

CENTER FOR STRUCTURAL DURABILITY AT MICHIGAN TECH

Assessment of ODOT Culvert Load Rating Spreadsheets for use in Michigan FINAL REPORT

 MDOT no RC-1590 CSD-2012-012Michigan Technological University 1400 Townsend Drive
Houghton, MI 49931

Theresa M. Ahlborn, PhD, FPCI
Director, Center for Structural Durability Michigan Tech Transportation Institute Associate Professor, Civil \& Env. Eng

Christopher G. Gilbertson, PhD, P.E.
Research Engineer, Center for Technology \& Training Michigan Tech Transportation Institute

John A. Kiefer, P.E.
Research Engineer,
Center for Technology \& Training
Michigan Tech Transportation Institute
Timothy K. Colling, PhD, P.E.
Director, Center for Technology \& Training Michigan Tech Transportation Institute

September 30, 2012
Revised: January 23, 2013

Technical Report Documentation Page

1. Report No. Research Report RC-1590	2. Government Accession No.	3. MDOT Project Manager Steve Kahl, P.E., Bradley Wagner, P.E.	
4. Title and Subtitle CSD - Assessment of ODOT Culvert Load Rating Spreadsheets for use in Michigan		5. Report Date September 28, 2012 Revised: January 23, 2013	
7. Author(s) Dr. Theresa M. Ahlborn, Dr. Christopher G. Gilbertson, Mr. John A. Kiefer, Dr. Timothy K. Colling		6. Performing Organization Code Michigan Tech University	
9. Performing Organization Name and Address Center for Structural Durability Michigan Technological University 1400 Townsend Drive Houghton MI 49931-1295		8. Performing Org Report No. CSD-2012-012	
12. Sponsoring Agency Name and Address Michigan Department of Transportation Construction and Technology Division PO Box 30049 Lansing MI 48909		10. Work Unit No. (TRAIS)	
		11. Contract Number	
		11(a). Authorization Number	
15. Supplementary Notes		13. Type of Report and Period Covered Final Report	
		14. Sponsoring Agency Code	
16. Abstract			
Existing spreadsheets developed by the Ohio Department of Transportation (ODOT) for performing bridge load rating calculations on corrugated metal pipe culverts were assessed for their adherence to reference guides and then modified as required to function with Michigan legal and overload trucks.			
17. Key Words: Bridge Load Rating, Culverts, LFR, LRFR		18. Distribution Statement No restrictions. This document is available to the public through the Michigan Department of Transportation.	
19. Security Classification (report) Unclassified	20. Security Classification (Page) Unclassified	21. No of Pages 48	22. Price

Report RC-1590

ACKNOWLEDGEMENTS

This project was financially supported by the Michigan Department of Transportation. The authors would like to thank the members of the Michigan Department of Transportation (MDOT) that helped make this project successful, including Project Manager Mr. Steve Kahl, P.E. and Mr. Bradley Wagner, P.E., for their guidance and suggestions. The authors especially wish to thank Mr. Bradley Wagner and Mr. Jacob Armour for their exhaustive efforts in condensing the numerous Michigan legal and permit vehicles into a summary table of controlling vehicle loads.

DISCLAIMER

The content of this report reflects the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This report does not represent the official policy or position of the Michigan Department of Transportation. This document is disseminated under the sponsorship of the Michigan Department of Transportation in the interest of information exchange.

TABLE OF CONTENTS

Background 2
Task 1 - Literature Review 2
Task 2 - Spreadsheet Assessment and Adherence to Reference Guides 3
Task 3 - Michigan Modifications 5
Task 4 - Trial Runs 8
Task 5 - Final Report and Deliverables 9
Future Work 9
References 10
Appendices
A. Sample Spreadsheets Appendix - 1
MDOT_CMP_LFR.xlsx Appendix - 1
MDOT_CMP_LRFR.xlsx Appendix - 6
MDOT_CMP_LRFR_modified_minimum_cover.xlsx. Appendix - 12
B. QA/QC Notes Appendix - 18

