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Introduction

Very often highway research and testing require the simultaneous mea-
surement of interrelated variables. For example, the gradationtest of 22A
aggregate measures the percentages passing the 1-in., 3/4-in., 3/8-in.,
and No. 8 sieves and the percentage loss-by-washing. How would one con-
duct experiments to collect this kind of data for the purpose of designing an
in-place acceptance sampling plan? Of course, the complete literature on
univariate acceptance sampling plans is readily available; unfortunately,
however, this literature provides very little information about designing
multivariate acceptance sampling plans. This could be because the statis-
tical theory is quite complicated in the multivariate case. In addition to
the theoretical difficulties, considerable practical difficulty could be en-
countered in computing the probabilities pertaining to complex distributions
such as the multinormal. Although many different numerical integration
methods can be used to compute single integrals; they are time-consuming
in the multivariate problems often encountered in highway technology. In
these cases, the methods of simulation would be of considerable value. In
order to compute probabilities involving, for example, the multinormal
distribution by simulation, we need a 'fast' computer program for generat-
ing normal variates.

It is well known that the normal distribution can be obtained, through a
defined equation, from the gamma distribution. Moreover, the chi-square
and Erlang distributions are special cases of the gamma distribution. In
the field of traffic engineering, many variables appear to be distributed ac-
cording to the Erlang distribution. For example, the distribution of gaps
in a major traffic stream intersected by either a minor street or an en-
trance ramp is known to be Erlang. The angle of vehicle encroachments
off roadways and on to shoulders was found to be gamma. distributed. The
distribution of the time between two vehicles entering a roadside inspection
station, for safety or emission control purposes, could be Erlang if the
headway between two vehicles on the roadway is exponentially distributed
and a special sampling procedure isused to select vehicles for inspection.
To design suitable ramp metering systems and inspection programs, many
criteria have to be checked using the available data. Quite often this task
is very difficult because the explicit solution isnot known. In this circum-
stance simulation is usually used toobtain the approximate solution. This
means that a 'fast' computer program for generating gamma variates ig
needed, and could be very useful in highway research.

The major purpose of this report is to present an algorithm for writing
such a computer program. Six practicalexamples in highway research and
testing are presented to demonstrate the need forthis computer program.



Tistings of a FORTRAN computer program based on techniques presented
inthis report together with users'instructions are included inthe Appendix.

Example 1 - Aggregate Gradation Distribution

Let X, i=1, 2, 3, and 4, be the percent passing the 3/4-in., 3/8-in.,
and No. 8 sieves, and the percent loss-by-washing, respectively. For the
purpose of designing a meaningful acceptance sampling plan, it is neces-
sary to know the aggregate quality produced by the manufacturing process.
Specifically, if a random sample is selected from a truckload of aggregate
produced by a manufacturing process set at thetarget value #j,i =1, 2, 3,
and 4, with the variation described by the covariance matrix X, what is the
probability that the aggregate gradation of this sample will fall outside the
specification limits ? The above question can be expressed in the following
equation: '

P:1-Pp(Li<X;<Uj, i:1,2,3, and 4)

Uy »Us ~Ug ~U.
- lf lf 2f 3[ 4 dF (Xl, Xo, X3,X4) 1)

Ly "Lg "Lg "Lg

where F is the joint distribution of Xy, X9, Xg, and X, L; and Uj are the
respective lower and upper specification limits, i =1, 2, 3, and 4, and P
is the product guality.

In order to compute P defined in Eq. (1), the first step is to specify
the joint distribution F. For this purpose, 369 data points of (Xj, X9, X3,
X,) were collected from anaggregate pit. These data are then analyzed as
follows: :

a) For demonstration purposes we transform Xj to Yy, i =1, 2, and
3, defined as the percentage retained on the sieve corresponding to the in-
dex i. The empirical frequency distribution, F;, ofeach ¥;, i=1, 2, and
3, is then obtained.

by We plot the empirical distribution ﬁ]_(y) of Yy in Figure 1. It seems
that ﬁ‘]_(y) is a normal distribution. To verify this, we use the Lilliefors
testing procedure (Normality Test) to test the null hypothesis that the 369
obgervations of Y; wereobtained from a normal population with unspecified
mean and variance. The Lilliefors'test statistic, Ty, is defined as:

- 2
To: Max | Fy(yyi)-N(y1;: ¥, S%) @
i

! Conover, W. J., Practical Nonparametric Stafistics, pp 302-305.
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Figure 1. The empirical and fitted distribution of the aggregate
percentage retained on the 3/4-in. sieve. .

where yp; is the ith largest observationof Y;, ¥q(vyj) is the observed fre-

quency distribution at yii, y and 82 are the sample mean and variance,
respectively, and N(yy4; ¥, Sz) is the value of the normal distribution (with
mean y and variance S2) at yi;.

With the help of a computer program that computes the standard nor-
mal distribution, we find that T9 = 0.0547. This value causes us to reject
the above null hypothesis. This conclusion makes sense considering the
skewness of the data. :

We note that To can be manually computed using the standard normal
table. However, the computation would be very time-consumingif the num-
ber of distinguishing points is large.
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¢) Due to the skewness, we define F1 as follows:

O if y=0 _
Fy(y)- { N(v:m.62) if O<y <100 (3)
1 if v >100

The above distribution is then used to fit the empirical distribution, thé.t
is, we would like to estimate p, and ¢;” in the sense that SSR-=

" 2
I [Fl(yli) -K (yli):] is minimal. With the help ofa non-linear curve fitting
1

computer program and a standard normal distribution subroutine, we find
that 4; = 2,72959 and 0'12 =4.5569. The fitted result is also plotted in Fig-
ure 1. :

We note that it would not be feasible to estimate #; and 0;° by the least
squares criterion without a standard normal distribution computer pro-
gram.

d) Now, we would like to test the null hypothesis that the 369 observa-
tions of Y1 were obtained from a population that has a distribution Fy, de-
fined in Eq. (3), with parameters #; = 2.72959 and 0}® = 4.5569. We use
the Kolmogorov goodness of fit test? to test this null hypothesis. The test
statistic D, is defined as,

Dp - Max Fy(v11) - F(yy3) 4)

Again, with the help of a standard normal distribution computer program
we obtain D, = 0.033005 which strongly suggests that 369 data points were
sampled from a population distributed according to Fy defined in Eq. (3)
with parameters mj = 2.72959 and ¢ = 4, 5569,

e) Repeating the above steps on Yo, Y3, and Y4, we conclude that the
distribution function of Yi, 1 =2, 3, and 4, assumes the same form as Yy
does. Moreover, F;j(0) fori=2, 3, and 4 is so small that F;{y) can be
treated as N(y:py, eri'z). We shall only present the empirical and fitted
distributions of Y3 in Figure 2.

f) Repeating the above procedures on the data set obtained from the
original data set by deleting those observations of (Y1, Y9, Yg, Y4) such
that Y{ = 0, we conclude that Fi(y),i=1, 2, 3, and 4, can be well approxi-
mated by a normal distribution with some parameters u, and a'iz-

2 Conover, W. J., Practical Nonparametric Statistics, pp 295-298.




g) The above procedures are also used to show that distribution func~ .
tions of Y1 -+ Yy, Y3 +Yq, and Yy +Yg, etc., are also normal.

