transportation study

HIGMWMy LIBRRY
MICHIGAN DEPARTMENT OF STATE

TRIP GENERATION
AND
GRAVITY MODEL CALIBRATION

KALAMAZOO AREA TRANSPORTATION STUDY

Trip Generation
and
Gravity Model Calibration
Technical Report No. 4

MICHGAN DEPARTMENT OF STATE
hIGHWAYS

P. O. DRAWER "K" 48904

Prepared by

ALAN M. VOORHEES \& ASSOCIATES, INC.
Westgate Research Park
McLean, Virginia 22101

May 1969

TABLE OF CONTENTS

Chapter Page
SYNOPS.IS
I INTRODUCTION 1
TRAFFIC MODELS 3
STUDY DESIGN AND REPORT ORGANIZATION 6
Development of Trip Production Equations 7
Development of Attraction Equations 8
Special Generator Analysis 8
Development of Friction Factors 8
Socio-Economic Calibration 9
Final Calibration 9
II TRIP PRODUCTIONS AND ATTRACTIONS 10
SELECTION OF TRIP PURPOSE GROUPS 10
HOME BASED WORK TRIPS 18
Work Trip Production 18
Work Trip Attraction 19
HOME BASED NON-WORK TRIPS 26
Productions 26
Attractions 26
NON-HOME BASED TRUCK TRIP GENERATION 37
TOTAL PRODUCTION AND ATTRACTION 43
III CAR OWNERSHIP 46
IV TRIP DISTRIBUTION 49
FRICTION FACTORS 49
SOCIO-ECONOMIC FACTORS 52
Self-Contained Communities 54
Kalamazoo Central Commercial Area 55
Shopping Trips 55
Topographical Barriers 56
Special Interaction 57
Forecasting the Adjustments 58

TABLE OF CONTENTS (Continued)

Chapter Page
V FINAL VERIFICATION 59
TRIP-LENGTH CHECK 59
DESIRE-LINE NETWORK COMPARISONS 61
ZONAL TRIP END COMPARISONS 61
SCREENLINE AND CUTLINE COMPARISONS 61
VEHICLE-MILE CHECK 71
CONCLUSION 71

LIST OF TABLES

TableTable
Page
1 Distribution of Vehicle Trips by Forecasting Groups 1 13234568 Auto Driver Home Based Shop and Other Attraction32Estimating EquationsDistricts with Regional Shopping Centers34
Auto Driver Non-Home Based Production or 38Attraction Estimating Equation
Truck Production or Attraction Estimating Equation 41
111213
Vehicle Trip Summary
Simple Correlations of Variables 16
Auto Driver Home Based Work Production and 21Attraction Estimating Equations
Person Trips by Mode of Travel from Home to Work 23
Percent Trips by Mode of Travel from Home to Work 24
Auto Driver Home Based Shop and Other Production 27Estimating Equations
Auto Ownership Estimating Equation 47
Average Trip Length Comparisons 60
Zonal Trip End Comparisons with Survey 69
Screenline and Cutline Comparisons 72
Vehicle-Mile Comparisons 73

LIST OF FIGURES

Figure Page

Hypothetical Application of the Gravity Model4
Car Usage for Home Based Work Trips 20
Home Based Work Productions by District 22
Home Based Work Attractions by District 25
Home Based Shop Productions by District 28
Home Based Other Productions by District 29
Study Area Stratifications 30
Home Based Shop Attractions by District 32
Home Based Other Attractions by District 33
Non-Home Based Productions or Attractions by 39 District
Truck Production or Attractions by District 42
Total Vehicle Productions by District 44
Total Vehicle Attractions by District 45
Autos Owned by District 48
Friction Factors 53
Vehicle Trip-Length Distribution Comparison for 62 Work Trips
Vehicle Trip-Length Distribution Comparison for 63Shop Trips
Vehicle Trip-Length Distribution Comparison for 64Other TripsVehicle Trip-Length Distribution Comparison for65Non-Home Based Trips
Vehicle Trip-Length Distribution Comparison for 66 Truck Trips
Vehicle Trip-Length Distribution Comparison for 67Total Trips
Desire-Line Network 68
Screenlines and Cutlines 70
Jurisdictions 74
Study Sectors A-12

APPENDICES

Appendix		Page
A	Purpose of Travel by Mode (Internal-Internal)	A-1
B	Districts for Which Special Adjustments were Made for Estimating Equations	A-2
C	Zonal Terminal Times and Intra-Zonal Times	A-4
D	Socio-Economic Adjustment Factors	A-5
E	Proportioning Factor Equations	A-14
F	Example of District-Zone Trip Splitting Technique	A-15
G	Land-Activity Data	A-16
H	Vehicle Trip Productions and Attractions by Purpose	A-29

SYNOPSIS

The development of the matematical models for trip generation and trip distribution are an important aspect of the Kalamazoo Area Transportation Study. The purpose of these models is to develop basic tools for predicting future traffic demand. This is accomplished by analyzing existing trip generation and distribution to obtain an understanding of the underlying characteristics of the region and to structure the models to reflect these intricate workings.

The portion of the study documented in this report can be grouped into three major areas. The first is the development of a series of equations to reflect the trips generated by the various types of land use and land activity within the area. Special generators, which do not follow the averages indicated by these equations, were analyzed and adjustment factors developed.

The second area is the development of trip distribution models to predict the trip interchange between the various land uses by trip purpose. The basic model structure is one that distributes trips in proportion to the trip generation of an area, and inversely to the distance between the areas. As in the case of the trip generation models, these models also required adjustment for unique socio-economic characteristics existing within the area.

The third portion is a final validation of all the various models. Many checks were made throughout the development of each of the models. A final verification was made by first combining all the various models and survey year land-use data to develop traffic volumes. These volumes were then compared to the actual existing traffic volumes throughout the study area. Thus, the total study effort to this point, from data collection through model calibration including the network simulation, could be verified. The results of these checks, individually and collectively, demonstrate that in all respects the models are valid for use in forecasting future travel demands.

CHAPTER I

INTRODUCTION

This phase of the transportation study has as its objectives an understanding of fundamental relationships of travel demands and the quantification of these relationships in a series of mathematical formulae which will permit the accurate estimation of traffic from land activity data. In meeting this objective, the study drew upon the experience of many transportation studies conducted throughout the United States. Based upon previous experience, a central framework for traffic forecasting was selected and the analysis performed by the study was limited to quantifying the various factors and relationships required to apply the selected technique to the Kalamazoo Area Transportation Study. The purpose of this technical report is to explain the techniques and methodology used to calibrate a traffic model for this area.

The field of urban traffic estimation and analysis has developed in four basic stages. The original concept, used in the 1920^{\prime} s, was the development and application of traffic-counting procedures, and later, the statistical techniques required to expand these counts. The collection of this type of basic data still has many uses in planning and engineering agencies, especially for solving traffic management and operational problems. It was realized, however, that the traffic counts in themselves could not be used to estimate or predict the actual movement of traffic. The statistics which were collected merely indicated the usage of
existing facilities without regard to the basic travel desires of motorists between the various sections of the city.

To provide a more comprehensive source of information on the transportation requirements of an urban area, the origin-destination type of survey was developed in the late 1930's. This method, with its various forms of roadside, home interview, and truck and taxi interviews, has served well and provides reliable data on existing travel desires. Nevertheless, traffic engineers soon recognized the shortcomings of planning transportation facilities based only on existing origin-destination surveys. This shortcoming became particularly apparent right after the conclusion of World War II with the rapid expansion of urban areas.

The third major step in this evolutionary process came with the development of mathematical techniques to expand existing travel patterns as obtained with origin-destination surveys to reflect anticipated future development of a city. While this growth factor technique of expanding existing origin-destination data represented a significant advance in the field of traffic analysis, it had many serious limitations. First, it could not estimate future travel patterns to and from areas which were presently undeveloped, as there was no existing travel data to expand. Second, the technique could not anticipate travel patterns which
resulted from major changes in land use. Nor could the technique anticipate changes in travel patterns and demands resulting from the construction of new highway facilities, such as an expressway.

The most recent stage in the development of urban traffic analysis techniques came about in the late 1950 's with the development of several traffic simulation models aimed at overcoming the deficiencies of the previous growth factor method. Of these traffic models, the procedure known as the "gravity model" is the most widely used and recognized. This procedure has been used and tested in cities across the nation, in cities as small as 5, 000 population to those as large as Los Angeles. Therefore, the methodology utilized in this study profited from the research and experience gained in many other similar studies throughout the United States and Canada.

TRAFFIC MODELS

The gravity model derives its name from the fact that vehicle trips are distributed by a formula which closely resembles Newton's formula for gravitational attraction. The gravity model formula distributes trips in proportion to the trip generation of an area which represents its mass, and inversely to the distance between the areas. This distance is usually measured in terms of travel time.

Mathematically, this model can be expressed by the following formula:

Where:
$T_{i j}=$ trips produced at zone i which are attracted by zone j
$\mathbf{P}_{\mathbf{i}}=$ total trips produced at zone i
$A_{j}=$ total trips attracted to zone j
$d_{i j}=$ driving time from zone i to zone j
b empirically determined exponent to account for the effect that zonal separation has on zone-to-zone movement
$K_{i j}=$ socio-economic factor between zone i and zone j
For computational purposes, the above formula has been converted to the following form in actual application.

$$
T_{i j}=P_{i} \frac{A_{i} F_{i j} K_{i j}}{\sum_{j=1}^{n} A_{j} F_{i j} K_{i j}}
$$

Where:

$$
F_{i j}=\text { empirically determined "Friction Factor" equal to } \frac{1}{\left(d_{i j}\right)^{b}}
$$

Figure 1 illustrates a simplified example of the computations involved in an application of the gravity model. The example has two parts. The first shows the distribution of shopping trips made by the residents of a hypothetical residential area to three shopping centers on the basis of local or arterial street travel times. The second shows how the distribution of trips

	DISTRIBUTION I		

DISTRIBUTION II		
${ }^{\text {"P Pull }}$ " After Freeway is Built	Percent of Total ${ }^{\circ 9} \mathrm{Pu} \mathrm{ll}^{\circ 0}$	Number of Trips
$S 1=\frac{25}{(5)^{2}}=1.0$	- 45.4	408
$\mathrm{S} 2=\frac{40}{(10) 2}=0.4$	18.2	164
$\text { S } 3=\frac{80}{(10)^{2}}=0.8$	36.4	328
Total "Pull" $=2.2$	100.0	900

FIGURE 1: HYPOTHETICAL APPLICATION OF THE GRAVITY MODEL
is changed by the construction of a freeway to one of the shopping centers.

We know that expressways do, in fact, change travel patterns; and the fact that the gravity model recognizes and quantitatively evaluates such changes sets it apart from many other methods of analysis. It is well to note that the highway network is only one of the many factors which can change with time. Rapid growth in presently undeveloped areas, or changes in land use through redevelopment, cannot be accounted for by extrapolation of existing travel patterns, except through the subjective manipulations of growth factors by the analyst. However, all these changes are subjected to objective analysis by the gravity model.

