EFFECT OF CLEAR VISION RIGHT-OF-WAY
ON TRAFFIC ACCIDENTS AT URBAN AND RURAL SIGNALIZED INTERSECTIONS
TSD - 228-73

MMGMMAY 凡IBRARY
M:CHIGAA DEPARTMEITT OF STATE
borvivars

P. O. DRAWER "K" 48904

TRAFFIC and SAFETY DIVISION

MICHIGAN STATE HIGHWAY COMMISSION

E. V. Erickson Chairman
C. H. Hewitt Vice Chairman
C. V. Pellonpaa. Member
P. B. Fletcher Member

EFFECT OF CLEAR VISION RIGHT-OF-WAY

ON TRAFFIC ACCIDENTS AT URBAN AND RURAL
SIGNALIZED INTERSECTIONS
TSD - 228-73

MICHIGAN DEPARTMENT OF STATE HIGHWAYS
J. P. WoodfordState Highway Director
G. J. McCarthy Asst. Deputy Director
N. C. Jones. Chief, Bureau of Engineering
L. J. Doyle. Asst. Engineer of Traffic and Safety
P. H. DeCamp Traffic Research and Development Engineer

Department of State Highways
State Highways Building - P.O. Drawer K Lansing, Michigan 48904

FOREWORD

Over the years the Michigan Department of State Highways has acquired a considerable number of triangular-shaped parcels of land in the quadrants of major intersections for the purpose of maintaining clear vision for drivers to the opposing motorists. As traffic increased and conflicts became evident certain of these intersections warranted signalization, and the question then arose to the necessity of retaining that extra right-of-way. Commercial interests have sought to acquire the land from the Department in order to place their products and services closer to the traffic stream.

The results of this study provide a third warrant for retaining standard clear vision triangles after signalization. The study was made without bias to determine if significant differences in accident rates had developed. Mr. Wu has applied a statistician's knowledge capably to show the practicing traffic engineer the relationship of sight triangles in combination with stop-and-go traffic signals on the basis of accident experience.

The first warrant was D. J. Mercer's calculation for the occasion of an errant motorist running through the red signal indication and the opposing motorist having to take evasive action. The second warrant is contained in numerous documents and relates to the economic benefit of retaining extra right-of-way. The roads on our system are periodically reconstructed to wider cross-sections. With increasing land prices, particularly at intersections needing auxiliary laneage, it is far better to utilize excess than acquire new properties.
P. H. DeCamp

July 1973

TABLE OF CONTENTS

Page
Foreword i
Figures and Tables iii
(I) Introduction. 1
(II) Summary and Conclusions 1
(III) Procedure 3
Selection of Study Sites 3
Definitions 4
Data Collection 10
Analysis of the Data and Findings 27
References 32

List of Figures and Tables

Page

FIGURE 1: Full Vision Four-Legged Intersection	
	With Bi-directional Traffic For Both
	Routes 8

FIGURE 2: Full Vision Four-Legged Intersection
With One-Way Crossroad 8

FIGURE 3: Full Vision Four-Legged Intersection With One-Way Traffic For Both Routes . . 8
$\begin{aligned} & \text { FIGURE } 4: \quad \text { Partial Vision Four-Legged Intersection } \\ & \text { With Bi-directional Traffic For Both } \\ & \text { Routes }\end{aligned}$
$\begin{aligned} & \text { FIGURE 5: Partial Vision Four-Legged Intersection } \\ & \text { With One-Way Crossroad } 9\end{aligned}$
FIGURE 6: Full Vision Tee Intersection With One-Way Crossroad. 9

FIGURE 7: Full Vision Tee Intersection With Bidirectional Traffic For Both Routes. . . 9
$\begin{aligned} & \text { FIGURE 8: Partial Vision Tee Intersection With } \\ & \text { One-Way Crossroad. } 9\end{aligned}$
FIGURE 9: Partial Vision Tee Intersection With Bi-directional Traffic For Both Routes . 9