In order fo show that Y1, Yy, Y3, and Y4 have a multinormal distribu-
tion, one would have to show that every non-trivial combination of Y3, Yo,
Yq, and Y4 has a normal distribution. Thus, it is not feasible to prove
rigorously that Y, Yy, Y3, and Y, have a multir_lorma,l distribution. How-~
ever, the above analyses strongly suggest that ¥4, Y5, Yg, and Y4 condi-
tioned on Y4 > 0, and Yo, Y3, and Y, conditioned on Yy = 0, have multi-
normal distributions. This statement can also be checked byusing the chi-
square test procedures. Weend this section by noting that it is not feasible
to perform the above analyses without a standardnormal distribution com-
puter program.

Example' 2 - Aggregate Sample Size Selection

We are interested in knowing how many scoops should be taken from
~ various locations of a truckload of aggregate to form a representative com-
posite sample. To answer this question, we present the following conser-
vative method.

Let X3, =1, 2, . . ., k, be the measurement of the jth component
of the ith random sample, wherei=1, ..., M. InExamplel, the jth
component will be the sieve size corresponding to index j, the ith random
sample could be the ith scoop from a truckload of aggregate, the M will be
the minimal number of scoops required to form a representative sample.
Let #j be the mean of Xij and I be the covariance matrix of Xij= j=1,. .
. , k. Denote

$ LY
17 M i1 M) (5)

ij is the sample mean of the jth component, which ig an unbiased estimate
of the population mean Bj. We wish to have

Pr(|}_§j—uj|a5dj,jzl,...,k)=1—q (6)
where d; is the chosen margin of error for the measurement of the jth com-~

ponent and « is a small probability (risk). Equation () can be rewritten
as:

B (mliJ—uli smdi,}=1,,k)=1“a
L 15 Y
where 6j; is the (ij )th element of the matrix x.



Usingsimultaneous confidence interval techniques the required sample
size M is found to he: %4

o 2

[T dzj

2
where X &k is the 100 d upper percentage point of the chi-square distribu-
tion with k degrees of freedom.

We note that Eq. (8) was obtained under the assumption that Xijs j=k,
. « «, k, hag a multinormal distribution. If the normality assumption is
violatedand M determined by Eq. (8) is laxrge enough toensure the normal-
ityofX., j=1,. .., k, accordingtothe Central Limit Theorem, M would
be the required sample size. Otherwise, we should use the sample size
required by the Central Limit Theorem or determined by other methods.

The sample size M determined by Eq. (8) is a conservative number in
the sense that

In case the sample size determined by Eq. (8) is too large for practical
consideration such as manpower and testing cost, etc., the sample size
can be chosen as the smallest number satisfying Eq. (9). To do this, a
computer program calculating multiple integrals with a multinormal dis-
tribution function integrand is needed. That is, we need a computer pro-
gram to compute,

P: Py (| Xj-nj]sdj.51,...k)
oy +dy pe+dy (10)
fewa d]-;"(X},...,Xk;ul,...,ﬂk,r/M)

p-d; gy -dy

where F is the multinormal distribution with means'dj, j=1, ..., Kk,
and covariance matrix 1 /M.

As mentioned before, numerical integration methods used for comput-
ing single integrations would be very time-consumingfor the case of multi-

3 Morrison, D. F., Multivariate Statistical Methods, MecGraw-Hill Book
Company, 1967.

4 Anderson, T. W., An Introduction to Multivariate Statistical Analysis,
John Wiley and Sons, Inc., 1958,




ple integrals such as those defined in Eq. (10). An alternative approach is
the simulation method described below.

a) Generating a uniform random number Py in [0, 1), we obtain xq
such that Py = 'y (X1 M1, ¢ 11/M), where Fy is a normal distributionwith
mean 44 and variance 0" 1/M.

b} Given Xj = x1, (Xg, . « - ,» Xg) has a multinormal distribution with
mean Mjl j =2, . . . , k and covariance matrixi/M, where

J138 Mz
( >=< \ +Eg (= )/ 0y (11)

iy iy

£'=(6})) = Lon - X5 T1of/ 0t 12)

0y L
L= (13)

Lg; Iop
c) Generating a uniform random number P2 in (0 1), we obtain x2
such that Po = ¥2(x2; uz, 13 11/ M), where Fois a normal distribution with

mean M9 and varzance ¢ 11/ M and ¢°11 isthe 1, 1) element of the covari-
ance matrix £,

and

d) Repeat steps a) through c) to obtain X5, j=3, ...,k

e) Check to see whether pj - dys x5 m5 + di forevery j=1, . . .,
k. If yes, add 1 to W which is defined as the number of simulation points
such that |}'§j —yj|$ dj, j =1, ..., ke

f) Repeat steps a) through e) L times, L is the number of simulation
points.

g) The P defined in Eq. (10) is then equal to W/L.

By repeating the above procedures for various values ofdj, i=1, . .

, kand M, one can obtain a family of curves as shown in Figure 3. In

Tigure 3, a is the fraction of the predetermined numbers ej, i=1, . . .,

k. Figure 3 can beused to determine various sample sizes and their res-

pective error marging all giving the same risk probability. ¥rom this set

of plans, one can choose in practical terms the most suitable plan for the
experiment.




We note again that the above task can only be accomplished with the
help of a computer program that would find the solution of the equation
P=Fx:u, a"z)where P isthe given probability and F is the normal distri-
bution with parameters p and 0 2,
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Figure 3. The relationships among the confidence coeffi-
cient {(a), the margin of error and the sample size. This
is a hypothetical graph for the demonstration purpose.
Jﬁ_fij—uﬂ < a.ejfﬁ
e T

Example 3 - Apgregate Product Quality Determination

P-P; j=1,..k)

The ideal distribution of in-place aggregate is such that the aggregate
gradation of every spot meets the specification. To ensurethat the accept-
ed project has a high degree of uniformity, we should adopt an inspection
plan of so-called "acceptance sampling by attributing, " such as the single.
sampling fraction defective sampling plan or Wald's truncated sequential




probability ratio plan. These plans require that we specify the producer's
risk (¢), the consumers risk (g), the acceptable product quality level (Fy)
and the rejected product quality level (Pg)-

By using the simulation method described in Example 2, we can com-
pute the product quality P defined in Eq. (1) corresponding to various tar-
goted aggregate gradations. The results for a chosen I are presented in
Table 1. By knowing the acceptable aggregate gradation, one can choose
the proper P from Table 1.

TABLE 1
RELATIONSHIP OF AGGREGATE GRADATION
- AND PRODUCT QUALITY

The Targeted Aggregate Gradation(uy, po, By, py) Product
Percent Pagging Sieve Quality,
3/4-in. 3/8-in. | No.s§ | 0Ss-By-Washing P
100.00 85.0 50.0 8.0 0.671
08.256 82.5 47.5 7.5 0.402
97.50 80.0 45,0 7.0 0.149
96.25 TT.5 42.5 6.5 0.043
95, 00 75.0 40.0 6.0 0,018
93.75 72.5 37.5 5.5 ©0.064
92.50 70.0 35.0 5.0 0.224
91.25 67.5 32.5 4.5 0.503
90.09 65.0 30,0 4.0 0.810

Again this table can be constructed only with the help of a computer
program which solves the equation P = F(x; u, 7 2) where P is the given
probability and F is a normal distribution with parameters p and 62,

Example 4 - Median Barrier Collision Probability

The question of median barrier installation at a particular location is
complicated by the considerable doubts expressed inthe literatureas to net
safetybenefits. In general, it is acknowledged that anybarrier, sufficiently
strong to contain high velocity impact, is itselfa hazard. Therefore, engi-
neers are cautioned as tothe complex, "trade-off' nature of decision making
in this area.

