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EXECUTIVE SUMMARY 

Winter maintenance activities, particularly snow removal and deicing, help agencies improve 

roadway safety and mobility during winter weather conditions. However, due to slower travel 

speeds during these operations, combined with low visibility and reduced pavement friction, the 

potential for rear-end collisions between motorists and winter maintenance trucks (WMTs) 

remains a persistent issue. To counter such safety issues, a prototype collision avoidance and 

mitigation system (CAMS) was recently developed by a private vendor and was mounted on the 

rear of winter maintenance trucks (WMTs) in southeast Michigan during the 2017-2018 winter 

season. As this is a new and unproven system, research was needed to estimate its potential 

effectiveness as a tool to reduce rear-end collisions between WMTs and motorists in Michigan. 

 

The CAMS system included a rear-facing radar, camera, and warning light bar containing three 

amber LED beacons. The CAMS radar system monitors the relative distance, speed, and 

acceleration, 10 times per second, for up to 32 vehicles following behind the vehicle to a maximum 

range of 600 feet.  The CAMS system was programmed by the vendor to activate the warning light 

upon detection of a vehicle encroaching too close to the rear of the WMT in terms of the vehicle’s 

time headway relative to the WMT. The system issued up to two levels of warning at two 

predetermined values of relative headway, which here refers to the amount of time it would take 

the front bumper of the following vehicle to hit the rear bumper of the truck if the relative speed 

between the truck and following vehicle remained the same. In this study, after initial testing in a 

controlled roadway environment, the headway values of warning levels 1 and 2 were established 

at 7 and 5 seconds, respectively.  

 

A benefit/cost (B/C) analysis was performed to evaluate the economic performance of the CAMS. 

The installation and annual maintenance costs for 800 operating WMTs in Michigan are estimated 

based on the cost associated with equipping the four WMTs as part of this study assuming a 5-

year life cycle for CAMS and 4% discount rate. It should be noted that the economy of scale for 

large-scale implementation was not considered here. Furthermore, the display and camera (used 

to evaluate the system performance in this study) costs were included in this estimation, which can 

be excluded for the large scale application to reduce the implementation cost. The system benefit 

is evaluated based on the likely reduction in the WMT-involved crashes over the 5-year life cycle 
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due to implementation of the CAMS. A B/C ratio of 0.85 was calculated assuming the estimated 

maximum number of crashes that CAMS could prevent during the 5-year life cycle. This suggests 

that reducing the implementation cost is essential to economically justify incorporating the CAMS 

into the winter maintenance operations in Michigan. To that end, this study also provided a 

required crash reduction percentage for any given investment cost per WMT to ensure a B/C ratio 

of 1. 

 

Although the CAMS showed potential for positive benefits on driver behavior, in terms of reaction 

times and encroachments to the rear of the WMT, several operational and performance issues were 

identified, both during field operation and from operator feedback, that require further 

investigation and remediation before the system can be recommended for widespread 

implementation. Specific issues included: (1) persistent occlusion/blockage of the radar/camera 

housing unit by debris caused by inadequate performance of the cleaning system and (2) 

inconsistent/imprecise activation of the CAMS warning light, which included false activations 

from vehicles in adjacent lanes and missed or delayed activations for vehicles encroaching within 

the warning zone behind the WMT. Several recommendations for improvement of the CAMS 

system were provided herein, and subsequent evaluation is necessary prior to broad 

implementation across Michigan. 

viii 
 



CHAPTER 1 – INTRODUCTION 

Winter maintenance of roadways remains a major challenge for transportation agencies in states 

with harsh winter climates, including Michigan.  Low temperatures, poor visibility, and snow or 

ice on the roadway surface can all potentially degrade traffic safety and operations. Winter 

maintenance activities, particularly snow removal and deicing, help agencies improved roadway 

safety and mobility during poor winter weather conditions. Given limited winter maintenance 

resources, including vehicles, equipment, workers, and chemicals, it is crucial for state 

departments of transportation (DOTs) to perform these activities in as cost-effective manner as 

possible, while maintaining the highest level of safety for motorists and drivers of winter 

maintenance trucks (WMT).     

 

One primary safety concern during snow plowing and deicing activities is the potential for rear 

end conflicts or collisions between motorists and winter maintenance trucks due to the reduced 

speeds used while performing these activities. Collisions involving WMTs can result in substantive 

property damage, vehicle repair, and medical costs. In addition, these types of crashes can put the 

WMTs temporarily out of operation, resulting in increased agency costs and reduced mobility and 

safety on the affected roadways. To counter these issues, state DOTs have attempted various means 

of enhancing safety and mobility during winter maintenance operations. One method is to provide 

education and outreach to motorists to improve driving on ice- or snow-covered roads, particularly 

around WMTs. For example, drivers are advised to accelerate and decelerate gradually, allowing 

extra time and distance to stop (Iowa DOT, 2017; MDOT, 2017). They are also advised not to 

follow WMTs too closely and to be mindful of the larger size of these vehicles, which results in 

potential blind spots, as well as slower travel speeds (IOWADOT, 2017). Despite these efforts to 

optimize safety during winter maintenance, and particularly snow removal procedures, the number 

of crashes that involve a WMT remains significant and represents an opportunity area for 

improvement.  

 

To address these concerns, transportation authorities have begun assessing various collision 

avoidance technologies to warn drivers as they approach a WMT, with the objective of facilitating 

subsequent speed reductions and cautious driving behavior by motorists approaching such 

vehicles. One such system (developed by a private industry); referred to as the collision avoidance 
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and mitigation system (CAMS), was installed on WMTs in Michigan for assessment under this 

study. This system includes a rear facing radar sensor that continuously monitors the speed and 

distance of vehicles following the WMT. This information is then utilized, along with the speed 

of the WMT, to calculate the headway between the WMT and following vehicles. If a vehicle is 

detected as encroaching too close to the rear of the WMT, the system triggers a special rear facing 

beacon to warn approaching drivers so as to prevent a possible collision. The CAMS system also 

includes an integrated rear facing video camera, which provides a view of approaching vehicles 

along with trajectory and warning alert information overlaid onto the video image. This video is 

transmitted to an LCD screen positioned in the cab of the WMT vehicle providing the driver with 

a view (which includes an overlay of approaching vehicle trajectories, along with the status of the 

CAMS warning light) of the rear of the vehicle. As this is a new and unproven system, research is 

needed to measure the potential effectiveness of this CAMS as a tool to reduce collisions between 

WMTs and passenger vehicles in Michigan. 

 

1.1 Background and Problem 

Historically, a significant portion of winter maintenance research has focused on operational 

aspects, such as determining optimal routing strategies for snowplows in consideration of historical 

and forecasted traffic and weather data (Moss, 1970; Bureau of Management Consulting, 1975; 

Tucker III, 1977; Atkins, Dierckman, & O’Bryant, 1990; Lemieux & Campagna, 1984; Chernak, 

Kustiner, & Phillips, 1990; Robinson, Ogawa, & Frickenstein, 1990; Hartman, Hogenson, & 

Miller, 1990; Perrier, Langevin, & Campbell, 2007). More recently, a greater emphasis of winter 

maintenance operations has been to ensure the safety of snow plow drivers and the traveling public 

during and after winter storm events. Although measures such as installing green warning lights 

on maintenance trucks or blade-mounted warning lights have helped further improve safety during 

winter maintenance activities, more advanced solutions, such as the CAMS system, present an 

opportunity for a more proactive means of increasing driver awareness and minimizing the 

potential for WMT-involved collisions. As such, since the CAMS technology has not been 

implemented or tested for winter maintenance operations in Michigan, its effect on roadway safety 

during winter maintenance activities remains uncertain.    
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An evaluation of the CAMS performance should consider various aspects. It will initially be 

necessary to assess the capability of CAMS to properly detect vehicles and issuing warning alerts 

based on the preset parameters during maintenance operations. As a part of this performance 

evaluation, it will also be necessary to assess the ability for the system to remain clean and clear 

of snow, ice, grime, salt, mud, and other debris that may impact CAMS performance during winter 

maintenance activities. After verifying the CAMS operational performance, it will be necessary to 

assess the impact of the warning alert on motorists’ behavior. It is also of value to assess the 

opinions and desires of winter maintenance truck drivers, including regular operators of CAMS-

equipped trucks.      

 

1.2 Study Objectives 

In addition to the above noted preliminary CAMS operational performance and warning alert 

assessments, MDOT sought to determine the effectiveness of broad statewide deployment of 

CAMS. To this end, the study sought to assess the extent to which CAMS improves drivers’ 

behavior near WMTs and to determine if the potential exist for CAMS to help reduce WMT-

involved crashes. In support of this broader goal, the following objectives are defined for this 

study: 

1. Test the performance and effectiveness of the CAMS system using MDOT’s CAMS-

equipped winter maintenance trucks during plowing activities occurring during the winter 

season of early 2018. 

2. Obtain feedback from winter maintenance personnel across Michigan and nationwide, 

including WMT drivers with and without experience using CAMS-equipped vehicles.  

3. Identify potential benefits along with key issues and challenges of using CAMS on winter 

maintenance trucks. 

4. Perform a cost/benefit analysis of CAMS used on winter maintenance trucks. 

5. Develop recommendations for use of CAMS on winter maintenance trucks based on 

synthesis of the literature review, field evaluation, driver surveys, benefit/cost analysis, and 

other aspects. 
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1.3 Research Tasks 

To accomplish the aforementioned objectives, the research team executed a detailed research plan 

to estimate the potential effectiveness of CAMS as a safety countermeasure to reduce conflicts and 

collisions between WMTs and passenger vehicles in Michigan. At a high-level, the research 

involves field data collection to discern the ability of CAMS, which was installed on two MDOT 

and two Oakland County Road Commission trucks, to accurately detect close-following vehicles, 

in addition to the action of close-following drivers upon receiving the CAMS warning alert. These 

field data are further supported by feedback from drivers of the CAMS-equipped trucks. These 

data are collectively used to estimate the potential safety effectiveness of the CAMS system, along 

with formulation of subsequent recommendations for future deployment of the system by MDOT 

and other road agencies throughout Michigan. The following tasks are performed during this 

research: 

 

• Task 1:  Literature Review 

• Task 2:  Review of Current Winter Maintenance Practices 

• Task 3:  Preliminary CAMS Demonstration 

• Task 4:  Controlled Performance Testing of CAMS 

• Task 5:  Collection of Field Data During Plowing Activities 

• Task 6:  Survey of CAMS Truck Drivers 

• Task 7:  Evaluation of Field Performance of CAMS 

o Vehicle Detection Accuracy 

o Driver Response to CAMS Alert  

• Task 8:  Assess Cost Effectiveness 

• Task 9:  Develop and Deliver Final Report   

 

1.4 Report Structure 

The remainder of this report is structured as follows. Chapter 2 provides a review of the current 

practices utilized by transportation agencies to prevent crashes that involve WMTs. Chapter 3 

reviews the operational details of the proposed CAMS in this study. Chapter 4 provides details of 

a controlled field study to determine the operational capabilities of the CAMS. Chapter 5 provides 
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an evaluation of actual field operations of the CAMS to evaluate the performance of the warning 

system, including whether the warning light was activated properly along with performance of the 

washing system for the sensor housing. Chapter 6 provides an assessment of the behavior of 

motorists in response to activation of the warning light, which was determined by comparing driver 

behavior with the warning beacon active vs. inactive (e.g., normal condition). Chapter 7 provides 

a summary of feedback obtained during surveys of CAMS truck drivers and non-CAMS truck 

drivers in Michigan. Chapter 8 presents an assessment of the crash and injury reduction potential, 

in addition to estimation of the cost effectiveness of the CAMS system. Finally, Chapter 9 includes 

a summary of findings, discussion of the study limitations, and the final recommendations for 

consideration by MDOT. 
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CHAPTER 2 – CURRENT STATE OF THE PRACTICE 

A substantial proportion of vehicle crashes occur due to human errors (Harper, Hendrickson, & 

Samaras, 2016). Such issues are exacerbated during winter periods when weather and road 

conditions deteriorate, leading to reduced visibility and pavement friction. Recent research from 

Michigan State University found that the frequency, type, and severity of winter crashes are all 

impacted by snowfall levels (Michigan Vehicle Code Section 257.698), suggesting that further 

work is needed to mitigate crashes related to winter weather.   

 

Although vehicle and highway automation are likely more complete solutions toward reducing 

crashes caused by human error (Vahidi & Eskandarian, 2003), a fully automated vehicle/highway 

system remains decades away. Until then, advancements in collision avoidance systems will seek 

to reduce the frequency and severity of crashes that occur due to human error (Harper, 

Hendrickson, & Samaras, 2016). This chapter presents a review of the current state of the practice 

for improvements to warning systems associated with winter maintenance operations and is 

divided into three sections: 

• Literature Review, 

• Survey of Michigan County Road Commissions, and 

• Nationwide DOT Survey. 

 

In particular, this review sought to determine the potential for collision avoidance systems to 

reduce crashes that occur during winter maintenance activities, particularly rear end crashes with 

WMTs. Combined, the three sources of information provided information regarding proven and 

emerging technologies and areas for further development. Additionally, the survey responses 

provided a synopsis of various safety concerns held by roadway agencies regarding winter 

maintenance activities. 

   

2.1 Literature Review 

The literature review targeted prior research regarding technological advancements for winter 

maintenance operations, particularly collision avoidance systems, along with research related to 

increasing safety during WMT operations. Historically, a significant portion of winter maintenance 
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research has focused on operational aspects, such as determining optimal routing strategies for 

snowplows in consideration of historical and forecasted traffic and weather data. MDOT is one of 

several state DOTs to invest in advanced technologies to improve the effectiveness of its winter 

maintenance operations. One of the more common methods to improve efficiency is to equip 

WMTs with automatic vehicle location (AVL) systems, which when combined with road surface 

and weather data (e.g., RWIS or other sources), allow for real-time management of plowing and 

deicing operations. Figure 2.1 shows an example WMT and control center maintained for real-

time management of plowing and deicing operations. Evaluations of the effectiveness of various 

technological advancements related to improving winter operations are summarized in Table 2.1 

along with relevant safety related evaluations.   

 

 

Figure 2-1 MDOT Automatic Vehicle Location (AVL) for Winter Maintenance Vehicles 
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Table 2-1 Evaluations of Winter Maintenance Technology and Safety 

Title Evaluation Findings Reference 

Prevalence of Operator 
Fatigue in Winter 
Maintenance Operations 

An in-depth survey was 
conducted, 1043 operators, 453 
managers, and 29 Clear Road 
members answered questions 
regarding fatigue.  

75% of operators and 
managers feel that fatigue is 
a major safety issue. Need 
more research on 
countermeasures for 
fatigue. 

(Camden, et al., 
2018) 

Evaluation of the 
GPS/AVL Systems for 
Snow and Ice Operations 
Resource Management 

By the end of the study, 187 
trucks were equipped with 
AVL systems for winter 
maintenance vehicles. Multiple 
pieces of equipment/ sensors 
were utilized to gathering salt, 
picture of the road, plow 
position, bed scales, and road 
temperature data. 