The example given illustrated the application of the gravity model to shopping trips. Since trips for different purposes show distinctly different characteristics with respect to both resistance to travel time and land activity trip generation relationships, it is necessary to develop separate models for each of several basic trip purpose categories.

STUDY DESIGN AND REPORT ORGANIZATION

While the basic gravity model has been used many times, and the basic structure of the equations need not be verified, the quantification of the various factors incorporated must be systematically developed and validated for the Kalamazoo Area. This requires thorough examination of the information on existing travel patterns that was obtained in the surveys. In this study, the trip generation and distribution models were developed at the district level in order to maintain statistical stability and reduce the likelihood of spurious estimations. The
expanded study area was subdivided into 81 internal districts and 27 external stations. Criteria used to develop districts was based on having approximately 60 interviews (600 dwelling units) in each district or a large number of attractions. For example, the General Motors plant was in a district by itself. The 81 internal districts were further subdivided into 315 zones. Thus 342 zones (including external stations) were used for assignment to the highway network.

The zonal trip distribution was developed by subdividing the district trip transfer matrix based on land activity data for the individual zones. All home based trips were subdivided on a production and attraction basis. By using this technique, the statistical stability of the models could be maintained and also assignments of the trip transfer could be achieved.

The necessary analysis to accomplish this objective required a six-step procedure, as follows:

Step 1-- Development of Trip Production Equations

Based on the residential characteristics at the origin of the trip -defined as the home or residence end of the trip (cars, labor force, car occupancy, etc.) -- special relationships between the selected trip purpose productions and these variables were developed. The transportation study is concerned with travel on the public transit system as well as with highway transportation. Formal analysis of transit travel generation, however, was confined to the work trip purpose category, because these trips occur primarily in the peak hours and are therefore the most critical for system design purposes.

Step 2－－Development of Attraction Equations

From an analysis of land activity measures at the destination of the trip－－defined as the non－home end of the trip－－which indicate certain job types，specific equations were developed which reflect the numbers of trips by trip purpose category that are attracted to each kind of land activity．As with the trip production analysis，investiga－ tions were made of the non－auto trips at the attraction end of the work trips to account for such areas as the central business district and large industrial plans which serve as the main destination for transit work trips and for higher－than－average car pooling．The final attraction equations were also checked for logic and geographical bias and corrected as necessary．

Step 3－－Special Generator Analysis

Based upon a detailed analysis of the area，certain facilities and areas were isolated because of their unique traffic－generating characteristics． These are the facilities that in general do not follow the averages indicated by the production or attraction equations．Shopping centers， hospitals，the central business district，drive－in theaters，and Western Michigan University students were identified as being unique，and specific factors were applied to them．This analysis will serve as a basis for estimating the behavior of future generators indicated by the future land use plan．

Step 4－－Development of Friction Factors

From an analysis of existing trip length frequencies for each purpose of trip，specific＂F＂factors were calculated．These＂F＂factors were developed to reproduce the trip length distribution measured in the
survey of travel patterns.

Step 5 - Socio-Economic Calibration

The models were checked to insure that the procedures did in fact reproduce the travel patterns for the selected trip purpose categories. The estimated movements from the gravity model were accumulated and compared to the information obtained from the travel surveys. Where significant differences existed between these two sources of data, special investigations were conducted to determine the reasons. Only when the differences were satisfactorily explained as related to socio-economic causes was an adjustment factor calculated and used in the model.

Step 6-- Final Calibration

Based on the results of Steps 1 through 5, total estimated district vehicular trips were split into zonal trips and assigned to the highway network. These volumes were checked against the ground count information. This comparison provided a final verification of all of the procedures to be used in forecasting future travel, by assuring that the models were accurately simulating existing travel patterns.

The following sections of this report are structured to follow the basic outline discussed above.

CHAPTER II

TRIP PRODUCTIONS AND ATTRACTIONS

This chapter discusses the selection of trip purpose groups for analysis of trip generation, the development of and the statistical checks of the equations for estimation of trip generation, and the overall validation of these procedures.

SELECTION OF TRIP PURPOSE GROUPS

To examine the patterns and regularity of urban travel; it is necessary to divide the observed trips into groups. In establishing these groups for analysis, two requirements must be met. First, each group must exhibit stable patterns resulting from consistent behavior by the travelers comprising the group. Second, the group must be sensitive to known types of land activity. To achieve the objective of traffic forecasting, each travel group must be related in a consistent way with one or several measurable types of land activity. The land activity measures to be used are limited to those which can in themselves be projected or forecasted for the sub-areas of the region.

Urban travel can be structured by mode of travel, purpose of travel, hour of travel and, of course, by the pairs of points forming the origin and destination of the trips. Experience from the analysis of urban travel patterns in many other cities has shown certain groups to be preferable to others. The number of the groupings that can be examined is limited by the necessity to maintain stable samples for statistical analysis. A series of summary tabulations of the travel data from the interview surveys was examined to determine the optimum groups for the current transportation planning program in the Kalamazoo area.

Since through trips are generally independent of land activity in the study area, these were separated for independent forecasting. Inter-nal-to-external and external-to-internal trips were left combined with wholly internal travel, and this large group was further subdivided into groups according to purpose. Truck trips involving trucking uses of the vehicle were next separated. The remaining travel was examined by purpose and by mode. It was found that over 90 percent of this travel is made by automobile, including personal use of trucks. The rest was divided between transit, school bus, truck, and taxi passengers and walking trips (enumerated only when they represented travel from home to work). Trips by mode are shown in Appendix A.

The high preponderance of automobile transportation indicated that adequate forecasts for planning would be obtained by developing trip generation and distribution procedures for automobile travel only for most of the internal nontrucking group. Approximately 70 percent of these trips either began or ended at home; these are termed "home based trips" and are classified according to the type of activity engaged in at the non-home end. Experience has shown that it is preferable to analyze these trips as travel between home at one end and the function served at the other end without regard to whether the actual direction of travel is away from home or returning to it. It is apparent that the number of trips leaving and returning to homes in a given area is closely related to the number of homes in the area. Furthermore, each trip leaving home requires a counterpart return trip. These home based trips were classified into three groups, as follows:

- Home Based Work

- Home Based Shop -- includes shopping for convenience items and for shopping goods

- Home Based Other -- includes personal business, school, social/recreation, change mode of travel, eat meal, medical/dental, and serve passenger.

Generation of trips at their home end is termed "trip production." The term, "trip attraction, " relates to the generation of these trips at their non-home end. More precisely, trip attraction is a measure of the relative likelihood of a particular area satisfying the objectives of a trip. For example, shopping trips will be attracted to various areas in proportion to the amount of commercial activity present. A separate class of trips are those which neither begin nor end at home. Examples of this type are the salesmen making calls and the housewives shopping from store to store. These trips, which comprise approximately 30 percent of the vehicle trips in the area, are grouped together as a "non-home based" category. Taxi trips, of which there were few, were combined with the non-home based purpose. The separate truck group is similar to this type in that the trips are not produced from homes by the residents.

Trip generation estimating equations and the gravity model distribution calibration was undertaken for each of the four groups of automobile trips and for the truck group. Automobile trips are represented by the auto-driver mode from the home interview and external surveys together with personal truck use and taxi trips. Table 1 shows the number of trips in each group and the proportion each use is of the total nonthrough vehicle trips. Table 2 shows the number of internal and external trips for each purpose group in addition to through trips.

Because home based work trips constitute a large percent of the total trips and because they are concentrated in the peak hours when the

TABLE 1

DISTRIBUTION OF VEHICLE TRIPS BY FORECASTING GROUP

Group	$\begin{gathered} 1966 \text { Daily } \\ \text { Vehicle } \\ \text { Trips } \\ \hline \end{gathered}$	Percentage
Auto-driver home based work	102,045	20.0
Auto-driver home based shop	73, 160	14.3
Auto-driver home based other	160,508	31.4
Auto-driver non-home based	156,506	30.5
Truck	19, 446	3.8
TOTAL	511,665	100.0

Notes:

1. Does not include the 13,666 through trips.
2. Panel and pick-up type trucks were included with auto-driver non-home based trips.

TABLE 2
VEHICLE-TRIP SUMIMARY

Autos	External			Through	Total
	Internal	Attr.	Prod.		
Home Based Work	64,282	11,770	25,993	--	102, 045
Home Based Shop	65,341	973	6,846	--	73,160
Home Based Other	144,677	8,000	7, 831	--	160,508
Non-Home Based	154, 556	1, 045	905	--	156,506
Through	--	--	--	9,348	9,348
Trucks					
Local	15,396	2, 014	2,036	--	19,446
Through	--	--	--	4,318	4,318
TOTAL	444, 252	23,802	43, 611	13, 666	525,331

demand on transportation facilities is greatest, work trips by all modes were examined.

All trip production and attraction estimating equations were derived through the use of multiple regression techniques from the data obtained in the travel surveys and measures of land activity. Population, employment, and other land activity measures were quantified by transportation zone from the land use survey, census data, Michigan Employment Security data, and other information maintained by the regional and local planning agencies. In addition, current data on population and employment was secured by the Origin-Destination Survey. Differences between the various data sources were resolved until a "best estimate" of each category of land activity was determined. This is discussed in detail in Technical Report No. 2, "Survey Data Accuracy Checks and Screenline Adjustments, " The study area is divided into 315 transportation zones, which are the basic geographic units common to all of the data used. The zones are combined into 81 districts for analysis of the data in larger groups. Alternative estimating equations were formulated from experience in other areas and were tested and calibrated to local travel habits by multiple-linear regression techniques. All of the estimating equations have been developed in terms of nine measures of land activity that are being projected and quantified by transportation zone to describe and quantify the future land use pattern. In some cases, the equations utilize stratification of the variables based upon income class or areas within the study area such as the downtown business area, intermediate and outlying urban areas, and rural areas.

The nine basic land activity measures used are:

- Population

- Dwelling Units
- Labor Force (resident)
- Median Income
- Cars registered by college or university dormitory students
- Manufacturing Employment
- Retail Employment
- Other Employment
- Students attending high school or college

Table 3 shows the simple correlations between the basic land activity variables used and the simple correlations between the trips by category and the land activity. These correlations were developed by using data aggregated to districts. The trip production and attraction equations were also developed at the district level to secure the greater stability of larger groups.

