MICHIGAN
STATE HIGHWAY DEPARTMENT
Murray D. Van Wagoner State Highway Commissioner

DOWEL BAR INVESTIGATION

PART II
STUDY OF DOWEL BAR COATINGS IN BOND STRESS

By
George A. Mansfield
Assistant Research Engineer

Research Laboratory Project 38 F-5 (2)
Research Report OR 20

Reprint of Original Report

Research and Testing Division
State Highway Laboratory
University of Michigan
Ann Arbor, Michigan
December 8, 1938

STUDY OF DOWEL BAR COATINGS IN BOND STRESS

The second section of this investigation deals with the study of various types of paints, asphalts, tars, oils and greases used as coatings on dowel bars to destroy the bond between the steel bar and concrete. The materials were rated according to effect of relieving bond stress, application of coating and thickness of film applied. To ascertain these results the following procedure was used.

Each bar was coated for 7-1/2 in. of its length at one end and a cap fitted over the painted end for $2-1 / 2 \mathrm{in}$. of its length. These bars were molded in 6 by 12 in . cylinders and imbedded in the center of cylinders to a depth of 7 in . After a 7 -day curing period the bars were removed from the concrete cylinders by pulling on a tension machine with the head moving at the rate of 0.314 in . per min. with resultant stress required to extract dowel recorded. An average of three tests for each type of material was considered sufficient for a comparative analysis. Although the rate at which the bars were removed from concrete cylinders does not coincide with the action of dowel and pavement in slab structure, the results contained herein afford a relative comparison between various coated and uncoated bars, five tests being made on the latter, It is the assumption that the research as conducted in the laboratory is a true indication of effectiveness of coatings in field practice.

In Table I of dowel bar stresses the various types of coatings investigated are listed including results of determinations of drying time, load required to extract dowel, and bond stress. The initial load represents the total load required to break initial bond and final load represents the constant total load while removing dowel. These loads are in turn transferred to bond stress in pounds per square inch of surface area both for initial and constant strain. The bond stress was computed for a surface
area of $\mathbf{1 0 . 6}$ sq. in. which is the total area of bar in contact with the concrete as 2.5 in . is covered with the sleeve cap allowing a 4.5 in . effective length of dowel bar.

On the basis of least bond stress the material best suited for dowel bar coating is grease, both universal and cup, but the feature of application is unfavorable for use in actual construction. Next in efficiency for relieving bond is two coats of tar, $\mathrm{TP}-\mathbf{2}$, but in this case the film of tar is excessively heavy, approximately $1 / 16$ in., defeating the purpose of the dowel bar in transferring of load.

A further study was made of materials most suitable for use by measurement of film applied to bars. Five bars were dipped in each of the following materials: Red lead, $\mathrm{RC}-1, \mathrm{RC}-2, \mathrm{AE}-5$, and Chicago Paint Works paint. A determination of film thickness on bars coated with the above materials was made and the results are compiled in Table II. From the combined observations of method of application, effect of reducing bond stress and thickness of coating applied, the five recommended types are rated in the following descending order: $\mathrm{RC}-1$, coating 0.001 in, ; Chicago Paint Works,
 ing 0.013 in . All of the above approved materials are easily applied without heating by one dipping with excess material permitted to drain off,

Conclusions

From the results of this investigation of typical effective coating would be a material that could be applied in a thin film and dry to touch in a few hours without acquiring the hard finish of lacquer.

Red lead, asphaltic oils RC-1, and RC-2, and a commercial product manufactured by the Chicago Paint Works are most satisfactory for combination of breaking bond, ease of application and a minimum film. Both one and two coat tests were conducted, but it was discovered that one thickness was sufficient and as effective. Linseed oil coating
over paint did not decrease the bond stress. The remaining materials listed gave bond stress results much in excess of above mentioned and are not considered efficient for the purpose intended.

