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DESIGN CONSIDERATIONS FOR REINFORCEMENT AND JOINT SPACING 
FOR PAVEMENTS WITH SMALL-RADIUS CURVES 

At the request of W. W. McLaughlin, Testing and Research Engineer, 
the Research Laboratory Division inspected a transverse crack ina 17-ft 
pavement slab, located on a 100-ft radius curve intersection ramp at M 46 
and US 31 near Muskegon. 

The crack occurred approximately halfway between two joints which 
were spaced about 105 ft apart. The maximum width of this crack mea­
sured at the surface was 0. 2 in. 

Figure 1 shows the ramp with the approximate joint spacings, crack 
location, and surface width variation of the crack. Photos, including a 
close-up view of the crack, are presented in Figure 2. 

DETAIL 

Fignre l. Location of crack and approximate joint spaci.ng 
on interchange ramp. 
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Figure 2. Views of the crack in the small-radius curve pavement 
near the outside edge (left) and near the inside edge (right). 



The following analysis is concerned with the determination of an 
appropriate joint spacing design for pavements with small-radius curves. 
Equations are developed and a graph presented showing the joint spacing 
variation with the radius of curvature. This analysis is based on com­
parable reinforcing steel stresses found for straight pavements with joints 
spaced at 99-ft intervals, the current Departmental design practice. 

In this study, it is assumed that a slab segment of length L , is free 
at each end (at the joints), and is partially restrained from deformations 
caused by temperature change, shrinkage, etc., by the frictional resis­
tance of the subgrade. It is further assUmed that the volume changes which 
take place are uniformly distributed throughout the depth of the slab, and 
the coefficient of subgrade friction is constant and equal to 1. 5. 

First, consider a straight segment of length L , 1 ft wide and h 
in. thick, subjected to the friction force f per foot of length as shown in 
Figure 3. 
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Figure 3. Longitudinal cross-section of a straight pavement 
subjected to subgrade friction. 

If a crack occurs in the concrete at the center of the segment, assuming 
the tensile stress in the steel reinforcement resists the pull of the sub-

grade friction forces, then fs As= fi = ~~ X I X ~ X I. 5 , where fs 

is the steel stress, As the steel area, and W the density of the concrete. 
Taking w as 144 lb per cu ft, one gets 

f - 9hl - 9hl -
s - 7S:-;: - pA c -

9hl 
p X 12h 

= .75L 
p ' 

where Ac 
A 

is the concrete area and p is the steel ratio AS • 
c 
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For Michigan standard pavement reinforcement, L = 99 ft, and 
p = 0. 18 percent for deformed bar mats or 0, 16 percent for welded 

wire fabric. The corresponding steel stresses would be 

-· 75(99) f5 (bar mat) - • OOIB = 4 I , 3 00 psi 

and 
. 75 ( 99) 

fs (wire fabric) = • 0016 = 46,400 psi. 

Now consider a circular segment of length L , and width b , sub­
jected to the tangential friction force f per foot of length as shown in 
Figure 4. These forces are balanced by the radially distributed force 
q per foot of length, set up by subgrade friction and the resistance of 

the adjacent shoulder material. 
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Figure 4. Circular pavement subjected to subgrade friction. 
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For equilibrium 

[~ f s1n e dl = 1~ q cos e dl. 

Since dl = Rde, 

f 144xhxbxl.5 
18 hb = = 

12 
and 

18 hbR.l$ sin e d e 

q = 

R 1$ cos e d e 

Integrating, one finds 

= 18 hb (I- cos <ll ) • 
q Sin <ll 

Now consider a free body of half of the segment (Fig. 5), again assuming 
the concrete has cracked at the center. The steel resists the tension 
ca1.1sed by the normal force and moment set up by the subgrade frictional 
forces f and q . 
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Figure 5. Free body of half 
the circular segment. 



For cqLtilibrium 

N =[~ fdl cos e t- 1~ qdl sin e or 

1<1> ( I - cos <I>) 1~ 
N = 18hbR cos e de + 18hbR . "' sin 

o Sin 'I' o 
e de. 

Integrating, one finds 

= 36 hbR (I- ~OS<!>) lb 
N Stn <I> 

also 

M = l~(fdl cos e+qdL sin e)R(I-cose) 

+ 1~ (qdl cos e- fdl sin e)R sine, 

or 

2 r [< 1- cos <I> , 
+ 18 hbRj

0 
sin ct> ( sin e cos e) -sin 2 e J de . 

Integrating and reducing, one gets 

M=IShbR 2 (2-2 cos.<!l-<!l sin$) _. 
srn <li lb ft, 

or 

2 ( 2- 2 cos <P- <P sin <P) 
M = 216 hbR sin <I> lb-in. 

