tatewide

Transportation Analysis \&

 ResearchIMPACT OF
50, 55 or 60 M.P.H.
STATEWIDE SPEED
LIMIT
Report no.12
January 9, 1974
Statewide Studies Unit

MICHIGAN DEPARTMENT

OF

STATE HIGHWAYS AND TRANSPORTATION

IMPACT OF
50,55 or 60 M.P.H.
STATEWIDE SPEED
LIMIT
Report no. 12
January 9, 1974
Statewide Studies Unit

STATE HIGHWAY COMMISSION

E. V. Erickson

Chairman

Peper B. Pletcher

Charles H. Hewitt Vice Chairman

Carl V. Pellonpaa

'DIRECTOR

John P. Woodford

HIGHWAY COMMISSION
E. V. EATCKSON CHAIRMAN CHARLES H. HEWITT VICE CHAIFZMAN PETER 日. FLETCHER CARL V. PELLONPAA

STATE OF MICHIGAN

WILLIAM G. MILLIKEN, GOVERNOR
DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION
STATE HIGHWAYS BUILDING - POST OFFICE DRAWEFK - LANSING, MICHIGAN 48904 JOHN P. WOODFORD, DIRECTOR

January 9, 1974
Mr. Sam F. Cryderman Deputy Director Bureau of Transportation Planning

Dear Mr. Cryderman:
This report shows the probable savings in motor fuel that we believe could be realized if a 50 M.P.H. speed limit, a $55 \mathrm{M} . \mathrm{P} . \mathrm{H}_{\mathrm{H}}$ speed 1 mit , or a $60 \mathrm{M} . \mathrm{P} . \mathrm{H}$. speed limit were invoked and if reasonable compliance were achieved. The analysis was prepared by Mr. Richard E. Esch, Supervisor of the Statewide Studies Unit. Mr. Terry Gotts assisted in the final preparation.

Sincerely,

Keith E. Bushne11
Engineer of Transportation Survey and Analysis Section

4wizuds 1

table of contents

INTRODUCTION 1
DATA BASE 2
SPEED LIMIT IMPACTANALYSIS 10
CONCLUSION 20
APPENDIX 21

INTRODUCTION

INTRODUCTION

This analysis was completed in order to determine the probable impact that a statewide speed limit might have on a motor fuel consumption in the state of Michigan． For the purposes of this study it was assumed that the most likely speed limit would be 50 M ．P．H．Additional analyses were also completed for both a $55 \mathrm{M} . \mathrm{P} . \mathrm{H}$ ．speed limit and also a 60 M ．P．H．speed limit．

Three basic data sources were used to complete this analysis．They were：

1． 1972 U．S．Department of Transportation，Table T．A． 1 for Michigan．

2．Text book by Robley Winfrey entitled Economic Analysis for Highways．

3．Michigan Department of State Highways and Transportation Report $⿰ ⿰ 三 丨 ⿰ 丨 三 66$ entitled Speed Report， Apri11972。

Analysis completed in this document is intended solely as an initial inquiry．The results obtained are based upon several judgemental assumptions and use of this information must be based upon full knowledge of these assumptions．

DATA

DATA BASE

For this study the annual vehicle miles by each of these highway types was obtained from Table TA-1 (special report submitted annually to the Federal Highway Administration) for Michigan. The annual vehicle miles (miliions) for 1972 by type appear in the final column in Figure 1.

HIGHMAY SYSTEM ANNUAL VEHICLE MILES

Class Number
01
02
03
04
05
06
07
08
09
10
11
12
-

1972 Annual Vehicle Miles (Mil1ions)

Highway Type
Interstate Rural
Interstate Urban
Federal Aid Primary Rural
Federal Aid Primaxy Urban
Federal Aid Secondary State Rural
Federal Aid Secondary State Urban
Federal Aid Secondary Local Rural
Federal Aid Secondary Local Urban
Other State Rural
Other State Urban
Local Rural
Local Urban
A11 Others

3706

5094
7607
7771
1642

FlGURE!