TABLE I: Traffic and Accident Data For Urban Four-Legged Intersection 13
$\begin{aligned} & \text { TABLE II: Traffic and Accident Data For Rural } \\ & \text { Four-Legged Intersections. } 20\end{aligned}$
TABLE III: Traffic and Accident Data For Urban Tee Intersections. 23

TABLE IV: Analysis of Variance Table For Urban Four-Legged Intersections. 29
$\begin{array}{ll}\text { TABLE } V & \text { Analysis of Variance Table For Rural } \\ & \text { Four-Legged Intersections. } 30\end{array}$
TABLE VI: Analysis of Variance Table For Urban Tee Intersections.31
(I) Introduction

The need exists for justification to retain or acquire clear vision right-of-way at all signalized intersections on Michigan highways through the study of accident experience.

Most previous studies were conducted to develop the procedures for determining the minimum clear vision requirements under suburban and urban conditions (4, 7). The general warrants for clear vision areas on all networks authorized for design or for right~of-way acquisition presently being used by many states are based on subjective judgment and not on hazard. The objective of this research investigation was to determine the relationship between the severity rate of the occurrence of accidents and the clear vision right-of-way of state highways. To meet the study objective, 192 signalized intersections on Michigan highways were selected for investigation and reports of accidents that occurred in 1971 and that could be attributed to the intersections were studied.
(II) Summary and Conclusions

The results of this research can be summarized as follows:
(1) There was a significantly higher injury accident rate at four-legged signalized intersections (both urban and rural), and urban

Tee signalized intersections with poor vision than at those with clear vision.
(2) There was a significantly higher property damage accident rate at four-legged signalized intersections (both urban and rural), and urban Tee signalized intersections with poor vision than at those with clear vision.
(3) There was a significantly higher accident rate at four-legged signalized intersections (both urban and rural), and urban Tee signalized intersections with poor vision than at those with clear vision.

Abstract

In conclusion, a clear vision right-of-way at signalized intersections is only one of many factors which affect accident rates on the state highway system. However, an added clear vision right-of-way does contribute to safer intersections. It is felt that the possibility of providing appropriate clear vision right-of-way on state highway routes should be carefully considered in initial purchase, that most existing clear vision right-of-way be retained and that acquisition of clear-vision areas at many intersections in growing areas be acquired before development makes it difficult or impossible.

(III) Procedure

Selection of Study Sites

In undertaking a project of the type and scope described, one needs to be particularly concerned with the homogeneity of the selected areas with respect to roadside development, speed limit and average daily traffic (ADT). One of the difficulties encountered when conducting a comparison study is the problem of maintaining equivalent conditions. If one intersection is compared with another, it is likely that a multitude of unrelated variables will enter the picture: turning movement, orientation and environment, to name a few. To accommodate the possible comparisons for the study locations on the basis of homogeneity, the following procedures were taken:
(1) A one-year period (1971) was selected for investigation and the study was limited to signalized locations on Michigan State Highways during 1971.
(2) The population (i.e. total number of signalized intersections) was divided into subgroups (called subpopulations) by type of intersections - Tee, four-legged, Y and others.
(3) Within these subpopulations, a classification was made according to highway area type (i.e. urban and rural areas).
(4) Use of only four-legged intersoctions (both urban and rural) and urban Tee intersections.
(5) A sample of 192 locations was then randomly selected for detailed analyses. The sites were chosen on the basis of homogeneity with respect to roadside development, speed limit and average daily traffic (ADT) throughout the length of the highways.