While separate equations are required to estimate the production and attraction of trips in each purpose group, there are many similarities among certain of the groups. To take advantage of this, similar equations are discussed together in this chapter. Each equation is summarized, however, in a standardized table showing the final coefficients, statistical comparisons with observed trips, results of the regression analysis, and listing the unique generators requiring special adjustments to estimate present travel. A graph showing the estimated and observed trips produced or attracted in each transportation district is also included for each equation. For equations requiring special adjustments, the regression statistics for the "before adjustments" and the "after adjustments" is shown. The "before adjustment" was done by running the regression analysis without including the data for the "adjusted district." The "after adjustment" shows the

TABLE 3
SIMPLE CORRELATIONS OF VARIABLES

Dwelling-Unit Data

Population	--	.81	.62	.62	.82	-.19	-.18	-.14	-.21
Dwelling Units	.81	--	.30	.38	.55	-.26	-.07	.02	-.15
Labor Force (Res.)	.62	.30	.-	.77	.87	-.28	-.24	-.31	-.35
Median Income	.62	.38	77	--	.86	-.25	.07	-.09	-.19
\quad Times DU									
Cars	.82	.55	.87	.86	--	-.30	-.18	-.19	-.29

Employment Data

Manufacturing	-.19	-.26	-.28	-.25	-.30	--	.22	.39	.80
Retail	-.18	-.07	-.24	.07	-.18	.22	$-\ldots$.86	.72
Other	-.14	.02	-.31	-.09	-.19	.39	.86	.-	.86
Total	-.21	-.15	-.35	-.19	-.29	.80	.72	.86	--

Home Based Trip
Productions

| Home Based Work .71 | .35 | .86 | .79 | .90 | -.14 | -.05 | -.04 | -.11 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Home Based Shop | .73 | .42 | .81 | .78 | .87 | -.26 | -.14 | -.18 | -.26 |
| Home Based Other .66 | .48 | .73 | .79 | .85 | -.28 | -.12 | -.18 | -.27 | |

Home Based Trip
Attractions
Home Based Work-. $24-.14 \quad-.37-.28 \quad-.33 \quad .82 \quad .66 \quad .81 \quad .98$
Home Based Shop -. $07-.09$-. 07 . 12 -. 06 . 10 . 75 . 48 . 43
Home Based Other . 07 . $35-.22$. $01-.04$. 11 . 76 . 80 . 58
Other Trips
Non-Home Based -. 08 . $04-.24$. $00-.13 \quad .40 \quad .92 \quad .90 \quad .83$
Truck $-.01-.02-.14-.07 \quad-.09 \quad .70 \quad .60 \quad .74 \quad .86$

Note: Values shown are R at district level.
regression statistics on the data with the "adjusted district"; the adjustments were applied to the land activity. A summary of all adjustments used is summarized in Appendix B. Variables tested, but not used in the final equations, are discussed with the appropriate equations.

A listing of 1966 land activity and trips by centroid with district subtotals is shown in Appendix G and Appendix H, respectively.

HOME BASED WORK TRIPS

Work Trip Production

The basic determinant of work trip production is labor force. The greater the labor force residing in the district, the larger the number of work trips that will be produced from it. However, the trip production estimating equation must be structured to produce auto driver work trips, and therefore adjustment factors must be included to account for the non-auto driver trips, such as transit trips, auto passenger trips, taxi trips, and walk trips. The equation must also allow for absenteeism and the fact that not everyone works on each normal weekday.

The basic form of the equation used for calculating auto driver, work trip production is:

Auto Driver, Work Trip $=$ Production	$a+\frac{b \text { (Labor Force)(Proportion by Auto) }}{\text { Car Occupancy }}$
where a $=$	constant intercept generated by linear
	regression analysis techniques,
$=$	regression coefficient generated by
	linear regression analysis techniques,
$=$	total labor force by place of residence,
Labor Force	
Proportion by Auto $=$	proportion of total work trips that are
	made by auto, and
Car Occupancy $=$	the number of persons per car.

Previous work on similar studies has established the relationships between the car ownership level in a district, and the values of proportion by auto and car occupancy. These relationships were checked for the Kalamazoo Area as measured in the 1966 Origin-Destination Survey by aggregating the districts having similar car ownership rates and
tabulating the corresponding ratios for these two factors．The results of this analysis are shown on Figure 2．Both in the estimate for existing conditions（used for the correlation test）and for forecasting the future，the curves shown are used in conjunction with the car ownership in each district to determine the actual values to be used at the district level．

There is no indication that the relationship between car ownership and the use of cars for work trip changes with time and therefore it can be assumed that the relationship found in 1966 will hold for 1990．However， the overall car occupancy in the future will be lower than today because of increasing car ownership．Similarly，the future proportion by auto can be assumed to bear the same relationship to car ownership unless， of course，widespread use of new travel modes is anticipated from technological advances．

Table 4 shows the final estimating equation for auto driver，home based work trip production，and the results of the comparison with trip productions measured in the survey．Figure 3 shows the comparison of estimated and actual productions by district．No special adjustments were used in the estimate for this purpose．

Work Trip Attraction

Since the gravity model requires a measure or index of trip attraction to each district for each trip purpose used，an equation for estimating auto driver home based work attraction was also developed．

This index must represent the＂level of activity＂of the zone in terms of trips．It is clear that for work trips the attraction index is the

FIGURE 2: CAR USAGE FOR HOME BASED WORK TRIPS

TABLE 4
AUTO DRIVER HOME BASED WORK PRODUCTION AND A TTRACTION ESTIMATING EQUATIONS

District Work Productions $=65+1.39$ (Labor Force) (Proportion by Auto $)$
Mean Observed (District) $\quad=939$ (No adjustments were necessary)
Standard Error of Estima te
$=146$
Coefficient of Variance
$=15.5 \%$
Coefficient of Determination (R^{2})
$=0.86$

$$
\text { "t" (Labor Force) (} \left.\frac{\text { Proportion by Auto }}{\text { Car Occupancy }}\right)=22.3
$$

District Work Attractions $=128+1.41$ (Total Employment)(Proportion by Auto Driver)

	Before Adjust.	After Adjust.
Mean Observed (District)	$=1117$	1115
Standard Error of Estimate	$=322$	320
Coefficient of Variance	$=28.8$	28.7
Coefficient of Determination	$=.96$	96
" \uparrow " (Total Employment)(Proportion by by Auto Driver)	$=45.6$	45.6
District Adjusted	Reason	

FIGURE 3: HOME BASED WORK PRODUCTION BY DISTRICT
number of jobs located in the zone adjusted by the number of employees arriving at the zone by modes other than auto driver. The following basic form of the equation to compute work trip attraction was:

Auto Driver Work $=a+b$ (Total Employment)(Proportion by Auto Driver)
Trip Attraction

An analysis of the mode of travel was made for all survey person trips from home to work. A summary of these trips is presented in Table 5.

TABLE 5

PERSON TRIPS BY MODE OF TRAVEL FROM HOME TO WORK

MODE
Auto Driver
Auto Passenger
Bus Passenger
Walk
Other (Taxi, Truck or School Bus Passenger)

TOTAL

	Internal-Internal
TRIPS	PERCENT OF TOTAL
33,801	82.7
5,612	13.7
535	1.3
502	1.2
433	1.1

100.0

During this analysis of travel mode, it was found that two districts had a significantly large percent of non-auto driver trips. One was the Central Business District (District 1), which had 18 percent of the total work trips arriving as auto passengers. The other district was Upjohn Corporation (District 60) on Portage Road; where 8 percent of the total work trips arrived via transit. Upjohn operates its own transit service which accounts for this large percent. A summary of
the significant percent work trips by mode for these two districts and all other combined are shown in Table 6.

TABLE 6

PERCENT WORK TRIPS BY MODE

District of Employment	$\begin{aligned} & \text { Walk } \\ & \text { Trips } \end{aligned}$	Auto Passenger	Transit	Truck or Taxi	Total NonAuto Driver	Auto Driver
1	2	18	2	2	24	76
60	*	14	8	4	26	74
All Other	*	13	*	*	13	87

The actual equation and the correlation of the estimated present attractions with the trips measured in the survey was presented in Table 4 and is illustrated in Figure 4.

FIGURE 4: HOME BASED WORK ATTRACTIONS BY DISTRICT

HOME BASED NON-WORK TRIPS

Productions

In estimating the production of auto driver, home based shopping and home based other trips, car ownership was found to be the most significant index. The estimating equations for these travel groups and the correlation of the estimated present attractions with the trips measured in the survey are shown in Table 7 and in Figures 5 and 6. In Table 7, it will be noted that cars were stratified as urban or rural in order to better reflect differences in car usage in these areas. Figure 7 shows the districts included in each of these two categories.

As discussed later, car ownership is responsive to variations in income level and labor force. The findings that trip production rates for these trip purposes vary directly with car ownership is consistent with experience in other cities. Other variables examined include population and dwelling units. Neither of these was found to add significantly to improving the forecast.

Attractions

For an attraction estimating equation to be both logical and reliable, the non-home end of the trip must be related to the land activity at that trip end which causes the trip to be made. The estimating equations for these travel groups and the correlation of the estimated present attractions with the trips measured in the survey are shown in Table 8 and in Figures 8 and 9.

For shopping trips, the number of retail employees working in the zone is the basic important variable. It was found, however, that the trips

TABLE 7

AUTO DRIVER HOME BASED SHOP AND OTHER PRODUCTION ESTIMATING EQUATIONS

District Shop Productions $=-39+0.94$ (Cars Rural) +1.10 (Cars Urban)

	Before Adjust.		After Adjust.
Mean Observed (District)	$=$	822	819
Standard Error of Estimate	=	182	180
Coefficient of Variance	$=$	22. 2%	22.0\%
Coefficient of Determination (R^{2})	=	0.79	0.80
"t' (Cars Rural)	$=$	15.1	15. 3
"t" (Cars Urban)	$=$	16.6	16.7

$\underline{\text { District Adjusted }}$
23

Reason
University students

District Other Productions $=17+1.83$ (Cars Rural) +2.48 (Cars Uxban)

Mean Observed (District)
Standard Error of Estimate
Coefficient of Variance
Coefficient of Determination (R^{2})
"t" (Cars Rural)
"t" (Cars Urban)
$=14.9$
$=19.0$

FIGURE 5: HOME BASED SHOP PRODUCTIONS BY DISTRICT

FIGURE 6: HOME BASED OTHER PRODUCTIONS BY DISTRICT

FIGURE 7 STUDY AREA STRATIFICATION

TABLE 8

AUTO DRIVER HOME BASED SHOP AND OTHER ATTRACTION ESTIMATING EQUATIONS

```
District Shop Attractions \(=-47+20.9\) (Retail Employment, Shopping Centers)
                                    + 3.64 (Retail Employment, Retail Core) +10.9
                                    (Retail Employment, Remainder)
```

		Before Adjust.	After Adjust.
Mean Observed (District)	$=$	905	891
Standard Error of Estimate	=	307	303
Coefficient of Variance ${ }^{2}$	$=$	33.9\%	34.0\%
Coefficient of Determination (R^{2})	$=$	0.96	0.96
" t " (Retail Employment, Shopping Centers)	$=$	31.0	31.4
"t" (Retail Employment, Retail Core)	$=$	28. 1	28.5
" ℓ " (Retail Employment, Remainder)	$=$	23.1	23.4

Districts Adjusted
26
52

Reason
Nonshopping Retail Employees
Lumber Yard

District Other Attractions $=384+0.24$ (Population) +1.35 (High School and College Student Attendance) +1.47 (Retail and Other Employment)

		Before Adjust.	After Adjust.
Mean Observed (District)	=	1833	1883
Standard Error of Estimate	=	534	527
Coefficient of Variance	$=$	29.1\%	28.0\%
Coefficient of Determination (R^{2})	$=$	0.90	0.91
"t" (Population)	$=$	3.09	3. 14
"ti" (High School and College Student Attend)	$=$	12.6	12.8
"t" (Retail and Other Employment)	$=$	22.4	23.5

Districts Adjusted
Reason
Bronson Hospital
Drive-In Theatre

FIGURE 8: HOME BASED SHOP ATTRACTIONS BY DISTRICT

FIGURE 9: HOME BASED OTHER ATTRACTIONS BY DISTRICT
attracted per retail employee varied widely, depending upon the type of retail development. To account for this variation, it is necessary to stratify retail centers by "retail core, " "shopping centers," and "remainder." The districts comprising the "core" were illustrated in Figure 7. The districts comprising the "shopping centers" are shown in Table 9.