10378 TOTAL 57817

The data used to complete the final analysis was based on a division of the highway system in Michigan into 13 categories. The first column in Figure 1 is the numeric code assigned each of the 12 classes of highways. A description of each highway type appears in the second column.

The data used to estimate gasoline consumption was obtained from Appendix A of a text book by Robley Winfrey entitled Economic Analysis for Highways (1969). The gasoline consumption rates used are for an average 4, 0001 lb passenger car and are shown in figure 2. It has been assumed for this study that all grades are level as no information was available on grades by highway type. No differentiation was made for car and trucks.

PIGURE2

Motor fuel consumption is directly related to the speed that each vehicle is traveling so the third source of travel data required to complete a realistic evaluation of the impact speed limit changes might have is speed data. The Michigan Department of State Highways and Transportation collects speed data four times a year. The data is typically collected during the months of January, April, July and October at the stations appearing in Figure 3. The speed study inventory for April 1972 was selected for this analysis as this data most represents an average day. Any other month or year could be substituted if desired. Figure 4-7 are summary tables of the April 1972 speed study results.

These three data sources complete the data base used in the following analysis. Any individual having more refined information can quickly take the initial annual vehicle miles information and complete additional analyses if desired.

Daytime Speeds - Rural
6 Locarions
01/IR Interstate Rural Final Locations
Stations: 003, 204, 522, 814, 818, 820.

speed	all vehicles		Passenger cars		commercial		busses	
	NUMEER	PERCEAT	number	PERCENT	NUMEER	PERCENT	Number	PERCENT
25 AND UNDER								
OVER 25 TMRU 30								
OVER 30 THRU 35	1	0.1	1	0.1				
OVER 35 THRU 40	2	0.2	2	0.2			N	
OVER S0 THRU 45	3	0.3			3	1.3	0	
OVER AS THRU SO	13	1.1	4	0.4	9	3.9		
OVER 50 THRU 55	48	4.1	18	1.9	30	12.9	B	
OVER 55 THRU 60	130	11.2	46	5.0	84	36.2	U	
OVER 60 THRU 65	245	21.1	165	17.7	80	34.5	S	
OVER 65 THRU 70	312	26.8	288	31.0	24	10.3	S	
OVER 70 THRU 75	284	24.4	282	30.3	2	0.9	E	
OVER 75 THRU 80	104	8.9	104	11.2			S	
OVER 80 THRU 85	18	1.5	18	1.9				
OVER 85 THRU 90	3	0.3	3	0.3				
OVER 90								
TOTAL	1163	100.0	931	100.0	232	100.0		
AVERAGE SPEED	67.3		69.2		59.6			
85TH PERCENTILE		74.1		74.7		64.4		
PACE	63-73		63-73		55-65			

FIGURE 4

Daytime Speeds - Rural

15 Locations
03/OFR 0ther A. Primary Rural
Stations: 005, 006, 302, 304, 402, 502, 514, $602,606,608,706,802,810,812,816$.

speed	all vehicles		passenger cars		commercial		susses	
	number	percent	number	percent	number	Percent	number	Percen:
25 And under								
OVER 25 THRU 30								
OVER 30 ThRU 35	5	0.2	2	0.1	3	0.8		
OVER 35 THRU 40	21	0.7	9	0.3	12	3.0		
OVER 40 THRU 45	79	2.6	56	2.2	23	5.8		
OVER 45 ThRU 50	210	7.0	162	6.2	48	12.1		
OVER 50 THRU 55	433	14.4	327	12.6	105	26.5	1	50.0
OVER 55 THRU 60	638	21.3	505	19.4	133	33.6		
OVER 60 THRU 65	660	22.0	609	23.4	51	12.9		
OVER 65 THRU 70	547	18.2	527	20.3	19	4.8	1	50.0
OVER 70 THRU 75	305	10.2	303	11.6	2	0.5		
OVER 75 THRU 80	73	2.4	73	2.8				
OVER SO THRU 85	24	0.8	24	0.9				
OVER 85 THRU 90	5	0.2	5	0.2			-	
OVER 90								
total	$3000 \quad 100.0$		2602100.0		396	100.0	2	100.0
AVERAGESPEED	61.2		62.2		55.1		61.5	
85TH PERCENTILE		69.6		70.2		61.2		
PACE	56-66		57-67		50-60			