Definitions

The effect of clear vision right-of-way on traffic accidents at signalized intersections cannot be determined easily. Without a good definition of clear vision at an intersection it is impossible to measure how well the clear vision is contributing to safer intersections. To measure the relative safety of an intersection, the following steps are taken:
(1) The right-of-way values (ft) for the approach roads and crossroads at an intersection were examined and recorded. These were taken from the Right-of-Way Book compiled by the Michigan Department of State Highways.
(2) A further classification was then made for the selected study sites using the following definitions:
A. Four-legged intersection with full vision -

A four-legged intersection is defined as a full vision location if it satisfies one of the following conditions:
(a) A11 quadrants of the intersection have additional clear vision right-of-way as shown in Figure 1 .
(b) Both quadrant one and quadrant two of the intersection have additional clear vision right-of-way as shown in Figure 2 .
(c) The second quadrant of the intersection as shown in Figure 3 has additional clear vision right-of-way.
B. Four-legged intersection with partial vision -

A four-legged intersection is defined as a partial vision location if it satisfied one of the following conditions:
(a) One or more quadrants but less than four quadrants of the intersection have additional clear vision right-of-way as shown in Figure 4.
(b) Either quadrant one or quadrant two of the intersection has additional clear vision right-of-way as shown in Figure 5.
C. Four-legged intersection with poor vision -
A. four-legged intersection is defined as a poor vision location if none of its quadrants
has additional clear vision right-of-way or if the conditions for full or partial vision cannot be met.
D. Tee intersection with full vision - A Tee intersection is defined as a full vision location if both quadrants of the Tee intersection have additional clear vision right-of-way as shown in Figures 6 and 7.
E. Tee intersection with partial vision - A Tee intersection is defined as a partial vision location if either quadrant of the Tee intersection has additional clear vision right-ofway as shown in Figures 8 and 9 .
F. Tee intersection with poor vision - A Tee intersection is defined as a poor vision location if the conditions for full or partial vision cannot be met.

The distribution of study locations by type of intersection and the number of clear vision quadrants is shown as follows:

(a) Four-legged intersection: Urban areas

Clear Vision	Population Size	Sample Size	Percent
Full	40	20	50
Partial	65	25	38.5
Poor	700	50	7.1
Total	805	95	11.8

(b) Four-1egged intersection: Rural areas

Clear Vision	Population Size	Sample Size	Percent
Full	11	11	100
Partial	11	11	100
Poor	60	20	33.3

(c) Tee intersection: Urban areas

Clear Vision	Population Size	Sample Size	Percent
Full	7	7	100
Partial	13	13	100
Poor	160	35	22
Total	180	55	31

LIBRARY

michisaan departmont of
stak highowes

FIGURE I
FULL VISION-4 LEGGED INTERSECTION BIDIRECTIONAL TRAFFIC-BOTH ROUTES

FIGURE 3
FULL VISION-4 LEGGED INTERSECTION ONE-WAY TRAFFIC BOTH ROUTES

FIGURE 5
PARTIAL VISION - 4 LEGGED INTERSECTION ONE - WAY CROSSROAD

FIGURE 6
FULL VISION T-INTERSECTION
ONE - WAY CROSSROAD

FIGURE 8
PARTIAL VISION T-INTERSECTION

FIGURE 9
PARTIAL VISION T-INTERSECTION

Data Collection

Accident Data

The accident data used in this study were taken from the records of the Accident Analysis Unit of the Traffic and Safety Division, Michigan Department of State Highways (MDSH). The accidents occurring within 150 feet of all intersections were utilized in the report. The study sties experienced 3785 accidents during 1971. These accidents were then classified by type of accidents as follows: Multiple-Vehicle Accidents:
(1) Head-on
(2) Sideswipe - same direction
(3) Sideswipe - opposite direction
(4) Angle
(5) Left-turn
(6) Right-turn
(7) Rear-end
(8) Backing
(9) Parking, and
(10) other (or not known)

Single-Vehicle Accidents:
(1) Pedestrian and motor-vehicle
(2) Fixed object and motor-vehicle
(3) Other object and motor-vehicle
(4) Animal and motor-vehicle
(5) Bicycle and motor-vehicle
(6) Ran-off roadway
(7) Other (or not known)