TABULATION OF DOWEL BAR STRESSES

$\begin{gathered} \text { Specimen } \\ \text { No. }_{4} \\ \hline \end{gathered}$	Coating	Dry to Touch	Total Load		Bond Stress lb. per sq. in.	
			Initial	Final	Initial	Final
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Uncoated	Avg.	4650 4940 5190 5350 4560 4938	$\begin{aligned} & 2340 \\ & 2160 \\ & 1970 \\ & 3700 \\ & 1950 \\ & 2424 \end{aligned}$	$\begin{aligned} & 438 \\ & 466 \\ & 490 \\ & 505 \\ & 431 \\ & 465 \end{aligned}$	$\begin{aligned} & 221 \\ & 204 \\ & 186 \\ & 349 \\ & 184 \\ & 229 \end{aligned}$
$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	Universal Grease	Avg.	0 0 0 0	0 70 0 23	0 0 0 0	0 7 0 2
$\begin{array}{r} 9 \\ 10 \\ 11 \end{array}$	Cup Grease	Avg.	$\begin{gathered} 180 \\ - \\ - \\ \hline 180 \end{gathered}$	90 75 60 75	$\begin{gathered} 17 \\ - \\ - \\ 17 \end{gathered}$	$\begin{aligned} & 8 \\ & 7 \\ & 6 \\ & 7 \end{aligned}$
$\begin{aligned} & 12 \\ & 13 \\ & 14 \end{aligned}$	Red Lead 1 coat	24 hr . Avg.	$\begin{aligned} & 150 \\ & 150 \\ & 280 \\ & 193 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 280 \\ & 193 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 26 \\ & 18 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 26 \\ & 18 \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$	Red Lead 2 coats	24 hr 。 Avg.	$\begin{aligned} & 280 \\ & 290 \\ & 280 \\ & 283 \end{aligned}$	$\begin{aligned} & 160 \\ & 180 \\ & 185 \\ & 175 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \\ & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 15 \\ & 17 \\ & 17 \\ & 17 \end{aligned}$
$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	Red Lead Linseed Oil 1 coat	Avg.	$\begin{aligned} & 490 \\ & 650 \\ & 520 \\ & 553 \end{aligned}$	$\begin{aligned} & 220 \\ & 310 \\ & 290 \\ & 273 \end{aligned}$	$\begin{array}{r} 46 \\ 61 \\ 49 \\ 52 \end{array}$	$\begin{aligned} & 21 \\ & 29 \\ & 27 \\ & 26 \end{aligned}$
$\begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}$	Red Lead Linseed Oil 2 coats	Avg,	$\begin{aligned} & 280 \\ & 270 \\ & 260 \\ & 270 \end{aligned}$	$\begin{aligned} & 150 \\ & 160 \\ & 170 \\ & 160 \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 15 \end{aligned}$

Table I-cont'd

$\begin{aligned} & \text { Specimen } \\ & \text { No. } \\ & \hline \end{aligned}$	Coating	Dry to Touch	Total Load		Bond Stress 1b. per sq. in.	
			Initial	Final	Initial	Final
$\begin{aligned} & 24 \\ & 25 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { RC-1 } \\ & 1 \text { coat } \end{aligned}$	3 hr .	310	270	29	25
			350	270	33	25
			320	270	30	25
		Avg.	350	270	33	25
			333	270	31	25
$\begin{aligned} & 28 \\ & 29 \\ & 30 \end{aligned}$	RC-2 1 coat	2 hr .	390	290	37	27
			280	260	26	25
		Avg.	410	320	39	30
			360	290	34	27
$\begin{aligned} & 31 \\ & 32 \\ & 33 \end{aligned}$	RC-2 2 coats	2 hr .	380	290	36	27
			360	280	34	26
		Avg.	430	270	41	25
			390	280	37	26
$\begin{aligned} & 34 \\ & 35 \\ & 36 \\ & 37 \end{aligned}$	Chicago Paint Works Pent. 52 1 coat	2 hr .	350	140	33	13
			270	150	25	14
			280	190	26	18
		Avg.	400	220	38	21
			325	175	31	17
$\begin{aligned} & 38 \\ & 39 \\ & 40 \end{aligned}$	Chicago Paint Works Pent. 52 2 coats	2 hr	750	370	71	35
			280	150	26	14
			290	160	27	15
		Avg.	440	227	42	21
$\begin{aligned} & 41 \\ & 42 \\ & 43 \end{aligned}$	AE-5 1 coat	1 hr	720	500	68	47
			620	510	. 59	48
			720	580	68	55
		Avg.	687	530	65	50
$\begin{aligned} & 44 \\ & 45 \\ & 46 \end{aligned}$	AE-5 2 coats	1 hr .	500	300	47	28
			380	220	36	21
			390	260	40	25
		Avg.	423	260	37	25