Background

The project "Assessment of ODOT Culvert Load Rating Spreadsheets for use in Michigan" was a short time-frame project funded by the Michigan Department of Transportation (MDOT) through the Center for Structural Durability (CSD) at Michigan Tech. The objective of the project was to assess existing spreadsheets developed by the Ohio Department of Transportation (ODOT) for performing load rating calculations on corrugated metal pipe culverts using both Load Factor Rating (LFR) and Load and Resistance Factor Rating (LRFR) methods. The spreadsheets were assessed for their adherence to reference guides and then modified as required to function with Michigan legal and overload truck descriptions. The project did not investigate the suitability of the technical process used in the ODOT spreadsheets to produce reasonable load rating calculations. Significant structural and programing changes to the spreadsheets were considered outside the project scope. Details on the work performed for this project are described in the following sections of the report.

Task 1 - Literature Review

The technical basis of the ODOT spreadsheets references "Load Rating and Structural Evaluation of In-Service, Corrugated Steel Structures" (NCSPA 1995) and the AASHTO Standard (AASHTO 2002) and LRFD (AASHTO 2010) specifications. The spreadsheets were developed around these references and have been tested through finite element and field testing as described in "Verification of ODOT's Load Rating Analysis Programs for Metal Pipe and Arch Culverts" (Sezen, H. et. al. 2009).

ODOT and The Ohio State University conducted a detailed assessment on the culvert spreadsheets through finite element model comparisons and field testing (Sezen, H. et.al. 2009). 39 in-service culverts were assessed as part of the project. Both static and dynamic loads were applied to the culverts, and deflection and strain gage measurements were taken at several locations within each culvert. Loading was accomplished with a heavily loaded truck representative of an HS20-44 at 10 static load points and 6 dynamic load speeds ranging from 5 to 40 mph or the maximum legal speed. Each test was conducted twice with the load applied once from each direction. An instrument frame was setup inside the culverts to measure the displacement at 5 locations along the upper circumference of the culvert and 14 strain gages were installed (Sezen, H. et. al. 2009).

Numerical modeling of the culverts was performed using CANDE, a two-dimensional finite element program typically used for corrugated culvert analysis. A Level 3 analysis was performed in the study which allowed for user defined geometrical shapes, soil material zones, and structural properties (Sezen, H. et. al. 2009).

Results of the field testing showed that a significant decrease in deflection and strain measurements was found when the culverts contained more than 6.5 feet of cover. Maximum deflections caused by dynamic loading were found to be 10 to 30% less than the corresponding static loading. Soil type is generally not considered when conducting a load rating on a culvert, the effect of soil type on thrust forces was found to be negligible (Sezen, H. et. al. 2009). Specifically with regards to the spreadsheets, the researchers found:

For the worst possible culvert condition (i.e., the reduction factors have the minimum possible values for each culvert), proposed rating factors (RF) are smaller than ODOT's RFs and are also less than 1.0 for most culverts. This suggests that the research-proposed load rating procedure is less conservative and more effective in evaluation of the existing condition of culverts.

It was suggested that the ODOT spreadsheets be improved by incorporating condition factors, based on inspection reports, to reduce the seam and buckling strengths and wall area when determining the thrust capacity of the culvert. The ODOT spreadsheets do not contain version numbers or build dates and information was not available to identify if recommendations for change to the spreadsheets were incorporated.

Task 2 - Spreadsheet Assessment and Adherence to Reference Guides

The ODOT culvert load rating spreadsheets were compared to the AASHTO Standard and LRFD Specifications and the Michigan Bridge Analysis Guide (2009). The basic principles of load rating were met along with the load factors. The general procedure used by the ODOT spreadsheet is that described by the NSCPA (1995) report.

The ODOT spreadsheets consider loading from one vehicle on the culvert and limit the width of the loaded area (transverse to the direction of travel) to the length of the culvert. Individual wheel loads are distributed from the tire contact area downward in a pyramid shape with side slopes of 1.75 times the depth of cover for the LFR method and 1.15 times the cover for the LRFR method. When these pyramids overlap the distributed area of the combined loading becomes the total area enveloped by the parameter of the pyramids as shown in Figure 1.

