the bridge, creating a construction challenge. The remote location made the prospect of trucking-in and operating a concrete batch-plant expensive and impractical. 	 Replacement of deck panels can be achieved section-by-section when concerns exist regarding instability of the bridge. To reduce crane loads and dead loads, lightweight concrete may be used in full-depth deck panels. Existing structure load capacity is an important factor in selecting the construction method.

	324-foot boom was placed to remove the existing sections of the deck and erect the new panels.			 Complex projects may benefit from the collaboration between owner, designer, and contractor during the design process. The full-depth precast deck panels that are connected through post- tensioning are a viable ABC technique.
I-215; 4500 South Bridg (Mcminime et al. 2008)	 The bridge carries 4500 South road over I-215 in Salt Lake City, Utah. The existing bridge was removed and the new superstructure was moved into its final location using a self-propelled modular transporter system (SPMTs). 	 UDOT reported savings over \$4 millions in user delay costs by using ABC techniques. The SPMT was successfully used to move the existing structure. The removing and replacing operation lasted 58 hours. 	 Checking elevations multiple times was required due to the complex geometry of the structure. Excavating and constructing new abutments beneath the existing structure were challenging as they needed to be quick and cost- effective. 	 Communication and coordination between the designer, contractor, and mover are important. To ensure design requirements are met, it is essential to develop protocols for inspection procedures and site visitations. Having a contingency plan in place for unforeseen circumstances is necessary. The staging area for SPMT equipment must be planned properly. Pre-event meetings help in examining the steps of construction.
Five Bridge on OR 38 (Ardani et a 2010)	 ODOT decided to replace five bridges on the Oregon Highway 38 between the towns of Drain and Elkton, Oregon. In order to minimize traffic disruption and maintain traffic flow, the 	 Using ABC, the bridge was completed ahead of schedule. The design-build delivery method further reduced construction time. HSS made the 	 Due to difficult site conditions, replacing of the 3rd and 4th crossings was a challenge. Due to short-term week- end closures, demolishing the old structure and sliding the new bridge onto the 	 Using the design-build delivery approach can add further time reduction for bridge construction. HSS is a viable accelerated bridge replacement technique that minimize traffic disruption, and improves safety in work zones.

	hydraulic sliding system (HSS) was used.	replacement of crossings 3 and 4 possible over two weekend closures, minimizing traffic disruption and improving safety.	same alignment was a challenge, requiring careful planning of all operations.	 Careful planning of construction operations is an essential pre- requisite to a successful completion of an accelerated bridge replacement.
U.S. 15/29 over Broad Run (Gilley et al. 2009)	 Due to the deteriorated superstructure of southbound U.S. 15/29 bridge over Broad Run in Prince William County, VDOT decided to replace the concrete T-beam superstructure. Since construction required several stages and many lane closures, prefabricated segments of steel beams made composite with high- performance lightweight concrete deck were used. 	 Traffic flow was maintained during the removal and replacement of the bridge. Abutments were modified by extending wing walls and reconstructing seats. The obsolete concrete T- beam superstructure was replaced with precast elements using ABC methods over three weekends. Piers were modified using a corbel secured to the pier via grouted dowels and external post- tensioning. 	 The phasing scheme was revised to detour traffic around the bridge over three weekends due to the potential inability to reopen the highway to Monday morning rush-hour traffic. Due to the high traffic volume on the route, a detailed construction scheme had to be developed. Since the bridge is adjacent to the historic properties, temporary structure could not be used and the bridge was widened to the median side. 	 The designer and contractor worked together to find a new scheme to reduce the closure duration. Using prefabricated, high performance and lightweight concrete deck that was integrated with steel beams resulted in better performing bridge and in an accelerated construction operation.
The State Highway 86 over Mitchell Gulch	 CDOT decided to replace the severely deterioration timber bridge at State Highway 86 over Mitchell Gulch in Douglas, Colorado. The new bridge 	 The new bridge was successfully completed in 46 hours. The use of ABC resulted in minimizing traffic disruption and improving 	 Vertical alignment between prefabricated components created a problem when precast units were post- tensioned. The deck unit grouting process resulted in 	 Using prefabricated elements minimizes the construction time, and traffic impacts, and improves work zone safety. Preparing a back-up plan for unforeseen site conditions during construction is useful to ensure on

(Merwin 2003)	substructure was precast concrete elements except for the steel H-pile supports.	 work zone safety. The deck girders were constructed with integrated bridge railing to eliminate the railing installation operation. 	unsatisfactory joints. CDOT corrected the problem by devising field modifications.	 time project delivery. Monitoring of casting precast units is required to improve the post-tensioning operations by minimizing tolerance issues.
I-80: State Street to 1300 East (Reasch et al. 2010)	 The seven bridges are located on I-80; 1300 East to State Street in Salt Lake City, Utah were replaced. The superstructures were transported from the bridge farm to the bridge site using SPMT. 	 The project was completed in two years using SPMT, saving one year over conventional construction methods. A "bridge farm" was used to construct seven bridge superstructures off-site which were then moved to their location. 	 Moving the first bridge was cancelled due to the failure of the carrying beam, requiring a revision to the moving operation. Transporting the next bridge from the bridge farm over a newly constructed bridge was a challenge. 	 SPMT technology offers a promising ABC method. Collaboration between design and construction teams is a key element to mitigating risks and identifying/revising the methods of construction.
Mill Street Bridge (Stamnas and Whittemore 2007)	 The bridge is located on Mill Street in Epping, New Hampshire. The new bridge comprised of seven precast, prestressed concrete box beams, five precast abutment components, seven wingwalls, and ten precast footing pieces. 	 The bridge was constructed in eight days and cost approximately one million dollar. 	 The installation of splice sleeves between footings and wing walls was a challenging task. Careful attention was required for matching the splice sleeves At times, the curing of the proprietary grout took 12 to 16 hours to reach minimum required strength. 	 Standardizing the size of the precast components can improve the efficiency of installation in accelerated construction. Special attention must be paid during grouting operations to ensure splice sleeves are smoothly connected.
Tucker Bridge (Higgins	 Tucker bridge is located on U.S. 6 at Mile Post 204 in Spanish Fork Canyon, Utah. 	 To simplify the fabrication and minimize the number of precast elements, the deck edges were designed to be 	 Fabrication tolerances between precast elements had to be considered in design. 	 Minimizing the number of unique precast panels saves time and money during fabrication and installation.

2010)	_	Girders, abutments, back walls, wing walls, full- depth deck panels, approach slabs, and sleeper slabs were all precast concrete elements.	_	straight and parallel. The first abutment was placed in less than a day and the second one took less than 4 hours.				
Lewis and Clark Bridge (Weigel 2011)	_	The bridge carries SR 433 over Columbia River between Washington and Oregon States. An SPMT system was used to install the full- depth lightweight concrete deck panels.		The accelerated bridge construction system saved over 38 percent of the cost estimated by the engineer. Incentive and disincentive provisions resulted in early completion of the project.	_	Long term detour options were not recommended. Only allowing off peak hour closures resulted in increased construction time.		The SPMT system can be used in both removing old deck sections and installing new ones. Incentive and disincentive provisions can encourage the contractor to expedite the construction process.
Sam White Bridge (Jaynes and Dobmeier 2011)	_	The bridge carries Sam White Lane over I-15 in American Fork, Utah. The 354 feet long and 80 feet wide bridge is the second longest two-span bridge moved in the world with a 3.82 million pounds superstructure.	-	The bridge was moved into place in one evening using SPMT. Interlocking sole and masonry plates were used for the girder-column connections to transfer the seismic loads into the columns. Relative elevations matched each other and no tolerance issues occurred.	_	Grade modifications were required during the move due to the combined cross slope of the length and width of the bridge. Incorrect flange plates were ordered. An error occurred during the fabrication of cross frames.	_	SPMTs is a viable ABC method.Coordination is needed during the design and move of the bridge.Due to the high vertical curve on the bridge, SPMT strokes were needed to lift the superstructure.Due to the combined cross slope of the length and width of a bridge, grade modifications will be required.
Parkview Bridge	-	The bridge carries Parkview Avenue over US-131 in Kalamazoo, Michigan.	-	Even though some rework took place during construction, the accelerated bridge construction method		The contractor's hand mixed grout created a challenge for the grouting haunches.	-	Properly sizing substructure elements allows efficient installation. Grout connection details need to be reviewed.

	_	It is fully prefabricated bridge using precast piers, abutments, I girders, and full-depth deck panels. Two precast plants were used on this project, one for the deck and the other for girder and substructure elements.	_	shortened on-site construction schedule by two months. Despite a high initial cost, user cost savings more than compensated for this initial added cost.	-	Due to potential asphalt cracking along the backwall stem, the construction detail of backwall stem was revised. The alignment of bars into the ducts in the pier was challenging. Longitudinal post- tensioning duct misalignment occurred after placing the panels on the girders. Tolerance issues between the shear connector pockets	_	The fabrication at the job site or at a nearby location need to be considered to minimize tranportation cost and the impact of load restrictions. The impact of missing shear connectors needs to be evaluated due to the difficulty of drilling girder flanges when there is a misalignment. Simple and durable connection details at the abutments are encouraged. The special provisions need to specify grouting material and procedures to improve workmanship.
	-	The bridge carries 120 th	-	A high early strength	-	coil inserts on the top flange of the girders. Placement of a precast pier	-	Using a template for tolerances
		street over Squaw Creek in Boone County, Iowa.		for filling the substructure blockouts.		cap or abutment was successful because piles were driven within tolerances	_	reduces the time for placing a precast pier cap or an abutment.
120 th Street Bridge		four girders, three span continuous with full-depth precast deck panels.	-	The contractor had no problem meeting the end of pile driving tolerance	_	Due to lack of experience of the contractor, material		less time The experienced contractor is a must
(Bowers et al. 2007)	_	The precast deck panels covered the half width of		or fitting the precast abutment cap over the H- piling.		suppliers, and engineers, the project was delayed 30 working days.		to estimate the panel erection duration.
		the bridge and were transversely prestressed. Each deck panel had two	_	The deck panels were provided with leveling device that was designed	_	The alignment issue occured during the erection of the first deck panel.	-	Panel details must be reviewed to prevent alignment issues during the erection of the panels.

		full-depth channels through which the entire bridge deck was longitudinally post- tensioned. Cast-in-place concrete was used to fill the channels.		by the contractor and approved by Iowa DOT.	_	The total length of the deck panel portion of the bridge was 9 in. longer than anticipated in the plans. To modify the beams, additional prestressing strands were added and the concrete release and 28-day stengths were increased.		
Poute 00/120	_	The project was located in the City of Manteca, Sacramento, California. The purpose of the project	-	50% scale model was designed and tested at University of California for the seismic design.	-	The negative moment occurred over the bent cap during the cast in-place deck pour.	-	In order to solve negative problem issue over the bent cap, pre- tensioning strands must be extended into the the bent cap and bar reinforcing must be added.
Separation Bridge		was to widen the Route 120 from existing 5 lanes to 8 lanes.	_	The precast prestressed box girder with longitudional post- tensioning alternative	-	Short of utilizing commercial software created a challenge.	_	The positive moment associated with seismic loads must be considered.
(Chung et al. 2008)	1	The new bridge was comprised of two 105 ft long spans to replace the existing shorter 2-span cast-in-place concrete box bridge structure.		resulted in less congestion and cost.	-	The positive moment associated with seismic loads exceeded the superstructure's dead load moment.	-	In order to provide flexural reinforcement through the bent cap, the bars and extended strands should be bent at a 90° angle in the bent cap as well as staggering the reinforcement in opposing girders.
	-	The bridge carries Skyline Drive over West Dodge Road in Omaha,	-	The Skyline Bridge was the first implementation of the NUDECK system.	-	The development of 2% roadway crown in the constant thickness pre-	-	Non-proprietary materials used in deck panels resulted in easy procurement.
Skyline		Nebraska.				tensioned panel was a		
Drive Bridge			-	The NUDECk system		challenge during the	-	Use of fewer larger diameter studs
over West	-	The new superstructure		resulted in reduced		prefabrication process.		resulted in cost savings and improved
Dodge Road		consisted of Steel plate		construction time.		Since increasing the success		safety in the fabrication of the steel
(Fallaha at al		10.83 ft and full donth		The use of presset	-	thickness towards the		Deallis. The channel provision for post
(ranana et al. 2004)		process prostrossed panel	-	and use of precast		appear of bridge regulted in	-	tensioning strands halps in affective
2004)		precast prestressed panel		concrete deck panels	1	center of bridge resulted in		tensioning strands helps in effective

	of NUDECK system.	eliminated formwork for the overhangs.	high dead load, a solid plastic polyvinyl chloride (PVC) rod was placed along the centerline of the crown during the prefabrication process.	 grouting around the post-tensioned strands. The deck is transversely prestressed and longitudinally post-tensioned making it compressed from both direction thus improving durability of bridge
I-215 East Bridge over 3760 South (Miller 2003)	 The bridge carries I-215 East over 3760 South in Salt Lake City, Utah. The complete removal of the existing bridge was required. 	 The project was projected to take 90 working days but the use of prefabrication saved 30 days. The superstructure was constructed away from the existing bridge and brought to site on a special truck then lifted into position by cranes. 	 The pick point lifting devices caused interference with concrete finishing. 	 For better constructability the design details must be reviewed thoroughly. Methods of connecting approach slab to deck panels without closure pour should be investigated in detail. During the design process the pick points should be accounted and reinforcement provided accordingly. Also the parapet should be considered so as to cast-in-place or slip formed once in place. Predict the weight of the lifting bridge accurately and determine if counterweights are required at the lift crane. Steel beams were considered more flexible thus an optimal option for the girders
MD Route 24 Bridge over Deer Creek	 The deteriorated deck was decided to be replaced on MD Route 24 Bridge over Deer Creek in Harford 	 The FRP panels offer very light weight, superior corrosion resistance to an 	- The repairs of the deteriorated steel members increased the construction time.	 FRP panels use in this bridge helped the Maryland State Highway Administration maintain heritage of the region.
(FHWA 2006)	County in northeastern Maryland.	anticipated life of 70 years.		 Availability of suppliers of FRP deck

	The accelerated construction was implemented as the bridge was on a school bus route and could be closed for a maximum of 10 weeks in summer. The bridge was constructed by use of Fiber–Reinforced Polymer	_	Steel angles were welded to the girders and the panels were installed in 3 days using a forklift.				panels need to be considered before deciding the bridge type to be constructed.
I-40 Bridges (Chung et al. 2008)	(FRP) deck panels. Maintenance inspection revealed that twelve bridges on the heavily traveled I-40 corridor in southeastern California were required to be replaced due to severe deck deterioration as well as shear cracking in the bent caps and several girders. The simple span girders and abutment seats were precast, while the deck, abutment backwalls, wingwalls, and footings were cast-in-place.	_	The existing two-span 106 ft long bridge was replaced with a single- span structure designed to reduce substructure construction efforts. Segmenting precast abutment design facilitated staged construction allowing traffic to be maintained on one completed side while the existing structure is demolished.	1 1	Since the weight of precast abutments were 82-tons, transport permits were required. Finding a large crane for the abutments and working radius was a challenge.	_	The rock slope protection installation below the structure to protect the abutment footings from scour constrained immediate placement of the girders after erection of the abutment. The limitation of duration of detour at the site location provided in the specifications forced the contractor to shift work forces from other operations as necessary to expedite opening of westbound roadbed. A 360-ton crane would have been used considering the load and crane position relative to the pick and placement of the abutment. The site preparation to accept precast abutments can also be accomplished by utilizing leveling screw attachments on the precast abutment

				 element with post grouting beneath the abutment footing to ensure uniform load distribution to the soil. Heavier precast abutments required special transportation permits and larger crane for lifting the same. The working radius for larger crane was a bigger challenge of the project; thus requiring skilled workers.
	- The bridge is located in -	- The contractor proposed	 Due to nick and shipping 	 An abutment cast in segments would eliminate most of the challenges faced during the substructure installation The pier-to-cap connection was
Western Washington	 high seismic zone of western Washington. The research examined the details for a three-span prestressed precast 	precasting intermediate piers and bent cap in place of cast-in-place construction.	weight restrictions, the precast first stage cap was built as two-piece element in lieu of single piece element resulting in longer time required for splicing	 accomplished easily by the use of large duct sizes in the bent cap and large diameter relatively less number of reinforcing bars from the pier. The pier-to-cap connection was
State (Khaleghi 2010)	concrete bridge bent substructure system.		the segment.	tested under cycle loading in three variations and it behaved identical to cast-in-place bent cap on pier while maintaining safety, rapid construction and long-term performance.
				 The use of precast bent caps eliminated the need for false work resulting in cost savings.