TABLE 9

DISTRICTS WITH REGIONAL SHOPPING CENTERS

District
12
14
27
30
36
40
46
47
66

Regional Shopping Centers
Shopping Center
Thrifty Acres, Topps Discount Center
Westwood Shopping Center
Strip Development for Students
Thrifty Acres
Parchment
Shopping adjacent to Eastwood Shopping Center
Eastwood Shopping Center
Southland Shopping Center

All retail employees within these districts were classed as "shopping center" employees. In the district zone splitting procedures (as will be explained later), the actual zone comprising the shopping centers was considered.

Districts comprising the "core" will probably remain constant for the forecast year while there will undoubtedly be additional "regional shopping centers." These new centers will have to be classed as such
before using this estimating equation.

Adjustments to the final equation were found necessary in Districts 26 and 52 where non-shopping type retail employees were working.

For home based other trips, the variables (1) population, (2) high school and college students' attendance, (3) retail, and (4) other employment are the most significant variables. Population identifies the propensity to make social/recreation trips; high school or college students' attendance relates strongly to school trips and some social/recreation trips associated with the colleges and schools; retail and other employment relate to transact business, eat meal, and medical/dental type trips. Each of these land activities relate to portions of serve passenger trips.

Many other variables were tested, but none was found to add significantly to the equation. Some of the variables tested were manufacturing employment, dwelling units, and a stratification of other employment, as follows:

- Agricultural
- Mining
- Construction
- Transportation
- Communications
- Utilities
- Wholesale
- Finance, Insurance, Real Estate
- Services

> Government
> Self-Employed

In addition, various groupings of these employment categories were tested, but they did not add significantly to improving the equation. Adjustments to the final equation were necessary in District 58 because of a large drive-in theater, and District 3 where Bronson Hospital is located.

NON－HOME BASED AND TRUCK TRIP GENERATION

Estimation of non－home based auto driver trips and truck trips requires a two－step procedure．The questions，＂How many trips？＂and＂Where are they produced and attracted？＂must be approached separately．The other trip purpose groups that have been discussed up to this point were all home based trips，and the production equations for these give a direct measure of the total trips produced as well as an estimate of the place of production within the study area．In the case of non－home based trips，however，the total number of trips is related to overall activity in the area，but the production and attraction of these trips in the various parts of the area requires consideration of the level of various types of activity in each part of the area．Experience shows that the total number of non－home based trips can be estimated from the total cars owned in the area，and that this relationship is expected to hold into the future．The present ratio of 2.32 non－home based internal－to－ internal trips per car owned can be used to control the total production of these trips．

For non－home based and truck trips，the land activity which causes production of trips at a given point is the same kind of activity that attracts such trips to that point．The number of trips produced，or beginning from each district is the same as the number of trips attracted to the district．For this reason，a single equation of the attraction type has been developed and it is used once to estimate productions and again to estimate attractions．

The final estimating equation along with the regression statistics for non－home based trips and comparison of the actual versus estimated trips is presented in Table 10 and Figure 10，respectively．Although

AUTO DRIVER NON-HOME BASED PRODUCTION OR ATTRACTION ESTIMATING EQUATION

District Non-Home Based Productions or Attractions= $510+0.23$ (Population) +0.37 (Manufacturing Employment) +4.54 (Retail Employment) +0.77 (Other Employment)

	Before Adjustment	After Adjustment
Mean Observed (District)	1845	1920
Standard Error of Estimate	491	484
Coefficient of Variance	26.6%	25.2%
Coefficient of Determination (R^{2})	0.93	0.94
" t " (Population)		
" t " (Manufacturing Employment)	3.18	3.31
" t " (Retail Employment)	4.84	5.22
" t " (Other Employment)	10.4	15.4

Districts Adjusted

FIGURE 10: AUTO DRIVER NON-HOME BASED PRODUCTION OR ATTRACTION BY DISTRICT
the variables tested for home based other attractions were also tested for this equation, they did not add significantly to the accuracy of the estimations of non-home based trips.

Special adjustments were necessary in District 3 to reflect additional trips to Bronson Hospital and in District 14 to reflect additional trips to Topps Discount Center and Thrifty Acres Shopping Center. In District 14, 20 percent of the total trips are between the zones containing the two discount stores. This, in addition to the special nature of trips attracted to discount business and the special characteristics of Westnedge Avenue required that a special adjustment be made. For truck trips, the final estimating equation, together with the regression statistics and the comparisons of the actual versus estimated trips, is shown in Table 11 and Figure 11, respectively. Again, other variables tested were those as listed in the discussion on home based other trip attractions. No adjustments to truck trips were made. While the equation gives a good index of the production and attraction to the various districts, a more direct relationship to overall growth is needed to forecast the total truck trips. Since the portion of total vehicle miles accounted for by truck travel has remained essentially constant since World War II, and no change in the relative average trip lengths of truck and auto trips is expected, the total number of trips for the truck purpose can be assumed to grow at the same rate as car ownership, the estimator for auto trip growth. Total truck trips in the future can be forecasted by maintaining truck trips as a constant ratio to total trips in the area.

TABLE 11

TRUCK PRODUCTION OR ATTRACTION ESTIMATING EQUATION

District Truck Productions or Attractions $=-45+0.059$ (Population)
+0.17 (Total Employment)
Mean Observed (District) $=215$
Standard Error of Estimate $=130$
Coefficient of Variance $=60.5 \%$
Coefficient of Determination $\left(R^{2}\right)=0.77$
" t " (Population) $=3.22$
"t" (Total Employment) $=16.3$

FIGURE 11: TRUCK PRODUCTION OR ATTRACTION BY DISTRICT

TOTAL PRODUCTION AND ATTRACTION

As a final check on the entire set of trip production and attraction estimating equations, a composite estimate of total productions and of total attractions was computed and compared with the observed trips produced and attracted to each zone. These comparisons are shown in Figures 12 and 13 which indicate a distinct clustering of the points about the line of perfect estimate.

FIGURE 12: TOTAL VEHICLE PRODUCTION BY TRANSPORTATION DISTRICT

FIGURE 13: TOTAL VEHICLE ATTRACTION BY TRANSPORTATION DISTRICT

CHAPTER III

CAR OWNERSHIP

Research in many studies has shown that car ownership rates are influenced very strongly by family income, but in a non-linear relationship. In other words, as family income increases, car ownership increases also, but not in the same proportion. In Kalamazoo, this relationship was also observed.

For this reason, and also because of the very large, simple correlation between labor force and cars, it was decided to stratify labor force by income ranges. This was done by classifying all districts with a median family income of under $\$ 8,000$ per year as "low income," from $\$ 8,000$ to $\$ 9,999$ per year as "medium income, " and \$10,000 and over as "high income." Labor force stratified in this manner was tested and found to be over-predicting in the downtown areas and under-predicting around Western Michigan University. Thus, labor force in the downtown area was taken as a separate stratum since car ownership in this area was low. In addition, data on cars registered by Western Michigan University's on-campus students was obtained for testing in the equation. Each of these variables added very significantly to the equation.

The final equation is shown in Table 12 together with the regression statistics. The actual versus the estimated trips is shown in Figure 14.

For the future, districts comprising the "core" will be the same as today, unless high-rise apartments for high-income residents, or other major renovation is projected. The other variables, of course, are expected to vary over time.

TABLE 12

AUTO OWNERSHIP ESTIMATING EQUATION

$$
\begin{aligned}
& \text { District Auto Ownership }=8+1.0 \text { (Dormitory Registered Cars) } \\
& +0.66 \text { (Labor Force, Core) } \\
& \text { + } 1.16 \text { (Labor Force, Medium Income) + } 1.24 \\
& \text { (Labor Force, High Income) + } 1.02 \text { (Labor } \\
& \text { Force, Low Income) }
\end{aligned}
$$

Note:
Low Income $=\quad$ None to \$7,999
Medium Income $=8,000-9,999$
High Income $=10,000$ and over

Districts with Labor Force in Core: 1, 2, 3, 32, 34

FIGURE 14: AUTOS OWNED BY DISTRICT

CHAPTER IV

TRIP DISTRIBUTION

As indicated by the gravity model formula stated in the Introduction, four factors must be analyzed and quantified before the model can be applied to the study area. Chapter II dealt with two of these-mtrip production and trip attraction. The remaining two factors are concerned with spatial ($\mathrm{F}_{\mathrm{i} j}$) and socio-economic ($\mathrm{K}_{\mathrm{i} j}$) characteristics. Unlike trip production and attraction, these two factors do not deal with traffic at a single point, but rather are concerned with trip movements from one point in the system to another. These factors were developed to "fit" the gravity model to known existing travel patterns so that they could be applied to forecast the future distribution of trips in each of the trip-purpose categories analyzed. This chapter summarizes the procedures for and the results of the developmentof these factors.

FRICTION FACTORS

This phase of the analysis was concerned with the development of the proper exponent of travel time associated with each trip purpose. For ease of computation, an exponent is not directly used in the gravity model. Instead, a set of friction factors is calculated, where

$$
F=\frac{1}{t^{b}}
$$

The use of "F" factors instead of exponents makes it possible to use a variable exponent, a procedure which previous studies have shown to be desirable. It should be noted that the absolute value of each " F " factor is unimportant. Only the relative values of the "F" factors for various trip lengths within each trip-purpose category affect the behavior of the gravity model. The need for a variable exponent arises in part from the mathematically complex shape of the curve of triplength distribution.

The set of " F " factors for each trip purpose category quantifies the total effect of spatial separation between zones. The total effect is based on the total "time separation," which is the sum of the over-theroad driving time between zones and the terminal times within the origin and destination zones. Terminal time reflects the impedance to making a vehicle trip to or from a zone due to difficulty and time required to park the vehicle and in getting between an actual parking location and the true origin or destination point of the trip. Terminal times were subjectively developed for each zone based on knowledge of the study area and on zonal characteristics such as the amount of traffic congestion which affect terminal time. In this study, terminal times ranging from zero minutes in the outlying rural zones to three minutes in the downtown zones gave good results. Terminal times for external centroids were assigned as five minutes to roads carrying primarily local traffic, ten minutes to U.S. 131, and fifteen minutes to I-94.