Figure 1 Distributed load (LFR) determined from axle weight

The ODOT spreadsheets use this area, however, the calculations used to determine the distributed load were based on one heavy axle and up to two adjacent axles placed within 4 -feet of the heavy axle. The algorithm used to determine the distributed load from this description (up to three axle weights and spacing) was appropriate for the load configurations of ODOT trucks. However, for Michigan trucks this process would not have been appropriate and an alternative method had to be used.

The ODOT spreadsheets also do not account for the case where trucks are present in adjacent lanes. In this case, the distributed area could be further restricted depending upon the depth of cover. Modifications, explained in the next section of this report, were performed to determine the distributed load attributed to the controlling Michigan vehicle for the given depth of cover and allow for multiple loaded lanes in the Michigan modified spreadsheet.

The ODOT spreadsheets were found to meet the reference guidelines. The general procedure follows the NSCPA (1995) guidelines and AASHTO Standard and LRFD load and condition factors are utilized.

As per the project proposal, MDOT was contacted and a teleconference meeting was conducted to review the outcome of the first two project tasks prior to proceeding with Tasks 3 and 4 to modify the spreadsheets for Michigan vehicles and perform trial runs of the spreadsheet for quality control and quality assurance. Discussion with MDOT led to the decision to go
forward with the project. A process was discussed for determining the controlling Michigan vehicle for each truck type at various depths which would greatly improve the functionality of the spreadsheet. This was determined to be outside the original scope of work and as such these calculations were conducted by MDOT and incorporated into the Michigan modified spreadsheets.

Task 3 - Michigan Modifications

The original spreadsheet developed by ODOT contained the analysis for Federal Trucks (HS2044 or HL-93 Truck/Tandem) and the four Ohio Legal Trucks. This spreadsheet analyzed the heavy axle load and up to two adjacent axles provided they were located within 4-feet of the heavy axle. These axle loads were then used to calculate the average distributed load applied to the top of the culvert. The height of cover above the culvert was used to determine whether loading was based on the distributed area of an individual wheel, or one, two, or three axles. This approach worked well for the four Ohio Legal Trucks due to the legal axle configurations. However, the complexity of the Michigan trucks allowed for cases in which this approach would not have adequately represented the loading. To solve this problem, MDOT developed a spreadsheet to calculate the distributed load caused by the controlling truck for each vehicle classification (one, two, or three unit) at 0.25 foot increments from 0.25 to 2.0 -feet of cover (LRFR), 0.5 foot increments from 2.0 to 4.0-feet, and 1.0 foot increments from 4.0 to 20.0 feet. Data was produced for the LRFR method for depths less than 2.0 feet because of the spreadsheet for modified minimum cover is only available for LRFR. The distributed loading was summarized in the form of a line load that represented the weight of the vehicle distributed along the length of the vehicle but not the width. The distribution of the line load over the width was handled by the Michigan modifications to the load rating spreadsheets due to the need to consider the individual properties of each culvert. A sample of the summary table for controlling trucks with the LFR method is shown in Table 1.

Table 1 Sample of MDOT controlling vehicle summary table

The tire contact area is specified by AASHTO for the HS20-44 and HL-93 trucks as being 10 inches in the direction of travel by 20 inches wide. The same tire contact area was used for the Michigan Legal Vehicles. Michigan Overload Vehicles could have many more tires associated with each axle, therefore, the tire contact area was assumed to be contained within the 8 -foot wheel spacing.

The distributed load at the depth of the culvert was computed by using an Excel lookup function to determine the controlling truck line load from the summary table of controlling Federal and Michigan loads. This line load was distributed across the appropriate loading width. The width for each truck was determined by taking the wheel spacing on each axle (6-feet plus the tire contact area for legal vehicles and 8-feet for overload vehicles) and adding the soil
distribution factor multiplied by the depth of cover. Figure 2 shows how the distributed width of each wheel was used to determine the width for an axle.

Figure 2 Distributed width from wheel spacing

The axle width was then limited by the width per lane provided by the structure which was found by taking the minimum of the structure length divided by the number of lanes and the distribution caused by a vehicle placed in each traffic lane with the outer vehicles located the minimum 2-feet from the inner lanes. Figure 3 shows a diagram of loading from multiple lanes and how it was used to determine the maximum allowable distributed width of vehicular loading.