-10 -




In orderto perform cost and benefit analyses onmedian barrier instal-
lation, one would have to compute the following basic probabilities:

a) Theprobability Py that a vehicle encroaching onto the median would
collide with the median barrier if the barrier is installed s feet away from
the edge.

b) The probability Py that a vehicle encroaching ontothe median would
collide with vehicles on the opposite roadway if there isno barrier between
the roadways.

~s—————— ROADWAY

ENCROACHING
PATH

MEDIAN — =

1
ROADWAY ——F»

Figure 4. Theangle of the encroachment and the corresponding
maximum lateral distance reached by the vehicle.

To compute the probability specified in a), we need to know the distri-
bution, G{(g), of the encroachment angle ¢ and the conditional distribution,
Fg (v), of the maximum lateral encroachment distance, y, given that the
encroachment angle is 6 . The graphical explanationof ¢ andy is presented
in Figure 4. If these two distributions are known, the probability Pg de-

fined in a) is,
I @© :
Py =f2 f dF, (y) 4G () (14)
f=0 v ¥y=s

* Hutchinson, J. S., and Kennedy, T. W., '"Median of Divided Highways-
Frequency and Nature of Vehicle Encroachments, ' University of Illinocis,
Engineering Experiment Station Bulletin 487, 1956.

-11 -




Based on the Hutchinson and Kennedy data®, we found that G(g) is a
gamma distribution with parameters d = 1.63083 and 8= 5.63424 and F, (v)
agrees with the normal distribution for v > 0. The empirical and fitted
G(#) are presented in Figure 5. The probability Py (defined in b) takes a
more complicated form than Eq. (14). However, both G(¢) and Fy (y) are
also needed in computing Py3.

.0

G &
W

ol | ] 1 l
0 i0 20 30 40 S50

0, THE ANGLE OF ENCROACHMENT

Figure 5. The empirical and fitted distributions of the
roadside encroachment angles, G{qg).

As one can see from the discussion, a computer program that computes
normal and gamma probabilities is needed toobtain the best fit of G(g) and
Fg(v)- After we obtain G(¢) and Fg (y), we must compute Pg and Ppy.
Again, simulation probably isone of the best ways to compute Eq. (14). A
computer program that generates normal and gamma. variates is required
for this purpose.

- 12 -




Example 5 - Entrance Ramp Merging Operation

Suppose that the distribution of headways between two vehicles entering
an entrance ramp ig described by fy, where ¢ is the arrival rate. These
vehicles are obliged to yield to the freeway traffic, forming a single line
and waiting for successive vehicles at the head of the line to merge. It may
be assumed thata ramp vehicle waitingto merge assesses each time gap t in
the traffic on the outside lane of the freewayuntil it finds an acceptable gap
T. This gap length is assumed to be of sufficient length to allow safe en-
trance onto the freeway. The time delay of this model has been investigated
by many researchers. We denote hQ to be the distribution of time delay
encountered by 4 ramp vehicle in merging position with Q denoting the ex-
pected time delay. It isapparent that the entrance-rampmerging operation
is within the realm of classical queueing theory.

Thus, the literature of queueing systems can be used to analyze the
'performance’ of an entrance ramp. Unfortunately, the explicit solutions
of queueing systems are known only for some forms of f. and hn. When
the explicit solutions are not known, simulation techniquesare usuallyused
to obtain approximate solutions.

The traffic engineering literature indicates that the time gaps of the
traffic stream in the outside freeway lane can be characterized by the Er-
lang distribution. In this situation, a computer program that generates
gamma variates isneeded either toevaluate the performance ofan entrance
ramp or to properly design entrance ramps.

Example 6 ~ Roadside Vehicle Inspection Program

Consider the design of a roadside safety or emission level inspection
program in accordance with the following two objectives; first, maximize
the number of vehicles inspected in a fixed period forthe funding available;
second, minimize the delay time of each vehicle inspected.

In order to design a roadside inspection program that satisfies the
above requirements, we must know the following:

a} inspection procedures

b) distribution of inspection times

c¢) sampling procedures thow vehicles are selected from the traffic
stream for inspection) .

d) estimated efficiency of each inspection station.

-1 -




This information would be used to compute the following three probabilities:

Py: Fora roadway of traffic volume ¢ anda given sampling (selecting)
procedure, the probability that there are more than N vehicles entering the
inspection station within a fixed time period.

Py: Conditioned on more than N vehicles entering the inspection sta-
tion within a fixed time period, the probability that at least N vehicles can
be inspected with one inspection line, and with two or more parallel lines.

Pg: If more than N vehicles are inspected within a fixed period, the
probability that the number of vehicles delayed more than W minutes is no
more than L.

The product of the above three probabilities ig the probability that an
inspection station is able toinspect at least N vehicles within a fixed period
and the number of vehicles delayed more than W minutes is no more than
L. This informationalong with cost information can then be used, with the
help of an optimization procedure, to design an 'optimal' roadside inspec-
tion program.

The problem at this point turns on the computation of the above three
probabilities. Although this problem is within the realm of queueing theory,
obtaining an explicit solution depends on the traffic pattern, sampling pro-
cedure, inspection discipline, and the distribution of inspection times.
Most likely, this problem could only be solved by simulation. As noted be-
fore, many traffic variables are gamma distributed. Thus, a computer
program that generates gamma variates will be an essential tool in design-
ing this program.

We have used six practical examples in highway research and testing
todemonstrate the usefulness of a computer programthat generates normal
and gamma variates. In the remaining sections we sghall discuss the algo-
rithm for writing such a computer program.

Gamma, Norma.l, and Chi-Square Distributions

The gamma distributions with parameters g and g is defined as

. 1 24 _ -
G(Via,ﬁ)= W[) Xd le-®/B ax (15)

where d >0, 8>0 and y=0 and where I'(@) represent the well-known gamma
function defined as

T () =f xd-leXdgx (16)
]

-14 -




When c(!1s an integer, G(y; |, g|) defined in Eq. (15) can be expressed as
the sum of the finite series:

-1 GyB)"

Gly.«.8) = 1- e"'/ﬂg o a7

When 0(;! is not an integer, we may use the Taylor expansion of the exponen-
tial function, and express G(y; a|, 8|) as the sum of an infinite series:

G(y’ d’B)F::gi a’n. \ : (18)
where |
L nt 1 (672 M -
w0 T r@ wnor R T b 9)

Define M* fo be the least integer that is greater than y/g \+ 1. Thatis,
M*:Min{n;nz y/B+1} / (20)

It can be shown that {an;n = M*} is an alternating sequence with the fol-
lowing properties: ' '

| &na | 's | ar;l for‘everyg n>M%* \ ' (21)
and

an-o as n—»«:\ (22)

It is well-known that any alternatmg sequence with propert1es (21) and (22)
implies the following useful inequality. ,

o

N
n"z an
nzl

nzl iiifcnr every N 2 M*

Inequallty (23) states that G (y; c(] BI) defined as the sum of the first N
terms of the sequence { a,,} is an approximation to G(y; al, 31) with error
no more than the absolute value of ayy 4 1. Thus, if E\ is an acceptable ap-

proximation error and if N is chosen to be the larger integer of 1\/[”< de-
fined in Eq. (20) and k*, defined ag

R
K = M1n{ Tore 2 se}/ 24)

|
A B N :
then, G(y; q, 8 !) = ¥| apis an approximation to G(y; o« f) with errorno

] 1'}. = 1
more than € I .

