HOW ROADSIDE FEATURES AFFECT TRAFFIC ACCIDENT EXPERIENCE

SECOND PROGRESS REPORT
ON THE MICHIGAN STUDY

1951

MICHIGAN STATE HIGHWAY DEPARTMENT
Charles M. Ziegler

MICHIGAN
STATE HIGHWAY DEPARTMENT
Charles M. Ziegler
State Highway Commissioner

HOW ROADSIDE FEATURES AFFECT
TRAFFIC ACCIDENT EXPERIENCE

and Progress Report On the Michigan Study

Cooperating Agencies:
Michigan State Police
U. S. Department of Commerce Bureau of Public Roads

FOREWORD

This report describes the current progress of a research project which seeke to determine the relationships between accident occurrence and various features of the road and roadside. This study is an outgrowth of the countrywide program launched in 1945 by the National safety Council in which each of the states investigated its 1941 accidents.

To remedy certain inadequacies of the data, the Michigan State Highway Department in 1946 initiated the present study in cooperation with the Bureau of Public Roads. A 70-mile stretch of highway on Telegraph Road (US-24) from the Ohio state line across the western side of the Detroit area to Pontiac, was selected for stidy (See Figure 1). It was divided into 1000 -foot sections designated by numbered markers, and all roadway and roadside features in each section were carefully inventoried and located. Starting with 1947, State and local police agencies reported all accidents on the road with reference to the exact location of occurence.

Two methods were employed to analyze the data. The first method was to tabulate frequency distributions of accidents according to their distance from each specified type of feature; from these distributions, accumulative percentages within various distances were computed and rate curves drawn. The second method was to calculate correlation coefficients between the number of accidents and the number of various design and roadside features as they occurred in the several road sections.

In 1949, a report was made of the analysis of 1947 and 1948 accidents. The results presented s. clear picture of the importance of intersections and intersecm tion conditions in eccident production. However, because roadside esteblishments of various kinds are so frequently concentrated at intersection locations, it was found to be impossible to satisfactorily analye the relationships of individual features. For that reason, the present phase of the study was undertaken for the purpose of more clearly segegating the influence of intersection traffic operation and roadside featuxes in intersection locations.

In the field work for this expanded study of the relationship between accident occurence and the features of the roadway and along the roadside, the Department has worked in close cooperation with the Michigan State Police. The quality of the accident data available for analysis is due to the care with which state troopers and enforecment officers from sheriff's and local police departments have recorded the locations of accident occurence. Their cooperation has been helpful and is acknowledged.

ACCIDENT ANALYSIS STUDY ROAD U.S:24 AND M-58

ROADWAY AND ROADSIDE FEAIURES
AND ACCIDENTT OCCUREWCE
2nd Progress Report ! "
Following the first analysis of the 1947-48 accidents on Telegraph Road and the release of reports thereon in 1949, it was felt by many that the basic methods of approach could be improved. Therefore, starting with the basic data, the accident reports, a remalysis was made. In an effort to improve the methods certain changes were made which, together with a brief discussion of each, are as follows:

1. Certain urban sections in or near the incorporated areas of Monroe, Flatrock, Dearborn and Pontiac totalling about 6 miles of highway, were not included in the re-analysis. The object of this deletion was to confine the study to acoidents occurring in areas more consistently rural in character.
2. Those parts of the route used were divided into two kinds of sections a.s follows:
a. Intersection
b. Won-Intersection

The intersection sections each included one or more major intersections; two of these sections were slightly over a mile in length and included several major intersections. The non-intersection sections included no major intersections, only minor intersections. The average length of the intersection sections was about 830 feet and of the non-intersection sections about 1, 680 feet. This division into two major types of section answered the main criticism of the first analysis and at the same time made possible a more objective analysis of the data.
3. Traffic volume counts were taken at sufficiently short intervals along this route to measure the significant changes in traffic volume. These were used to establish a 1948 annual average daily traffic volume for
each section included in the study. This made possible the computation of number of accidents per million vehicle miles for any section or group of sections.
4. Several minor changes were made in the manner of recording the accidenta in the tabulating cards. These changes were based on the experience gained in the first analysis.

The design features, roadside features, classifications of advertising signs and the numbers of each used in the second alaysis were as follows:

Roadside Features

Private Drives
525170
Parks - Including Roadside and Trailer
33
Taverns 1.3
Gasoline Stations and Commercial Garages
Stores
Restaurantis 26
Other Establishments 2/ 112

Advertising Signs

Large and. Prominent
119
1.91

250
Medium Size
Smell Size
Signs were also classified as follows:
Illuminated
58
68
46
388
108
Neon and Flashing Neon
Reflectorized
Miscellaneous
25
$96-96$
$26 \quad 46$
93
/ Data relating to two other features, Points of Curvature and Grade Separations Abutments and Piers, were recorded in the tabulating cards but were not used in the analysis because of their small number.