	_	Considering the existing	_	The bridge design and	_	Since this was an	_	The construction staff needs to be
		condition of steel girders		traffic management design		emergency project, the		involved in the design process from the
		and failure of few bridge		were performed in parallel		concept for the design		beginning
		decks MassDOT decided		n ere personnen in paranen		development had to be		
		to replace 14 deteriorated	_	The coordination between		formulated in 2 weeks	_	The contractor input needs to be used
		bridge superstructures on		the Design-Build team and				during design development
		freeway I-93 in the city		the MassDOT during	_	The 30% of plans needed to		
		of Medford MA within		construction was very		be developed in 2 months	_	The CM/GC needs to be used to get a
		a period of ten weeks		successful				contractor in design development as
		from June 3 to August		Successiui.	_	Facilitating long lane		early as possible
		14 2011	_	Weekly progress meetings		closure periods was a		
		1,2011.		were held for effective		challenge since low traffic	_	The owner needs to engage with
	_	A 3-span bridge		communication between the		volumes on I-93 was		contractors consultants and the public
		superstructure was		Design-Build contractor and		limited.		······ ····· ····· ···················
		replaced with modular		agency staff.			_	Project milestones need to be set up to
		units. A module			_	The manageable hydraulic		allow reasonable time to the Design-
F (14		consisted of a precast 8	_	The incentive/ disincentive		cranes were used since it		Build team for design activities and to
Fast 14		in. concrete deck and two		clauses were established to		was difficult to keep up the		the DOT for design reviews.
Projects		steel plate girders making		complete the bridge		crane pick.		e
		them similar to double-		replacement on time.		•	-	Dedicated staff was an essential
		tee units.		*	-	Putting together the RFP		element for the Design-Build
			_	Seven bridges were replaced		and moving forward to		procurement, design review, and
	-	The bridge consists of 18		in 5 weekends.		Design-Build Contract		construction oversight.
		precast units (6 units per				procurement in a shortened		-
		span). Each span was	-	All the bridges on I-93		time frame was a challenge.	-	The schedule needs to be more flexible
		constructed as simple		highway were completed		FHWA worked with		prior to starting construction. This
		spans and later making		within the allocated 55-hour		MassDOT to complete a		would allow the opportunity to innovate
		only the deck continuous		timeframe.		RFP and the environmental		with alternatives and methods of
		through link slabs using				process in 5-6 weeks.		construction and better material
		cast-in-place concrete	-	The design team, MassDOT,				procurement.
		over the piers.		Massachusetts State Police,	-	Allocation of the resources		
				and the city of Medford		was a challenge. The work	-	Sufficient time needs to be allowed to
				Police and Fire departments		kept going 24 hour a day.		design and plan the intended work in
				worked together for				advance of construction.
				successful delivery of the	-	Five hundred people were		
				precast components.		trained for the project.	—	As the bridges were being constructed,

					-	The cross-section and construction sequence of the units needed to be revised. Since the existing approach spans were used to support the crane for the erection of the center span, the center span was built in one weekend and the approach spans were built following two weekends.	_	the contractor gained the comfort level each weekend and pushed the limit of faster construction. Contractor needs to be aware of the demand on resources required to keep pace with the project. The importance of substantial public outreach and coordination with state agencies are essential.
M-25 Bridge over the White River, MI	 The l Huro Mich Due of ex and c was l comp The l of eig beam slab preca conc: beam in-pla Excee rest of made 	bridge is located in on County in Eastern higan. to having poor rating isting bridge deck columns, the bridge required to be bletely replaced. new bridge consists ght segmental box as with integrated which emulate the ast prestressed rete spread box a system with cast- ace concrete deck. ept the footings, of the bridge is e of precast units.	_	The slope walls were placed after the post tensioning of the superstructure segments to avoid any gaps that may have formed as a result of the tensioning. The inspections took place after concrete placement and before storage of each element, after shipment to the site, and before and after erection of each element.	_	Late submittal of shop drawings and fabrication of the precast elements threatened to push back the project completion date. The supplier for the High Performance Superstructure Concrete provided a binary blend without MDOT approval due to a communication error. This resulted in a compressive strength at 28 days to exceed specifications. Special equipment was needed to test the compressive strength of the grout. Screed elevations on the deck varied from one end to the other.	-	Consideration should be given to the use of precast elements on projects scheduled for winter construction. Specifying ternary blended cementitious mix designs in remote areas should be avoided where suppliers are limited and unfamiliar with these mix designs. In order to obtain the existence of large subsurface obstacles, additional soil borings may be required. Benchmark location needs to be reviewed with respect to removal work. The precast elements could be paid as Lump Sum items which would eliminate the need for mathematical calculations to determine final pay quantity. Pre-approved grouts need to be

	 Grinding of deck surface resulted concerns on friction loss. The precast superstructure 	_	included with the special provision as much research was needed to identify an acceptable grout. A dywidag system needs to be preferred for connecting the abutments
	element fabricator did not provide roughened edges on the elements where secondary casting was to be		to the footing to reduce the number of openings to be grouted and save considerable time.
	applied for deck closure joints.Due to the difficulty to use	_	Special consideration needs to be given to addressing how lift loop cables will be removed following installation of the precast elements and how the resulting
	the type HPSC concrete for the concrete end walls and the parapet railing, the contractor used a type D	_	depression will be patched. The post-tensioning grout tubes needs to be located under the barrier railings
	concrete in the end walls that produces a more aesthetic wall.	_	for the barrier wall to cover the tubes. The same concrete mix design needs to
	 During construction there were some large rocks found in the 		tube bridge railings and the end walls as they are normally cast integrally.
	underground of the river bed which slowed the process down minutely.	-	The cure time for the superstructure elements at the fabrication facility should receive at least the minimal cure time prior to incorporation into the project.
		-	The superstructure construction sequence needs to be carefully reviewed, especially with respect to installation and removal of pre-loading.

		-	Expectations for compressive strength determinations of post-tensioning grout prior to removal of pre-loading needs to be detailed.
		-	A portion of the joint between the precast slope wall and the underlying abutment wall was not covered by embankment. It may be aesthetically desirable to address this joint differently.
		_	Fabricator needs to maintain the alignment of the reinforcement steel during fabrication.
		_	To reduce cracking in the concrete end walls, a minimum of one expansion slice sleeve needs to be installed in the metal railings of each barrier wall, regardless of length.
		_	Placing vertical curve crests or low points near concrete to HMA transition joints should be avoided to improve ride quality.
		_	A thin epoxy polymer bridge deck overlay needs to be included as part of original contract on projects where pre- cast superstructure elements are used.

APPENDIX E

Mi-ABCD USER MANUAL

MiABCD USERS' MANUAL

Project: Improving Bridges with Prefabricated Precast Concrete Systems

Project Manager: Mr. David Juntunen, P.E.

Submitted by:

Dr. Haluk Aktan, P.E. Professor (269) – 276 – 3206 haluk.aktan@wmich.edu Dr. Upul Attanayake, P.E. Assistant Professor (269) – 276 – 3217 upul.attanayake@wmich.edu Mr. Abdul Wahed Mohammed, E.I.T. Doctoral Research Assistant (269) – 276 – 3204 abdulwahed.mohammed@wmich.edu

Western Michigan University Department of Civil & Construction Engineering College of Engineering and Applied Sciences Kalamazoo, MI 49008 Fax: (269) – 276 – 3211

DISCLAIMER

The content of this report reflects the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is disseminated under the sponsorship of the Michigan Department of Transportation in the interest of information exchange. The Michigan Department of Transportation assumes no liability for the content of this report or its use thereof.

ACKNOWLEDGEMENTS

This project is funded by the Michigan Department of Transportation. The authors would like to acknowledge the support and effort of Mr. David Juntunen for initiating this research. The authors also wish to acknowledge the continuing assistance of the Research Advisory Panel (RAP) members in contributing to the advancement of this study.

TABLE OF CONTENTS

A	CKN	OWL	EDGEMENTS	iii
T	ABL	E OF	CONTENTS	iv
L	IST (OF TA	BLES	vi
L	IST (OF FI	GURES	vii
1	Inti	roduct	ion	1
1	1 1	Purno	se of User Manual	1
	1.1	About	MiABCD	8
	1.2	1.2.1	MiABCD Graphical User Interface (GUI)	8
		1.2.2	Default MiABCD File	11
2	Inst	tallatio)n	12
	2.1	Syster	n Requirements	
	2.2	Progra	Im Installation Package	12
	2.3	Setup/	Trouble Shooting Instructions	12
		2.3.1	Enabling Full Access to VBA Algorithms (for Microsoft Excel 2010)	12
		2.3.2	Disabling AcrobatCOM Addin (for Microsoft Excel 2010)	13
		2.3.3	Restoring Default MiABCD File	14
3	Mi	ABCD	Graphical User Interface (GUI)	15
	3.1	Start N	Menu	15
	3.2	File S	aving Options	17
		3.2.1	Using the Save As Option after Starting the Program	17
		3.2.2	Exiting the Program with Save/Save As Option	18
		3.2.3	Using Save Option during Intermediary Steps	19
	3.3	Advar	nced User Menu	19
		3.3.1	Project Details Menu	20
	3.4	Basic	User Menu	21
4	Mi	ABCD	Basic Operations	23
	4.1	Data I	Entering Process	23
		4.1.1	Project Details	23

	4.1.3 Traffic Data	
	4.1.4 Life-Cycle Cost Data	
	4.1.5 Preference Ratings	
4.2	AHP Analysis	
4.3	Analysis Results	
5 Ret	ferences	45
Apper	ndix – GA	46
Apper	ndix – GB	49

LIST OF TABLES

Table B1.	Site-Specific Data, Traffic Data and Life-Cycle Cost Data for the Stadium Drive							
	Bridge	50						
Table B2.	Preference Ratings of Three Users	51						
Table B3.	Assigning Ordinal Scale Ratings to Site-Specific Data	52						
Table B4.	Converting Ordinal Scale Rating to Pair-Wise Comparison Rating	52						
Table B5.	Sub-Parameters Grouping Based on Their Characteristics	55						

LIST OF FIGURES

Figure 1. Sample popup menus and datasheet	8
Figure 2. Example pop-up menus and key features	10
Figure 3. An example datasheet and its features	11
Figure 4. Start menu of the decision-making model	15
Figure 5. User Selection Menu of the decision-making model	15
Figure 6. Description of the Advanced User option	16
Figure 7. Description of the <i>Basic User</i> option	16
Figure 8. Using <i>Save As</i> option from the Excel menu	17
Figure 9. Exiting the decision-making model by (a) saving on the current file or (b) saving	ng as
a different file	18
Figure 10. Using <i>Save</i> option from the Excel menu	19
Figure 11. Accessing the Advanced User Menu	20
Figure 12. Accessing the Project Details Menu	21
Figure 13. Accessing the Basic User Menu	22
Figure 14. Advanced User Manu with five commands buttons used for data input	23
Figure 15. Project Details Menu	24
Figure 16. Project Information datasheet	25
Figure 17. Selecting project type and feature intersected from Project Category field	25
Figure 18. Datasheet of decision-making parameters for highway over highway project .	27
Figure 19. Add/Remove Sub-Parameters menu	28
Figure 20. Adding an additional sub-parameter, "Scour," using the Add/Remove Sub-	
Parameter Menu	28
Figure 21. Wage and cost data table	30
Figure 22. Significance of MOT classification based on LOS definition	31
Figure 23. Example tables for the model presets	31
Figure 24. Site-specific datasheet for Highway over Highway project	32
Figure 25. <i>Highway over Highway</i> project traffic data	33
Figure 26. Life-cycle cost data	34
Figure 27. Datasheet to assign preference ratings	35
Figure 28. Use of <i>dropdown</i> menu on preference ratings datasheet	36

Figure 29.	Preference ratings datasheet when accessed using Basic User Menu	37
Figure 30.	Preference ratings datasheet with two sub-parameters added by the Advanced	
	User	38
Figure 31.	Preference ratings datasheet showing the analysis command button	39
Figure 32.	Preference Ratings button to access the data analysis command button (a)	
	Advanced User Menu and (b) Basic User Menu	40
Figure 33.	Result command button to access analysis results (a) Advance User Menu and (b)
	Basic User Manu	41
Figure 34.	Analysis results presented as charts	42
Figure 35.	Analysis results presented in tabular format	43

1 INTRODUCTION

1.1 PURPOSE OF USER MANUAL

The Michigan Accelerated Bridge Construction Decision-making (MiABCD) model was developed to support decision makers with a guided software that can evaluate the Accelerated Bridge Construction (ABC) vs. Conventional Construction (CC) alternatives for a particular project.

The user manual includes the following:

- 1) Software installation instructions,
- 2) Description of the menu functions, and
- 3) Instructions for using the MiABCD software.

The MiABCD software allows data entry by two types of users: (1) the *Advanced User* and (2) the *Basic User*. Two flowcharts are presented in the following pages to depict the step-by-steps process that needs to be followed by the *Advanced User* and the *Basic User*. With each flowchart, the major steps in completing the decision-making process are defined. In order to execute the decision-making process, the *Advanced User* must complete all the steps defined in "*Advanced User Flowchart*" before any *Basic User* can use the program as described in the "*Basic User Flowchart*."

Further, a list of data required for the MiABCD and the sources of information are presented in Appendix-GA. To demonstrate the use of MiABCD, an example, including the mathematical concepts, is presented in Appendix-GB. Appendix-GC, the glossary, provides definitions and commonly used terms/acronyms in MiABCD program and this user manual.
Advanced User Flowchart

Basic User Flowchart

Notes:

- (1) This "*Basic User Flowchart*" shall be used only after the MiABCD file is updated with the complete bridge project data, following the steps in "*Advanced User Flowchart*."
- (2) In the term "UserX," X can range from 2 to 10 as the preference ratings can be provided by a maximum of 10 users for a particular project.

1.2 ABOUT MIABCD

The decision-making model is developed by the Civil and Construction Engineering Department at Western Michigan University, Kalamazoo, MI, under the Michigan Department of Transportation (MDOT) funded project "*Improving Bridges with Prefabricated Precast Concrete Systems*."

The model is developed envisioning the need to incorporate project-specific data and available usercost and life-cycle cost models to facilitate the decision makers with quantitative data to make informed decisions on bridge construction alternatives. The software is developed using available programming platforms of Microsoft Excel and Visual Basic.

Only the *Superstructure Replacement* decisions can be evaluated using the current version of the software.

1.2.1 MiABCD Graphical User Interface (GUI)

The application is developed using Microsoft Excel and Visual Basic for Applications (VBA) scripts. The Excel worksheets execute the procedures. The VBA's Graphical User Interface (GUI) forms are utilized to interact with the user. These forms are termed as *Pop-up Menus* (Figure 1-a and b), and the Excel sheets that are customized for user input are termed as *Datasheets* (Figure 1-c).

					Traffic Data for Highway over Highway	Project	
						Ad	vanced User Menu
					Description	Data	
					Average queue length on feature intersected due to work zone (mi)	0.00	
Project Details Menu					Duration of queue on feature intersected due to work zone (hr/day)	0.00	
Project Information					Detour length (mi)	0.00	
Project Category					Detour route speed limit (mph)	25	
Superstructure Replaceme	Add/Remove Sub-Parameters			×			,
Highway over Highway 💌	S&ST Cost WZM TF&R EC SC# Additional "Site and Structure Considerations (S#	APS .STJ' Sub-Parameters		Select below,	Description	Facility Carried	Feature Intersected
	to activate Sub-parameter	Ordinal se	and 9 =	faiors ABC	Recent ADT	0	0
View/Add D-M Parameters	2) 3)	Where: 1 =	and 9 =		Recent ADTT (% of ADT)	0	0
View/Edit Coneral Date	4)	Where: 1 =	and 9 =		Work zone length (mi)	0.00	0.00
	6)	Where: 1 =	and 9 =		Work zone speed limit (mph)	25	25
ОК				Done	LOS during construction	A	A
(a)	L.	(b)			(c)		

Figure 1. Sample popup menus and datasheet

1.2.1.1 Pop-up Menus

The main features of the *pop-up menu* are to provide (1) Command buttons, (2) Dropdown menus, (3) Tabs, (4) Text fields, (5) Check boxes, and (6) an Additional information button (\square). The most commonly used features are the *command buttons* and *dropdown menus*. A few examples of *pop-up menus*, along with their features, are shown in Figure 2. A description of each key feature is given below:

- 1) *Command buttons*: A command button is used to execute an embedded VBA script to run an algorithm or direct the user to a pop-up menu or a specific datasheet.
- 2) *Dropdown menus*: A dropdown menu is used to select a desired option from a predefined list of options.
- 3) *Tabs*: Tabs are used to switch between options that are predefined on a *pop-up menu*.
- 4) *Text fields*: Text fields allow incorporating user-defined sub-parameters in the decisionmaking process. Once defined, the text will be visible in the corresponding *datasheet*.
- 5) *Check boxes*: A check box allows either activating or deactivating a subroutine.
- 6) Additional information button (2): This button allows a user to receive additional information to navigate through the pop-up menu or to complete the datasheet.

<u>Note:</u> In subsequent sections of the user manual, *Bold-Italic* text is used to represent the names of the *pop-up menus* and *command buttons*.

Figure 2. Example pop-up menus and key features

1.2.1.2 Datasheets

An example *datasheet* is shown in Figure 3. The primary features of a *datasheet* are (1) Command buttons, (2) Dropdown menus, and (3) Data input fields.

Traffic Data for Highway over Highway		Command Button		
		Adv	vanced User Menu 📕	
Description	Data			
Average queue length on feature intersected due to work zone (mi)		0.00	\leftarrow	Data Input Fields
Duration of queue on feature intersected due to work zone (hr/day)		0.00		
Detour length (mi)		0.00		
Detour route speed limit (mph)	25			
Description	Facility Ca	arried	Feature Intersected	Dropdown Menus
Recent ADT		0	0	
Recent ADTT (% of ADT)		0	0	
Work zone length (mi)		0.00	0.00	
Work zone speed limit (mph)	25		25	
LOS during construction	A		A	

Figure 3. An example datasheet and its features

1.2.2 Default MiABCD File

The default MiABCD file, a Microsoft Excel macro enabled workbook, contains the following:

- 1) Empty *datasheet* under *Project Information* (see Section 4.1.1.1),
- 2) Default decision-making parameters under View/Add D-M Parameters (see Section 4.1.1.3),
- Default "regional data" as well as the "model presets" under the *View/Edit General Data* (see Section 4.1.1.4),
- 4) Default *datasheet* under the *Site-Specific Data* (see Section 4.1.2),
- 5) Default *datasheet* under the *Traffic Data* (see Section 4.1.3),
- 6) Default *datasheet* under the *Life-Cycle Cost Data* (see Section 4.1.4), and
- 7) Default *datasheet* under the *Preference Ratings* (see Section 4.1.5).
- Note: After running the program for a new project, the data file needs to be saved using the *Save As* option with a file name descriptive of the project (see Section 3.2.1). Otherwise, the *default* values may be accidentally edited, and additional steps may be required to restore the default MiABCD file (see Section 2.3.1).

2 INSTALLATION

2.1 SYSTEM REQUIREMENTS

The MiABCD software program is designed to run on the Microsoft Excel platform with up-to-date service packs. The minimum system requirements for installation are as follows:

- Microsoft Excel 2007 (or later)
- Windows XP (or later)
- 500 MHz Processor
- 512 MB Memory (RAM)
- Hard disk 2 GB
- Display 1024 × 768

2.2 PROGRAM INSTALLATION PACKAGE

The program installation package, *Setup MiABCD*, will extract the following files to a specified folder:

- 1) MiABCD_v2.0.xlsm,
- 2) MiABCD_v2.0_backup.xlsm,
- 3) MiABCD User Manual.xlsm, and
- 4) MiABCD_ReadMe.xlsm.

2.3 SETUP/TROUBLE SHOOTING INSTRUCTIONS

2.3.1 Enabling Full Access to VBA Algorithms (for Microsoft Excel 2010)

When the MiABCD software program is executed for the first time, the following steps need to be performed to prevent VBA runtime errors

- 1) From Excel menu, go to *File* \rightarrow *Excel Options*.
- 2) In the Excel Options window, go to Trust Center tab on left.
 - > Click on *Trust Center Settings...* button on right.
- 3) In the *Trust Center* window, go to *ActiveX Settings* tab on left.
 - > Select the option *Enable all controls without restrictions and without prompting*.
- 4) In the *Trust Center* window go to *Macro Settings* tab on left.
 - > Select the option *Enable all macros*.
 - > Check the box for *Trust access to the VBA project object model*.
- 5) In the Trust Center window, go to Protected View tab on left.

- > Uncheck the box for *Enable Protected View for files originating from the Internet.*
- 6) In the *Trust Center* window, go to *File Block Settings* tab on left.
 - > Uncheck all boxes under the *open* column on right.
- 7) Click **OK** until you return to the workbook, and then start using *MiABCD software program*.
- Note: If needed, the settings in the *Trust Center* window may be *restored* once *finished* using the MiABCD.

2.3.2 Disabling Acrobat.....COM Addin (for Microsoft Excel 2010)

If *Acrobat....COM Addin* is enabled in Excel, additional steps need to be performed to disable this Addin. This Addin may create problems while printing as well as exiting the *MiABCD* software program. For example, a VBA password may be requested while exiting the MiABCD software program.

To <u>check</u> if the *Acrobat.....COM Addin* is enabled in the Excel, the following steps need to be performed (*for Microsoft Excel 2010*),

- 1) From Excel menu, go to *File* \rightarrow *Excel Options*.
- 2) In the Excel Options window, go to Add-Ins tab on left.
 - Look for Acrobat....COM Addin, under the Active Application Add-ins heading, and the Inactive Application Add-ins heading in the window.
- If the Acrobat....COM Addin is under the Active Application Add-ins heading, then Acrobat....COM Addin is enabled in your Excel.