-15 -




The chi-square distribution is a speecial case of the gamma distribu~

tion. More precisely, G(y;n/2, 2) is the chi-square distribution with n
degrees of freedom.

It is well-known that, for any y = 0,

y T .
f‘!% e-x2/2 dX = %G(yz;o‘sgz) / . (25)
(8]

Thus, the distribution function N(y) defined as, )
Q.5 - %G(y2;0.5,2)' L V<0
N(y) { - (26)
0.5 + —;-G(y2;0.5,2) | V>0

is the standard normal distribution.

This c¢ompletes the computational formula for either computing or ap-
proximating the gamma, normal, and chi-square distributions. In the next
two sections, we shall discuss the iterative procedures needed in solving
the equation P = G(y; ac' ) where P is a specified probability.

An Iterative Procedure for Fmdmg a Gamma Variaie

For any 0 € p< 1, we are interested in solving the equation
P:G(y:a,8) e

One method of solving Eq. (27) is called the 'iterative procedure' which
can be outlined in the following two steps: 1) obtain the initial approxima~
tion of the solution, and 2) repeatedly improve the approximations until the
desired degree of accuracy is obtained. The details follow.

Step 1) Obtaining the Initial Approximation of the Solution

. Denote Hy \and 0¥ }to be the mean and variance of the non-negative ran-

dom variable Y, respectlvely The Cantelli Inequahty states that for any
R Z 0,

Define

2

= B o
Pr(YS”Y“)‘)SF;;;F l (28)

If Y has the distribution Gly;a,8), oy= « 8|and o“Y?ng,z.i By setting
. ap?

P:|~——=- , Weobtain A= [apE(1-D)/P
i qBE.’.Ag{l J

= ., —-‘ 2 —
Vi Max {0 ap—/ap?(1 P)/P_. 29)

0o |




It is apparent that yy1 < y*; the true solution of Eq. (27).

By the simple transformation W =y/g, we find that G(y:a,B) =
G{y/8; «, 1). Thus, by using the decreasing property of the negative ex-
ponential function, we have the following inequality:

/B vi8 «
o1 o - i - NS 7/ Rhalll
G(V‘“'ﬂ"‘m?f xd-1 e™*dx < rm'[ XTI = Favy  (30)

o
If we let yjo be the soiution of p = (v/8)%/T'(a+ 1), that is,

V=8P T(a +1)]1/a (31)
Then, again yqo<y*. Now, define y; to be the maximum of y15 and ¥y

defined in Eq. (29) and Eq. (34), respectively. The yq is a underestimate
of the true solution y* andis tobeused asthe initial estimate of y*inStep 2.

Step 2) 'To Improve the Initial Estimate

ILet P1 = G(v1; 4,8 )- Aga,in, by using the decreasing property of the
negative exponential function, the following inequality holds for any y = yi.

G(yid. )~ P = = Y atedx < ] e‘“/ﬁ[w/ﬂ)“"(y/m“} (32)
yid. B8 1= T () T(a+1) 1
(yif8)

Set the right-hand side of Inequality (32) equal top - py and denote yy to be
its solution, we have

A »
Yz =‘*[‘P‘P1’ L(d+1)e% + m/ma] (33)

It is easy to check that y; < yo € y*. Now, treating yy as the initial esti-
mate of y* and repeating the above procedures, we obtain

] 1/a

Va2 =8 [LP~P2)1‘ca+1)eV2/B + (yp /80" (34)

By repeating the above iterative procedure we construct an increasing se-
quence { y;} with the following properties:

a) y; Sy, i 21
. 1/ G (e s
b) ¥ 41 =8[(P-Pi)r‘cd+1)eV1/B +cyi/s)“} / where Pj=G(yj;a,8)

¢) y,~>y* asi>o
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The number of iterations required to obtain yy such that y* - vy <e¢
can be substantially reducedif the initial approximationis good. Obtaining
a good initial approximation is the subject of the next section.

An Approximation Function of the Inverse of G{y;; «.8 )

Letp = G(y; a.8 )and y =T(p; a,8 )for 0 £ p < 1. SinceG(y; a,8 ) =
G(y/B ; &, 1), we have the following relation:

H (P;a,8) = gH (P;d, 1) (35)

IOOJ
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Figure 6. The relationship hetween the gamma variate and the
parameter « when 8 = 1.
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In order to find the approximation function of H(p; a, 1), a computer pro-
gram was written based on techniques presented in the previous two sec-
tions to generate data consisting of various values of p, ¢ and the corres-
ponding y. A partial data set is presented in Figure 6. The functional re-
lation between y and a is almost linear when P is close to 0.5 and ap-
proaches an s-curve when p is some distance from 0.5. Thus, foreach
fixed p, y = a + ba® could well describe the relation bhetween y and a. A
non-linear curve-fitting computer programwas then used tofit the generat-
ed data to determine the best coefficients for 17 selected p-values. The
results are presented in Table 2 for 0 < ¢ £ 20 and Table 3 for a > 20,

TABLE 2
THE FITTED COEFFICIENTS a, b, AND ¢ OF THE EQUATION
y =a +ba® FOR 0<.dlj-<.. 20

P a b c Standard Exrror
0.010 ~0. 368840 0.193453 1. 364790 0.0728
0.020 -0.401263 0. 244240 1.311010 0.0679
0.030 ~0.419850 0. 281988 1.277970 0.0644
0. 040 -0.434117 0.313220 1.253970 0.0614
0. 050 -0.442727 0. 340560 1.234840 0.0590
0,100 -0.467346 0.446127 1.174570 0.0498
0.200 -0.470211 0.605737 1.108750 0. 0320
0.300 -0.433872 0.736681  1.064950 0.0219
0.400 -0.379534 0.863192 ©  1.031340 0.0105
0.500 -0.310705 0.993767 1.001810 0.0029
0.600 -0.195109 1.127820 0. 976080 0.0066
0.700 -0.046760 1.283350 0.950197 0.0146
0.800 0.194695 1.469830 0.923979 0.0231
0.900 0.642609 1.738140 0.892864 0.0327
0.950 1.128570 1. 964630 0.871034 0.0388
0.975 1.632310 2.164600 0.854310 0.0451
0.995 2. 863550 2. 556870 0.826947 0.0509
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TABLE 3
THE FITTED COEFFICIENTS a, b, AND ¢ FOR THE EQUATION

y=a +ba® FOR a, > 20

P a b c Standard Error
0.010 ~2.945360 0.521921 1. 096020 0.0277
0.020 ~2.762260 0.568521 1.083100 0.0243
0. 030 -2. 625400 0. 599105 1.075250 0.0219
0.040 -2. 523630 0.623322 1.069290 0.0212
0.050 -2.435650 0.643476 1.064520 0.0191
0.100 -2. 082150 0.714516 1.048970 0.0144
0. 200 ~1.564780 0. 805747 1.031340 10.0098
0.300 -1.150276 0.876921 1.018940 0. 0063
0.400 -0. 743587 0.939213 1.009030 0. 0042
0.500 -0.329996 1. 0600000 1. 000000 0. 0000
0.600 0.118335 1. 062230 0.991392 0. 0036
0.700 0.626079 1.132350 0.982270 0. 0057
0.800 1.293260 1.215700 0.972270 0. 0084
0. 900 2.296960 1.337770 0. 958865 0.0126
0.950 3.221920 1.442310 0. 948437 0. 0157
0.975 4. 088400 1.536170 0.939768 0.0174
0.995 5.988710 1.725150 0.924052 0.0222

By plotting a, b, and ¢ versus p in Figure 7, we see that it is feasible to
express coefficients as some functions of p. Denote ap, bp, and cp as co-
efficients of the equation corresponding to p. Thus, we have

v =8(ap +bpd®),a>0,8>0 and O< p<1 (36)

Since our goal is to obtain a good initial approximation of the solution
and it is also practical to build Tables 2 and 3 into a computer program,
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we present the following method for determining the coefficients of Eq. (36).