2/ In the second analysis "Other Establishments" did not incluae any of the above listed roadside features as they did in the first analysis.

3/ The number of individual intersections was not recorded in the second analysis.

IBM Card Forms

To facilitate computing and tabulating, the data were placed in two different punch card forms. Of the one form, one card was made for each accident included in the study. These cards contained the usual identifactoxy items; distance (coded in hundreds of feet) of occurrence of accident from each roadside and design feature and from large and prominent advertising signs; number of roadside features (not including private drives) and number of private drives and number of advertising signs, each within $100,200,300,400,500$, and 600 feet of the accident; 1948 annual average daily traffic; and a few other items.

Of the second punch card form, one was made for each section. These cards contained by way of identification the station number at the north end of the section; number of accidents in the section; number of each design feature, number of each roadside feature and number of advertising signs of each kind; 1948 annual average daily traffic; and section length. Accident density expressed in terms of number of accidents per hundred feet of section length and 1948 annual average daily vehicle miles were added to these cards by means of the automatic multiplying punch.

All cards of both forms contained kind of section identification-intersection or non-intersection. The accident cards contained data for accidents occurring in 1947, 1948, and 1949, while the section cards contained date for only 1947 and 1948. Consequentily, part of the analysis and the results presented here are based on three years' accidents and part on two years' accidents.

The second analysis proceeded in many respects the same as the first. However, some of the procedures thought to have little significance in the first analysis were omitted in the second. Some new procedures were introduced in the second analysis. The chief difference between the two analyses was the fact that in the second the date were analyzed for the most part for intersection and non-

Table I

a. Type of Section
Intersection
Non-Intersection

Total

Comparison between Intersection and Non-Intersection Sections of

Number of Accidents, Distance, Vehicle Miles and Accident Rate

1947-48 Accidents		Total Distance Studied		1948 Annual Average Daily Vehicle Miles		Accidents per Year Per Million Vehicle Miles
Number	Percent	100 Ft .	Percent	Number	Percent	
1,384	70	991	29	213,596	30	8,88
584	30	2,412	71	500,821	70	1,60
1,968	100	3,403	100	714,416	100	3.77

intersection sections separately.
As in the first analysis, so in this, the analysis and the conclusions drawn therefrom are based on the philosophy that, regardless of how much data are avail.able, the precise cause of accidents cannot be positively determined. one can only record and study a limited number of conditions under which accidents have been reported to occur. However, by tabulating the data in many ways one can compute various statistics and carry out other analytical procedures in the hope of obtaining a clearer picture of the extent of relationship, if any exists, between the occurrence of accidents and the conditions studied. The purpose of this analysis was to do just this.

Table I

The first analysis pointed clearly to the seriousness of the intersection situation along this route. The second analysis emphasjzes it still more. The few figures in Table I will show at a glance that intersection sections have a much worse accident experience than non-intersection sections the former occupy only 29 percent of the distance under study and generate only 30 percent of the vehicle miles, yet 70 percent of the accidents occurred here. The accident rate on these intersection sections is extremely high-8.88 accidents per year per million vehicle miles. The accident rate on the non-intersection sections is 1.60 ; this figure compares favorably with that found for a.ll Michigan rural state trunklines with high type suxfaces of all widths in 1936-41. The latter rate was 1.68. Tables II and III

This analysis attacked the problem first from the angle of proximity of accidents to design and roadside features including large and prominent advertising signs. Frequency distributions of the distance (in increments of 100 feet) of accidents from each of the various features wexe tabulated. The numbers of accidents in each such distrobution were divided by the appropriate total number of features to obtain the number of accidents occurring in three years (1947-48-49) per feature

Table II
Rate of Occurrence of Accidents per Feature per 100 Feet
Intersection Sections
Group I - Maximum Rates Exceeding 8.00
Gasoline

$\begin{aligned} & \text { Distance } \\ & \text { (Freet) } \\ & \hline \end{aligned}$	Crests of Hill	Inter- Sections	Gasoline Stations \& Conmercial Garages	Taverns	Restaurants	Parks	$\begin{aligned} & \text { Hand- } \\ & \text { rails } \end{aligned}$
0-99	29.50	14.97	12.38	11.96	10.31	2.80	2.00
100-199	5.33	1.95	1.69	14.61	7.15	4.60	2.67
200-299	4.33	0.68	0.67	2.64	3.41	7.60	5.33
300-399	8.83	0.20	0.49	1.18	1.87	14.20	7.67
400-500	8.00	0.03	0.42	1.07	1.22	6.80	9.00