FIGURE 5

```
                    Daytime Speeds - Urban
                            I Locacion
04/0FU Other F.A. Primary Urban
    Station: 10
```


FIGURE 6

```
                    Daytime Speeds - Rural
                                    4 Locations
07/FLR F. A. Secondary Rural Local Jurisdictlon
Stations: \(508,708,806,808\).
```

SPEEO	All vehicles		passenger cars		COMMERCIAL		Busses	
	NUMEER	PERCEAT	Numaer	PERCENT	Numeer	PERCENT	number	PERCEMT
25 ANO UNDER								
OVER 25 THRU 30								
OVER 30 THRU 35	6	0.9	4	0.6	2	2.8		
OVER 35 THRU 50	22	3.2	11	1.8	11	15.3	N	\cdots
OVER SO THRU 45	47	6.8	37	6.0	10	13.9	0	
OVER 45 THRU 50	69	10.0	55	8.9	14	19.4		
OVER 50 THRU 55	137	19.8	115	18.6	22	$\therefore 30.5$	B	
OVER 55 THRU 60	188	27.2	176	28.4	12	16.7	U	
OVER 60 THRU 65	127	18.4	126	20.3	1	.1.4	S	
OVER 55 THRU 70	68	-9.8	68	11.0			S	
OVER 70 THRU 75	24	-3.5	24	3.9	\%		E	
OVER 75 THRU 80	2	0.3	2	0.3			5	--
OVER 80 THRU 85	1	0.1	1	0.2				
OVER 85 THRU 90								
OVER 90								
TOTAL	691	100.0	619	100.0	72	100.0		
AVERAGE SPEED	56.7		57.6		48.9		.	
35TH PERCENTILE		64.6	.	65.2		55.9		
PACE	53-63		53-63		48-58			

FIGURE 7

SPEED
LIMIT
IMPACT
ANALYSIS

SPEED LIMIT IMPACT ANALYSIS

The annual vehicle miles by highway type and the speed data for April 1972 were combined into the chart shown in Figure 8. The information in this chart was used as a base for all study analysis. This chart indicates what percent of the travel occurs in each speed group for each highway class except "all others" as most of this travel is under 50 M. P. H.

SPEED DISTRIBUTION OVER 50 M. P. H. PERCENT

Highway Classes	Annual Vehicle Miles	Speed Groups					
		50-55	55-60	60-65	65-70	70-75	75-80
01*	3706	4.1	11.2	21.1	26.8	24.4	10.7
02	5094	21.1	26.8	24.4	8.9	1.5	0.3
03*	7607	14.4	21.3	22.0	18.2	10.2	2.4
04*	7771	10.0	1.0	----	--	----	----
05	1642	14.4	21. 3	22.0	18.2	10.2	2.4
06	665	10.0	1.0	----	----	----	----
07\%	7412	19.8	27.2	18.4	9.8	3.5	0.3
08	2607	10.0	1.0	\cdots	-----	----	----
09	35	19.8	27.2	18.4	9.8	3.5	0.3
10	81	10.0	1.0	-	----	----	----
11	3157	9.8	3.5	0.3	-	----	--
12	7662	----	-----	----	----	---	---