Observe that any segment of curvesin Figure 7 can be well fitted by a
polynomial function of second order. That is, the following simultaneous
equations are locally valid;

ap = t; +t2p +t3p? (37)

bp = W+ WD + W5D? (38)
and

Cp= Vi+ VoD + VD2 : (39)

The procedures for determining t;, W; and V; are as follows:

a) Find three consecutive p's either from Table 2 or Table 3, say pj,
po andPg, covering p. That is, py< p< pgand py< pa< pg.- In the case
that p < 0.01 or p > 0.995, we choose the first or last three p's, respec-
tively.

b) Use Table 1 or Table 2, depending on the value of «, to obtain (p1,
CIN 1), Ps; a.pz) and (psg, a.pg). These three points are then used to deter-

mine a polynomial equation of second order. That is, t; = det(A;), i=1,

2, and 3, where A is the matrix defined in Eq. {40), A, is the matrix ob-

tained from A by replacing the ith column with (a.pl, ap_» A )t, the super-
2 3

script t denotes the transpose of the vector or matrix, det denotes the de-
terminant of a square matrix. Wj and V; are obtained similarly.

t jo P
A=|1 P, P3 (40)
1 p, Pl

c) Once ti, Wi and vV, are determined, aps b,,, and ¢,, are then deter-
mined from Eqgs. (37) through (30). Consequently, y is then determined
from Eq. (36).

The v obtained by the above procedure is very close to the solution of
the equation p = G(y;a,8). Denote y{ to be the y-value obtained from
these procedures and py = G(vq; a,8 ). If p; < P, we use yj as the initial
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a.pproxirﬁ-a‘tion to find the solution by the iterative method described in the
preceeding section. If P > P, then

V18

ep =1 o-1 5% 1 -YUB o _ o
PP = g ” x%-le®dx > Tiqen © uB | (y,8)" - (y/8) @1)

Set the right-hand side of Eq. (41) equal to P - P and denote yg to be its
solution, that is, :
1fa
Y2=B[(YI/BJd—(1’1~P)P(c(+1)ey1’3] @2)
then, it can be shown that yg £ y € yq. Moreover, ¥ will also be very
close to the solution. In this situation, the curve between Yo and yq is al-
most linear. Define

“( ) P —G'(YQ;G:B)
¥ = tVi-%a Gy, ;a,8) - G(y,;:a,8) (43)

Since G(y; a,8 ) is an increaging function of v, y2 < y3 < y1. Repeating
the above linear interpolation byusing either (v5, yg) OT (Yg» ¥1) depending
on the location of y3, we would be able to obtain the approximation to the
solutions within the desired accuracy in very few interations.
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APPENDIX

A FORTRAN COMPUTER PROGRAM FOR
COMPUTING PROBABILITY AND GENERATING
RANDOM VARIATES FOR THE GAMMA,
NORMAL AND CHI-SQUARE DISTRIBUTIONS
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Based on thetechniques presented earlier in this report, we preSent a
FORTRAN Computer Program which is designed to perform the following
tasks:

a) To compute the probability that a gamma, normal, or chi-square
random variable x lies between @y and @,. That is, to compute,

8, .
P:Pr(6,<X<0,) f f(x)dx (A-1)
(.

where f is the gamma density function with parameters a and 8, the nor-
mal density function with parameters g and ¢ or the chi-square density
function with N degrees of freedom.

b) To find the solution of the equation,

P:Pr(Xs 0) (A_z)

for a given probability P, where x is a gamma, normal, or chi-square
random variable.

This program has three subroutines: GAMM, BEGIN, and SOLVE. The
subroutine GAMM will compute the probability that a gamma random vari-
able is less thanor equal toa given non-negative quantity ¢. The approxi-
mation error is no greater than 0.00000000060001. The subroutine BEGIN
will obtain the initial approximation of E¢. (A-2) based on techniques pre-
sented in the last section of the report. The subroutine SOLVE will im-
prove the approximations until the desired accuracy is achieved. The de-
sired accuracy is setat 0.0000001. Thatis, if |f3 - P] < 0.0000001, where

=Prx =< S\r), fris taken as the solution of Eq. (A-2). The convergence
criterion can be easily changed in this subroutine. Thus, users are en-
couraged to use different convergence criteria to fit their needs.

This program can handle many sets of computations defined in a) and
b) in one run. Each set is specified by two data cards or records. The
input is diagrammed in Figure A-1 toshow the format and logic used. De-
finitions are presented in Table A-1. The structure of the read statement
and the format used are given so that users can construct a data file to fit
their problem.
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READ ICHO
12

& & .
READ THETAI, THETA2, ALPHA, BETA
4 F 10.4
READ THETA! THETAZ2, ND v
‘ . s COMPUTE GAMMA PROBABILITY
2F104,110
i P
COMPUTE CHI-SQUARE READ THETAI, THETA2, XMEAN, STDV
PROBABILITY 4 F 10.4
= A &
READ PROB, ALPHA, BETA —
i v e COMPUTE NORMAL PROBABILITY
Fi0.7 2 F 10.4
& i >
FIND THE GAMMA YES p| READ PROB, ND
VARIATE F10.7, 110
A
- - |

READ PROB, X MEAN, STDV | YES FIND THE CHI- SQUARE

FI10.7. 2 F 104 VARIATE
| I | .
FIND THE NORMAL
ERRO
VARIATE R
» |

Figure A-1. Flow chaxt of the input systems.
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TABLE A-1
DEFINITIONS OF VARIABLES

Name Definition
ICHO Types of Computation
1 - for computing the gamma. probability
2 - for computing the chi-square probability
3 ~ for computing the normal probability
4 - for finding the gamma variate
5 ~ for finding the chi-square variate
6 - for finding the normal variate
7 - to stop the computer run
ALPHA The parameters of the gamma. distribution
BETA © paramet gamma
The parameter (degrees of freedom) of the chi-square
ND s b Tds
distribution
XMEAN The mean of the normal distribution
THETA. 1 The lower limit of integration
THETA 2 The upper limit of integration
PROB The given probability _
The standard deviation of the normal distribution

STDV
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1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
icid
1015
1016
1017
1018
1019
1029
1021
1022
1023
1024
1025%
i026
1027
1028
1029
1030
1631
1032
i033
1034
1035
1636
1037
1038
10%¢
1040
1041
1042
1043
1044
1045
1048
1047
1048
1049
1950
1051
1052
10983
1054
1055
10586

F
F

8 8 24 § 2 8 & ¥ @

# ¢ 9 B & & & 8 %

ILE
ILE

100

200

204

220

249

300

© DATA

Program Listings

1eWHK/GEN/DATALUNITIDISK, BLOCKINGB1S,RECORDE14

220UTYNTT

8PRINTER

DIMENSION PRULA),COEF(2,17,3)