∞

Group II - Maximum Rate Between 4.01 and 8.00

Other

Distance (Feet)	Guard- rails	Stores	Establish- ments	Transition in Width
$0-99$	7.92	6.51		
$100-199$	5.85	3.69	4.30	4.64
$200-299$	6.26	1.70	2.49	5.28
$300-399$	3.77	2.19	1.82	1.25
$400-500$	2.92	0.88	0.84	0.94
				0.92

Group III - Maximum Rate Never Exceeding 4.00

Distance (Feet)	Large and Prominent Signs	Culvert Posts	Private Drives
$0-99$	4.00	3.06	1.70
$100-199$	2.42	1.69	2.18
$200-299$	1.13	1.63	1.75
$300-399$	0.77	0.94	0.86
$400-500$	1.48	1.69	0.79

Table III

Rate of Occurrence of Accidents per Feature per 1.00 Feet Mon-Intersection Sections

Group I - Maximun Rate Between 2.01 and 3.00

Distance (Feet)	Taverns	Gasoline Commercial Garages	Restaurants
0.99	2.77	2.08	2.04
$100-199$	1.62	1.12	1.65
$200-299$	1.54	1.96	1.77
$300-399$	2.15	1.84	1.15
$400-500$	1.31	2.36	0.96

Group II - Maximum Rate Between 1.01 and 2.00
Other Crests

Distance (Feet)	Other Establish ments	Guard- rails	Stores	Transition in Width	Crests of
0.99	1.68	1.67	1.54	1.20	Hills

Group III - Maximum Rate Never Exceeding 1.00

Distance (Feet)	Culvert Posts	Parks	Private Drives	Large and Prominent Siggs
$0-99$	0.92	0.82	0.69	0.47
$100-199$	0.41	0.64	0.31	0.44
$200-299$	0.78	0.67	0.15	0.45
$300-399$	0.73	0.73	0.12	0.46
$400-500$	0.62	0.58	0.09	0.29

in each loo-foot increment of distance from the feature. This was done for the intersection and non-intersection sections separately. The results are shown in Tables II and III, These results are not comparable to those in the first analysis because they are for 3 years instead of 2 and for two kinds of sections separately. The features have been divided into 3 groups in each of Tables II and III according to maximum rates attained.

These two tables clearly demonstrate the vast difference between intersection and non-intersection sections. The intersection sections have rates of occurrence that are consistently much higher than those of the non-intersection sections. Attention is called to the rapidity with which the rates for some of the features in Group I of intersection sections fall off as compared to that for the same features in the non-intersection sections. The variation of the rates among increments of distance is much less for the same feature in the non-intersection than in the intersection sections. Tables II and III show the effect of the concentration of features about intersections. Undoubtediy hillcrests and intersections are bad combinations.

Correlation Coefficients

The problem was next attacked by way of the correlation coefficient. This coefficient is a relative measure of the amount of association between one variable and one or more other variables. The amount of association is measured on a scale ranging from -1 to f. It is an abstract number free of any unit of measure. If two variables are perfectly associated; i.e., if one varies directiy as the other, their correlation will be exactly one. Or if one varies inversely as the other, their correlation will be exactly -1. If one varies with pefect randomess with respect to the other, their correlation will be zero. Graphically this means that If one variable is plotted against the other, and all the points lie on a straight Iine, the correlation between the two will be flor -1 , depending upon whether the line has a positive or negative slope. The correlation coefficient provides a more objective method of approach than that of the proximity of features method.

Table IV

The correlation coefficients were computed from the data recorded in the section cards of which, as explained above, there was one for each intersection section and one for each non-intersection section. They are based on the accidents for the two years, 1947-1948. There were 119 intersection and 144 non-intersection sections. All correlation coefficienta were computed for each kind of asction separately. The correlation between accidents and the several design features, roadside features and advertising signs are shown in Table IV.

Most of these coefficients are higher for intersection than for non-intersection sections. Motable exceptions are culvert posts, large and prominent signs and reflectorized signs. Considering each kind of feature or advertising aign individually, the difference between the correlation coefficients for intersection and non-intersection sections is hardily signfficant in most cases. But using the method of weighted average correlation coefficients, it was found that the association of accidents with these features and advertising signs combined is very significantly greater in intergection than in non-intersection sections. By the same procedure design features and advertising signs show no significant difference between the two types of sections while roadside features show a highly significant difference. From this we can safely conclude that:

1. Accidents are associated with design features to about the same extent in both intersection and non-intersection sections.
2. Accidents are associated with roadside features gignificantly more in intersection sections than in non-intersection sections.
3. Accidents are associated with advertising signs to about the same extent in both intersection and non-intersection sections.