To <u>disable</u> *Acrobat.....COM Addin*, the following steps need to be performed *(for Microsoft Excel 2010)*,

- 1) From Excel menu, go to *File* \rightarrow *Excel Options*.
- 2) In the Excel Options window, go to Add-Ins tab on left.
 - > Look for *Manage* drop-down menu at the bottom center of the window.
 - > Use the *Manage* drop-down menu to select *COM Add-ins*.
 - Click on *Go*... besides the *Manage* drop-down menu.
 - Uncheck the box for Acrobat....COM Addin.
- 3) Click **OK** until you return to the workbook, and then start using *MiABCD* software program.

2.3.3 Restoring Default MiABCD File

The *default MiABCD file* may be restored using the backup file, MiABCD_v2.0_backup, from the directory where the MiABCD files were extracted. To restore the *file*, the following steps need to be performed:

- 1) Delete the file *MiABCD_v2.0* from the respective directory.
- 2) Create a copy of the file *MiABCD_v2.0_backup* in the respective directory.
- 3) Rename the newly created file to *MiABCD_v2.0*; this shall be used to run the *MiABCD* software program.

3 MiABCD GRAPHICAL USER INTERFACE (GUI)

3.1 START MENU

The MiABCD start menu is shown in Figure 4.

Michigan Department of Transportation	Western Michigan University
State Transportation Building	College of Engineering and Applied Sciences
425 W. Ottawa St.	1903 W Michigan Ave
Lansing, MI 48909	Kalamazoo, MI 49008
Michigan Acceler	ated Bridge Construction Decision v2.0

Figure 4. *Start menu* of the decision-making model

The *START* command button on the *start menu* opens the *User Selection Menu* as shown in Figure 5. This menu provides access to two types of users: *Advanced User* and *Basic User*. The *EXIT* command button opens the *Caution* pop-up window. This window allows either saving or not saving the data before closing the program (sees Section 3.2.2).

Michigan Department of Transportation State Transportation Building 425 W. Ottawa St. Lansing, MI 48909	&	College of E 1903 W Mic Kalamazoo,	WES Ingineering Ingan Ave MI 49008	STER and Appli	N ied Sc	MICHIGAN UNIVERSITY
Michigan	Acceler	rated Brid START	ge Cons	structi XIT	on [Decision v2.0
	User Selec	ction Menu Advance Basic	ed User User] ?	×	

Figure 5. User Selection Menu of the decision-making model

The *Advanced User* is generally a project manager who is familiar with the project specifics such as site-specific data, cost estimates, traffic data, and construction methodologies. The *Advanced User* can perform the tasks listed in Figure 6.

		Description	
User Selection Menu		•	Advanced user can enter and edit: 1) Project details, 2) Decision-making parameters, 3) General data, 4) Site-specific data, 5) Life-cycle cost data, 6) Preference ratings, 7) View results.
	l		ОК

Figure 6. Description of the Advanced User option

The *Basic User* is generally an expert who will enter the preferences on qualitative parameters based on the experience on recent bridge projects. The *Basic User* can perform the tasks listed in Figure 7.

User Selection Menu	Description	X
Advanced User	1	Basic user can: 1) View project information, 2) Assign preference ratings, 3) View results.
		ОК

Figure 7. Description of the Basic User option

The tasks assigned to the *Advanced User* and *Basic User* can be accessed by clicking on the *icon* located next to respective command buttons (Figure 6 and Figure 7).

Note: For every new project, the *Advanced User* needs to first save the *default MiABCD file* with a user-defined name using the *Save As* option from Excel menu (see Section 3.2.1) and complete the data entry process by following the steps defined in the *Advanced User Flowchart*. The *Advanced User*, following the data entry, needs to *Logout* from the *Advanced User Menu* and *Exit* the program using the respective command button on the *start menu* while saving the file using the *Yes* option on the *Caution* pop-up window that appears subsequently (see Section 3.2.2). For preference rating entry by the *Basic User*, the *Advanced*

User needs to forward the file in a sequential order (i.e., sending the file to expert-1; then after his/her input, sending the file to expert-2, and so on), for obtaining their qualitative judgments. These experts, who are specialized in various aspects of a bridge construction project, are described as *Basic Users* since their task is limited to entering preference ratings of qualitative parameters (see Section 4.1.5).

3.2 FILE SAVING OPTIONS

3.2.1 Using the *Save As* Option after Starting the Program

Immediately after executing the MiABCD program, the file needs to be saved by the *Advanced User* with a file name descriptive of the project using the *Save As* option from Excel menu as shown in Figure 8. This will prevent any accidental changes to the default MiABCD file.

Moreover, immediately after starting the program, each *Basic User* needs to save the file (they received from the *Advanced User*) with their name added to the title using the *Save As* option from Excel menu (Figure 8). This will ensure a backup including the **Project Data**, in case the file is corrupted or saved with incorrect preference ratings.

Figure 8. Using Save As option from the Excel menu

3.2.2 Exiting the Program with Save/Save As Option

The *EXIT* command button on the *start menu* of the decision-making model will open the *Caution* pop-up window as shown in Figure 9a. The pop-up window options are *Yes* and *No*. If the <u>file was saved</u> earlier using a user-defined name (see Section 3.2.1), select <u>Yes</u> (Figure 9a). This will save the current data (or any modifications) and exit MiABCD. However, if the <u>file was not saved</u> after starting the program (see Section 3.2.1), select <u>No</u>. This will open up another pop-up window to use the *Save As* option to save the current data to a "new file" with a user-defined name (Figure 9b).

Figure 9. Exiting the decision-making model by (a) saving on the current file or (b) saving as a different file

3.2.3 Using Save Option during Intermediary Steps

The *Advanced User* and *Basic Users* can *Save* the file during the intermediate steps of evaluation using the *Save* option from the Excel menu or the *Save* icon () on the Excel Quick Access Toolbar (Figure 10).

Figure 10. Using Save option from the Excel menu

3.3 ADVANCED USER MENU

The *Advanced User Menu* is accessed by clicking the *Advanced User* command button and then entering the password (Figure 11). This option allows access to all the features of the software program for entering/editing project specific details, changing default general data, and incorporating additional qualitative parameters. For each project, the data entry process should first start with the *Advanced User* to enter the project specific data, and then the *Basic User Menu* (see Section 3.4) can be used to enter preference ratings.

Figure 11. Accessing the Advanced User Menu

The *Advanced User Menu* consists of seven command buttons (Figure 11); of which four command buttons (viz., *Site-Specific Data*, *Traffic Data*, *Life-Cycle Cost Data*, and *Preference Ratings*) are used to input the *project specific data* (see Section 4.1). The *Preference Ratings* command button is also used to access the data analysis option (see Section 4.2).

The *Project Details* command button on the *Advanced User Menu* is used to access the *Project Details Menu* (see Section 3.3.1). The *Result* command button is used to view/print results of the evaluation. The *Logout* command button is used to return to the *start menu* after entering the required data (see Section 4.1). After this, the preference ratings from multiple users can be obtained using *Basic User Menu*.

3.3.1 Project Details Menu

The *Project Details Menu* is accessed through the *Advanced User Menu* as shown in Figure 12. The command buttons on the *Project Details Menu* are as follows:

- *Project Information*: This command button is used to enter the project related information (see Section 4.1.1.1).
- *Project Category*: These dropdown menus are used to specify the project type and the feature intersected.
- *View/Add D-M Parameters*: This command button is used to view the default decision-making major- and sub-parameters: also, to add additional sub-parameters, if required.

• *View/Edit General Data*: This command button is used to view/edit the default "regional data" as well as the "model presets."

Figure 12. Accessing the Project Details Menu

In this menu, generally the *Project Information* command button is used for entering the typical details of a project (see Section 4.1.1.1). The other command buttons are used if there is a need to customize the "decision-making parameters", "regional data" and "model presets." The "regional data" includes wage and cost, county jobs multiplier, material procurement distance classification, traffic data classification, and bridge spans classification. The "model presets" include predefined tables that define the relationship among the project data, ordinal scale ratings, and the Analytical Hierarchy Process (AHP) pair-wise comparison ratings. Primarily, this section is the core for AHP automation and ABC vs. CC evaluation.

3.4 BASIC USER MENU

The *Basic User Menu* is accessed by clicking the *Basic User* command button (Figure 13). This option does not require any password, and it is designed to allow multiple users/experts to enter their preferences for a list of qualitative parameters and also review the analysis result.

Figure 13. Accessing the Basic User Menu

The Basic User Menu consists of four command buttons that are as follows (Figure 13):

- *Project Information*: This command button is used to view the project-related information that is entered by an *Advanced User* (see Section 4.1.1.1).
- *Preference Ratings:* This command button is used to assign the preference ratings to qualitative parameters using an ordinal scale (1 to 9) (see Section 4.1.5) and to perform the data analysis (see Section 4.2).
- *Result:* This command button is used to view/print results of the evaluation.
- *Logout:* This command button is used to return to the *Start Menu*.

4 MiABCD BASIC OPERATIONS

The major steps of the MiABCD are (1) data input, (2) data analysis, and (3) reviewing analysis results. First, an *Advanced User* needs to perform these three steps for each new project using the *Advanced User Menu* options. Afterwards, *Basic User Menu* options are accessed to enter preference ratings, perform data analysis, and review analysis results. Sections 4.1, 4.2, and 4.3 provide detailed explanations of the major steps performed by an *Advanced User*. Also, the steps that need to be followed by a *Basic User* are described in Sections 4.1.1.1, 4.1.5, 4.2, and 4.3.

4.1 DATA ENTERING PROCESS

As shown in Figure 14, the *Advanced User Menu* consists of five command buttons that are used for data input. The command buttons are: *Project Details, Site-Specific Data, Traffic Data, Life-Cycle Cost Data*, and *Preference Ratings*.

Figure 14. Advanced User Manu with five commands buttons used for data input

4.1.1 Project Details

The *Project Details* command button opens the *Project Details Menu* (Figure 15). The *Project Information* command button is used for entering the basic details about a project (see Section 4.1.1.1). The dropdown menus listed under *Project Category* are used to select the scope of the project and feature intersected. The Sections 4.1.1.3 and 4.1.1.4 describe the *View/Add D-M Parameters* and *View/Edit General Data* command buttons, respectively.

Project Details Menu
Project Information
Project Category
Superstructure Replaceme
Highway over Highway 💌
View/Add D-M Parameters
View/Edit General Data
ок

Figure 15. Project Details Menu

4.1.1.1 Project Information

The *Project Information* command button will open the datasheet shown in Figure 16. The *Advanced User* needs to provide the information required for completing the datasheet. The datasheet will contain the name of the project, date the decision-making process is initiated, name of the *Advanced User* (typically the project manager), and a description of the project, such as the project location, surrounding businesses and stakeholders, and any critical aspects that the project manager thinks useful to the *Basic Users* (the experts). A reference image of the project site could also be embedded in this *datasheet* as shown in Figure 16. The *Advanced User* may click on the reference image area to open a *Microsoft Paint* window to upload an image. The image needs to be imported using the "*Paste from*" option in the *Microsoft Paint* and saved, so as to be displayed in the *Project Information datasheet*. Here, the command button on the *Project Information* datasheet (Figure 16) will reopen the *Project Details Menu*.

The *Basic User* can access the uneditable *Project Information* datasheet using the *Project Information* command button on the *Basic User Menu* (see Section 3.4). This allows the basic user to review the project information and any critical aspects that are specified by the *Advanced User*. The command button on the *Project Information* datasheet is used to navigate back to the *Basic User Menu*.

			Project Details Menu
	Project Information		
Name:			
Date:			
By (advanced user):		Inser	ta
Description:		Refer Image	ence e Here

Figure 16. Project Information datasheet

4.1.1.2 Project Category

As shown in Figure 17, two *dropdown menus* (see Section 1.2.1.1) are available under the *Project Category* field. The first *dropdown menu* consists of two options: (1) Superstructure Replacement and (2) Full-Structure Replacement. The second *dropdown menu* consists of two options to select the feature intersected: (1) Highway over Highway and (2) Highway over Waterway/Railroad.

Figure 17. Selecting project type and feature intersected from Project Category field

Select the *OK* command button at the bottom of *Project Details Menu* to store the *Project Category* changes and go back to the *Advanced User Menu*.

- Warning: Closing the *Project Details Menu* using icon will not save the changes made under the *Project Category* field.
- Note: The options available under *Project Category* dropdown menus in MiABCD v2.0 or its updates, such as, v2.1 etc., are limited to *"Superstructure Replacement"* and *"Highway over Highway."*

4.1.1.3 View/Add Decision-Making Parameters

The *View/Add D-M Parameters* command button on the *Project Details Menu* opens the *datasheet* with default decision-making parameters (Figure 18). Apart from the default sub-parameters under each major-parameter, an *Advanced User* can add up to six additional sub-parameters under each major parameter. Therefore, a total of 36 (i.e., 6×6) additional sub-parameters can be incorporated in the analysis.

<u>Note:</u> The additional sub-parameters defined by the *Advanced User* can be removed or modified; whereas, the default sub-parameters cannot be changed.

	Project Details Menu						
Major- Parameters	Site and Structure Considerations (S&ST)	Cost	Work Zone Mobility (WZM)	Technical Feasibility and Risk (TF&R)	Environmental Considerations (EC)	Seasonal Constraints and Project Schedule (SC&PS)	
	Precaster/Ready-mix supplier proximity	Initial Construction cost	Significance of maintenance of traffic on facility carried	Contractor experience	Environmental protection (e.g., wet land)	Seasonal limitations	
tub-Parameters	Availability of staging area	Life-cycle cost	Significance of maintenance of traffic on feature intersected	Manufacturer/ Precast plant experience	Aesthetic requirements	Construction duration	
S	Existing structure type and foundations	User cost	Length of detour	Work zone traffic risk		Stakeholder(s') limitations	
6	Terrain to traverse	Economic impact on surrounding businesses	Significance of level of service on detour route	Construction risks			
ub-Parameten	Access and mobility of construction equipment	Economic impact on surrounding communities	Impact on nearby major intersection due to traffic on facility carried				
S	Number of similar spans		Impact on nearby major intersection due to traffic on feature intersected				Add Sub-Parameters
meters		Direct Cost		Scour			
ined Sub-Para							
User-Def							

Figure 18. Datasheet of decision-making parameters for highway over highway project

The *Add Sub-parameters* command button on the datasheet opens the *Add/Remove Sub-Parameters* menu as shown in Figure 19.

Add/Remove Sub-Parameters			X				
S&ST Cost WZM TF&R EC SC&	S&ST Cost WZM TF&R EC SC&PS						
Additional "Site and Structure Considerations (S&	ST)" Sub-Parameters		Select below,				
Select below, to activate Sub-parameter	Ordinal	scale judgments 🛛 👔	if parameter favors ABC				
1)	Where: 1 =	and 9 =					
2)	Where: 1 =	and 9 =					
3)	Where: 1 =	and 9 =					
4)	Where: 1 =	and 9 =					
5)	Where: 1 =	and 9 =					
6)	Where: 1 =	and 9 =					
			Done				

Figure 19. Add/Remove Sub-Parameters menu

The additional sub-parameters can only be qualitative for user preferences entered on an ordinal scale. Further, the additional sub-parameters need to be specified as *favoring ABC* or *favoring* CC with increasing ordinal values. Consider the example of an additional sub-parameter "Scour" under the major-parameter "Technical Feasibility and Risk (TF&R)." In adding "Scour," the tab "*TF&R*" in the *Add/Remove Sub-Parameters* menu is selected, and the data is entered as shown in Figure 20.

	×
neters	Select below,
Ordinal scale judgments 🛛 😰	if parameter favors ABC
1 = Low Potential and 9 = Extremely High Pot	
1 = and 9 =	
	Done
	Ordinal scale judgments Image: Constraint of the state of the s

Figure 20. Adding an additional sub-parameter, "Scour," using the Add/Remove Sub-Parameter Menu

The ordinal scale ratings for any sub-parameter range from 1 to 9. The rating of 1 represents low significance, and the rating of 9 represents extreme significance. For "Scour," the rating of 1 implies that there is a *low potential* of scour to occur, and the rating of 9 implies that there is an *extremely high potential* of scour to occur. Therefore, "*Low Potential*" and "*Extremely High Potential*" shall be entered in the *text fields* for 1 and 9, respectively (Figure 20).

As "Scour" potential increases ABC becomes more challenging. Therefore, increased preference for "Scour" favors CC. Then the *check box* for "Scour" (located under the title *Select below*) will be left blank (Figure 20). From this, MiABCD analysis procedure is prompted to consider "Scour" such that an increase in its ordinal scale rating will increase the preference for CC.

The additional sub-parameters, along with their ordinal scale judgment definitions, which are defined in the *Add/Remove Sub-Parameters* menu are automatically added to the sub-parameters list in the *Preference Ratings* datasheet (see Section 4.1.5).

4.1.1.4 View/Edit General Data

The *View/Edit General Data* command button opens the "*General Data*" datasheet. This datasheet provides a majority of the data needed for Analytical Hierarchy Process (AHP) automation and the evaluation of construction alternatives (ABC vs. CC).

Note: A majority of the data in this datasheet will not change for a region and a time duration.

The following data is included in the "General Data" datasheet:

 Wage and cost: This includes the wage rate for personal and commercial vehicle drivers, vehicle operating cost for personal and commercial vehicles, accident cost, and accident rate (Figure 21). The default costs in the decision-making model are the prorated dollar amounts (2012 dollar) of the costs presented in FHWA's pavement division interim technical bulletin (Walls and Smith 1998).

Table 1. Wage and Cost					
Source for dollar amounts: FHWA – Pavement division interim technical bulletin (Walls and Smith 1998) Source for accident rates: Michigan State Police CJIC <http: 0,4643,7-123-<br="" msp="" www.michigan.gov="">1593_24055,00.html> Note: The 1998 dollar amounts are prorated to current dollar amounts.</http:>					
[Description	Data			
Wage rate of drivers	Personal Wage (\$/hr)	16.02			
wage rate of drivers	Commercial Wage (\$/hr)	26.70			
Vehicle operating cost	Personal vehicle (\$/hr)	6.88			
	Commercial vehicle (\$/hr)	14.15			
Accident cost	(\$/accident)	1024.00			
Accident rate	Normal (per million vehicle miles)	215			
	During Work Zone (per million vehicle miles)	240			

Figure 21. Wage and cost data table

- 2) County jobs multiplier: The Michigan counties and their respective jobs multiplier are listed under this table. The data is obtained from Montgomery Consulting, Inc. (2011).
- 3) Material procurement: Distance to the *prefabrication plant*, *ready-mix concrete plant* and a *staging area* for prefabrication or concrete batching is required. The distances to all these resource locations are grouped into five ranges to correlate with ordinal scale ratings. The default values are based on the available suppliers in Michigan and reviews of literature (PCC Center 2004, Caltrans 2008).
- 4) Traffic data classification: This includes the classification of Average Daily Traffic (ADT), the significance of maintenance of traffic (MOT) based on the change in Level of Service (LOS), and detour length. These criteria are classified into five ranges to correlate with the ordinal scale ratings. The default values for ADT and detour length classification are based on the available information from MCGI (2009). However, the default classification of significance of MOT is customized as described below (Figure 22).
 - (i) When LOS before and during construction is the same, the ordinal scale rating = 1 (i.e., least significance)
 - (ii) When the change in LOS before and during construction = 1 grade, the ordinal scale rating = 5 (i.e., moderate significance)
 - (iii) When the change in LOS before and during construction = 2 grades or more, the ordinal scale rating = 9 (i.e., extreme significance)

Table 6. Level of Ser	rvice Definition	Table 7. Significance of Maintenance of Traffic				
LOS	Equivalent value	Change in the LOS (i.e., diff. in equivalent values) before & during construction	Ordinal scale rating			
А	1	0	1			
В	2	1	5			
С	3	2	9			
D	4	3	9			
E	5	4	9			
F	6	5	9			

Figure 22. Significance of MOT classification based on LOS definition

Further, the default *peak hour factor* for various roadway functional classes is assigned using information from HCM (2000); these *peak hour factors* are used in current LOS calculation in the decision-making model and can be modified.