COMMON PP,

COEF

DATA (PPLI),121,18)/0,01,0,02,0,03,0,04,0,05,
0,15062,0,5,0,8,005,0,6,0,7,0,8,0,9,
0695,0,975,0,995,1,0/

wO,QlQSSﬂ,
=0, 442727,
=}, 470211,
=0,379534,
=w0,195109,
0,194695,

2.86%5%50,

V.193453,
0,281988,
0,340560,
0,605737,
0.,863192,
1,127820,
1,96983%0,

2,5568740,

6,923979,

0,826947/

l(CDEF(!pI!J};JalaS)llalpl?)/
1,364790,=0,401263,
1,277970,%0, 034417,
1,234840,90 4867346,
1, 10675¢0,=0,433872,
1,031340,20,316705,
0,97T6080,=0, 006760,

0,bU260%,

DATA ((COEF(2,1¢J),J81,3),I21,17)}/

'2,9“5360 §
=2 6254050,
“2,“35650;
w‘|56“780'
w0, 743587,
0,118335,
i,2932690,
3.221920,
5.988T710,
NSE T&d
CONTINLE
NSET=NSET+
WRITE(2,7)
READ(1,9)

0,521921,
0,599105,
0.6434876,
0,B05747,
0,93921%,
1.062230'
1,215709,
1,442310,
1,725154,

1
NSET
itHO

1.096020"2.762269'
1,075250,2,523630,
1, 0604520,=2,082150,
1,031340,%1,15027¢,
1,009030,<0,329996,

0,991392,
0,972270,
0,948437,
0,924052/

0,626079,
2.,296960,
4,088400,

0.2&4240!
0.313220,
0,446127,
0,736681%,
0.993767,
1,283350,

1311010,
1.,853970,
1017“570’
1,064950,
1,001810,
0,950197,

1, 738140, 0,B%92864,
1,128570, 1,964630, 0,871034, 1,632310, 2,164600, 0,854310,

0,568521,
0, 623322,
0,T145164,
0,87692%1,
1.000000,

$.,083100,
1,069290,
{1, 048970,
in!BQQQ!
1.000000,

1.132350, 0,982270,
1,337770, 0,958865,
1,536170, 0,939768,

GO TD (100,200,300,800,500,600,9999),ICHD
READ({L-105)THEYA L » THETAZ, ALPHA,BETA
WRITE(2,120)ALPHA.BETA

GO To 204

READ(1,205) THETAl,THETAZ,ND

WRITE(2,20
AlLPHAEND /2
BETA=Z,
CONTINUE

"IF(THETAL

WRITE(2,21
60 TQ 9999
CONTIMNUE
IF(THETAI
WRITE(2,23
GO T0 9999
CONYINUE

2)ND

WGE, U,) GO TOQ 220

a}

lLEG
%)

THETAZ) GO TO 240

CALL GAMM(THETAL,ALPHA,BETA,PROBL)

PROB=PRORZ

=PROB1L

CALL GAMM(THETAZ2,ALPHA,BETA,PROB2)

WwRITE(2,299) THEYAL,THETAZ,PROB

GO 70 1

READC(E,105) THETAL, THETAZ, XMEAN,8TDYV

WRITE(2,302) XMEAN,STDV
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304

400

500

518

600

9999

Program Listings (Cont.)

IF(THETAL LE, THETAZ) GO TO 304
WRITE(2,239)

G0 Y0 9999

CONTINUE

ZIB(THETAL=XMEAN)/STYDY

I2e (THETA2=XMEAN)Y/STDV

ZZiaZinwp

TI23724%D

ALPHARD,S

BETAmZ,

CALL GAMM{ZZ1,ALPHA,BETA,PROB})
CALL GaMM(ZZ2,ALPHA,RETA,PROB2)
PROB=PROBL+PROBR

IF(Z2 .LE. 0,) PrROB=PROAL=PRORB2
IF(Zt .,GE. 0,) PRUBaPROB2<PROBY
PROBePROB/2,

WRITE(2,299) THETAI,THETA2.PROB

G0 Yo 1§ .

READ(1,405) PROB,ALPHA,BETA
ARITE(2,120) ALPHA,RETA

G0 Tp 418

READC(1,505) PROB,ND

WRITE(2,202) ND

ALPHABND/2,

BETA=2,

CONYINUE

CALL BEGIN(PROBsALPHA,BETA,T1,T2,P1,P2)
¥THa{

IFlT2 GE, 0,) MTH=2

CalL SDLVE(MTH.TIvTanPi;PE,PROB;ALPHA:BETA;THET&)
WRITE(R2,520) PRORTHETA

60 ToO i

READ(L1,405) PROB,XMEAN,STDY
WRITE(2,%02) XMEAN,§TDV

ALPHABO,S

BETAs&, D

IF(PROB LY., 0,5) PRRE2,%(N,5=PROB)
IF(PROB ,GE. 0.5) PRB22 ,%(PROB=0,5)
CALL BEGIN(PRA,ALPHABETA,Ti,T2,P1,P2)

MTHEY

IF(T12 .GE, 0,) MyH=2

CALL SOLVE(MTH,T1+¢72,P1,P2,PRB,ALPHA,BETA, THETA)
TYHRTHETA®#0,5

IF(PROB 17, 0,5) THETAZXMEAN=STDVRTTH

IF(FROB ,GE, 0,5) THETAEXMEAN4STOVETTH
WRITE(2,520) PROB+THETA

&0 10 1

CONTINUE

sTop

Cowdduptndal FORMATS Hubnsiswiw

FORMAY (/,2X,QHEEFSE SET, 13, 1%, SHERERE, /)
FORMAT (12)

FORMAT (4F10,4)
FORMAT (2X,22HGAMMS DIST WITH ALPHAB,E{S.6,/,19X,
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1114
11135
1116
1117
1118
1119
i120
i121
1122
1123
1124
1128
126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
11414
1142
1143
il14d
1148
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
i158
1159
1169
i1el
1162
1163
1164
1165
1166
1te7
1168
1169
1170

208
205
210
239
299
502
L]
40%
505
520

Program Listings (Cont.)

SHRETAZ,EIB,.6)

FORMAT (2X,26HCHI®SQUARE DIST WITH D.F,
FORMAT (2F10,4,110)

FORMATY (/;2Xs29HTHETA] SHOULD BE NON=NEGATIVE./)

FORMAT (/,2X,36HTHETAZ2 SHOULD BE GREATER THAN THETAL:/)
FORMAT (/:2XeSHPRUB{,/ELO U4,3H 5 ,E10.,4,3H 18,F30,25,:/)
FORMAT (2Xs22HNORMAL DISYT WITH MEANS,E15.6,/,19X%,
EMETNVE,F15,6)

FORMAT (FLO.T,2F10,4)

FORMAT (F10,7,11p)

FORMAT {/'EX'SHPRUQZ'EISpr/!EXp

194 THE RANDOM vARIATE2E1546)

¢ 16)

Co KHHAGNREYBHRGHYER AR B REEARRERY

cw
Cw

END

C= REHHE SUBPQUTINE REGIN smsdy

C=

L4

Ce

SURROUTINE BEGIN(PROG,ALPHA,BETA, THETAL, THETA2,PROBLPROKR)
DIMENSTON PP(18),CnEF(2,17,3),CONST(3),AA(3,3),8B(3,3),ula),
EUC3)

COMMON PP,COEF

Cmiigutonus

c-
c-
C=
(o}
Ew
L=
Cw
(o]
L=
c-
CG
(o]