Intrazonal times of one minute for the rural zones and zero minutes for all other zones were input to the model. Since the total intrazonal times consist of twice the terminal times plus the intratimes, the resulting total intrazonal times varied from one minute in the rural zones to six minutes in the downtown zones. This produced the best consistent estimate of intrazonal trips, and was verified by the number of intradistrict trips obtained. The terminal and intrazonal times for each zone are listed in Appendix C.

After the zone-to-zone driving times had been summarized from the highway network and the intrazonal and terminal times had been added into this zonal time matrix, it was used as the base for developing a district-to-district travel time matrix. The district-to-district time matrix is a weighted average of the zonal times computed by using the zonal vehicle trip matrix as the weighting criterion for the zone-tozone times.

The best set of " F " factors associated with each trip purpose was determined through a process of trial and adjustment by first assuming a set of friction factors for each purpose and building a trial model with the productions and attractions from the Origin-Destination Survey to obtain trip interchanges between districts. The results of the trial gravity model were then compared to the survey data and adjustments were made to the " F " factors in light of the following criteria:

- Trip-length distributions obtained from the gravity model should fit closely with the corresponding survey trip-length distributions
- The average trip lengths produced by the model should be in close agreement with those measured in the survey
- A semi-logarithmic plot of the " F " factors versus trip lengths should be a relatively smooth curve with no "unexplainable" inflection points

If these criteria were not achieved, it was necessary to adjust the "F" factors according to the following formula:

$$
F_{A}=F_{P} \frac{\% O D_{t}}{\% \operatorname{GIV}_{t}}
$$

where:

${ }^{\mathrm{F}} \mathrm{A}$	= Adjusted "F" factor
F_{P}	$=$ Previous "F" factor
$\% \mathrm{OD}_{\mathrm{t}}$	= Percentage survey trips for a given length increment (t) of total trips in that purpose category
\% GM ${ }_{\mathrm{t}}$	$=$ Percentage model trips for a given trip length increment (t) of total trips in that purpose category.

These adjusted "F" factors were then plotted on semi-log paper and a smooth curve fitted to the m to determine a new set of " F " factors for
input into the gravity model. This process was repeated until the gravity model distribution substantially matched the survey trip-length distribution. Figure 15 shows the final " F " factor versus trip-length relationship for each of the five models used for the analysis.

The gravity model., for all trip purposes, was iterated three times for trips attracted to the external stations. The iteration process forces the trips attracted to these external centroids to conform more closely with the original estimates of attraction input to the model.

SOCIO-ECONOMIC FACTORS

Any mathematical model, by nature, simulates average or normal conditions. Before applying a model to a particular urban area, it is therefore necessary to compare it to the actual travel patterns and to adjust it, if necessary, to insure that it accurately simulates any unique social or economic conditions existing in the study area. Such adjustment permits the analyst to reflect the influence of variables not considered in the model.

After trip-length distributions were calibrated for each purpose, trip transfers generated by the gravity model were compared to the survey trip interchange. An analysis was made for each of the purposes at the district level to obtain stability in the numbers of trips being investigated.

To gain a basic understanding of the data that could point to a meaningful analysis of the socio-economic structure of the region, additional analyses were conducted by further grouping of some of the districts. Throughout the analysis, constant alertness was maintained for trends and persistencies in differences which, even though based upon small numbers, would aggregate into a larger sample size that could result in greater stability. Aggregates of grouped differences were also checked by making several assignments of gravity model trip transfers to the desire-line network and comparing these with similar assignments of survey data.

FIGURE 15: FRICTION FACTORS

In this way，it was possible to obtain an understanding of many of the underlying characteristics of the region and to adjust the basic model structure to match these intricate workings．It is important to re－ cognize，however，that the need for this understanding goes beyond the mere exercise of calibrating the model．The primary purpose of this effort is to guide its application in the forecasting process and to assure that the tool developed and tested for the existing condition is， in fact，applicable to the future．In those cases where adjustments were found necessary and could be substantiated by known socio－ economic characteristics，＂K＂factors were calculated and applied to the gravity model．

The following sections discuss the underlying reasons for the＂K＂ factors developed．These adjustments are grouped into five general classifications for discussion．

Self－Contained Communities

Certain areas，due to their high degree of self－containment，tend to interact at a substantially lower－than－average rate with the surround－ ing areas and consequently a greater－thanmaverage number of intra－ area trips are made．Since the gravity model reflects average region－ wide travel patterns，the intra－area trips for such areas are under－ estimated．This occurred in the Western Michigan University area， in some of the older major industrial areas，and in small communities in the rural portions of the study area．

Western Michigan University with its 18， 400 students，and Kalamazoo College with an enrollment of 1,200 ，form a separate community in Western Kalamazoo．This community contains its own well－developed institutional，commercial，and recreational facilities serving the young academically－oriented populace．

Many of the rural portions of the study area also indicated a relatively high degree of self－containment．Because of the large size of the
study area，much of the rural portion does not have a＂suburban＂re－ lationship to Kalamazoo．Many of the rural residents continue to work and trade in nearby areas and do not interact with central Kalamazoo as much as the average for the entire area would indicate．Such biases were particularly evident around the business areas of Parchment and Galesburg．

Kalamazoo Central Commercial Area（District 1）
Generally，in this type of regional study，there is a definite trip distri－ bution bias to the central commercial area．This is to be expected since the model which is based on regional averages cannot account for the special attractiveness historically enjoyed by central business districts．Thus，for all purposes，there were underassignments of trips to this area．In addition，the extent of the bias from residential areas was related to income level，since higher income trip makers tend to be attracted to the work，shop，and business opportunities in the central area at a higher－than－average rate．It is expected that these biases will continue to exist in the future．

Shopping Trips

Biases were noted in the assignment of shopping trips to the major commercial areas．Large department stores，such as Sears，Thrifty Acres，and Topps Discount Center，attract what is known as＂goods shopping．＂They are unique attractors of shopping trips due to their large variety of merchandise．This enables consumers to purchase goods not available in their local communities，facilitates comparison shopping，and allows for the purchase of many types of goods in one shopping trip．Since there are only a few of these stores in the region， they attract trips from all portions of the study area at higher rates than the gravity model predicts．Thus，the short trips to these re－ gional stores tend to be overestimated by the model and long trips underestimated，requiring adjustment to counteract this tendency．

On the other hand, there are several smaller shopping centers that contain a supermarket and several small stores. These centers provide solely for what is known as "convenience shopping." Their goods consist primarily of groceries and other items widely available in the region, and these centers tend to attract mostly short trips. The bias in the gravity model is the reverse of that for the regional department store and an opposite type of adjustment is required.

Topographic Barrier

The Kalamazoo Area is severed by a topographic barrier along a northsouth axis that lies just to the east of the Central Commercial Area. The Kalamazoo River, which flows from the east edge of the downtown area toward the north, is the focus of the barrier in the northern half of the study area. The river is closely paralleled by the north-south tracks of the Penn Central Railroad and the adjacent large industrial complex, which add significantly to the barrier effect of the river itself. The railroad tracks continue through the southern half of the study area as a major barrier, and are reinforced by a series of parks and the Brandt Mill and Monarch Mill Ponds. While several roads penetrate the barrier to connect the west and east sides, travel from one side to the other is often circuitous and psychologically the other side seems further away than it really is. Strong commercial strips along Westnedge Avenue on the west side and along Portage Street and Lovers Lane on the east side give a measure of internal self-sufficiency to each of the two halves of the study area.

With this land development pattern, it is expected that trip making is relatively less frequent from one side to the other than between similarly spaced zones not separated by the barrier strip. The travel survey found that relatively fewer trips across the barrier are made by the people of the Kalamazoo Area, confirming the physchological effect of the barrier on travel habits. To adjust the gravity model so as to account for this bias, " K " factors to reduce the incidence of trips across the barrier were introduced between the districts lying
on opposite sides of the barrier in the northerly half of the study area and similarly between districts on opposite sides in the southerly half of the area. Since the Central Commercial Area serves all of the region in its own unique way, this area was not included in the adjustments for the barrier. In addition, the bias was not found to be important for the long trips between the southwest quarter and the northeast quarter of the study area or for trips between the northwest and southeast quarters.

Special Interaction

For a variety of other reasons, "K" factors were applied between a small number of other area-to-area combinations. These adjustments reflect unique conditions resulting from unusual attributes of one or both areas that produce abnormal trip interchange patterns.

Western Michigan University is a center for regional and state-wide conferences and work shops which attract a great number of people from outside the study area. Therefore, it was necessary to adjust for trips between the university and the major external stations.

The outlying rural areas have a higher-than-average percentage of their trips interchanging with adjacent rural areas in contrast to a relatively lower attraction of the rural areas for the trips generated in the suburban parts of Kalamazoo. Adjustments were applied to account for this bias.

The General Motors plant is new to the area, having opened in 1966. It was found that the trip patterns for the many new employees at this plant were different than those typical of the older established industries. A large proportion of the GM employees commuted from outside the study area and the trips from within the study area were substantially longer than average. It is apparent that the new plant attracted workers from many communities in Western Michigan. However, it is expected that the residential distribution of these employees
will conform more to the typical pattern of the other major industrial complexes in the future.

Another type of special interaction occurs between the high schools in the Kalamazoo area, and the surrounding residential areas served by each of them. Since school trips were included in the "home based other" purpose group, special adjustments to that group were required to introduce the unique trip distribution pattern attracted to the high schools. Other schools did not attract unusual patterns of auto driver trips.

Forecasting the Adjustments

To successfully use "K" factors, one must be certain that it is pos-. sible to forecast the conditions necessitating their use in the future. For all but the General Motors District, the biases exhibited in the present travel patterns will continue to exist. However, the magnitude of all "K" factors used in the model must be reevaluated before they are used in making a future travel estimate.

The " K " factor analysis for an urban transportation study is never simple. It is a complex undertaking requiring basic understanding of the social and economic structure of the region. Nevertheless, it is a most important part of the analysis since it provides a means through which to tune the model to the particular characteristics of the area. It is believed that all important unusual travel patterns have been adequately isolated and that the calibrated process has imparted the basic understanding of the region necessary to assure accurate adjustment of the model to future conditions. Appendix D lists all of the "K" factors required for the Kalamazoo Area Transportation Study.

CHAPTER V

FINAL VERIFICATION

The procedures and checks described in the previous sections were concerned with two basic phases of the traffic forecasting procedure-w those used to predict trip generation (productions and attractions) and those concerned with the distribution of vehicular traffic. As a final check on the trip distribution model, a comparison of the average trip length and the trip-length distribution produced by the gravity model was made with the corresponding characteristics determined in the travel survey. To check the ability of the model to match survey values in traffic corridors, the district-to-district gravity-model trip transfers were assigned to the desire-line network and compared with similar survey values. The trips predicted by the model must be split to a zone-to-zone level through the use of proportioning factor equations developed for home based, non-home based, and truck trips (see Appendix E--Proportioning Factor Equations). This is needed so that detailed assignments of the trip table to the real highway network can be made. The resulting zone-to-zone total vehicle trips were assigned to the existing highway network, and the assigned volumes compared to the actual 1966 ADT traffic volumes developed from on-the-ground traffic counts. Thus, the total study effort to this point, from data collection through model calibration and including the network simulation, could be verified.