Equipment, especially 
external equipment, must 
be calibrated frequently in 
order to be useful in 
inclement weather. 

(Schneider, 
Maistros, Crow, 
Holik, & Gould, 
2017) 

The Intelligent Winter 
Road Maintenance 
Management in Slovak 
Conditions 

The goal is to give dispatchers 
and driver spreader the best 
real-time weather data to 
optimize their work. AVL and 
mobile road weather data with 
thermal mapping is ideal for 
this concept. 

AVL and RWIS systems 
are fundamental 
components for optimizing 
winter maintenance fleets. 
Linking the two systems is 
still needed in Slovakia. 

(Kocianova, 
2015) 

Winter Road Maintenance 
and the Internet of Things 
(IoT) 

Reviews and establishes winter 
maintenance corridor and 
corresponding IoT hub for 
meteorological data. Low-cost 
air temperature sensors were 
installed on lamp post within 
the test area. 

This test presents some of 
the challenges for IoT in 
winter maintenance. The 
test air sensor is already 
outdated compared to new 
wireless technology. Cost 
of deployment and 
maintenance to calibrate are 
also significant factors. 
With more advances IoT 
could overcome any of the 
current limitations and help 
winter maintenance 
operations.  

(Chapman, et al., 
2014) 

Quantifying Safety 
Benefit of Winter Road 
Maintenance: Accident 
Frequency 

Using weather, road condition 
observations, traffic counts, 
and crashes, an investigation 
into vehicle crashes during 
winter events occurred. Three 
negative binomial models were 
used to analyze the data.  

It is found that road surface 
conditions were a 
statistically significant in 
vehicle crashes. 

(Usman, Fu, & 
Miranda-Moreno, 
2010) 
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More recently, however, greater emphasis has been placed on ensuring the safety of snowplow 

drivers and the traveling public during plowing and deicing activities, particularly through the use 

of enhanced vehicular warning lights. One recent advancement in this area is the use of green 

warning lights, which increase visibility over traditional amber warning lights due to the sensitivity 

of the human eye to the green/yellow spectrum. Recently, the Michigan Vehicle Code was 

modified (Heqimi, Kay, & Gates, 2017) to allow for the use of green warning lights on winter 

maintenance vehicles, an example of which is shown in Figure 2.2b (Weingarten, 2016). The 

modest implementation cost of $100 per vehicle (Cranson & Donohue, 2016) has led to widespread 

implementation of green warning lights on maintenance vehicles throughout Michigan. It has also 

become increasingly common to include a warning light mounted on the top corner of the plow 

blade (Figure 2.2a).   

 

 

Figure 2-2 Typical Warning Lights for Winter Maintenance Vehicles 

 

However, from a safety perspective, the effectiveness of these enhanced warning light systems 

towards improving the behavior of motorists near WMTs, particularly under adverse winter 

weather conditions, remains unproven. Furthermore, while these types of passive warning devices 

provide a cost-effective means for improving conspicuity, more advanced solutions such collision 

avoidance systems, present an opportunity for a more proactive means of increasing driver 

awareness and minimizing the potential for WMT-involved collisions.   
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In-cabin assistive systems for WMT drivers are another method for improving safety during winter 

maintenance activities. Figure 2.3(a) depicts a typical example of how a projector and image 

combiner provide imagery of the roadway under low visibility conditions. These displays utilize 

data from antennas and sensors installed on the vehicle, as shown in Figure 2.3(b), which collect 

information about the environment, roadway, and weather conditions (Gorjestani, et al., 2003). 

The CAMS system evaluated as a part of this study provided both an active alert to motorists 

approaching too closely along with a driver assistive system to provide information to the WMT 

driver. 

 

 

Figure 2-3 Driver Assistive Systems on Winter Maintenance Vehicles 

 

As MDOT has no experience with implementation of collision avoidance systems on winter 

maintenance vehicles, a review of literature pertaining to collision avoidance systems was 

performed. Ideally, it was desirable to ascertain the effectiveness of collision avoidance systems 

on winter maintenance vehicles.  However, although numerous studies have investigated various 

aspects of collision avoidance systems, in none of these cases were the systems implemented on 

winter maintenance vehicles.  Nevertheless, the literature review findings, which are summarized 

in Table 2.2, suggest that collision avoidance systems may be a cost-effective safety treatment 

when properly calibrated to consider the behavior of actual drivers.  
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Table 2-2 Evaluations of Collision Avoidance Systems 

Title Evaluation Findings Reference 

A Collision Avoidance 
Scheme for Autonomous 
Vehicles Inspired by 
Human Social Norms 

This paper reviews the idea of an 
artificial society of autonomous vehicles 
with different human personalities and 
social norms within their code. A 
standard modeling tool, NetLogo, is 
used to test the behavior of non-social 
norms to social norm-based artificial 
society. 

For autonomous vehicles to be utilized 
by humans, humans must feel that it 
meets their standard for operating 
safely on the road. This paper 
provides optimal parameters suitable 
for avoiding road crashes in different 
road traffic situations. 

(Riaz, et al., 
2018) 

Real Time 
Implementation of 
Socially Acceptable 
Collision Avoidance of a 
Low Speed Autonomous 
Shuttle Using the Elastic 
Band Method 

In a high pedestrian density area, an 
autonomous shuttle's avoidance systems 
are evaluated. A Hardware-In-the-Loop 
connected vehicle was used to simulate 
this scenario. Using the data, a model 
was developed with the elastic band 
method. 

This study presented the effectiveness 
of the elastic band method based on 
socially acceptable collision 
avoidance for low speed shuttles. 

(Wang, Tota, 
Aksun-
Guvenc, & 
Guvenc, 
2018) 

Cost and Benefit 
Estimates of Partially-
Automated Vehicle 
Collision Avoidance 
Technologies 

Reviews the benefits and cost for a large 
fleet implementation of blind spot 
monitoring, lane-departure warning, and 
forward collision warning systems in the 
US. 

They found a $861 per vehicle net 
benefit assuming that an upper bound 
where all crashes were avoided, and a 
lower bound were observed insurance 
data are utilized. 

(Harper, 
Hendrickson, 
& Samaras, 
2016) 

New Approach of 
Accident Benefit 
Analysis for Rear End 
Collision Avoidance and 
Mitigation Systems 

Using German In-Depth Accident Study 
database, this research reviews the 
reactions of different drivers from 
warning, braking support, or 
autonomous braking with respect to 
motorist behavior. The accident 
avoidance and speed reduction were 
calculated for all driver types, warning 
system types, and applications. 

The effectiveness of a collision 
avoidance system will depend on 
driver behavior and reaction time. 
Emergency Brake Assist function for 
a realistic driver is considered. 

(Georgi, et 
al., 2009) 

A Method of Evaluating 
Collision Avoidance 
Systems using 
Naturalistic Driving Data 

Using real driver data, the research 
reviews algorithms without assumptions 
of reaction time and response inputs.  

This method allows collision 
avoidance systems to be compared 
and provides data for development of 
these systems. 

(McLaughlin, 
Hankey, & 
Dingus, 
2008) 

Evaluation of the Volvo 
Intelligent Vehicle 
Initiative Field 
Operational Test Version 
1.3 

Tested three systems on commercial 
vehicles: collision warning systems, 
adaptive cruise control, and advanced 
braking systems. Looked at safety 
benefits expected, survey for human 
perception, and cost benefit analysis 

For the collision warning systems, one 
model and assumption resulted in a 
52% elimination of conflicts with the 
vehicle. Adding the other two systems 
reduced another 9%. 

(Battelle, 
2007) 

Research Advances in 
Intelligent Collision 
Avoidance and Adaptive 
Cruise Control 

Reviews the current status of collision 
avoidance/warning systems as well as 
automation of vehicle 
longitudinal/lateral control tasks. 

This paper reviews published papers 
to understand the impact of these 
systems within multiple factors such 
as driver comfort, increase safety, and 
increase highway capacity. In regards 
to warning systems, the appropriate 
warning and braking distances are the 
most important input for the success 
of these systems. 

(Vahidi & 
Eskandarian, 
2003) 
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2.2 Survey of Michigan County Road Commissions 

The research team conducted phone interviews with Michigan county road commissions in the 

summer of 2018. The research team attempted to contact all 83 county road commissions in 

Michigan, although only 21 responded, as displayed in Figure 2.4. The intent of these surveys was 

to identify safety concerns associated with winter maintenance operations faced by county road 

commissions across Michigan. This survey was intended to serve as a companion to the MDOT 

truck driver survey presented later in this report. The questions were related to safety for WMT 

operators, particularly related to tailgating WMTs, and included the following: 

1. Is your county on contract with Michigan DOT for winter maintenance? 

2. Are or were you a WMT operator? 

3. What are some of the major safety issues for WMT operators?  

4. Do you think tailgating is a significant issue for WMT? 

5. Do you have any suggestions to decrease tailgating of WMT? 

6. Do you think a collision avoidance system on the rear of the WMT would improve safety? 

7. Are there any other types of warning systems that would benefit WMT? 

  

Figure 2-4 Surveyed Counties in Michigan 
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Table 2.3 presents the responses to the survey of county road commissions in Michigan.  
 

 
Table 2-3 Responses to Survey of Michigan County Road Commissions 

Questions and Responses (1) Response Tally Response Percent 
Is your county on contract with Michigan DOT? 
Yes 15 71% 
No 6 29% 
Are or were you a WMT operator? 
Yes 13 62% 
No 8 38% 
Were you ever in a crash with another vehicle while operating a WMT? 
Yes 2 10% 
No 11 52% 
N/A 8 38% 
What are some of the major safety issues for WMT operators? (2) 
Traveling Public 16 76% 
Visibility 5 24% 
Intersections 5 24% 
Do you think tailgating is a significant issue for WMT? 
Significant Issue 16 76% 
Not Significant 5 24% 
Do you have any suggestions to decrease tailgating of WMT? (2) 
Education 12 57% 
Lights 13 62% 
No Suggestion 4 19% 
Enforcement 2 10% 
Do you think a collision avoidance system on the rear of the WMT would improve safety? 
Yes 4 19% 
No 3 14% 
Maybe 5 24% 
Might Not Work Due to Weather Conditions 9 43% 
Are there other types of warning systems that would benefit WMT? (2) 
None 7 33% 
More Sign and Lights 8 38% 
More Education 3 14% 
Other 6 29% 
(1) Surveys were conducted via phone interview in summer of 2018.  
(2) Multiple responses received from select counties causing the total to exceed 100%. 
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As can be observed in Table 2.3, 76% of the respondents cited the traveling public as a major 

safety concern and the same number believe that tailgating is a significant issue. However, only 

19% believe that a CAMS would work to improve safety, while 43% mentioned concerns about 

how well the system would operate during inclement weather conditions. Two-thirds of the 

respondents felt that some other types of warning systems would benefit WMTs, including more 

signs and lights (38%), more education (14%), or other systems (29%). The remaining one-third 

did not feel that any warning system would benefit WMT safety. Table 2.4 presents a summary of 

notable comments received during the in-state survey. 

 

Table 2-4 Notable Comments from Surveys of Michigan Counties 

Counties Comment 

Kent County 
Would rather have the traveling public following behind 
them even if they are tailgating, then to be trying to pass 
where the road is not treated yet. 

Alpena, Arenac, Barry, Charlevoix, and Marquette 
County 

Noted intersection as a major safety concern for WMT 
operators. 

Houghton County 
Mentioned that the citizens in their county plow their 
driveways and move the snow across the street which 
becomes a major safety issue. 

Lake County Tries to decrease the amount of safety concerns by 
treating the roads as soon and quickly as possible. 

Alpena, Arenac, Barry, Berrien, Branch, Calhoun, 
Charlevoix, Chippewa, Delta, Genesee, Huron, 
Kalkaska, Mackinac, Manistee, and Osceola County 

All mentioned concerns with keeping equipment and 
back of the truck clear of snow and ice in order for the 
CAMS to work. 

Osceola County Tested rear deflector attachment (like a spoiler) to assist 
with keeping snow off the back of the truck. 

Note: These findings are from phone interviews with county road commission maintenance personnel in the 
summer of 2018.  
 

 

Most noteworthy, 15 of the 21 responding counties stated concerns with CAMS potentially not 

working properly due to snow and ice building up on the back of the truck during harsh winter 

conditions. Intersections were cited as a safety concern for five out of the 21 counties.   

 

14 
 



2.3 Nationwide DOT survey 

Though much may be learned from the survey of Michigan counties, a nationwide survey of state 

DOTs allowed the research team to obtain a better understanding of the winter maintenance related 

safety concerns and warning systems implemented in other states. The research team attempted to 

survey all states that endure snow and ice events, and received responses from 14 state DOTs, 

which are indicated in Figure 2.5. 

 

 
Figure 2-5 State DOTs Surveyed 
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As seen in Figure 2.5, the surveys conducted include states from the west coast to the east coast, 

affording a vast range of weather and terrain conditions. The national survey responses are 

presented in Table 2.5. 

 

As shown in Table 2.5, 80% of the state DOTs feel that the traveling public is a significant safety 

issue for their WMT operators, while 67% of the DOTs think that tailgating is a major safety 

concern. Approximately 47% of respondents believe that a collision avoidance system might 

improve safety, which was markedly higher than the 19% found in the county surveys. More 

warning lighting and signing was mentioned by 53% of states as a potential benefit to WMT safety, 

which was also greater than in the county survey.  In addition to the breakdown of responses from 

the DOTs presented in Table 2.5, Table 2.6 contains some additional noteworthy comments from 

the national surveys. 
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Table 2-5 National DOTs Responses to Survey 

Questions and Responses (1) Response Tally Response Percent 
Are or were you a WMT operator? 
Yes 4 27% 
No 11 73% 
Were you ever in a crash with another vehicle while operating a WMT? 
Yes 1 7% 
No 3 20% 
N/A 11 73% 
What are some of the major safety issues for WMT operators? (2) 
Traveling Public 12 80% 
Visibility 4 27% 
Non-seasoned Staff 2 13% 
Road Conditions 4 27% 
Fatigue 4 27% 
Do you think tailgating is a significant issue for WMT? 
Significant Issue 10 67% 
Not Significant 5 33% 
Do you have any suggestions to decrease tailgating of WMT? (2) 
Education 8 53% 
Lights 4 27% 
No Suggestion 2 13% 
Follow-Vehicles 2 13% 
Do you think a collision avoidance system on the rear of the WMT would improve safety? 
Yes 7 47% 
No 2 13% 
Maybe 5 33% 
Not Sure 1 7% 
Are there other types of warning systems that would benefit WMT? (2) 
None 3 20% 
More Sign and Lights 8 53% 
More Education 1 7% 
Other 4 27% 
(1) Surveys were conducted via phone interview in Summer of 2018.  
(2) Multiple responses received from select states causing the total to exceed 100%. 
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Table 2-6 Notable Comments from Nationwide State DOT Surveys 

State DOTs Finding from Survey 

California and Missouri Both these states had a safety concern due to their "green" 
workforce. They are losing many seasoned drivers. 