Table I-Cont ${ }^{\text {d }}$

$\begin{aligned} & \text { Specimen } \\ & \text { No. } \end{aligned}$	Coating	Dry to Touch	Total Load		Bond Stress $1 \mathrm{lb}_{.}$per sq . in.	
			Initial	Final	Initial	Final
$\begin{aligned} & 47 \\ & 48 \\ & 49 \end{aligned}$	Linseed Oil		780	450	74	42
			780	500	74	47
			--	440	-	42
		Avg.	780	463	74	44
$\begin{aligned} & 50 \\ & 51 \\ & 52 \end{aligned}$	\#7 Black + Linseed Oil 1 coat		780	480	74	45
			730	440	69	42
			660	390	62	37
		Avg.	723	437	68	41
$\begin{aligned} & 53 \\ & 54 \\ & 55 \end{aligned}$	\#7 Black + Linseed Oil 2 coats		590	420	56	40
			490	330	46	31
			400	300	38	28
		Avg.	493	350	47	33
$\begin{aligned} & 56 \\ & 57 \\ & 58 \end{aligned}$	50/50 WOA Mineral Spirits 1 coat	1 hr . Avg.	940	560	89	53
			1060	680	100	64
			990	680	93	64
			997	640	94	61
$\begin{aligned} & 59 \\ & 60 \\ & 61 \end{aligned}$	TCP-2 1 coat	30 min ,	680	500	64	47
			860	660	81	62
			500	370	47	35
		Avg.	680	510	64	48
$\begin{array}{r} 62 \\ 63 \\ 64 \end{array}$	AE-1 1 coat	1 hr	1180	780	111	74
			730	450	69	42
			1030	570	96	54
		Avg.	980	600	92	57
$\begin{aligned} & 65 \\ & 66 \\ & 67 \end{aligned}$	SC-1 1 coat		600	370	57	35
			1420	760	134	72
			1450	1010	137	95
		Avg。	1157	713	109	67

Table I - Cont ${ }^{\text {d }}$ d

$\begin{aligned} & \text { Specimen } \\ & \text { No. } \end{aligned}$	Coating	Dry to Touch	Total Load		Bond Stress lb . per sq. in.	
			Initial	Final	Initial	Final
$\begin{aligned} & 68 \\ & 69 \\ & 70 \end{aligned}$	MC-1 $1 \text { coat }$	24 hr . Avg.	$\begin{aligned} & 1120 \\ & 1440 \\ & 1280 \\ & 1280 \end{aligned}$	$\begin{array}{r} 860 \\ 1080 \\ 1020 \\ 987 \end{array}$	$\begin{aligned} & 106 \\ & 136 \\ & 121 \\ & 121 \end{aligned}$	$\begin{array}{r} 81 \\ 102 \\ 96 \\ 93 \end{array}$
$\begin{aligned} & 71 \\ & 72 \\ & 73 \end{aligned}$	\#7 Black 1 coat	1 hr . Avg.	$\begin{aligned} & 1530 \\ & 1260 \\ & 1450 \\ & 1413 \end{aligned}$	$\begin{array}{r} 1090 \\ 910 \\ 1190 \\ 1063 \end{array}$	$\begin{aligned} & 144 \\ & 119 \\ & 137 \\ & 133 \end{aligned}$	$\begin{array}{r} 103 \\ 86 \\ 112 \\ 100 \end{array}$
$\begin{aligned} & 74 \\ & 75 \\ & 76 \end{aligned}$	\#7 Black 2 coats	1 hr . Avg.	$\begin{aligned} & 1530 \\ & 1310 \\ & 1590 \\ & 1477 \end{aligned}$	$\begin{array}{r} 1080 \\ 880 \\ 1010 \\ 990 \end{array}$	$\begin{aligned} & 144 \\ & 124 \\ & 150 \\ & 139 \end{aligned}$	$\begin{array}{r} 102 \\ 83 \\ 95 \\ 93 \end{array}$
$\begin{aligned} & 77 \\ & 78 \\ & 79 \end{aligned}$	\#7 Black Tar Base 1 coat	1 hr . Avg.	$\begin{aligned} & 1510 \\ & 1520 \\ & 1580 \\ & 1537 \end{aligned}$	$\begin{aligned} & 1110 \\ & 1010 \\ & 1040 \\ & 1053 \end{aligned}$	$\begin{aligned} & 142 \\ & 143 \\ & 149 \\ & 145 \end{aligned}$	$\begin{array}{r} 105 \\ 95 \\ 98 \\ 99 \end{array}$
$\begin{aligned} & 80 \\ & 81 \\ & 82 \end{aligned}$	Barrett Black Tar Base 1 coat	1 hr Avg.	$\begin{aligned} & 1840 \\ & 3050 \\ & 3230 \\ & 2707 \end{aligned}$	$\begin{aligned} & 1560 \\ & 2880 \\ & 3120 \\ & 2520 \end{aligned}$	$\begin{aligned} & 174 \\ & 288 \\ & 305 \\ & 256 \end{aligned}$	$\begin{aligned} & 147 \\ & 272 \\ & 294 \\ & 238 \end{aligned}$
$\begin{aligned} & 83 \\ & 84 \\ & 85 \end{aligned}$	$\begin{aligned} & \mathrm{TP}-2 \\ & 1 \text { coat } \end{aligned}$	30 min. Avg.	$\begin{aligned} & 3420 \\ & 2750 \\ & 4940 \\ & 3703 \end{aligned}$	$\begin{aligned} & 3230 \\ & 2430 \\ & 3890 \\ & 3183 \end{aligned}$	$\begin{aligned} & 322 \\ & 260 \\ & 465 \\ & 350 \end{aligned}$	$\begin{aligned} & 305 \\ & 229 \\ & 367 \\ & 300 \end{aligned}$
$\begin{aligned} & 86 \\ & 87 \\ & 88 \end{aligned}$	$\begin{aligned} & \mathrm{TP}-2 \\ & 2 \text { coats } \end{aligned}$	30 min. Avg.	$\begin{array}{r} 60 \\ 60 \\ 400 \\ 173 \end{array}$	$\begin{array}{r} 40 \\ 30 \\ 320 \\ 130 \end{array}$	$\begin{array}{r} 6 \\ 6 \\ 38 \\ 16 \end{array}$	$\begin{array}{r} 4 \\ 3 \\ 30 \\ 12 \end{array}$