- 5) Bridge spans classification: This includes the classification of *number of similar spans* for the proposed bridge configuration. The classification is based on the methodology that if there are several similar spans then prefabrication is preferable; thus a higher number of similar spans indicate preference for ABC.
- 6) The "model presets" include tables that define the relationships among the project data, ordinal scale ratings, and the AHP pair-wise comparison ratings. These tables cannot be modified and are displayed for information only. The example tables for the "model presets" are shown in Figure 23.

Table 12. Ordinal Scale Rating for Major-Parameter			Table 13. Pair-Wise Comparison Rating for Cost Sub-Parameters				
$\frac{\sum_{i}^{n} r}{9 \times n} \begin{array}{c} \text{Ratio of } SUM \text{ to} \\ \text{where: } i = \text{sub-parameter } u \\ n = no. \text{ of sub-parameters } u \\ r = \text{ordinal scale rating of co} \end{array}$	ARANGE Inder a major-parameter, Inder a major-parameter, and rresponding sub-parameter.	Ordinal scale rating	$\frac{ C_{ABC} - C_{CC} }{ Max(C_{ABC}, C_{CC}) } \% \qquad $	ential of cost lollar amount of the "cost" sub- BC, and C _{co} = dollar amount of the meter for CC.	Pair-wise comparison rating		
0.0	<0.2	1	0	<12	1		
0.2	<0.3	2	12	<23	2		
0.3	<0.4	3	23	<34	3		
0.4	<0.5	4	34	<45	4		
0.5	<0.6	5	45	<56	5		
0.6	<0.7	6	56	<67	6		
0.7	<0.8	7	67	<78	7		
0.8	<0.9	8	78	<89	8		
0.9	≤1.0	9	89	≤99	9		

Figure 23. Example tables for the model presets

4.1.2 Site-Specific Data

The *Site-Specific Data* command button on the *Advanced User Menu* opens the *Site-Specific Data* datasheet for a selected *Project Category*. The site-specific datasheet for a *Highway over Highway* project is shown in Figure 24. Data entry to the datasheet is by the *dropdown menus*.

Site-Specific Data for Highway	over Highway	Project
	Adv	anced User Menu
Description	Data]
County of the project	Alcona	
Distance to ready-mix concrete plant	≤ 10 miles 💌	
Distance to prefabrication plant	≤ 10 miles 💌	
Distance to a potential staging area	≈ Within right-of-way ▼	
Number of major intersections for facility carried	1	
Number of major intersections for feature intersected	1	
Number of similar spans	1	
		-
Description	Facility Carried	Feature Intersected
Functional class	Urban freeway (F 🗸	Urban freeway (F 🗨
Traffic directionality	1	1
Number of lanes in each direction	1	1
Speed limit (mph)	25	25

Figure 24. Site-specific datasheet for Highway over Highway project

4.1.3 Traffic Data

The *Traffic Data* command button on the *Advanced User Menu* opens the *Traffic Data* datasheet. For example, the datasheet for a *Highway over Highway* project is shown in Figure 25. The datasheet contains *data input fields* and *dropdown menus* to enter the required traffic data. A traffic study is required before completing the datasheet. The recommendations for obtaining the data required for this datasheet are as follows:

- 1) The average queue length on feature intersected due to work zone (Figure $25 1^{st}$ parameter) and its *duration* (Figure $25 2^{nd}$ parameter) need to be calculated or estimated for the proposed lane closures in the work zone.
- 2) The *detour length, detour route speed limit, work zone length,* and *work zone speed limit* need to be determined following the corridor planning process is completed.
- 3) The *recent ADT and ADTT* is available from bridge inventory database, Pontis.

4) The *Level of Service (LOS) before and during construction* on the affected routes and intersections can be calculated using traffic simulation or estimated.

Traffic Data for Highway over Highway F	Project		
		Adv	/anced User Menu
Description	Data	a	
Average queue length on feature intersected due to work zone (mi)		0.00	
Duration of queue on feature intersected due to work zone (hr/day)		0.00	
Detour length (mi)		0.00	
Detour route speed limit (mph)	25	•	
	1		
Description	Facility C	arried	Feature Intersected
Recent ADT		0	0
Recent ADTT (% of ADT)		0	0
Work zone length (mi)		0.00	0.00
Work zone speed limit (mph)	25	•	25 💌
LOS during construction	A	•	A
Description	Before cons	struction	During construction
LOS on detour route	A	•	A
LOS on nearby major intersection-1 due to traffic on facility carried	A		A
LOS on nearby major intersection-2 due to traffic on facility carried	NA		NA
LOS on nearby major intersection-1 due to traffic on feature intersected	A	•	A
LOS on nearby major intersection-2 due to traffic on feature intersected	NA		NA

Figure 25. Highway over Highway project traffic data

4.1.4 Life-Cycle Cost Data

The *Life-Cycle Cost Data* command button on the *Advanced User Menu* opens the *Life-Cycle Cost Data* datasheet (Figure 26). The data in the sheet is independent of the *Project Category* because the data is related to the construction alternatives. The project manager(s) needs to identify the cost estimates for ABC technology prior to entering data in this datasheet.

Life Could Could Date						
Life-Cycle Cost Data	Advanced User Menu					
Description	Da	ita				
Number of years for life-cycle cost analysis	35					
Discount factor (%)	2%	-				
<u>Note:</u> A high discount factor will make the life-cycle cost less important than a low discount factor, and vice-versa. Generally, a discount factor around 3% to 5% is considered reasonable with average close to 4% (FHWA 1998; Thoft-Christensen 2009).						
Description	Conve Construc	ntional tion (CC)	Accelerated Bridge Construction (ABC)			
Construction duration (days)		1	1			
Initial construction cost (\$)		\$99,999	\$99,999			
Cost per each maintenance/repair activity (\$)		\$1,000	\$1,000			
Average duration between the maintenance/repair activities (year)		2	2			
Disposal cost or salvage value (\$)		\$0	\$0			
<u>Note:</u> At the end of life-cycle cost analysis period, if the structure has either a residual life or a slavage value, the input amount should be negative.						

Figure 26. Life-cycle cost data

Note: The data for *Initial construction cost*, *Cost per each maintenance/repair activity*, *Average duration between the maintenance/repair activities*, and *Disposal cost or salvage value*, is available for conventional construction (CC). The access to information related to the ABC is limited. Estimates based on information from the literature are needed. For example, Bonstedt (2010) and Issa et al. (1995) provide information on the full-depth deck panel system. For more information, refer to Attanayake et al. (2012).

4.1.5 Preference Ratings

The *Preference Ratings* command button on the *Advanced User Menu* or on the *Basic User Menu* is used to access the datasheet to assign qualitative judgments in a form of preference ratings on an ordinal scale of 1 to 9 using the *spin buttons* (Figure 27).

Preference Ratings for Decision-Making Parameters							
Advanced User Menu View the prefere respect		ence ratings of tive user here:	•				
		Reset Sh	eet				
Parameter			Rating Significance		Ordinal Scale Rating		Comments Provided by (User-1):
			1	9	(1 to 9)		
Initial construction cost	Conventional Construction	on: \$0.10 M struction: \$0.10 M	More flexible	Highly constrained	1	A	
User cost	Conventional Construction	on: \$0.00 M struction: \$0.00 M	Not significant	Extremely significant	1	•	
Life-cycle cost	Conventional Construction	on: \$0.11 M struction: \$0.11 M	Not significant	Extremely significant	1	•	Spin Buttons
Economic impact on surrounding businesses		es	Insignificant impact	Extreme impact	1	• •	
Work zone traffic risk		Not significant	Extremely significant	1	•		
Construction risks (Involved with the proposed ABC technology)		Not significant	Extremely significant	1	•		
Existing structure type and foundations		Not complex	Extremely complex	1	Ð		

Figure 27. Datasheet to assign preference ratings

Note:

- For a particular project, after completing the datasheets for *Project Details, Site-Specific Data*, *Traffic Data*, and *Life-Cycle Cost Data*, the *Advanced User* can also assign preference ratings, perform analysis, and view results. For basic user data entry, *Advanced User* needs to *Logout* and forward the saved file to basic users for their entry of preference ratings. The maximum number of basic users is limited to 10. The basic users can also provide comments or any additional information to explain their respective preference ratings.
- 2) The subsequent *Basic Users* can view the comments provided by the previous users; however, the ratings assigned by the previous user is not visible.
- 3) Advanced User can view all ratings and comments entered by basic users.

The Advanced User has access to the following from the preference ratings datasheet:

- 1) The Advanced User Menu command button for reopening the menu,
- A *Reset Sheet* command button for restoring the datasheet to its default state as shown in Figure 27 (i.e., to restore all the preference ratings to 1, delete all comments, and open the ratings and blank comment fields for *User-1*), and

Preference I	Ratings for Decis	sion-Making P	arameters				
Advanced User Menu View the preference ratings of respective user here:		•					
		Reset Sh	eet	User-1			
	Parameter		Rating Si	User-2 User-3 User-4	Ordinal Scale Rating		Comments Provided by (User-3):
			1	User-5 User-6	(1 to 9))	
Initial construction cost	Conventional Construction Accelerated Bridge Con	on: \$0.10 M struction: \$0.10 M	More flexible	User-7 User-8 User-9 User-10	1	▲ ▼	
User cost	Conventional Construction Accelerated Bridge Con	on: \$0.00 M struction: \$0.00 M	Not significant	Extremely significant	1	▲ ▼	
Life-cycle cost	Conventional Construction	on: \$0.11 M struction: \$0.11 M	Not significant	Extremely significant	1	▲ ▼	
Economic impact on surrounding businesses		Insignificant impact	Extreme impact	1	▲ ▼		
Work zone traffic risk		Not significant	Extremely significant	1	▲ ▼		
Construction risks (Involved with the proposed ABC technology)		Not significant	Extremely significant	1	▲ ▼		
Existing structure type and foundations		Not complex	Extremely complex	1	▲ ▼		

3) A Dropdown Menu to view the ratings and comments of any user as shown in Figure 28.

Figure 28. Use of *dropdown* menu on preference ratings datasheet

The *Basic User* can access only the command button for reopening *Basic User Menu* as shown in Figure 29.

Preference Ratings for Decision-Making Parameters								
Basic User Menu								
	Parameter	Rating Significance		Ordinal Scale Rating	Comments Provided by (User-3):			
		1	9	(1 to 9)				
Initial construction cost	Conventional Construction: \$0.10 M Accelerated Bridge Construction: \$0.10 M	More flexible	Highly constrained	1 🛓				
User cost	Conventional Construction: \$0.00 M Accelerated Bridge Construction: \$0.00 M	Not significant	Extremely significant	1 🛓				
Life-cycle cost	Conventional Construction: \$0.11 M Accelerated Bridge Construction: \$0.11 M	Not significant	Extremely significant	1 🛓				
Economic impact on surrounding businesses		Insignificant impact	Extreme impact	1 🛓				
Work zone traffic risk		Not significant	Extremely significant	1 🛓				
Construction risks (Involved with the proposed ABC technology)		Not significant	Extremely significant	1 🛓				
Existing structure type and foundations		Not complex	Extremely complex	1 🛓				

Figure 29. Preference ratings datasheet when accessed using *Basic User Menu*

Note:

- The additional sub-parameters that are added using the *Add/Remove Sub-Parameters* menu are automatically added to the sub-parameters list in this datasheet. Further, their ordinal scale preference ratings that are defined in the *Add/Remove Sub-Parameters* menu will be listed under the *"Rating Significance"* column in the *preference ratings* datasheet (see Figure 30 bottom two rows, shaded with light Aqua color).
- In order for a basic user to run the MiABCD, the preceding basic user needs to *Logout* following the entry of preference ratings, performing analysis (see Section 4.2), and viewing the results (see Section 4.3).
| Preference Ratings for Decision-Making Parameters | | | | | | | | |
|---|--|------------------------------------|-----------------------|-------------------------|--------------------------------|--|--|--|
| Advanced | User Menu View the prefer | ence ratings of
tive user here: | - | | | | | |
| | Reset Sh | leet | | | | | | |
| | Parameter | Rating Si | gnificance | Ordinal Scale
Rating | Comments Provided by (User-1): | | | |
| | | 1 | 9 | (1 to 9) | | | | |
| Initial
construction
cost | Conventional Construction: \$0.10 M
Accelerated Bridge Construction: \$0.10 M | More flexible | Highly
constrained | 1 📮 | | | | |
| User cost | Conventional Construction: \$0.00 M
Accelerated Bridge Construction: \$0.00 M | Not significant | Extremely significant | 1 🛓 | | | | |
| Life-cycle cost | Conventional Construction: \$0.11 M
Accelerated Bridge Construction: \$0.11 M | Not significant | Extremely significant | 1 🛓 | | | | |
| Economic impact | on surrounding businesses | Insignificant
impact | Extreme
impact | 1 🛓 | | | | |
| Work zone traffic | risk | Not significant | Extremely significant | 1 🛓 | | | | |
| Construction risks
(Involved with the p | proposed ABC technology) | Not significant | Extremely significant | 1 🛓 | | | | |
| Existing structure t | ype and foundations | Not complex | Extremely complex | 1 🚔 | | | | |
| Environmental pro | tection | Minimal | Extremely important | 1 🛓 | | | | |
| Aesthetic requiren | Not a concern | Required | 1 🛓 | | | | | |
| Direct Cost | Not essential | Extremely
Essential | 1 🛓 | | | | | |
| Scour | | Low Potential | High Potential | 1 | J | | | |
| | | | | User1-OK | User-1 | | | |

Figure 30. Preference ratings datasheet with two sub-parameters added by the *Advanced User*

4.2 AHP ANALYSIS

To perform data analysis, the *User'X'-OK* command button on the *preference ratings* datasheet (Figure 31) needs to be used. Here, 'X' can be any number between 1 and 10 to represent the number of users who have entered *preference ratings*.

Preference Ratings for Decision-Making Parameters								
Advanced	User Menu	View the preference respect	ence ratings of tive user here:	-				
		Reset Sh	eet					
	Parameter		Rating Si	gnificance	Ordinal Scale Rating	Comments Provided by (User-		
			1	9	(1 to 9)			
Initial construction cost	Conventional Construction	on: \$0.10 M struction: \$0.10 M	More flexible	Highly constrained	1 🛓			
User cost	Conventional Construction	on: \$0.00 M struction: \$0.00 M	Not significant	Extremely significant	1 🛓			
Life-cycle cost	Conventional Construction	on: \$0.11 M struction: \$0.11 M	Not significant	Extremely significant	1 🛓			
Economic impact	on surrounding businesse	S	Insignificant impact	Extreme impact	1 🛓			
Work zone traffic	risk		Not significant	Extremely significant	1 🛓			
Construction risks (Involved with the p	proposed ABC technology)	Not significant	Extremely significant	1 🛓			
Existing structure t	type and foundations		Not complex	Extremely complex	1 🛓			
Environmental pro	tection		Minimal	Extremely important	1 🛓			
Aesthetic requirements		Not a concern	Required	1 🛓				
Direct Cost			Not essential	Extremely Essential	1 🛓			
Scour			Low Potential	High Potential	1 🛓			
					User1-OK 🗦	User-1		

Figure 31. Preference ratings datasheet showing the analysis command button

The *Preference Ratings* command button on the *Advanced User Menu* or the *Basic User Menu* (Figure 32) is used to access the analysis command button.

Figure 32. *Preference Ratings* button to access the data analysis command button (a) *Advanced User Menu* and (b) *Basic User Menu*

Note:

- Once the analysis is completed, the respective user can use the *Results* command button on respective *User Menu* (i.e., either *Advanced User Menu* or *Basic User Menu*) to view the analysis results.
- The user needs to select the *Logout* command button from the respective *User Menu* and then select the *Exit* button to close the program.
- 3) The user can then send the saved project file with the most recent data to the next user to *Login* and assign their preference ratings, run analysis, and view results. For the next user, the subsequent "*Ordinal Scale Rating*" column and "*Comments*" field will be displayed, along with *User*'*Y*'-*OK* command button at bottom of the table (where 'Y' = X+1, but is limited to 10).

4.3 ANALYSIS RESULTS

The *Result* command button from the *Menu* (i.e., either *Advanced User Menu* or *Basic User Menu*) (Figure 33) is used to view the results of the ABC vs. CC evaluation.

Figure 33. *Result* command button to access analysis results (a) *Advance User Menu* and (b) *Basic User Manu* The results are presented in four formats as follows:

- 1) Two pie charts showing the *Upper Bound* and *Lower Bound construction alternative preferences* for ABC and CC (Figure 34 top left). The pie charts show the range calculated from the ratings assigned by multiple users.
- A chart showing the distribution of *Major-Parameter Preferences from Multiple Users* (Figure 34 – top right). The normalized preferences for each user are plotted using different *lines and colors*.
- 3) A chart showing the distribution of *Construction Alternative Preferences from Multiple Users* (Figure 34 bottom). This chart displays the results for each user in *bar* charts separately for ABC and CC. The *bar* is formed with six different colors) representing the contribution from six major-parameters: (i) Site and Structure Considerations (S&ST), (ii) Cost, (iii) Work Zone Mobility (WZM), (iv) Technical Feasibility and Risk (TF&R), (v) Environmental Considerations (EC), and (vi) Seasonal Constraints and Project Schedule (SC&PS).
- 4) A table showing the contribution (in percentage) of each major-parameter towards the *Overall Preference* for ABC and CC (Figure 35).