Idaho, Minnesota, New York, and West 
Virginia 

All mentioned fatigue as a safety concern for their winter 
maintenance operators. 

California, Idaho, Minnesota, Missouri, 
and New York Don’t feel that tailgating WMT is a major safety concern. 

Alabama and South Carolina Mentioned follow-vehicles or shadow vehicles as a 
method to keep WMT safe from tailgating. 

Massachusetts and New York Don't think that a collision avoidance system would work 
well in their state. 

Pennsylvania, South Carolina, Minnesota, 
West Virginia, and Wisconsin. 

Mentioned message boards and app-based messages as a 
method to keep operators safe by warning the public of 
treatment activities. 

Note: These findings are from phone interviews with state DOTs in the summer of 2018.  

 

Officials from California and Missouri spoke about their safety concerns with the personnel 

reduction and turn-over in their states, which is causing an undertrained winter maintenance 

workforce. Respondents in five states believe safety may be improved through message boards 

and app-based messages warning the traveling public of the presence of a WMT. Not surprisingly, 

none of the states surveyed have tested a collision avoidance system. This provides further impetus 

to evaluate collision avoidance technology to determine the potential safety impacts for 

widespread implementation on winter maintenance fleets in Michigan.  
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CHAPTER 3 – COLLISION AVOIDANCE AND MITIGATION SYSTEM 

This section provides details of the collision avoidance and mitigation system (CAMS) evaluated 

in this research study. As this is a new and unproven system, research was needed to measure the 

effectiveness of the CAMS as a tool to reduce rear-end collisions between WMTs and following 

vehicles and to subsequently estimate how such systems may improve safety during WMT 

operations across Michigan. The following sections provide details of the configuration and 

operation of the CAMS evaluated in this research.   

 

3.1 Configuration of the CAMS 

The CAMS evaluated in this study included a radar system, a warning light, and a camera installed 

on the rear side of WMTs. The radar system monitors the relative distance, speed, and acceleration 

of vehicles following behind the WMT to a maximum range of 600 feet. The radar system monitors 

up to 31 vehicles and logs the following information 10 times per second: relative distance 

(longitudinal and lateral), relative speed (longitudinal and lateral), and relative acceleration 

(longitudinal). This information is fed to an on-board computer, where the information is processed 

to determine the need for a warning alert. Upon detection of a following vehicle exceeding a pre-

specified time headway threshold, an LED warning light-bar mounted on the rear side of WMT is 

activated. This warning light is intended to alert the drivers that have encroached too closely to the 

WMT with hopes that the encroaching driver backs off or changes lanes.   

 

The system is also equipped with a rear-view camera that provides WMT drivers with a view of 

the rear of the truck and at the same time records the video in a hard drive for evaluation of the 

system performance. This video is overlaid with vehicle trajectory information from the radar unit.  

It should be noted that the camera is only used for monitoring, and does not have any vehicle 

detection capability. Figure 3.1 depicts the CAMS system mounted on an MDOT truck, along with 

the view afforded to the operator.   
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Figure 3-1 Collision Avoidance and Mitigation System 

 
The warning light system is activated according to the following procedure. The ratio of the 

relative distance to relative speed between the detected vehicle and the WMT provides the relative 

headway, which is the basis for the warning light activation. When the following vehicle, traveling 

in the same lane as of WMT, encroaches towards the truck and crosses a pre-specified warning 

headway threshold, the warning light gets activated. The lighting system can be configured for 

different patterns in different headway thresholds to alarm the encroaching vehicles. For this study, 

two different warning alert patterns were established, termed Level 1 and Level 2, and were set to 

relative headways of 7 and 5 seconds, respectively, after initial controlled testing of the system. 

Chapter 4 discusses the process of choosing the proper thresholds in more detail. Note that in the 

current implementation of the CAMS, the warning light is only triggered if the relative headway 

drops below the threshold. Thus, a vehicle following the WMT with the same speed (i.e., with zero 

relative speed)  would not trigger the warning light, regardless of the following distance, as the 

distance would remain constant based on the zero relative speed. This is a known drawback to the 

system as evaluated here, although the system can be reprogrammed to also include a distance-

based threshold.   
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As the radar system performance might be hindered when it is occluded by layers of debris, the 

system must be kept clear of ice, mud, snow, and salt buildup. To counter this, the radar and camera 

were encased within a clear plastic housing that included a cleaning system. The cleaning system 

consists of a defrosting grid on the camera and radar box, and nozzles that spray water and air at 

certain frequencies to keep the CAMS box clean while the WMT is moving faster than a certain 

threshold (e.g. 10 miles per hour).   

 

3.2 CAMS Logged Data 

The CAMS evaluated in this study logs six different data files during the maintenance operations: 

four text-format files (Hardware.txt, Camera.txt, CAN_Driver.txt, and Display.txt) and two csv-

format files (detected objects information and truck speed information). The content and 

application of each file are discussed in detail here. Text files are generated whenever the system 

is switched on. Hardware, Camera, and CAN_Driver files include the general information of the 

system, such as CPU settings, camera specifications, and the system start-up times. Display file 

provides the information of the triggered warnings during the operations, recording the level (1 or 

2) and the exact time (with millisecond precision) of the issued warnings continuously, even when 

the truck is stopped. 

 

The two csv-format files collect the information of detected objects and truck speed. They are 

periodically written at time intervals of 5 minutes. This means that each csv logged data file 

includes the information of at most 5 minutes operation until the truck is stopped and/or the 

operation is terminated. The first csv file contains the information of relative distance (longitudinal 

and lateral), relative speed (longitudinal and lateral), and relative acceleration (longitudinal) of up 

to 31 objects located or traveling behind the truck. It logs the information at every one-tenth of a 

second. The second csv file provides the truck absolute speed at every one-tenth of a second (in 

average). 

 

The logged data files generated based on the radar system detections and recorded videos by 

camera are stored in an external hard drive to be used for the system evaluation. Once the hard 

drive is full, the oldest data would be overwritten. Thus, frequent data back ups from the system 

were required for evaluation purposes. 
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CHAPTER 4 – CONTROLLED FIELD TEST 

This chapter focuses on the controlled test of the CAMS system performance, which was 

conducted on January 3, 2018 using MDOT truck number 4005. The controlled test investigated 

several variables, including type of following vehicle, winter maintenance truck travel speed, 

following vehicle travel speed, and alert time thresholds, to examine the impacts on the system 

performance. Furthermore, to determine the effect of dirt and grime build up, the system was also 

tested with mud smeared on the camera/radar encasement. In this chapter, the initial experiments 

that aimed to adjust the warning system thresholds are discussed initially. These experiments were 

performed using three different vehicles operated by members of the project team. Once the 

thresholds were adjusted, additional experiments on primary parameters were performed using 

only the passenger car. The detailed descriptions of these tests are explained in this chapter. 

 

4.1 Type of Following Vehicles 

Prior to implementing the controlled test runs, multiple preliminary experiments took place using 

three different vehicles (SUV, Large SUV, and Passenger car) as the following vehicle. The runs 

performed with the large SUV and the passenger car activated the warning light as prescribed.   

However, during the runs that included the standard SUV, which had an active radar-based forward 

collision avoidance system, the warning system did not work. Based on some unnecessary warning 

messages issued by the collision avoidance system of the SUV, it was possible that the radar-based 

forward collision avoidance system of the SUV interfered with the CAMS radar. However, further 

testing is needed to fully investigate any conflict between the (backward) CAMS system and other 

vehicles’ (forward) collision avoidance systems. Based on the initial testing with the three different 

vehicles, it was determined that subsequent controlled testing of the systems performance would 

be performed using only the passenger car. 

 

4.2 Warning Thresholds 

One of the primary parameters was to establish appropriate warning thresholds. The first scenario 

was conducted considering three rear encroachment warning thresholds of 5, 3, and 2 seconds, 

which were established by the CAMS manufacturer. All test runs at this setting demonstrated that 

only the first threshold (e.g., 5 seconds) was useful, as the lower thresholds were triggered too 
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close to the WMT. Due to the short gap between the truck and following vehicle, as soon as the 

warning system was activated (at 5 seconds), the following vehicle driver decelerated due to the 

uncomfortable short following distance. Therefore, it was not possible to activate the second or 

third thresholds or even distinguish different patterns of the warning system as the second and third 

warning thresholds were too close to the vehicle to be tested even in a controlled environment. 

Furthermore, even the initial 5 seconds threshold did not provide a large enough following 

distance, considering the aggressive braking needed by the test driver, who was expecting the 

warning system to be activated. Therefore, the thresholds are modified for further testing as 

follows: 8 second gap for the first threshold that activates a solid warning light, and 4 second gap 

for the second threshold that activates a flashing warning light. 

 

4.3 Calculation of Relative Distance 

During each test run, it was important for the following vehicle to maintain a prescribed distance 

and speed relative to the WMT. A LIDAR gun connected to a laptop was used in the following 

vehicle to monitor the relative speed and distance between the two vehicles. The relative speed 

between the WMT and the following vehicle could be easily monitored between the speedometer 

and LIDAR. Based on the prescribed speeds for each test run, it was necessary to calculate the 

relative distance between the following car and WMT (Figure 4.1) in advance using Equation 4.1. 

 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑡𝑡 × (𝑉𝑉𝑐𝑐 − 𝑉𝑉𝑇𝑇) × 1.47                                      (4.1) 

where, 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the estimated distance in feet, t is the threshold gap in seconds and 𝑉𝑉𝑐𝑐 and 𝑉𝑉𝑇𝑇 

respectively are car and truck speed in mph. The following driver maintained these prescribed 

relative distances by monitoring the LIDAR data during the tests. 

 
Figure 4-1 Relative distance between the following car and WMT 
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4.4 Controlled CAMS Performance Tests 

Three main tests were performed after setting up the new thresholds and selecting the passenger 

car as the test vehicle to follow the truck. The objectives, procedures and numerical findings are 

provided hereafter. 

 

4.4.1 Test 1 - Accuracy of Warning Light Activation  

Objective 

Investigate the accuracy of warning light activation at the pre-assigned headway thresholds. 

Procedure 

• The truck and the following car move with predefined constant speed at eight different runs 

(for different speed combinations). Table 4.1 illustrates the specification of the runs in Test 

1. 

Table 4-1 Specification of different runs in Test 1 

Run Truck Speed Car Speed Run Truck Speed Car Speed  

1st 25 30 5th 35 40  

2nd 25 35 6th 35 45  

3rd 25 40 7th 35 50  

4th 25 45 8th 35 55  

 
• In each run, as the following car approaches to the truck, the relative distance is recorded via 

a LIDAR gun at the time that the warning system is activated.  

• Note that test runs for each warning threshold were performed in separate attempts. The 

relative distance is easily recognizable in the logged data as the time at which the following 

vehicle speed decreases. 

• The recorded relative distance via the LIDAR gun should be matched with the calculated 

distances (Equation 4.1). 

• Also, a camera records the video of the data log on the computer screen and the situation in 

which the flash goes off (Figure 4.2) 
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Figure 4-2 Snapshot of the LIDAR data in Test 1 

 
Results 

The relative distance between the following car and WMT for both specified warning thresholds 

are evaluated by four different methods. Expected values of the relative distance are calculated 

using the Equation 4.1. The second source incorporates the use of LIDAR gun for the relative 

distance estimation. The relative distance has also been estimated using the CAMS radar logged 

data file. This file includes the information of relative distance, speed and acceleration of the 

following vehicles up to 31 objects. It provides the information at every one-tenth of a second. 

Using the timestamp, the relative distance is extracted for target object (following vehicle). 

Receded video by the CAMS camera is another source for evaluating the relative distance (Figure 

4.3). Relative distance is simply read from the left axis in the figure. Figure 4.4 illustrates the 

results of different types of relative distance estimation for the eight runs described in Table 4.1. 

Figures 4.4(a) and (b) show the results for the first level warning threshold and Figures 4.4(c) and 

(d) depict the results for the second level warning threshold. 
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Figure 4-3 Evaluating the relative distance using recorded video by CAMS 
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Figure 4-4 Evaluated relative distance for (a) first warning threshold (8 sec) and truck speed of 25 mph, 
(b) first warning threshold (8 sec) and truck speed of 35 mph, (c) second warning threshold (4 sec) and 

truck speed of 25 mph, and (d) second warning threshold (4 sec) and truck speed of 35 mph 
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The results indicate that for the second level of warning (4 seconds), the different methods all 

provided similar relative distances regardless of the speed, with the exception of the video. 

However, for the first warning level, by increasing the relative speed, the relative distance provided 

by the CAMS (both video and logged data) was lower compared to the expected relative distance. 

This may be due to the decreased ability for the radar to accurately detect objects at longer 

distances, such is the case for an 8 second relative threshold at high speeds.   

 

4.4.2 Test 2 - Warning Light Deactivation Time 

Objective 

Measure the duration to deactivation of the warning light after the following car had receded. 

 

Procedure 

• This test aims to check the assumption that the warning system would be deactivated 1 

second after the following car reduces its speed. 

• To this end, as soon as the light is activated the following car brakes. A camera records 

the activation and deactivation of the warning system (Figure 4.5). 

• This test is accomplished for both warning thresholds and a certain speed of truck and 

following vehicle (Table 4.2). 

Table 4-2 Specification of Test 2 

Run 
Truck 
Speed 

Car Speed 

1st 25 30 
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Figure 4-5 Snapshot of the data collection in Test 2 

 

Results 

It is observed that for both warning levels the light is turned off up to about 3 seconds after the 

following car receded. 

 

4.4.3 Test 3 - Impacts of Occlusion by Mud/Grime 

Objective 

Assess CAMS performance while the sensor and camera are being covered by grime (Figure 4.6). 

 

Procedure 

• The following car moves up to the truck by 5 mph relative speed (for instance 𝑉𝑉𝑐𝑐 =

30 𝑚𝑚𝑚𝑚ℎ and 𝑉𝑉𝑇𝑇 = 25 𝑚𝑚𝑚𝑚ℎ). 

• As soon as the light goes off the following car brakes. 

• The recorded relative distance via the LIDAR gun should be matched with the calculated 

distances. 

• The box housing the radar unit is covered with increasing amount of mud/grime and the test 

was repeated.  
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Results 

The warning light was not activated when the housing for the radar unit was completely covered 

with mud/grime, such as that shown in Figure 4-6. 

 

 
Figure 4-6 CAMS with muddy box in Test 3  

 
4.5 Summary of Major Observations during Controlled Testing 

• Relative speeds more than 20 mph were not tested due to the high risk of collision. 

• Relative speeds less than 5 mph were considered as a non-significant condition. 

• The first threshold (8 seconds) seems to be proper for the following vehicle driver who 

was expecting the warning light, although it might not be long enough for distracted 

drivers who are not aware of the speed difference between the WMT and their vehicle.  