Nearly all the correlation coefficients for design features are too small to be given serious consideration. Many are insignificantly swall. The importance of crests of hills indicated by the proximity study does not appear in the

Table IV

Correlation Coefficients of Accidents with Features and Advertising Signs for Non-Intersection Sections and for Intersection Sections

Correlation Coefficient		
	Non-	
Features Correlated with Accidents I	Intersection	Intersection
Design Features:		
Crest of Hill	-. $002 *$.374
Transition in Width or Arrangement of Lanes	-.016*	.206*
Handrails at Bridge, Culvert or Grade Separation	n .1.64*	.197*
Culvert Posts	. 353	-. 137*
Guard Raila	.131*	.217*
Welghted Average	. 129	. 228
Roadside Features:		
Private Drives	. 513	. 264 .
Parks	. 455	. $162 *$
Taverns	. 313	. 698
Gas Stations and Commercial Garages	. 442	. 666
Stores	. 321	. 526
Restaurants	:438	. 651
Other Establishments	.443	. 720
Weighted Average (excluding Private Drives and Parks)	. 393	.657
Advertising Signs:		
Large and Prominent	. 418	.367
Medium Size	. 597	. 578
Sma. 11 Size	. 482	. 695
Illuminated	. 561	. 588
Neon and Flashing Neon	. 428	. 660
Reflectorized	. 304	. $130 *$
Miscellaneous	. 484	. 559
Weishted Average	. 472	. 530
1948 Annual Average Daily Vehicle Miles	. 680	.720
Section Length	. 719	. 687
Multiple Correlations:		
Design Features	. 393	. 480
Roadside Feature Less Private Drives and Parks	. 640	. 859
Large, Medium and Small Advertising Signs	. 606	. 710
Illuminated, Neon and Flashing Neon, Reflectorized and Miscellaneous Advertising Signs	. 635	. 758

correlation coefficient because of the very small number of this feature. Nevertheless, they do show greater association in intersection sections than any other design feature and are not to be ignored. Generally speaking, the association of accidents with design features is significantly less in both kinds of section than the association of accidents with roadside features or with advertising signs.

The difference between the association of accidents with roadside features (not including private drives and parks) and of accidents with advertising signs is hardly significant in the non-intersection sections. This difference is highly significant in the intersection sections where the accidents are associated with roadside features (not including private drives and parks) very much more closely than with advertising signs.

In computing the correlation coefficients, as well as in this discussion of them, private drives and parks are not included in the general term "roadside features". Although it is true that these two features are roadside features in one sense and are included under roadside features in Table IV, it was desired to treat commercial establishments only as a separate group. The term "roadside features" has generally been used for commercial establishments as a group.

It is worthwhile to note that accidents are significantly more closely associated with private drives and parks in non-intersection than in intersection sections. In fact, these two are more closely associated with accidents than are any of the other roadside features in intersection sections.

In all fairness to design and roadside features and to advertising signs, accidents were correlated with 1948 annual average daily vehicle miles and with section length. These coefficients are shown in Table IV. That there is little difference between the association of accidents with vehicle miles and with section length is not surprising since one is a function of the other. While it is true that vehicle miles and section length are much more closely associated with accidents than are roadside features and advertising signs (according to the
weighted average coeffictents of the latter), it iss also true that section length is as closely or more closely associated with roadside features and advertising signs then are accidents: The following table shows the correlation among accidents, gection length, vehicle miles, roadside features and advertising signs:

This means that, in the non-intersection sections, accidents tend to be somewhat evenly distributed apatially along the study route without much regard for roadside features and advertising signs. Roadside features and advertising signs are not so evenly distributed spetially along the study route, but tend to be grouped. At the same time, accidents are occurring more closely associated with section length, and hence vehtcle miles, than with roadside features and advertising signs.

In the intersection sections, accidents again tend to be somewhat evenly distributed with respect to section length. But here the roadside features and advertising signs are much more evenly distributed with respect to section length; the association is significantly higher than in non-intersection sections. At the same time the association of accidents with roadside features has risen significantly over that found in non-intersection sections. The association of accidents with advertising signs has also xisen appreciably, although not by a statistically alennificant amount.

