

ALAN M. VOORHEES & ASSOCIATES, INC.

TECHNICAL REPORT NO. 4

KALAMAZOO AREA TRANSPORTATION STUDY

A the second sec

Trip Generation and Gravity Model Calibration

Technical Report No. 4

Prepared by

ALAN M. VOORHEES & ASSOCIATES, INC. Westgate Research Park McLean, Virginia 22101

May 1969

TABLE OF CONTENTS

Chapter

Contraction of the second s

Contraction of the second

	SYNOPSIS	
I	INTRODUCTION	1
	TRAFFIC MODELS	3
	STUDY DESIGN AND REPORT ORGANIZATION	6
	Development of Trip Production Equations	7
	Development of Attraction Equations	8
	Special Generator Analysis	8
	Development of Friction Factors	8
·	Socio-Economic Calibration	9
	Final Calibration	9
II	TRIP PRODUCTIONS AND ATTRACTIONS	10
	SELECTION OF TRIP PURPOSE GROUPS	10
	HOME BASED WORK TRIPS	18
	Work Trip Production	18
	Work Trip Attraction	19
	HOME BASED NON-WORK TRIPS	26
	Productions	26
	Attractions	26
	NON-HOME BASED TRUCK TRIP GENERATION	37
	TOTAL PRODUCTION AND ATTRACTION	43
111	CAR OWNERSHIP	46
IV	TRIP DISTRIBUTION	49
	FRICTION FACTORS	49
	SOCIO-ECONOMIC FACTORS	52
	Self-Contained Communities	54
	Kalamazoo Central Commercial Area	55
	Shopping Trips	55
	Topographical Barriers	56
	Special Interaction	57
	Forecasting the Adjustments	58

TABLE OF CONTENTS (Continued)

Chapter

v

54.60

્રેક્ટર્સ

1365

kest

N-448

Page

FINAL VERIFICATION	59
TRIP-LENGTH CHECK	59
DESIRE-LINE NETWORK COMPARISONS	61
ZONAL TRIP END COMPARISONS	61
SCREENLINE AND CUTLINE COMPARISONS	61
VEHICLE-MILE CHECK	71
CONCLUSION	71

LIST OF TABLES

<u>lable</u>		Page
1	Distribution of Vehicle Trips by Forecasting Groups	13
2	Vehicle Trip Summary	13
3	Simple Correlations of Variables	16
4	Auto Driver Home Based Work Production and Attraction Estimating Equations	21
5	Person Trips by Mode of Travel from Home to Work	23
6	Percent Trips by Mode of Travel from Home to Work	24
7	Auto Driver Home Based Shop and Other Production Estimating Equations	, 27
8	Auto Driver Home Based Shop and Other Attraction Estimating Equations	32
9	Districts with Regional Shopping Centers	34
10	Auto Driver Non-Home Based Production or Attraction Estimating Equation	38
11	Truck Production or Attraction Estimating Equation	41
12	Auto Ownership Estimating Equation	47
13	Average Trip Length Comparisons	60
14	Zonal Trip End Comparisons with Survey	6 9
15	Screenline and Cutline Comparisons	72
16	Vehicle-Mile Comparisons	73

LIST OF FIGURES

Stranger (188) and Stranger (188) and Stranger (188) and

[]] []

) dán

13

ίθ.

<u>r igure</u>		Page
1	Hypothetical Application of the Gravity Model	4
2	Car Usage for Home Based Work Trips	20
3	Home Based Work Productions by District	22
4	Home Based Work Attractions by District	25
5	Home Based Shop Productions by District	28
6	Home Based Other Productions by District	29
7	Study Area Stratifications	30
8	Home Based Shop Attractions by District	32
9	Home Based Other Attractions by District	33
10	Non-Home Based Productions or Attractions by District	39
11	Truck Production or Attractions by District	42
12	Total Vehicle Productions by District	44
13	Total Vehicle Attractions by District	45
14	Autos Owned by District	48
15	Friction Factors	53
16	Vehicle Trip-Length Distribution Comparison for Work Trips	62
17	Vehicle Trip-Length Distribution Comparison for Shop Trips	63
18	Vehicle Trip-Length Distribution Comparison for Other Trips	64
19	Vehicle Trip-Length Distribution Comparison for Non-Home Based Trips	65
20	Vehicle Trip-Length Distribution Comparison for Truck Trips	66
21	Vehicle Trip-Length Distribution Comparison for Total Trips	67
22	Desire-Line Network	68
23	Screenlines and Cutlines	70
24	Jurisdictions	74
Appendix	Study Sectors	A-12

APPENDICES

server of the second

> . Gais

1

Appendix		Page
А	Purpose of Travel by Mode (Internal-Internal)	A-1
В	Districts for Which Special Adjustments were Made for Estimating Equations	A-2
C	Zonal Terminal Times and Intra-Zonal Times	A-4
D	Socio-Economic Adjustment Factors	A-5
E	Proportioning Factor Equations	A-14
\mathbf{F}	Example of District-Zone Trip Splitting Technique	A-15
G	Land-Activity Data	A-16
H	Vehicle Trip Productions and Attractions by Purpose	A-29

SYNOPSIS

The development of the matematical models for trip generation and trip distribution are an important aspect of the Kalamazoo Area Transportation Study. The purpose of these models is to develop basic tools for predicting future traffic demand. This is accomplished by analyzing existing trip generation and distribution to obtain an understanding of the underlying characteristics of the region and to structure the models to reflect these intricate workings.

The portion of the study documented in this report can be grouped into three major areas. The first is the development of a series of equations to reflect the trips generated by the various types of land use and land activity within the area. Special generators, which do not follow the averages indicated by these equations, were analyzed and adjustment factors developed.

The second area is the development of trip distribution models to predict the trip interchange between the various land uses by trip purpose. The basic model structure is one that distributes trips in proportion to the trip generation of an area, and inversely to the distance between the areas. As in the case of the trip generation models, these models also required adjustment for unique socio-economic characteristics existing within the area.

The third portion is a final validation of all the various models. Many checks were made throughout the development of each of the models. A final verification was made by first combining all the various models and survey year land-use data to develop traffic volumes. These volumes were then compared to the actual existing traffic volumes throughout the study area. Thus, the total study effort to this point, from data collection through model calibration including the network simulation, could be verified. The results of these checks, individually and collectively, demonstrate that in all respects the models are valid for use in forecasting future travel demands.

CHAPTER I INTRODUCTION

This phase of the transportation study has as its objectives an understanding of fundamental relationships of travel demands and the quantification of these relationships in a series of mathematical formulae which will permit the accurate estimation of traffic from land activity data. In meeting this objective, the study drew upon the experience of many transportation studies conducted throughout the United States. Based upon previous experience, a central framework for traffic forecasting was selected and the analysis performed by the study was limited to quantifying the various factors and relationships required to apply the selected technique to the Kalamazoo Area Transportation Study. The purpose of this technical report is to explain the techniques and methodology used to calibrate a traffic model for this area.

The field of urban traffic estimation and analysis has developed in four basic stages. The original concept, used in the 1920's, was the development and application of traffic-counting procedures, and later, the statistical techniques required to expand these counts. The collection of this type of basic data still has many uses in planning and engineering agencies, especially for solving traffic management and operational problems. It was realized, however, that the traffic counts in themselves could not be used to estimate or predict the actual movement of traffic. The statistics which were collected merely indicated the usage of existing facilities without regard to the basic travel desires of motorists between the various sections of the city.

- 2 -

To provide a more comprehensive source of information on the transportation requirements of an urban area, the origin-destination type of survey was developed in the late 1930's. This method, with its various forms of roadside, home interview, and truck and taxi interviews, has served well and provides reliable data on existing travel desires. Nevertheless, traffic engineers soon recognized the shortcomings of planning transportation facilities based only on existing origin-destination surveys. This shortcoming became particularly apparent right after the conclusion of World War II with the rapid expansion of urban areas.

The third major step in this evolutionary process came with the development of mathematical techniques to expand existing travel patterns as obtained with origin-destination surveys to reflect anticipated future development of a city. While this growth factor technique of expanding existing origin-destination data represented a significant advance in the field of traffic analysis, it had many serious limitations. First, it could not estimate future travel patterns to and from areas which were presently undeveloped, as there was no existing travel data to expand. Second, the technique could not anticipate travel patterns which resulted from major changes in land use. Nor could the technique anticipate changes in travel patterns and demands resulting from the construction of new highway facilities, such as an expressway.

The most recent stage in the development of urban traffic analysis techniques came about in the late 1950's with the development of several traffic simulation models aimed at overcoming the deficiencies of the previous growth factor method. Of these traffic models, the procedure known as the "gravity model" is the most widely used and recognized. This procedure has been used and tested in cities across the nation, in cities as small as 5,000 population to those as large as Los Angeles. Therefore, the methodology utilized in this study profited from the research and experience gained in many other similar studies throughout the United States and Canada.

TRAFFIC MODELS

The gravity model derives its name from the fact that vehicle trips are distributed by a formula which closely resembles Newton's formula for gravitational attraction. The gravity model formula distributes trips in proportion to the trip generation of an area which represents its mass, and inversely to the distance between the areas. This distance is usually measured in terms of travel time.

HIGHWAY LIBRARY MICHIGAN DEPARTMENT OF STATE HIGHWAYS LANSING, MICH. P. O. DRAWER "K" 48904 - 3 -

Mathematically, this model can be expressed by the following formula:

Where:

 T_{ii} = trips produced at zone i which are attracted by zone j

P_i = total trips produced at zone i

A = total trips attracted to zone j

d_{ii} = driving time from zone i to zone j

b = empirically determined exponent to account for the effect that zonal separation has on zone-to-zone movement

 K_{ii} = socio-economic factor between zone i and zone j

For computational purposes, the above formula has been converted to the following form in actual application.

$$T_{ij} = P_i \frac{A_j F_{ij} K_{ij}}{\sum_{j=1}^{n} A_j F_{ij} K_{ij}}$$

Where:

 $F_{ii} = \epsilon$

= empirically determined "Friction Factor" equal to

 $(d_{ij})^{b}$

Figure 1 illustrates a simplified example of the computations involved in an application of the gravity model. The example has two parts. The first shows the distribution of shopping trips made by the residents of a hypothetical residential area to three shopping centers on the basis of local or arterial street travel times. The second shows how the distribution of trips

DISTRIBUTION I							
Existing "Pull"	Percent of Total "Pull"	Number of Trips					
$S \ 1 = \frac{25}{(5)^2} = 1.0$	62.5	563					
$S 2 = \frac{40}{(10)} = 0.4$	25.0	225					
$3 = \frac{80}{(20)^2} = 0.2$	12.5	112					
Total "Pull" = 1.6	100.0	900					

"Pull" After Freeway is BuiltPercent of Total "Pull"Number of Trips $S 1 = \frac{25}{(5)2} = 1.0$ $S 2 = \frac{40}{(10)2} = 0.4$ 45.4408 $S 3 = \frac{80}{(10)2} = 0.8$ 36.4328		DISTRIBUTION II						
S $1 = \frac{25}{(5)2} = 1.0$ 45.4408S $2 = \frac{40}{(10)2} = 0.4$ 18.2164S $3 = \frac{80}{(10)2} = 0.8$ 36.4328		"Pull" After Freeway is Built	Percent of Total "Pull"	Number of Trips				
S $2 = \frac{40}{(10)2} = 0.4$ 18.2164S $3 = \frac{80}{(10)2} = 0.8$ 36.4328		$1 = \frac{25}{(5)^2} = 1.0$	45.4	408				
$3 = \frac{80}{(10)} = 0.8$ 36.4 328		$S 2 = \frac{40}{(10)^2} = 0.4$	18.2	164				
		$3 = \frac{80}{(10)} = 0.8$	36.4	328				
Total "Pull" = 2.2 100.0 900	and a full of the second	Total "Pull" == 2.2	100.0	900				

FIGURE 1: HYPOTHETICAL APPLICATION OF THE GRAVITY MODEL

26

is changed by the construction of a freeway to one of the shopping centers.

1500

1620

1

1.688

ર હ

We know that expressways do, in fact, change travel patterns; and the fact that the gravity model recognizes and quantitatively evaluates such changes sets it apart from many other methods of analysis. It is well to note that the highway network is only one of the many factors which can change with time. Rapid growth in presently undeveloped areas, or changes in land use through redevelopment, cannot be accounted for by extrapolation of existing travel patterns, except through the subjective manipulations of growth factors by the analyst. However, all these changes are subjected to objective analysis by the gravity model.

The example given illustrated the application of the gravity model to shopping trips. Since trips for different purposes show distinctly different characteristics with respect to both resistance to travel time and land activity trip generation relationships, it is necessary to develop separate models for each of several basic trip purpose categories.

STUDY DESIGN AND REPORT ORGANIZATION

While the basic gravity model has been used many times, and the basic structure of the equations need not be verified, the quantification of the various factors incorporated must be systematically developed and validated for the Kalamazoo Area. This requires thorough examination of the information on existing travel patterns that was obtained in the surveys. In this study, the trip generation and distribution models were developed at the district level in order to maintain statistical stability and reduce the likelihood of spurious estimations. The expanded study area was subdivided into 81 internal districts and 27 external stations. Criteria used to develop districts was based on having approximately 60 interviews (600 dwelling units) in each district or a large number of attractions. For example, the General Motors plant was in a district by itself. The 81 internal districts were further subdivided into 315 zones. Thus 342 zones (including external stations) were used for assignment to the highway network.

The zonal trip distribution was developed by subdividing the district trip transfer matrix based on land activity data for the individual zones. All home based trips were subdivided on a production and attraction basis. By using this technique, the statistical stability of the models could be maintained and also assignments of the trip transfer could be achieved.

The necessary analysis to accomplish this objective required a six-step procedure, as follows:

Step 1 -- Development of Trip Production Equations

Based on the residential characteristics at the origin of the trip -defined as the home or residence end of the trip (cars, labor force, car occupancy, etc.) -- special relationships between the selected trip purpose productions and these variables were developed. The transportation study is concerned with travel on the public transit system as well as with highway transportation. Formal analysis of transit travel generation, however, was confined to the work trip purpose category, because these trips occur primarily in the peak hours and are therefore the most critical for system design purposes.

Step 2 -- Development of Attraction Equations

From an analysis of land activity measures at the destination of the trip -- defined as the non-home end of the trip -- which indicate certain job types, specific equations were developed which reflect the numbers of trips by trip purpose category that are attracted to each kind of land activity. As with the trip production analysis, investigations were made of the non-auto trips at the attraction end of the work trips to account for such areas as the central business district and large industrial plans which serve as the main destination for transit work trips and for higher-than-average car pooling. The final attraction equations were also checked for logic and geographical bias and corrected as necessary.

Step 3 -- Special Generator Analysis

Based upon a detailed analysis of the area, certain facilities and areas were isolated because of their unique traffic-generating characteristics. These are the facilities that in general do not follow the averages indicated by the production or attraction equations. Shopping centers, hospitals, the central business district, drive-in theaters, and Western Michigan University students were identified as being unique, and specific factors were applied to them. This analysis will serve as a basis for estimating the behavior of future generators indicated by the future land use plan.

Step 4 -- Development of Friction Factors

From an analysis of existing trip length frequencies for each purpose of trip, specific "F" factors were calculated. These "F" factors were developed to reproduce the trip length distribution measured in the

- 8 -

survey of travel patterns.

Step 5 -- Socio-Economic Calibration

The models were checked to insure that the procedures did in fact reproduce the travel patterns for the selected trip purpose categories. The estimated movements from the gravity model were accumulated and compared to the information obtained from the travel surveys. Where significant differences existed between these two sources of data, special investigations were conducted to determine the reasons. Only when the differences were satisfactorily explained as related to socio-economic causes was an adjustment factor calculated and used in the model.

Step 6 -- Final Calibration

Based on the results of Steps 1 through 5, total estimated district vehicular trips were split into zonal trips and assigned to the highway network. These volumes were checked against the ground count information. This comparison provided a final verification of all of the procedures to be used in forecasting future travel, by assuring that the models were accurately simulating existing travel patterns.

The following sections of this report are structured to follow the basic outline discussed above.

CHAPTER II

TRIP PRODUCTIONS AND ATTRACTIONS

This chapter discusses the selection of trip purpose groups for analysis of trip generation, the development of and the statistical checks of the equations for estimation of trip generation, and the overall validation of these procedures.

SELECTION OF TRIP PURPOSE GROUPS

To examine the patterns and regularity of urban travel, it is necessary to divide the observed trips into groups. In establishing these groups for analysis, two requirements must be met. First, each group must exhibit stable patterns resulting from consistent behavior by the travelers comprising the group. Second, the group must be sensitive to known types of land activity. To achieve the objective of traffic forecasting, each travel group must be related in a consistent way with one or several measurable types of land activity. The land activity measures to be used are limited to those which can in themselves be projected or forecasted for the sub-areas of the region.

Urban travel can be structured by mode of travel, purpose of travel, hour of travel and, of course, by the pairs of points forming the origin and destination of the trips. Experience from the analysis of urban travel patterns in many other cities has shown certain groups to be preferable to others. The number of the groupings that can be examined is limited by the necessity to maintain stable samples for statistical analysis. A series of summary tabulations of the travel data from the interview surveys was examined to determine the optimum groups for the current transportation planning program in the Kalamazoo area. Since through trips are generally independent of land activity in the study area, these were separated for independent forecasting. Internal-to-external and external-to-internal trips were left combined with wholly internal travel, and this large group was further subdivided into groups according to purpose. Truck trips involving trucking uses of the vehicle were next separated. The remaining travel was examined by purpose and by mode. It was found that over 90 percent of this travel is made by automobile, including personal use of trucks. The rest was divided between transit, school bus, truck, and taxi passengers and walking trips (enumerated only when they represented travel from home to work). Trips by mode are shown in Appendix A.

The high preponderance of automobile transportation indicated that adequate forecasts for planning would be obtained by developing trip generation and distribution procedures for automobile travel only for most of the internal nontrucking group. Approximately 70 percent of these trips either began or ended at home; these are termed "home based trips" and are classified according to the type of activity engaged in at the non-home end. Experience has shown that it is preferable to analyze these trips as travel between home at one end and the function served at the other end without regard to whether the actual direction of travel is away from home or returning to it. It is apparent that the number of trips leaving and returning to homes in a given area is closely related to the number of homes in the area. Furthermore, each trip leaving home requires a counterpart return trip. These home based trips were classified into three groups, as follows:

- Home Based Work
- Home Based Shop -- includes shopping for convenience
 items and for shopping goods

- 11 -

. Kesa

1

694

్లీజించ

 (\cdot)

AND ADDRESS OF

Home Based Other -- includes personal business, school, social/recreation, change mode of travel, eat meal, medical/dental, and serve passenger.