However, increasing this threshold will likely increase the following distance to the 

point where radar performance is decreased, which may lead to inaccurate triggering of 

the warning light.   

• The second threshold (4 seconds) seems to be too short, even for a prepared driver who 

was expecting it, leading to an aggressive brake and reaction from the following vehicle 

driver. For a distracted driver this number needs to be increased; otherwise, the driver 

may not have time to react and respond safely. 

• Using two thresholds with solid (initial) and flashing (second) patterns seems to be more 

effective relative to the previous case with three thresholds. 
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• The estimated distance (according to the following section) and its comparison with the 

measured distance using the LIDAR gun (in the following 3 main tests), suggest that 

there is a lag (1 to 2 seconds) in the system activation and the 8 and 4 seconds thresholds 

are not actual headways for the system.  

• In one of the initial experiments, the following vehicle was also equipped with a radar-

based frontal collision avoidance system that measures the distance between the vehicle 

and any leading vehicle, which may have caused interference with the CAMS radar 

during testing. A more detail testing and analysis may be necessary to determine if radar-

based frontal collision avoidance systems or other vehicle radar systems interfere with 

the CAMS radar. 

• The warning light was not activated when the box was completely covered with 

mud/grime, which also occluded the camera view. A clear view must be provided for 

the radar to operate correctly, while the camera view must also be maintained to monitor 

the system’s performance. 

• The feedback from the WMT driver at the controlled test specifies that the camera view 

is blocked as soon as the plowing operations gets started. Based on this feedback, the 

washing system software was updated to automatically activate the washing system 

(whenever the truck speed is above 10 mph) to prevent accumulation of mud/grime. 

Automating the washing system requires the liquid container to be refilled frequently.  

This will require the driver to monitor the liquid container, which may create practical 

challenges while performing plowing and deicing activities. 

• Also, based on this feedback, another nozzle was added to the washing system to spray 

both the radar system and camera lens to keep the CAMS box clean during the 

maintenance operations. 
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CHAPTER 5 – EVALUATION OF CAMS PERFORMANCE DURING WINTER 
MAINTENANCE OPERATIONS  

This chapter provides details of the CAMS performance analysis using operational data collected 

during actual maintenance activities between January and March 2018. The first section reviews 

the collected data and trajectories of WMTs. In the second section, the performance of the washing 

system is analyzed. The third section discusses the warning system performance in terms of 

statistics on true positive, false positive, and false negative cases. The last section summarizes the 

collective findings from these evaluations.   

 

5.1 Data Description 

Five separate data collection periods are explored to analyze the performance of the CAMS system. 

These data sets represent data collected by two MDOT trucks and one RCOC truck that were 

equipped with CAMS. Table 5.1 illustrates the operation dates for different data sets. The data 

collected by CAMS included the videos recorded by the rear facing camera during the maintenance 

operations, in addition to the radar data log, and the log of triggered warning alerts. The radar data 

log includes up to 31 detected objects behind the truck for every tenth of a second. For each object, 

relative lateral and longitudinal distance, speed, and acceleration are recorded. For MDOT trucks, 

in addition to the CAMS data, the AVL system provides the exact location and speed of the trucks. 

The routes of the MDOT trucks mainly included US-23 from Six Mile Rd to Hyne Rd, and I-96 

from N Burkhart Rd to Huron River Pkwy. Figure 5.1 depicts the trajectories for the MDOT trucks 

while performing winter maintenance activities during the operation dates. This trajectory 

information was used to identify data collected on ramps and when the WMT was turning.  

Table 5-1 Datasets description 
Dataset Truck Operation Dates 

1 MDOT 4004 01/29/2018 - 02/07/2018  
2 MDOT 4005 02/09/2018 - 02/11/2018 
3 MDOT 4004 02/23/2018 - 03/08/2018  
4 MDOT 4005 02/23/2018 - 03/08/2018  
5 RCOC 02/09/2018 - 02/12/2018 

 
5.2 Washing System Performance 

The main objective of the CAMS system is to reduce the crashes during winter maintenance 

activities. Therefore, its performance should not be impaired by the buildup of snow, ice, and 
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dirt/grime over the sensors during maintenance operations. The CAMS works based on a radar 

system that is capable of detecting objects even when it is somewhat occluded by snow or other 

precipitation. However, if it is covered by multiple layers of ice, snow, grime, salt, etc., then its 

performance might be impaired. Similarly, blockage of the camera view eliminates the ability for 

the driver to verify that the system is operational. It is typical for the backside of WMTs to quickly 

become covered with snow/ice/mud/grime during the winter maintenance operations. To combat 

this, a well-designed washing system is imperative to keep the radar and camera box clean and 

must be considered in CAMS design. Thus, to evaluate the performance of CAMS, it was essential 

to also investigate the washing system performance during WMTs operation and explore the 

impacts of its failure on the radar system performance. 

 

Around 200 hours of recorded videos by CAMS were obtained by the MSU research team to 

evaluate the performance of the washing system. A review of these videos found that blockage of 

the CAMS box, which is identifiable by covered camera view, might disrupt the radar system 

performance. To evaluate the performance of the washing system, four levels of camera view 

clarity are specified, based on the blockage intensity, which are illustrated in Figure 5.2 for both 

day and night time operations and described as follows:   

• In the “Clear” category, the following vehicles (or their headlights in the nighttime videos) 

are clearly visible and all the information of truck’s rear side is accessible.  

• In the “Slightly Blocked” case, the objects (or headlights) are slightly faded but are still 

detectable.  

• For the “Moderately Blocked” category, a small portion of the following vehicles (or 

headlights) is visible and it does not convey a complete information of truck rear side.  

• In “Totally Blocked” case, the camera view is completely blocked and nothing is visible. 

Note that identifying the totally blocked cases during night operations is challenging, 

especially when there is no following vehicle to use the headlight as an indicator. 

 

In this study, two types of analysis are performed to evaluate the CAMS washing system 

efficiency: (i) analysis of washing system performance based on the number of triggered warnings 

at different visibility conditions, and (ii) analysis of washing system performance based on the 

logged data size, which depends on the number of objects detected by the radar system. 
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Figure 5-1 Trajectories of (a) Dataset 1 (MDOT 4004), (b) Dataset 2 (MDOT 4005), (c) Dataset 3 

(MDOT 4004), and (d) Dataset 4 (MDOT 4005) – [Source: Google] 
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Figure 5-2 Four types of camera view quality during maintenance operations in (a) day and (b) 

night 
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5.2.1 Analysis of Washing System Performance based on Number of Triggered Warnings 

Figure 5.3 shows the duration of each category of camera view qualities besides the number of 

warnings recorded by the CAMS. Results are separately presented for day and night operations 

due to challenges associated with identifying the “Totally Blocked” cases during periods of 

darkness. In this figure, the left side graphs (i) illustrate the total duration of recorded videos and 

duration of each camera visibility category for different data sets. The right side graphs (ii) show 

the total number of level 1 and level 2 warnings and their four different subsets: number of 

recorded warnings triggered by vehicles traveling in the same lane of WMT, number of recorded 

warnings triggered by vehicles traveling in the adjacent lane of WMT, number of recorded 

warnings while the truck is stopped, and number of recorded warnings in the case that camera is 

totally blocked and the situation of truck’s rear side is not clear due to loss of visibility. For each 

graph, the data collection period is depicted on top. 

 

Figures 5.3(a) through 5.3(d) show the results for MDOT trucks.  Comparing the various blockage 

levels in Figures 5.3(a) and 5.3(b) shows that the total duration of recorded videos are the same 

but graph (b) includes a longer duration of totally blocked camera and as a result it has a smaller 

number of recorded warnings compared to graph (a). This suggests that an increase in the duration 

of totally blocked videos may contribute to a decrease in the number of warning alarms, perhaps 

due to occlusion of the radar in addition to the camera view. Figure 5.3(e) confirms this observation 

showing the same pattern. Figure 5.3(c) and (d) do not follow the same pattern, since the snow 

event is not significant for these two data sets. 
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Figure 5-3 (i) Duration of different categories of camera view quality and (ii) number of warnings 

recorded by CAMS for (a) MDOT-4004, (b) MDOT-4005, (c) MDOT-4004, (d) MDOT-4005, and (e) 
RCOC 
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To better understand the relationship between the duration of camera blockage and number of 

recorded warnings, percent duration of each camera blockage level relative to the total time (of 

recorded videos) versus the percent of triggered warnings during each camera blockage level 

relative to the total recorded warnings are provided in Figure 5.4. To exclude possible errors due 

to classifying the night time situations, the durations of each camera view category are presented 

only for operations during day times in this figure. 

 

 
Figure 5-4 Percentage of total time versus the percentage of total warnings for (a) MDOT-4004, (b) 

MDOT-4005, (c) MDOT-4004, (d) MDOT-4005, and (e) RCOC 
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The ratio of the percentage of recorded warnings during totally blocked time to performance of 

washing system during totally blocked time is 0.65, 0.24, and 0.15 respectively in Figure 5.4 (a), 

(b), and (e). This ratio is not available in Figure 5.4 (c), and (d), as the length of totally blocked 

time is zero for these data sets. The results show that only a small portion of warnings has been 

recorded during totally blocked time (this is not the case with other visibility categories), which 

suggests that the radar performance might also be negatively affected by the blockage. 

 

Following the same method, the earlier analysis is repeated just for two specific days, instead of 

the entire duration of each data set. This analysis considers the same operational hours during the 

day time for the proposed two cases to avoid any biases in the operational comparison due to this 

factor. Figure 5.5(a) and 5.5(b) illustrate duration of camera views and the number of recorded 

warnings for two selected days. In both subfigures of (a) and (b), the total duration of recorded 

videos for the two selected days are the same. Therefore, it is assumed that both cases have similar 

traffic volumes. In both Figures 5.5(a) and 5.5(b) the left-side graphs (i) show a longer duration of 

totally blocked camera compared to the right-side graphs (ii). This is exactly vice versa for number 

of recorded warnings. This shows that a longer duration of total blockage of the camera view 

results in lower number of triggered warnings. Thus, it can be concluded that the CAMS housing 

is occluded for a significant duration of the maintenance operations. In the next section, the 

performance of the washing system is explored using a different strategy focusing on the data 

logged by the radar system, rather than through assessment of the warning alert activation log. 

 

5.2.2 Analysis of Washing System Performance by Radar Logged Data File 

The results presented in the previous section demonstrate that the CAMS box is blocked for a 

significant portion of maintenance operations during the adverse weather conditions. Furthermore, 

lower rates of triggered warnings during the periods that the CAMS box is blocked suggests that 

the CAMS box blockage might also hinder the radar system performance, in addition to obstruction 

of the camera view. To further assess the impacts of the CAMS box blockage on the radar system 

performance, the radar system logged data files are explored. 
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Figure 5-5 Duration of camera views and the number of recorded warnings for (i) Friday (02/09/2018) 

and (ii) Saturday (02/10/2018) for (a) MDOT-4005, and (b) RCOC 

 
 

These files include the relative distance, speed, and acceleration of up to 31 objects detected by 

the radar system every one-tenth of a second. Each logged data file provides the information of 

detected objects for each 5 minutes of the maintenance operation, unless the operation is 

interrupted due to the truck stoppage. So, in most cases 3,000 (=5(min)×60(sec)×10(10th of sec)) 

rows of data are included in each logged data file. Each file also contains some general information 

(6.3% of each data file has non-zero values), even if there is no object detected behind the truck. 

The percentage of non-zero values in each logged data file indicates how much information is 

collected by the system. Therefore, analyzing this value over different data logged files that are 

recorded with various CAMS box visibilities can help to understand if the radar system is impaired 

by the CAMS box blockage.  
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Figure 5.6 shows the percentage of the non-zero values in the logged data files versus the 

percentage of totally blocked duration. These graphs are presented for the data sets with heavy 

snow events that result into long periods of camera blockage. Each bar represents one logged data 

file for up to 5-minutes maintenance operation. The red line in the lower graphs represents the 

lowest possible percentage for the number of non-zero values in each data file (6.3%). Distribution 

of the percentage of non-zero values shows that when the camera box is all clear this percentage 

is high, and when it is totally blocked, it is dropped to 6.3%, which means that no object is detected 

at all. Note that a positive speed is recorded during these periods, demonstrating the ongoing 

maintenance operation. Thus, it is concluded that no object is detected by the radar system, 

although vehicles continue to follow the WMT.  These graphs clearly illustrate that when the 

CAMS box is totally blocked, the radar system performance is impaired. 

 

Following the same concept, Figure 5.7 illustrates the percentage of non-zero values for the entire 

data collection periods for all data sets. Each bar represents one logged data file for up to 5-minutes 

maintenance operation. The dark line represents the lowest possible percentage (6.3%). Duration 

of logged data with non-zero values are significant for part (a), (b), and (e). However, the same 

pattern is not observed in part (c) and (d). This is due to the fact that in the data sets associated 

with part (c) and (d), the snow events are mild relative to snow events associated with the data sets 

in part (a), (b), and (e). 

 

Overall, results show that the washing system performance could affect the efficiency of the 

CAMS significantly. Thus, considering the fact that such systems are needed during adverse 

weather conditions, a well-designed and efficient washing system is strongly recommended. 
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Figure 5-6 Percentage of non-zero values in the logged data versus percentage of totally blocked 

duration for (a) MDOT-4004, (b) MDOT-4005, and (c) RCOC 

 
 
 
 
 

42 
 



 
Figure 5-7 Percentage of non-zero values in the logged data files for (a) MDOT-4004, (b) MDOT-4005, 

(c) MDOT-4004, (d) MDOT-4005, and (e) RCOC 
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5.3 Warning System Performance 

This section focuses on the CAMS performance by analyzing the triggered warnings. It is 

important to have a precise and well-deigned alarm system to inform distracted drivers 

encroaching towards WMTs. To this end, in this section, the distribution of the headway between 

the WMT and following vehicles in analyzed for cases where the alarm is triggered. Furthermore, 

the statistics on false positive and false negative triggered warnings are also analyzed here. 

 

5.3.1 Warning Headway Distribution Analysis 

As discussed previously, two levels of warnings are specified for the system. Level 1 is set up for 

7 seconds relative headway and level 2 is set up for 5 seconds. It is expected to observe the actual 

relative headway of 7 and 5 seconds, consistent with the programmed thresholds, at the time that 

the warning is triggered. However, the collected data sets show that there is a distribution in the 

observed relative headway. To this end, headway distributions of level 1 and level 2 warnings that 

are triggered due to the vehicles traveling in the same lane of WMT (true positive warnings), are 

extracted and depicted in Figure 5.8. This distribution is separated for tangent and curve segments 

as well as for day and night time operation. In this figure, each bar represents for an issued warning. 

Results show that the warning alarm was not activated exactly on the pre-specified time thresholds, 

and experienced up to 2 seconds delay prior to activation - a significant deviation from the 7 and 

5 seconds thresholds. 