*ACTUAL SPEED DATA

FIGURE 8

Actual speed data (Figure 4-7) is available for only four classes as indicated by the asterisk in Figure 8 . These classes were 01, 03, 04 and 07. Speed data percentages for 02 which is interstate urban freeway were assumed to have a distribution similar to the 01 class which is interstate rural. All percentages were skewed to the left two columns (10 M.P.H.) because the present speed $11 m i t$ is 70 M.P.H. for rural interstate and $60 \mathrm{M} . \mathrm{P} . \mathrm{H}$. on most urban interstate routes. Class 05 was assumed to be similar to the 03 class as their basic design is similar - only the Federal aid designation is different. The actual 04 classification speed distribution was assumed to apply to 06,08 and also 10 for the reason that design standards within urban areas for these classes does not appear to vary enough to effect speed distribution changes.

The 11 classification is very similar to the 07 classification except that it may include "gravel type" highways and typically the speed limits tend to be around $50 \mathrm{M} . \mathrm{P} . \mathrm{H}$. rather than the $65 \mathrm{M} . \mathrm{P} . \mathrm{H}$. of the 07 classification; therefore the 11 class speed distribution is the 07 distribution skewed to the left three columns to represent the 15 M.P.H. class differential.

Class 12 was assumed to have an average speed of 25 M.P.H. for this study as no information is presently available which might be applicable. Additional speeds in this class most probably Eall below the 50 M. P.H. speed limit and will not affect the results of this study.

Travel above 80 M.P.H. was included in the $75-80 \mathrm{M} \cdot \mathrm{P} . \mathrm{H}$. group, as Winfrey' gaswline..consumption tables do not go bem yond 80 M.P.H. This affects only the 01 classification and includes only 1.8 percent of the vehicles in this class.

Figure 9 is a summarization of the annual vehicle miles in millions that presently occur in each speed group by highway class. These data may be used for analysis involving all three speed limits. The entire table is used in the 50 M. P. H. analysis; all but the left-most ("50-55") column is used in the 55 M.P.H. analysis; and all but the left-most two columns are used for the $60 \mathrm{M} . \mathrm{P} . \mathrm{H} . \mathrm{calculations}$.

VEHICLE MILES DISTRIBUTION BY SPEED GROUP

Highway Classes	AnnualVehicleMiles(Millions)	Used in 50 MPH Analysi						Present Typical Speed
		$\begin{aligned} \text { Used } & \text { in } 55 \text { MPH Analysis } \\ & \sqrt{\text { Used in } 60 \text { MPH Analysis }} \end{aligned}$	Used \qquadUsed 55 MPH Analysis 60 MPH Analysis					
		50-55	55-60	60-65	65-70	70-75	75-80	
01	3706	152	415	782	993	904	397	70 *
02	5094	1.075	1365	1243	454	76	15	$60+$
03	7607	1095	1620	1674	1384	776	183	65 *
04	7771	777	78	0	0	0	0	-50
05	1642	236	350	361	299	167	39	65 *
06	665	67	7	0	0	0	0	-50
07	7412	1468	2016	1364	726	259	22	65 *
08	2607	261	26	0	0	0	0	-50
09	35	7	10	6	3	1	0	-50
10	81	8	1.	0	0	0	0	-50
11	3157	309	110	9	0	0	0	-50
12	7662	0	0	0	0	0	0	-50
		FIGU	RE 9	$\begin{aligned} & \text { *Final } \\ & \text { +Final } \end{aligned}$	$\begin{aligned} & \text { 1. Analy } \\ & 1 \text { Analy } \end{aligned}$	$\begin{aligned} & \text { sis: } \\ & \text { sis: } \end{aligned}$	$\begin{aligned} & 50,55 \\ & 50,55 \end{aligned}$	$\begin{aligned} & 60 \\ & \text { on } 1 \mathrm{y} \end{aligned}$

These are the annual vehicle miles by each category that will be used to calculate probable motor fuel consumption reductions. Highways where the present speed limit is 50 M.P.H. or less have been eliminated from the analysis as speed limit changes in these areas generally will be inconsequential. In the 50 and 55 M.P.H. speed 1 imit analysis classes $01,02,03,05$ and 07 were used. For the 60 M.P.H. analysis only four classes (01 0305 and 07) were included.