Generation of trips at their home end is termed "trip production." The term, "trip attraction," relates to the generation of these trips at their non-home end. More precisely, trip attraction is a measure of the relative likelihood of a particular area satisfying the objectives of a trip. For example, shopping trips will be attracted to various areas in proportion to the amount of commercial activity present. A separate class of trips are those which neither begin nor end at home. Examples of this type are the salesmen making calls and the housewives shopping from store to store. These trips, which comprise approximately 30 percent of the vehicle trips in the area, are grouped together as a "non-home based" category. Taxi trips, of which there were few, were combined with the non-home based purpose. The separate truck group is similar to this type in that the trips are not produced from homes by the residents.

Trip generation estimating equations and the gravity model distribution calibration was undertaken for each of the four groups of automobile trips and for the truck group. Automobile trips are represented by the auto-driver mode from the home interview and external surveys together with personal truck use and taxi trips. Table 1 shows the number of trips in each group and the proportion each use is of the total nonthrough vehicle trips. Table 2 shows the number of internal and external trips for each purpose group in addition to through trips.

Because home based work trips constitute a large percent of the total trips and because they are concentrated in the peak hours when the

TABLE 1

DISTRIBUTION OF VEHICLE TRIPS BY FORECASTING GROUP

1966 Daily Vehicle Trips	Percentage	
102, 045	20.0	
73, 160	14.3	
160, 508	31.4	
156, 506	30,5	
19, 446	3,8	
511,665	100.0	
	1966 Daily Vehicle Trips 102,045 73,160 160,508 156,506 19,446 511,665	

Notes:

1. 1949

-

Yelas

12

. 1915

100

. Kajo 1. Does not include the 13,666 through trips.

2. Panel and pick-up type trucks were included with auto-driver non-home based trips.

TABLE 2VEHICLE-TRIP SUMMARY

		Exter	rnal		
Autos	<u>Internal</u>	<u>Attr.</u>	Prod.	Through	Total
Home Based Work	64, 282	11,770	25,993	·	102,045
Home Based Shop	65,341	973	6,846	· . ••••	73,160
Home Based Other	144, 677	8,000	7,831		160,508
Non-Home Based	154, 556	1,045	905	•• •=	156, 506
Through				9,348	9,348
Trucks					
Local	15, 396	2,014	2,036		19,446
Through				4, 318	4,318
TOTAL	444, 252	23,802	43, 611	13,666	525, 331

demand on transportation facilities is greatest, work trips by all modes were examined.

All trip production and attraction estimating equations were derived through the use of multiple regression techniques from the data obtained in the travel surveys and measures of land activity. Population, employment, and other land activity measures were quantified by transportation zone from the land use survey, census data, Michigan Employment Security data, and other information maintained by the regional and local planning agencies. In addition, current data on population and employment was secured by the Origin-Destination Survey. Differences between the various data sources were resolved until a "best estimate" of each category of land activity was determined. This is discussed in detail in Technical Report No. 2, "Survey Data Accuracy Checks and Screenline Adjustments. " The study area is divided into 315 transportation zones, which are the basic geographic units common to all of the data used. The zones are combined into 81 districts for analysis of the data in larger groups. Alternative estimating equations were formulated from experience in other areas and were tested and calibrated to local travel habits by multiple-linear regression techniques. All of the estimating equations have been developed in terms of nine measures of land activity that are being projected and quantified by transportation zone to describe and quantify the future land use pattern. In some cases, the equations utilize stratification of the variables based upon income class or areas within the study area such as the downtown business area, intermediate and outlying urban areas, and rural areas.

HIIGHWAY .

P. O. DRAWER "K" 48904

The nine basic land activity measures used are:

Population

i.

Dwelling Units

Labor Force (resident)

Median Income

긢

Re a

Cars registered by college or university dormitory students

• Manufacturing Employment

• Retail Employment

• Other Employment

Students attending high school or college

Table 3 shows the simple correlations between the basic land activity variables used and the simple correlations between the trips by category and the land activity. These correlations were developed by using data aggregated to districts. The trip production and attraction equations were also developed at the district level to secure the greater stability of larger groups.

While separate equations are required to estimate the production and attraction of trips in each purpose group, there are many similarities among certain of the groups. To take advantage of this, similar equations are discussed together in this chapter. Each equation is summarized, however, in a standardized table showing the final coefficients, statistical comparisons with observed trips, results of the regression analysis, and listing the unique generators requiring special adjustments to estimate present travel. A graph showing the estimated and observed trips produced or attracted in each transportation district is also included for each equation. For equations requiring special adjustments, the regression statistics for the "before adjustments" and the "after adjustments" is shown. The "before adjustment" was done by running the regression analysis without including the data for the "adjusted district." The "after adjustment" shows the

TABLE 3

- 16 - .

SIMPLE CORRELATIONS OF VARIABLES

	Population	Dwelling Units (DU)	Labor Force Resident	Median Income Times DU	Cars	Manufacturing Employment	Retail Employment	Other Employment	Total Employment
Dwelling-Unit Data	l								
Population Dwelling Units Labor Force (Re Median Income Times DU		. 81 . 30 . 38	. 62 . 30 77	.62 .38 .77 	. 82 . 55 . 87 . 86	19 26 28 25	18 07 24 .07	14 .02 31 09	21 15 35 19
Cars	. 82	. 55	. 87	. 86		30	18	19	29
Employment Data						•			
Manufacturing Retail Other Total	19 18 14 21	26 07 .02 15	28 24 31 35	25 .07 09 19	30 18 19 29	 . 22 . 39 . 80	. 22 . 86 . 72	. 39 . 86 86	. 80 . 72 . 86
Home Based Trip Productions									
Home Based Wo: Home Based Sho Home Based Oth	rk .71 p .73 er .66	. 35 . 42 . 48	.86 .81 .73	. 79 . 78 . 79	. 90 . 87 . 85	14 26 28	05 14 12	04 18 18	11 26 27
Home Based Trip Attractions									
Home Based Wor Home Based Sho Home Based Oth	rk24 p07 er .07	14 09 .35	37 07 22	28 .12 .01	33 06 04	.82 .10 .11	.66 .75 .76	. 81 . 48 . 80	.98 .43 .58
Other Trips									
Non-Home Based Truck	i08 01	.04 02	24 14	.00 07	13 09	.40.70	.92 .60	.90	, 83 , 86

Note: Values shown are R at district level.

Ú346

ieni an - 3 129

*

***5**64

regression statistics on the data with the "adjusted district"; the adjustments were applied to the land activity. A summary of all adjustments used is summarized in Appendix B. Variables tested, but not used in the final equations, are discussed with the appropriate equations.

A listing of 1966 land activity and trips by centroid with district subtotals is shown in Appendix G and Appendix H, respectively.

HOME BASED WORK TRIPS

Work Trip Production

10200

koal

The basic determinant of work trip production is labor force. The greater the labor force residing in the district, the larger the number of work trips that will be produced from it. However, the trip production estimating equation must be structured to produce auto driver work trips, and therefore adjustment factors must be included to account for the non-auto driver trips, such as transit trips, auto passenger trips, taxi trips, and walk trips. The equation must also allow for absenteeism and the fact that not everyone works on each normal weekday.

The basic form of the equation used for calculating auto driver, work trip production is:

= a + b (Labor Force)(Proportion by Auto) Car Occupancy Auto Driver, Work Trip Production = constant intercept generated by linear where a regression analysis techniques. b = regression coefficient generated by linear regression analysis techniques, Labor Force = total labor force by place of residence, Proportion by Auto = proportion of total work trips that are made by auto, and = the number of persons per car. Car Occupancy

Previous work on similar studies has established the relationships between the car ownership level in a district, and the values of proportion by auto and car occupancy. These relationships were checked for the Kalamazoo Area as measured in the 1966 Origin-Destination Survey by aggregating the districts having similar car ownership rates and tabulating the corresponding ratios for these two factors. The results of this analysis are shown on Figure 2. Both in the estimate for existing conditions (used for the correlation test) and for forecasting the future, the curves shown are used in conjunction with the car ownership in each district to determine the actual values to be used at the district level.

There is no indication that the relationship between car ownership and the use of cars for work trip changes with time and therefore it can be assumed that the relationship found in 1966 will hold for 1990. However, the overall car occupancy in the future will be lower than today because of increasing car ownership. Similarly, the future proportion by auto can be assumed to bear the same relationship to car ownership unless, of course, widespread use of new travel modes is anticipated from technological advances.

Table 4 shows the final estimating equation for auto driver, home based work trip production, and the results of the comparison with trip productions measured in the survey. Figure 3 shows the comparison of estimated and actual productions by district. No special adjustments were used in the estimate for this purpose.

Work Trip Attraction

Since the gravity model requires a measure or index of trip attraction to each district for each trip purpose used, an equation for estimating auto driver home based work attraction was also developed.

This index must represent the "level of activity" of the zone in terms of trips. It is clear that for work trips the attraction index is the

1.1.1.1.A

> 1 1 1

(king)

42

inte

۔ جن د

TABLE 4

AUTO DRIVER HOME BASED WORK PRODUCTION AND ATTRACTION ESTIMATING EQUATIONS

District Work Productions = 65 + 1.39 (Labo	r Fo	rce) (<u>Proportion by Auto</u>) Car Occupancy)
Mean Observed (District)	. =	939 (No adjustments were necessary)
Standard Error of Estimate	=	146
Coefficient of Variance	=	15.5%
Coefficient of Determination (R^2)	E	0.86

"t" (Labor Force) ($\frac{Proportion by Auto}{Car Occupancy}$) = 22.3

District Work Attractions = 128 + 1.41 (Total Employment)(Proportion by Auto Driver)

. · · ·	B	efore .djust,	After Adjust.
Mean Observed (District)	= .	1117	1115
Standard Error of Estimate	=	322	320
Coefficient of Variance	5	28.8	28.7
Coefficient of Determination	8	.96	. 96
"t" (Total Employment)(Proportion by by Auto Driv	y er) =	45.6	45.6

District Adjusted

Reason

71

133

1546

dia i

|

1

sende

VALES

ii taad

with

(2) (2)

1.56

100

1.64

.

en 6

Goodwill Industries and Others

number of jobs located in the zone adjusted by the number of employees arriving at the zone by modes other than auto driver. The following basic form of the equation to compute work trip attraction was:

Auto Driver Work Trip Attraction = a + b (Total Employment)(Proportion by Auto Driver)

An analysis of the mode of travel was made for all survey person trips from home to work. A summary of these trips is presented in Table 5.

TABLE 5

PERSON TRIPS BY MODE OF TRAVEL FROM HOME TO WORK

	Internal-Internal		
MODE	TRIPS	PERCENT OF TOTAL	
Auto Driver	33, 801	82. 7	
Auto Passenger	5,612	13.7	
Bus Passenger	535	1.3	
Walk	502	1, 2	
Other (Taxi, Truck or School Bus Passenger)	433	<u> 1. 1</u>	
TOTAL	40, 883	100. 0	

During this analysis of travel mode, it was found that two districts had a significantly large percent of non-auto driver trips. One was the Central Business District (District 1), which had 18 percent of the total work trips arriving as auto passengers. The other district was Upjohn Corporation (District 60) on Portage Road, where 8 percent of the total work trips arrived via transit. Upjohn operates its own transit service which accounts for this large percent. A summary of

litide

the significant percent work trips by mode for these two districts and all other combined are shown in Table 6.

TABLE 6

PERCENT WORK TRIPS BY MODE

District of Employment	Walk Trips	Auto Passenger	Transit	Truck or <u>Taxi</u>	Total Non- Auto Driver	Auto Driver
1	2	18	2	2	24	76
60	*	14	8	4	26	74
All Other	*	13	*	* ·	13	87

*Less than 1 percent.

ė.

The actual equation and the correlation of the estimated present attractions with the trips measured in the survey was presented in Table 4 and is illustrated in Figure 4.

FIGURE 4: HOME BASED WORK ATTRACTIONS BY DISTRICT

HOME BASED NON-WORK TRIPS

Productions

A THE PARTY OF A

.

In estimating the production of auto driver, home based shopping and home based other trips, car ownership was found to be the most significant index. The estimating equations for these travel groups and the correlation of the estimated present attractions with the trips measured in the survey are shown in Table 7 and in Figures 5 and 6. In Table 7, it will be noted that cars were stratified as urban or rural in order to better reflect differences in car usage in these areas. Figure 7 shows the districts included in each of these two categories.

As discussed later, car ownership is responsive to variations in income level and labor force. The findings that trip production rates for these trip purposes vary directly with car ownership is consistent with experience in other cities. Other variables examined include population and dwelling units. Neither of these was found to add significantly to improving the forecast.

Attractions

For an attraction estimating equation to be both logical and reliable, the non-home end of the trip must be related to the land activity at that trip end which causes the trip to be made. The estimating equations for these travel groups and the correlation of the estimated present attractions with the trips measured in the survey are shown in Table 8 and in Figures 8 and 9.

For shopping trips, the number of retail employees working in the zone is the basic important variable. It was found, however, that the trips

TABLE 7

AUTO DRIVER HOME BASED SHOP AND OTHER PRODUCTION ESTIMATING EQUATIONS

District Shop Productions = -39 + 0,94 (Cars Rural) + 1,10 (Cars Urban)

	H L	3efore Adjust.	After Adjust.	
Mean Observed (District)	;	822	819	
Standard Error of Estimate	. =	182	180	
Coefficient of Variance	=	22.2%	22.0%	
Coefficient of Determination (\mathbb{R}^2)	=	0.79	0.80	
"t" (Cars Rural)	=	15.1	15.3	
"t" (Cars Urban)	-	16,6	16.7	

District Adjusted
23

1

i faith

Reason

University students

District Other Productions = 17 + 1.83 (Cars Rural) + 2.48 (Cars Urban)

Mean Observed (District)	= 1885 (No adjustments were
Standard Error of Estimate	= 357
Coefficient of Variance	= 19.0%
Coefficient of Determination (\mathbb{R}^2)	= 0.82
"t" (Cars Rural)	= 14.9
"t" (Cars Urban)	= 19.0

FIGURE 5: HOME BASED SHOP PRODUCTIONS BY DISTRICT

-

FIGURE 7 STUDY AREA STRATIFICATION

TABLE 8

AUTO DRIVER HOME BASED SHOP AND OTHER ATTRACTION ESTIMATING EQUATIONS

District Shop Attractions = -47 + 20.9 (Retail Employment, Shopping Centers) + 3.64 (Retail Employment, Retail Core) + 10.9 (Retail Employment, Remainder)

		Before Adjust.	After Adjust.
Mean Observed (District)	=	905	891
Standard Error of Estimate	=	307	303
Coefficient of Variance	=	33.9%	34.0%
Coefficient of Determination (R^2)	=	0,96	0,96
"t" (Retail Employment Shopping Centers)	=	31.0	31.4
"t" (Retail Employment, Retail Core)	==	28,1	28.5
"t" (Retail Employment, Remainder)	=	23.1	23.4

Districts Adjusted

Reason

26 Nonshopping Retail Employees52 Lumber Yard

District Other Attractions = 384 + 0. 24 (Population) + 1. 35 (High School and College Student Attendance) + 1. 47 (Retail and Other Employment)

		Before Adjust.	After Adjust.
Mean Observed (District)	=	1833	1883
Standard Error of Estimate	=	534	527
Coefficient of Variance	=	29.1%	28.0%
Coefficient of Determination (R^2)	=	0.90	0.91
"t" (Population)	=	3.09	3.14
"t" (High School and College Student Attend)	=	12.6	12.8
"t" (Retail and Other Employment)	=	22.4	23.5

Districts Adjusted

3

Reason

58

Bronson Hospital

Drive-In Theatre

FIGURE 9: HOME BASED OTHER ATTRACTIONS BY DISTRICT

attracted per retail employee varied widely, depending upon the type of retail development. To account for this variation, it is necessary to stratify retail centers by "retail core," "shopping centers," and "remainder." The districts comprising the "core" were illustrated in Figure 7. The districts comprising the "shopping Centers" are shown in Table 9.

TABLE 9

DISTRICTS WITH REGIONAL SHOPPING CENTERS

District

12	Shopping Center
14	Thrifty Acres, Topps Discount Center
27	Westwood Shopping Center
30	Strip Development for Students
36	Thrifty Acres
40	Parchment
46	Shopping adjacent to Eastwood Shopping Center
47	Eastwood Shopping Center
66	Southland Shopping Center

Regional Shopping Centers

All retail employees within these districts were classed as "shopping center" employees. In the district zone splitting procedures (as will be explained later), the actual zone comprising the shopping centers was considered.

Districts comprising the "core" will probably remain constant for the forecast year while there will undoubtedly be additional "regional shopping centers." These new centers will have to be classed as such

before using this estimating equation.

Adjustments to the final equation were found necessary in Districts 26 and 52 where non-shopping type retail employees were working.

For home based other trips, the variables (1) population, (2) high school and college students' attendance, (3) retail, and (4) other employment are the most significant variables. Population identifies the propensity to make social/recreation trips; high school or college students' attendance relates strongly to school trips and some social/recreation trips associated with the colleges and schools; retail and other employment relate to transact business, eat meal, and medical/dental type trips. Each of these land activities relate to portions of serve passenger trips.

Many other variables were tested, but none was found to add significantly to the equation. Some of the variables tested were manufacturing employment, dwelling units, and a stratification of other employment, as follows:

Agricultural

Mining

- Construction
- Transportation

• Communications

Utilities

• Wholesale

Finance, Insurance, Real Estate

Services

• Government

Self-Employed

In addition, various groupings of these employment categories were tested, but they did not add significantly to improving the equation. Adjustments to the final equation were necessary in District 58 because of a large drive-in theater, and District 3 where Bronson Hospital is located.

NON-HOME BASED AND TRUCK TRIP GENERATION

Estimation of non-home based auto driver trips and truck trips requires a two-step procedure. The questions, "How many trips?" and "Where are they produced and attracted?" must be approached separately. The other trip purpose groups that have been discussed up to this point were all home based trips, and the production equations for these give a direct measure of the total trips produced as well as an estimate of the place of production within the study area. In the case of non-home based trips, however, the total number of trips is related to overall activity in the area, but the production and attraction of these trips in the various parts of the area requires consideration of the level of various types of activity in each part of the area. Experience shows that the total number of non-home based trips can be estimated from the total cars owned in the area, and that this relationship is expected to hold into the future. The present ratio of 2.32 non-home based internal-tointernal trips per car owned can be used to control the total production of these trips.

For non-home based and truck trips, the land activity which causes production of trips at a given point is the same kind of activity that attracts such trips to that point. The number of trips produced, or beginning from each district is the same as the number of trips attracted to the district. For this reason, a single equation of the attraction type has been developed and it is used once to estimate productions and again to estimate attractions.