Lane Widths

Culvert

Figure 3 Distributed width limited by multiple loaded lanes

Michigan has modified live load factors for the LRFR method. Each vehicle has its own live load factor which changes with the average daily truck traffic (ADTT) of the roadway. Live load factors are determined at ADTT of 100, 1000, and 5000. The live load factors for each vehicle at an ADTT of 5000 were incorporated into the controlling vehicle spreadsheet to determine the controlling truck at each depth. For consistency, the summary table (Table 1) for the LFR controlling trucks also included factored values for the legal and overload vehicles. The Federal vehicles were left unfactored due to the need to have different live load factors for the inventory and operating ratings.

Formatting modifications were made to the Michigan modified spreadsheets to achieve consistency with other MDOT spreadsheets. Drawings showing loading details were redone and labels were updated to agree with the values contained within the spreadsheet. Several new figures were added to show how the axle loads were used to determine the distributed load applied to the top of the culvert (Figures 1-3).

The NCSPA Design Data Sheet No. 19 had been scanned and included within the ODOT spreadsheet. The scanned copy was out of focus and hard to read. This worksheet was redone for the MDOT Modified version of the spreadsheets.

Task 4 - Trial Runs

The modified spreadsheets (Appendix A) were run through several validation processes during QA/QC. Two researchers reviewed the spreadsheets; one focused on an analysis of the programing within the spreadsheet and checked cell references and functions. The other researcher checked the technical content and verified the spreadsheet calculations with hand calculations and then performed analysis on a variety of in-service culverts.

Results of the QA/QC are included in Appendix B. No errors were found in the programing; however, some suggestions were noted for improvement on the programing under a future project. Analysis of the technical content also found no errors but proved to be a good source for comments on updates that could be made to the program in the future under another project.

Task 5 - Final Report and Deliverables

Deliverables for this project consist of the following three Excel 2010 files along with this report:

- Michigan modified load factor rating method for corrugated metal pipe, Version 1.0
o MDOT_CMP_LFR.xlsx
- Michigan modified load and resistance rating method for corrugated metal pipe, Version 1.0
o MDOT_CMP_LRFR.xlsx
- Michigan modified load and resistance rating method for corrugated metal pipe with a modification for minimum cover requirements, Version 1.0
o MDOT_CMP_LRFR_modified_minimum_cover.xlsx

Future Work

- As with any program, future updates will be required to keep the spreadsheet up to date on changes in the specifications and to make improvements on the usability and to meet the needs of those using the spreadsheets. Attempts were made to increase the efficiency of the programing and improve the layout within the spreadsheets. However, more work could be done to further improve efficiency, usability, and reporting format although a complete rewrite was out of the scope of this project.
- These Excel spreadsheets meet the immediate needs for the load rating of culverts through both the LFR and LRFR methods. However, the ability to store culvert data in a database that could be accessed through a standalone culvert program or web application would allow for updates to the programing without the need to re-input large amounts of data into individual spreadsheets. A standalone program would also eliminate the likelihood of users accidently making changes to the program, however, it could be written to include user defined values where engineers may desire to allow their own calculations to be used instead of those within the program. Database storage would also allow for better organization of the culvert files for agencies with large numbers of culverts in their inventory.

References

AASHTO (2002) Standard Specifications for Highway Bridges, $17^{\text {th }}$ Edition. American Association of State Highway and Transportation Officials.
AASHTO (2010) AASHTO LRFD Bridge Design Specifications, $5^{\text {th }}$ Edition. American Association of State Highway and Transportation Officials.
AASHTO (2011) The Manual for Bridge Evaluation, $2^{\text {nd }}$ Edition. American Association of State Highway and Transportation Officials.

MDOT (2009) Bridge Analysis Guide, 2005 Edition with 2009 Interim Update. Michigan Department of Transportation, Construction and Technology Support Area.

NSCPA (1995) Load Rating and Structural Evaluation of In-Service, Corrugated Steel Structures, NCSPA Design Data Sheet No. 19, National Corrugated Steel Pipe Association, Dallas, TX.