 

5.3.2 Analysis of False Positive Warning Alerts 

It is observed that in many cases, vehicles passing by the WMT in its adjacent lane trigger the 

warning (see Figure 5.3(ii) for the distribution and values of different data sets). This is a false 

positive case as the warning should only being issued for following vehicles in the same lane with 

the WMT. This section aims to explore the reason behind this observation. In Figure 5.9 one of 

these false positive cases is studied in detail. Figure 5.9(a) illustrates trajectories of two vehicles 

following WMT at a certain time that a false positive warning is triggered. Figure 5.9(b) 

demonstrates a snapshot of the recorded video, which is captured exactly at the time that the 

warning is triggered (8:18:26 AM). Both vehicles are closing the gap towards WMT (because the 

absolute value of the relative headway is decreasing for both of them). The left side vehicle is 
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traveling in the adjacent lane (because the lateral offset is more than a lane width) and the right 

side one is encroaching to the truck rear zone in the same lane of WMT (because the lateral offset 

is close to zero). 

 

At the time that the warning light goes off, the headway of the adjacent lane vehicle is 6.9 seconds, 

which is less than level 1 pre-specified threshold (7 seconds). However, the following vehicle in 

the same lane has a large headway (331 seconds), since the relative speed between this vehicle and 

WMT is almost zero (0.1 km/h). The lateral offset for the adjacent lane vehicle at the time that the 

warning is triggered is recorded as 4.3 meters, which is more than a lane width. It means that the 

radar can precisely locate the vehicles and their relative coordinates consistent with the recorded 

video. However, the warning system is activated for the vehicles in the adjacent lane with even 

large lateral offset. This is an important observation as it shows that for many false positive cases 

due to adjacent lane following vehicles, there is no issue related to the radar system performance. 

This suggests that revising the detection and alert algorithm in the warning system to better exclude 

adjacent lane vehicles should resolve this issue. 

 

5.3.3 Analysis of False Negative Warning Alerts 

In this section, false negative cases are discussed, in which the following vehicle encroaches 

towards WMT and crosses the warning threshold, but it does not trigger the warning system. To 

this end, the trajectory of all following vehicles in the same lane as the WMT are explored and 

once the following vehicle crosses the CAMS thresholds, it is checked with the triggered warnings. 

Figure 5.10 illustrates the number of true positive and false negative warnings for the headways 

less than 7 seconds. Figure 5.10(a) and 5.10(b) show these numbers for the tangent and curve 

segments and Figure 5.10(c) depicts the overall values. There are significantly more false negative 

cases on curve segments relative to tangent segments due to issues associated with locating the 

following vehicle on curves using the lateral distance. Another major observation is that there are 

less false negative cases for observed relative headways less than 4 seconds on the tangent sections. 

This suggests that delays in the alarm activation (observed as up to 2 seconds, as discussed in the 

previous section) as the main factor resulting in the large number of false negative cases. All in 

all, the results show that there are a significant number of false negative warnings, which means 

45 
 



that although the vehicles cross the warning threshold in the same lane of WMT, the warning 

system has not been activated. This suggests required system modifications to prevent these cases. 

 

 
Figure 5-8 Warning headway distribution for (i) Level 1 and (ii) Level 2 warnings for (a) MDOT-4004, 

(b) MDOT-4004, (c) MDOT-4005, and (d) MDOT-4005 
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Figure 5-9 (a) Trajectories of two approaching vehicles to WMT, and (b) The snapshot of the CAMS 

recorded video at the time that the warning is triggered 
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Figure 5-10 Number of true positive and false negative warnings for the headways less than 7 seconds 

for (a) tangent segments, (b) curve segments, and (c) all segments 

 
5.4 Summary of CAMS Performance Evaluation Findings 

The findings of this chapter can be summarized as follows: 

1. Blockage/occlusion of the camera enclosure by debris (snow/ice/salt/mud/grime/etc.) also 

degrades performance of the radar detection system. Results show that when the camera 

view is fully blocked or occluded by debris, the recorded warning activations are 

significantly decreased. Furthermore, during periods when the camera view is fully blocked, 

there exists time intervals during which no object is detected in the logged data files. 

2. The warning alarm is often not activated at the pre-specified relative headway thresholds 

(7-sec and 5-sec for level 1 and 2), with up to 2 seconds of delay observed. 
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3. There are a significant number of recorded warnings due to adjacent lane vehicles when 

there is no vehicle encroaching in the same lane of the truck (false positive warnings). 

4. In many cases, the following vehicle was observed to have crossed the warning threshold 

but did not trigger the warning system at all (false negative warnings). This may likely be 

due to the aforementioned delay in the warning alarm activation and/or issues associated 

with the lateral distance recognition. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49 
 



CHAPTER 6 – EVALUATION OF DRIVER BEHAVIOR IN RESPONSE TO CAMS 
WARNING ALERT 

In addition to assessment of the CAMS system performance, evaluation of driver response to the 

CAMS warning alert system was also performed. In addition to collecting data with the CAMS 

warning light operational, it was also necessary to establish a baseline for the behavior of drivers 

when encroaching WMTs without the CAMS warning light to determine the incremental benefits 

associated with the CAMS warning light. To control for external biases, this evaluation was 

performed using the same CAMS-implemented trucks with and without the CAMS warning alert 

light in operation. Specifically, the CAMS-equipped trucks operated on the same routes with the 

radar, video, and data collection devices active, but with the associated warning light either enabled 

or disabled. This type of study design was deemed superior to a typical case-control design (i.e., 

comparing CAMS trucks versus other trucks without the CAMS), because it better isolated the 

effects associated with the warning alert by controlling for the effects of the truck, operator, data 

collection system, and route.  

 

The behavior of the drivers following the CAMS system-enabled trucks was quantified based on 

two different measures, encroachment rate and response time, with the difference between the 

warning light on and off conditions representing the measure of effectiveness provided by the 

CAMS warning light. As stated previously, the CAMS radar system, camera, computer, and data 

storage system remained operational during all data collection periods, regardless of whether the 

warning light was disabled (hereafter called “OFF” periods versus “ON” periods when the warning 

light was enabled) or not.  

 

The two CAMS equipped trucks operated by MDOT were used for this portion of the study and 

the Oakland County trucks were not utilized. The same data collection periods were utilized as 

described previously for the CAMS performance testing. The general info, including the truck 

number, operation period, and the status of the warning light, are presented in Table 6.1 for the 

four distinct data sets used in this section. 
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Table 6-1 Datasets for Driver Behavior Analysis 
Dataset Truck Warning Light Operation Dates 

1 MDOT 4004 ON 01/29/2018 - 02/07/2018  
2 MDOT 4005 ON 02/09/2018 - 02/11/2018 
3 MDOT 4004 OFF 02/23/2018 - 03/08/2018  
4 MDOT 4005 OFF 02/23/2018 - 03/08/2018  

 

6.1.1 Encroachment Rate Analysis 

In this section, the impacts of the CAMS on the behavior of drivers following the WMT are 

assessed by analyzing the encroachment rates. Here, the encroachment is defined as the action of 

a driver entering into and staying in an exposure zone behind the WMT for a duration greater than 

a pre-determined dwell time. This is based on the general understanding that a driver should keep 

a safe relative distance, or a safe relative headway, behind the truck at all times. The closer the 

following vehicle encroaches towards the truck, the higher is the risk of hitting the WMT. Thus, 

data for vehicles approaching the rear of the WMTs were assessed for both the ON and OFF cases 

to assess the impacts of the warning light. Note that only vehicles that have triggered a warning 

are included here. Also, different analyses are provided for curve and tangent segments due to 

different following trajectories in these two types of road segments. 

 

Tangent Segments 

The exposure zone on tangent (straight) segments is defined as an imaginary rectangle extending 

longitudinally from the rear bumper of the truck up to the zone length (see Figure 6.1(a)). This 

length is set differently for the time-based and distance-based encroachment analyses. The 

exposure zone width is set in a way to only detect following vehicles traveling in the same lane of 

the WMT. The minimum dwell time is considered to filter out vehicles that moved out of the zone 

more rapidly than could be reasonably expected if occurring in response to the warning light. The 

specifications of the exposure zone and time/distance thresholds are given in Table 6.2. A 

computer program coded in MATLAB is used to extract and analyze the trajectories of vehicles 

moving on tangent segments detected in the defined exposure zone behind the WMT. 
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Table 6-2 Specifications of exposure zone for tangent segments 

Property Value 
Maximum zone length 150 feet (45.72 m) 

Zone width 10 feet (3.05 m) 
Minimum exposure dwell time 3 sec 

Distance-based length thresholds [125, 100, 75, 50, 25] feet 
Time-based length thresholds [1, 2, 3, 4, 5, 6, 7] sec 

 
 

 
Figure 6-1 (a) Exposure zone for tangent segments and (b) different relative distance-based thresholds 

for encroachment rate analysis 

 
Curve Segments     

The concept of a rectangular exposure zone cannot be applied to identify the vehicles of interest 

on curve segments, since the geometry of the road locates majority of a rectangular exposure zone 

out of the curve segment. Therefore, curve segments are analyzed differently. Triggered warnings, 

when the WMT travels on curve segments, are inspected manually and the subject vehicle for each 

case is chosen as the following vehicle just behind the truck. Note that the trajectories of the 

vehicles on curve segments are filtered out based on the AVL data that provides the location of 

MDOT WMTs at any moment of the maintenance operation. 
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Figure 6-2 Definition of encroaching vehicle on curved segments 

 

6.1.2 Response Time Analysis 

In this section, the response time concept is utilized to assess the impacts of the CAMS warning 

light on the behavior of drivers approaching the rear of the WMT. The response time is defined as 

the time gap between the time that the warning is triggered (or supposed to be triggered in the OFF 

case), and the time that the minimum relative headway between the following vehicle and WMT 

is observed. Here, the warning activation time is used as a reference point to compare the behavior 

of the drivers in ON and OFF cases. The minimum relative headway is considered as the time that 

the driver’s response to its speed differential with the WMT is completed and the following vehicle 

has the minimum relative distance to the WMT. Note that this response is expected to be completed 

earlier in the ON case versus OFF case as an extra warning light is activated to address the driver’s 

attention to the speed differential. After the time that the minimum relative headway is observed, 

the relative distance between the following vehicle and WMT would increase, decreasing the risk 

of accident occurrence. Similar to the encroachment analysis, a computer program is used to 

estimate the response time by exploring the trajectory of each following vehicle that triggers the 

warning in the tangent segments. For the curve segments the trajectory of the following vehicles 

are explored manually to identify the following vehicle in the same lane properly, considering the 

road geometry. 
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6.1.3 Modeling Driver Behavior 

For the encroachment rate and response time analyses, in addition to exploring statistics over 

different following vehicles triggering the alarm for both ON and OFF cases, certain models can 

be developed based on different variables (including the status of the warning light; ON versus 

OFF). The predictive modeling is used to generalize driver behavior in different conditions. 

Considering the low number of observations, especially for the OFF case, classification tree-based 

modeling is selected in this study. For each of these performance measures, the likelihood of 

encroachment, and response time, a “Classification-Regression Tree” is calibrated. Both models 

are based on the same set of features that describe the “state” or condition of the following vehicles 

and their environment. 

 

The classification trees are used for predictive modeling as a commonly used technique in machine 

learning. A classification tree is a tree-like structure of decision-making splits (known as branches) 

that helps to predict a target outcome when a certain input is given in the form of a set of descriptive 

features, collectively known as the “state” of the query. The resultant trees are usually visually 

comprehensible and work very cohesively with categorical input variables. When the target feature 

is a continuous variable in such modeling, the resultant tree is known as a “regression tree”. Also, 

this technique is one of the few that can operate adequately on small datasets, though large datasets 

are preferable for better modeling standards. Many programmatic algorithms are developed for 

finding the best classification trees out of a given data set, such as the popular ‘ID3’ algorithm. 

The fundamental idea behind this modeling approach is to split the input data set into subsets based 

on different levels of a given descriptive feature to create the most heterogeneous subset with 

respect to the target feature. Therefore, a subset with more information is more likely to describe 

the behavior of the data with respect to the target feature and is thus desirable. 

 

The trajectory of the following vehicles triggering the warning are extracted for the tangent and 

curve segments similar to the encroachment rate and response time analyses. Then, their 

characteristics as recorded by the CAMS data log files are extracted for different timestamps as 

discussed in the first column of Table 6.3. Furthermore, other descriptive features, listed in the 

same table, are collected using the recorded videos by the CAMS camera at the time that the 

warning system is triggered (or supposed to be triggered for the OFF case). For the response time 
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analysis, only records corresponding to response times greater than or equal to 0.25 seconds are 

considered. Response times shorter than this threshold were deemed impractically short to be 

associated with response to the warning light. 

 

The descriptive features obtained from the prepared data are tabulated in Table 6.4. All of these 

features are categorical. The same features are used in both tree-based models. The classification 

and regression tree models are modeled in ‘R’ using the package “rpart”, which by default uses 

‘ID3’ algorithm for building the tree. 

 

6.2 Results 

In this section, the results for the encroachment rate and response time analyses are presented for 

both ON and OFF cases. For each analysis, first general statistics (average values) are presented 

for different data sets. Then, for each analysis a classification-regression tree model is calibrated 

based on the collected data and the results are presented to compare the drivers’ behavior for ON 

and OFF cases. 

 

Table 6-3 Description of the warning data for each warning level 
Variable Set Description 
Truck data set Identifies the different trucks as well as the status of their CAMS light 

system (as ON or OFF) 
Timestamp at warning 
level 1 

Trajectory of the following vehicle at each of these instants: 
o epoch time (timestamp) 
o truck speed 
o relative distance 
o relative speed 
o relative headway (calculated as relative distance/relative speed) 
o relative acceleration 
o relative lateral offset 
o absolute speed (of the following car, calculated as relative speed 

+ truck speed) 
o absolute acceleration (calculated as relative acceleration + truck 

speed / 0.1 s) 

Timestamp at warning 
level 2 

Timestamp at maximum 
deceleration 

Timestamp at minimum 
headway 

Environment This feature set describes driving behavior characteristics such as space 
availability and desired maneuver: 

o segment type (tangent/curve) 
o number of lanes of the segment 
o occupancy of the adjacent lane 
o maneuver of the subject vehicle (back off/lane change) 
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Table 6-4 Descriptive features used in the classification tree models 
Descriptive 
Feature 

Description        Levels 

Light Indicates the presence or absence of the 
CAMS light signal. 

1. ON 
2. OFF 

Warning The activated warning level based on the 
headway threshold  

1. Level 1 only 
2. Level 2 only 
3. Both level 1 and 2 

Geometry The physical environment of the 
site/segment. 

1. Straight/tangent segment 
2. Left/Right Turn 
3. On/Off-Ramp 
4. Merge/Diverge 

Maneuver Driving behavior characteristics such as 
space availability in the adjacent lane and 
the desired maneuver in response to 
encroaching WMT. 