The final estimating equation along with the regression statistics for non-home based trips and comparison of the actual versus estimated trips is presented in Table 10 and Figure 10, respectively. Although

TABLE 10

AUTO DRIVER NON-HOME BASED PRODUCTION OR ATTRACTION ESTIMATING EQUATION

District Non-Home Based Productions or Attractions=

510 + 0.23 (Population) + 0.37 (Manufacturing Employment) + 4.54 (Retail Employment) + 0.77 (Other Employment)

	Before Adjustment	After Adjustment
Mean Observed (District)	1845	1920
Standard Error of Estimate	491	484
Coefficient of Variance	26.6%	25,2%
Coefficient of Determination (R^2)	0.93	0,94
"t" (Population)	3.18	3.31
"t" (Manufacturing Employment)	4.84	5.22
"t" (Retail Employment)	10.4	15.4
"t" (Other Employment)	4.2	7.0

Districts Adjusted

3 14 Bronson Hospital Topps Discount Center and Thrifty Acres

BY DISTRICT

. Marine the variables tested for home based other attractions were also tested for this equation, they did not add significantly to the accuracy of the estimations of non-home based trips.

Special adjustments were necessary in District 3 to reflect additional trips to Bronson Hospital and in District 14 to reflect additional trips to Topps Discount Center and Thrifty Acres Shopping Center. In District 14, 20 percent of the total trips are between the zones containing the two discount stores. This, in addition to the special nature of trips attracted to discount business and the special characteristics of Westnedge Avenue required that a special adjustment be made. For truck trips, the final estimating equation, together with the regression statistics and the comparisons of the actual versus estimated trips, is shown in Table 11 and Figure 11, respectively. Again, other variables tested were those as listed in the discussion on home based other trip attractions. No adjustments to truck trips were made. While the equation gives a good index of the production and attraction to the various districts, a more direct relationship to overall growth is needed to forecast the total truck trips. Since the portion of total vehicle miles accounted for by truck travel has remained essentially constant since World War II, and no change in the relative average trip lengths of truck and auto trips is expected, the total number of trips for the truck purpose can be assumed to grow at the same rate as car ownership, the estimator for auto trip growth. Total truck trips in the future can be forecasted by maintaining truck trips as a constant ratio to total trips in the area.

_ 40 _

TABLE 11

TRUCK PRODUCTION OR ATTRACTION ESTIMATING EQUATION

District Truck Productions or Attractions = -45 + 0.059 (Population) + 0.17 (Total Employment)

Mean Observed (District)	. =	215
Standard Error of Estimate	=	130
Coefficient of Variance		60.5%
Coefficient of Determination (\mathbb{R}^2)	=	0.77
"t" (Population)	=	3.22
"t" (Total Employment)	=	16.3

Sector Sector

FIGURE 11: TRUCK PRODUCTION OR ATTRACTION BY DISTRICT

ń

÷

TOTAL PRODUCTION AND ATTRACTION

As a final check on the entire set of trip production and attraction estimating equations, a composite estimate of total productions and of total attractions was computed and compared with the observed trips produced and attracted to each zone. These comparisons are shown in Figures 12 and 13 which indicate a distinct clustering of the points about the line of perfect estimate.

FIGURE 12: TOTAL VEHICLE PRODUCTION BY TRANSPORTATION DISTRICT

ANSPORTAT

FIGURE 13: TOTAL VEHICLE ATTRACTION BY TRANSPORTATION DISTRICT

CHAPTER III

CAROWNERSHIP

Research in many studies has shown that car ownership rates are influenced very strongly by family income, but in a non-linear relationship. In other words, as family income increases, car ownership increases also, but not in the same proportion. In Kalamazoo, this relationship was also observed.

For this reason, and also because of the very large, simple correlation between labor force and cars, it was decided to stratify labor force by income ranges. This was done by classifying all districts with a median family income of under \$8,000 per year as "low income," from \$8,000 to \$9,999 per year as "medium income," and \$10,000 and over as "high income." Labor force stratified in this manner was tested and found to be over-predicting in the downtown areas and under-predicting around Western Michigan University. Thus, labor force in the downtown area was taken as a separate stratum since car ownership in this area was low. In addition, data on cars registered by Western Michigan University's on-campus students was obtained for testing in the equation. Each of these variables added very significantly to the equation.

The final equation is shown in Table 12 together with the regression statistics. The actual versus the estimated trips is shown in Figure 14.

For the future, districts comprising the "core" will be the same as today, unless high-rise apartments for high-income residents, or other major renovation is projected. The other variables, of course, are expected to vary over time.

TABLE 12

AUTO OWNERSHIP ESTIMATING EQUATION

District Auto Ownership = 8 + 1.0 (Dormitory Registered Cars) + 0.66 (Labor Force, Core)

> + 1.16 (Labor Force, Medium Income) + 1.24 (Labor Force, High Income) + 1.02 (Labor Force, Low Income)

Mean Observed (District)	=	823 (No adjustments were necessary)
Standard Error of Estimate	=	89
Coefficient of Variance	z	10.8%
Coefficient of Determination (R^2)	=	0.94

"t"	(Dormitory F	legistered Cars)	=	8.95
"t"	(Labor Force	e, Core)	=	9, 81
''t''	(Labor Force	e, Medium Income)	=	31.7
"t"	(Labor Force	e, High Income)	=	25.9
"t"	(Labor Force	e, Low Income)	=	23.2

Note:

Low Income	=	None to \$7, 999
Medium Income	=	8,000 - 9,999
High Income	=	10, 000 and over

Districts with Labor Force in Core: 1, 2, 3, 32, 34

FIGURE 14: AUTOS OWNED BY DISTRICT

CHAPTER IV

TRIP DISTRIBUTION

As indicated by the gravity model formula stated in the Introduction, four factors must be analyzed and quantified before the model can be applied to the study area. Chapter II dealt with two of these--trip production and trip attraction. The remaining two factors are concerned with spatial (F_{ij}) and socio-economic (K_{ij}) characteristics. Unlike trip production and attraction, these two factors do not deal with traffic at a single point, but rather are concerned with trip movements from one point in the system to another. These factors were developed to "fit" the gravity model to known existing travel patterns so that they could be applied to forecast the future distribution of trips in each of the trip-purpose categories analyzed. This chapter summarizes the procedures for and the results of the development of these factors.

FRICTION FACTORS

This phase of the analysis was concerned with the development of the proper exponent of travel time associated with each trip purpose. For ease of computation, an exponent is not directly used in the gravity model. Instead, a set of friction factors is calculated, where

$$\mathbf{F} = \frac{1}{\mathbf{t}^{\mathbf{b}}}$$

The use of "F" factors instead of exponents makes it possible to use a variable exponent, a procedure which previous studies have shown to be desirable. It should be noted that the absolute value of each "F" factor is unimportant. Only the relative values of the "F" factors for various trip lengths within each trip-purpose category affect the behavior of the gravity model. The need for a variable exponent arises in part from the mathematically complex shape of the curve of trip-length distribution.

The set of "F" factors for each trip purpose category quantifies the total effect of spatial separation between zones. The total effect is based on the total "time separation," which is the sum of the over-theroad driving time between zones and the terminal times within the origin and destination zones. Terminal time reflects the impedance to making a vehicle trip to or from a zone due to difficulty and time required to park the vehicle and in getting between an actual parking location and the true origin or destination point of the trip. Terminal times were subjectively developed for each zone based on knowledge of the study area and on zonal characteristics such as the amount of traffic congestion which affect terminal time. In this study, terminal times ranging from zero minutes in the outlying rural zones to three minutes in the downtown zones gave good results. Terminal times for external centroids were assigned as five minutes to roads carrying primarily local traffic, ten minutes to U.S. 131, and fifteen minutes to I-94.

Intrazonal times of one minute for the rural zones and zero minutes for all other zones were input to the model. Since the total intrazonal times consist of twice the terminal times plus the intratimes, the resulting total intrazonal times varied from one minute in the rural zones to six minutes in the downtown zones. This produced the best consistent estimate of intrazonal trips, and was verified by the number of intradistrict trips obtained. The terminal and intrazonal times for each zone are listed in Appendix C.

After the zone-to-zone driving times had been summarized from the highway network and the intrazonal and terminal times had been added into this zonal time matrix, it was used as the base for developing a district-to-district travel time matrix. The district-to-district time matrix is a weighted average of the zonal times computed by using the zonal vehicle trip matrix as the weighting criterion for the zone-tozone times. The best set of "F" factors associated with each trip purpose was determined through a process of trial and adjustment by first assuming a set of friction factors for each purpose and building a trial model with the productions and attractions from the Origin-Destination Survey to obtain trip interchanges between districts. The results of the trial gravity model were then compared to the survey data and adjustments were made to the "F" factors in light of the following criteria:

 Trip-length distributions obtained from the gravity model should fit closely with the corresponding survey trip-length distributions

• The average trip lengths produced by the model should be in close agreement with those measured in the survey

A semi-logarithmic plot of the "F" factors versus trip lengths should be a relatively smooth curve with no "unexplainable" inflection points

If these criteria were not achieved, it was necessary to adjust the "F" factors according to the following formula:

$$F_A = F_P - \frac{\% OD_t}{\% GM_+}$$

where:

film from the second se

FA	= Adjusted "F" factor
$\mathbf{F}_{\mathbf{P}}$	= Previous "F" factor
% OD _t	 Percentage survey trips for a given length increment (t) of total trips in that purpose category
% GM _t	 Percentage model trips for a given trip length increment (t) of total trips in that purpose category.

These adjusted "F" factors were then plotted on semi-log paper and a smooth curve fitted to them to determine a new set of "F" factors for input into the gravity model. This process was repeated until the gravity model distribution substantially matched the survey trip-length distribution. Figure 15 shows the final "F" factor versus trip-length relationship for each of the five models used for the analysis.

The gravity model, for all trip purposes, was iterated three times for trips attracted to the external stations. The iteration process forces the trips attracted to these external centroids to conform more closely with the original estimates of attraction input to the model.

SOCIO-ECONOMIC FACTORS

Any mathematical model, by nature, simulates average or normal conditions. Before applying a model to a particular urban area, it is therefore necessary to compare it to the actual travel patterns and to adjust it, if necessary, to insure that it accurately simulates any unique social or economic conditions existing in the study area. Such adjustment permits the analyst to reflect the influence of variables not considered in the model.

After trip-length distributions were calibrated for each purpose, trip transfers generated by the gravity model were compared to the survey trip interchange. An analysis was made for each of the purposes at the district level to obtain stability in the numbers of trips being investigated.

To gain a basic understanding of the data that could point to a meaningful analysis of the socio-economic structure of the region, additional analyses were conducted by further grouping of some of the districts. Throughout the analysis, constant alertness was maintained for trends and persistencies in differences which, even though based upon small numbers, would aggregate into a larger sample size that could result in greater stability. Aggregates of grouped differences were also checked by making several assignments of gravity model trip transfers to the desire-line network and comparing these with similar assignments of survey data.

In this way, it was possible to obtain an understanding of many of the underlying characteristics of the region and to adjust the basic model structure to match these intricate workings. It is important to recognize, however, that the need for this understanding goes beyond the mere exercise of calibrating the model. The primary purpose of this effort is to guide its application in the forecasting process and to assure that the tool developed and tested for the existing condition is, in fact, applicable to the future. In those cases where adjustments were found necessary and could be substantiated by known socioeconomic characteristics, "K" factors were calculated and applied to the gravity model.

The following sections discuss the underlying reasons for the "K" factors developed. These adjustments are grouped into five general classifications for discussion.

Self-Contained Communities

Certain areas, due to their high degree of self-containment, tend to interact at a substantially lower-than-average rate with the surrounding areas and consequently a greater-than-average number of intraarea trips are made. Since the gravity model reflects average regionwide travel patterns, the intra-area trips for such areas are underestimated. This occurred in the Western Michigan University area, in some of the older major industrial areas, and in small communities in the rural portions of the study area.

Western Michigan University with its 18,400 students, and Kalamazoo College with an enrollment of 1,200, form a separate community in Western Kalamazoo. This community contains its own well-developed institutional, commercial, and recreational facilities serving the young academically-oriented populace.

Many of the rural portions of the study area also indicated a relatively high degree of self-containment. Because of the large size of the study area, much of the rural portion does not have a "suburban" relationship to Kalamazoo. Many of the rural residents continue to work and trade in nearby areas and do not interact with central Kalamazoo as much as the average for the entire area would indicate. Such biases were particularly evident around the business areas of Parchment and Galesburg.

Kalamazoo Central Commercial Area (District 1)

Generally, in this type of regional study, there is a definite trip distribution bias to the central commercial area. This is to be expected since the model which is based on regional averages cannot account for the special attractiveness historically enjoyed by central business districts. Thus, for all purposes, there were underassignments of trips to this area. In addition, the extent of the bias from residential areas was related to income level, since higher income trip makers tend to be attracted to the work, shop, and business opportunities in the central area at a higher-than-average rate. It is expected that these biases will continue to exist in the future.

Shopping Trips

Biases were noted in the assignment of shopping trips to the major commercial areas. Large department stores, such as Sears, Thrifty Acres, and Topps Discount Center, attract what is known as "goods shopping." They are unique attractors of shopping trips due to their large variety of merchandise. This enables consumers to purchase goods not available in their local communities, facilitates comparison shopping, and allows for the purchase of many types of goods in one shopping trip. Since there are only a few of these stores in the region, they attract trips from all portions of the study area at higher rates than the gravity model predicts. Thus, the short trips to these regional stores tend to be overestimated by the model and long trips underestimated, requiring adjustment to counteract this tendency. On the other hand, there are several smaller shopping centers that contain a supermarket and several small stores. These centers provide solely for what is known as "convenience shopping." Their goods consist primarily of groceries and other items widely available in the region, and these centers tend to attract mostly short trips. The bias in the gravity model is the reverse of that for the regional department store and an opposite type of adjustment is required.

Topographic Barrier

The Kalamazoo Area is severed by a topographic barrier along a northsouth axis that lies just to the east of the Central Commercial Area. The Kalamazoo River, which flows from the east edge of the downtown area toward the north, is the focus of the barrier in the northern half of the study area. The river is closely paralleled by the north-south tracks of the Penn Central Railroad and the adjacent large industrial complex, which add significantly to the barrier effect of the river itself. The railroad tracks continue through the southern half of the study area as a major barrier, and are reinforced by a series of parks and the Brandt Mill and Monarch Mill Ponds. While several roads penetrate the barrier to connect the west and east sides, travel from one side to the other is often circuitous and psychologically the other side seems further away than it really is. Strong commercial strips along Westnedge Avenue on the west side and along Portage Street and Lovers Lane on the east side give a measure of internal self-sufficiency to each of the two halves of the study area.

With this land development pattern, it is expected that trip making is relatively less frequent from one side to the other than between similarly spaced zones not separated by the barrier strip. The travel survey found that relatively fewer trips across the barrier are made by the people of the Kalamazoo Area, confirming the physchological effect of the barrier on travel habits. To adjust the gravity model so as to account for this bias, "K" factors to reduce the incidence of trips across the barrier were introduced between the districts lying on opposite sides of the barrier in the northerly half of the study area and similarly between districts on opposite sides in the southerly half of the area. Since the Central Commercial Area serves all of the region in its own unique way, this area was not included in the adjustments for the barrier. In addition, the bias was not found to be important for the long trips between the southwest quarter and the northeast quarter of the study area or for trips between the northwest and southeast quarters.

Special Interaction

-

For a variety of other reasons, "K" factors were applied between a small number of other area-to-area combinations. These adjustments reflect unique conditions resulting from unusual attributes of one or both areas that produce abnormal trip interchange patterns.

Western Michigan University is a center for regional and state-wide conferences and work shops which attract a great number of people from outside the study area. Therefore, it was necessary to adjust for trips between the university and the major external stations.

The outlying rural areas have a higher-than-average percentage of their trips interchanging with adjacent rural areas in contrast to a relatively lower attraction of the rural areas for the trips generated in the suburban parts of Kalamazoo. Adjustments were applied to account for this bias.

The General Motors plant is new to the area, having opened in 1966. It was found that the trip patterns for the many new employees at this plant were different than those typical of the older established industries. A large proportion of the GM employees commuted from outside the study area and the trips from within the study area were substantially longer than average. It is apparent that the new plant attracted workers from many communities in Western Michigan. However, it is expected that the residential distribution of these employees will conform more to the typical pattern of the other major industrial complexes in the future.

Another type of special interaction occurs between the high schools in the Kalamazoo area, and the surrounding residential areas served by each of them. Since school trips were included in the "home based other" purpose group, special adjustments to that group were required to introduce the unique trip distribution pattern attracted to the high schools. Other schools did not attract unusual patterns of auto driver trips.

Forecasting the Adjustments

To successfully use "K" factors, one must be certain that it is possible to forecast the conditions necessitating their use in the future. For all but the General Motors District, the biases exhibited in the present travel patterns will continue to exist. However, the magnitude of all "K" factors used in the model must be reevaluated before they are used in making a future travel estimate.

The "K" factor analysis for an urban transportation study is never simple. It is a complex undertaking requiring basic understanding of the social and economic structure of the region. Nevertheless, it is a most important part of the analysis since it provides a means through which to tune the model to the particular characteristics of the area. It is believed that all important unusual travel patterns have been adequately isolated and that the calibrated process has imparted the basic understanding of the region necessary to assure accurate adjustment of the model to future conditions. Appendix D lists all of the "K" factors required for the Kalamazoo Area Transportation Study.

CHAPTER V

FINAL VERIFICATION

The procedures and checks described in the previous sections were concerned with two basic phases of the traffic forecasting procedure-those used to predict trip generation (productions and attractions) and those concerned with the distribution of vehicular traffic. As a final check on the trip distribution model, a comparison of the average trip length and the trip-length distribution produced by the gravity model was made with the corresponding characteristics determined in the travel survey. To check the ability of the model to match survey values in traffic corridors, the district-to-district gravity-model trip transfers were assigned to the desire-line network and compared with similar survey values. The trips predicted by the model must be split to a zone-to-zone level through the use of proportioning factor equations developed for home based, non-home based, and truck trips (see Appendix E--Proportioning Factor Equations). This is needed so that detailed assignments of the trip table to the real highway network can be made. The resulting zone-to-zone total vehicle trips were assigned to the existing highway network, and the assigned volumes compared to the actual 1966 ADT traffic volumes developed from on-the-ground traffic counts. Thus, the total study effort to this point, from data collection through model calibration and including the network simulation, could be verified.

Trip-Length Check

After the friction factors and socio-economic factors were applied to the productions and attractions, a gravity model trip-length distribution was generated and compared to the survey trip-length distribution. Table 13 shows the comparison of the average trip lengths produced by the gravity model and the survey values. The model average for each purpose group agrees closely with the survey average.