It has also been assumed that speed percentage distributions for these five classes will remain the same except for a skewing to the left because of lower speed limits. The skewing was accomplished by comparing the present speed limit with each proposed speed limit. For example, in the 50 M.P.H. case, class 01 has a present speed limit of 70 ; therefore it was assumed those presently driving $55 \mathrm{M} . \mathrm{P} . \mathrm{H}$. would drive 50 M.P.H., those driving 60 M.P.H. would drive $50 \mathrm{M} . \mathrm{P} . \mathrm{H}_{\mathrm{H}}$, those driving 65 would drive $50 \mathrm{M} . \mathrm{P} . \mathrm{H}$. and those driving 70 would drive $50 \mathrm{M} . \mathrm{P} . \mathrm{H}$. . These four groups were individuals who followed the speed limits in the past and for this study it is assumed they will continue. Finally it is assumed that those who exceed the speed limit continue to do so and the $75 \mathrm{M} . \mathrm{P} . \mathrm{H}$. group was adjusted to $55 \mathrm{M} . \mathrm{P} . \mathrm{H}$. and the $80 \mathrm{M} . \mathrm{P} . \mathrm{H} . \mathrm{group}$ was adjusted to 60 M.P.H. This same process was applied to the other four highway classes. Finally the above procedure was also used for the 55 and $60 \mathrm{M} . \mathrm{P} . \mathrm{H}$. cases.

Figure 10 shows the probable results of the speed limit changes and a redistribution of vehicle miles in millions by speed change grouping. Figure $10-\mathrm{A}$ identifies 13 speed change groups for which motor fuel reduction analysis was calculated for the $50 \mathrm{M} \cdot \mathrm{P} . \mathrm{H}$. speed limit.

VEHICLE MLES IN MILHONS:BY SPEED CHANGE GROUP ASSUMING 50 M. P. H. SPEED LIMIT

SPEED CHANGE CATEGORIES		HIGHWAY CLASSIFICATION					$\begin{aligned} & \text { VM } \\ & \text { TOTAL } \\ & \text { (MILLIONS) } \end{aligned}$
		01	02	03	05	07	
55	50	152	1075	1095	236	1468	4026
60	50	415	1365	1620	350	2016	5766
65	50	782		1674	361	1364	4181
70	50	993					993
75	55	904					904
80	60	397					397
65	55		1243				1243
70	60		454				454
75	65		76				76
80	70		15				15
70	55			1384	299	726	2409
75	60			776	167	259	1202
80	65			183	39	22	244

FIGURE IOA

The same reduction analysis was also completed assuming a 55 or 60 M.P.H. speed limit. Those speed change groups and the vehicle miles data appear in Figures $10-\mathrm{B}$ and 10 C .

VBHICLE MILES IN MILUONS BY SPEED CHANGE GROUP ASSUMING 55 M. P. H. SPEED LIMIT

SPEED CHANGE CATEGORIES		HIGHWAY CLASSIFICATION					$\begin{gathered} \text { VM } \\ \text { TOTAL } \\ \hline \end{gathered}$
		01	02	03	05	07	
60	55	415	1365	1620	350	2016	5766
65	55	782		1674	361	1364	4181
70	55	993					993
75	60	904					904
80	65	397					397
65	60		1243		RE 10B		1243
70	65		454				454
75	70		76				76
80	75		15				15
70	60			1384	299	726	2409
75	65			776	167	259	1202
80	70			183	39	22	244

VEHICLE MLES IN MHLIONS BY SPEED CHANGE GROUP ASSUMING 60 M. P. H. SPEED LIMIT

SPEED CHANGE CATEGORIES		HIGHWAY CLASSIFICATION				$\begin{gathered} \text { VM } \\ \text { TOTAL } \end{gathered}$
		01	03	05	07	
65	60	782	1674	361	1364	4181
70	60	993				993
75	65	904		PIGUR		904
80	70	397				397
70	65		1384	299	726	2409
75	70		776	167	259	1202
80	75		183	39	22	244

The motor fuel reduction calculation for each of these groups appears in Figures $11 \mathrm{~A}-\mathrm{B}-\mathrm{C}$ 。 These calculations are based on Winfrey s data in Figure 7.