Figure 34. Analysis results presented as charts

Users or Decision Makers	Construction Alternatives	Site and Structure Considerations (S&ST) (%)	Cost (%)	Work Zone Mobility (WZM) (%)	Technical Feasibility and Risk (TF&R) (%)	Environmental Considerations (EC) (%)	Seasonal Constraints and Project Schedule (SC&PS) (%)	Overall Preference (%)	Edit/View My Ratings & Re-Analyze
									Advanced User Menu
User-1	CC	17	4	6	6	6	6	44	
	ABC	2/	7	6	6	6	6	56	
User-2		0	0	Ů	0	0	0	0	
	ABC	0	0	0	0	0	0	0	
User-3	ARC	0	0	0	0	0	0	0	
	ABC CC	0	0	0	0	0	0	0	
User-4	ABC	0	0	0	0	0	0	0	
	ABC	0	0	0	0	0	0	0	
User-5	ABC	0	0	0	0	0	0	0	
	00	0	0	0	0	0	0	0	
User-6	ABC	0	0	0	0	0	0	0	
	CC	0	0	0	0	0	0	0	
User-7	ABC	0	0	0	0	0	0	0	
	СС	0	0	0	0	0	0	0	
User-8	ABC	0	0	0	0	0	0	0	
	СС	0	0	0	0	0	0	0	
User-9	ABC	0	0	0	0	0	0	0	
	CC	0	0	0	0	0	0	0	
User-10	ABC	0	0	0	0	0	0	0	

Figure 35. Analysis results presented in tabular format

Note:

- The *Edit/View My Ratings & Re-Analyze* command button available with the results (Figure 34 and Figure 35) will direct the user back to his/her own preference ratings, so that the preference ratings can be revised. The user, following the revision of their preference ratings, needs to *run the analysis* before viewing the results with updated ratings.
- Advanced User Menu or Basic User Menu command button is available with the analysis results based on the user type. As an example, Figure 34 and Figure 35 show the Advanced User Menu button.
- 3) The *Advanced User* can change the data in any of the datasheets and rerun the analysis.

5 REFERENCES

- Abudayyeh, O., Cai, H., Mellema, B. and Yehia, S. (2010). "Quantifying Time and User Cost Savings for Rapid Bridge Construction Technique," *Transportation Research Board*, Vol. 2151, pp. 11–20.
- Aktan, H.M., Attanayake, U., and Abudayyeh, O. (2013). *Improving Bridges with Prefabricated Precast Concrete Systems*, Michigan Department of Transportation, Kalamazoo, MI.
- Attanayake, U., Mohammed, A.W., Hu, Y., Abudayyeh, O., and Aktan, H.M. (2012). "Lifecycle cost analysis considerations for accelerated bridge construction." *In Strauss, A., Frangopol, D.M., and Bergmeister, K. (eds): Life-Cycle and Sustainability of Civil Infrastructure Systems, Proc., The Third International Symposium on Life-Cycle Civil Engineering,* Hofburg Palace, Vienna, Austria, 983–990.
- Bonstedt, H. (2010). "A presentation on Life-cycle cost analysis for bridges In search of better investment and engineering decisions," *Prestressed Concrete Association of Pennsylvania*, PA.
- Caltrans. (2008). "Presentation on San Francisco–Oakland Bay Bridge east span seismic safety project," *California Department of Transportation (Caltrans), Bay Area Toll Authority and California Transportation Commission,* CA.
- HCM (2000). *Highway Capacity Manual (HCM) 2000 U.S. customary units*, Transportation Research Board, National Research Council, Washington, D.C.
- Issa, M.A., Issa, M., Khayyat, S.Y., Yousif, A.A., Kaspar, I.I. (1995). "Field performance of full depth precast concrete panels in bridge deck reconstruction." *PCI Journal*, 82-108.
- MCGI. (2009). "Michigan 2009 Annual Average 24–Hour Traffic Volumes Map," *Michigan Center for Geographic Information (MCGI), Michigan Department of Transportation and U.S. Department of Transportation (FHWA),* 2009 Average Daily Traffic (ADT) Maps. http://www.michigan.gov/mdot/0,1607,7–151–9622_11033–22141-, Output (Feb. 02, 2011)
- Montgomery Consulting Inc. (2011). "Michigan Multipliers." *Montgomery Consulting Inc.* https://montgomeryconsultinginc.com/Economic_Development.html (Dec. 07, 2012)
- PCC Center. (2004). *Concrete paving workforce reference no.1 Concrete materials storage, mixing and delivery,* Portland Cement Concrete Pavement Technology Center (PCC Center) Iowa State University, Ames, IA.
- Thoft-Christensen, P. (2009). "Life-cycle cost-benefit (LCCB) analysis of bridges from a user and social point of view." *Taylor & Francis group Structure and Infrastructure Engineering Journal*, Vol. 5, No. 1, Aalborg, Denmark.
- Walls, J. and Smith, M.R. (1998). *Life-Cycle Cost Analysis in Pavement Design Interim Technical Bulletin*, No. FHWA-SA-98-079, Federal Highway Administration, Washington, D.C.

APPENDIX – EA

Description	Data
General Data	
Wage rate of drivers	Personal wage = \$16.02 /hr,
	Commercial wage = \$26.70 /hr
	(Source: FHWA – Pavement division interim technical bulletin (Walls and Smith 1998)) (Prorated to 2012 dollar amount)
Vehicle operating cost	Personal vehicle = \$6.88 /hr,
	Commercial wage = \$14.15 /hr
	(Source: FHWA – Pavement division interim technical bulletin (Walls and Smith 1998)) (Prorated to 2012 dollar amount)
Accident cost	\$ 1094 /accident
	(Source: FHWA – Pavement division interim technical bulletin (Walls and Smith 1998)) (Prorated to 2012 dollar amount)
Accident rate	Normal = 215 accidents per million vehicle mile
	During work zone = 240 accidents per million vehicle miles
	(Michigan State Police CJIC < http://www.michigan.gov/msp/0,4643,7- 123-1593_24055,00.html>)
Site-Specific Data	
County jobs multiplier	
	(Source: Montgomery consulting, Inc., Michigan economic developers association https://montgomeryconsultinginc.com/Resources.html)
Distance to prefabrication plant	
	(Source: Available suppliers in an area)
Distance to ready-mix concrete plant	
	(Source: Available suppliers in an area)
Distance to a potential staging area	(Source: Project details)
Number of similar spans of the new	
bridge	(Source: Bridge configuration)
Traffic Data	
Speed limit for facility carried, Feature	
intersected, detour route	(Source: MDOT - Traffic Monitoring Information System (TMIS))
Traffic directionality for facility carried, Feature intersected, detour route	(Source: Project details)
Functional class for facility carried, Feature intersected, detour route	(Source: Project details/Pontis database)

DATA REQUIRED FOR RUNNING MIABCD

Number of lanes in each direction for facility carried, Feature intersected, detour route	(Source: Project details)
ADT/ADTT for facility carried, Feature intersected, detour route	(Source: MDOT - TMIS)
Detour length	(Source: MDOT – TMIS/Pontis database)
Work zone length on facility carried and feature intersected	(Source: Traffic study)
Approximate queue length on feature intersected due to possible intermittent closures/lane closures	(Source: Traffic study)
Approximate duration for the queue occurrence	(Source: Traffic study)
LOS, before construction, on major intersection(s) near the facility carried	(Source: Traffic study)
LOS, during construction, on major intersection(s) near the facility carried	(Source: Traffic study)
LOS, before construction, on major intersection(s) near the feature intersected	(Source: Traffic study)
LOS, during construction, on major intersection(s) near the feature intersected	(Source: Traffic study)
Life-Cycle Cost Data	
Number of years for life-cycle cost analysis	(Source: Based on the project manager's discretion)
Initial construction cost of each construction alternative	(Source: Estimate based on the comparison with similar bridge projects)
Cost per each maintenance/repair activity for each construction alternative	(Source: Estimate based on the comparison with similar bridge projects or from available literature)
Average duration between the maintenance/repair activities for each construction alternative	(Source: Estimate based on the comparison with similar bridge projects or from available literature)
Disposal/Salvage cost of each construction alternative	(Source: Estimate based on the comparison with similar bridge projects or from available literature)
Construction duration	(Source: Estimate based on the comparison with similar bridge projects)

<u>Note:</u> This data can be obtained from multiple users/experts (up to 10 users/experts). Further, the parameters that are specified here are the default qualitative parameters for a project. Additional qualitative parameters may be present for a project based its requirements and/or project manager's discretion.

Initial construction cost (Based on the values of CC and ABC, provided by MiABCD)	Flexibility rating (1 to 9):
User cost (Based on the values of CC and ABC, provided by MiABCD)	Significance rating (1 to 9):
Life-cycle cost (Based on the values of CC and ABC, provided by MiABCD)	Significance rating (1 to 9):
Economic impact on surrounding businesses	Impact rating (1 to 9):
Work zone traffic risk	Significance rating (1 to 9):
Construction risks (involved with the proposed ABC technology)	Significance rating (1 to 9):
Existing structure type and foundations	Complexity rating (1 to 9):
Terrain to traverse	Difficulty rating (1 to 9):
Access and mobility of construction equipment	Difficulty rating (1 to 9):
Contractor experience (Required for the proposed ABC technology)	Experience rating (1 to 9):
Manufacturer/Precast plant experience (Required for the proposed ABC technology)	Experience rating (1 to 9):
Seasonal limitations	Significance rating (1 to 9):
Stakeholder(s') limitation	Significance rating (1 to 9):
Environmental protection	Importance rating (1 to 9):
Aesthetic requirements	Importance rating (1 to 9):

APPENDIX – EB

EXAMPLE DECISION-MAKING EVALUATION USING MIABCD

To demonstrate the decision-making model process, as an example, the Stadium Drive Bridge project in Kalamazoo, Michigan is utilized. The bridge carries Stadium Drive (I-94 BR) over US 131 in Kalamazoo County, Michigan. The authors were familiar with the project site and its details; thus, the decision-making model was implemented to evaluate among CC and ABC, as the construction alternatives.

For the Stadium Drive Bridge, the site-specific data, traffic data, and life-cycle cost data (shown in Table B1) were obtained from the project engineer and other resources. The life-cycle cost data, such as initial construction cost and construction duration for each construction alternative, is estimated based on comparison with similar bridge project reported in the literature and Parkview bridge data. The rehabilitation/repair cost and disposal/salvage cost for each construction alternative is estimated based on information from Bonstedt (2010) and Issa et al. (1995). The ABC disposal/salvage cost is negative because a remaining life of 25 years is expected at the end of life-cycle analysis period (i.e., 75 years Bonstedt (2010). The preference ratings were obtained from three users as shown in Table B2.

Description	Data						
County jobs multiplier	Kalamazoo county: multiplier = 1.88 (Source: Montgomery consulting, Inc. 2011)						
Distance to prefabrication plant	~ 10 miles (Source:	Available suppliers in ar	n area)				
Distance to ready-mix concrete plant	~ 12 miles (Source:	Available suppliers in ar	n area)				
Distance to a potential staging area	1 mile (Source: Proj	ect engineer)					
Number of similar spans	2 (Source: Bridge c	onfiguration)					
Detour length	1.24 miles (Source:	Pontis Database)					
Work zone length on feature intersected	<1 mile (Source: Tr	affic Study)					
Work zone speed limit on feature intersected	60 miles/hr (Source	e: Traffic Study)					
Average queue length and its duration, for single lane closure of feature intersected	0.75 to 1.5 miles, 4 hr/day (Source: Traffic Study)						
Impact on the nearby major intersection (M-43 & US- 131) due to traffic on feature intersected	LOS before construction = A LOS during construction = C (Source: Traffic Study)						
Impact on the nearby major intersection-1 (Drake Rd & Stadium Drive) due to traffic on facility carried	LOS before construction = C LOS during construction = E (Source: Traffic Study)						
Impact on the nearby major intersection-2 (11th St and Stadium Drive) due to traffic on facility carried	LOS before construction = B LOS during construction = C (Source: Traffic Study)						
	Facility carried Feature Intersected Detour route						
Speed limit	45 mph	70 mph	45 mph				
Functional class	Urban freeway	Urban freeway	Major arterial				
Traffic directionality and no. of lanes in each direction	2-way and 3 lanes	2-way and 3 lanes	2-way and 2 lanes				
ADT, and ADTT as a percentage of ADT	41,774 and 3%	52,085 and 12%	40,000 and 3%				
Number of years for life-cycle cost analysis	75 years	•					
Initial construction cost of each construction alternative	CIP construction = \$ ABC = \$ 7,500,000	6,000,000					
Cost per each maintenance/repair activity and average duration between those activities for each construction alternative	CIP construction = $1,200,000$ at every 15 years ABC = $1,500,000$ at every 35 years						
Disposal/Salvage cost of each construction alternative	$\begin{array}{c} \text{CIP construction} = \$ \ 600,000\\ \text{ABC} = -\$ \ 750,000 \end{array}$						
Construction duration	CIP construction = ABC = 60 days	152 days					

Table B1. Site-Specific Data, Traffic Data and Life-Cycle Cost Data for the Stadium Drive Bridge

S. L. D.		Ordinal Scale J	udgment Legend	Ordinal Scale Ratings				
Sud-Parameter		1 Rating	9 Rating	Expert-1	Expert-2	Expert-3		
Initial construction cost	CC: \$6.00 M ABC: \$7.50 M	More flexible	Highly constrained	8	4	9		
User cost	CC: \$5.88 M ABC: \$2.32 M	Not significant	Extremely significant	5	8	3		
Life-cycle cost	CC: \$15.65 M ABC: \$8.61 M	Not significant	Extremely significant	9	9	7		
Economic impact of businesses	on surrounding	Insignificant impact	Extreme impact	9	9	7		
Work zone traffic	risk	Not significant	Extremely significant	7 6				
Construction risks (Involved with the proposed ABC technology)		Not significant	Extremely significant	5	4	3		
Existing structure foundations	type and	Not complex	Extremely complex	5	2	2		
Terrain to traverse (e.g., Viaduct over water, a valley, or	Terrain to traverse (e.g., Viaduct over rapids, deep water, a valley, or restricted access)		Extremely difficult	5	3	2		
Access and mobilite equipment	ty of construction	Not difficult	Extremely difficult	5	2	2		
Contractor experie (Required for the p technology)	nce proposed ABC	Limited experience	Experienced	6	2	5		
Manufacturer/Prec experience (Required for the p technology)	Manufacturer/Precast plant experience (Required for the proposed ABC technology)		Limited experience Experienced		2	5		
Seasonal limitation	mitations Not significant		Extremely significant	7	9	5		
Stakeholder(s') lin	nitation	Not significant	Extremely significant	7 9		7		
Environmental pro	tection	Minimal	Extremely important	3	4	2		
Aesthetic requirem	nents	Not a concern	Required	5	1	8		

Table B2. Preference Ratings of Three Users

To allow the users to make informed decisions quantitative data in the form of *initial construction cost*, *user cost*, and *life-cycle cost* is provided. Using the data integration methodology of MiABCD (Aktan et al. 2013), the quantitative data (Table B1 and Table B2) is converted to ordinal scale. The pair-wise comparison matrices for the sub-parameters are developed from the ordinal data. As an

example, the pair-wise comparison matrix for sub-parameters under *Site and Structure Considerations (S&ST)* is shown in Figure B1-a. Here, the matrix is formed based on the ordinal scale ratings provided by User-1. In that matrix, the lower triangular elements are reciprocals of the upper triangular elements.

To explain the development process of this matrix, consider the sub-parameters *Availability of staging area* and *Terrain to traverse*. In the "model presets" under the *View/Edit General Data*, the *Site-Specific Numerical Data* is converted to ordinal data as shown in Table B3. Also, the ordinal scale ratings for the sub-parameters are converted to AHP pair-wise comparison ratings using Table B4.

Ordinal scale rating	Ready-mix supplier proximity	Precaster proximity	Availability of staging area	Number of similar spans	ADT
9	\leq 10 miles	\leq 10 miles	≈ Within right- of-way	>4	$100001 \le ADT < 300000$
7	11–20 miles	11–20 miles	\leq 10 miles	4	$50001 \le ADT < 100000$
5	21–40 miles	21–40 miles	11–20 miles	3	$20001 \leq ADT < 50000$
3	> 40 miles	41–60 miles	21–40 miles	2	$5001 \leq ADT < 20000$
1	Procuring time > 90 min	> 60 miles	\geq 40 miles	1	$1 \le ADT < 5000$

Table B3. Assigning Ordinal Scale Ratings to Site-Specific Data

Table B4. Converting Ordinal Scale Rating to Pair-Wise Comparison Rating

Differential between the ordinal scale ratings (Large – Small)	Pair-wise comparison rating to be assigned to parameter with <u>Large</u> ordinal scale rating
0	1
1	2
2	3
3	4
4	5
5	6
6	7
7	8
8	9

From the site-specific data, the *Availability of staging area* will receive an ordinal scale rating of 7 (refer Table B1 row-4 and Table B3 row-2), and *Terrain to traverse* was assigned an ordinal rating of 5 by User-1. Using Table B4, a pair-wise comparison rating of 3 is assigned to *Availability of staging area* and the reciprocal rating 1/3 is assigned to *Terrain to traverse*. In a similar manner, the pair-wise comparison matrix is compiled for *S&ST*. Similarly, the matrices for sub-parameters under *Cost, Work Zone Mobility (WZM), Technical Feasibility and Risk (TF&R), Environmental Considerations (EC), and Seasonal Constraints and Project Schedule (SC&PS) are developed.* These matrices represent the first set of pair-wise comparison matrices of the AHP.

The second set of AHP matrices are the sub-parameter pair-wise comparison matrices of construction alternatives. These are developed using the ordinal scale ratings of each sub-parameter and considering the relation between sub-parameters and construction alternatives as shown Table B5. As an example, the pair-wise comparison matrix for construction alternatives for *Terrain to traverse* is shown in Figure B1-b. Here, the sub-parameter with increased preference favors CC (Table B5); therefore, the ordinal scale rating of 5 (i.e., assigned by User-1) is the pair-wise comparison rating for CC, and the reciprocal rating 1/5 is for ABC. In a similar fashion, the construction alternative pair-wise comparison matrices are developed for the remainder of the sub-parameters.

	Ready-mix supplier proximity	Precaster proximity	Availability of staging area	Existing structure type and foundations	Terrain to traverse	Access and mobility of construction equipment	Number of similar spans						
Ready-mix supplier proximity	1	$\frac{1}{3}$	1	3	3	3	5			Pre	Norn	nalize ce Ra	ed atings
Precaster proximity	3	1	3	5	5	5	7				0.	182	
Availability of staging area	1	$\frac{1}{3}$	1	3	3	3	5	Eig	enva		0.	389 182	
Existing structure type and foundations	$\frac{1}{3}$	$\frac{1}{5}$	$\frac{1}{3}$	1	1	1	3	$\begin{array}{c c} analys \\ \hline (EVA \\ \hline \end{array} \\ 0.072 \end{array}$					
Terrain to traverse	$\frac{1}{3}$	$\frac{1}{5}$	$\frac{1}{3}$	1	1	1	3				0.	072 072	
Access and mobility of construction equipment	$\frac{1}{3}$	<u>1</u> 5	$\frac{1}{3}$	1	1	1	3				0.	033)
Number of similar spans	$\frac{1}{5}$	$\frac{1}{7}$	$\frac{1}{5}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1						
					(a))							
C			Con W T	Site an siderat Vork Zo echnic and I	nd S tions one N al Fe	tructu (S&S' Cc Mobili (WZM asibili (TF&]	rre [] T) sst try [] (try [] (try [])	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 1 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 1 \\ 1$	WZM 2 4 1	2 4 1	DE 3 5 2	Sd300S12221313	Normalized Preference Ratings 0.150 0.377 EVA 0.088 0.088
$\begin{array}{c} & \overset{\heartsuit}{P} & \overset{\widecheck{P}}{P} \\ \text{CC} \begin{pmatrix} 1 & 5 \\ 1 & 5 \\ \underline{1} & 1 \\ \end{array} \\ \begin{array}{c} EV \\ O.1 \\ \end{array} \end{array}$	$\begin{pmatrix} \text{alized} \\ \text{e Ratin} \\ 33 \\ 67 \end{pmatrix}$	gs	C Seaso	Er Conside nal Co	nviron eratio	nment ons (E0	tal $\frac{1}{2}$ C) $\frac{1}{2}$	$\frac{1}{3} \frac{1}{5}$ $\frac{1}{2} \frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1 4	$\frac{1}{4}$	0.054 0.243
(b)		Pr	oject	Sched	uie (S	scæp	5)(2	(c))	1

Figure B1. Pair-wise comparison matrix for (a) sub-parameters under *S&ST*, (b) construction alternatives with respect to *Terrain to traverse* sub-parameter, and (c) major-parameters

Sub-Parameters that support ABC with increased PreferenceSupport ABCRatingi		Sub-Parameters that support CC with increased Preference Rating
Precaster proximity	Significance of level of service on detour route	Ready-mix supplier proximity
Availability of staging area	Impact on nearby major intersection due to traffic on facility carried	Existing structure type and foundation
Number of similar spans	Impact on nearby major intersection due to traffic on feature intersected	Terrain to traverse
Economic impact on surrounding communities	Work zone traffic risk	Access and mobility of construction equipment
Economic impact on surrounding businesses	Environmental protection	Contractor experience
Significance of maintenance of traffic on facility carried	Seasonal limitations	Manufacturer/ Precast plant experience
Significance of maintenance of traffic on feature intersected	Stakeholder(s') limitations	Construction risks
Length of detour		Aesthetic requirements

Table B5. Sub-Parameters Grouping Based on Their Characteristics

Note: The sub-parameters related to Cost are assigned preference for the alternative with least value.