TABLE 13

AVERAGE TRIP-LENGTH COMPARISONS

Purpose	Survey	Gravity Model	Gravity Model/Survey
Home Based Work	15.719	15.704	1.00
Home Based Shop	9.352	9.468	1.01
Home Based Other	10.576	10.522	. 99
Non-Home Based	9,371	9.257	. 99
Truck	12.997	12.827	. 99
Total	11.150	11.114	1.00

NOTE: This trip comparison was made after the insertion of "K" factors.

Figures 16 through 21 show comparisons of the gravity model and survey trip-length distributions by one-minute increments for each individual purpose and for all purposes combined. As can be observed, a close match with no major deviations has been attained by the calibrated gravity model.

Desire-Line Network Comparison

A comparison of the survey and gravity model district-to-district trips assigned to the desire-line network was made and analyzed. Figure 22 shows the consistent agreement of these two data sets in all parts of the area, confirming that no significant bias in any part of the study area has been introduced.

Zonal Trip End Comparisons

Using the Proportioning Factor Equations that are listed in Appendix E, the district-to-district trips were split to zone-to-zone trips. A simple example of this technique of splitting trips is shown in Appendix F. As a check on this procedure, the survey district-to-district trips were split to zone-to-zone trips using this technique. Statistical comparisons of these "estimated survey" trips with the actual survey trips are shown in Table 14. This table also shows the statistical comparisons at the zonal level of the gravity model and synthetic model trip ends with the survey trip ends.

Screenline and Cutline Comparisons

After the gravity model and the synthetic model trip table assignments to the highway network were complete, comparisons of the volumes crossing the screenline and various cutlines were made with ground counts and with the survey assignment.

Again, the synthetic model was developed from the estimated productions and attractions, using the estimating equations and the 1966 land-activity data. Figure 23 illustrates the location of the screenline and the cutlines. Table 15 shows the values obtained from each step and the ratios between

FIGURE 17: VEHICLE TRIP LENGTH DISTRIBUTION COMPARISON FOR SHOP TRIPS

Agent

,

FIGURE 20: VEHICLE TRIP LENGTH DISTRIBUTION COMPARISON FOR TRUCK TRIPS

VEHICLE TRIPS

LEGEND

000 O. & D. VOLUMES

(000) G. M. #15 VOLUMES

0 1 2 3 SCALE MILES

FIGURE 22 DESIRE LINE NETWORK

n dahadi T

8

69

Purpose Mean		Estimate	Estimated Survey		<u>Gravity Model</u>		Synthetic Model		
		R^2	S. E.	R^2	S. E.	R^2	S. E.		
Home Based		·····		· <u> </u>					
Production	982	. 98	127	. 98	127	. 96	189		
Attraction	982	, 91	487	. 90	507	. 88	541		
Non-Home Based									
and Truck									
Production	514	. 89	242	.89	241	. 85	292		
Attraction	514	.87	259	.86	272	. 80	321		

ZONAL TRIP END COMPARISONS WITH SURVEY

NOTE:

1. R^2 = Coefficient of Determination

- 2. S. E. = Standard Error of Estimate
- 3. Synthetic Model = Gravity Model using Productions and Attractions developed from the previously described equations and 1966 land activity data.

FIGURE 23 SCREENLINE & CUTLINES

these values. The results confirm that satisfactory estimation of the actual measured traffic volumes has been achieved.

Vehicle-Mile Check

As a final check on the developed forecasting procedure, comparisons of the gravity model and synthetic model were made against the survey data and ground counts for vehicle miles. This aggregate check is summarized by jurisdiction in Table 16; the jurisdictions are shown in Figure 24. As can be observed in this comparison, the gravity model aggregate travel assignment is within 5 percent of the total travel measure from the Origin-Destination Survey and the synthetic model checks within 2 percent of the gravity model.

Conclusion

The series of checks, taken individually and collectively, demonstrate that in all respects the calibrated model accurately simulates both the survey data and the ground counts. Thus, it is concluded that all of the techniques have been validated and are ready for use in the forecasting phase of the study.

TABLE 15

								· · · ·
Cutline	Ground Count	Survey	Survey Ground Count	Gravity Model	Grav. Model Survey	Synthetic Model	Syn. Model Survey	Syn. Model Grav. Model
Screenline	172, 383	172,956	1.00	174, 061	1.01	174, 845	1.01	1.00
A	43,868	49,958	1.14	54, 157	1.08	55,422	1.11	1.02
В	113, 825	122,572	1.08	124,721	1.01	127,486	1.04	1.02
С	90,786	97,497	1.08	100,024	1.03	104, 649	1.07	1,05
D	63,161	58,236		60,597	1.04	61,816	1.06	1.02
TOTAL	484,023	501,209	1.04	513,560	1.02	524, 218	1.05	1.02

SCREENLINE AND CUTLINE COMPARISONS

NOTE: 1. Grav. Model = Gravity Model

2. Syn. Model = Synthetic Model

TABLE 16

VEHICLE MILES OF TRAVEL COMPARISONS (1,000's)

Jurisdiction	Ground s Count	Survey	Survey Ground Count	Gravity Model	Gravity Model Survey	Synthetic Model	Synthetic Model Survey	Synthetic Gravity Model
	1 A A	· · · · · · · · · · · · · · · · · · ·			0.4			*
1	40	34	. 85	34	.94	34	.94	1.00
2	707	754	1.07	774	1.03	772	1.02	1.00
3	185	222	1.20	229	1,03	236	1.06	1.03
4	210	214	1.02	235	1.10	243	1.14	1.03
5	318	321	1.01	335	1.04	345	1.07	1.03
6	82	64	.78	67	1.05	72	1.13	1.07
7	53	46	. 87	52	1.13	56	1.22	1.08
8	174	152	. 87	175	1, 15	179	1. 18	1.02
9	27	23	. 85	30	1.30	36	1,57	1.20
10	116	120	1.03	125	1.04	126	1.05	1.01
11	30	27	. 90	28	1.04	27	1.00	0,96
TOTA	L 1,942	1,977	1.02	2,082	1.05	2,124	1.07	1.02

ί3

•.

N SCAL

JURISDICTIONS

• • ••

APPENDICES

· · ·

763). 763).

APPENDIX A

PURPOSE OF TRAVEL BY MODE (Internal-Internal)

Purpose	Auto Driver	Auto Passenger	Bus Passenger	School Bus Passenger	Other Passenger	Truck	Total
Home-Based Work	64, 282	10,998	969	465	7794/		77, 493
Home-Based Shop	65,341	23,014	$\frac{801}{2242}$	530	96		89,782
Home-Based Other Non-Home Based	$\frac{144,677}{154,556}$	90,750 38 892	$\frac{8,084}{1,793}$	45, 880 2, 365	599 115	·	289,990 197.721
Truck						15,396	15,396
Total	428, 856	163,654	11,647	49,240	1,589	15,396	670, 382

PERCENTAGE OF TRIPS USING EACH MODE BY PURPOSE (Internal-Internal)

		· ·						
Purpose	Auto Driver	Auto Passenger_	Bus Passenger	School Bus Passenger -	Other Passenger	- Truck	Total	
Home-Based Work	83.0	14.2	1.3	0.5	1.0		100.0	
Home-Based Shop	72.8	25.6	0.9	0.6	0.1		100.0	
Home-Based Other	49.9	31.3	2.8	15.8	0.2		100.0	
Non-Home Based	78.2	19.7	0.9	1,2	0.0		100.0	
Truck						100.0	100.0	
Total	64.0	24.4	1.7	7.4	0.2	2.3	100.0	

Note :1/ Includes panels, pickups, and taxis

 $\frac{2}{7}$, 132 trips to or from school

 $\frac{3}{1}$, 366 trips to or from school

 $\frac{4}{502}$ trips are "walk to work"

DISTRICTS FOR WHICH SPECIAL ADJUSTMENTS WERE MADE FOR ESTIMATING EQUATIONS

5

4

1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

	:		Adju	stment	
District	Zone Centroid	Purpose Equation	Centroid K Factor	Activity	Explanation
3	7	Home Based Other Attractions	2.55	Other Employ- ment	Bronson Hospital apparently attracts more trips, proportionately, in these
•		Non-Home Based	4.39	Other Employ- ment	purpose categories than other genera tors with employees in this land activity group.
.14	38	Non-Home Based	3.21	Retail Employ- ment	Topp's Discount Center and Thrifty Acres attract more non- home based trips than the average retail establishment in the study area based on their number of employees.
23	57	Home Based Shop Productions	0.59	Autos Owned	College students essentially consti- tute the entire population of the zone. Characteristically, they do not make as many shop trips as other segments of the population.
26	61	Home Based Shop Attractions	0.10	Retail Employ- ment	A restaurant and bowling alley in this zone generate social recreation trips rather than shop trips although their employees are classified as retail.
52	146	Home Based Shop Attractions	0.15	Retail Employ- ment	A retail lumber yard located in this zone has employees classified as re- tail, but because of the types of acti- vity they support, they do not attract as many trips per em- ployee as other types of retail estab- lishments.

A-2

الاست. الأسليكية and a

 Image: Second second

		· · · · · · · · · · · · · · · · · · ·	Adjust	ment	
District	Zone Centroid	Purpose Equation	Centroid K Factor	Activity	Explanation
58	164	Home Based Other Attractions	9.32	Other Employ- ment	A drive-in theater in this area draws large volumes of trips per employee and these cannot be adequately reflected by the equation developed for the region.
71	230-231	Home Based Work Attractions	0.47	Total Employ- ment	Comparing the employment data in this district, the O-D Survey reported approximately 650 total employment while the data from Employment Security records indicated employment of nearly 1600. This, coupled with the observation that Goodwill Industries has over 500 employees, but work trips to that zone were approximately 50, led to the conclusion that the employment at the time of the Survey was light. Therefore, factoring was necessary.

-

- .

APPENDIX C

ZONAL TERMINAL AND INTRAZONAL TIMES

Terminal	Intrazonal	
Times	Times	Zone-Centroids
0	0	(Internal)
3	U	1 - 6
2	0	7 - 13
2	0	19 - 23
2	0	78 - 86
2	0	96 - 98
1	0	14 - 18
1	0	24 - 59
1	0	70 - 77
1	0	87 - 95
1	0	99 - 111
1	0	119 - 163
0	1	60 - 69
0	1	112 - 118
0	1.	164 - 315
		(External)
10	- 	316
5	-	317 - 325
15	. 	326
5	**	327 - 332
10	-	333
5	. -	334 - 335
15	F 4	336
5	· _	337 - 342

Note: Intrazonal trips are prohibited at external centroids.

Activity of the second s

APPENDIX D

SOCIO-ECONOMIC ADJUSTMENT FACTORS

This appendix enumerates the specific socio-economic adjustment factors used in the gravity model. The factors are presented in six groups. The first group covers all trips to the Central Commercial Area and the second group identifies factors required to account for the major topographic barrier. The final four groups list factors for other portions of the study area by specific purpose.

Group 1--Central Commercial Area

A bais was found to exist in the distribution of trips to the Central.Commercial Area of Kalamazoo, as was discussed in Chapter IV.

This type of bias is normally found in an urban regional study and is usually related to income levels in the various parts of the study area. Therefore, home based trips were adjusted with a separate factor for each trip purpose and each income level. The median income for the production or "home" end district of the trip was used to stratify the trips into income level ranges. However, a single adjustment factor was used for non-home based trips and another single value for all truck trips.

Another unique relationship, that is typically found for the central commercial areas in regions of this type, is that an unusually high number of trips from outside the study area are attracted to this area. Appropriate "K" factors were developed for each trip purpose to compensate for this tendency.

For all purposes, the gravity model naturally predicted intra-downtown trips. However, with the exception of truck trips, very few such trips were observed in the survey. These trips do actually take place. However, because of the congestion and difficulty of parking and unparking vehicles, most of them are made on foot. Therefore, it was necessary to adjust for this type of trip. Specific adjustment factors for the Central Commercial Area are listed in Table D-1.

TABLE D-1

ADJUSTMENT FACTORS FOR TRIPS TO CENTRAL COMMERCIAL AREA

Purpose	Low	Medium	High	All Districts	Intra - Area	External
Home Based Work	1.00	1.48	1.27		0.00	. 88
Home Based Shop	1.62	2.16	4.20	بنعتب فلكته	0,00	2,82
Home Based Other	1.43	1.55	1.83		0.00	1.31
Non-Home Based			278 CH	1.33	0.75	1.33
Truck	t≠ ao	-		1.17	1.17	

Note: 1. See Appendix G for median income for each district. Low Income = Less than \$8,000. Medium Income = \$8,000 to \$9,999. High Income = \$10,000 and Over

2. Central Commercial Area is District No. 1.

Group 2--Topographic Barrier Adjustments

To correct for the overestimation of trips across the topographic barrier separating sectors 2 and 3 from sectors 4 and 5, adjustment factors were used to reduce inter-sector trips and to increase locally oriented intra-sector trips by purpose as necessary. These adjustment factors are listed in Table D-2 and the location of the sectors are indicated on the following study sector map.

Groups 3-6--Other Adjustment Factors by Purpose

Tables D-3, D-4, D-5, and D-6 list the remaining "K" factors used for each purpose category other than the factors listed in Tables D-1 and D-2. Table D-3 lists the district number, "K" factors, and the major

ADJUSTMENT FACTORS FOR TRIPS ACROSS NORTH-SOUTH TOPOGRAPHIC BARRIER

nterchange .		Pu	rpose	
Sector-to-Sector	Work	Shop	Other	NHB
	· · · · · · · · · · · · · · · · · · ·			
2 - 2	1.08	1,35	1.27	
2 - 5	. 83		.75	. 85
5 - 2			.90	. 85
5 - 5			1.40	
3 - 3		1.40		
3 - 4		.25	• • •	
4 - 3			. 77	
4 - 4			1,10	1.50

Sector	2	1	Districts 2 to 20	
Sector	3	-	Districts 21 to 37	
Sector	4	-	Districts 38 to 47	
Sector	5	~~	Districts 48 to 57	

1

ADJUSTMENT FACTORS FOR HOME BASED WORK TRIPS

Attraction Districts	Major Attractor	Production Districts	"K" Factor
23	Western Michigan University	1-7, 10-17, 27-29, 33-69, 71-81, 82, 92, 102	0.65 3.70
34	Industrial Area	30-35	1.89
40-42, 73-79	Rural to Rural	40-42, 73-79	1.80
60	Upjohn Corp.	1-81 94-99	1.12 0.53
72	Brown Paper Co.	35-41, 71-77	1.40
77	Galesburg	77	6.50
80	Gen. Motors Corp.	1-81 82, 92, 102	0.73 3.92

HIGHWAY LIBRARY MICHIGAN OFPARTMENT OF STATE WAYS LANSING, MICH. P. O. DRAWER "K" 48904

ADJUSTMENT FACTORS FOR HOME BASED SHOP TRIPS

			Local		Nonlocal	
Attraction Districts	Major Attractor	Type of Shopping	Production Districts	"K" Factor	Production Districts	"K" Factor
5	Sears	Regional Goods	1, 3-7, 10-12, 48-51	.80	2, 8-9, 13-20 21-47,	1.30
					52-108	1.45
14	Thrifty Acres Topps Discount	Regional Goods	7, 12-15, 56-57, 67	. 71	2-6, 8-11 16-20	1.30
27	Westwood Shop- ping Center	Convenience	25-30	1.40	1-24, 31-108	. 20
47	Eastwood Shop- ping Center	Convenience		anna y _e llikketski star te i S _{ye} leyele	1-20, 38-41, 48-108 21-37	. 72 . 25
56	Corklane Shop- ping Center	Convenience	5-7, 14, 49-50, 54-57	1.35	1-4, 8-13, 15,48, 51-53, 58-108	. 61
66	Southland Shop- ping Center	Convenience	58, 60, 61, 63-69	1.15	1-57, 59, 62, 70-108	. 63
72	Parchment CBD	Local Only			1-35, 42-70, 75-108	. 23
77,78	Galesburg	Local	78	6.10		

A-9

ADJUSTMENT FACTORS FOR HOME BASED OTHER TRIPS

Attraction Districts	Major Attractor	Production Districts	"K" Factor
8	Msgr. O'Brien H.S.	8-10, 20-22, 24, 30-34	0.61
14	Topps, Thrifty Acres	6-7, 11-18 56-57	0.54 0.20
15	Hackett High School	1-4, 8-11, 19-108 5-7, 12-18	0.71 1.83
18	N. Christian H.S. & Western Mich. Univ.	8-11, 18, 25, 26, 70	0.35
19	Western Mich. Univ.	18-19, 25-26	0.25
23	Western Mich. Univ.	18, 20, 22-27, 29-30	0.40
40	Parchment H.S.	1-38, 41-72, 74-108 39, 40, 73	0.60 2.00
42	Comstock High School	1-41, 43-74, 76-108 42, 75	$0.39 \\ 2.75$
58	Drive-In Theatre	59-69, 81	0.70
61	Portage Central H.S.	58-69 1-57, 70-108	1.30 0.43
67	Portage Northern H.S.	12-18 54-63	0.55 0.50
70	Urban to Rural	28-29, 70-71	. 1,50
71	Rural to Rural	28-29, 70-71	4.60
73-81	Rural to Rural	73-81 82-108	$2.50 \\ 1.20$

ADJUSTMENT FACTORS FOR NON-HOME BASED TRIPS

Attraction Districts	Major Attractor	Production Districts	"K" Factor
		· · · · · · · · · · · · · · · · · · ·	
23	Western Mich. Univ.	1-17, 21, 26-81	0.70
34	IndusCom. Area	34	1.30
40	Parchment	39-40, 73 41-47	2.65 1.50
48	Industrial Area	48, 51	0,25
50	Residential Area	50	0.75
71	Urban to Rural Urban to Rural	27-29, 36, 70-73, 82-84, 106-108 1-26, 30-35, 37-69, 74-81, 85-105	3.00 1.80
73-81	Special Urban to Rural Rural to Rural	1-72, 82-108 73-81	$\begin{array}{c}1.45\\2.40\end{array}$
77	Galesburg	77	4.00

k

STUDY SECTORS

attractors for which the adjustments were made for home based work trips. The basic causes for these factors are described in Chapter IV.

Table D-4 enumerates the adjustment factors used for home based shop trips. These adjustments were applied to distinguish between the unique distribution patterns for regional shopping areas and the smaller convenience shopping areas. Major department stores, such as Sears, appealed to the whole study area; whereas smaller shopping centers which provide more widely available commodities generally appeal mostly to nearby residents.

Tables D-5 and D-6 list the adjustments for home based other trips and non-home based trips, respectively.

APPENDIX E

PROPORTIONING FACTOR EQUATIONS Vehicle Productions and Attractions

1. Home Based Productions

= 4.52 (Cars)

2. Home Based Attractions

Non-Home Based and Truck*

- = 56 + 0.63 (Population) + 1.40 (Total Employment) + 1.23 (Students' Attendance at High School and College) + 22.44 (Shopping Center Employment) + 7.47 (Other Retail Employment)
- = 92 + 0.43 (Population) + 4.18
 (Retail Employment) + 0.57
 (Total Employment)

* Productions and Attractions are by definition equal.