1. Single lane,  
follower backing off 

2. Multi-lane,  
adjacent lane occupied,  
follower backing off 

3. Multi-lane, 
adjacent lane occupied, 
follower changing lane 

4. Multi-lane, 
adjacent lane vacant, 
follower backing off 

5. Multi-lane, 
adjacent lane vacant, 
follower changing lane 

 

6.2.1 Encroachment Rate Analysis 

The encroachment rates of following vehicles are analyzed for both distance- and time-based gaps 

using collected data by the CAMS installed on two MDOT trucks – MDOT 4004 and MDOT 4005. 

The cumulative frequency distribution of the encroachment rate is plotted for both ON and OFF 

cases and various segment types. These plots show that how many of those vehicles that trigger 

the warning cross various distance-/time-based thresholds. Note that the relative frequency instead 

of the absolute frequency is used to compare the ON and OFF cases, since the numbers of vehicles 

triggering the warning in these two cases are not comparable. 

 

The results indicate that, in general, a larger proportion of drivers cross smaller thresholds of 

distance- and time-based gaps for the OFF case relative to the ON case. This can be verified by 

the general trend of the plots for light ‘OFF’ appearing higher than that of light ‘ON’ on the vertical 

axis of cumulative frequency of encroachment (see Figures 6.3, 6.4, and 6.5). This indicates that 
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the CAMS warning light system might be effective in pushing drivers to safer gaps. However, 

more data required, specifically on curve segments and for OFF cases to support this conclusion. 

The results for curve segments should be considered with caution because of the absence of 

observations of vehicles following truck 2 (MDOT 4005) for the OFF case. Overall, these results 

suggest that once the warning alarm is provided to the following vehicles, relatively less vehicles 

cross the lower and risky thresholds towards the WMT leading to a safer maintenance operation. 

However, it is crucial to have more observed data supporting this conclusion. 

 

Decision Tree 

The target feature for the classification tree model of encroachment rate is posed as a question – 

“given a situation of the driver following the truck, would he/she encroach into a certain threshold 

of the relative headway?” This certain threshold, which is a model parameter, is the critical relative 

headway to ensure safe maintenance operation for WMTs. The tree for the critical headway 

threshold of 4.5 seconds shows a concise distinction between the ON and OFF cases for a certain 

combination of maneuvers, warning levels, and segment types (see Figure 6.6). 

 

 
Figure 6-3 Frequency distribution of encroaching vehicles on tangent segments for the two trucks 

MDOT 4004 and MDOT 4005 
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Figure 6-4 Frequency distribution of encroaching vehicles on curve segments for the two trucks MDOT 

4004 and MDOT 4005 

 
Figure 6-5 Frequency distribution of encroaching vehicles on all (tangent + curve) segments for the two 

trucks MDOT 4004 and MDOT 4005 
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The green color represents the “true” answer to the question of crossing the critical relative 

headway, implying an unsafe situation, while the red color represents “false” answer to the 

question of interest, implying a safer maintenance operation. The numbers beneath the 

classification results represent the confidence of classification, given in the form of a ratio with 

the number of cases in the classified category as the numerator and the total number of observations 

in that set as the denominator.  

 

Figure 6.6 shows the impact of the CAMS warning light on the behavior of following vehicle 

drivers. The branches under the split of “Warning Level 1 Only” and “Maneuver = 1,3,5” show 

that drivers are not likely to cross a headway of 4.5 seconds, when the warning light is ON, unlike 

the OFF case. However, this conclusion is not statistically significant, due to the low number of 

observations for the mentioned branch. Note that the number of observations for other descriptive 

features is too low to make a distinction between different warning light statuses. 

 

6.2.2 Response Time Analysis 

Similar to the encroachment rate analysis, the trajectory of the following vehicles that trigger the 

warning on WMTs are studied to estimate the response time for both ON and OFF cases. The 

exposure zone/exposed vehicle is defined similar to the encroachment rate analysis. 

 

Table 6.5 presents the average response time over different following vehicles that trigger the 

warning. The average response time is presented for multiple categories based on the warning light 

status (ON versus the OFF case), performed maneuver by the following vehicle in response to the 

speed differential with the WMT (backing off versus lane changing), and the segment type that 

WMT travels on (“Tangent” versus “All”, where the former includes both tangent and curve 

segments). Considering the backing off maneuver, there are a few number of observations for the 

OFF case (just 2). Thus, all maneuvers were utilized to compare the drivers’ behavior in ON and 

OFF cases. For the segment type, only results of the tangent segment were utilized, since there is 

only one observation for the OFF case on curve segments. The average value of response time is 

decreased by 0.55 seconds, which is about 20% improvement, once the warning light is used to 

alert the following vehicle drivers. Twenty percent  change in the response time seems to be a 

really promising improvement in the response time of the following vehicles that may have 
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significant safety benefits by preventing rear-end accidents with WMTs. However, it should be 

noted that there are just only 7 observations for the OFF case, which may question the statistically 

significance of the conclusion. One can see that adding just one OFF observation for the curve 

segments can underestimate this improvement. Thus, a more comprehensive study is needed to 

observe more data, specifically for the OFF case at different conditions. 

 
Figure 6-6 Encroachment decision tree for critical headway threshold of 4.5 sec 

 

Table 6-5 Response time for different maneuvers for warning level 1 from all warning combinations 

Maneuver Light 
Tangent Segment All Segments 

Average 
Value (s) 

No. of 
Observations 

Average 
Value (s) 

No. of 
Observations 

Both 
maneuvers 

ON 2.16 36 2.17 42 
OFF 2.71 7 2.46 8 

Lane 
change only 

ON 2.42 25 2.39 26 
OFF 2.94 5 2.57 6 

Back off 
only 

ON 1.56 11 1.82 16 
OFF 2.13 2 2.13 2 

 
 
 

Decision Tree 
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Similar to the encroachment analysis a classification-regression tree-based model is presented for 

the response time in Figure 6.7. In this figure, based on the descriptive features and the associated 

response time to each of these features, two branches distinguish between the ON and OFF cases. 

The first branch is associated with “Level 1 only and both Level 1 and Level 2” warnings for 

Maneuver of “1,3,4”. In this branch, 0.68 seconds reduction, which is about 27% improvement, is 

observed in the response time, once the warning light is used to alert following vehicles. The 

second branch associated with “Only Level 1” warning and maneuver “2,5” shows 0.76 seconds 

reduction, and 25% improvement in the response time, once the warning light is used to alert the 

drivers. Although these reductions are a significant improvement in terms of safety, it should be 

noted that the number of observations is limited, specifically for the OFF case. This suggests that 

there might be some potential for the CAMS to improve safety, but this needs to be confirmed by 

a more enriched data set including enough number of observations for both ON and OFF cases.  

 
Figure 6-7 Regression tree for response time 

 
6.3 Summary of Findings 

The findings of this chapter can be summarized as follows: 
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1. The CAMS warning light is potentially effective based on observations of drivers’ behavior 

during proper (i.e., true positive) activations of the warning light.  

2. Encroachment rate, defined as the proportion of vehicles triggering the CAMS warning 

light vehicles that cross a pre-determined relative headway, was found to be reduced in the 

ON case versus the OFF cases during most of the data collection periods. However, it is 

necessary to collect more data for the OFF case and on curved segments prior to drawing 

conclusions.  

3. A predictive model was generated to estimate the relevance of environmental and 

situational factors in determining drivers’ likelihood of crossing a critical relative headway. 

It was observed that the CAMS light is an influential factor in changing this likelihood, 

though not very significant due to a small sample size.    

4. The response time, defined as the time gap between when the warning is triggered (but 

only activated during the ON data collection periods) and when the minimum relative 

headway is observed was the other driver behavioral measure used in this study. An 

approximately 20% lower response time was observed during the ON data collection 

period. This suggests that the warning light may cause drivers to react and subsequently 

respond more quickly, thereby reducing the risk of a rear-end collision with the WMT.  

However, the low number of observations for the OFF condition reduces the significance 

of this finding and suggests that additional data are necessary, particularly in the OFF 

condition, before definitive conclusions can be formulated.    

5. The regression tree based model for the response time also shows a positive effect of the 

CAMS warning light. However, more data are necessary to support the statistically 

significance of this conclusion. 
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CHAPTER 7 – WMT DRIVER FEEDBACK 

This chapter analyzes the CAMS performance from WMT drivers’ point of view. To this end, in-

person interviews were conducted for two groups of drivers. First, the viewpoints regarding drivers 

assistive devices and safety improvement issues were collected from non-CAMS equipped WMT 

drivers. Then, the CAMS-equipped WMT drivers were interviewed for opinions on various aspects 

of the CAMS. The prepared questionnaires for each interview can be found in Appendix A. In the 

first section, the general driver responses are discussed, while in the second section, the feedback 

of the WMT drivers is provided. Finally, the summary of findings is listed at the end of this chapter. 

 

7.1 Survey of Non-CAMS WMT Drivers 

Four MDOT truck drivers (with no experience with the CAMS) were interviewed to get their 

opinion about the safety improvement issues related to WMT. 

 

7.1.1 Interview Questions 

WMT drivers provided feedback on the following items: 

• Safety issues during winter maintenance activities (different types of conflicts because of 

WMT presence) 

• Effectiveness of a collision avoidance system installed on the rear of a WMT on safety 

improvement (specially decreasing the number of rear-end collisions) 

• Tailgating and its impacts on safety 

• Other types of warning systems that can improve the performance of winter maintenance 

activities (e.g. green warning lights, back up alarms, lane departure warning, forward and 

collision warnings, blind spot warning, adaptive cruise control, and infrastructure assisted 

hazard warning) 

 

7.1.2 Primary Responses 

• The speed difference between WMTs and other vehicles on the road was listed as the major 

safety concern. In addition to the speed differential, passing by WMTs using the shoulder 

lane, and sharp maneuvers were discussed as other safety concerns. 
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• Prioritizing traffic signals for WMTs to avoid stop and go delays, new legislations to prevent 

cutting in front of WMTs, passing by WMTs from shoulder, and tailgating, and enforcing 

these regulations by significant fines were suggested to mitigate the conflicts between 

WMTs and other road users. 

• Longer and wider median turnarounds and on/off ramp shoulders were suggested to 

facilitate smooth maneuvers and prevent crashes. 

• During the heavy snow events, when the pavement is covered with snow and mud in front 

of WMTs, detecting the traffic signs and lane markings was stated as one of the major issues. 

In this regard, a lane departure warning system was proposed as one of the helpful safety 

improvement for WMTs. 

• The prototype CAMS used in this study was discussed with the drivers, who confirmed 

some potential safety advantages for such systems. However, incorporating a different color 

for the warning light (other than regular lighting alarms on WMTs), and testing such systems 

in practice were proposed as the required initial steps in developing such systems. 

• It was suggested to incorporate new technologies to develop a warning system to prevent 

side collisions and remove blind spots. 

 

7.2 Survey of CAMS-equipped WMT drivers 

Two WMT drivers, whom their truck were equipped with the proposed CAMS in this study during 

the maintenance operation of winter 2018, were interviewed with different sets of questions 

relative to the previous section. The main objective in this section is to get the drivers’ feedback 

on the performance of the CAMS based on their actual experience (instead of relying on their 

expectations similar to the previous section). Note that the effectiveness of the CAMS on assisting 

truck drivers should be studied separately from the impacts of this system on the behavior of the 

following vehicle drivers. The former is considered in this chapter, while the latter is discussed in 

the previous chapter. Similar to the previous section, a discussion on the main content of the 

questionnaire is followed by the drivers’ feedback. 
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7.2.1 Interview Questions 

WMT drivers equipped with the CAMS provided their feedback on the following items: 

• CAMS impacts on the safety improvement (visibility of WMT by other vehicles during 

winter maintenance activities, and impacts on the possibility of crashes and number of  sharp 

braking or other evasive maneuvers) 

• The possibility of causing distraction for truck drivers by CAMS 

• The performance of the washing system 

• CAMS performance during different operational or environmental conditions (plowing vs 

deicing, day vs night time operation, light vs heavy snow events) 

• Effectiveness of the CAMS to in performing U-turn and stopping maneuvers 

• The CAMS maintenance requirements 

 

7.2.2 Primary Responses 

• Both drivers believe that the CAMS does not provide any advantage relative to the current 

lighting alarms that WMTs are equipped with. Also, they do not anticipate any potential 

reduction in the possibility of crashes or critical maneuvers by installing the proposed 

CAMS on WMTs. 

• Incorporating a sound/vocal alarm might improve the efficiency of the CAMS. However, 

such an alarm might be distracting to other road users in the general proximity. 

• Both drivers stated that the CAMS in-cab screen was distracting and also due to the mirrored 

camera view, it could not be used as an extra view to cover the blind spots. 

• Washing system performance was reported as too poor to keep the camera clean in the heavy 

snow events. The main reason behind this is a small tank for the reservoir. Also, the tank is 

located behind the plow and it is not easily accessible (Figure 7.1).  

• Warning light gets muddy all the time, so the washing system should be modified to clean 

the light as well as the radar and camera box. 

• The warning light angle has not been set up properly to inform the distracted drivers. 
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Figure 7-1 Camera Wash Tank 

 
7.3 Summary of Findings 

Tailgating and the speed differential between WMTs and other road users was stated as one of the 

major issues regarding the winter maintenance operations, which is consistent with the surveys of 

Michigan counties and nationwide state DOTs discussed previously. Drivers consider potential 

safety benefits that can be achieved via a well design warning system addressing this tailgating 

issue. However, the driver feedback shows that the CAMS system in its current format cannot be 

used. First of all, any changes in the behavior of the following vehicle drivers in response to the 

CAMS warning alert are considered by the truck drivers to be too small in magnitude to have 

relevance for safety benefits (See Chapter 6, the response time analysis).  The surveyed drivers 

also recommended additional changes to the system, including using a warning light color that is 

distinct from the other warning lights on the WMTs, improving the washing system performance, 

and improving the in-vehicle display to improve blind-spot monitoring.     
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CHAPTER 8 - EVALUATION OF WMT CRASH DATA AND ECONOMIC ANALYSIS 

Crashes involving winter maintenance trucks (WMTs) pose unique threats to traffic safety. WMTs 

typically travel significantly slower than the prevailing speed of traffic and these large vehicles 

have various blind spots. In addition, WMTs are generally deployed at times when visibility and 

roadway conditions make it more difficult for other drivers to identify them or to stop in time to 

avoid a crash. Installing Collision Avoidance and Mitigation Systems (CAMS) on WMTs presents 

a means to mitigate the visibility issues that could arise during snowy weather by making the 

WMTs more conspicuous to approaching motorists.  

 

In order to assess the potential effectiveness of large-scale implementation of CAMS on WMTs, 

it is first necessary to understand the nature of traffic crashes that involve these vehicles and, 

particularly, the frequency with which they occur. To this end, a comprehensive analysis was 

conducted of police-reported crash data for WMT-involved collisions in the state of Michigan. 