The pair-wise comparison matrices for the major-parameters represent the third set of AHP matrices. As 6 major-parameters are associated with the decision making, one 6×6 matrix will be developed. The pair-wise comparison matrix for major-parameters developed from the preferences of User-1 is presented in Figure B1-c.

Eigenvalue analysis is performed on these three sets of matrices. Following the Eigenvalue analysis principal Eigenvectors for the three sets of matrices are determined. The principal Eigenvectors are normalized to represent the normalized preference ratings of the variables in the respective matrices as shown in Figure B1-a, b, and c. The normalized preference ratings from the three users are processed independently through AHP to independently obtain respective normalized preferences for the CC and ABC (Figure B2-c).

MiABCD Stadium Bridge Analysis Results

The Stadium Drive bridge project data was evaluated using the decision-making model, and the results were obtained in formats shown in Figure B2. Figure B2-a provides results on the upper and lower bound preferences between ABC and CC. Figure B2-a shows that, for the Stadium Drive bridge project, ABC preference of the three users is 84% at the upper bound, and it is 70% at the lower bound.

Figure B2-b provides statistics of the *normalized preferences for major-Parameters* from three users. This information is helpful in observing the variability of the user ratings.

Figure B2-c presents the *normalized preferences for the construction alternatives* of the three users. The values are calculated by integrating the normalized preference ratings from the three sets of matrices developed in the AHP. Figure B2-c also shows the contribution of the *construction alternative normalized preference* for each major-parameter. This helps in identifying the contribution of each major-parameter and their underlying sub-parameters towards respective construction alternative preference.

The results show that the preference for ABC is mostly dependent on the *Seasonal Constraints and Project Schedule (SC&PS)* parameter followed by the *Cost* parameter, for the Stadium Drive bridge project.

Figure B2. (a) Upper bound and lower bound rating results, (b) distribution of major-parameter preferences from multiple users, and (c) distribution of construction alternative preferences from multiple users

APPENDIX – EC

GLOSSARY

<u>Term</u>	Description
ABC	Accelerated Bridge Construction
ADT	Annual Average Daily Traffic
ADTT	Annual Average Daily Truck Traffic
Advanced User	This is generally the project manager(s) who is (are) familiar with the project details and quantitative data required by the decision-making model.
AHP	Analytical Hierarchy Process
Basic User	This is generally the user/expert that can provide judgment on qualitative parameters as preference ratings based on their bridge design and construction experience on recent projects.
CC	Conventional Construction
Check Box	This is used to declare an option <i>active</i> or <i>inactive</i> in an algorithm. Generally, an activated option will execute a subroutine.
Command Button	This is used to execute the embedded VBA script that may direct to a pop-up menu/specific datasheet, or may execute an algorithm.
Datasheet	An Excel worksheet that is customized for the MiABCD procedures
Data Input Field	A cell on an Excel worksheet that intakes numeric values in a specific range
Decision-Making Parameters	These include six major-parameters and all sub-parameters in comparing construction alternatives such as ABC vs. CC.
DOT	Department of Transportation
Dropdown Menu	This is used to select the desired option from the available options that are predefined.
<i>Edit/View My Ratings & Re-Analyze</i> Command Button	This is used to take the user back to his/her own preference ratings, in case he/she wants to revise their preference ratings
Eigenvector	The eigenvector for a tabular set of variables provides the relative strength index among those variables
EC	Environmental Considerations
Facility carried	The bridge to be replaced
Feature intersected	The roadway under the bridge to be replaced or rehabilitated
FHWA	Federal Highway Administration

GUI	Graphical User Interface
LOS	Level of Service
MDOT	Michigan Department of Transportation
МОТ	Maintenance of Traffic
MiABCD	Michigan Accelerated Bridge Construction Decision
Model Presets	This include predefined tables that define the relationship among the project data, ordinal scale ratings, and the Analytical Hierarchy Process (AHP) pair-wise comparison ratings
Pop-Up Menu	A GUI form of the VBA
Question Icon	The icon on any <i>pop-up menu</i> or <i>datasheet</i> will provide description of the corresponding "item"
Regional Data	This includes wage and cost, county jobs multiplier, material procurement distance classification, traffic data classification, and bridge spans classification
S&ST	Site and Structure Considerations
SC&PS	Seasonal Constraints and Project Schedule
Tab	This is used to switch between different criteria, such as in MiABCD the <i>tabs</i> allow switching between the major-parameters on a <i>pop-up menu</i>
Text Field	This is used to input text, such as sub-parameter name, etc., that will be transferred to a corresponding <i>datasheet</i>
TF&R	Technical Feasibility and Risk
VBA	Visual Basic for Applications
WZM	Work Zone Mobility

APPENDIX F

DRAWINGS OF FULL-DEPTH DECK PANELS FROM UTAH DOT

Note: These are direct extract from <http://www.udot.utah.gov/main/uconowner.gf?n=5440222707642218> (Last accessed June 25, 2012)

FULL DEPTH PRECAST CONCRETE DECK PANELS GENERAL NOTES

GUIDELINES

USE THESE GUIDELINE DRAWINGS FOR BRIDGES WHICH HAVE ALL OF THE FOLLOWING CHARACTERISTICS:

TANGENTIAL (NO HORIZONTAL CURVATURE) PANELS PLACED ORTHOGONALLY TO THE BEAM/GIRDERS.

SKEW : O TO 45 DEGREES

PARALLEL STEEL GIRDERS WITH A MINIMUM TOP FLANGE WIDTH OF 16"; AASHTO GIRDERS (TYPE II, III, IV, V AND VI); OR PRESTRESSED BULB TEE GIRDER.

FOR PRECAST PANELS: MAX. BEAM/GIRDER SPACING = 10'-0"

FOR PRESTRESSED PANELS: MAX. BEAM/GIRDER SPACING = 12'-0"

MAX. OVERHANG = 4' - 0''

MIN. OVERHANG = 1' - 0''

DEAD LOADS:

40 PSF FUTURE OVERLAY

NO MORE THAN 2 EXTERIOR TRAFFIC PARAPETS PER PANEL

MAX. DEAD LOAD PER PARAPET = 569 PLF PANEL-TO-PANEL CONNECTIONS:

ALL PANELS TO BE CONNECTED WITH LONGITUDINAL POST-TENSIONING COMBINED WITH A TRANSVERSE GROUTED KEYWAY JOINT.

DEFINITIONS

PRECAST PANEL: CONCRETE PANEL REINFORCED WITH DEFORMED STEEL BARS.

PRESTRESSED PANEL:CONCRETE PANEL REINFORCED WITH PRESTRESSING STEEL AND DEFORMED STEEL BARS.

OPTIONAL DETAILS

THESE DRAWINGS ARE BASED ON THE USE OF BLIND BLOCKOUTS FOR SHEAR CONNECTIONS FORMED WITH REMAIN IN PLACE STEEL BOXES.

OPTIONAL BLOCKOUT DETAILS SHOWN ON DRAWING NUMBER PDP-9 ARE ALSO ACCEPTABLE.

IMPLEMENTATION

IT IS THE DESIGNER'S RESPONSIBILITY TO:

DESIGN AND CHECK THE REQUIRED SHEAR STUDS AND/OR REINFORCING STEEL CONNECTING THE GIRDERS/BEAMS TO THE DECK TO ENSURE ADEQUATE COMPOSITE ACTION BETWEEN THE FRAMING MEMBERS AND PANELS IN ACCORDANCE WITH ALL APPLICABLE CODES.

CREATE THE CONCRETE DECK PANEL LAYOUT SHEET SHOWING TYPE AND NUMBER OF PANELS TO BE USED AS WELL AS NUMBER AND SPACING OF SHEAR BLOCKOUTS REQUIRED.

CALCULATE FINAL DECK ELEVATIONS AND CREATE TOP OF PANEL ELEVATIONS SHEET(S).

DESIGN AND CHECK ALL CHARACTERISTICS RELATED TO REQUIRED CLOSURE POURS.

CHECK THE STRUCTURAL CAPACITY OF THE EXISTING GIRDERS/ BEAMS AND/OR NEW GIRDERS/BEAMS FOR THE INSTALLATION OF THE PANELS (INCLUDING EFFECTS OF PANEL INSTALLATION SEQUENCING). USE OF THESE GUIDELINE DRAWINGS IMPLIES NO ASSERTION AS TO THE STRUCTURAL CAPACITY OF ANY GIRDERS OR BEAMS SHOWN. DEVELOP LOAD RATINGS AS DIRECTED BY UDDT. VERIFY ADEQUATE CAPACITY IN GIRDERS FOR THE FEFECTE OF LOAD TOTAL DOCT THAT FOR THE EFFECTS OF LONG TERM POST-TENSIONING WHEN APPLICABLE.

DESIGN ALL POST-TENSIONING. SHOW SIZE AND LAYOUT OF DUCTS. SPECIFY JACKING FORCES, SEQUENCE OF JACKING, DUCT WOBBLE COEFFICIENTS, AND DUCT COEFFICIENT OF FRICTION.

PROVIDE POSITIVE DRAINAGE DETAILS PER UDOT STANDARD PRACTICE. DRAINAGE HOLES THROUGH THE PANELS ARE PROHIBITED.

DESIGN AND ACCOMMODATE APPLICABLE REINFORCEMENT FOR A HAUNCH GREATER THAN 3 $^{\prime\prime}\cdot$

INCLUDE APPLICABLE GENERAL NOTES IN THE PLAN SET.

VERIFY SIZE AND SPACING OF REINFORCEMENT CONNECTING PARAPET TO PANEL IF PARAPET OTHER THAN TYPE SPECIFICALLY SHOWN IN THESE STANDARD DRAWINGS IS USED.

AT A MINIMUM EXTEND CONTINUOUS REINFORCEMENT FROM PRECAST PANEL, #6 AT 6" SPACING TOP AND BOTTOM, INTO CLOSURE POUR. CLOSURE POUR DETAILS SHOWN FOR MAXIMUM BEAM SPACING OF 10'-0". FOR BEAM SPACINGS GREATER THAN 10'-0", DESIGN AND DETAIL CLOSURE POUR AND APPROPRIATE POST-TENSIONING AS REQUIRED.

INCLUDE A TABLE OF ESTIMATED QUANTITIES OF PRECAST CONCRETE DECK PANELS. TABLE TO INCLUDE THE FOLLOWING: - PANEL TYPE (BASED ON PANEL LAYOUT) - NUMBER OF EACH PANEL TYPE REQUIRED - SQUARE FOOTAGE OF AREA PER PANEL - TOTAL SQUARE FOOTAGE OF DECK PANELS

GENERAL NOTES

PRECAST CONCRETE PANELS DESIG AASHTO LRFD BRIDGE DESIGN SPE WITH ALL INTERIM PROVISIONS.	NED IN ACCORDANCE WITH CIFICATIONS, 4TH EDITION
PANELS DESIGNED FOR AN HL-93 I 40 PSF LOAD FOR FUTURE OVERLA	LOAD INCLUDING A Y•
PRECAST PANEL CONCRETE:	f'c = 4.000 PSI CLASS AA(AE)
PRESTRESSED PANEL CONCRETE:	f'ci = 4,000 PSI f'c = 5,000 PSI
CLOSURE POUR CONCRETE:	f'c = MATCH PRECAST ELEMENTS
NON-SHRINK GROUT:	f'c = 5,000 PSI @ 24 HRS
REINFORCING STEEL (COATED)	fy = 60.000 PSI
PRESTRESSED LOW RELAXATION STRAND:	fpb† = 202.5 KSI fpu = 270.0 KSI
STRUCTURAL STEEL:	fy = 50,000 PSI AASHTO M270 GR 50

USE UTAH DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION (THE LATEST EDITION AND SUPPLEMENTS THERETO WHICH ARE IN EFFECT AT THE DATE OF REQUEST FOR BIDS) ALONG WITH SPECIAL PROVISIONS SECTION 03339S-FULL DEPTH STANDARD PRECAST CONCRETE DECK PANELS FOR MATERIALS, CONSTRUCTION AND WORKMANSHIP.

WELD ACCORDING TO AASHTO/AWS D1.5 BRIDGE WELDING CODE.

USE THE PCI DESIGN HANDBOOK, PRECAST AND PRESTRESSED CONCRETE, FIFTH EDITION WITH ALL INTERIMS AND ERRATA FOR THE DESIGN AND DETAIL OF LIFTING SUPPORTS AND HANDLING CONSIDERATIONS (NO CRACKING CRITERIA).

USE A HEAVY BROOM FINISH FOR TOP SURFACE OF PANELS AND ALL JOINT SURFACES.

THE PRECAST PANELS HAVE A $^{\prime}_{\prime}a^{\prime\prime}$ CONCRETE GRINDING ALLOWANCE FOR CORRECTING UNEVEN ROADWAY SURFACES AT TRANSVERSE JOINTS BETWEEN PRECAST CONCRETE DECK PANELS AND END OF BRIDGE DECK OR EDGE OF ADJACENT PHASE(S). DECK THICKNESS SHOWN AS NOMINAL OR FINAL THICKNESS AFTER GRINDING. ACCOUNT FOR $^{\prime}_{\prime}a^{\prime\prime}$ GRINDING ALLOWANCE.

APPLY CONCRETE POLYMER OVERLAY ON BRIDGE DECK AFTER CONCRETE GRINDING OR STEEL SHOT IS COMPLETE. SEE SECTION 03372 IN THE STANDARD SPECIFICATIONS FOR SURFACE PREPARATION REQUIREMENTS.

SEE "GENERAL LAYOUTS" AND "TYPICAL DECK PANEL PLANS AND SECTIONS" SHEETS FOR PANEL TYPES AND LOCATIONS.

SEE TOP OF PANEL ELEVATION SHEETS AND/OR CONCRETE UNIT SHEETS FOR SIZE, TYPE, ORIENTATION, NUMBER AND SPACING OF SHEAR STUDS/BLOCKOUTS.

COAT ALL MILD REINFORCEMENT PER UDOT SPECIFICATIONS UNLESS OTHERWISE NOTED.

USE A CORROSION INHIBITOR ADMIXTURE FOR ALL STRUCTURAL GROUT.

USE A CORROSION INHIBITOR ADMIXTURE FOR ALL PANEL AND CLOSURE POUR CONCRETE.

PDP-1 PDP-2 PDP-3 PDP-4 PDP-5 PDP-6 PDP-7 PDP-8 PDP-9 PDP-10 PDP-1 PDP-12 PDP-1 PDP-14 PDP-15 PDP-16 PDP-1

INDEX OF SHEETS

	GENERAL NOTES
	GENERAL LAYOUTS
	TYPICAL DECK PANEL PLANS AND SECTIONS
	PANEL PLANS - NON-SKEWED
	PANEL PLANS - SKEWED
	PRECAST PANEL REINFORCING
	PRESTRESSED PANEL REINFORCING
	CLOSURE POUR DETAILS
	SHEAR CONNECTOR BLOCKOUT DETAILS
D	SHEAR CONNECTOR DETAILS NEW GIRDERS
1	SHEAR CONNECTOR DETAILS EXISTING GIRDERS
2	VERTICAL ADJUSTMENT DETAILS
3	TYPICAL POST-TENSIONING DETAILS 1
4	TYPICAL POST-TENSIONING DETAILS 2
5	PARAPET DETAILS 1
5	PARAPET DETAILS 2
7	DECK PANEL TOLERANCES

			tks	CHECK	CLECK			- CHECK
			REVISION REMAR	DESIGN				QUANT.
			BY		SENIOR DESIGN ENGINEER			UDOT DESIGN MANAGER
			DATE	VAL.	DATE	VED		OT DATE
•	Z		NO.			APPRO	FORU	ŭ ∧a
		DE	2	TRANSPORTA				
		ļ	NELS					
			K PA				NIA	
	I YPICAL DE I AIL SHEE I		FULL DEPTH PRECAST CONCRETE DECK PA	GENERAL NOTES			PROJECT	
			🕁 📔 🔰 FULL DEPTH PRECAST CONCRETE DECK PA	GENERAL NOTES			PROJECT	

STANDARD PRECAST CONCRETE PANEL APPLICATIONS - NON-SKEWED

NOTE: PARTIAL WIDTH PANELS MAY BE USED IN COMBINATION WITH CLOSURE POURS.