All this is not to belittle the importance to accident occurrence of vehicle miles generated, but to point out that accidents, roadside features, advertising signa and vehicle miles appear to be interlocked. To completely isolate these varlous cross-influencesis a very difficult problem. It has been one of the I/ Less private drives and parke.
primary aims of the analysis to bring about this isolation.
In order to more completely exhaust the possibilities of the correlation coefficient, multiple correlations were computed. Multiple correlation permits measuring the association of one variable with two or more other variables simultaneously. It permits the independent variables to exert their influence jointly upon the amount of association existing. Multiple correlation coefficients for accidents with design features, roadside features less private drives and parks, advertising signs classified by size, and advertising signs classified by type of lighting were computed for each kind of section. These are shown at the bottom of Table IV. These coefficients are much higher than the corresponding single coefficients because they reflect the additive effect of features and signs. Accident occurrence is much more closely associated with all roadside features or all advertising signs than with any one kind of feature or sign individually. The same is also true for design features. These multiple coefficients substantiate very well the findings from the simple coefficients.

The very high multiple correlation of 0.859 between accidents and roadside features in intersection sections is the most significant point in the correlation phase of this analysis. The coefficients of 0.710 and 0.758 for accidents with advertising signs rank second in this respect.

The difference between the coefficients for advertising signs classified by size and by type of lighting is not significant in either kind of section. Table V

While the use of correlation coefficients makes possible a somewhat more precise analysis and one whose results can be tested for significant differences, the results are more difficult to interpret properly and explain in writing. Therefore the problem was again attacked by the method of accident density. In each section card the total number of accidents occurring in the two years, 1947 and 1948, was divided by the section length in hundreds of feet. Thus accident density

Percent of Section Length and Accidents and Number of Roadside Features
and Advertising Signs Per 100 Feet
For Each of Five Groups of Accident Density

Intersection Sections
Section Length
Accidents
:---
(percent)

Private Drives
Taverns
Gas Stations \& Commercial Garages
Stores
Restaurants
Other Establishments
Total Roadside Features

Large \& Prominent Signs
Medium Sized Signs
Small Signs
Signs Illuminated or Reflectorized
Signs Not Illuminated or Reflectorized
Total Signs

None	0.01-0.49	0.50-0.99	1.00-3.99	$4.00 \&$ Up	Total
4.4	18.5	28.5	44.8	3.8	100.0
0.0	4.0	14.8	61.1	20.1	100.0
(number per 100 feet)					
. 114	. 208	. 262	.115	. 053	
-0-	-0-	. 014	. 041	. 158	
-0-	. 013	. 092	. 115	. 448	
. 023	. 016	. 060	. 088	. 184	
-0-	-0-	. 046	. 065	. 105	
. 023	. 027	. 082	. 128	. 184	
. 045	. 054	. 294	. 437	1.079	
-0-	. 055	. 060	. 077	. 026	
. 068	. 087	. 160	. 185	. 421	
. 045	. 082	. 308	. 290	. 737	
. 023	. 033	. 216	. 275	. 895	
. 091	. 191	. 312	. 277	. 289	
. 114	. 224	. 528	. 552	1.184	
10.4	81.2	7.8	0.6	-0	100.0
-0-	74.7	20.2	5.1	-0-	100.0
(number per 100 feet)					
. 171	. 220	.261	. 143	-0-	
-0-	. 004	. 021	. 071	-0-	
. 008	. 009	. 027	. 071	-0-	
. 008	. 015	. 064	. 143	-0-	
-0-	. 010	. 016	. 214	-0-	
. 024	. 039	. 117	. 572	-0-	
. 040	. 077	.245	1.071	-0-	
. 040	. 051	. 048	.071	-0-	
. 056	. 079	. 096	.286	-0-	
. 068	. 101	. 149	. 500	-0-	
. 028	. 068	. 122	. 571	-0-	
. 135	. 162	. 170	. 286	-0-	
. 163	. 231	. 293	. 857	-0-	

is the number of accidents per hundred feet of section length The several items pertalning to accidents, section length, features, signs and vehicle miles were tablulated by accident density From these tabulations percent of section length, percent of accidents, density of roadside features, and density of advertising Gigns were computed for each of five accident density groups. This was done for each kind of section separately. The results are shown in Table V.

Tr this table, attention is called first of all to the almost perfect consintency with whioh roadside feature density and advertising gign density increages 0.5 the accident density incxesses. Although it indicates only a general tixend mathex than specific pelationships, it does lend considerable support to the correlation coefficienta of Table IV. One might say that it explains in a way the coefficionts of Table IV. It is wrothwhile to note the difference in the various types of featurea and gigns between the two kinds of section at the same accident density level. Table V explains the relatively low correlation of accidents with private drives end lerge and prominent signs in intersection sections.