MOTOR FUEL REDUCTION PER 1000 VEMICLE MILES
BY SPEED CHANGE GROUP
ASSUMING 50 M. P. H.SPEED LIMIT

GALLONS SAVED PER
SPEED CHANGE GROUPS CONSUMPTION RATES 1000 V.M.

55 MPH to 50 MPH 60 MPH to 50 MPH 65 MPH to 50 MPH 70 MPH to 50 MPH 75 MPH to 55 MPH 80 MPH to 60 MPH

65 MPH to 55 MPH 70 MPH to 60 MPH 75 MPH to 65 MPH 80 MPH to 70 MPH 70 MPH to 55 MPH

75 MPH to 60 MPH
80 MPH to 65 MPH
3.6 gal. savings
8.0 gal. savings
13.5 gal. savings 20.4 gal. savings 25.5 gal. savings 32.8 gal. savings 9.9 gal. savings 12.4 gal. savings 15.6 gal. savings 20.4 gal. savings
16.8 gal. savings
21.1 gal. savings
27.3 gal. savings

FIGURE IIA

FIGURE IIB
MOTOR PUE REDUCTION PER 1000 VEHICLE MILES

BY SPEED CHANGE GROUP'

ASSU筑NS 55 M. P. H. SPEED LMIT

GALLONS SAVED PER
SPEED CHANGE GROUPS
CONSUMPTION RATES 1000 V.M.

60 MPH to 55 MPH
65 MPH to 55 MPH 70 MPH to 55 MPH

75 MPH to 60 MPH
80 MPH to 65 MPH
65 MPH to 60 MPH
70 MPH to 65 MPH
75 MPH to 70 MPH
80 MPH to 75 MPH
70 MPH to 60 MPH
75 MPH to 65 MPH
80 MPH to 70 MPH
4.4 gal. savings
9.9 gal. savings
16.8 gal. savings
21.1 gal. savings
27.3 gal. savings
5.5 gal. savings
6.9 gal . savings
8. 7 gal. savings
11.7 gal. savings
12.4 gal. savings
15.6 gal. savings
20.4 gal. savings

FIGURE IIC

MOTOR BUEG REDUCTION PER 1000 VEMICLEMMLES

BY SPEED CHANGE GROUP
ASSUMING 60 M. P. H. SPEED LIMIT

The total gallons saved by each speed change group appears in Figure 12 A-B-C along with the probable total annual gallons saved in Michigan as the result of three possible speed limit changes.

TOTAL MOTOR FUEL SAVINGS BY SPEED CHANGE GROUP
ASSUMING 50 M. P. H. SPEED LIMIT

Speed Change Groups		Vehicle Miles (Figure 10)			$\begin{aligned} & \text { lons Saved } \\ & \text { gure 11) } \\ & \hline \end{aligned}$	Annual Gallons Saved	
55		4026000000 VM	x	3.6	gal/1000VM	14,493,600	gal.
60	50	5766000000 VM	x	8.0	gal/ 1000 VM	$46,128,000$	gal.
65	50	4181000000 VM	x	13.5	ga1/ 1000 VM	56,443,500	gal.
70	50	993000000 VM	x	20.4	gal/ 1000 VM	20,257,200	gal.
75	55	904000000 VM	X	25.5	gal/1000VM	23,052,000	gal.
80	60	397000000 VM	X	32.8	gal/1000VM	$13,021,600$	gal.
65	55	1243000000 VM	X	9.9	gal/ 1000 VM	12,305,700	ga1.
70	60	454000000 VM	X	12.4	gal/1000VM	5,629,600	gal.
75	65	76000000 VM	X	15.6	gal/1000VM	$1,185,600$	gal.
80	70	15000000 VM	X	20.4	gal/1000VM	306,000	gal.
70	55	2409000000 VM	x	16.8	gal/1000VM	$40,471,200$	gal.
75	60	1202000000 VM	x	21.1	$\mathrm{ga} 1 / 1000 \mathrm{VM}$	25,362,200	gal.
80	65	244000000 VM	x	27.3	gal/1000VM	6;661,200	gal.
		TOTAL ANNUAL		LONS	SAVED	$65,317,400$	gal.