Trip-Length Check

After the friction factors and socio-economic factors were applied to the productions and attractions, a gravity model trip-length distribution was generated and compared to the survey trip-length distribution. Table 13 shows the comparison of the average trip lengths produced by the gravity model and the survey values. The model average for each purpose group agrees closely with the survey average.

TABLE 13 AVERAGE TRIP-LENGTH COMPARISONS

Purpose	Survey		Gravity Model	
		Gravity Model/Survey		
Home Based Work	15.719		15.704	
Home Based Shop	9.352		9.468	1.00
Home Based Other	10.576		10.522	1.01
Non-Home Based	9.371		9.257	.99
Truck	12.997		12.827	.99
			.99	
Total	11.150	11.114		1.00

NOTE: This trip comparison was made after the insertion of "K" factors.

Figures 16 through 21 show comparisons of the gravity model and survey trip-length distributions by one-minute increnents for each individual purpose and for all purposes combined. As can be observed, a close match with no major deviations has been attained by the calibrated gravity model.

Desire-Line Network Comparison
A comparison of the survey and gravity model district-to-district trips assigned to the desire-line network was made and analyzed. Figure 22 shows the consistent agreement of these two data sets in all parts of the area, confirming that no significant bias in any part of the study area has been introduced.

Zonal Trip End Comparisons

Using the Proportioning Factor Equations that are listed in Appendix E, the district-to-district trips were split to zone-to-zone trips. A simple example of this technique of splitting trips is shown in Appendix F. As a check on this procedure, the survey district-to-district trips were split to zone-to-zone trips using this technique. Statistical comparisons of these "estimated survey" trips with the actual survey trips are shown in Table 14. This table also shows the statistical comparisons at the zonal level of the gravity model and synthetic model trip ends with the survey trip ends.

Screenline and Cutline Comparisons

After the gravity model and the synthetic model trip table assignments to the highway network were complete, comparisons of the volumes crossing the screenline and various cutlines were made with ground counts and with the survey assignment.

Again, the synthetic model was developed from the estimated productions and attractions, using the estimating equations and the 1966 land-activity data. Figure 23 illustrates the location of the screenline and the cutlines. Table 15 shows the values obtained from each step and the ratios between

FIGURE 16: VEHICLE TRIP LENGTH DISTRIBUTION COMPARISON FOR WORK TRIPS

FIGURE 17: VEHICLE TRIP LENGTH DISTRIBUTION COMPARISON FOR SHOP TRIPS

FIGURE 18: VEHICLE TRIP LENGTH DISTRIBUTION COMPARISON FOR OTHER TRIPS

FIGURE 19: VEHICLE TRIP LENGTH DISTRIBUTION COMPARISON FOR NON-HOME BASED TRIPS

$$
1
$$

KALAMAZOO AREA TRANSPORTATION STUDY

FIGURE 20: VEHICLE TRIP LENGTH DISTRIBUTION COMPARISON FOR TRUCK TRIPS

FIGURE 21: VEHICLE TRIP LENGTH DISTRIBUTION COMPARISON FOR TOTAL VEHICLE TRIPS

CITY CENTER INSERT

FIGURE 22 DESIRE LINE NETWORK

TABLE 14
ZONAL TRIP END COMPARISONS WITH SURVEY

Purpose	Mean	Estimated Survey		Gravity Model		Synthetic Model	
		R^{2}	S. E.	R^{2}	S.E.	R^{2}	S. E.
Home Based							
Production	982	. 98	127	. 98	127	. 96	189
Attraction	982	. 91	487	. 90	507	. 88	541
Non-Home Based and Truck							
Production	514	. 89	242	. 89	241	. 85	292
Attraction	514	. 87	259	. 86	272	. 80	321

NOTE:

1. $R^{2}=$ Coefficient of Determination
2. S. E. $=$ Standard Error of Estimate
3. Synthetic Model = Gravity Model using Productions and Attractions developed from the previously described equations and 1966 land activity data.

(*)

these values. The results confirm that satisfactory estimation of the actual measured traffic volumes has been achieved.

Vehicle-Mile Check
As a final check on the developed forecasting procedure, comparisons of the gravity model and synthetic model were made against the survey data and ground counts for vehicle miles. This aggregate check is summarized by jurisdiction in Table 16; the jurisdictions are shown in Figure 24. As can be observed in this comparison, the gravity model aggregate travel assignment is w ithin 5 percent of the total travel measure from the Origin-Destination Survey and the synthetic model checks within 2 percent of the gravity model.

Conclusion

The series of checks, taken individually and collectively, demonstrate that in all respects the calibrated model accurately simulates both the survey data and the ground counts. Thus, it is concluded that all of the techniques have been validated and are ready for use in the forecasting phase of the study.

TABLE 15
SCREENLINE AND CUTLINE COMPARISONS

Cutline	Ground Count	Survey	$\frac{\text { Survey }}{\text { Ground Count }}$	Gravity Model	$\frac{\text { Grav. Model }}{\text { Survey }}$	Synthetic Model	$\frac{\text { Syn. Model }}{\text { Survey }}$	$\frac{\text { Syn. Model }}{\text { Grav. Model }}$
Screenline	172,383	172,956	1.00	174, 061	1.01	174, 845	1.01	1.00
A	43, 868	49,958	1. 14	54, 157	1.08	55,422	1. 11	1.02
B	113,825	122,572	1.08	124, 721	1.01	127, 486	1. 04	1.02
C	90,786	97, 497	1.08	100, 024	1.03	104, 649	1.07	1.05
D	63,161	58,236	. 92	60,597	1.04	61,816	1.06	$1.02 \underset{\sim}{~}$
TOTAL	484, 023	501,209	1.04	513,560	1.02	524, 218	1.05	1.02

NOTE: 1. Grav. Model = Gravity Model
2. Syn. Model = Synthetic Model

TABLE 16
VEHICLE MILES OF TRAVEL COMPARISONS (1,000's)

Jurisdictions	Ground Count	Survey	$\begin{aligned} & \frac{\text { Survey }}{\text { Ground }} \\ & \text { Count } \end{aligned}$	Gravity Model	$\begin{aligned} & \text { Gravity } \\ & \text { Model } \\ & \hline \text { Survey } \end{aligned}$	Synthetic Model	$\begin{aligned} & \begin{array}{l} \text { Synthetic } \\ \text { Model } \end{array} \\ & \hline \text { Survey } \end{aligned}$	$\begin{aligned} & \frac{\text { Synthetic }}{\text { Gravity }} \\ & \text { Model } \end{aligned}$
1	40	34	. 85	32	. 94	32	. 94	1.00
2	707	754	1.07	774	1.03	772	1.02	1.00
3	185	222	1. 20	229	1.03	236	1.06	1.03
4	210	214	1.02	235	1. 10	243	1. 14	1.03
5	318	321	1.01	335	1.04	345	1.07	1.03
6	82	64	. 78	67	1.05	72	1. 13	1.07
7	53	46	. 87	52	1. 13	56	1. 22	1.08
8	174	152	. 87	175	1. 15	179	1. 18	1.02
9	27	23	. 85	30	1. 30	36	1. 57	1. 20
10	116	120	1.03	125	1. 04	126	1.05	1.01
11	30	27	. 90	28	1.04	27	1.00	0.96
TOTAL	1,942	1,977	1.02	2,082	1. 05	2,124	1.07	1. 02

(N)

APPENDICES

APPENDIX A

PURPOSE OF TRAVEL BY MODE
(Internal-Internal)

Purpose	Auto Driver	Auto Passenger	Bus Passenger	School Bus Passenger	Other Passenger	Truck	Total
Home-Based Work	64, 282	10,998	969	465	779 ${ }^{4 /}$	---	77, 493
Home-Based Shop	65, 341	23, 014		530	96	---	89, 782
Home-Based Other	144, 677	90, 750	8,084 ${ }^{\text {/ }}$	45,880	599	---	289,990
Non-Home Based	154,556	38,892	1,793 ${ }^{\text {/ }}$	2, 365	115	---	197, 721
Truck	. ---	---	---	---	---	15,396	15,396
Total	428, 856	163,654	11,647	49,240	1,589	15,396	670,382

PERCENTAGE OF TRIPS USING EACH MODE BY PURPOSE

(Internal-Internal)

Purpose	Auto Driver	Auto Passenger	Bus Passenger	School Bus Passenger	Other Passenger	Truck	Total
Home-Based Work	83.0	14. 2	1.3	0.5	1.0	---	100.0
Home-Based Shop	72.8	25.6	0.9	0.6	0.1	---	100.0
Home-Based Other	49.9	31.3	2.8	15.8	0.2	---	100.0
Non-Home Based	78.2	19.7	0.9	1.2	0.0	---	100.0
Truck	--	--	--	--	--	100.0	100.0
Total	64.0	24.4	1.7	7.4	0.2	2.3	100.0
Note: $1 /$ Includes panels, pickups, and taxis 2/7,132 trips to or from school 3/1, 366 trips to or from school $4 / 502$ trips are "walk to work"							

DISTRICTS FOR WHICH SPECIAI ADJUSTMENTS WERE MADE
 FOR ESTIMATING EQUATIONS

			Adjustment		Explanation
District	$\begin{gathered} \text { Zone } \\ \text { Centroid } \end{gathered}$	Purpose Equation	Centroid K Factor	Activity	
3	7	Home Based Other Attractions	2.55	Other Employment	Bronson Hospital apparently attracts more trips, proportionately, in these purpose categories than other genera-
		Non-Home Based	4.39	Other Employment	tors with employees in this land activity group.
14	38	Non-Home Based	3.21	Retail Employment	Topp's Discount Center and Thrifty Acres attract more nonhome based trips than the average retail establishment in the study area based on their number of employees.
23	57	Home Based Shop Productions	0.59	Autos Owned	College students essentially constitute the entire population of the zone. Characteristically, they do not make as many shop trips as other segments of the population.
26	61	Home Based Shop Attractions	0.10	Retail Employment	A restaurant and bowling alley in this zone generate social recreation trips rather than shop trips although their employees are classified as retail.
52	146	Home Based Shop Attractions	0.15	Retail Employment	A retail lumber yard located in this zone has employees classified as retail, but because of the types of activity they support, they do not attract as many trips per employee as other types of retail establishments.