The percenteges of section length and accidents by accident denstty groups indicate cleardy the seriousness of the accident glturtion in intersection sections as compred to thet in non-intexsection sections. Fox example: In the intersection sections 91.2 percent of the accidents occurred at accident densities of 1.00 or nore; while in the non-intersection sections only 5.1 percent of the accidente occurred at accident densities of 1.00 or more. Table VI

Table VI is presented to show the nature of the relationship between scoidents and treific volumes. Accident rates and accident densities axe shom by looovehicle increnents of 1948 anual average daily traffic volume. These data fail to show ony evidence that acoident rates or sccident densities increase signifi.. cantly as trafic volumes increase on the study route. fhe correlation coefficients of traffic volunes with accident rates and with accident densities are shown at the bottom of Table VI. Only one of these four correlations is significantly large.

Accidents per Year per Miliion Vehicle Miles and Accidents per Hundred Feet I/ in Each Kind of Section by 1948 Annual Average Daily Traffic Volumes

Accident Rates	
Intersection	Non-Intersection
Sections	Sections
15.65	1.61
10.18	2.73
9.49	2.86
8.02	1.95
8.05	1.64
6.73	1.77
9.22	1.74
2.39	0.95
9.79	1.61
7.95	1.18
9.56	1.15
18.38	2.34
$2 /$	$2 /$
2.67	0.85
4.88	1.11
0.302	

1948 Annual
Average Daily Traffic Volumes $5,000-5,999$
$6,000-6,999$ 7,000-7,999 8,000 - 8,999
9,000-9,999
10,000 -10,999
11,000-11,999
12,000-12,999
13,000-13,999
14,000-14,999
15,000-15,999
16,000 -16,999
17,000 -17,999
18,000-18,999
19,000-19,999
-0.609

Correlation with 1948 Annual Average Daily Traffic Volumes

Accident Densities

Intersection	Non-Intersection
Sections	Sections
1.23	0.13
0.90	0.25
0.98	0.29
0.92	0.22
1.07	0.21
0.98	0.26
1.48	0.28
0.43	0.17
1.87	0.31
1.61	0.24
2.05	0.25
4.23	0.54
$2 /$	$2 /$
0.69	0.22
1.32	0.30

0.365
0.419

1/ In two years
2/ No traffic volumes in this range on the study route.

This is the one for accident retes with traffic volumes in the non-intersection sections, and since it is negative it indicates a tendency for the accident rates to decrease as trafific volumes increase.

Table VI is not meant to end a controversy. It is meant only to show the conditions relative to accidents and traffic volumes existing on the route undex atudy.

Figure II
Figure II shows accident rates and roadside features per 100 feet by numbex of lanes and suxface width, along the entire study route (except those sections onitted in Monroe, Flatrock, Dearborm and Pontiac). The figure also shows the 1948 annual average dajly traffic volume along the route, and the principal intersecting routes. The figure is drawn to scale along the route.

From this figure it is clear that the northern portion of Telegraph Road, starting st about the north junction with US-25, is much worse than the southern portion. This is true not only in terms of accident rates, but also in terms of number of accidents. About 66.5 percent of all accidents in 1947-48 on those parts of Telegraph Road included in this study occurred north of the north junction with US-25. This portion contains 51.7 percent of the total length of the study route。 The number of roadside features per 100 feet south of the north junction with US-25 ia 0.122 , while north of this junction the feature density is 0.200 - almost double that on the southern portion of the route. This close association between gocident rates and density of roadside features is shown.

This figure shows why the correlation coefficients between accident retes and traffic volumes (shown in Table VI) were negative. The portion of Telegraph Road Iying between the two functions with US-25 has the highest traffic volumes to be found along the route - reaching a peak of over 19,000 vehicles per day Yet this same portion of the route ha, the lowest accident rate to be found along the route except for short distance between M-151 and Dewar Road. The portion of the

ACCIDENT RATES, TRAFFIC VOLUMES, NUMBER OF LANES, SURFACE WIDTH AMD ROADSIDE FEATURES

TELEGRAPH TOAD
197-194

route lying north of 8 Mile Rosi (M-102) has the lowest traffic volumes and yet has a relatively high accident rate.

There appears to be little reletionship between number of lenes and accident rate. For any apparent trend in this respect there can be found an exception. There is much nore relationship between number of lanes and traffic volume. This is clearly shown by Figure II. Generally speaking, the 4 -lane portions carry higher traffic volumes than the 3 -lane portions which in turn carry higher volumes than the 2-Iane portion.