To minimize the effect of chance variables, the following types of accidents were included in the analyses: Multiple-Vehicle Accidents:
(1) Head-on
(2) Sideswipe - same direction
(3) Sideswipe - opposite direction
(4) Angle
(5) Left-turn
(6) Left-turn, and
(7) Rear-end

Single-Vehicle Accidents:
(1) Pedestrian and motor-vehicle
(2) Bicycle and motor-vehicle

Traffic Volume Data

The ADT (Average Daily Traffic) values for the study sites during 1971 were taken from two data sources: (a) Trunkline Vehicle Mile Tables, and (b) the Central Traffic Files, both compiled by the Michigan Department of State Highways (MDSH). An inbound ADT value was assigned to each intersection.

The data collected for this analysis is presented in Tables I through III.

Column 1 of Table I shows the reference number of study locations.

Columns 2 and 3 illustrate the study location and its corresponding trunkline right-of-way for approach roads.

Columns 4 and 5 explain whether the location has additional clear vision right-of-way and also the vision classification.

Column 6 shows personal injury, property damage and total accident rates per one million vehicles.

Similarly, Tables II and III present the pertinent data for rural four-legged and urban Tee intersections.

TABLE I
Traffic and Accident Data For Urban Four-Legged Intersections

TABLE I
Traffic and Accident Data
For Urban Four-Legged Intersections

TABLE I
Traffic and Accident Data For Urban Four-Legged Intersections

TABLE I
Traffic and Accident Data
For Urban Four-Legged Intersections

Study Site

No.	Route
43	M-153 @ Wayne
44	M-59 @ Pontiac Lake Rd.
45	M-11@ Eastern
46	M-85 @ Southfield
47	M-21 @ Columbia
48	BS-96 @ Beech Daly
49	M-52 @ King
50	BL-94 Mich. @ Milwaukee
51	US-12 @ Outer Drive
52	M-99 @ Cass
53	BL-69/M-50 @ M-79
54	M-99 @ Main
55	M-97 @ Common
56	US-25 @ 10 Mile

Trunkline	With Add ${ }^{\text {l }}$ 。		Accidents/M.V.		
$\begin{gathered} \text { Right-of-Way } \\ \text { in feet } \\ \hline \end{gathered}$	$\begin{gathered} \text { Clear Vision } \\ \text { ROW } \\ \hline \end{gathered}$	Clear Vision Classification	P.I.	P.D.	Total
86	Yes	Partial	1.57	3.82	5.38
120	Yes	Partial	0.26	0.88	1.14
100	Yes	Partial	0.76	1.93	2.69
204	No	Poor	0.99	5.81	6.80
66	No	Poor	0.55	1.23	1.78
204	No	Poor	1.57	1.08	2.65
66	No	Poor	0.54	1.37	1.91
99	No	Poor	0.26	. 39	. 65
100	No	Poor	0.70	1.57	2.27
99	No	Poor	0.20	1.00	1.20
100	No	Poor	0.46	1.14	1. 60
90	No	Poor	0.63	1.41	2.04
120	No	Poor	0.59	0.81	1.40
204	No	Poor	0.59	1. 55	2.14

TABLE I
Traffic and Accident Data For Urban Four-Legged Intersections

TABLE I
Traffic and Accident Data For Urban Four-Legged Intersections

TABLE I
Traffic and Accident Data
For Urban Four-Legged Intersections

TABLE II
Traffic and Accident Data
For Rural Four-Legged Intersections

Study Site
No. Route

1. M-140 @ BL-196

2 M-59 @ Elizabeth
3 M-54 @ Clio
$4 \mathrm{M}-47$ @ M-46
5 M-54 Dort@M-54BR (Sag.)
-0Z-

Trunkline
Right-of-Way
in feet
160

150
120
180
120
100
120
120
204
100
66
180
100
190
Yes
With Add'l.
Clear Vision
ROW
\qquad Clear Vision Classification P.I. P.D. Total
P.I. P.D. Total