	KS	CHECK	CHECK			
	REVISION REMAR	DESIGN				
			SENIOR DESIGN ENGINEER			UDOT DESIGN MANAGER
	8					
	DATE	75	DATE	6		DATE
	0. N	APPROVI		APPROVE	FOR USE	BY UDO1
	 A 0	LS LS			z	
TYPICAL DETAIL SHEET	FULL DEPTH PRECAST CONCRETE DECK F	SHEAR CONNECTOR BLOCKOUT DETA				
TYPICAL DETAIL SHEET	FULL DEPTH PRECAST CONCRETE DECK F	SHEAR CONNECTOR BLOCKOUT DETA			PROJECT	NUMBER
	이 성 🐰 📔 FULL DEPTH PRECAST CONCRETE DECK F	1 B SHEAR CONNECTOR BLOCKOUT DETA			PROJECT	

			_			
ES						
CLUDE COST OF WELDED STUD SHEAR CONNECTORS IN E COST OF THE PRESTRESSED CONCRETE DECK PANEL. CLUDE COST OF THE U-SHAPED REINFORCING BARS THE COST OF THE PRESTRESSED CONCRETE GIRDER.) Xi	CK	ECK
CLUDE COST OF ALL NON-SHRINK GROUT IN THE ST OF THE PRESTRESSED CONCRETE DECK PANEL.			MARKS	3 	3	풍
E A HEAVY BROOM FINISH ON TOP SURFACE OF DECK. SIGNER TO DETERMINE AND DETAIL THE MINIMUM SPACING			EVISION RE		ļ	
SHEAR STUDS AND SHEAR BARS. R SKEWED PANELS, ROTATE BLOCKOUTS TO BE PARALLEL			8	SIGN	AWN	ANT.
IN THE PANEL REINFORCING. IND BLOCKOUTS FORMED WITH STEEL BOX SHOWN. IIDNAL FORMED BLOCKOUTS SIMIAR.				8	8 	5
RM HAUNCH AND						GER
LL WITH NON-SHRINK OUT. METHOD OF RMING HAUNCH TO DEFERENTIATED BY						ESIGN MANA
E CONTRACTOR. MOVE FORMS AFTER HOURS.			₽		DEMON	UDOT DE
PANDED POLYSTYRENE						
Y BE USED TO FORM UNCH (TYP.)			DATI	NA NA	ŝ E	DAT
ER			ġ	APPROV	APPROV	FOR USI BY UDO
зак				Z	_	
	IM		i	Ā	VISION	
	AR	Ц			KES DI	
	DE	U		27	ICTUR	
ORM HAUNCH AND ILL WITH NON-SHRINK	HA			A A A	STR	
ROUT. METHOD OF ORMING HAUNCH TO E DETERMINED BY HE CONTRACTOR	5		i	=	-	
EMOVE FORMS AFTER 4 HOURS.						
EXPANDED POLYSTYRENE MAY BE LISED TO FORM		U U		S		
TAUNCH (TYP.)				DEF		
AST_INTO_BEAM			2	/ GIR		₹
NDARDS FUR DETAILS	Ш		ב	NEV		
	SHE		Ę	VILS		
	LAIL			DET A		
	Ы	L L U	כ ה	OR [
	ICAL		Š	ECT		
	TYP			NNC		
				R C		
		Z	וב	HEA		
			5	S		
						NUMBE
		•				
		P		2 - 1 3 №0	0	
	сянт		511	0F		

VERTICAL ADJUSTMENT DETAIL ON CONCRETE GIRDER

VERTICAL ADJUSTMENT DETAIL
ON STEEL GIRDER

VERTICAL ADJUSTMENT SCHEDULE						
SERVICE LOAD BOLT DIA. STEEL PLATE WITH HOLE FOR BOLT CENTERED						
10 K	1 ″	4 "×4 "× ⁵ ⁄8"				
20 K	11/4"	4 "×4 "× ⁷ / ₈ "				

TRANSISTION FROM FLAT ANCHORAGE TO ROUND DUCT		REVISION REMARKS	DESIGN CHECK	DRAWN CHECK	QUANT. CHECK
<u>A'-0" (MAX</u>		BY		SENIOR DESIGN ENGINEER	UDOT DESIGN MANAGER
		NO. DATE	APPROVAL RECOMM.	APROVED	FOR USE BY UDOT DATE
E THE DESIGN OF POST-TENSIONING IS BASED ON THE FOLLOWING PARAMETERS:	UTAH DEPARTMEN	OF		STRUCTURES DIVISION	
COEFFICIENT OF FRICTION = 0.XX WOBBLE FRICTION COEFFICIENT = 0.000X P-JACKING PER STRAND = XX.X KIPS. P-FINAL PER STRAND = XX.X KIPS (AFTER LOSSES DUE TO FRICTION, ANCHORAGE SET, AND ELASTIC SHORTENING). IF THE PROPOSED DUCT DOES NOT MEET THESE VALUES, THEN THE CONTRACTOR TO ADJUST THE JACKING FORCE TO PRODUCE THE FINAL POST-TENSIONING FORCE LISTED.	ET	E DECK PANELS) DETAILS 1		- Lun
ATION STRANDS CONFORMING TO ASTM A416. ADS AND METAL TRUMPETS AT ANCHORAGES. WEDGES. LS. DO NOT ALLOW MORE THAN 12.5% OF NTRIC AT ANY TIME. SUBMIT STRESSING PRIOR TO WORK. IDE ON GIRDERS DURING POST-TENSIONING. DESIGN OF ALL POST-TENSIONING ELEMENTS (REQUIRED FOR SPLITTING, BURSTING, FORM WITH AASHTO LRFD SPECIFICATIONS. RENT MANUFACTURERS ARE SHOWN. G LEVELING DEVICES. AND LOOSE IN DUCTS. OINTS ONLY. CURE TO 500 PSI. OD AFTER GROUT ATTAINS A STRENGTH OF 500 PSI.	TYPICAL DETAIL SHEE	FULL DEPTH PRECAST CONCRET	TYPICAL POST-TENSIONING		NUMBER
TS AND CAMBER STRIPS. ED. GROUT BOLT RECESS.		_ <u>cc</u>	UNTY		
BE LOWERED UP TO ν_2'' FROM CENTER OF SLAB			D _ ^	13	
R FOR REINFORCING ABOVE THE DUCT.	ешт		0F		

POST-TENSIONING NOTES:

1.

ANCHORAGE ASSEMBLY AND DUCTS MAY BE LOWERED UP TO '2' FROM MID-DEPTH OF SLAB IN ORDER TO PROVIDE 234 TOP COVER FOR REINFORCING ABOVE THE DUCT.

				I		I
	S	снеск	CHECK			
	REVISION REMARK	DESIGN				GUANI.
			ENIOR DESIGN ENGINEER			JDOT DESIGN MANAGER
	βΥ		8			
	DATE		DATE			DATE
	NO.	APPROVAL RECOMM.		VPPBOVED	FOR USE	EY UDOT
	5	TRANSPOR				
	PANELS	2 TR				
UE I AIL SHEE I	ST CONCRETE DECK F	TENSIONING DETAILS 2			MI	
ITPICAL	FULL DEPTH PRECAS	TYPICAL POST-			PROJECT	NUMBER
ITPICAL	B FULL DEPTH PRECAS				PROJECT	NOMBER
			1 ,	4	PROJECT	NOMBER

PRECAST PARAPET - TRANSVERSE SECTION

CONTROL LINE

DECK PANEL TOLERANCES

10′

тĮ

ELEVATION

0

64

с U

Α	LENGTH MEASURED FROM CONTROL LINE	± ³ /16″
В	WIDTH (OVERALL)	± 1⁄4″
С	DEPTH (OVERALL)	± ³ /16″
D	VARIATION FROM SPECIFIED PLAN END SQUARENESS OR SKEW	± 1/4"
E	LOCATION OF LEVELING BOLTS	± 1″
F	SWEEP OVER MEMBER LENGTH:	± ³ ′8″
G	LOCATION OF PROJECTING REINFORCING MEASURED FROM A COMMON REFERENCE POINT	± 1⁄2″
Н	LOCAL SMOOTHNESS OF ANY SURFACE	± 1/8" IN 10 FEET
Ι	LOCATION OF BLOCKOUT FOR SHEAR CONNECTORS	± 1/2"
J	LOCATION OF POST TENSIONING DUCT MEASURED FROM A COMMON REFERENCE POINT	± ¹ /8"
к	LOCATION OF POST TENSIONING DUCT MEASURED FROM BOTTOM OF PANEL AT EDGE OF PANEL	± 1/8″
L	ERECTION ELEVATION TOLERANCE	± 1⁄8″

PRECAST PARAPET TOLERANCES

Α	BOTTOM WIDTH OF PARAPET
В	HEIGHT OF PARAPET
С	HORIZONTAL DISTANCE OF PARAPET SLOPE
D	LOCATION OF BOTTOM EDGE OF PARAPET
Е	LOCATION OF TOP EDGE OF PARAPET

L

±	۱ _{⁄4} ″
±	۰ ₄ ″
±	۰ ₄ ″
±	۱ _{⁄8} ″
±	1/8"

APPENDIX G

DRAWINGS OF BULB-TEE GIRDERS FROM UTAH DOT

Note: These are direct extract from <http://www.udot.utah.gov/main/uconowner.gf?n=14493404283799689> (Last accessed June 25, 2012)

PRECAST BULB TEE GIRDERS GENERAL NOTES

GUIDELINES

IMPLEMENTATION

THESE GUIDELINE DRAWINGS CAN BE USED ONLY FOR BRIDGES WHICH HAVE ALL OF THE FOLLOWING CHARACTERISTICS:

SKEW ANGLE: 0 TO 45 DEGREES

SPECIAL CONSIDERATIONS WITH PRECAST/PRESTRESSED PANELS:

FOR USE WITH PRECAST PANELS - MAXIMUM BEAM/GIRDER SPACING = 10'-0''

FOR USE WITH PRESTRESSED PANELS - MAXIMUM BEAM/GIRDER SPACING = 12'-0''

MAXIMUM OVERHANG = 4' - 0''

MINIMUM OVERHANG = 1' - 0''

INTERMEDIATE DIAPHRAGMS: ¹/₄ POINTS OF SPAN FOR SPAN LENGTHS GREATER THAN 160'-0" ¹/₄ POINTS OF SPAN FOR SPAN LENGTHS 120'-0" TO 160'-0" ¹/₅ POINTS OF SPAN FOR SPAN LENGTHS 80'-0" TO 120'-0" 1/2 POINTS OF SPAN FOR SPAN LENGTHS LESS THAN 80'-0".

DO NOT USE TRANSFORMED SECTION PROPERTIES FOR GIRDER DESIGN.

IT IS THE DESIGNER'S RESPONSIBILITY TO:

FILL IN TABLE FOR EACH GIRDER TYPE ON A PROJECT. CREATE A FRAMING PLAN OF EACH SPAN. SEE PRECAST BULB TEE GIRDER MANUAL SECTION 4.

CREATE TYPICAL TRANSVERSE SECTIONS AS NEEDED. SEE PRECAST BULB TEE GIRDER MANUAL SECTION 4.

CREATE SPECIAL GIRDER END DETAILS AS NEEDED. SUCH AS. VARYING GEOMETRIC END TREATMENTS, EXTENSIONS OF PRESTRESSING STRAND FOR GIRDER ENDS FOR CONTINUITY OF LIVE LOAD.

DESIGN AND CHECK WEB SHEAR REINFORCEMENT ALONG GIRDER SPAN.

DESIGN AND CHECK THAT END REINFORCEMENT DETAILED SATISFIES ALL APPLICABLE CODE PROVISIONS.

DESIGN AND CHECK ALL CHARACTERISTICS RELATED TO REQUIRED CLOSURE POURS.

ACCOUNT FOR THE HAUNCH LOAD CALCULATIONS, BUT DO NOT CONSIDER IT IN THE COMPOSITE SECTIONS PROPERTIES.

ENSURE APPLICABLE GENERAL NOTES ARE INCLUDED IN THE PLAN SET.

GENERAL	NOTES
---------	-------

USE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 4TH EDITION WITH ALL INTERIM PROVISIONS EXCEPT AS NOTED OTHERWISE, FOR ALL BULB TEE GIRDER DESIGNS	GN BT
USE AN HL-93 LOAD INCLUDING A 35 PSF LOAD FOR FUTURE OVERLAY FOR GIRDER DESIGNS.	ΒT
PRESTRESSED GIRDER CONCRETE: f'c = 8,500 PSI	ВΤ
CONCRETE STRENGTH UP TO 10,000 PSI MAY BE USED WITH PRIOR APPROVAL FROM THE DEPARTMENT.	вт
SPECIFY CONCRETE RELEASE STRENGTH FOR EACH GIRDER BASED ON DESIGN.	ВТ
CLOSURE POUR CONCRETE FOR POST TENSIONED GIRDERS: f'c = MATCH GIRDER STRENGTH	UB
REINFORCING STEEL (COATED) fy = 60,000 PSI (WELDED WIRE REINFORCEMENT IS NOT ALLOWED)	UB UB
PRESTRESSED	UB
AASHTO M 203 GRADE 270	UB
USE UTAH DEPARTMENT OF TRANSPORTATION STANDARD	UB
LATEST EDITION AND SUPPLEMENTS THERETO WHICH ARE IN	UB
SPECIAL PROVISIONS SECTION 03339S - FULL DEPTH	UB
CONSTRUCTION AND WORKMANSHIP.	UD
DESIGN AND DETAIL LIFTING SUPPORTS AND HANDLING	UD
PRECAST AND PRESTRESSED CONCRETE, FIFTH EDITION WITH ALL	UD
FOR TOP SUBFACE OF BUILD TEE AND POST TENSIONED BUILD TEE.	UD
USE A ROUGHENED SURFACE (174" AMPLITUDE), FOR DECK BULB TEE	UD
SEE A HEATT BROOM THIGH ON ATBING SOM AVE OF THE FERRE	ЦD

DECK BULB TEES HAVE A ${}^{1}\prime_{4}{}^{\prime\prime}$ CONCRETE GRINDING ALLOWANCE FOR CORRECTING UNEVEN ROADWAY SURFACES AT LONGITUDINAL JOINTS. LOSS OF ${}^{1}\prime_{4}{}^{\prime\prime}$ OF TOP FLANGE TO BE ACCOUNTED FOR IN DESIGN.

APPLY CONCRETE POLYMER OVERLAY ON BRIDGE DECK AFTER CONCRETE GRINDING OR STEEL SHOT IS COMPLETE. SEE SECTION 03372 IN THE STANDARD SPECIFICATIONS FOR SURFACE PREPARATION REQUIREMENTS.

COAT ALL MILD REINFORCEMENT PER UDOT SPECIFICATIONS UNLESS OTHERWISE NOTED.

NBT-1 T-1 -2 [-3 -4 -5 T50 - (1, 2)BT58-(1,2) BT66-(1,2) 3T74-(1,2) 3T82-(1,2) BT98-(1,2)

INDEX OF SHEETS

BULB TEE GIRDER GENERAL NOTES PRECAST BULB TEE GIRDER STANDARD GIRDER SIZES PRECAST DECK BULB TEE GIRDER STANDARD GIRDER SIZES PRECAST POST-TENSIONED BULB TEE GIRDER STANDARD GIRDER SIZES PRECAST BULB TEE GIRDER DIAPHRAGM DETAILS PRECAST DECK BULB TEE GIRDER WELDED STUD 3T42-(1,2) PRECAST BULB TEE GIRDER UBT42 DETAILS PRECAST BULB TEE GIRDER UBT50 DETAILS PRECAST BULB TEE GIRDER UBT58 DETAILS PRECAST BULB TEE GIRDER UBT66 DETAILS PRECAST BULB TEE GIRDER UBT74 DETAILS PRECAST BULB TEE GIRDER UBT82 DETAILS BT90-(1,2) PRECAST BULB TEE GIRDER UBT90 DETAILS PRECAST BULB TEE GIRDER UBT98 DETAILS DBT42-(1,2) PRECAST DECK BULB TEE GIRDER UDBT42 DETAILS DBT50-(1,2) PRECAST DECK BULB TEE GIRDER UDBT50 DETAILS DBT58-(1,2) PRECAST DECK BULB TEE GIRDER UDBT58 DETAILS DBT66-(1,2) PRECAST DECK BULB TEE GIRDER UDBT66 DETAILS DBT74-(1,2) PRECAST DECK BULB TEE GIRDER UDBT74 DETAILS UDBT82-(1,2) PRECAST DECK BULB TEE GIRDER UDBT82 DETAILS UDBT90-(1,2) PRECAST DECK BULB TEE GIRDER UDBT90 DETAILS UDBT98-(1,2) PRECAST DECK BULB TEE GIRDER UDBT98 DETAILS UBT66PT-(1-4) PRECAST POST-TENSIONED BULB TEE GIRDER DETAILS UBT74PT-(1-4) PRECAST POST-TENSIONED BULB TEE GIRDER DETAILS UBT82PT-(1-4) PRECAST POST-TENSIONED BULB TEE GIRDER DETAILS UBT90PT-(1-4) PRECAST POST-TENSIONED BULB TEE GIRDER DETAILS UBT98PT-(1-4) PRECAST POST-TENSIONED BULB TEE GIRDER DETAILS

ဖု

UBT42

_

UBT58

UBT74

 $\frac{4'-1"}{6^{1/2}}$

UBT98

GIRDER TYPE	DEPTH (in)	WEIGHT (Lbs/F†)	AREA (in²)	Ix c.g. (in ⁴)	Iy c.g. (in ⁴)	(1n)	YÞ (in)	S† (in³)	Sb (†n³)
UBT42	42	759	729	184042	71761	21.67	20.33	8494	9052
UBT50	50	810	778	283124	71914	25.88	24.12	10940	11738
UBT58	58	861	827	407026	72067	30.07	27.93	13538	14571
UBT66	66	912	876	557326	72221	34.23	31.77	16281	17544
UBT74	74	963	925	735599	72374	38.38	35.62	19166	20652
UBT82	82	1014	974	943421	72527	42.51	39.49	22191	23893
UBT90	90	1065	1023	1182360	72680	46.64	43.36	25353	27265
UBT98	98	1116	1072	1454000	72833	50.74	47.26	28653	30769

										BENISIONS	
DTATION					CHECK		CHECK			CHECK	
DE TEANSPO					DESIGN		DRAWN			QUANT.	
DEPAPTMENT			SIRUCIUR				SENIOK DESIGN ENGK.				UDOT BRIDGE ENGR.
					APPROVAL RECOMM.			APPROVED		BY UDOT 2475	
	I T LIVAL DE LAIL SHEET			STANDARD GIRDER SIZES				PROJECT	NUMBER		
_		Ē	co 87	1	<u>JNT</u>	γ 1					-
s	нт.		DR	G	6. NO). F					

UDBT58

GIRDER TYPE	DEPTH (in)	WEIGHT (Lbs/F†)	AREA (in²)	Ix c.g. (in ⁴)	Iy c.g. (in*)	Y+ (in)	Yb (in)	S† (in³)	Sb (in 3)
UDBT42	42	1015	974	238350	212226	17.33	24.67	13754	9662
UDBT50	50	1066	1023	368258	212379	20.74	29.26	17756	12586
UDBT58	58	1117	1072	530226	212532	24.19	33.81	21919	15683
UDBT66	66	1168	1121	725908	212685	27.70	38.30	26206	18953
UDBT74	74	1219	1170	956946	212839	31.24	42.76	30632	22379
UDBT82	82	1270	1219	1224970	212992	34.82	47.18	35180	25964
UDBT90	90	1321	1268	1531590	213148	38.44	51.56	39844	29705
UDBT98	98	1372	1317	1878430	213298	42.08	55.92	44639	33591

Image: Project Projec							SNUISINA			
Image: Second	RTATION		CHECK	CHECK			CHECK			
Image: Second Control TYPICAL DETAIL SHEET UTAH DEPARTMENT (sali lake sali lake Second Control Second Control Second Control Structure Structure Second Control	DF TRANSPO	ES DIVISION	DESIGN				QUANT.			
TYPICAL DETAIL SHEET TYPICAL DETAIL SHEET PRECAST DECK BULB TEE GIRDER STANDARD GIRDER SIZES		STRUCTUR	APPROVAL	DATE SENIOR DESIGN ENGR.	ABBROKED		BY UDOT DATE LINCT BRINGE ENCB	BY UDOT DATE UDOT BALE WORD BADDE ENGR. QUANT. CHECK CHECK		
 BT - 2	ICAL DETAIL SHEET	AST DECK BULB TEE GIRDER	STANDARD GIRDER SIZES			ECT	BER			
<u>DRG. NO.</u>	ТҮР	PREC				2 2 2 2 2	N			

GIRDER TYPE	DEPTH (in)	WEIGHT (Lbs/F†)	AREA (în ²)	Ix c.g. (in⁴)	Iy c.g. (in⁴)	(1n)	ҮЬ (1n)	St (in³)	Sb (în³)
UBT66-PT	66	1050	1008	605416	84741	34.07	31.93	17769	18961
UBT74-PT	74	1117	1073	803380	85099	38.19	35.81	21036	22435
UBT82-PT	82	1185	1138	1035640	85456	42.30	39.70	24485	26084
UBT90-PT	90	1253	1203	1304270	85814	46.39	43.61	28115	29908
UBT98-PT	98	1320	1268	1611370	86171	50.48	47.53	31924	33906

							VO. DALE DI REMANNS	BEVISIONS					
				CHECK				CHECK					
DF TRANSPOF	F TRANSPOR				DF TRANSPO CITY, UTAH ES DIVISION			DESIGN				QUANT.	
DEPARTMENT (SIRUCIUR			SENIOR DESIGN ENGR.				ULUI BRIDGE ENGR.				
UTAH				APPROVAL RECOMM	DATE	A DOD/NED		BY UDOT DATE					
TYPICAL DETAIL SHEET	RECAST POST-TENSIONED BULB TEE GIRDER			STANDARD GIRDER SIZES			PROJECT	NUMBER					
	B	20 50 50	-	<u>- 1</u>	<u>Y</u> 3								
<u> </u>		<u> </u>	c	<u>, гчс</u> С).)F								

GNER SHA	FION ALL DIF	NS TO BE I VERIFY TI Y THEM WHI	LOCA HREAI ERE	TED () INS APPL 1	DN THE GI SERT CAPA ICABLE:	RDER	
₽ SHOWN	ΙN	SECTION A	B IS	NOT	NECESSAF	RY FOR C)°

1. INCLUDE ALL STEEL FOR DIAPHRAGMS IN THE COST OF THE PRESTRESSED CONCRETE GIRDER.

2. ALL STEEL TO BE ASTM A709 GRADE 50 AND GALVANIZED IN IN ACCORDANCE WITH ASTM A 123.

4. STEEL TO STEEL CONNECTIONS TO BE MADE USING ${\cal T}_8''$ DIA. GALVANIZED HIGH-STRENGTH BOLTS.

5. STEEL TO CONCRETE CONNECTIONS TO BE MADE USING ASTM A307 GRADE A BOLTS.

WASHERS TO BE ASTM F436. ALL BOLTS, NUTS, AND WASHERS TO BE GALVANIZED IN ACCORDANCE WITH ASTM A 153.