Sezen, H., Fox, P., and Yeau, K. (2009) Verification of ODOT’s Load Rating Analysis Programs for Metal Pipe and Arch Culverts. The Ohio State University, Ohio Department of Transportation State Job Number 134225.

Appendices

OWNER MDOT/Superior		SPREADSHEET VERSION	1.0	10/12/2012
SECTION B01 of 11111	COMP. BY	ABC	DATE	10/1/2012
DESCRIPTION Pleasant Road Over Raging River	CHECK BY	DEF	DATE	10/9/2012

Load Factor Rating (LFR)

CORRUGATED METAL STRUCTURE (CIRCULAR \& PIPE ARCH) \& ARCHES
Adapted by MDOT from the original spreadsheets developed by the Ohio DOT

Figure 1: Measurement of Culvert Properties

 stations along length of culvert, particularly at locations with noticeable sag

Structure Information (from existing bridge plans \& field measurements):

[^0]| | OWNER MDOT/Superior | SPREADSHEET VERSION | | 1.0 | 10/12/2012 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | SECTION B01 of 11111 | COMP. BY | $A B C$ | DATE | 10/1/2012 |
| | DESCRIPTION Pleasant Road Over Raging River | CHECK BY | DEF | DATE | 10/9/2012 |

Load Factor Load Rating of In-Service, Corrugated Metal Pipe Structures
Based on NCSPA Design Data Sheet No. 19 \& AASHTO Standard Specification for Highway Bridges Adapted by MDOT from the original spreadsheets developed by the Ohio DOT

DO NOT use this spreadsheet to load rate Structural Plate Box Culverts

Design Dimensions

1. For typical structures, use the actual field measured span for calculations.
2. For unsymmetrical structures or those deflected over 5\%:
a. use $2 x$ the top radius ($2 \mathrm{R}_{\mathrm{t}}$) in lieu of span for calculations.
b. base critical buckling stress calculations on the theoretical design span, reducing the resulting allowable buckling stress by the appropriate buckling strength reduction factor " f " (NCSPA Design Data Sheet No. 19, Figure B.1.1).
3. For all long span structures (horizontal ellipse, low and high profile arches, inverted pear shapes and pear arches), as well as other horizontal ellipses, use $2 \times$ actual top radius $\left(2 R_{t}\right)$ in all cases.

For typical structures :	Design Span = Actual Span "S" (ft) $=$	10.00
For unsymmetrical or deflect more than		
	Design Span $(\mathrm{ft})=2 \mathrm{R}_{\mathrm{t}}=$	0.00
	Pipe Crown Deflection $=$	0%
	Buckling Strength Reduction Factor, $\mathrm{f}=$	0.95
long span structures:	Design Span $(\mathrm{ft})=2 \mathrm{R}_{\mathrm{t}}=$	0.00

Structure Category:	Typical (NCSPA design data sheet No. 19, II. A. 1.)

Then, Span Length used in Load Rating Calculation $(\mathrm{ft})=$	10.00	Warnings:
Then, \mathbf{R}_{t} used in Load Rating Calculation $(\mathrm{ft})=$	0.00	
$\mathbf{R}_{\mathrm{t}(\max)}{ }^{*}(\mathrm{ft})=$		

* Maximum Plate Radius allowed if Long Span Structural Plate Structures Selected

Design Properties Mechanical Properties:

Metal Type:	Steel		
	$\mathrm{F}_{\mathrm{y}}=$ Minimum Yield Point of the Metal	33	ksi
	$\mathrm{F}_{\mathrm{u}}=$ Minimum Tensile Strength of the Metal	45	ksi
	$\mathrm{E}_{\mathrm{m}}=$ Modulus of elasticity of metal	29000	ksi

Section Properties:

	OWNER MDOT/Superior	SPREADSHEET VERSION		1.0	10/12/2012
	SECTION B01 of 11111	COMP. BY	$A B C$	DATE	10/1/2012
	DESCRIPTION Pleasant Road Over Raging River	CHECK BY	DEF	DATE	10/9/2012

Design Calculations:

Structure Type:	Corrugated Metal Pipe (AASHTO 12.4)		Warnings:
Seam Type:	Annular pipe w/ spot welded, riveted or bolted seam		
	Longitudinal Length of Structure "L" (ft) =	46.00	
	AASHTO minimum cover, $\mathrm{h}(\mathrm{ft})=$	1.25	
(the lowest cover over the structu	Height of cover above crown " H " (ft) = a traffic area based on field measurement)	1.25	
$\varphi_{\text {loss }}=$ Section Properties reduction fac	the basis of metal loss from the materials field evaluation =	1.00	
$\varphi_{1}=$ capacity modification factor for wall area and buckling (AASHTO Std. 12.6.1.3)		1.0	
$\varphi_{2}=$ capacity modification factor for seam strength (AASHTO Std. 12.6.1.3)		0.67	
$\delta=$ Soil density (k/ft ${ }^{3}$		0.120	
$\mathrm{k}=$ soil stiffness factor $=$		0.22	

Calculate the F_{cr} (critical buckling stress) :

Calculate the $\mathrm{T}_{\text {cap }}$ (thrust capacity of the wall) :

Seam Strength (k/ft) =	Input the seam strength value based on metal type, corrugation, gage number or pipe wall thickness, see tables in worksheet "seam strength tables"	
$\mathrm{T}_{\text {cap }}=$ less of:	1. wall yield strength $=\varphi_{1} \varphi_{\text {loss }} \mathrm{F}_{\mathrm{y}} \mathrm{A}_{s}=$	66.1
	2. wall buckling strength $=f \varphi_{1} \varphi_{\text {loss }} F_{c r} A_{s}=$	85.8
	3. seam strength $=\varphi_{2} \times$ (seam strength $)=$	41.5

So: | $\mathbf{T}_{\text {cap }}=$ | 41.5 | k / ft |
| :--- | :--- | :--- |

Calculate the T_{E} (pipe wall thrust due to earth cover) :

$\mathrm{T}_{\mathrm{E}}=$ higher value of :	1. $\delta \mathrm{H}(\mathrm{S} / 2)=$	0.75	k / ft
	$2 . \delta \mathrm{H} \mathrm{R}_{\mathrm{t}}=$	0.00	k / ft

So:	$\mathrm{T}_{\mathrm{E}}=$	0.75	k/ft

Calculate the $T_{(L+1)}$ (pipe wall thrust due to live load plus impact):

$\mathrm{T}_{(L+1)}=$ higher value of :	1. $\rho_{(L+1)}(S / 2)=$	k/ft	
	2. $\rho_{(L+1)} \mathrm{R}_{\mathrm{t}}=$	k/ft	
Based on AASHTO 3.8.2.3:	Live load Impact, I =	30\%	for $0^{\prime}-0^{\prime \prime}<\mathrm{H}<1^{\prime}-\mathrm{O}^{\prime \prime}$
		20\%	for $1^{\prime}-1^{\prime \prime}<\mathrm{H}<22^{\prime}-0^{\prime \prime}$
		10\%	for 2'-1" < H < 2'-11"
		0\%	for $\mathrm{H} \geq 3^{\prime}-0{ }^{\prime \prime}$

So, for this structure: Depth of Fill, \boldsymbol{H}

| Fill, \mathbf{H} | $=$1.25
 $\mathbf{I t}$
 $(1+\mathbf{I})$$=$$20 \%$
 1.20 |
| ---: | :--- | :--- |

Figure 2: Load distribution through structural fill
Pressure on the tire contact area is distributed on the culvert through the cover depth, Dimension as:
$W_{D}=W_{W}+1.75 \mathrm{H}$
$\mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{w}}+1.75 \mathrm{H}$
The surface tire contact area for HS20 loading (per AASHTO 3.30):

W_{w}	$=20^{\prime \prime}=$	1.67
$\mathrm{~L}_{\mathrm{w}}$	$=10^{\prime \prime}=$	0.83

The tire surface contact area for Legal MI Trucks is assumed to be the same as the HS 20 truck.
The tire surface contact area for MI overload vechicles is considered to be part of the measurement for wheel spacing on axle (out to out)

Fill depth, $\mathrm{H}(\mathrm{ft})=$	1.25
Structure Total Length, L (ft) =	46.00
Clear Roadway Width (Face to face of gaurdrail) $(\mathrm{ft})=$	36.00
Lane Width (ft) =	12.00
Number of Lanes $=$	3