Full
Full
Full
Full
Full
Ful1
Full
Ful1
Full
Ful1
Ful1
Partial
Partial
Partial

Accidents/M.V.
0.71
0.53
1.24
0.00
0.56
0.56
0.60
0.00
0.60
0.70
2.10
2.80
0.51
0.51
1.02
0.27
0.82
1.09
0.26
1.29

1. 55
0.21
0.42
0.63
0.00
0.27
0.27
0.51
0.511 .02
0.00
0.50
0.50
0.78
0.98
1.76
0.30
0.15
0.45
0.54
1.25
1.79

TABLE II

Traffic and Accident Data For Rural Four-Legged Intersections

ABLE II
Traffic and Accident Data
For Rural Four-Legged Intersections

TABLE III
Traffic and Accident Data For Urban Tee Intersections

TABLE ITI
Traffic and Accident Data For Urban Tee Intersections

Study Site

No.	Route
29	BL-96 @ Pacific
30	US-12 @ Newburgh
31	M-85 @ Cicotte
32	M-153@ John Daly
33	BL-75 @ US-10BR Oakland
34	M-44 Conn @ Woodworth
35	M-14@Ann Arbor TR
36	BL-75 @ University
37	M-1 @ Courtland
38	US-10BR@ Kennett
39	BL-75 @ Howard
40	M-85 @ Moran
41	US-10 @ Scottlake
42	US-24 @ Franklin

Trunkline	With Add'1.		Accidents/M.V.		
\qquad	$\begin{gathered} \text { Clear Vision } \\ \text { ROW } \\ \hline \end{gathered}$	Clear Vision Classification	P.I.	P.D.	Total
66	No	Poor	0.63	1.43	2.06
204	No	Poor	0.68	1. 36	2.04
204	No	Poor	0.37	1.00	1.37
93	No	Poor	0.67	0.80	1.47
100	No	Poor	0.30	1.20	1. 50
100	No	Poor	0.34	1.54	1.88
113	No	Poor	0.27	1.92	2.19
100	No	Poor	1.19	2.62	3.81
100	No	Poor	0.39	0.26	0.65
100	No	Poor	0.20	0.82	1.02
70	No	Poor	0.65	1.45	2.10
204	No	Poor	0.65	3.62	4.27
120	No	Poor	1.64	4.29	5.93
150	No	Poor	0.91	2.74	3.65

TABLE III
Traffic and Accident Data
For Urban Tee Intersections

	No.	$\frac{\text { Study Site }}{\text { Route }}$	Trunkline Right-of-Way \qquad in feet	With Add'1. Clear Vision ROW	Clear Vision Classification	Acc P.I.	Eents E.D.	V. Total
	43	US-25 Gratiot @ Conn	204	No	Poor	0.11	1.16	1.27
	44	M-85 @ Sibley	120	No	Poor	0.37	3.90	4.27
	45	M-1 @ Adams	200	No	Poor	0.48	0.82	1. 30
	46	US-12 @ Mason	204	No	Poor	0.91	1.37	2.28
	47	M-102 @ Hagnes	204	No	Poor	0.64	1.55	2.19
	48	US-12@ Gulley	204	No	Poor	0.86	1.61	2.47
N	49	M-53@ Timken	106	No	Bor	0.45	0.77	1.22
1	50	M-43@ Hillcrest	66	No	Poor	0.21	3.79	4.00
	51	M-1 @ Pilgrim	100	No	Poor	0.57	1.37	1.94
	52	US-25BR @ Ping Erie	100	No	Poor	0.17	2.57	2.74
	53	US-25 @ Couzens	200	No	Poor	0.36	0.72	1.08
	54	M-54 @ Franklin	100	No	Poor	0.17	2.05	2.22
	55	US-131 @ Woodward	66	No	Poor	0.82	2.47	3.29