FIGURE I2A.

TOTAL MOTOR PUEL SAVINGS BY SPEED CHANGE GROUP ASSUMING 55 M. P. H. SPEED LIMIT

FIGURE 12B

TOTAL MOTOR PUEG SAVINGS BY SPEED CHANGE GROUP.
ASSUMING 60 M. P.H. SPEED LIMIT
FIGURE I2C

Speed Change Groups	Vehicle Miles (Figure 10)	$\begin{aligned} & \text { Gallons Saved } \\ & \text { (Figure 11) } \\ & \hline \end{aligned}$		Annual Gallons Saved
6560	4181000000 VM . x	5.5 gai .11000 VM	-	22,995,500.ga1.
70.60	993000000 VM x	$12.4 \mathrm{gai} . / 1000 \mathrm{VM}$	$=$	12,313,200 gal.
7565	904000000 VM x	$15.6 \mathrm{gal} . / 1000 \mathrm{VM}$	$=$	14,102,400 gal.
8070	397000000 VM x	$20.4 \mathrm{gal} . / 1000 \mathrm{VM}$	$=$	8,098,800 gal.
7055	2409000000 VM x	$6.9 \mathrm{gal}. / 1000 \mathrm{VM}$	$=$	16,622,100 gal.
7560	1202000000 VM x	$8.7 \mathrm{gal} . / 1000 \mathrm{Vm}$	$=$	10,457,400 gal.
.80 65	244000000 VM x	$11.7 \mathrm{ga1}. / 1000 \mathrm{VM}$	$=$	2,854,800 ga1.
	TOTAL ANNUAL	ALLONS SAVED	$=$	87,444,200 gal.

CONCLUSION

CONCLUSION

As indicated in the 1972 Table TA-1, approximately $4,363,000,000$ gallons of motor fuel were consumed in Michigan in 1972. A 50 M.P.H. speed limit would appear to save about 265 million gallons--approximately 6 percent of the total--annually. If a $55 \mathrm{M} . \mathrm{P} . \mathrm{H}$. speed limit were initiated, the annual gasoline savings would be about 178 million gallons, or 4 percent of the 1972 total. Finally, a 60 M.P.H. speed limit would probably result in a 2 percent decrease in gasoline consumption, approximately 87.5 million gallons per year.

APPENDIX

The analysis in this report is based upon the assumption that there will be reasonable compliance with whichever new speed limit is implemented. Figures $13 \mathrm{~A}-\mathrm{B} \boldsymbol{\mathrm { C }} \mathrm{C}$ show a graph of speeds measured during the World War II speed limit of 35 M.P.H. This graph shows only average speeds; no information is available which shows the speed distribution or violations. As can be seen, the speed limit was very effective for a short time.

VEHICULAR SPEED TRENDS BY TYPES

FIGURE 13A

MICHIGAN DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION
Bureau of Pramsporsation Planning
Transportation Survey and Analysis Section
VEHICULAR SPEED TRENDS BY. TYPES

FIGURE 13B

MICHIGAN DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION
Bureau of Transportation Planning
Transportation Survey and Anolysis Section
VEHICULAR SPEED TRENDS BY TYPES

FICURE I3C