An analysis of accidents occurring in 1936-41 on Michigan rural state trunk lines with high type surfaces revealed that when a 2 -Jane roed wes loaded beyond about 4,000 vehicles per day the accident rate increased sharply. This fact is very well substantiated by the 2-1ane portion of Telegraph Road lying between 8 Mile goad and Long Lake Road. This portion has traffic volumes which are very low compared to the remainder of Pelegraph Road, but they are far beyong the critical 4,000 vehicles per day, and the accident rate of 4.94 is among the highest along the route. Tables VII and VIII

The question has come up repeatedly as to whether intersections are hazardous simply because they are intersections or whether they are hazardous because rob, d. side features are built up around them. To answer this question the intersection sections were divided into three groups of roadside feature density (number of roadside features per 100 feet). For each group there was tabulated the number of sections, accidents, rosdside features and advertising signs, section length and 1948 annual average daily vehicle miles. These are shown in Teble VII. Then for each roadside feature density group there was computed percentage of accidents, roadside features, advertising signs, section length and 1948 annual average daily vehicle miles, accidents per 100 feet and accidents per year per million vehicle miles. These are ahown in Table VIII. Both these Tables are based only on intersection sections.

Number of Sections, Accidents, Roadside Features, Advertising Signs; Section Length, 1948 Annual Average Daily Vehicle Miles
For Each of 3 Groups of Roadside Feature Density
Intersection Sections

Roadside Feature Density (Number of Roadside Features per 100 Feet)	NUMBER O F				Section Length	1948 Annual Average Daily
			Roadside	Advertising		
	Sections	Accidents	Features	Sígns	(100's of Feet)	Vehicle Miles
-0-	46	139	-0-	41	277	50,899
0.001-0.399	50	730	179	252	494	110,373
0.400 - and up	23	515	151	192	220	52,324
Total	119	1,384	330	485	991	213,596

Percent of Accidents, Roadside Features, Advertising Signs, Section Length, 1948 Annual Average Daily Vehicle Miles; Accidents per 100 Feet and Accidents per Year per Million Vehicle Miles for Each of 3 Groups of Roadside Feature Density

Intersection Sections							
	PERCENTAGE OF						Accidents per Year per
Roadside Feature Density				Section	1948 Annual	Accidents	
(Number of Roadside		Roadside	Advertising	Length	Average Daily	per	Milliton
Features per 100 Feet)	Accidents	Features	Signs	(100's of Feet)	Vehicle Miles	100 Feet	Vehicle Miles
N - 0 -	10.0	- 0 -	8.4	28.0	23.8	0.50	3.74
0.001-0.399	52.7	54.2	52.0	49.8	51.7	1.48	9.06
0.400 and up	37.2	45.8	39.6	22.2	24.5	2.34	13.48
Total	100.0	100.0	100.0	100.0	100.0	1.40	8.88

In the first roadside feature density group containing no roadside features of any kind, 28.0 percent of the section length and 23.8 percent of the vehicle miles, there occurred only 10.0 percent of the accidents. This group contained at Least 46 intersections. On the other hand, the last roadside feature density group which accounts for only 22.2 percent of the section length and 24.5 percent of the vehicle miles of travel contained 45.8 percent of the roadside features and 37.2 percent of the accidents. The last two columns of Table VIII show the rapid increase in accident density and accident rate as roadside feature density is increased. These two columns furnish the answer to our question. Intersections are hazardous in themselves as indicated by the accident rate of 3.74 in 46 intersection sections containing no roadside features. Considering the manner in which accident density and accident rate increases as roadside feature density increases, it is evident that intersections are not only hazardous in themselves but that they become much worse as roadside features are built up around them.

Trable IX

Another approach was made to the problem of accidents and roadside features by the way of frequency distributions. Accidents for the three years 1946, 1947 and 1948 and all roadside features except private drives, were used. The data for both kinds of sections were combined. Frequency distributions of number of accidents and of number of 200 -foot units of distances by number of roadside features (less private drives) were constructed. Two other similar pairs of frequency distributions were constructed--one for 400 -foot units of distance and one for 600-foot units of distance. The 400 -foot units overlapped 200 feet and the 600 -foot units overlapped 400 feet. The purpose of this overlapping was to obtain the same number of units of distance in all three pairs of distributions.

Then for each of the three pairs of distributions the number of accidents was divided by the number of units of distance at each number of roadside features. The results are shown in Table IX.

Table IX
Accidents per Unit of Distance by Number of Roadside Features 1/

Number of	Accidents per Unit of Distance		
Roadside	200-7rot	400-Foot	600-Foot
Features	Units	Units	Units
0	0.813	0.730	0.722
1	2.31	1.59	1.27
2	6.51	2.69	1.98
3	6.56	3.66	2.70
4	40.38	9.54	4.39
4 or more	51.11	14.33	8.78
5	111.00	14.94	10.31
6		24.30	13.24
6 or more		29.08	$\therefore 14.10$
7		14.00	10.36
8 or more			20.67

Table X.
Partial and Total Correlation Coefficients of Accidents with Roadside Features for Non-Intersection and for Intersection Sections

Features Coxrelated with Accidents	Non-Intersection Sections		Intersection Sections	
	Total	Partial	motal	artial
Taverns	. 313	. 303	. 698	. 510
Gas Stations and Commercial Garages	. 442	. 295	. 666	. 350
Stores	. 321	. 034	. 526	. 161
Restaurants	. 438	. 198	.651	. 1.05
Other Establishments	. 443	. 300	.720	. 313

Attention is called to the perfect consistency with which the number of accidents decreases as the unit of distance increases from 200 feet through 600 feet for a fixed number of roadaide features. The implication of this is that the smaller the concentration of roadside features, the smaller will be the number of accidents.