SUBROUTINE FOR CUMPUTING THE INITIAL THETA OR THETA INTERVAL
FOR THE ITERATIVE HROCEDURES OF FINDING THE THETA SUCH THAY
THE PROBABILITY OF & GAMMA R,V, (WITH PARAMETERS ALPHA &
BETA) LESS THAN Op EGQUAL TO THETA 18 PROB,

THE FOLLOWING FIGURFS ARE COEFFICTENTS A,8 8 C OF THWE EQUATION
THETAZA+R*ALPHAX R

FOR EACH P AND TWD SETS OF ALPHA RANGES, THESE FIGURES SHOULD

BE DEFINER I THE MAIN PROGRAM OR THE CALLING SUBROUTINE, THE
FIRSY FIGURE I§ P=vaLUE, THE NEXT THREE FIGURES ARE AsB,C FOR
THE GCORRESPONDING P AND ALPHA INBETWEEN 1 & 20, THE LASY THREE
ARE FOR THE ALPHA IN THE RANGE OF 20 Y0 100,

c-
C=
Cw
Ce
Le
L=
Cw
w
Ce
(=
Ce
[l
C-
C-
C¢
c-
c-

0 .N10,=0,368840,
O.DEDp‘O.HOIEbS,
0.030,20,419850,
Ve 080,=0, 4341187,
0.950,“0.“&2727,

0,100,=0,467346,

},200,=0,470211,
0,300,=0,433872,
0,400,=0,379534,
0,500,=0,310705,
D.600,%0,195109,
G.700,‘0,0&6760,

0,800,
0,900,
0.9%0,
0,975,

N, 194695,
0,642609,
1.128570,
1.,632310,

C= 0,995, 2.8635540,
CogHinknsnany

C=

THETA22=99,

0,193453,
fe24424y,
n,25851988,
n.313220,
Ne3%0560,
N 46127,
306057379
Q.?sbbal'
0,R63192,
N,993767,
1.127820,
1.283350,
1.,4698%5,
1,73814d9,
1.964530,
201064500,
2.556870;
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1.364790,=2,945360,
1,311010,=22 762260,
1,277970,=2,625400,
1,253970,=2,523630,
1,234840,=2,435650,
1,174570,=2,082150,
1.10675%0,=1,564780,
1,0649%n,=1,150270,
1.,031340,=0,743587,
1.90!3‘0|’0¢329996|

0,976080,
0,950197,
0,923979,
0,B92864,
0,871034,
0,854310,
h,B2694T,

0,1168335,
0,626079,
1.293260,
2.296960,
3.2219240,
4,088400,
5.988710,

0-521921!
0.,568%21,
0.50#105,
0,623322,
N, 643476,
0.7145164
0,805747,
0,876921,
0,939213,
§,000000,
1,062230,
1.1323%0,
1,215700,
1,337770,
1,442310,
1.536170,
1,725150,

1,096020,
1,083100,
1,075250,
1,069290,
1.,064520,
1,048970,
1,031340,
1,018940,
1,0090630,
1.,000000,
N,991392,
n., 982270,
0’972270'
0,958865,
0,948437,
N,939768,
0,920052,




Program Listings (Cont.)

i171 GMEAN®=ALPHA=BETA

117 GVAREGMEANWBETA i
1173 ALPHALBALPHA4L 0

1174 GALPHA=ALGAMACALPHAYL)

1178 Cognifs VARIOUS METHODS ARE USED TO OBTAIN THE BEST INITIAL

1176 = ESTIMATE DOF YHE THETA FOR THE ITERATIVE PROCEDURE

1177 Cotdity METHOD(I)memCANTELL] INEQUALITY

1178 T080,

117¢ HisGVAR® (] ,=PROBY/PROB

1180 TI2GMEAN=SART (w1)

118l Cottfifid METHOD(2)wweMONDTONIC PROPERTY OF THE EXPONENTIAL FUNCTION
1182 W12 {ALOG(PROB)+GALPHA) /ALPHA

1183 T2BRETA®EXP (W)

1184 THETAL#AMAXLI(TO0,T1,T72)

118§ Cafiil METHOD(3)wa=pEGRESSION EQUATION

1186 ISETm}

1187 IF (ALPHA ,GF, 20.0) ISET=2

1188 po 20 J=1,18

1189 IF (PROB LE. PP(J)) GO TO 25

11990 2n CONTINUE

1191 2% ANERES BN

1i92 IF (JJ EQ, 0)JJadded

£193 IF (JJ Ed,: 18)JJBJJai

1194 IF (JJ oFne 1TYJIIEJI)=2

1195 Copksd JJ IS THE BEGINNING INDEX OF THpEE POINTS USED To DETELMINE
1196 Cw 4 POLYNOMIAL EQUATION

1197 DO 30 131,33

1198 AT, 1)81,0

1199 po 35 Jaapl

1200 AACT, J)ePP(JI¢T=t)na(Jul)

1201 35 CONTINUE

igo2 o CONTINUE

i2ol DO 37 1Aai.3%

120¢ DO 38 Te1,3

1205 , JisJJelwt

1206 CONST(I)BCOEF(ISET,JI,14)

1207 DO 39 J=l,}%

1208 BB (l.J)BAA(I, D)

1209 19 CONTINUE

i2io LY CONT INUE

1211 JPad

1212 a0 CONTINUE

i213 IF (JP ,EG. 4) GO TO 100

iels D0 50 I=zt,3

1219 BBLI,JPYBCONST(L) -
1216 50 CONTINUE 3
1217 Jejpst |
i218 IF (J .GE, 4) 60 To 120

1219 DO 60 Im1,3

1220 BB(I,JY=an(l,J%

1221 60 CONTINUE

1222 Ceggads COMPUTYE DETERHINANT OF A 3 X 3 MATRIX

1223% 100 CONTINUE

1224 ucJey=o,

1225 DO 110 I=1,3

1226 Azl 0

f227 DUe1.0
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i228
i229
1230
1231
1232
1233
1234
1235
1236
1237
12358
1259
1240
1241
i242
1243
1244
1243
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
12%6
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
igve
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

120

130

17

135

Program Listings (Cont.)

D0 §120 Jmi,3d

Jigld=J

Kafe el

IF (K (GT, 3) K3K®=3
AUBAU®RB (Kg.J)
DUsDURBR(K,J1)
CONTINUE
UCIRIZU(IP) +AU=DY
CONTINUE

JPeJPe=}

IF (JP GE., 1) Go 7O 490
DO 130 I=1,3

UCTIsUI) /u(d)

CONTINUE
EUCTA)SUCL)+U(R)=PROBE(Z)aPRORA%P
CONTINUE

T38(EUC1)+FUCR) *ALPHARRE(3)I*BETA
IFETY .6T. THETALIGOD TO 135

CALL GAMM(THETAL ALPHA.,BETA,PRORE)
RETURN

CONTINUE

Coph#p# CHECK TO SEE ¥3 IS5 AN OVERESTIMATE

142

=

CALL GAMM{T3,ALPHA,RETA,PRUOBY)
IF(PROBL .GT, PRAB) GO TO t42
THETA1=T3

RETURN

CONTINUE

THETA2=TY

PROB2EPROGI

ATaALOG (PROBZ=PROBISGALPHA+TI/BETA=ALPRA®ALOG(TI/BETA)
ATT2EXAP(AT)