This analysis had three primary objectives: 

1. Estimate the annual frequency of crashes involving WMTs throughout Michigan; 

2. Determine the proportion of WMT-involved crashes that could be mitigated by CAMS 

installation; and 

3. Assess the cost-effectiveness of the CAMS through an economic analysis considering the 

sensitivity of results to various crash- and system-related factors. 

 

8.1 Data Query to Identify Potential WMT-Involved Crashes 

In order to identify crashes involving WMTs, UD-10 crash report forms were obtained through 

the Michigan Traffic Crash Facts (MTCF) website maintained by the Michigan Office of Highway 

Safety Planning (OHSP, 2018). The MTCF website provides real-time online access to a complete 

historical database of police-reported crashes that have occurred throughout the state of Michigan 

dating back to 2004. The site’s Data Query Tool allows for targeted queries of crash records based 

on various criteria, including vehicle type and purpose.  

 

The first objective of this investigation was to identify all crashes involving a WMT. 

Unfortunately, there is not a specific field on the UD-10 form that identifies WMTs explicitly. 

However, there are two fields that can be used to conduct an effective initial screening process to 
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identify a subset of crash reports for more extensive manual review in order to make the 

determination as to whether the crash was WMT-involved or not. These fields include: 

Special Vehicle – This field is used to identify unique vehicle configurations and includes nine 

discrete categories: 

a. Not special vehicle 

b. Police vehicle 

c. Fire vehicle 

d. Bus (commercial, private, school) 

e. Ambulance 

f. Farm equipment (non-registered) 

g. Construction/maintenance equipment 

h. Tow truck/wrecker 

i. Uncoded & errors 

Vehicle Use – This field categorizes the primary purpose of a vehicle at the time a crash event 

occurred and is classified into twelve categories: 

j. Private 

k. Commercial (business) 

l. In pursuit/on emergency 

m. Farm use 

n. School/education 

o. Club/church (“Y” tag) 

p. Military vehicle 

q. Other government nonemergency vehicle use 

r. Utility (gas, cable, etc.) 

s. Road construction/maintenance 

t. Other 

u. Uncoded & errors 

 

Preliminary review of crash reports suggested that the special vehicle category for 

construction/maintenance equipment was the most effective screening criteria for WMT-involved 

crashes, followed by the vehicle use category for road construction/maintenance. Over a six-year 
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analysis period from 2012 through 2017, a total of 6,084 crashes were coded to have involved 

construction or maintenance equipment while 2,419 crashes involved at least one vehicle where 

the primary use was road construction or maintenance. Table 8.1 provides a summary of the 

number of crashes where either or both of these criteria were met during the analysis period. Using 

the special vehicle field yielded more consistent values from year to year, with an average of 

1,014.0 crashes per year (standard deviation = 183.1) while the vehicle use field yielded an average 

of 403.2 crashes per year (standard deviation = 213.9). 

  

Table 8-1 Crashes Involving Construction/Maintenance Vehicles by Special Vehicle and 
Vehicle Use Criteria from UD-10 Crash Report Form 

Year Special Vehicle ONLY Vehicle Use ONLY BOTH Criteria 

2012 713 351 219 

2013 919 525 333 

2014 1,248 699 453 

2015 1,035 487 321 

2016 1,122 267 183 

2017 1,047 90 58 

Total 6,084 2,419 1,567 

 

The majority of crashes in the sample included either the special vehicle or the vehicle use criteria 

of interest being met, but not both. Furthermore, in addition to identifying crashes involving 

WMTs, these criteria also led to the identification of crashes involving construction equipment, as 

well as other types of maintenance vehicles (e.g., pickup trucks). Consequently, following the 

initial screening procedure, a detailed manual review was required of individual UD-10 crash 

report forms. This review included a review of the narrative and diagram sections of the report 

form, which generally provide significantly more detailed information than what is available from 

the standard categorical entries. 

 

8.2 Review of UD-10 Forms to Screen Non-WMT Crashes 

A preliminary review of the narrative and diagram sections of 100 randomly sampled forms from 

each query (special vehicle and vehicle use) showed that each performed similarly in terms of its 
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ability to identify potential crashes of interest (i.e., those involving WMTs). Consequently, all 

crashes where either criterion was met were ultimately included in the set that was selected for full 

review. As an additional step to screen out non-WMT crashes, only crashes occurring during the 

winter season were included, which was defined from November through April of each year for 

the purpose of this analysis. Using these criteria, the six-year period included a total of 4,670 

potential crashes of interest. 

 

From this population of UD-10 forms, a manual review of the crash narratives and diagrams was 

performed. When the narrative indicated one of the vehicles was a snowplow or a vehicle 

performing winter maintenance, that crash record was included as a target crash for the purposes 

of this study. When the narrative indicated a vehicle was another type of construction or 

maintenance vehicle, or when the type of vehicle was not specified, the crash record was excluded 

from further investigation. An example of a narrative form for a crash that was excluded from the 

study is shown in Figure 8.1. This narrative shows that the construction/maintenance vehicle (VEH 

1) was performing maintenance that did not involve snow removal. 

 

 

Figure 8-1 Example of Crash Excluded After Review of UD-10 Form 

   

After this manual review was completed, 1,354 of 4,670 (29.0 percent) crash records were left to 

be considered for further review. A summary of the number of suspected WMT crashes by year is 

provided in Table 8.2. 
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Table 8-2 Suspected WMT Crashes by Year 

Year Crashes in Full Dataset Suspected WMT Crashes 

2017 596 153 

2016 694 164 

2015 845 201 

2014 1131 471 

2013 826 263 

2012 578 102 

Total 4,670 1,354 

 

8.3 Classification of WMT Crashes Based on Potential CAMS Influence 

Once the 1,354 crashes that were suspected to involve WMTs were identified, further efforts were 

involved in classifying each of these crashes based on two criteria: (1) the precipitating events and 

causal circumstances contributing to the event; and (2) the likelihood the crash could have been 

prevented if the crash-involved WMT had been equipped with the CAMS. These determinations 

were made during the course of the manual review using information available from the standard 

fields, narratives, and diagrams from the UD-10 crash report forms. 

 

Table 8.3 provides a summary of the contributing circumstances that led to each crash occurring. 

A total of seven general categories were identified over the course of the manual review. These 

categories represent the most frequent scenarios from among the WMT crashes and include the 

following: 

1. Blind spot – These crashes refer to cases where a WMT struck another vehicle that the 

WMT driver was unable to see. 

2. Inattention/misjudgment (WMT driver) – This category distinguishes crashes where the 

WMT driver was unaware of their surroundings (e.g. the WMT struck a parked car or 

pulled out in front of a car at an intersection). 

3. Inattention/misjudgment (other driver) – These are crashes wherein the driver of the other 

vehicle was inattentive or misjudged the actions of the WMT driver (e.g. they drove 

distracted, struck the side of a wide-turning WMT, misjudged the speed of a WMT).  

71 
 



4. Poor visibility – This category describes crashes that occurred due to limited visibility for 

the driver of the other vehicle due to the wintry conditions (e.g., snow, ice). 

5. Loss of control – These crashes involved a driver losing control of their vehicle on slippery 

roads within the vicinity of a WMT, culminating in a collision. 

6. Operating near intersection – These crashes include instances where a WMT was operating 

near an intersection, including instances where the vehicle was backing up to continue 

work on clearing an intersection. In these cases, the driver of the other vehicle involved 

generally did not realize the intent of the WMT driver, resulting in the crash. 

7. Unknown/other – This category accounts for other situations, such as snow or other debris 

from snowplows causing damage to other vehicles, crashes between two plows, or crash 

reports that failed to elaborate on the context of the crash. 

 

Table 8-3 Summary of Crashes by Contributing Circumstances 

Contributing Circumstances Number of Crashes Percentage 

Inattention/misjudgment (WMT driver) 520 38.4% 

Loss of control 314 23.2% 

Inattention/misjudgment (other driver) 309 22.8% 

Poor visibility 50 3.7% 

Blind spot 35 2.6% 

Operating near intersection 30 2.2% 

Unknown/other 96 7.1% 

Total 1,354 100.0% 

 

For each WMT-involved crash, a determination was also made as to whether the crash could have 

potentially been prevented if the CAMS was in operation. Figure 8.2 provides a sample narrative 

from a crash that was determined to be a scenario where the presence of the CAMS was likely to 

have a potential influence in preventing the crash from occurring or mitigating the severity of the 

crash if it did occur. This crash involves a vehicle striking a WMT that was slowing down while 

plowing snow. For this crash it was theorized that CAMS may have improved the other driver’s 

visual acuity and ability to identify their proximity to the WMT, thereby reducing the likelihood 

of collision. 
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Figure 8-2 Example crash likely to be influenced by CAMS 

 

Figure 8.3 shows an example narrative from another crash that was likely to have been influenced 

by the presence of the CAMS. In this particular case, the other vehicle experienced a loss of 

control. While the driver of the other vehicle had identified the WMT and attempted to slow down, 

they were unable to given the surface and/or visibility conditions. However, if the CAMS were 

active, the driver may have identified the WMT sooner and been able to decelerate more gradually 

to avoid the collision event. 

 
Figure 8-3  Example crash likely to be influenced by CAMS 

 

There were numerous cases where a crash was not likely to have been influenced by the presence 

of the CAMS, with the most frequent instances being crashes in which the WMT driver was 

primarily found to be at fault for the crash. Ultimately, among the circumstances described 

previously and listed in Table 8.3, those that were most likely to be pertinent to the functionality 
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of the CAMS are those crashes: (1) where the driver lost control of their vehicle; (2) due to 

inattention or misjudgment by the driver of the other vehicle; (3) occurring under poor visibility; 

or (4) involving a WMT that was backing up or operating near an intersection. Crashes involving 

(1) inattention or misjudgment by the WMT driver or (2) those in which the vehicle was operating 

in the WMT’s blind spot were categorized as unlikely to be influenced by CAMS. However, a 

reasonable argument can be made that drivers may behave differently when CAMS is active and 

the system may have some degree of effectiveness in these settings, as well. Ultimately, the results 

of this manual review (Table 8.4) suggest that of the 1,354 relevant crashes, 703 (were likely 

candidates to have been influenced by the CAMS if it had been installed. This suggests that, on 

average, a total of 225.7 WMT crashes occur per year, of which 117.2 WMT crashes are likely to 

be pertinent to CAMS operation. 

 

Table 8-4  Number of Crashes Likely to be Pertinent to CAMS 

Likelihood Crash Was Pertinent to CAMS Number of Crashes Percent 

Likely 703 51.9% 

Unlikely 555 41.0% 

Unknown 96 7.1% 

Total 1,354 100.0% 

 

It should be noted that these categories are very broad and there were many crashes that could have 

been classified into more than one category. For example, an inattentive driver could have seen a 

slow-moving WMT in front of them, but reacted too late, resulting in a hard braking maneuver 

and loss of control before striking the plow. Only one circumstance field was identified for each 

crash. However, most of these conflicts tended to occur among those circumstances that were 

likely to be pertinent to CAMS.  

 

8.4 Economic Analysis for Statewide CAMS Installation  

The preceding section outlined estimates of the number of WMT-related crashes that have 

occurred throughout the state of Michigan on an annual basis. Installation of the CAMS on WMTs 

is expected to have the potential to reduce the frequency of such crashes, resulting in crash cost 

savings due to lower numbers of traffic crashes, injuries, and fatalities. This section presents a 
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sensitivity analysis to provide a preliminary estimate as to the economic viability of statewide 

installation of CAMS on WMTs. 

 

To estimate the cost-effectiveness of CAMS installation, a benefit/cost (B/C) analysis was 

conducted to compare the crash cost savings to installation and maintenance costs associated with 

statewide CAMS deployment. Table 8.5 provides unit costs for capital costs, including acquisition, 

procurement, and installation of the CAMS hardware. These costs were estimated at $9,000 per 

WMT. In addition, engineering services were estimated at $8,250 for the first year of operation. 

These costs would include integration, installation, updates, and any required maintenance, again 

on a per-WMT basis. Given current market trends and rapid advances in technology, a five-year 

service life was assumed. It was also assumed that, following year one, approximately 10 percent 

of the first-year engineering services costs would be required on an annual basis. Assuming a 4 

percent discount rate, this results in annual costs of approximately $4,520 per WMT.  It must be 

noted that these costs were based on prototype CAMS implementation on a total of four trucks.  

Broad statewide implementation will likely lower these costs dramatically. Furthermore, 

additional cost reductions will occur if it is determined that the WMT drivers do not benefit from 

an in-cabin display, in which case both the display and camera could be eliminated.   

 
Table 8-5 Capital and Engineering Services Costs for CAMS 

Cost Category Cost (per vehicle) Time Period 

Capital Costs $9,000 Year 1 

Initial Engineering Services $8,250 Year 1 

Annual Engineering Services $825 Years 2-5 

 

In order to estimate the benefits, or crash cost savings, associated with the reduction in crashes due 

to CAMS installation, comprehensive crash cost data were obtained from the Highway Safety 

Manual (AASHTO, 2010) and are summarized in Table 8.6 according to the KABCO (see Table 

8.6 to for the abbreviations) injury severity scale. These costs include wage and productivity losses, 

medical expenses, administrative expenses, motor vehicle damage, and employers’ uninsured 

costs, as well as a measure of the value of lost quality of life. 
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Table 8-6 Crash costs by KABCO severity level 

Injury Severity Level Comprehensive Crash Cost 

Fatality (K) $4,008,900 

Disabling Injury (A) $216,000 

Evident Injury (B) $79,000 

Possible Injury (C) $44,900 

Property Damage Only (O) $7,400 

 

The WMT-involved crash estimates provided previously were in terms of total crashes per year. 

Consequently, the 225.7 WMT crashes per year were converted to an annual cost using the 

weighted average costs associated with two-vehicle crashes in the state of Michigan during this 

same six-year time period. Table 8.7 shows that the weighted average crash cost, based upon the 

proportion of all two-vehicle crashes resulting in each of the five injury severity levels, is 

approximately $26,206.83 per crash. 
 

Table 8-7 Determination of Weighted-Average Cost for Two-Vehicle Crashes 

Injury Severity Proportion Crash Cost ($) Weighted Average Cost 

K 0.2% $4,008,900  

A 1.2% $216,000  

B 4.1% $79,000  

C 13.5% $44,900  

PDO 81.0% $7,400  

Total 100.0%  $26,206.83 

 

Using these crash cost savings estimates, in combination with the capital costs and engineering 

services costs detailed previously, a sensitivity analysis was conducted to examine the potential 

cost effectiveness of statewide installation of the CAMS system. There are currently approximately 

800 WMTs operated and maintained in the state of Michigan, with 330 of these under the 

jurisdiction of MDOT. Service costs per unit of $825 are assumed to occur annually from year 2 

to 5.  Assuming a 4% discount rate, the annual $825 service costs during years 2 to 5 are equivalent 

to a total lump sum cost of $2,880 at year 1. Thus, the equivalent total cost per WMT at year 1 is 
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$2,880 + $9,000 + $8,250 = $20,130. This total cost in year 1 can be annualized over the 5-year 

period using a 4% discount rate to $4,522 per WMT per year. Using this value, the total annualized 

implementation cost for 800 WMTs in Michigan is (800*4522) = $3.617 million per year over the 

5-year period. 