NOTE: These equations are used to derive proportioning factors to allocate district-to-district trips to zone-to-zone trips. See Appendix F for a simple example of the allocation procedure.

3.

APPENDIX F

EXAMPLE OF DISTRICT-ZONE TRIP-SPLITTING TECHNIQUE

Assume Figure 1 depicts a study area with three districts to be split into a total of eight zones. The solid lines represent district (and zone) boundaries, and the broken lines are zone boundaries. The circled numbers are zone numbers and the uncircled are district numbers. Figure 2 is the input district-to-district trip table, and Figure 3 represents the input P/A control card deck. Figure 4 is the output zone-to-zone trip table.

To From	1	2	3
1	200	600	800
2	700	400	200
3	900	1200	100

Figure 2 District Trip Table

Zone	District	%P	%A
1	1	50	20
2	1	50	80
3	2	10	40
4	2	40	50
5	2	50	10
6	3	10	40
7	3	10	20
8	3	80	40

From	1	2	3	4	5	6	7	8
1	20	80	120	150	30	160	80	160
2	20	80	120	150	30	160	80	160
3	14	56	16	20	4	8	4	8
4	56	224	64	80	32	16	16	32
5	70	280	80	100	20	40	20	40
6	18	72	48	60	12	4	2	4
7	18	72	48	60	12	4	2	4
8	144	576	384	480	96	32	16	32

Figure 4 Zone Trip Table

.

Sector Sector

APPENDIX G

LAND-ACTIVITY DATA

٢.

KALAMAZOD AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

			•				×	EN	PLOYMENT	BY INDUSTR	Y	STUDENTS IN	
			DWELLING	LABOR	MEDIAN	AUTOS REG.	TOTAL	MANUFAC-		071150	****	HIGH SCHOOL	
DIST	CENT	POPULATION	UNITS	FORCE	INCOME	AT DORMITORY	AUTUS	TURING	RETAIL	UTHER	TUTAL	OR COLLEGE	
1	1	197	92	131	9000		144	1346	1242	2794	5382		
ī	2	26	13	13	9000				12	54	65		
1.	3							43	100	116	. 259		
ī	4	262	262	262	9000		105	195	684	1070	1949	•	
ŀ	5	157	92	66	9000		79	42	310	1567	1919		
•			450	6.77	0000		320	1626	2348	5601	0575		
T		642	, 439	412	. 9000		520	1020	2040	5001			
2	6	1017	570	583	7500		422	10	21	288	319	· · ·	÷ .
2		1017	570	583	7500		422	. 10	21	288	319		:
			,						•••	74.2			
3	7	265	223	233	4500		42		116	742	858		
3	8	307	117	106	4500		85	494	34	1.(5	703		
3	9	678	212	148	4500		265		37	140	177		
3	10	201	95	127	4500		74		20	151	171		
3		1451	647	614	4500		466	494	207	1208	1909		
4		1110	447	566	5500		492		12	57	- 69		
4	17	517	221	209	5500		258	18	71	236	325		
-•		211	4. A. L		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
4		1636	688 ·	775	5500		750	18	83	. 293	394		
5	13	81	23	23	6500		12		25	. 125	150		
5	14	1093	345	460	6500		345		404	250	. 654	•	
5	15	311	104	138	6500		115		67	91	158		
,			(7)	(3)	4500		1.79		404	466	04.7		٠
2		1485	412	021	8500				- 70	400	702		
6	16	1113	405	541	12500		593	127	ד	212	346		
6	17	728	177	239	12500		302		. 3	39	42		
-6	· · · ·	1841	583	780	12500		895	127	10	251	388	and and a second se	
7	18	. 1313	399	588	7500		588		11	96	107		
-													
7		1313	399	588	7500		588		11	- 96	107		
8	19	236	149	136	6500		136		206	105	311	1430	
8	20	1215	694	558	6500		508		154	317	471		
8		1451	843	694	6500		544		360	422	782	1480	
9	21	1949	570	410	6500		616	32	10	46	88		
9		1949	570	410	6500		· 616	32	10	· 46	88		
				•					10/			1000	
10	22	952	449	407	6500 6500		420 353		- TOD	400	596 138	TRAA	
10	2.5	647	ورد .		0,000					2 ° C * 2	1,1,1		

KALAMAZOO AREA TRANSFORTATION STUDY

1966 LAND ACTIVITY DATA

								EM	IPLOYMENT E	3Y INDUSTRY	(STUDENTS IN	
DIST	CENT	POPULATION	DWELLING UNITS	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	TOTAL AUTOS	MANUFAC- TURING	RETAIL	OTHER	TOTAL	HIGH SCHOOL OR COLLEGE	
10		1851	802	760	6500		781	-	141	500	641	1899	
	24	909	330	448	9000		401		. 20	193	213		
1 1	25	260	106	130	9000		118			122	122		
11	26	920	283	354	9000		531		11	221	232		
11		2089	719	932	9000		1050		31	536	567		
12	27	745	270	238	12500		389	-	23	48	71		
12	21	278	86	86	12500		151		44	61	105	the second se	
12	20	2 40	202	212	12500	•	443		2	130	132		
12	27	100	£72	و ۲ م	12,000				-	230			
.12		1781	648	637	12500		983		69	239	308		
13	30	882	294	325	12500		431		16	89	105		
13	31	683	221	252	12500		315			5	8		
13	32	389	126	147	12500		210		40	130	170		
13		1954	641	724	12500		. 956		56	227	283		
14	33	467	125	171	12500		205	24		21	45		
14	34	479	137	194	12500		205		13	6	19		
14	35	274	103	125	12500		171	•		6	6	•	
16	36	347	103	125	12500	· .	137	47.8	81	105	614		
14	27	23	11	11	12500		11	61	13	73	. 147		
14	38	1140	274	319	12500		422	2	200	47	249		
14		27 25	753	945	12500		1151	515	307	258	1080		
16	10	1136	4.27 ·	693	12500		634	18	25	77	120	300	
15	40	1342	366	439	12500		671	27	30	133	190		
15	· · ·	2477	793	927	12500	. ·	1305	45	55	210	310	300	
14			107	° 05	9000		190		4	44		•	
10	41	500	147	170	9000		262			5	5		
10	*2	224	143	117	9000		488		50	53	103		
10	43	1521	7417	700	9000		257						
10	-+-+	045	202	521	3000								
16		2845	929	1083	9000		1297		- 50	102	152		
17	45	374	105	117	12500		199		2	. 3	5		
17	46	889	234	281	12500		374	12		4.	16		
17	47	796	257	328	12500		421		38	ß	46		
17		.2059	596	726	12500	· .	994	12	40	15	67		
18	48	436	131	174	7500		251		14	51	65	-570	
18	49	937	305	360	7500		534		12	16	2.3		

KALAMAZOO AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

								ÉM	PLOYMENT (BY INDUSTRY		STUDENTS IN	
DIST	CENT	POPULATION	DWELLING UNITS	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	AUTOS	TURING	RETAIL	OTHER	TOTAL	OR COLLEGE	
18 18	50 51	55 382	55 207	55	7500 7500	100	55 109			1126 560	1126 560		
18		1810	698	589	7500	100	949	,	26	1753	1779	570	•
19	52	1426	572	562	7500	200	799		5	400	405	2500	
19		1426	572	562	7500	200	799		5	400	405	2500	
20	53	3121	1275	133	1000	200	357		4	600	604	1500	•
20		3121	1275	133	1000	200	357		4	600	604	1500	
×21	54	468	239	42	1000		42		2		2		
21		468	239	42	1000		42		2		2	•	
22	55	371	116	162	12500		209			2	2		
22	56	336	174	70	12500		209	16	4	153	173		
22		707	290	232	12500		418	16	4	155	175		
23	57	4202	2142	122	1000	700	867		39	699	738	3000	
23		4202	2142	122	1000	700	867		39	699	738	3000	
24	58	740	280	230	12500		330		31	57	. 88		
24		740	280	230	12500		330		31	57	88		
25	59	1516	721	223	1000	200	424		10	54	64		
25	2.1	1516	721	223	1000	200	424	· .	10	54	. 64		
26	60	842	238	324	12500		346		2	39	41		
26	61	886	324	°454	12500		475	69	62	137	268	*	
26		1728	562	778	12500		821	69	64	176	309		
27	62	845	193	268	. 9000		364		56	92	148		
27	63	1541	482	610	9000		835		30	43	73		
27	64	1156	289	3 64	. 9000		460		10	7	17		
27		3542	964	1242	9000		1659		96	142	238		
28	65	604	148	212	9000		223			78	73		
28	66	180	42	53	9000		55			2	2		
28	67	297	53	85	9000		95	1		10	11		
28	68	159	42	74	9000		85						
23	69	254	. 117	170	9000		148		9	24	33		

The second second second second

KALAMAZOD AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

			BUEL (TAIC			AUTOS REG.		EMPLOYMENT BY INDUSTRY			STUDENTS IN	
DIST	CENT	POPULATION	DWELLING UNITS	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	TOTAL AUTOS	MANUFAC- TURING	RETAIL	OTHER	TOTAL	HIGH SCHOOL DR COLLEGE
28	70	212	95 .	127	9000		138	132	8	31	171	
28		1706	497	721	9000		774	133	17	145	295	
29	71	777	284	242	7500		284	25	5	84	114	
29	72	641	179	231	7500		305			- 38	38	
29	73	819	. 221	315	7500		294			I	1	
29		2237	684	788	7500		883	25	5	123	153	
30	74	1209	373	396	9000		520		13	80	93	
30	75	1062	339	407	9000		407	6	48	106	160	
.30		2271	712	803	9000		927	6	61	186	253	
21	76	757	249	271	6500		316	20		374	394	
31	77	1107	339	452	6500		441	. — –	3 -	41	44	
31		. 1864	588	723	6500		757	20	3	415	438	
22	78	1714	773	694	6500		773		25	70	95	
32	79	717	224	202	6500		134	258	52	59	369	
32		2431	997	896	. 6500		907	258	77	129	464	
33	80	1550	492	566	6500		578	129	9	91	229	
33		1550	492	566	6500		578	129	9	91	229	
34	81	172	37	49	5500		25	406	67	476	949	
34	. 82	221	86	61	5500		25	752	127	306	1185	
34	83							36	40	84	160	
34	84	554	123	172	5500		- 123	. 941		. 50	991	
24	95	. 77 7 035	258	320	5500		246		57	222	279	
34	86	1636	406	566	5500		381	7	9	110	126	
34		3518	910	1168	5500		800	2142	300	1243	3690	•
25	87	633	189	211	6500		189	49	20	67	136	
35	88	1010	233	266	6500		366			17	17	
35		1643	422	477	6500		555	49	20	84	153	
26	RO	285	114	80	6500		91	25	200	121	346	
24	0/	103	46	57	6500		23	192		46	238	
20	70	4 4 N	140	205	4500		22H	1	2	7 9	290	
30	AT	001	33	202	4500		220	1		, 10	2	•
50	92	8V 317	63	20	4600		2.2 6.0	1 2 7	. 2	174	ر د ۸ د	
36	93	211	08 -	71	0500		00	141		110	دەد	
36		1346	. 411	456	6500		433	345	205	421	971	

care and for the second second second second

A REPORT OF A REPORT OF A REPORT OF

* · · · ·

KALAMAZOO AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

									EM	PLOYMENT	BY INDUSTRY	/	STUDENTS IN
;	DIST	CENT	POPULATION	DWELLING UNITS	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	AUTOS	MANUFAC- TURING	RETAIL	OTHER	TOTAL.	OR COLLEGE
	37	94 95	1464	339	472	5500		351	2404	28 11	528	2960 1280	
i.	27	96	133	36	61	5500		61	354	1	110	465	
	37	97	133	36	24	5500		24	210	26	47	283	
	37		1730	411	557	5500		436	4178	66	744	4988	
į	2.0	.	9 7 C		6 I.	7500	·	. 75					•
	38	90	200	04	0.4	7500			2		. 72	24	
	38	99		,					2		. 1	. 27	
	38	100			2.1	7600		102		20	250	270	
	38	101	396	150	214	7500		193		20	550	210	
	38	102	310	96	193	7500		182		-	19	19	
	33	103	171	64	107	7500		96		Ţ	30	31	
	33	104	310	75	107	7500		118		25	13	38	
	38	105	749	193	257	7500		310			65	65	
•	38		2171	642	942	7500		974	2	46	500	548	
	20	1.04	075	244	3.60	9000		419			54	54	
	27	103	603 ·	174	267	9000		325		6	37	43	
	39	107	1005	212	201	2000		464		3	2.	د ، د	
	39	108	1204	212	374	9000		• • • •		,		ر ر	
	39		2702	731	1021	9000	•	1207		9	91	100	
	2.0	100	1010	344	400	9000		500	6	44	43	93	•
	40	109	1010	777	155	0000		400		• •	37	37	610
	40	110	033	223	222	9000		200			30	10	010
	40	111	222	100	222	9000		209			10		
	40		2398	710	977	9000		1189	6	44	90	140	610
	61	113	740	640	. 02	6500		110			35	35	
	41	113	750	200	372	6500		360 -	25	12	36	73	
1	* 4	***											• [•]
	41		1490	840	464	6500		. 470	25	12	71	198	
	47	114	263	95	°105	9000		179		9	17	26	•
	47	115	840	231	357	9000		347	7	4	78	89	
	42	116	200	74	105	9000		126					
	42	117	661	179	252	9000	•	284		17	75	92	
	42	110	700	200	242	9000		263		• •	77	77	
	42	118	198	200	242	9000		205				1 *	
	42		2732	779	1061	9000		1199	7	30	247	284	
	43	119	627	228	319	9000		319		3	47	50	
	47	120	125	57	68	9000		80			32	32	
	~ 2	1 2 1	800	205	262	9000		308	5		1	 K	
		121	404	100	202	0000		274	-		י <mark>ה</mark>	7.8	
	4)	122	0V4	107	٤)1	2000		E 1 'T			10	10	
	43		2165	672	900	9000		981	5	3	158	166	
	44	123	307	127	148	7500		127	2	10	84	96	

. - היינע הקסרה הרביה הראש היינטי היינטי מערימי היינטי אינטי אינטי אינטי אינטי אינטי אינט היינטי אינט אינט אינט א KALAMAZOO AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

								ÈM	PLOYMENT P	BY INDUSTRY	Y	STUDENTS IN
DIST	CENT	POPULATION	DWELLING UNITS	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	TOTAL AUTOS	MANUFAC- TURING	RETAIL	OTHER	TOTAL	HIGH SCHOOL OR COLLEGE
44	124	1134	392	509	7500		488	•	8	25	33	
44		1441	519	657	7500		615	2	18	109	129	
45	125	822	260	322	7500		312	75	23	61	159	
45	126	31	21	21	7500		21	16	5	108	129	
45		853	281	343	7500		333	91	28	169	288	•
46	127	1086	314	358	5500		347		24	33	57	
46	128	157	56	78	5500		67	43	3	4 <u>1</u>	.87	
46	129	1445	448	482	5500		582		56	57	113	
46		2688	818	918	5500		996	43	83	131	257	· .
47	130	1809	500	777	9000		888		100	68	168	
47	131	122	22	22	9000		44	661	4	85	750	
47		1931	522	799	9000		932	661	104	153	918	
48	132	97	. 39	26	7500		26		72	195	267	
48	133	563	170	170	7500		157	597	7	185	789	
43	134	131	39	65	7500		79	20	32	146	198	
48	135							130	46	355	531	
48	136	1166	275	406	7500	•	314	13	5	26	.44	
48	137	144	66	92	7500		. 79	75	65	422	562	
48		2096	589	759	7500		655	835	227	1329	2391	
40	138	1169	418	553	9000	. 1	455	24	177	133	334	
49	139	308	111	185	9000		135	. 55	61	62	178	
49	· ·	1477	529	738	9000		590		238	195	512	
50	140	421	152	211	6500		187	197	49	691	937	z el g
50	141	1778	608	737	6500		702	9	17	185	211	•
50		2199	760	948	6500		889	206	66	876	1148	
51	142	1654	452	571	7500	•	595	18	96	300	414	
51	143	1369	428	476	7500		428	12.	7	16	35	·
51		3023	880	1047	7500		1023	30	103	316	449	
52	144	607	214	238	6500		286		1	6	7	
52	145							499		70	569	
52	146	500	119	143	6500		167	2612	127	941	3680	
52	147	83	24	24	6500		24	<i>23</i>	3	444	248	
52	148	536	202	202	6500		235	1200	11	200	123	
5Z	149	250	11	tor	6200		117	TYAA	21	237	1020	

. . . .