			Adjustment		
District	Zone Centroid	Purpose Equation	Centroid K Factor	Activity	Explanation
58	164	Home Based Other Attractions	9.32	Other Employment	A drive-in theater in this area draws large volumes of trips per employee and these cannot be adequately reflected by the equation developed for the region.
71	230-231	Home Based Work Attractions	0.47	Total Employment	Comparing the employment data in this district, the O-D Survey reported approximately 650 total employment while the data from Employment Security records - indicated employment of nearly 1600. This, coupled with the observation that Goodwill Industries has over 500 employees, but work trips to that zone were approximately 50 , led to the conclusion that the employment at the time of the Survey was light. Therefore, factoring was necessary.

A-4

APPENDIX C

ZONAL TERMINAL AND INTRAZONAL TIMES

Terminal Times	Intrazonal Times	Zone-Centroids
		(Internal)
3	0	1-6
2	0	7-13
2	0	19-23
2	0	78-86
2	0	96-98
1	0	14-18
1	0	24-59
1	0	70-77
1	0	87-95
1	0	99-111
1	0	119-163
0	1	60-69
0	1	112-118
0	1.	164-315
		(External)
10	-	31.6
5	-	317-325
15	-	326
5	-	327-332
10	-	333
5	-	334-335
15	-	336
5	-	337-342

Note: Intrazonal trips are prohibited at external centroids.
vehicles, most of them are made on foot. Therefore, it was necessary to adjust for this type of trip. Specific adjustment factors for the Central Commercial Area are listed in Table D-1.

TABLE D-1

ADJUSTIVENT FACTORS FOR TRIPS TO CENTRAL COMMERCIAL AREA

Purpose	Low	$\underline{\text { Medium }}$	High	$\begin{gathered} \text { All } \\ \text { Districts } \end{gathered}$	Intra- Area	External
Home Based Work	1.00	1.48	1.27	--	0.00	. 88
Home Based Shop	1. 62	2. 16	4. 20	--	0.00	2. 82
Home Based Other	1. 43	1. 55	1.83	--	0.00	1. 31
Non-Home Based	--	--	- -	1.33	0.75	1. 33
Truck	-	--	--	1. 17	1.17	--

Note: 1. See Appendix G for median income for each district. Low Income $=$ Less than $\$ 8,000$. Medium Income $=\$ 8,000$ to $\$ 9,999$.
High Income $=\$ 10,000$ and Over
2. Central Commercial Area is District No. 1.

Group 2--Topographic Barrier Adjustments
To correct for the overestimation of trips across the topographic barrier separating sectors 2 and 3 from sectors 4 and 5 ; adjustment factors were used to reduce inter-sector trips and to increase locally oriented intra-sector trips by purpose as necessary. These adjustment factors are listed in Table D-2 and the location of the sectors are indicated on the following study sector map.

Groups 3-6-wOther Adjustment Factors by Purpose
Tables D-3, D-4, D-5, and D-6 list the remaining "K" factors used for each purpose category other than the factors listed in Tables D-1 and D-2. Table D-3 lists the district number, " K " factors, and the major

TABLE D-2

ADJUSTMENT FACTORS FOR TRIPS ACROSS NORTH-SOUTH TOPOGRAPHIC BARRIER

Interchange Sector-to-Sector	Purpose			
	Work	Shop	Other	NHB
2-2	1.08	1. 35	1.27	
2-5	. 83		. 75	. 85
5-2			. 90	. 85
5-5			1. 40	
3-3		1. 40		
3-4		. 25		
4-3			. 77	
4-4			1.10	1. 50
* Sector 2 - Districts 2 to 20				
Sector 3 - Districts 21 to 37				
Sector 4 - Districts 38 to 47				
Sector 5 - Distric	57			

A-8

TABLE D-3
ADJUSTMENT FACTORS FOR HOME BASED WORK TRIPS

| Attraction
 Districts | Major
 Attractor | Production Districts |
| :---: | :--- | :--- | :---: |\quad| " $\mathrm{K}^{\prime \prime}$ |
| :---: |
| Factor |

TABLE D-4
ADJUSTMENT FACTORS FOR HOME BASED SHOP TRIPS

			Local		Nonlocal	
Attraction Districts	Major Attractor	Type of Shopping	Production Districts	"K" Factor	Production Districts	"K" Factor
5	Sears	Regional Goods	$\begin{aligned} & 1,3-7, \\ & 10-12,48-51 \end{aligned}$. 80	$\begin{aligned} & 2,8-9 \\ & 13-20 \\ & 21-47, \\ & 52-108 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.45 \end{aligned}$
14	Thrifty Acres Topps Discount	Regional Goods	$\begin{aligned} & 7,12-15, \\ & 56-57, \\ & 67 \end{aligned}$. 71	$\begin{aligned} & 2-6,8-11 \\ & 16-20 \end{aligned}$	1.30
27	Westwood Shopping Center	Convenience	25-30	1.40	$\begin{aligned} & 1-24, \\ & 31-108 \end{aligned}$. 20
47	Eastwood Shopping Center	Convenience			$\begin{aligned} & 1-20,38-41, \\ & 48-108 \\ & 21-37 \end{aligned}$	$\begin{aligned} & .72 \\ & .25 \end{aligned}$
56	Corklane Shopping Center	Convenience	$\begin{aligned} & 5-7,14, \\ & 49-50,54-57 \end{aligned}$	1.35	$\begin{aligned} & 1-4,8-13, \\ & 15,48, \\ & 51-53 ; 58-108 \end{aligned}$. 61
66	Southland Shopping Center	Convenience	$\begin{aligned} & 58,60,61, \\ & 63-69 \end{aligned}$	1.15	$\begin{aligned} & 1-57,59,62, \\ & 70-108 \end{aligned}$. 63
72	Parchment CBD	Local Only			$\begin{aligned} & 1-35,42-70, \\ & 75-108 \end{aligned}$. 23
77,78	Galesburg	Local	78	6.10		

$$
A-10
$$

TABLE D-5

ADJUSTMENT FACTORS FOR HOME BASED OTHER TRIPS

Attraction Districts	Major Attractor	Production Districts	"K" Factor
8	Msgr. O'Brien H.S.	8-10, 20-22, 24, 30-34	0.61
14	Topps, Thrifty Acres	$\begin{aligned} & 6-7, \quad 11-18 \\ & 56-57 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.20 \end{aligned}$
15	Hackett High School	$\begin{aligned} & 1-4,8-11,19-108 \\ & 5-7,12-18 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 1.83 \end{aligned}$
18	N. Christian H.S. \& Western Mich. Univ.	8-11, 18, 25, 26, 70	0. 35
19	Western Mich. Univ.	18-19, 25-26	0.25
23	Western Mich. Univ.	18, 20, 22-27, 29-30	0.40
40	Parchment H.S.	$\begin{aligned} & 1-38,41-72,74-108 \\ & 39,40,73 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 2.00 \end{aligned}$
42	Comstock High School	$\begin{aligned} & 1-41,43-74,76-108 \\ & 42,75 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 2.75 \end{aligned}$
58	Drive-In Theatre	59-69, 81	0.70
61	Portage Central H.S.	$\begin{aligned} & 58-69 \\ & 1-57,70-108 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 0.43 \end{aligned}$
67	Portage Northern H.S.	$\begin{aligned} & 12-18 \\ & 54-63 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.50 \end{aligned}$
70	Urban to Rural	28-29, 70-71	1. 50
71	Rural to Rural	28-29, 70-71	4. 60
73-81	Rural to Rural	$\begin{aligned} & 73-81 \\ & 82-108 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 1.20 \end{aligned}$

TABLE D-6
ADJUSTMENT FACTORS FOR NON-HOME BASED TRIPS

Attraction Districts	Major Attractor	Production Districts	$\begin{gathered} \text { "K" } \\ \text { Factor } \end{gathered}$
23	Western Mich. Univ.	1-17, 21, 26-81	0.70
34	Indus. -Com. Area	34	1. 30
40	Parchment	39-40, 73	2.65
		41-47	1. 50
48	Industrial Area	48, 51	0.25
50	Residential Area	50	0.75
71	Urban to Rural	27-29, 36, 70-73, 82-84, 106-108	3.00
	Urban to Rural	1-26, 30-35, 37-69, 74-81, 85-105	1.80
73-81	Special Urban to Rural	1-72, 82-108	1.45
	Rural to Rural	73-81	2.40
77	Galesburg	77	4. 00

$$
A-13
$$

attractors for which the adjustments were made for home based work trips. The basic causes for these factors are described in Chapter IV.

Table D-4 enumerates the adjustment factors used for home based shop trips. These adjustments were applied to distinguish between the unique distribution patterns for regional shopping areas and the smaller convenience shopping areas. Major department stores, such as Sears, appealed to the whole study area; whereas smaller shopping centers which provide more widely available commodities generally appeal mostly to nearby residents.

Tables D-5 and D-6 list the adjustments for home based other trips and non-home based trips, respectively.

APPENDIX E

PROPORTIONING FACTOR EQUATIONS

Vehicle Productions and Attractions

1. Home Based Productions | $=$ | 4.52 (Cars) |
| ---: | :--- |
| 2. Home Based Attractions $=$ | $56+0.63$ (Population) +1.40 |
| | (Total Employment) +1.23 |
| | (Students' Attendance at High |
| | School and College) +22.44 |
| | (Shopping Center Employment) + |
| | 7.47 (Other Retail Employment) |
| | |
| 3. Non-Home Based and Truck* $=$ | $92+0.43$ (Population) +4.18 |
| | (Retail Employment) +0.57 |
| | (Total Employment) |

* Productions and Attractions are by definition equal.

NOTE: These equations are used to derive proportioning factors to allocate district-to-district trips to zone-to-zone trips. See Appendix F for a simple example of the allocation procedure.

APPENDIX F

EXAMPLE OF DISTRICT-ZONE TRIP-SPLITTING TECHNIQUE

Assume Figure 1 depicts a study area with three districts to be split into a total of eight zones. The solid lines represent district (and zone) boundaries, and the broken lines are zone boundaries. The circled numbers are zone numbers and the uncircled are district numbers. Figure 2 is the input district-to-district trip table, and Figure 3 represents the input P/A control card deck. Figure 4 is the output zone-to-zone trip table.