Table I-Contrd

Specimen No.	Coating	Dry to Touch.	Total Load		Bond Stress lb. per se. in.	
			Initial	Final	Initial	Final
89	Lansing	1 hr .	5120	4000	483	378
90	Paint \&		6280	6250	593	590
91	Color		5380	4950	508	467
	Pent. 4 1 coat	Avg.		5067	527	
92	Lansing Color Pent. 4 2 coats	1 hr .	6150	6000	580	566
93			5370	5190	507	490
94			6800	6180	641	583
		Avg.	6107	5790	577	546
95	Pavement Lacquer White 1 coat	5 min	7280	7080	687	668
96			7580	6960	715	657
97			8080	7460	763	705
		Avg	7647	7167	720	677
98	Pavement Lacquer White 2 coats	5 min .	7500	7310	708	690
99			7020	6810	662	643
100			7640	7000	720	660
		Avg.	7387	7040	697	664
101	Std. Oil Co Black Pent. 97 1 coat	1 hr .	670	510	63	48
102			760	630	72	59
103			700	530	66	50
		Avg.	710	557	67	52

TABLE II

DETERMINATION OF FILM THICKNESS
MEASUREMENTS IN INCHES

Coating	Diameter by Micrometer					Average Diameter	Difference Averages	Average Film Thickness
	1	2	3	4	5			
Red Lead								
Coated	0.778	0.785	0.781	0.779	0.789	0.782		
Uncoated	0.757	0.754	0.757.	0.758	0.756	0.756	0.026	0.0130
RC-1								
Coated	0.758	0.757	0.759	0.760	0.761	0.759		
Uncoated	0.757	0.757	0.755	0.754	0.750	0.755	0.004	0.002
RC-2								
Coated	0.765	0.767	0.763	0.765	0.764	0.765		
Uncoated	0.756	0.755	0.758	0.754	0.756	0.756	0.009	0.0045
AE-5								
Coated	0.767	0.769	0.766	0.768	0.767	0.767		
Uncoated	0. 754	0.757	0.750	0.756	0.758	0.755	0.012	0.0060
Chicago Paint Work								
Coated	0.761	0.762	0. 762	0. 764	0.763	0.762		
Uncoated	0.753	0.754	0.756	0,754	0.752	0.754	0.008	0.0040