KALAMAZOD AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

								EM	PLOYMENT	BY INDUSTRY	Y	STUDENTS IN
			DWELLING	LABOR	MEDIAN	AUTOS REG.	TOTAL	MANUFAC-			TOTAI	HIGH SCHOOL
DISI	CENT	POPULATION	UNLIS	FURLE	ENCOME	AI DURMIIURT	AUTUS	TORING	RETAIL	DTHER	IUIAL	UK LULLEGE
52		1976	630	714	6500		834	4352	175	1625	6152	
53	150	961	3.05	394	6500		486	13	24	50	. 87	•
53	150	328	124	136	6500		170	51	14	150	215	
-												
53		1289	429	520	6500		656	64	38	200	302	·
54	152	161	43	43	9000	•	54		7	7	. 14	
54	153	214	54	75	9000	· · ·	64	239		143	382	
54	154	118	32	43	9000		32	151	30	747	928	
54	155	1145	428	524	9000		556	52	7	68	127	
54	156	503	182	230	59000		257		10	51	61	
54		2141	739	915	59000		963	442	54	1016	1512	
55	157	1760	484	594	sinnin		659		7	85	. 92	
55	158	1048	346	378	9000		508			10	10	
55		2808	832	972	9000		1167		7	95	102	
		2000				· · ·			•			•
56	159	1192	460	602	7500		543	420	62	127	609	
56	160	378	130	165	7500		212		140	17	157	• •
56		1570	590	767	7500	· .	755	420	202	144	766	
57	161	1104	345	506	12500	÷	529		11	1	. 12	
57	162	1024	345	472	12500		506	. 23	76	79	178	
57	163	202 .			12500			25		5	30	1400
57		2128	690	978	12500		1035	48	87	85	220	1400
	• • •	1177	201	5/1	0000		ちょブ		55	160		•
. 58	104	1133	241	200	9000			····		100	- 211	
58	105	221	02		9000		07 216	16				
58	166	049	144	200	9000		210	10			40	
58	167	52	10	10	9000		10			80	00	
58		2061	607	864	9000		875	22	55	249	326	•
59	168	120	20	20	12500		20	744	15	295	1054	, · · ·
59	159							15	165	70	250	
50		120	20	20			20	759	180	365	1304	
27		120	4. V	20								
60	171	700	180	297	9000		265	2900	10	, 380	3290	*
60		700	180	297	9000		265	2900	10	380	3290	
61	172	21	10	21	9000		10			57	57	

KALAMAZOD AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

				LABOR	MEDIAN	AUTOS REG.	TOTAL	MANUFAC-	PLOYMENT B	Y INDUSTR	Y	STUDENTS IN HIGH SCHOOL	
DIST	CENT	POPULATION	UNITS	FORCE	INCOME	AT DORMITORY	AUTOS	TURING	RETAIL	OTHER	TOŢAL	OR COLLEGE	
61	173	1040	330	443	9000		536	-	33	18	51	•	
61	174	1514	412	556	9000		546		· 4	298	302	356	
61		2575	752	1020	9000		1092		37	373	410	866	•
		7.0.					263						
62	175	781	214	321	9000	-	355		30	10	45	,	
62	176	310	. 64	86	4000		96	• • •		5	6 -		
62	177	952	300	395	9000		482	13		66	79	•	
62	178	642	161	203	9000		332	84	. 2	64	1,50		
62		2685	739	1006	9000		1263	97	37	146	280		
63	179	1030	270	385	9000		478	14		19	33		
63	180	988	333	447	9000		468	8		12	20		
63	181	832	198	281	9000		343	25	· 12	55	92		
63		2850	801	1113	9000		1289	47	12	86	145		
64	100	1610	380	530	9000		630	7	68	43	123		
64	183	150	50	60	9000		60	29		4	33		
64	184	550	130	150	9000		200	64	28	42	134		
64		2310	560	740	9000		890	100	96	94	290		
65	185	954	223	297	9000		350	2	97	234	333		
65	186	1314	265	. 350	9000		466			9	. 9		
65	187	700	180	244	9000		297	423	120	116	659		
65		2968	668	891	9000		1113	425	217	359	1001	·	
66	188	1102	257	310	12500		428		242	73	315		·
66	189	2236	514	653	12500		792			50	50	· ·	:
66		3338	771	963	12500		1220	*	242	123	365		•
(7	100	147	1.0	71	0000	<u>•</u>	60	700		110	910		
01	190	10/	90 605	11	9000		001	100	50	224	374	1451	
67	191	2223	242	821	9000		001		50	324	214	1471	
67		2392	643	892	9000	. '	941	700	50	434	1184	1451	
68	192	357	95	147	12500		168			8	8		
68	193	2069	462	588	12500		788	-		48	48		
68	194	945	221	357	12500		410		6	5	11		
68		3371	778	1092	12500		1366		6	61	67		
69	195	233	56	78	9000		89		3 `	•	3		÷.,
69	196	855	200	233	9000		266						
69	197	78	22	33	9000		44			· .			
69	198	111	44	44	9000		78			15	15	•	
~ /			• • • •										

MAMAANS, A ANALAS ANALYSIN DIR TRATING

.

KALAMAZOO AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

			•					EM	PLOYMENT	BY INDUSTRY	/	STUDENTS IN
DIST	CENT	POPULATION	DWELLING UNITS	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	AUTOS	MANUFAC- TURING	RETAIL	OTHER	TOTAL	HIGH SCHOOL OR COLLEGE
010	•											
69	199	67	22	22	9000		44	-	3		3	
69	200	200	56	78	9000		100		2	3	5.	
69	201	244	78	100	9000		122					
69	202	11	11	11	9000							
69		1799	489	599	9000		743		8	18	. 26	
70	203	207	, 77	110	9000		121		ъ.	15	15	
70	204	60	22	22	9000		33				1	
70	204	197	<u> </u>	<u>.</u>	9000		77			· · •	•	
70	205	101	1/7	154	0000		363		2		2	
70	206	215	143	124	9000		242		۲	~	· ~	
70	207	264	11	110	9000		110			. 5	2	
70	208	231	121	143	9000		154		48	8	56	
70	209	22	11	22	9000		22					
70	210	242	55	99	9000		88	• •	8	11	19	
70	211	286	66	121	9000		154		10	1	11	
70	212								16	56	72	
70	213	77	33	33	9000		33			2	2	
70	212	221	99	121	9000		165			Ê R	- 8	
. 70	214	231	. 00	12.1	,000		105				0	
70		2211	737	979	9000		1199	, í	84	107	191	
71	215	42	21	31	9000		21	•				· •
71	216	73	21	21	9000		31			12	12	
71	217	94	10	10	9000		10					
71	218	177	42	42	9000		94			1	. 1	
71	210	4.2	10	10	9000		10			_		•
71	220	92	21	21	9000		21		3		3	
(L 7)	220	74	10	10	9000		21					
71	221	125	21	10	9000		21					
1	222	135	21	21	9000		51		77		E /	
71	223	- 42	21	51	9000		21		20	26	24	
71	224	322	94	114	9000		166		13	4	17	
- 1 71 "	225	62	31	31	9000		31					· · · · · · ·
71	226	42	31	21	9000		31	· · ·	. 4	46	50	
71	227	187	42	62	9000		83			6	í 6'	
71	228	333	73	104	9000		114					•
71	229	707	177	250	9000		333			21	21	
7	230	291	73	125	9000.		156	534	ſ	87	622	
71	220	271	10	10	9000	,	10	551	-	198	769	
71	232	281	94	94	9000	•	125	571		35	35	
71	_	3028	802	1018	9000		1302	1085	47	438	1570	
• •		5020							• • •			
72	Z33	. 260	ניז	. 110	4500		. 110	1248	180	118	1905	
72	•	260	70	110	4500		110	1598	186	,118	1902	
73	234	235	75	107	6500		96	10		. 4	14	•
73	235	342	86	139	6500		150			23	28	
73	236	460	139	171	6500		161	138		23	161	
KALAMAZUD AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

				1 4 9 0 9	MCDTAN		TOTAL	EN	IPLOYMENT 8	BY INDUSTR	Y	STUDENTS IN
DIST	CENT	POPULATION	UNITS	FURCE	INCOME	AT DORMITORY	AUTOS	TURING	RETAIL	OTHER	TOTAL	OR COLLEGE
73	237	1113	310	460	6500		471	22	4	21	47	•
73		2150	610	877	6500		878	170	4	76	250	
74	238	918	235	286	9000		377		5	21	26	
. 74	239	51	10	10	9000		10			1	1	
74	240	694	173	265	9000	•	275		5	14	• 20	
74	241	235	61 -	122	9000	-	163			2	. 2	
77	241	122	21	13	0000		51	•			-	1 (C)
14	242	100	21		. 9000		21			-		
14	243	112	21	21	9000		02					
74 74	244 245	82	31	61	9000		61			5	5	
74	246	10	10	10	9000		10					
74		2235	582	867	9000		1029		11	43	54	
75	247							87		11	98	
75	249	200	50	60	9000		80			2	2	
76.	240	010	220	270	9000		430	2	7	7	16	
()	249	910	200	270	,000		170	2	•	20	94	
75	250	440	100	150	9000		170	40.		20	30	•
75	251	100	40	60	9000		50		_	3	د	
75	252	110	30	50	9000		40		1		1	
75	253	380	90	130	9000		160	156	4	79	239	
75	254	490	120	200	9000		190		5	23	28	
75		2630	660	920	9000		1120	293	.17	163	473	-
76	255	747	242	283	6500		343		37	63	100	
76	256	758	212	303	6500		323			2	2	
70	2,20	204	. 71	101	6500		101			•••		•
76 76	258	204		101	6300		101			102	102	
76	259	20	10	20	6500		10			•		
76	260	697	172	232	6500	e An an	253	472	7	. 92	571	-
76		2606	707	939	6500		1030	472	44	259	775	
77	261	82	20	20	7500		31					
77	262	51	10	10	7500		20					
77	263	41	20	31	7500		20					
77	264	51	20	31	7500		61					
77	207	21 71	10	21	7500		41					
11	252	41	10	51	7500		71			0	•	
77	265	122	41	51	1500	•	11					
77	267	71	10	20	7500		20			i	I	
77	268	592	214	316	7500		255	31	45	226	302	
77	269	133	41	61	7500		51		13	2	15	1
77	270	184	51	92	7500		92	5	88	. 29	122	•
77	271	602	194	316	7500		316	9	47	151	207	
77		1970	631	979	7500		978	45	193	419	656	
78	272	239	. 62	104	7500		73					

KALAMAZOO AREA, TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

								E»	PLOYMENT	BY INDUSTRY	<i>'</i>	STUDENTS IN	
DIST	CENT	POPULATION	DWELLING UNITS	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	TOTAL AUTOS	MANUFAC- TURING	RETAIL	OTHER	TOTAL	HIGH SCHOOL DR COLLEGE	
78	273	250	73	104	7500		104	· •		1	1		
78	274	10	10		7500		10						
78	275	73	21	21	7500		31	-		62	62		
78	276	125	. 21	21	7500		52						
78	277	42	10	10	7500		21						
78	278	125	31	42	7500		42						
78	279			1									
79	280	166	52	104	7500		73			25	25		
70	200	166	52	62	7500		62						
75	201	72	21	21	7500		21						
10	202	() 50	21	21	7500		31						
75	202	22	21	21	7500		21				•		
78	204	21	10	21	7500		21						
78	285	187	42	62	7500		60						
78	285	114	21	42	7500		42						
78	287	42	10	21	7500		21						
78	288	42	10	21	7500		21					·	
78	289	52	10	10	7500		21	12		2	14		
78	290	52	10	10	7500		31					•	
79	291	114	21	31	7500		42						
78	292	114	21	42	7500		42						
78		2069	529	770	7500		844	12		90	102		
79	293	104	21	42	9000		42		I		1	• .	
79	294	94	31	31	9000		42			• 5	5		
79	205	250	62	83	9000		104			18	- 18		
79	206	21	10	21	0000		21			-			•
70	207	156	42	73	9000		62			32	32		
70	200	10	10		9000		÷2	131		17	148		
70	270	02	21	31	9000		31						
79	277	1/25	212	637	9000		416	155	4	6.8	227		•
19		1432	212	~ 51	9000	-	. 42	41			46		
19	301	20	<u>41</u>	++Z 21	9000		47-		5	, ,			
. 19	302	135	21	21	9000		44			1		:	
79		2371	561	791	9000		802	327	10	146	483	• •	
80	303	180	50	80	9000		90	2046		454	2500	· · · · ·	•
80		180	50	80	- 9000		90	2046		454	2500		
81	304	352	88	121	9000		143			1	. 1		
81	305	264	121	154	9000		165					•	
81	306	88	22	22	9000		33						
81	307	22	11	11	9000	•	- 11	•					
81	308												
81	309	253	66	77	9000		110					·	
81	310	220	66	66	9000		- 88						
81	311	198	44	66	9000		77						
81	312	132	33	44	9000		55		13	15	28		
81	313	1331	374	583	9000		649	3	2	25	30	· •	
				-	_								

•

APPENDIX H

VEHICLE TRIP PRODUCTIONS AND ATTRACTIONS BY PURPOSE

HIGHWAY LIBRARY MICHIGAN DEPARTMENT OF STATE MICHIGAN DEPARTMENT OF STATE

Sec.

KALAMAZOO AREA TRANSPORTATION STUDY

1966 LAND ACTIVITY DATA

	•			LABOR	MEDIAN	AUTOS REG.	τοτάι	MANUFAC-	PLOYMENT	BY INDUSTRY	(STUDENTS IN HIGH SCHOOL
DIST	CENT	POPULATION	UNITS	FORCE	INCOME	AT DORMITORY	AUTOS	TURING	RETAIL	OTHER	TOTAL	OR COLLEGE
81	314	209	44	88	9000		88					
81	315	44	11	11	9000		11					. •
81		3113	880	1243	9000		1430	3	15	41	59	
			· -									۵ <u>ن</u> ر ۲
-	67.1 C	162202	E1009	60000	1	1400	46777	70440	81.71	21021	60167	15576
;	GIALS	103345	31499	22092		1400	00115	20000	. 0414	21021	00103	100/0

.

KALAMAIDD AREA TRANSPORTATION STUDY

							1966	VEHICLE TRIPS				,		
		+		PRODU	CTIONS				, ·			ITIONS		
					NON-							, XDX-		
		*** *** ***	HCME BAS	ED	HOME				++	IOME BASE	50	RONE		
DIST	CENT	VOR	C SHOP	OTHER	BASED	TRUCK	TOTAL		WCRK	SHOP	OTHER	'B43E0	TRUCK	TOTAL
	1	29	÷ 101	265	6756	363	7779		4957	5559	6108	5947	375	22946
1	2	5	7 10	9	593	75	750		498	230	273	513	75	1597
I	3	3	2 1	1	658	471	1163		672	85	109	595	495	1437
1	4	51	9 52	165	4462	. 264	5153		2260	1648	3025	4273	273	11436
÷	5	18	7 44	337	3596	293	4457		1715	1101 -	3467	3424	253	9935
1		75	9 208	778	16070	1467	19282		10102	8627	12962	14762	1475	47949
		•		•	-		· .			· ·		4		
2	6	. 45	2 276	815	1345	25	2913		50 <i>2</i>	367	823	1511	21	3224
2		45	2 276	815	1345	. 25	2913		502	.367	823	1511	21	3.224
2	7	E	`	63	1026	147	2107		1524	170	3377	1056	3.4.3	7045
. r	/ 0	2	/ <u>1</u>	250	1898	145	2107		905	272	2612	1403	191	7000
ز .	л О	20	≠ 4∠ 7 313	200	017	104	2019		202	120	551 457	1403	- 5 4	2420
2	10		· 212	102	6 L T	27	2101		310	207	- 412	601 470	10	1425
2.	2.U	11		1100	4 85 0	222	7262		3050	921	A602	027 6705	220	1.752 10407
	÷	50	r 747	T 7 - 0	4000	223	:200		0000		4472	- 55	د د. د.	1000
4	11	51	L 332	1237	534	33	2647		156	75	454	493	19	1197
-i.	<u>: 2</u>	2.5	152	597	2255	23	3237		746	649	2069	2422	1	5337
4		77	6 484	1834	2790	56	5934		902	724	2523	2915	20	7004
										•				
ī,		2	? [*] 76	52	1900	47	2104		852	3330	799	2064	63	7108
1		42	5 679	1150	1738	78	4070		500	2653	947	2198	77	6375
÷	5	10	5 77	189	298	ź	672		169	168	112	.355	3	823
5	* -	55	832	1391	3936	127	6846		1521	6151	1864	4527	140	14305
												· .		
5	16	74) 305	1291	943	105	3384		255	176	57÷	979	104	2090
3	17	37	355	555	195	33	1509		2		135	193	. 35	373
5	•	111	L 660	1845	1138	138	4393		257	176	714	1177	139	2453
		•		1 1			an a					- •		
7	18	94	÷ 600	1215	602	13	3379		124	58	621	636	17	1455
?		94	÷ 600	1215	602	18	3379		124	58	621	636	17	1456
2		• -		20/	1010	(د د ج	76 7 7			611	10/0		17.0	4723
7	20	10	L 80 7 747	394	1010	129	2022		529 80%	000 160	1040	2170	109	*/32 5740
ن ج	15	41 47	5 30Z 5 779	2010	2074	213	7250		204	225	2091 2090	1210	700	10040
0		*	τ •++Ω	2010	2710	211	· 307		<i>و. د. د. د.</i>	100	4037	1000		4 L L 7 L
e.	.21	48	293	2575	1105	52	4507		1.82	44	2067	999	54	3345
ŝ		48	L 293	2576	1105	52	4507		192	62 64	2067	\$99	54	3048

KALAMAZOG AREA TRANSPORTATION STUDY

					-				196	6 VEHICLE TRIPS				•		
					- <u></u>	280000	CTIONS				` <u>~~</u>		ATTRA	CTIONS		
							NON-							NON-		
					HOME BAS	ED	HGME					ICHE BAS	ED	HGNE		
	DEST	CENT		WORK	SHOP	DEHER	BASED	TRUCK	TUTAL		WORK	SHOP	OTHER	BASED	TRUCK	TOTAL
	10	22		462	463	1160	2120	19	4774		624	33	3606	1676	1 2	5062
		22		305	200	1157	614	52	2527		28	404	494	776	20	1905
	10	<i>L</i>		047	050	7217	7724	71	4071 -		710	400	4000	3 A 5 7	2.0	2000
				041	592	2511	2154	٢.	0021		114	-+ + + +	4070	2492	O 7	1:01
								,			÷					•
	11	24		367	326	849	910	54	2506		381	173	631	953	66	2214
	:1	25		67	24	186	419	17	713		251		171	380	15	813
	11	25		354	408	1330	751	35	2878		447	39	658	674	34	1362
				738	758	2365	2030	105	6097		1079	212	1470	2017	116	4294
																•
	1.2	27		303	279	1107	654	66	2409	•	105		1035	629	66	1835
	- 2	23		70	56	223	674	19	1042		156	1589	442	1049	17	3253
	1.2	29		424	242	1328	545	83	2722		163	280	766	649	35	1942
	12			797	577	2658	1973	168	6173		424	1869	2243	2326	168	7030
		20		(30		000	736	10	7705	•	240	0/	600		- -	100-
				459	504	990	134	10	2(3)		209	94	500 210	021	51	1801
	15.	21		210	565	904	110	11	10/5		- 48		210	112	20	451
		32		221	273	351	693	17	1590		250	109	831	555	13	1914
	- 3			935	1242	2 275	1547	52	6051		567	204	1891	1479	75	4216
	14	33		187	236	680	441	50	1594		135	5	555	317	57	1069
	2 ±4	34		292	60	499	250	69	1200		18	7	335	347	56	623
	4	5		203	19	300	202	51	775		117	•	195	257	50	610
	14	56		138	196	560	1074	60	2028		211	1602	234	12.84	57	3338
				100	1 70	42	243	76			250	175	227	12.04	75	
	14	 		20	0.7.7	10/0	272	(17 5 m	5202		237	175	207	200	7.9	160+
	- 4	ف و	-	446	ودو	1340	2420	22	5202		575	4354	1001	2091	92	0319
	14			1292	1444	3429	4 (58	309	11282		1315	0145	2579	5088	397	15022
									۰.					÷ .		
	35	32		727	604	1389	1122	120	3962		331	68	1713	1075	136	3324
	15	4-0		523	710	1508	758	25	3524		121	338	803	935	23	2225
•	15			1250	1314	2897	1830	145	7486		452	405	2516	2011	165	5550
						2 2 2	202		750				/ → ^	1 / 2		770
	15	4		99	124	321	208		152		138		412	169		155
	15	42		201	226	568	15		1070		Ĩ		95	. 11Z		Z14
	15	43		658	574	1167	661	66	3136		. 86	953	1099.	879	67	3084
	16	44		419	374	508	166	17	1434		3	2	265	178		448
	<u>-</u> 5			1387	1298	2564	1110	83	6442		234	955	1931	1338	57	4523
	17	45		158	125	679	210	33	1205		72	266	325	774	33	976
	- '	-		270	~ []	0.7	~ * *				۰ <i>۲</i>			4 i T	V	2 . .