FIELD DRILLED HOLES IN DIAPHRAGM CONNECTION ANGLES TO BE PERMITTED AT NO ADDITIONAL EXPENSE. ALL OTHER HOLES TO BE SHOP DRILLED.

¹/₂" BENT PLATE OF EQUAL DIMENSIONS MAY BE SUBSTITUTED FOR MC18X42.7.

FOR SQUARE SUPERSTRUCTURES, FORM 1¹/2["] DIA. HOLES IN INTERIOR GIRDERS FOR THRU-BOLTING OF DIAPHRAGM ANGLE. FOR FASCIA GIRDERS AND SKEWED STRUCTURES, THREADED INSERTS ARE REQUIRED. PLACE HOLES AND THREADED INSERTS PERPENDICULAR TO GIRDER WEB.

10. SEE GIRDER DRAWINGS FOR GIRDER CONNECTION REQUIREMENTS

INTER	INTERMEDIATE DIAPHRAGM SIZING TABLE					
GIRDER DEPTH	DIAPHRAGM	CHANNEL SIZE (SEE NOTE 11)				
42	TYPE I	MC18×42.7				
50	TYPE I	MC18×42.7				
58	TYPE I	MC18×42.7				
66	TYPE II	NZA				
74	TYPE II	NZA				
82	TYPE II	NZA				
90	TYPE II	NZA				
98	TYPE II	N/A				

INTERMEDIATE DIAPHRAGM LOCATION TABLE

SPAN LENGTH	DIAPHRAGM LOCATION ALONG GIRDER
< 80 FT	'∕₂ SPAN PTS.
80 FT TO 120 FT	⅓ SPAN PTS.
120 FT TO 160 FT	I∕₄ SPAN PTS.
> 160 FT	⅓ SPAN PTS.

NOTE TO DESIGNER: INSERT SHEET AS NEEDED INTO DESIGN DRAWINGS AND NUMBER AS FOLLOWS: UBTXX-X, UDBTXX-X, OR UBTXXPT-X

	TYPICAL DETAIL SHEET PRECAST BULB TEE GIRDER DIAPHRAGM DETAILS	UTAH DEPARTMENT (SALT LAKE SALT LAKE STRUCTUR STRUCTUR MM DATE SENCESCIA ENCE.	DF TRANSPOR CITY, UTAH ES DIVISION DESIGN DESIGN DEMONIC		Sector Se		REWRKS	
--	--	--	---	--	--	--	--------	--

						_
S TAILS DRAWN FOR 1" DIA. SHEAR STUDS. TRACTOR TO DETERMINE METHOD FOR TIEVING WELDING GROUND FOR ATTACHMENT SHEAR STUDS. A WELDED GROUND LUG IS SEPTABLE PROVIDED THERE IS NO INTERFERENCE TH PLACEMENT OF STUDS OR PLACEMENT OF CCAST PANEL. 3M CAMBER STRIP AND FILL WITH NON-SHRINK DUT. METHOD OF FORMING CAMBER STRIP TO DETERMINED BY THE CONTRACTOR. REMOVE FORMS TER NON-SHRINK GROUT OBTAINS A COMPRESSIVE RENOT STOP SOLD RENOT OF 3000 PSI. R BLOCKOUT IN PRECAST PANELS SEE OPTIONS IN CCAST PANEL DRAWINGS.					REMARKS	REVISIONS
					Å	
					DATE	
					ĝ	_
	RTATION		CHECK	CHECK		CHECK
	F TRANSPOI	CITY, UTAH ES DIVISION	DESIGN	DRAWN		QUANT.
NE M)	UTAH DEPARTMENT O	SALT LAKE (STRUCTURE		DATE SENIOR DESIGN ENGR.	ROVED	IDOT DATE UDOT BRIDGE ENGR.
	TYPICAL DETAIL SHEET	PRECAST DECKS ON BULB TEE			PROJECT	
NOTE TO DESIGNER: INSERT SHEET AS NEEDED INTO DESIGN DRAWINGS AND NUMBER AS FOLLOWS:			UNT	· · ·		_
			- (G. NC)). F		_

APPENDIX H

DETAILS OF NEXT D BEAM FROM PCI-NE

Note: These are direct extract from <http://www.pcine.org/index.cfm/resources/bridge> (Last accessed June 25, 2012)

	NEXT BEAM - SECTION PROPERTIES									
BEAM	BEAM	BEAM (BASE STEM	AREA	Ι	Yb	Y†	S†	Sþ	WEIGHT
DESIGNATION	WIDIH INCHES	DEPTH INCHES	WIDTH INCHES] N 2	I N ⁴	INCHES	INCHES	I N 3	IN3	PLF
	А	В	С			D	E			
	MINIMUM WIDTH BEAMS									
NEXT 40 D	96.00	40.00	13.00	1666	238059	25.47	14.54	16378	9348	1735
NEXT 36 D	96.00	36.00	13.25	1562	176674	23.03	12.97	13624	7671	1627
NEXT 32 D	96.00	32.00	13.50	1455	126111	20.57	11.43	11033	6131	1516
NEXT 28 D	96.00	28.00	13.75	1346	85651	18.06	9.94	8620	4742	1402
	MAXIMUM WIDTH BEAMS									
NEXT 40 D	120.00	40.00	13.00	1858	258171	26.55	13.45	19201	9722	1935
NEXT 36 D	120.00	36.00	13.25	1754	191453	24.01	11.99	15973	7973	1827
NEXT 32 D	120.00	32.00	13.50	1647	136502	21.44	10.57	12920	6368	1716
NEXT 28 D	120.00	28.00	13.75	1538	92597	18.80	9.20	10069	4924	1602

NOTES:

- 1. THE WIDTH OF BEAMS SHOWN ARE THE MINIMUM AND MAXIMUM WIDTH BEAMS. VARIATION BETWEEN THESE LIMITS IS ALLOWED IN ORDER TO CONSTRUCT A BRIDGE TO THE REQUIRED WIDTH. THE VARIATION IN WIDTH IS ACCOMPLISHED BY VARYING THE OVERHANG DIMENSIONS. THE DESIGNER WILL NEED TO CALCULATE BEAM PROPERTIES FOR BEAMS THAT ARE NOT EQUAL TO THE WIDTHS LISTED.
- 2. THE SPACING OF BEAMS ON A TYPICAL BRIDGE SHALL BE THE WIDTH OF THE BEAM PLUS 8" (EX.: BEAM SPACING = 10'-8" FOR THE 10'-0" SECTION).
- 3. BRIDGES WITH SMALL CURVATURE CAN BE BUILT USING THESE SECTIONS BY VARYING THE OVERHANG OF THE FASCIA BEAMS ALONG THE LENGTH. INTERIOR BEAMS SHOULD ALWAYS BE SYMMETRICAL ABOUT THE VERTICAL AXIS. NON-SYMMETRICAL SECTIONS ARE POSSIBLE, HOWEVER THE BEAM MAY REQUIRE A SPECIAL DESIGN WITH A NON-SYMMETRICAL STRAND PATTERN.
- 4. MODIFY THE FASCIA BEAM TO MATCH STATE STANDARDS.
- 5. THE STEM WIDTH AND SPACING ARE FIXED.
- 6. THE ENDS OF THE BEAMS SHOULD BE SKEWED FOR SKEWED BRIDGES. THE ACUTE CORNERS OF THE FLANGE OVERHANGS SHOULD BE CHAMFERED 6"×6" IN ORDER TO MINIMIZE CASTING AND HANDLING DAMAGE.

NO.	DATE	REVISIONS DESCRIPTION	NORTHEAST EXTREME BRIDGE TEE NEXT D BEAMS		PRECAST/PRESTRESSED CONCRETE INSTITUTE NORTHEAST
			BEAM PR	OPERTIES	
			ISSUE DATE: 01-04-10	SHEET: NEXT D -01	\mathbf{PCI} , www.pcine.org

NEXT D) BEAMS	INSTITUTE NORTHEAST
SAMPLE DIAPH	RAGM DETAILS	
ISSUE DATE: 01-04-10	SHEET: NEXT D - 08	PCI . WWW.PCINE.ORG

CONCEPTUAL INTEGRAL ABUTMENT SECTION

NOTES:

- 1. THESE DETAILS ARE BASED ON MASSACHUSETTS DEPARTMENT OF TRANSPORTAION STANDARDS. DETAILS FOR OTHER STATES WILL VARY.
- 2. A PRECAST PIECE SIMILAR TO THE BACKWALL PIECE CAN BE USED AT THE ENDS OF THE ABUTMENT ALSO.

NO.	DATE	REVISIONS DESCRIPTION	NORTHEAST EXTR	eme bridge tee) BEAMS	PRECAST/PRESTRESSED CONCRETE INSTITUTE NORTHEAST
			SAMPLE DIAPH	RAGM DETAILS	
			ISSUE DATE: 01-04-10	SHEET: NEXT D - 09	$\overrightarrow{\mathbf{PCI}}$, www.pcine.org

SAMPLE PIER CONTINUITY DETAIL

<u>NOTES:</u>

1. THE DETAILS SHOWN ARE SCHEMATIC. REFER TO STATE STANDARDS FOR SPECIFI DETAILS.

		REVISIONS			
NO.	DATE	DESCRIPTION	NEXT C) BEAMS	INSTITUTE NORTHEAST
			PIER CONTIN	NUITY DETAIL	
			ISSUE DATE: 01-04-10	SHEET: NEXT D - 10	\mathbf{PCI} . WWW.PCINE.ORG

WWW.PCINE.ORG

ISSUE	DATE:	01–04–10

SHEET: NEXT D - 15

PCL w

WWW.PCINE.ORG

NO.	DATE	REVISIONS DESCRIPTION	NORTHEAST EXTREME BRIDGE TEE NEXT D BEAMS		PRECAST/PRESTRESSED CONCRETE INSTITUTE NORTHEAST
			SPAN CHART (f'c=8 KSI)		
			ISSUE DATE: 01-04-10	SHEET: NEXT D – 18	PCI . WWW.PCINE.ORG

NO.	DATE	REVISIONS DESCRIPTION	NORTHEAST EXTREME BRIDGE TEE NEXT D BEAMS		PRECAST/PRESTRESSED CONCRETE INSTITUTE NORTHEAST
			SPAN CHART (f'c=6 KSI)		
			ISSUE DATE: 01-04-10	SHEET: NEXT D - 19	$\overline{\mathbf{PCI}}$, www.pcine.org

APPENDIX I

STANDARD LONGITUDINAL CONNECTION DETAILS

APPENDIX J SPECIAL PROVISION FOR GROUTING PBES CONNECTIONS

(Template)

......DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION FOR GROUTING PBES CONNECTIONS

1. General. This work shall consist of furnishing material, equipment, and manpower for grouting prefabricated component connections (or referred as joints in this section) in accordance with the details shown on the plans and the requirements of these Specification.

The work shall also include the furnishing and installing of any appurtenant items necessary for completing the grouting operations, including but not limited to, inlets, vents, outlets, and grout and any material used for mixing and curing and protecting grout during the required period.

- 2. Contractor Proposed Options: The contractor may propose for consideration certain changes to the connection details (including but not limited to, the shape, size, reinforcement details), material for filling the voids, application procedures, and curing and protection methods than what is shown in the plans and given in this Specification.
- **3. Restrictions to Contractor Proposed Options:** Any changes proposed by the contractor shall comply with the following:
 - a. Any changes proposed to the connection details to enhance the grout application procedures shall be demonstrated through mock-up testing or contractors own experience with a previous project.
 - b. The ultimate strength of the structure with the proposed changes to the connection details shall meet the requirement of <u>Section xx</u> of the <u>AASHTO XXXX</u>, <u>YY</u> <u>edition, 20XX</u>, and all applicable interims and shall be equivalent or greater than the ultimate strength provided by the original design.
 - c. The contractor fully redesigns and details of all the connections and associated components where the alternate details are proposed, as required.
 - d. The contractor submits complete shop drawings indicating the locations of the connections and including revised connection and component details, design calculations, and a summary of the specific changes and justification for the changes for Engineer's review.

- 4. Working Drawings: The contractor shall submit detailed working drawings in accordance with <u>Section XX</u> of the <u>...... Standard Specification for Construction</u> that include, but are not limited to:
 - 1. Connection detail with multiple views (a minimum of two cross-sections with respect to two perpendicular axes and a plan view)
 - 2. Name (if manufactured grout) or the mix design for each connection in a format similar to Table E–1.
 - 3. Equipment for mixing and placement
 - 4. Formwork, if needed (process of forming and removal; potential challenges such as grout leakage and remedial measures)
 - 5. Surface preparation procedures
 - 6. Grouting procedure and sequence
 - 7. Grout curing, if applicable, and/or protection methods
 - 8. Mock-up testing plan (void if contractor demonstrates prior experience with the specific detail, material, and equipment)
 - 9. QA/QC plan based on the requirements listed in Table E–2

No	Connection	Grout/special mix
1	Pier column to pier cap	ABC grout extended
2	Transverse connection between deck panels	ABC grout
3	Longitudinal closure	Mix 1
4		
5		
6		

 Table E–1.
 Connection and the grout/special mix

Mix 1: (<u>example</u>)

Cement

Supplementary cementitious material

- Aggregate
- Water
- Admixtures
- **5. Material:** The materials to be incorporated into work covered by this section shall conform to the requirements set out herein.
 - a. Grout/Special mixes

Contractor shall identify a non-shrink grout/concrete mixes based on size, shape, and detailing of the connection, and exposure conditions during mixing, placing, and in-service. Contractor shall submit laboratory test results obtained from an independent testing lab on the following properties as per the specifications listed;

Property		Requirement	Test Method
Strength	1 day		
	3 days		
	7 days		
	28 days		
Slump/flow			
Setting time			
Early age height change			ASTM C827/C1107
Height change of hardened grout			ASTM C1090/C1107
Shrinkage			
Air content			
Freeze/thaw durability			
Modulus of elasticity			
Thermal expansion coefficient			

Table E–2. Grout properties, requirements and test methods

b. Curing

The contractor shall furnish required grout curing material as per the manufacturer requirement or the <u>Section XX of the</u><u>Standard Specification for</u> <u>Construction</u>.

c. Grout protection

The contractor shall furnish required grout protection material as per the manufacturer requirement or the <u>Section XX of theStandard Specification for Construction.</u>

- **6. Grouting plan and qualifications:** At least <u>XX weeks</u> before grouting commences, the contractor shall submit to the Engineer for review and approval a "Grouting Operation Plan for Precast Component Connections". Written approval of the plan is required before grouting occurs.
 - Names of grouting crew and supervisor
 - Experience of crewmembers and supervisor
 - Training to be provided or undertaken prior to operations
 - Type of equipment to be used, including capacity in relation to demand
 - Working condition of equipment, back-up and spare parts
 - Types, brands, and certifications of materials
 - Identity of independent testing laboratory for certification of materials
 - General grouting procedure
 - Production of grout, on-site testing, adjustments and controls
 - Estimate of grout required amount of each type of grout/special mixes
 - Method of controlling consistency of grout
 - Grout mixing and placement procedures
 - Procedure for controlling w/c ratio, and for ensuring that the water used is acceptable
 - Contractor's QC forms that are to be signed daily by grout supervisor

The contractor shall, throughout the duration of the grouting, coordinate his work and cooperate with the engineer. The contractor shall also provide at least one person who shall be present at the all times during formwork installation and grouting who is familiar with the operations involved and will direct the work.

- **7. Contribution to knowledge base (Report):** The engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing based on the test methods and applicable standards listed in Table E–2. Report should include at least the followings: (the following includes extracts from ASTM C1107 and presented in *italics*)
 - Source, type and name of grout tested.
 - Details of any variations and options practiced by the tester that are recommended or allowed by the manufacturer or others. Also, designate by whom exceptions are allowed or recommended.
 - Number and size of each kind of grout specimen and the date molded.

- Consistency at the time the specimens were molded and the water to dry solids ratio.
- Mixing temperature and curing temperature.
- Identity of specimens as being from (a) freshly mixed grout or (b) grout from end of maximum allowed usable working time. State the mixing age of grout when the specimens were prepared.
- Height change from placement to time of final setting, %.
- *Height change of hardened, moist-cured grout at specimen age of 1, 3, 14, and 28 days, %.*
- Height change of hardened grout at 56 days of age when exposed to air drying for 28 days after 28 days of moist-curing, %.
- Compressive strength of cubes at 1, 3, 7, and 28 days.
- *Yield of the grout.*
- Equipment used for grouting or method of grouting.
- Challenges and lessons learned.
- Recommendations for enhancing performance and construction practices of similar details.