Figure 1 Study Area

From To	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	200	600	800
2	700	400	200
3	900	1200	100

Figure 2 District Trip Table

Zone	District	$\% \mathrm{P}$	$\% \mathrm{~A}$
1	1	50	20
2	1	50	80
3	2	10	40
4	2	40	50
5	2	50	10
6	3	10	40
7	3	10	20
8	3	80	40

Figure 3 P/A Control Table

From To	1	2	3	4	5	6	7	8
1	20	80	120	150	30	160	80	160
2	20	80	120	150	30	160	80	160
3	14	56	16	20	4	8	4	8
4	56	224	64	80	32	16	16	32
5	70	280	80	100	20	40	20	40
6	18	72	48	60	12	4	2	4
7	18	72	48	60	12	4	2	4
8	144	576	384	480	96	32	16	32

Figure 4 Zone Trip Table
A-16

APPENDIX G

LAND-ACTIVITY DATA

\qquad
\qquad
\qquad

$$
\frac{\pi}{5}
$$

$$
\left.r^{2}+0\right]
$$

$$
1^{1}
$$

$$
\square \text { 㬝 }
$$

$$
1-5
$$

1966 LAND ACTIVITY DATA

OIST	CENT	POPULATION	DWELLING UNITS	$\begin{aligned} & \text { LABOR } \\ & \text { FORCE } \end{aligned}$	MEDIAN I NC OME	AUTOS REG． AT DORMITORY	TOTAL AUTOS	－－ーーー－ーEN MANUFAC－ TURING	PLOYMENT BY RETAIL	INDUST OTHER	TOTAL	STUJENTS IN HIGH SCHOOL or college
10		1851	802	760	6500		781		141	500	641	1899
11	24	909	330	448	9000		401		20	193	213	
12	25	260	106	130	9000		118			122	122	
11	26	920	283	354	9000		531		11	221	232	
11		2089	719	932	9000		1050		31	536	567	
12	27	745	270	238	12500		389		23	48	71	
12	28	248	86	86	12500		151		44	61	105	
12	29	788	292	313	12500	－	443		2	130	132	
12		1781	648	637	12500		983	＊	69	239	308	
13	30	882	294	325	12500		431		16	89	105	
13	31	683	22 L	252	12500		315			． 5	－ 8	－
13	32	389	126	147	12500		210		40	130	170	
13		1954	641	724	12500		． 956		56	227	283	
14	33	467	125	171	12500		205	24		21	45	
14	34	479	137 ．	194	12500		205	．	13	6	19	
14	35	274	103	125	12500		171			6	6	
1%	36	342	103	125	12500		137	428	81	105	614	
14	37	23	11	11	12500		11	61	13	73	147	
14	38	1140	274	319	12500		422	2	200	47	249	
14		2725	753	945	12500		1151	515	307	258	1090	
15	39	1135	427	488	12500		634	18	25	77 133	120	． 300
15	40	1342	366	439	12500		071	27	30	133	190	
15	\because	2477	793	927	12500		1305	45	55	210	310	300
16	41	357	107	－95	9000		190			44	44	
16	42	524	143	179	9000		262			5	5	
46	43	1321	417	488	9000		488		50	53	103	
15	44	643	262	321	9000		357					
16		2845	929	1083	9000		1297		50	102	152	
17	45	374	105	117	12500		199		2	3	5	
17	46	889	234	281	12500		374	12		4	16	
17	47	796	257	328	12500		421		38	3	46	
17		.2059	596	726	12500		994	12	40	15	67	
18	48	436	131	174	7500		251		14	51	65	－ 570
18	49	937	305	360	7500		534		12	10	7.3	

1404
-

1966 LANO ACTIVITY DATA

OIST	CENT	Population	DWELLING UNITS	$\begin{aligned} & \text { LABOR } \\ & \text { FORCE } \end{aligned}$	MEDIAN INCOME	AUTOS REG. at DORMITORY	total aUtos	$\begin{gathered} \text { MANUFAC } \\ \text { TURING } \end{gathered}$	PLOYMENT BY RETAIL	INDUST OTHER	TOTAL	STUOENTS IV HIGH SCHONL OR COLLEGE
18	50	55	55	55	7500		55	-		1126	1126	
18	51	382	207		7500	100	109			560	580	
18		1820	698	589	7500	100	949		26	1753	1779	570
19	52	1426	572	562	7500	200	799		5	400	405	2500
19		1426	572	562	7500	200	799		5	400	405	2500
20	53	3121	1275	133	1000	200	357		4	600	604	1500
20		3121	1275	133	1000	200	357		4	600	604	$i 500$
21	54	468	239	42	1000	-	42		2		2	
21		468	239	42	1000		42		2		2	
22	55	371	116	162	12500		209			2	2	
22	55	336	174	70	12500		209	16	4	153	173	
22		707	290	232	12500		419	16	4	155	175	
23	57	4202	2142	122	1000	700	867		39	699	738	3000
23		4202	2142	122	1000	700	867		39	699	738	3000
24	58	740	280	230	12500		330		31	57	88	
24		740	280	230	12500		330	-	31	57	88	
25	59	1516	121	223	1000	200	424		10	54	64	
25		$\cdots 1516$	721	. 223	1000	200	424		10	54	64	.. : \%
26	60	842	238	. 324	12500		346		2	- 39	. 41	
26	61	886	324	$\stackrel{454}{ }$	12500		475	69	62	137	268	-
26		1728	562	778	12500		821	69	64	176	309	
27	62	845	193	268	9009		364		56	92	148	
27	63	1541	482	610	9000	.	835		30	43	73	
27	64	$1: 56$	289	364	9000		460		10	7	17	
27		3542	964	1242	9000		1659		96	142	238	
28	65	604	148	212	9000		223			. 78	73	
28	66	180	42	53	9000		85			2	2	
28	67	297	53	85	9000		95	1		10	11	
23	68	159	42	74	9000		85					
23	69	254	117	170	9000		149		9	24	33	

```
            |-4
```


\qquad \square

1966 LANO ACTIVITY DATA

OIST	CENT	POPULATION	OWELEING UNITS	$\begin{aligned} & \angle A B O R \\ & \text { FDRCE } \end{aligned}$	MEOIAN INCOME	AUTOS REG. AT DORMITORY	TOTAL AUTOS	$\begin{gathered} \text { MANUFAC- } \\ \text { TURING } \end{gathered}$	LOYMENT BY RETAIL	inous OTHER	SOTAL	STUDENTS IN HIGH SCHOOL gR COLLEGE
28	70	212	95	127	9000		138	132	8	31	171	
28		1706	497	721	9000		774	133	17	145	295	
29	71	777	284	242	7500		284	25	5	84	114	
29	72	641	179	231	7500		305			38	38	
29	73	8:9	221	315	7500		29\%			1	1	- :
29		2237	684	788	7500		833	25	5	123	153	
30	74	1209	373	396	9000		520		13	80	. 93	
30	75	1062	339	407	9000		407	6	48	106	160	
.30		2271	712	803	9000		927	6	61	186	253	
31	76	757	249	271	6500		316	20		374	394	
31	77	1107	339	452	6500		441		3	41	44	
31		.1864	588	723	6500		757	20	3	415	438	
32	78	1714	773	694	6500		773		25	70	95	
32	79	717	224	202	6500		134	258	52	59	369	
32		2431	997	896	. 6500		907	258	77	129	464	
33	80	1550	492	566	6500		578	129	9	91	- 229	
33		1550	492	566	6500		578	129	9	91	229	
34	81	172	37	49	5500		25	406	67	476	949	
34	82	221	86	61	5500		25	752	127.	306	1185	
34	83							36	40	84	160	
34	84	554	123	172	5500		123	941		59	991	- -
34	85	935	258	320	5500		246		57	222	279	
34	86	1636	406	.566	5500		381	7	9	110	126	
34		3518	910	1168	5500		800	2142	300	1243	3690	
35	87	633	189	211	6500		189	49	20	67	136	
35	38	1010	233	265	6500	-	366			17	17	
35		1643	422	477	6500		555	49	20	84	153	
36	89	285	114	80	6500		91	25	200	121	346	
36	90	103	46	57	6500		23	192		46	238	
36	91	661	160	205	6500		228	1	2	- 78	81	
36	92	80	23	23	6500		23		3		3	
36	93	217	68	91	6500		68	127		176	303	
36		1346	411	456	6500	-	433	345	205	421	¢71	

1966 LAND ACTIVITY DATA

DIST	CENT	POPULATION	DWELLING UNITS	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	TOTAL AUTOS	$\begin{gathered} \text { MANUFAC- } \\ \text { TURING } \end{gathered}$	PLOYMENT BY RETAIL	INDUSTR OTHER	TOTAL.	STUDENTS IN HIGH SCHOCL or callege
37	94	1464	339	472	5500		351	2404	28	528	2960	
37	95							1210	11	59	1250	
37	96	133	36	61	5500		61	354	1	110	465	
37	97	133	36	24	5500		24	210	26	47	283	
37		1730	411	557	5500	.	436	4178	66	744	4998	
38	98	235	64	64	7500		75					:
38	99		6					2		22	24	
38	100									1	1	
39	101	396	150	214	7500		193		20	350	370	
38	102	310	96	193	7500		182			19	19	
33	103	171	64	107	7500		96		1	30	31	
33	104	310	75	107	7500		118		25	13	38	
33	105	749	193	257	7500		310	.		65	65	
33		2171	642	942	7500		974	- 2	46	500	548	
39	105	835	244	360	9000		413			54	54	
39	107	603	174	267	9000		325		6	37	43	
39	108	1264	313	394	9000		464		3		3	
39		2702	731	1021	9000	-	1207		9	91	100	
40	109	1010	344	400	9000		500	6	44	43	93	
40	110	833	233	355	9000		400			37	37	610
40	111	555	133	222	9000		289			10	10	
40		2398	710	977	9000		1189	6	44	90	140	610
41	112	- 740	640	92	6500	.	110			35	35	
41	113	750	200	372	6500		360	25	12	36	73	
41		1490	840	464	6500		470	25	12	71	108	-
42	114	253	95	- 105	9000		179		9	17	26	-
42	115	840	231	357	9000	,	347	7	4	78	89.	
42	116	200	74	105	9000		126					
42	117	641	179	252	9000		284	\because	17	75	92	
42	118	788	200	242	9000		263			77	77	
42		2732	779	1061	9000		1199	7	30	247	284	
43	119	627	228	319	9000		313		3	47	50	
43	120	125	57	68	9000		80			32	32	
43	121	809	205	202	9000		308	5		- 1	6	
43	122	604	182	251	9000		274			- 78	78	
43		2165	672	900	9000		981	5	3	158	166	
44	123	307	127	148	7500		127	2	10	84	96	

KALAMAZOGAREATRANふPORTATION STUDY
1966 LAND ACTIVITY DATA

APPENDJX H

VEHICLE TRIP PRODUCTIONS AND ATTRACTIONS BY PURPOSE

1966 LAND ACYIVITY DATA												
DIST	CENT	population	$\begin{gathered} \text { OHELLING } \\ \text { UNITS } \end{gathered}$	LABOR FORCE	MEDIAN INCOME	AUTOS REG. AT DORMITORY	total AUTOS	----N-EM MANUFACTURING	PLOYHENT BY RETAIL	INDUST OTHER	TOTAL	Students in HIGH SCHOOL op College
81	314	209	44	88	9000		88					
81	315	44	11	11	9000		11					
81		3113	880	1243	9000		1430	3	15	41	59	
-	retals	163392	51988	59089		1400	66773	28668	8474	31021	68163	15576

i
t f e fer

STAFF CREDITS

ALAN M. VOORHEES \& ASSOCIATES, INC. Transportation and Planning Consultants

Vice President in Charge
Project Manager
Project Engineer
Assistant Project Engineer
Assistant Project Engineer
Assistant Project Engineer
Programmer

Charles F. Barnes: Jr.
Richard V. Niemeier
William W. Mann
Joel A. Miller
Garold R. Thomas
Richard Smolenski
Robert M. Garsson