KALAMAZOD AREA TRANSPORTATION STUDY

		•		,			1966	VEHICLE TRIPS							
			·	PR0DU	CTIONS	~~~~~~					ATTRA	CTIONS			
					NON-							NGN-			
			IOME BAS	50 -	HOME					OME BAS	ED	HOME			
DIST	CENT	WORK	SHOP	OTHER	BASED	TRUCK	TOTAL		NORK	SHOP	OTHER	BASED	TRUCK	TOTAL	
• 7	45	306	282	1212	130		1932		2		294	137	17	450	
-	47	425	347	1085	772	66	2640	•	73	337	617	497	64		
17	•	901	740	2076	10.52	-00	\$777		147	603	1230	1703	114	21.77	
		091	:;	2,70	1002		2111		2 1	000	1250	2.00	11.		
			• • •								. – .				
18	43	Z33	132	523	557	17	1462		102		870	497	20	1489	
18	49	758	547	1452	279	17	3053		41		225	296	19	521	
13	5-0	10	75	106	745	37	\$73	•	1173		689	612	35 -	2509	
13	51	60	150	151	1045	74	1480		728	20	2352	769	73	3942	
19		1061	904	2232	2626	145	6968		2044	20	4136	2174	147	8521	
19	52	575	715	2444	1997	189	5920		1115	74	4173	1490	190	7042	
10		575	715	2444	1997	189	5920		1115	74	4173	1490	190	7942	
								•							
20	53	245	420	738	1669	120	3192		1116		4231	1395	122	6864	
12C		245	420	738	1669	1-20	3192		1116		4231	1395	122	6384	
		- /									· .				
Z1	54	54	34	81	461	50	680	2	218	19	813	451	51	1552	
21		54	34	81	461	50	630		218	19	813	451	51	1552	
~ ~		240.	3.02	475	110	17	1105		61		104	169	17	400	
22	22	200	100	625	110	17	1767			00	174	190	1		
22	55	191	301	482	(00	11	1151		223	33	421	005	16	1401	
22		451	484	1107	816	34	2952		264	99	621	834	ذ د	1651	
7 2.	57	274	571	1744	2433	202	ちっつち		1047	2 1	7007	2264	. 100	11237	
22	1	274	521	1744	2422	203	5275		1047	21	7007	22.04	. 140	77334	
تہ کے		214	721	<u> </u>	2433	200			1041	~ 1	1001	220-	. 170		
24	53	367	399	762	789	1	2318		243	243	822	687	. 2	1097	
24	20	367	300	762	789		- 2318		243	243	872	637	2	1997	
2-		501	2,7,7		,	· •	2510		272	e 42	022		· •		
25	59	243	493	1077	790	17	2625		160	201	618	893	16	1833	
25		248	493	1077	790	17	2625		160	201	618		16	1838	
						_									
26	60	324	277	1077	407	19	2104		80		490	478	17	1055 -	
26	61	554	466	1380	644	70	3114		• 265	41	412	640	71	1429	
26		878	743	2457	1051	89	5218		345	41	902	1113	88	2494	
	(2	2.5.5	a	705		.	2122		200	100-		• / •			
Ζ.	52	359	247	185	157	51	2199		309	1927	1064	96Z	57	4319	

NON- NON- NON- NON- DIST CENT WORK SHOP OTHER BASED TRUCK TOTAL NON- 27 63 762 919 2404 718 69 4372 74 19 558 770 27 64 483 481 1054 461 17 2496 9 460 509 27 64 483 481 1054 461 17 2496 9 460 509 27 64 1604 1647 4243 1936 137 9567 392 1945 2002 2241 1 23 65 302 219 559 281 38 1399 62 492 245 20 67 144 167 349 174 17 851 6 3 103 262 25 70 125 126 366 131 39 <td< th=""><th></th></td<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
DIST CENT WORK SHOP OTHER BASED TRUCK TOTAL WORK SHOP OTHER BASED TRUCK 27 63 762 919 2404 713 69 4872 74 19 568 770 27 64 483 491 1054 461 17 2496 9 460 509 2241 1 23 65 302 219 559 281 38 1399 62 492 245 25 66 75 92 356 85 608 2 362 247 22 245 25 66 74 37 206 92 409 52 94 72 25 69	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IK TOTAL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	73 1504
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 995
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 6018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 832
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72 17 701
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1 391 16 234
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 456
19 71 247 237 1106 384 107 2081 135 45 420 308 1 19 71 247 237 1106 384 107 2081 135 45 420 308 1 19 72 327 256 657 316 56 1612 110 407 321 12 73 326 310 .951 305 53 1945 549 337 19 900 803 2714 1005 216 5638 245 45 1376 966 2	-4 551 10 2536
9 71 247 237 1106 384 107 2081 135 45 420 308 1 19 72 327 256 657 316 56 1612 110 407 321 10 73 326 310 .951 305 53 1945 549 337 10 900 803 2714 1005 216 5638 245 45 1376 966 2	
5 72 327 256 657 316 56 1612 110 407 321 1 73 326 310 951 305 53 1945 549 337 1 900 803 2714 1005 216 5638 245 45 1376 966 2	6 1014
900 803 2714 1005 216 5638 245 45 1376 966 2)4 992 51 037
	1 2843
	105/
0 75 521 570 906 1080 54 3131 184 1401 1412 1242	.8 2004 35 4324
0 1093 1313 2468 1577 71 6522 254 [°] 1401 1875 1745 1)3 5378
1 76 296 289 1068 374 58 2085 290 3 391 262	2 968
77 677 352 1033 273 50 2385 42 378 251	53 724
<u>973 641 2101 647 108 4470</u> 332 3 769 513	/5 1692
2 78 747 842 2640 1248 100 5577 371 487 1133 1227 1	24 3342
2 79 103 327 541 475 24 1470 256 43 149 513	<u>15 986</u>
2 850 1169 3181 1725 124 7047 627 550 1262 1740 1 Stranding State 1725 124 7047	-7 4225
3 80 575 784 1480 978 96 3914 340 147 784 849 1	9 2229
3 576 784 1480 978 96 3914 340 147 784 849 1	19 2229
4 BL 110 2 143 1026 207 1488 934 117 344 833 2	1 2439
4 F2 59 22 47 1381 115 1624 959 118 712 1384 1	.7 3290
4 83 46 3 22 726 121 918 478 110 141 747 1 6 86 176 130 219 712 268 1455 766 10 07 526 2	7 1603
4 85 242 105 418 565 51 1503 299 253 505 753	- LOJ
4 85 477 449 814 522 24 2286 ·103 37 444 562	1862

KALAMAZOD AREA TRANSPORTATION STUDY

								1966	VEHICLE TRIPS	5			·		
					PRCOU	CTIONS						ATTRA	CTIONS		
						NON-							NON-		
				HOME BAS	<u>-</u> 03	HOME	TD 110 V				HUME BAS	20	9295	TO 110 V	TOTIC
0153	F CENT		WORK	SHOP	OTHER	BASED	TRUCK	TOTAL		WURK	SHUP	DIHER	872FD	IRUCK	IUTAL
35	37		285	97	325	459	177	1344		63	290	522	519	151	1545
2 -	85		ر 7 یا	511	952	230	4	2220	•	64	1	363	305	2	735
25			758	608	1278	739	181	3564 -		127	291	835	824	153	2200
-															•
2 4	20		193	125	214	1458	112	2202		400	4777	555	1522	1.00	7201
20	01 00		100	10	247	1400	24	240		377		276	170	100	745
20	20		2.0	17	(04	22.5	54	1405		271	30	22***	2.12	55	(20
~ ``			لا الز	214	506	241	2	1005		101	19	117	⊃ ⊃ £ 	4	025
· · ·	5Z		23		24	<i>i (</i>		124		>>	38	59	11	د . 	252
3	<u>93</u>		<u> 6</u> 6	99	78	351	214	808		403	17	110	323	176	1029
24			709	527	1046	2452	365	5099		1332	4840	1095	2475	316	10053
					.										
37	94		529	104	569	1725	670	3597		3839	220	435	1514	652	6660
37	95		14	2		647	154	817		1258		388	538	158	2352
27	96		70	41	168	341	25	645		537	22 -	277	310	10	1164
37	\$7		12	22	24	314	43	415		. 337	25	202	305	37	906
37			625	169	761	3027	892	5474		5971	267	1312	2667	865	11082
• •	<i></i>		70		a / 7		2	601							2.4.4
57	· · ·		78	56	241	192	8	581		64	60	(+ (2.55		204
	09		3		ĩ	58	18	80		15	20	18	49	17	119
2.2	100					17		17		L	35	18	38		92
ب	101		169	110	457	1011	68	1815		935	63	1003	827	57	2895
3	100		265 '	145	377	246	17	1051	• • • • • • • • • • • • • • • • • • •	7	19	90	262	18	396
	1.0		82	130	139	56	17	424		23		1	48	16	33
53	2.14		123	164	426	131	4	848		76		100	169	1	346
38	105		285	549	968	157		1962		22	149	126	173		470
33			1009	1154	2615	1868	132	6778		1143	346	1403	1699	119	4710
3.9	106		479	458	1008	275	- 17	2237		34	1	375	257	. 17	684
39	107		302	480	909	319	53	2063		76	221	410	255	67	1029
3.9	- 108-	· •	611	430	695	310	50	2105	-	16		317	295	51	680
37			1392	1377	2612	904	120	6405		126	222	1102	805	135	2393
					۵					· .	· · ·	· · · ·			•
40	109		434	44 <u>2</u>	1545	1603	120	4144		343	1261	1532	1700	117	4953
40	110		399	512	1040	488	50	2489		. 80		1087	385	50	1602
40	111		340	284	823	143		1590		13		114 .	83	l	216
40		•	1173	1238	3408	2234	170	8223		436	1261	2733	2173	168	6771
						-	_								
41	112		191	191	310	339	5	1036		216	•	497	287	2	1002
41	113		405	154	921	156	19	1655		57-	36	193	244		530
4:			596	345	1231	495	24	2691		273	36	690	531	. 2	1532

1966 VEHICLE TRIDS

KALAMAZOO AREA TRANSPORTATION STUDY

								1966	VEHICLE TRIPS				. *			
					PRCDU	CTIONS				·		ATTRA	CTIONS			
						NON-			•				NON-			
				IOME BASI	ED	номе	•			ŀ	IOME BAS	ED	, HOME			
DIST	T CENT		WORK	SHOP	OTHER	BASED	TRUCK	TOTAL		WORK	SHOP	OTHER	BASED	TRUCK	TOTAL	
42	114		153	93	247	85	4	582		9	36	61	55		172	
42	115		531	381	463	290	17	1682	-	27	2	201	2.55	17	532	
42	116		137	144	126	113		520 ·		29	21	40	113	1	-204 -	
42	117		431	240	658	279	. 585	2193		201	36	187	325	562	1311	
42	118		280	313	524	503	18	1638		263		715	283		1251	
42			1532	1171	2018	1270	624	6615		529	95	1204	1072	580	3480	
						•							_ +			
43	119		334	238	688	354	17	1641		54	57	573	367	16	1067	
43	120		98	144	120	82	17	461		81	2	94	123	16	316	
43	121		364	216	622	201	33	1436		4		256	223	33	516	
43	122		284	392	375	519	-	1570		125	19	631	421		1196	
43		-	1080	990	1805	1166	67	5108		264	78	1554	1134	65	3095	
44	123		137	94	289	425	20	965		212	306	491	488	24	1521	
4+	124		607	420	592	448	50	2117		55	73	478	531	50	1157	
in it			744	514	831	873	70	3082		267	379	969	1019	74	2708	
											•					
45	125		312	337	658	711	86	2104		128	135	700	512	<u>60</u>	1565	
45	126		62		5	31	35	133		94	4	73	33	34	238	
45	- · · ·		374	337	663	742	121	2237		222	139	773	545	124	1003	
46	127		400	289	713	523	111	2036		111 -	235	542	534 [.]	138	1560	
45	128		87	76	178	115	19	475		54		115	55	17	241	
46	129		538	585	1106	812	140	3281		54	1475	685	999	132	3345	
45			1025	1050	1997	1450	270	5792		219	1710	1342	1588	287	5146	
47	130		1033	1148	2174	1441	100	5896	•	172	1834	841	1499	104	4450	
47	131		60	56	172	204	5	497		144	69	118	165		496	
47		· · · ·	1093	1204	2346	1645	105	6393		316	1903	959	1664	104	4946	
													; .			·
48	132		63		22	1055	366	1506		1296	63	491	1177	375	3402	
43	133		208	112	192	. 507	87	1106		324	20	282	419	89	1134	
48	134		142	200	64	697	177	1280		449	28	307	745	124	1653	
45	135		15	19	4	467	61	567		231	20	136	464	96	947	
48	135		474	425	852	307	51	2110		149	39	274	351	54	866	
	137		125	67	101	894	254	1441	·	653	122	600	876	259	2510	
23			1028	324	1235	3927	996	8010		3101	292	2090	4032	997	10512	•
.,				Υ υ .			,				,	2070			~~~*	
49	138		596	464	1408	1137	90	3695		415	482	1392	1062	103	3459	

.