Table X

We come now to a part of the analysis which the reader may accept or reject as he likes. This part has to do with a phase of correlation not too frequently used. It is called "partial" correlation. Heretofore we have used only "total" correlations, whethex single, multiple or weighted average.

The meaning of partial correlation and its possibilities may beat be explained by an example. If three or more variables are related, the correlation between any two may be unduly increased or decreased by the correlation of the third with each of the two. It is possible by means of partial correlation to compute the correlation between any two of them with the effect of the third eliminated or held constant. In other words, the partial correlation measures the effect of one variable in its own right upon a second varieble and independently of the effect of a third or other varlables.

It should be pointed out that partial correlation implies cause and effect. There is no point in accepting and using partial correlation unless one is willing to admit the existence of a system of causality among the variables correlated. Also, it should be pointed out that such an admission is contrary to the philosophy of the impossibility of determining accident causes stated at the beginning of this report.

More than one variable may be eliminated from the correlation of two others; but as the number of variables eliminated fincreases, the computations increase rapid1y.

Stince accidents are closer associated with roadside features (excluding
private drives and parks) than with design features and advertising signs, the decision was made to apply partial correlation to this part of the data. Therefore the partial correlation coefficients of accidents with each of the roadside features, taverns, gas stations and comercial garages, stores, restaurants, and other establishments were computed holding the other four roodside features constant in each instance. This was done for both kinds of section, The results are shown in Table X along with the corresponding total coefficients from Table IV.

Table X shows that in non-intersection sections the essociation of accidents with Taverns and Other Establishments is not materially reduced when in each instance the effect of the other four features is eliminated. By contrast, the association of accidents with Gas Stations and Commercial Garages, Stores, and Restaurants is tremendously reduced when in each instance the effect of the other four features is eliminated. In the intersection sections only Taverms is not materially reduced when the effect of the other four roadside features is eliminated. Therefore, if one is willing to admit that roadside features and accidents are a case of cause and effect, the conciugion to be drawn from Table X is that taverns in both kinds of section and other establishments in non-intersection sections are moking a material contribution to the production of accidents on the study route. While gas stations and comercial garages, stores and restaurants in both kinds of section, and other establishments in intersection sections make only a very small contribution to the production of accidents.

CONCLUSION
The continuing anelysis of data has provided further evidence of the seriousness of the accident hazards at intersections as compared with other portions of the highways. It indicates that these locations are approximately five times as hazaxdous as the sections between and it gives further proof of the danger of concentrations of features around intersections.

In working toward the principal objective of the present phase of this analy-
sis - the segregation of intersections from the roadside features at intersections - definite progress has been made. It is now clear that the intersections themselves create definite hazards and that the development of roadside establishments at these points intensifies the danger.

As a result of the more specialized analysis of data, the earlier determined order in which various factors are associated with accident occurrence has been revised. The initial studies indicated that roadside features were most closely associated with accidents, that design features came next, and that advertising signs were only slightly associated. It now appears that association with accidents is highest and about equal for roadside features and advertising signs, and that design features are rather far behind. The frequency with which signs occur in connection with roadside establishments is recognized as having a bearing on this problem, but it has not yet been thoroughly investigated.

While the association of design features as a whole with accident occurrence was found to be low, two physical manifestations of design were proved to be highly important. One, of course, is the grade intersection which is repeatedly indicated as the outstanding element in this study. The other is the number of lanes in relation to traffic volume. This latter may well be a factor in the rather surprising findings reported regarding the relationship of accident rates to traffic volumes.

The use of the method of partial correlation is an interesting development of the present phase of the study. The resulting indications regarding the particularly close association of Taverns and Other Establishments with accident occurrence are steps toward setting up definite cause-and-effect relationships in the accident field.

Several of the desirable analytical projects listed in the first progress report for future accomplishment have not been undertaken as yet. However, the results so far clearly demonstrate that every effort should be made to create arteries for main streams of traffic which are at least relatively free from roadside
business development, not only at intersections, but throughout their length.
The study is continuing and it is hoped it will yield more and valuable information.