 

The annual crash cost savings would depend principally upon the percent reduction in WMT 

crashes associated with CAMS installation. Given that only preliminary data are available based 

upon one partial season of operation with four CAMS-equipped WMTs, it was not possible to 

perform a direct comparison of the safety effects associated with CAMS installations on WMTs.  

Thus, a sensitivity analysis was conducted assuming various reductions in annual WMT-involved 

crashes. Assuming an average cost of $26,207 per crash as detailed in Table 8.7, the total 

annualized costs of WMT crashes amounts to approximately $5.9 million. Consequently, if all 

such crashes could be eliminated by the CAMS, this would result in a benefit-cost (B/C) ratio of 

1.64. However, CAMS will not prevent all WMT-involved crashes.  To that end, assuming that 

only those 117.2 annual crashes identified as likely influenced by CAMS (51.9% of all WMT-

involved crashes) are prevented, the B/C ratio would be 0.85, which is lower than 1. Figure 8.4 

provides details of how the B/C ratio changes based upon various WMT-involved crash reduction 

proportions. These data suggest that, in order for CAMS to be cost-effective (i.e., B/C>1), the total 

number of WMT-involved crashes would need to be reduced by approximately 61 percent. Initial 

behavioral testing found about 20 percent reduction in driver reaction time in response to a 

properly triggered CAMS warning light. Although it is difficult to quantify the impacts of this 

reaction time improvement on rear-end collisions with WMTs, it may suggest that crash reductions 

will fall below the 61 percent necessary for a favorable B/C.   

 

It is also important to note that eliminating certain costly, yet non-critical, components such as the 

camera and in-cabin display, would reduce the cost of the CAMS system and increase the B/C.  

Furthermore, the CAMS system costs will also likely decrease in the event of larger scale 

deployment. To help account for these considerations, Figure 8-5 presents a minimum required 

percent reduction in WMT crashes to ensure profitability (B/C>1) of the CAMS for any given life 

cycle investment cost. For example, as shown in Figure 8-5, if the total investment cost of the 

CAMS over a 5-year life cycle is reduced to $10,000 per WMT installation due to the economy of 
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scale or camera and display elimination, then CAMS must prevent at least 30% of WMT-involved 

crashes for the benefits to outweigh the costs. As noted previously, the maximum percentage of 

WMT-involved crashes that may be prevented by CAMS has been estimated at approximately 

52%.  

 

 
Figure 8-4 Benefit/Cost Ratio for CAMS installation 

 

 
Figure 8-5 Minimum required percent reduction in WMT crashes to ensure profitability of the 

CAMS for any given life cycle investment cost 
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CHAPTER 9 – SUMMARY AND RECOMMENDATIONS 

A study was performed to determine the potential safety and economic impacts associated with a 

vendor-developed prototype rear-facing collision avoidance and mitigation system on winter 

maintenance trucks in Michigan. This study evaluated both the operational performance of CAMS 

and the extent to which CAMS modifies the behavior of drivers encroaching to the rear of the 

WMT. The effect of CAMS warning light on driver behavior was evaluated during actual winter 

maintenance operations on select freeways and arterials in Livingston and Washtenaw counties 

using the same two CAMS-implemented trucks with and without the CAMS warning alert light 

connected. These field studies also allowed for evaluation of the operational performance of the 

CAMS radar and cleaning/washing system. To identify key issues and challenges with using the 

system, feedback was obtained from winter maintenance personnel across Michigan and 

nationwide, including WMT drivers with and without experience using CAMS-equipped vehicles.  

The study also investigated the potential of CAMS to reduce WMT-involved crashes, and 

estimated the economic viability associated with widespread deployment across Michigan. 

 

This chapter summarizes all collective findings of this study and also includes discussion of the 

study limitations. Recommendations are provided to improve the CAMS performance and 

overcome the limitations that were encountered, including further evaluation of the system. 

 

9.1 Summary of Findings 

The findings of this study can be summarized as follows. 

 

System Performance 

1. Blockage/occlusion of the camera/radar box caused by the accumulation of debris inhibited 

system performance.  This was typically a result of issues with the cleaning/washing system.   

2. The warning alarm did not always activate precisely at the pre-specified relative headway 

thresholds. In many cases, a vehicle encroached beyond the warning alert threshold, but 

activation of the warning system was either delayed by as much as 2-seconds or not 

triggered at all.  Although this issue was exacerbated by accumulation of debris on the 

camera/radar box, it also occurred when the box was clear.   
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3. A substantial number of cases were observed, where the warning light was triggered by a 

vehicle traveling in an adjacent lane. 

Driver Behavior Impacts 

1. The rate of vehicular encroachments in close proximity to the WMT was found to be lower 

when the warning light alert system was enabled versus disabled. Although this suggests 

that the CAMS warning light has potential to be effective in improving driver behavior, 

more data is needed, particularly for the disabled case and on curve segments, before 

definitive conclusions can be drawn.    

2. The response time, defined as the time gap between when the warning alert is triggered and 

when the minimum relative headway is observed, was 20% lower when the warning system 

was enabled versus disabled suggesting a reduced risk of rear-end crashes with WMTs. 

However, the low number of observations during the disabled periods may reduce the 

significance of this conclusion. Thus, an expanded comparison of behavior during the 

enabled and disabled conditions is needed before definitive conclusions can be drawn.  

Feedback from Winter Maintenance Staff 

3. A survey of staff from 21 Michigan county road commissions and 14 state DOTs suggested 

that properly implemented technological improvements on WMTs, including collision 

avoidance systems, have the potential to improve safety during winter maintenance 

operations. However, there are practical concerns regarding the ability to design a 

cleaning/washing system that can keep the CAMS equipment clean and fully operational 

during adverse winter weather conditions. 

4. According to MDOT WMT drivers, tailgating and the speed differential between WMTs 

and other road users are major issues regarding safety during winter maintenance 

operations.  Drivers felt that a well-designed warning system could potentially address these 

issues. Similar feedback was received during surveys of Michigan county road commissions 

and other state DOTs.  

5. The WMT drivers with CAMS experience did not believe the CAMS system to be effective 

in its current format.  Changes in the behavior of the following vehicle drivers in response 
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to the CAMS warning alert were considered by the truck drivers to be too small in 

magnitude to have relevance for safety benefits.   

6. The surveyed drivers recommended additional changes to the system, including using a 

warning light color that is distinct from the other warning lights on the WMTs, improving 

the washing system performance, and improving the in-vehicle display to improve blind-

spot monitoring.     

Estimated Safety Impacts and Economic Analysis 

7. A review of statewide UD-10 crash reports from 2012 through 2017 revealed an average of 

225.7 WMT-involved crashes per year. A secondary assessment of the narratives and 

diagrams within these crash reports revealed that 117.2 annual WMT crashes would 

potentially be influenced by the proposed CAMS operation.     

8. A benefit/cost (B/C) analysis was performed assuming the following: i.) statewide 

implementation of CAMS on all 800 WMTs operating in Michigan, ii.) current 

implementation and maintenance life-cycle costs for the CAMS system, iii.) 117.2 average 

annual WMT-involved crashes statewide that would potentially be influenced by the CAMS 

(representing 51.9% of all WMT crashes), and iv.) estimated average cost of $26,206 per 

WMT-involved crash. Based on these assumptions, elimination of all such crashes would 

result in a benefit-cost (B/C) ratio of 0.85. In order for the CAMS to be cost-effective (i.e., 

B/C > 1.0), the number of WMT-involved crashes during the CAMS life-cycle must be 

reduced by at least 61 percent. As this is an unrealistic crash reduction target, reducing the 

implementation cost is essential to economically justify incorporating the CAMS into winter 

maintenance operations. To that end, this study also provided a required crash reduction 

percentage for any given investment cost per WMT to ensure a B/C ratio of 1. 

9.2 Study Limitations 

Reviewing the study findings based on the different analyses provided in the previous section, one 

should note that there are certain limitations associated with these analyses: 

1. The number of observed true positive warning light activations (i.e., when vehicles traveling 

in the same lane of the WMT cross the activation threshold and the warning light is 

activated), is not large enough to draw statistically valid conclusions regarding the effects 

of the CAMS on drivers’ behavior.     
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2. The behavioral analysis might be biased due to different weather conditions during the light 

enabled (heavy snow events including low visibility periods) and light disabled (light snow 

events mostly high visibility) cases. 

3. The washing system failure during the heavy snow conditions interferes with operation of 

the CAMS radar unit and obstructs the camera view. This prevents assessment of the 

performance of the CAMS during periods when the CAMS unit would typically be most 

beneficial.   

9.3 Recommendations 

Overall, this study suggests that there may be potential safety benefits associated with broad 

deployment of the CAMS system. However, the current prototype CAMS system requires 

additional modification and testing prior to widespread deployment. This is largely due to the 

operational issues for both the CAMS radar system and the associated cleaning/washing system 

that persisted during field testing and inhibited reliability. The following list of recommendations 

should be considered prior to further CAMS implementation. After these changes have been made, 

a follow up study is recommended to further evaluate the performance of the modified CAMS 

system.  

1. The cleaning/washing system requires significant modifications to keep the CAMS 

equipment (radar/camera housing box and warning light) clean during operations, 

particularly during severe weather conditions when the warning alert is most needed. The 

fluid container of the washing system needs to be enlarged and placed in a better location 

to facilitate the refilling. If possible, it may be advisable to connect the CAMS washing 

system to the switch for the windshield wipers.  

2. Consider using a different color for the CAMS light relative to already used lights in WMTs. 

A combination of amber and green colors is suggested. Modification to the colors may also 

necessitate modification to the flash patterns. Note that using red or blue is not currently 

allowed for maintenance purposes in Michigan.    

3. Resolve issues with the inconsistency/imprecision of the CAMS warning light activation.  

Although the data log suggests that the radar was properly identifying the location and speed 

of vehicles, the warning light was often activated at inappropriate times or not activated 

when it should have been. The specific issues included: warning light activated by an 
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adjacent lane vehicle, delays in warning light activation of up to 2 seconds, and warning 

light not activated at all.     

4. Collect additional driver behavior data during comparable weather events with the warning 

light enabled vs. disabled. To evaluate the performance of the system in as unbiased manner 

as possible, it is suggested to alternate between enabled and disabled data collection during 

each maintenance operation (e.g. alternating between enabled and disabled operation 

hourly). This would make the conditions as consistent as possible during enabled and 

disabled data collection in terms of weather, roadway, and traffic conditions, and result in a 

more accurate assessment of the impacts of the warning light on driver behavior.   

5. Modify the CAMS to better assist WMT drivers during winter maintenance operations. This 

may include better blind spot coverage, which would require inverting the mirrored camera 

view.  Providing an improved driver assistive component would further motivate the drivers 

to maintain the system during the winter maintenance operations. Alternatively it may also 

be appropriate to remove the camera and in-cab display, as doing so has no impact on CAMS 

operations.   

6. In addition to the time headway thresholds currently used to activate the warning alert, 

incorporate an absolute distance-based threshold for warning alert activation. This would 

help to prevent tailgating and keep vehicles away from the rear zone of the WMT, regardless 

of the speed differential with the WMT.  
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APPENDIX A – SURVEY OF WMT DRIVERS 

A.1. The survey for drivers of WMTs equipped by CAMS: 

Safety Issues: 

1. Do you feel the CAMS system improves safety during winter maintenance activities? 
 

a) It helps the drivers of following vehicles to more easily detect WMTs 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

b) It reduces the possibility of rear-end and sideswipe crashes 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

c) It reduces the number of sharp braking or other evasive maneuvers by motorists 
following the WMT 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

d) Other factors 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

2. Is the CAMS system distracting to you while driving? 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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Washing System Performance: 

3. How well does the automated washing system perform? 
a) Turning on/off at appropriate time 

Excellent             Good             Average             Fair             Poor  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

b) Keeping the camera clear 
Excellent             Good             Average             Fair             Poor  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

c) How often it needs to be refilled? 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

4. Are there any improvements to the washing system that you would recommend?  
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

CAMS Performance: 

5. The CMAS performance (i.e., turns on at appropriate times, etc.) is different for plowing 
versus deicing operation. 

Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

 
6. The CMAS performance is in day versus night time operations. 

Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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7. The CMAS performance is different for various weather conditions. 

Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

 
8. CAMS is helpful for U-turn and stopping maneuvers. 

Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

Maintenance: 

9. Is there any issue associated with the durability of the CAMS sensors or any of its 
components? 

…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

10. How often the CAMS view box needs to be cleaned (in garage)? 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

 

General: 

11. What do you like most about CAMS? 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

 
12. What would you most like to change about CAMS? 

…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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A.2. The survey for drivers of regular WMTs: 

1. What are the safety issues you face during winter maintenance activities? 
a) Conflicts between WMT and following or adjacent vehicles 

…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

b) Conflicts between following or adjacent vehicles because of WMT presence 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

c) Conflicts due to the infrastructure design (roadway condition, shoulder, signs, …) 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

2. Do you feel a collision avoidance system on the rear of a WMT that is designed to detect 

potential rear-end collisions and alert the following motorists would improve safety? 
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a) It can help the following vehicles to more easily detect WMTs 

Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

b) It can reduce the possibility of rear-end and sideswipe crashes 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

c) It can reduce the number of sharp braking or other evasive maneuvers by motorists 
following the WMT 
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

d) Other factors 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

3. Do you think that tailgating of WMTs is a significant safety issue? What do you suggest to 
decrease the number of tailgaters of WMT? 

…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

 
4. What types of warning systems would you like to see installed on WMTs? 

a) Green warning lights (a visual warning light installed on the WMT to be detected easier 
by other vehicle drivers) 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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b) Back up alarms (a simple sound alert when the vehicle is backing up) 

Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

c) Lane Departure Warning (a system to warn the driver when the vehicle starts to move 
out of its lane) 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

d) Forward Collision Warning (a safety system that monitors the distance and speed 
variations between the WMT and the vehicles traveling in front of it to issue warning 
if it is needed to the WMT driver) 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

e) Side collision warning (similar to Forward Collision Warning for vehicles traveling in 
the adjacent lanes) 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

f) Blind Spot Warning (a system to detect other cars in the driver’s side and rear) 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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g) Adaptive Cruise Control (a cruise control system that automatically control the vehicle 
speed to keep a safe distance from vehicles ahead) 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

h) Infrastructure Assisted Hazard Warning (such as sensors, cameras, and road-side units 
to inform drivers with the possible conflicts) 
Strongly Agree      Agree      Neutral      Disagree      Strongly Disagree  
Comment: 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

i) Other 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
 

5. Is there any other equipment that would help you perform snow plowing activities? 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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