•

KALAMAZOD AREĄ TRANSPORTATION STUDY

							r 201	P ARRIGTE IKTA	'S					-
				PRODU	CTIONS				·		ATTRA	CTIONS		
					NON-							NGN-		
		~~~_	-HOME BAS	5 50	HOME					HOME BAS	F0	HOVE		
DICT	CENT	มกระ	CUOD	OTHER	PACEO	TOUCK	TOTAL		W0.92	1011C 040	OTUER	P/SCD	TOUCY	TOTAL
0131	CENT	40744	JUDF -	UTREA	DAJEU	INCON	IUIAC		NUKN	SHUP	UIDEA	DAGEU	IKUCK	TUTAL
40	129	163	172	282	10'62	68	1747		1101	1195	555	1214	77	4153
49		759	636	1690	2199	158	5442		1516	1677	1958	2276	185	7612
		,												
50	140	292	280	245	1096	. 115	2028		873	384	756	1374	119	3506
50	141	916	757	1659	904	- 38	4284		309	97	932	805	36	2179
50		1208	1047	1904	2000	153	6312		1182	481	1688	2179	155	5685
													4	
۶.	1/2	700		1220	1110/	(7	2220		2/2	000	1107	1220		
2.	142	- 709	532	1329	1106	65	3139		202	890	1121	1238	59	3010
51	143	714	432	776	563	50	2535		53	81	667	610	49	1460
51		1423	964	2105	1669	113	6274		315	971	1794	1945	108	5136
52	146	365	328	657	266		1616		17	94	143	316		570
52	45	9	220	27.	508	21	541		074		· 170	422	20	1524
50	1.42		145		200	0/3	241		767	105	772	766	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1000
52	140	4.20	147	220	2001	040	4000		4/20	292	130	2001	102	9405
52	141	46	41	10	305	- 36	438		197	3	205	250	10	665
52	148	234	456	619	542	88	1939		192	102	834	578	93	1799
52	149	155	44	243	1538	. 482	2462		2265	177	591	1537	492	5052
52		1245	1014	2090	6040	1470	11859		8353	671	2679	5754	1380	18537
<i></i>				2070					0000	•••		2.2.	2000	2005.
57	150	534	(07	1121	500		3394					717		2027
22	150	230	481	1151	223	55	2180		40	022	. 574	141	55	2024
53	151	258	175	311	375	175	1294		282	123	124	- 326	166	1021
53		794	662	1442	974	208	4080	-	328	745	698	1073	201	3045
						·								
54	152	22	73	229	96	3	423		35	• .	38	67	1 Î	141
54	153	140	56	252	601	222	1271		729	40	282	443	2.42	1736
5.4	154	277	55	76	262	356	1626		963	10	297	708	326	2304
= /	165		70/	. 051	174	21	2020		20,	10	777	400	17	1205
		000	100	001	410	21	2022				132	423		1200
54	155	345	332	298	346	50	13/1		14	·	58Z	254	50	960
54 .		1472	1302	1706	2381	652	7513		1834	50	1931	·1895	636	6346
55	157	705	797	1500	1034	54	4090		253		1307	897	53	2510
55	158	588	466	1913	559	19	3545		117	39	497	505	19	1181
55		1293	1263	3613	1593	73	7635		370	30	1804	1406	72	3601
		2275	1205	J+xJ					5.0		1004	1400	16	. 2031
<b>5</b> 7	150			1545	1 / 0 2	2.74	4020		1000	1000		2220		(
25	723	121	146	1202	1083	224	4939		1040	1044	1601	2039	243	5072
56	160	293	124	468	1122	17	2024		362	926	496	1239	Z0	3043
56		1014	870	2033	2805	241	6963		1452	-2025	2097	3278	263	9115
									<u>.</u>					
57	161	617	617	1252	1050	62	3608		350	149	2116	968	60	3643

KALAMAZOO AREA TRANSPORTATION STUDY

								1966	VEHICLE TRIPS				. /		
					PRODU(	CTIONS				·		ATTRA	CTIONS		
						NON-							NCN-	•	
DICT	CENT			ICME BAS	60	BASED	TOUCK	TOTAL			ICME BASI	07452	HUME	TOUCK	TOTAL
2131	CENT		NUAN	3HUP	OT LET	SHOED	INUUN	IUIAL		NOAN	, 3002F	UIREN	04320	TAUGA	10180
57 57	162 163		621	424	1668	929	23	3665		320	657	1301	1143	5	3426
57			1238	1041	2920	1989	· 85	7273 -		670	806	3417	2111	65	7059
53	164		645	264	1279	889	7	3084		302	294	2125	1193	. 9	3923
53	165		81	54	202	105	9	451		54	20	335	105	8	502
うじ 5 8	167		215	101	271	¢14 17	22	1221	н Н	28	20	148	+34	10	213
55	201		1120	479	1777	1385	55	4816		533	314	3217	1802	52	5913
59	168		46		4	562	184	796		1134	38	261	468	164	2065
59	169		1			27	3	31		138		. 35	27		200
59	170		39	7	18	1579	. 62	1705		647	1983	1061	1810	64	5565
59			86	7	22	2168	249	2532		1919	2021	• 1357	2305	228	1830
50	171		382	189	634	1824	232	3261		4362	57	1076	1475	251	7221
50			382	189	634	1824	232	3261		4362	57	1076	1475	251	7221
61	172		29		28	151		208	•	53	1	353	205	_ · ·	612
.51	173		671	684 547	980	552 P46	64. 6. 6	2891		237	183	564	630	2	1616
51 51	114		1406	1227	2241	1568	70	6512		843	310	2590	1660	58	5461
6.2			( 2 2	2.67	500			17/0	· .	12	7		220		125/
0Z 52	176		423	304	289 179	211	100	523		4.) 26	144	110	<u>520</u> .	110	153
52	177		484	391	764	210	54	1903		47	98	365	163	67	745
52	178		323	308	749	113	34	1527	· ·	6	31	158	169	34	398
62	•		1382	1167	2281	628	244	5702		122	873	713	665	277	2650
63	179		601	568	784	325	20	2298		264		354	- 289	17	924
63	180		440	520	1195	304	20	2479		. 29	195	532	255	22	1033
63	181		371	273	479	353	44	1520		130	53	459	315	38	995
\$3			1412	1351	2458	, 982	8 <del>4</del>	0291		423	. 448	1343		<i>f</i> (	ፈንኃረ
64	132		873	626	895	332	73	2799	•	125	175	940	374	56	1670
04 44	183 194		213	±22 177	54 559	10	78	200 1814		837	343	171	112 796	81	215 3444
54	<b>· ·</b> ·	•	1142	925	1438	1192	151	4898		974	518	2500	1282	137	5411

REALAMAZOG AREA TRANSPORTATION STUDY

					•			1966	VEHICLE TRIPS							
					PRODU	CTIONS						ATTRA	CTIONS			
						NON-							NDN-			
				HOME BAS	=D	HOME					HOME BAS	ED	HOME			
DIST	CENT		WORK	SHOP	OTHER	BASED	TRUCK	TOTAL		WORK	SHOP	OTHER	BASED	TRUCK	TOTAL	
65	185		427	- 513	901	1188	104	3133		593	1420	802	1282	108	4205	
65	105		550	584	1309	167	47	2651	•	104	1.10	407	107	ŝ	716	
45	1.7		371	296	946	1176	, <u> </u>	2798 -		230	1346	564	1373	41		
00 K C	201		1342	1202	2155	2521	165	8500		927	2766	1773	2802	157	9425	
55			2040					0702				<u> </u>	2002	£7.	<u>4</u> 727	
4.6	110		408	675	726	1764	5.8	3731		441	4638	673	21.06	21	7890	
50 AA	1:0		770	1032	1799	554	22	4202			1010	804	501	40	1417	
60	163		1201	1052	2524	2320	01	7922		502	4620	1427	2607	120	0714	
00			1271	1101	2924	2520	. 71 .	1755		505	*207	T#31	2067	1,90	7310	
47	100		112	0.2	350	300	20	701		504			3 0 3		t o o è	
31	130		112	1122	200	19/0	20	(01 540(		290	21	209	600	20	1201	
57	121		1050	1100	1707	1000	34	2000		510	201	2490	1093	90	2112	
57			[105	1210	1124	2100	. 122	0251		1100	282	2105	2010	125	0002	
с р	102		212	220	107	05	1-7	407		-	•				77.0	
100	192		210	220	102	675	20	4740		1 / 17	•		701	17	228	
03	190		600	872	1502	075	20	4340		141	~ /	022	151	11	1044	
55	چە چ ^ە م		547	294	487	271	133	1152		1.00	34	213	261	- 155	112	
<b>\$</b> 3			1025	1409	2414	1031	170	0109		109	34	1062	1065	157	2487	
4.0	105		170	54	363	20		447		1 7			(0	- ···	£ 4	
60	104		200	201	200	171		101		20		~ ^7	47. 127	- L T.C	200	
09	107		300	101	492	111	17	4200		27	1	01	101	10	500	
09	171		21		1/0		11	120		2		4	12	10	27	
09	1 2 2 2		85	611	140	. 24	34	420	•	48		40	93	30	211	
69	144		52		94	60	2	220		30	194	92	80	4	400	
59	200		138	79	276	55	1	. 549		37	94	47	28	2	208	
<u> 69</u>	201		135	56	48	39	_	278				1	33.		34	
59	202		2		1	<b>4 9</b> 9	2	. 5		6					6	
69			814	764	1260	408	58	3301		105	289	275	. 462	- 15	1256	
~~		•			1.2.*						• · ·	• - •	• • • •			
79	203		131	131	157	- 99	<b>1</b>	499		, <b>o</b> ,	. <b>Д</b> ч	161	137	4	308	
20	204			94	211	26	-	331				18	7		25	
70	205		73	56	142	20	2	293		. 11	8	43	36	1	99	
70	206		223	155	- 326	205	18	927		63	78	197	132	2	472	
7 C	207		167	. 38	450	53	33	741		48	3	173	. 71	33	328	
70	208		127	95	273	72	3	570	•	43	56	112	72	1	284	
70	209		45	1	38	. Ið	17	120		3	1	. 1	19	17	4 <u>1</u>	
70	210		126	58	204	152	35	635		48	107	215	113	53	535	
70	211		82	172	276	119	1	652	,	50	1	63	145	- 1	265	
7.0	212		12	3	17	284	19	335		170	215	646	359	34	1424	•
70	213			-	. 85		18	208	٠	q	. 8	118	85	17	237	
70	214		170	136	291	43		640		6	Ų	7.9	47	~ '	121	
70	~ <b>~</b> ·		1142	939	2512	1101	147	5951		457	479	1920	1272	167	4151	
				/ 2 7		A 4 7 A	<b>V A 1</b>	1111		1.5		1030	1463	. 105	マエンシ	

KALAMAZOO AREA TRANSPORTATION STUDY

						,			PS	4								
						PRODUC	CTIONS				•	ATTRACTIONS						
							NON-								NON-			
				b	OME BAS	ED	HOME					h	CME BASE	ED	HO⊬e .			
DIS	T - CENT			WORK	SHOP	OTHER	BASED	TRUCK	TOTAL			WORK	SHCP	OTHER	'BASED	TRUCK	TOTAL	
71	215			37	1	65	55		159			2		22	67		91	
71	2:5			14	3	24	65	17	124		-	3		19	72	19	113	
71	217	•		. 9	41	85	7		142			19	17	27	7		70	
71	218			ิลา์	6	179	20		286			16	2	147	40		.205	
~ ,	210			2	41			2	42			Ĩ	L				11	
71	220			75	21	44	31	4	131			2		50	50	<u> </u>	1 7 7	
7.	221				1	12	22	17	67					27	20	17	57	
71	272				۲ ۲	2		<b>L</b> 1	27					2	55	14	59	
7.1	222			2.5	20		17	=	21					41	11	-	20	
4 <u>1</u> 77 1	225			10	20	24		2	1 <del>4</del>			.01	202	121	40	4	250	
	224		·	70	10	201	01		299		•	23	202	24	1.47	>	222	
1 ±	225			9	32	41	44		129				1	42	45	_	89	
11	225			13		51	118	11	194	•		20	3	75	70	r	116	
71	227			70	73	16	38		197			3		. 3	31		37	
71	223			149	- 34	318	60	17	578			1		78	53	17	149	
71	229			. 354	225	799	230	19	1627			54	1	232	230	3	550	
71	230			255	73	302	521	265	1416		,	632	73	347	574	323	1949	
71	231			6		36	138	25	205			45	40	58	160	18	321	
71	232			111	142	316	63	3	635			Ģ		212	82	1	304	
71				1278	799	2684	1510	381	6652			898	339	1553	1649	414	4853	
70	223			151	172	474	1025	370	3002			3700	2020	1177	20.94	350	6270	
12	233			151	173	474	1925	370	3093			2780	2029	1123	2094	352	8378	
				•													•	
73	234			68		209	50	1	328	. ,		7		181	71	2	261	
73	235			108 -	108	157	42	22	437			12	3	136	59	20	2.30	
73	236			94	223	137	186	- 23	663			346		46	175	30	597	
73	237			570	426	569	258	33	1856		-	85	2	346	290	50	773	
73				840	757	1072	536	79	3284			450	5	709	595	102	1861	
										•			•			•		
74	238			456	298	1166	358	1	2279			38	- 36	531	429	•	1034	
	237	•		24	39. 777	20	14 14	· · · · · · · · · · · · · · · · · · ·	1200				20	1.2	200	2	(1)	
4 fr 	240			340	552	230	04	2	1500		19 A.	<b>₩</b> ⊅	.20	150	208	. , , ,	. 412	
74	241			711	22	1.40	21	1	912					40	29		15	
	242	•		60 57	1/	51	. {		141			-		44	Ť		11	
	243			54	54	88		11	213			5			•	11	20	
74	244			145		10	68		223		•	2		50.	31		83	
14	245			1			14		15			23		17.	31		71	
74	246			10	17	2	-		29	,					6		6	
74				1271	805	2087	596	23	4782		٠	111	56	785	754	23	1729	
75	247			8	1	7	8	11	35			41	F	3	7	10	61	
-				-	-		-					. +		-	-			

. ,

.

Stand Linda

الاعتان فتعتنه

KALAMAZDO AREA TRANSPORTATION STUDY

						•			1956	VEHICLE TRIPS				. '		
				·		PRODU	CTIONS				·	ATTRACTIONS				
					OME BAS	ED	HOME					HOME BASE	ED	HOME		
	OIST	CENT		WORK	SHOP	DTHER	BASED	TRUCK	TOTAL		NORK	SHOP	CTHER	'BASED	TRUCK	TOTAL
	75	248		91	7	120	22		240		6	1	40	31		78
	75	249		479	418	840	241	33	2011		10		195	225	33	464
	- <	250		121	173	323	92	17	726		12	-	70	102	33	217
:	· > 76	221		60 54	51	13	20	. 152	414 24 9		14	3	124	35	151	.328
:	75	252		193	172	354	58		787		44	3	59	105	2	203
:	75	254		225	325	447	358	77	1432		157	3	266	371	63	803
	75			1237	1217	2288	881	290	5913		303	8	508	916	315	2350
;		-				x									4 14	
	76	255		428	382	723	713	33	2279		148	666	646	853	40	2353
:	76	256		308	3.62	701	350	33	1754		121	333	312	424	33	1223
	75	257		155	. 87	160	85		487	•	10	17	19	106	1	153
	10 78	250		21	18	6	17	1	61		2		75	17		54
	76	260		297	228	700	478	60	1763		959	1	• 495	432	50	1937
	76	2		1209	1077	2288	1643	127	6344		1241	1017	1507	1832	124	5721
	77	261		29	34	26	46	17	152		1	3	24	2.0	16	64
•	77	262		94		10	20	17	141		2		71	20	18	111
-	77	263		4	3	.5	17	0 <i>7</i>	29		1		56	• •	3	60
	11	264		99	35		25	25	195		1	I	5	Z4	17	52
:	77	262		55 79	20	150	24	17	299		51		15		Ŧ	49
	77	267		86	18	37	7	1,	148		24		4	5	*	. 34
i	77	268		336	181	739	1119	59	2434		508	902	577	1427	67	3481
1	77	269		56	104	146	97	.33	436		10	2	77	54	35	178
	77	270		82	69	239	90	21	501		40	5	204	. 121	18	388
	77	271		423	194	593	1173	59.	2442		470	423	1173	1024	59	3154
	77		·	1323	711	2031	2628	Z48	6941	. ·	1092	1341	2218	2696	234	7581
	78	272		130	100	207	43	•	578		2		. 55	6.7		175
	78	273		146	94	229	118	2	589		37	34	7	149	. 4	226
	78	274		7	2	39	17	4	69		8	3	37	10	. 4	71
÷	73	275		34	17	. 8	17	18	94		. 21			1.7	17	55
£.	73	276		23	35	124	50	17	249		2		34	. 65	19	120
	78	277		25	1	2		1	29			1	· 2			3
-	73	273		5	72	-	· _	·	77		3		5	<u> </u>		16
į.	78	279		6	70	3	7	17	33		2		34	7	17	60
:	78 79	280		120	() 77	11	126	13	411 257		54 • = = •	140	229	71	65	563
•	13 78	201		29	13	ده ۲۲	17	10	221		2 i 1		) ( 	. 52	از	152
	78	283		26	71	21	¥ ł	;	101		T	, 1	3.8			30
					• •	-		-				<b>-</b>	<u> </u>			27

NALAMAZOO AREA TRANSPORTATION STUDY

		PRODUCTIONS							ATTRACTIONS							
					NON-							NON-				
DIST	CENT	WORK	HUME BAS	OTHER	BASED	TRUCK	TOTAL		WORK	SHOP	OTHER	BASED	TRUCK	TOTAL		
~ ^	<b>6</b>	,	· •									-				
78	284	4	51		1		48				41	ſ		43		
73	285	41	1	39	-		87		1		38			39		
78	225	45	34	17	1	·	103 -		2		4	6				
78	257	45		1		•	53		1					{		
78	288			53	1/	1	11		20		31	1		54		
78	229	22	39	£	24		88		20			. 23		ز ډن د ت		
26 76	250		40	109		17	100		1		34		11	21		
18	291	<u>د</u> ې د چې د چې د کې د کې د کې د کې د کې د ک	17	23	27		111		ĩ			-21		28		
78	292	54	1	20	23		103					- 28		23		
73		865	718	1085	541	169	3378		206	184	507	563	182	1742		
79	253	36	36	. 56	65	19	212		1		76	14	17	108		
70	234	56	17-	148	7		228				61	24	_	85		
79	205	109	160	72	78	17	436		24	2	41	61		128		
79	256	6	17	20	17	17	77		-2	36	. 86	. *	19	143		
79	207	21	147	166	97	1	427		29		91	81	3	202		
79	292			101	54	24	. 79		235		19	69	28	351		
79	759	43		37	7	22	109		34	1		7	21	- 53		
79	3.50	721	360	623	147	50	1901		249	-	263	152	52	716		
77	301	56	200	19			77			I	56	17		74		
79	302	31	36	109	33	18	727		65	-	40	30	13	153		
79	502	1091	768	1251	505	168	3773		639	` 40	733	455	156	2023		
• •	303	, 107	40	1 97	020	07	1472		7417		503	572	103	4680		
90 90	202	197 -	68	187	928	92	1472		3412		593	572	103	4630		
	201	354		240		2.2	760		2		20	<b>C</b> (	22	157		
8: 01	304	254	151	260	80	22	123		2	· •	119		23	121		
ి. గా	305	140	50	111	04	22	415		2	r.	110	04	. 24	217		
-51 -01	300	21	19	24	4.14	-	· 94		5				·	63		
31 21	307	· 24	-	2	1.4		20							24		
64 61	200	2	20	. 119	. 1		224		23		00	17	۲.	120		
51	309	100	20	. 110	7		207		2.5			· 7	•	. 76		
	310	132	124	100	· · ·	,	272		4		60	· 1		54		
01 01	211	100	100	190	34	1 1	271		55	10		24	·	134		
61 51	212	40	120	21	24	177	261		22	. 745	52	. 20	171	1075		
01	212	014	212	702	201	<b>T</b> 1 (	2032		5 5 5	143	41 20.	417	¥ I ¥	121		
01	214	114	57	30 F	رد ۳		***2		2 27			00		7.57		
51 	51D	25	59	2	) 500	27.0	1 Y		21	761.		707	31.3	70		
12		1822	11/1	1920	204	ረዓዕ	2015		790	104	440	101	243	2900.	•	
INTE	RNAL TOTAL	76052	56314	152677	155601	17410	468054		90275	72187	152508	155451	17432	487863		

		1966 VEHICLE TRIPS														
			PRODU	CTIONS				` _~~~	AT TRACT IONS							
	NON-							NCN-								
	}	HOME BAS	ED	HOME					HOME BAS	SED	HOME					
EXTERNAL	WORK	SHOP	OTHER	BASED	TRUCK	TOTAL		WORK	SHOP	OTHER	'BASED	TRUCK	TOTAL			
						,		-								
					,			. ·								
214	2047	770	1020	220	245	4823		1001	67	894	150	247	2620			
317	2903	220	1020	427	205	304		105	11	004 71	1.00	21	2-2-2-2-2			
2.0	1767	510	02 497	26	ر <u>ب</u>	. 2043	•	452	53	414		21	1070			
210	1167	217	-+G: 223	23	60	1016	·	-+75	10	257	17	70	410			
217	1101	217 5/5	202	11	103	4040		1201	117	1107	14	124	2620			
227	2232	245	11.0	0Z 7	11	-4040	· · · · · ·	10.1	20	1.07	0 X (	11	2050			
521	100	42	27		11	140		110	20	24	-+		217			
222	60	25	20	1	• 4	147		74.7		20	2	7	24			
525	20	- 374	20	7.2	10 7	110		202	ہ 4 ک	636	1 ( )	10	340			
2044 2017	311	210	374	32	62	1039		201	54	*24	47	10	142:			
. 322	204	100	1/4	20 *15	-+	723		1021	4.3	· 141	21	59	201			
220	2299	204	220	112	271	2271		1931	34	296	199	408	2122			
227	200	02	60	2	21	424		121	· <u>·</u>	22	د	24	254			
32n 520	214	33	54	2	13	519		49	101	41	<i>(</i> <b>)</b>	15	119			
229	1031	. 241	512	18	11	1129		442	101	. 300	42	54	1005			
	LISU	442	289 17	11	. 51	2085		241	52	506	43	54	÷ ∠ '* (			
122	145	54	57	4	2	202		/4 // <del>1</del>	1	20	<u>ک</u>	1	149			
332	1137	768	500	42	119	2000		667	. 02	310	66	108	1213			
553	1182	203	374	67	132	1900		043	23	511	45	131	1614			
2.24	600	340	183	8	19	1150		254	. 8	142	17	19	450			
232	203	122	63	2	8	420		23	5	()	. 1	· 1	108			
335	1927	575	414	.92	268	3330	•	812	31	340	95	253	1534			
221	2042	004	284	40	89	3423		185	24	289	23	12	1223			
220	214	51	60	20	10	344		70	.14	90	4	12	196			
559	2163	615	529	35	66	3415		504	63	214	.63.	32	1280			
340	109	44	34		11	190		26	18	38	3	ت - د	53			
341	381	91	95		10	580			· 21	98		15	224			
34.2	624	107	115	11	39	897	т.	109		104	10		202			
EXTERNAL TOTAL	L  25993	6846	7831	905	2036	43011		FT 190	973	8000	1045	2014	23802			
GRAND TOTAL	102045	73160	160508	156506	19446	511665		102035	73160	160508	156506	19446	511665			

## STAFF CREDITS

ALAN M. VOORHEES & ASSOCIATES, INC. Transportation and Planning Consultants

Vice President in Charge Project Manager Project Engineer Assistant Project Engineer Assistant Project Engineer Assistant Project Engineer Programmer Charles F. Barnes, Jr. Richard V. Niemeier William W. Mann Joel A. Miller Garold R. Thomas Richard Smolenski Robert M. Garsson