The analysis of variance procedures was employed to analyze the significant difference in the mean severity rate of the occurrence of accidents among full, partial and poor vision intersections. The following null hypothesis was tested: there was no significant difference in the mean severity rate of the occurrence of accidents among full, partial and poor vision intersections. The F-test was utilized in testing significance, and 95% confidence intervals were selected. The first step in analysis was to group the data by accident severity (personal injury, property damage and total accidents) for four-legged intersections (both urban and rural) and urban Tee intersections. Within these major groups, subgroups were made for clear vision classification. The results of the analysis for these groupings are shown in Tables IV through VI.

Column 1 of Table IV through VI contains the sources of variations--clear vision classification and residual error. Columns 2 and 3 indicate the corresponding sums of squares and the degrees of freedom. Columns 4 and 5 show the mean squares and ratio, respectively. The F ratio indicates whether or not the sample means were significantly different from each other, and were used as a criterion in making the interpretation (Column 6).

LIBRARY
michisgan department of siaie highayas LANSING

With respect to the data samples included in this study, the imporiant findings are:
(1) There was a significantly higher injury accident rate at four-legged intersections (both urban and rural) and urban Tee intersections with poor vision than at those with clear vision.
(2) There was a significantly higher property damage accident rate at four-legged intersections (both urban and rural) and urban Tee intersections with poor vision than at those with clear vision.
(3) There was a significantly higher accident rate at four-legged intersections (both urban and rural) and urban Tee intersections with poor vision than at those with clear vision.

TABEE IV
Analysis of Variance Table
For Urban Four-Legged Intersections
A - Personal Injury Accident Rates

Source of Variation	Sun of Squares	$\begin{gathered} \text { Degree } \\ \text { of } \\ \text { Frecdom } \end{gathered}$	Mean Squares	$\begin{gathered} F \\ \text { Ratio } \\ \hline \end{gathered}$	Interpretation
				(a)	
Clear Vision	5.51	2	2.76	11.50	There was a signifi-
$\begin{gathered} \text { C1assifica- } \\ \text { tion } \end{gathered}$					cantly higher injury
					intersections with
Error	22.05	92	0.24		poor vision.
Total	27.56	94			

B - Property Damage Accident Rates

Source of Variation	Sum of Squares	Degree of Freedom	Mean Squares	$\begin{gathered} \text { F } \\ \text { Ratio } \end{gathered}$	Interpretation
Clear Visior Classification	11.93	2	5.97	$\begin{aligned} & \text { (a) } \\ & 4.89 \end{aligned}$	There was a significantly higher property damage acci-
Error	112.62	92	1. 22		intersections with poor vision.
Total	124.55	94			

C - Total Accident Rates

Source of Variation	Sum of Squares	$\begin{aligned} & \text { Degree } \\ & \text { of } \\ & \text { Freedom } \end{aligned}$	$\begin{gathered} \text { Mean } \\ \text { Squares } \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Ratio } \\ \hline \end{gathered}$	Interpretation
Clear Vision Classification	33.19	2	16.60	$\begin{aligned} & \text { (a) } \\ & 7.54 \end{aligned}$	There was a significantly higher accident rate at
Error	202.26	92	2.20		intersections with poor vision.
Total	235.45	94	.		

(a) Significant at 5% level of significance: 5 times in 100 , F ratio may result from chance.