For standard bar mat reinforcement, consisting of 3/8-in. deformed 
bars spaced at 7 in. , the section modulus for a width of 17 ft would be 

I 2 X (.II) 49 L (I)~+ ( 2 )2
+ ( ~ )2 + ( 4 )2 + ... + ... (I 4 )2 = 112. 3 c = 98 Ill, 
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For standard wire mesh reinforcement, consisting of 00 gage wires 
spaced at 6 in., tho section modulus for a width of 17ft would be 

1._= 2x(.086)(36) [(.5)2+ \1.5)2+ \2.5)2+ ... + ... (16.5) 2 _ 
102

. 
3 c 9 9 - Ill. 

The maximum tensile steel stress will occur on the first bar .or wire 
at the inside edge of the curve. This stress will be 

_ _tL + _M_ = 36 hbR ( I- cos <!>) 
fs (barmat) -PAc IIC (.0018)(12bh)sinljl 

+ 216 hbR2 ( 2-2 cos cp- <1> sin cp) 

1 112sincp 

or 

fs (bar mat) = 1667 R (I- COS$) 
Sin ¢ 

+ 1. 9 hbR2 (2-2 cos rp- ¢sin¢) 
sin¢ 

and 

fs (wire mesh) 
36 hbR ( 1- cos<!>) 

= .,::\ .70 70 ._.:I 6:.-oH""12o7b.:,...h ,_) -=-:....:s i-n '-'<I> 

+ 216 hbW (2-2 cos ¢- <1> sin <1>) 

102sin<l> 
or 

fs (wire mesh) = 1875 R ( I -COS <I>) 
Sin 4> 

+ 2 . I h b R 2 ( 2 - 2 cos ¢ - rp sin <!> ) 

sin <1> 

Considering the average steel stresses for bar mat and wire mesh 
reinforcement, the steel stress would be given by 

fs = 1770R \ I - cos <P ) + 2 hbR 2 \ 2-2 cos ¢ - II> sin <1> ) • 

Sl n rjJ Sin <I> 

In order for this stress to be comparable with the average steel stress 
found for the straight pavement fs = 43, 800 psi. 
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For the case where b ~ 17 ft and h ~ 9 in. , f s would be given by 

f s = 1770 R ( I - cos <P) + 306 R 2 ( 2. - 2 cos <P - ill s 1n 4J ) 
Sin <!> Sin ill 

105 
For R ~ 100ft, L ~ 105ft, <P ~ zoo ~ . 5250, sin <)l ~. 5012, 

COS tl> ~ • 8653, and 

f - 1770(100)(1-.8653) 306(10000) [2-2(.8653)-(.525)(.5012)] 
s- (.5012) + .5012 • 

or 

fs = 4 7,4 00 t 381+00 = 85,800 psi 

which is greater than the ultimate tensile strength of the steel. 

R L "' 70 . For ~100ft, ~70ft, 'I'~ 
200 

~ .3500, Sin 4J ~.3429, 

COS ¢ ~ . 9394, and 

fs = 
1770 ( 100)( 1-. 9394) 306(10000) [2 -2 (.9394 )-( .35)( .3429) J 

.3429 + .3429 • 
or 

f5 = 31,300 + 10,700 = 42,000 psi. 

Thus for a 100 ft radius curve, with h = 9 in. and b = 17 ft, and 
using standard pavement reinforcement, the joint spacing should be about 
70 ft. For the intersection ramp with a joint spacing of about 105 ft. , the 
maximum steel stress could possibly exceed the ultimate tensile strength 
of the steel. 

For h = 9 in., b = 17ft, and standard pavement reinforcement, a 
graph based on the above equations, showing the appropriate joint spacing 
and curve radius variation, is presented in Figure 6. This graph shows 
that the minimum radius of curvature, for which a standard joint spacing 
of 99 ft could be used, is around 500 ft, corresponding to a degree of 
curvature of about 11. 5°. As the curve radius decreases below this value, 
the joint spacing should decrease also, to maintain the comparable steel 
stresses occurring in straight pavements. 
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Figure 6. Joint spacing and curve radius variation. 

This analysis is not intended as complete design criteria for rein­
forcement on small-radius curve pavements. The formulation of the· 
equations presented here is based on average stresses occurring in the 
slab as representative of a beam rather than a plate. Also, the assumption 
concerning the constant coefficient of friction is conservative, as this 
value actually varies with the slab movement. This analysis is rather a 
simplifying comparison between straight and curved pavement segments, 
and points out the increased steel stresses occurring on the inside edge 
of the curve as a result of the curvature and resulting frictional forces. 

On the basis of this analysis, for intersection ramp curves of 100-ft 
radius, 17 ft wide, and 9 ln. thick, provided standard reinforcement is 
used with a constant steel ratio across the width of the slab, the joint 
spacing should be about 70 ft. If it would be desirable for the joint spacing 
to be an integral number of reinforcement mat lengths, a joint spacing of 
71 ft 2 in. corresponding to five standard 15-ft mat lengths should be 
satisfactory. 
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