IFCATY 67, 1,) ATT=1,

T4a (1mATTIRR (1o /AL PHAYRT]

IF(T4 6T, THETA1) THETAI=TL

CALL GAMM{THETAL AL PHA,BETA,PROBL)
RETURN

END

Ce afisd# SUBROUTINE SULVE es&aes

L=

1000

2000

SUBROUTINE SOLVE(MTH,T1,T2,Pt,P2,PBsALPHA,RETA, THETA)
THEYA®=D,

IF(PR LE, 0,) GO TD 299

ERROREN,0D0UDNE

IF(MTH EQ, 2) Gn Tp 2600

ALIBALPHASL 0

GI13ALGAMACALY)

THETASBTY

CONTINUE

CHECKEABS (PE=PY)

TF(CHECK LLE, ERRUR) GO YO 9%9

AT=ALOG(PB=P1 )4G1+THETA/RETA=ALPHA®ALOG(THETA/BETA)
THETASTHETAS(EXP(ATY+1,0) %% (1, /7ALPHA)

CALL GAMM{THETA,ALPHA,RETA,P1)

GO To 1¢00

COMTINUE

THETABT I+ (PE=P1)/(PRabl1}a {T2=T1)
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Program Listings (Cont.)

§28% CALL GAMM(THETA-ALPHA,BETA,PP)

1286 CHECKZABS (PB=PP)

1287 IF(CHECK oLE, ERRUR} GO TO 999

1288 IF(PP ,GE, PB) GO0 To 2950

1289 ‘ TileTHETA

1290 Plapp

1291 GB YO 2000

1292 2030 Y2aTHETA

1293 p2EPP

1294 60 To 2060

129% 999 CONTINUE

1296 RETURN

1297 END

1298 Cw

1299 C= #efss SUBROUTINE GAMM #laps

1300 €=

1301 SUBROUTINE GAMM(UL,ALPHA,BETAL,,PROR)

i%02 ‘DOUBLE PRECISION AA,BR,CC,WORK,ARC,SUM, TERM,CHECK! ,CHELK2
1303 e DD, GG, HH

1304 IFCUL 6T, 0,) GO To 2

$1305 PROB=O,

1306 RETURN

1307 2 CONTINUE

1308 BETA=2.0

1309 YHETARU|#B8FETA/BETAL

1310 NLBALPHA

131 BLEsALPHA=N|

1312 AbBBL#t,

1383 BBsRETA

1314 CHECK1=20,0000000000001

1315 ABC2YHETA/BETA

i3ie GG2DEXP(=ARC)

1317 IF(ar .67, 1,) GO TO 4

1318 HHEABE

1319 boet,

1320 WORKzl ,=GG

1321 IFINL ,G6T, 1) GU TO 100

1322 PROBBWORK

1323 RETURN

i324 4 CONTIMUE

1325 DDEDGAMMA {AA)

1326 HHEABCH%AA

1327 WORKezY 0

1328 IFC(THETA LT, 52,0) GO YO t05% ;
1329 IF(THETA ,GE., 58,¢) GO VO 105 -
1330 IF(as ,LE, J1s2) GO 7O 105 :
1331 TFC(AR JLE. 1,3 JAND, THETA ,GE, 53,0} GO YO 108
1332 IF(AA o LE, 1,6 AND, THETA ,GE, 54,0) 60 TO {05
1333 IF(AR ,LE, 147 AND, THETA ,GE, S55,0) GO To 108§
1534 TF(AA (LE, 1.9 oAND, THETA (GE, 56,0) GO TO t05
13355 IFCAA (LE. 2,0 oAND, THEYA .GE, 58,0) 60 70O 108
1336 Cw

1337 Co RUNBRAYRURRURAAUUREUNNURURRERHY
1338 C= NMIN IS THE MINIMAL NUMBER OF TERMS IN TAYLOR SERIES NEEDED

1339 C= Y0 COMPUTE THE GAMMA INTEGRATION,
1340 Co HUSHABAUGHUEEEHABRNERBRRRUPEREY
1341 Ce
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1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1386

Program Listings (Cont.)

1055 CONTINUE

10

L=

NMINBARCYL ,

131

WORKzHH/ (DD*AA)

SLMEWORK

121+

CHECKR2=Iw],

CCeAA+Iiml,

YERM2(CC=1,)/ (CCACHECKZ) #ARCH (=],
WORKEWORK®TERM

CHECK2=DABS (WORK)

SUMBSUM+KORK

TF(T LT, NMIN OR, CHECK2 .GE. CHECKL) GO TO to0
WORK=eSUM

Cw BHEAHSHURBURBEGYREGRAGURERBRE

[
Eu
(=

THE I=vALUE AT THIS STEP IS THE NUMRER OF TERMS IN TAYLOR
SERIES USED TO APPRUXIMATE THE GAmMA INTEGAL 80 THAT THE
MAXIMAL ERROR 1§ NO MORE THAN SPECIFIED GUANTITVY=ERROR,

Com HARHHUSBHSGHBBHRILERRRGRARRENEE

L=
105

100

101
200

CONTINUE

IF(NL oE@, 1) GU FO 240
IFENL 46T, 1) GO T0 100
CCeABCH2 {AA=1,)2G06/DD
WORKaWDRK4CC

IF{WORK 6T, 1.} WORKal,
GJ TO 200

NLBNL =t

DO 101 Jei,NL

RR=DD%AA

AAmAAYY,

CCerHsGL /DD
KWORK2WORK=CE

HHzHH*ARC

CONTINUE

PROBeAORK

RETURN

ENDG
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1069
1019
1029
§0%9
1049
1039
1069
1079
1089
1099
1409
1119
1889
1139
1149

§
68,0000

giosseeéo

6,0000
0,9000000
3

" =18,0000
3

o 1.1000
35'6?8000

Input Data.

1,785%
§,6060
t,iseﬂ

21,3000

2,2000

06,0000

=87 -

8,0000
1,0000
5

0.0000
850000
i,0000

1,0000

t,0000
1,0000




Cutput

#uHUH SET | gesgd
GAMMA DIST wWITH ALPHaAm +ON0BOVESN]
BETaA= fJUOQO0E+D]
PROB (O, ¢ o 17BSE+0t )= 0,035367565%92940006000000000

#Eadg SET 2 Huwin

GAMMA DIST WITH ALPHAS= s BO00QUFT0]

BETA= d1D0GOVESG
PROB= 2 350000F=0t
THE RANDOM VARIATE= o1 THO3ZIE4 U

RaERy SET 3 miHnd
CHI=SQUARE DIST WITH D,F, ]

PROB (0, ¢ o1150F+01 )= 0,0%04167019808000000000000

Reddy SET 4 #ndun

CHI=SQUARE DIST WITH D.F, 5
PROB= LIDO00NES0N
THE RANDOM VARIATE= 0 F236306FE 01

HEukE SET 5 wéken

NORMAL DIST WITH MEANS O,
SThve o TUDDQUESOY

PROB(e,150CE¢N2 ;, =»,13UNE+O1 )= U,0968004R45856000000000000

Beud SET o woany

NORMAL DIST WITH MEANE o,
§TDve S100GPOE+0]

PROB{ ,1100F301 , L2200FE+01 )= Ua1217626134310000060000000

BugEs SET 7 weddw

NORMAL DIST WITH MEANS= Qe
§TDvs HONGOLEYOY

PROB= < F6TBOOE+ON
THE RANDOM VARIATES S LHUGHOE 411

#awan SET B ankus
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