TABLE V
Analysis of Variance Table
For Rural Four-Legged Intersections
A - Personal Injury Accident Rates

Source of Variation	Sum of Squares	```Degree of Freedom```	$\begin{gathered} \text { Mean } \\ \text { Squares } \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Ratio } \end{gathered}$	Interpretation
Clear Visio中 Classification Error	$\begin{gathered} 3.06 \\ . \\ 7.96 \\ \hline \end{gathered}$	$\begin{array}{r}2 \\ 39 \\ \hline\end{array}$	1.53 .20	$\begin{aligned} & (\mathrm{a}) \\ & 7.65 \end{aligned}$	There was a significantly higher injury accident rate at intersections with poor vision.
Total	11.02	41			

B - Property Damage Accident Rates

Source of Variation	Sum of Squares	```Degree of Freedom```	$\begin{gathered} \text { Mean } \\ \text { Squares } \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Ratio } \end{gathered}$	Interpretation
Clear Vision Classification	16.87	2	8.44	$\begin{aligned} & \text { (a) } \\ & 7.74 \end{aligned}$	There was a significantly higher property damage acci-
Error	42.62	39	1.09		intersections with poor vision.
Total.	59.49	41			

C - Total Accident Rates

Source of Variation	Sum of Squares	Degree of Freedom	Mean Squares	F Ratio	Interpretation
Vissifica- tion Error Total	31.95	2	15.98	11.33	There was a signifi- cantly higher acci- dent rate at intersections with poor vision.

(a) Significant at 5% level of significance: 5 times in 100 , F ratio may result from chance.

TABLE VI
Analysis of Variance Table
For Urban Tee Intersections
A - Personal Injury Accident Rates

Source of Variation	$\begin{aligned} & \text { Sum of } \\ & \text { Squares } \end{aligned}$	$\begin{gathered} \text { Degree } \\ \text { of } \\ \text { Freedom } \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { Squares } \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \text { Ratio } \end{gathered}$	Interpretation
Clear Visior Classification Error	$\begin{array}{r} .76 \\ . \\ 5.18 \\ \hline \end{array}$	$\begin{array}{r}2 \\ 52 \\ \hline\end{array}$.38 .10	$\begin{aligned} & \text { (a) } \\ & 3.80 \end{aligned}$	There was a significantly higher injury accident rate at intersections with poor vision.
Total	5.94	54			

B - Property Damage Accident Rates

Source of Variation	Sum of Squares	Degree of Freedom	Mean Squares	Fatio
Clear Vision Classifica- tion Error	11.54	2	5.77	6.50
Total				

C - Total Accident Rates

Source of Variation	Sum of Squares	```Degree of Freedom```	$\begin{gathered} \text { Mean } \\ \text { Squares } \\ \hline \end{gathered}$	$\begin{gathered} F \\ \text { Ratio } \end{gathered}$	Interpretation
Clear Vision Classification	17.79	2	8.90	$\begin{aligned} & \text { (a) } \\ & 7.47 \end{aligned}$	There was a significantly higher accident rate at
Error	61.64	52	1.19		poor vision.
Total	79.43	54			

(a) Significant at 5% level of significance: 5 times in 100 , F ratio may result from chance.

REPERENCLS

1. AASHO, A policy on Geometric Design of Rural. Highways, 1965, (Bluebook), Washington, D.C. (1966) 。
2. Anderson, T. E., Kidd, E. A., and Laughery, K. R., A Computerized Simulation Model of Driver Behavior at Intersections, Cornell Aeronautical Laboratory, Inc., Buffalo, New York, (1968).
3. Cochran William G., Sampling Techniques, 2nd Ed., (Wiley), New York (1966).
4. Freund, J. E., Mathematical Statistics, Prentice Hall, Englewood Cliffs, N. J., 1962.
5. Greenshields, B. D., Schapiro, D., and Erickson, E. L., Traffic Performance at Urban Street Intersections, Technical Report No. 1, Yale Bureau of Highway. Traffic, New Haven, Connecticut, (1947).
6. Hoel, P. G., Introduction to Mathematical Statistics, 4th Ed., (Wiley), New York (1971).
7. Mercer, Donald J., Sight Distance at Urban Intersections, Michigan Department of State Highways, May, 1971.
8. Michigan Department of State Highways, Manual of Uniform Traffic Control Devices, Lansing, Michigan, (1963).
9. Scheffe Henry, The Analysis of Variance, (Wiley), New York, 1967.