Factored Truck Load at Depth

	HS20	MI 1-Unit	MI 2-Unit	MI 3-Unit	Mı Overload
Controling Truck	1-Axle	Truck 1	Truck 6	Truck 19	Class A
wheel spacing on axle	6.00	6.00	6.00	6.00	8.00
$\mathrm{W}_{\text {D wheel }}(\mathrm{ft})$	3.85	3.85	3.85	3.85	
$\mathrm{W}_{\text {D axie(total }}$	7.71	7.71	7.71	7.71	10.19
Max W_{D} llane provided by structure	10.06	10.06	10.06	10.06	38.19
Rating W_{D}	7.71	7.71	7.71	7.71	10.19
Reduction in Load Intensity	1.00	1.00	1.00	1.00	
Operating Truck Line Load + Impact (k/ft)	14.86	10.87	10.87	10.87	36.23
Load on Culvert, $\rho_{(L+1)}$	1.93	1.41	1.41	1.41	3.56
$\mathrm{T}_{(\mathrm{L}+1)}(\mathrm{k} / \mathrm{ft})$	9.64	7.05	7.05	7.05	17.78

Longitudinal pressure overlaps are considered for each MI truck configuration
Multi-lane overlap is assumed for MI legal and HS-20 trucks
Single-lane is assumed for MI overload vehicles

	OWNER MDOT/Superior		SPREADSHEET VERSION		1.0	10/12/2012
	SECTION B01 of 11111		COMP. BY	$A B C$	DATE	10/1/2012
	DESCRIPTION	Pleasant Road Over Raging River	CHECK BY	DEF	DATE	10/9/2012

Load Rating Factors for Ring Compression Structures:
Operating Load Rating Factor $\left(\mathrm{RF}_{\mathrm{O}}\right)$:
a. RF_{O} based on wall strength

$$
R F_{O-W}=\frac{T_{c a p}-1.95 T_{E}}{T_{(L+I)}}
$$

$$
\text { *Note: } \mathrm{T}_{(L+1)} \text { is factored }
$$

b. RF_{O} based on minimum cover requirements

$$
\begin{aligned}
& R F_{o-C}=\frac{H^{2}}{C(h)^{2}} \\
& \text { Where, } \quad C=2.36 \frac{H}{S}+0.528 \leq 1.0=0.82
\end{aligned}
$$

Operating Load Rating Factors, RF_{0}					
	HS20	MI 1-Unit	MI 2-Unit	MI 3-Unit	MI Overload
$\mathrm{T}_{\text {cap }}$	41.54	41.54	41.54	41.54	41.54
T_{E}	0.75	0.75	0.75	0.75	0.75
Live Load Factor	1.30	1.00	1.00	1.00	1.00
Factored $\mathrm{T}_{(\mathrm{L}+1)}$	12.53	7.05	7.05	7.05	17.78
Is culvert burried deep enough to neglect LL?	NO	NO	NO	NO	NO
$\mathrm{RF}_{\text {o-w }}$	3.20	5.68	5.68	5.68	2.25
$\mathrm{RF}_{\text {o-c }}$	1.22	1.22	1.22	1.22	1.22
RF_{0}	1.22	1.22	1.22	1.22	1.22
-					

2. Inventory Load Rating Factor $\left(\mathrm{RF}_{\mathrm{i}}\right)$:
a. $R F_{i}$ based on wall strength

$$
R F_{i-w}=\frac{3}{5} R F_{o-w}
$$

b. $R F_{i}$ based on minimum cover requirements

$$
R F_{i-c}=\frac{H^{2}}{h^{2}}
$$

Inventory Load Rating Factor, $\boldsymbol{R F}_{\boldsymbol{i}}$	
	$\mathbf{H S 2 0}$
$\mathbf{R F}_{\mathrm{i}-\mathrm{w}}$	1.92
$\mathbf{R F}_{\mathrm{i}-\mathrm{c}}$	1.00
$\mathbf{R F}_{\mathbf{i}}$	1.00

Load Rating Summary:				Warnings:
		Controling Truck	Rating Factor	
Inventory	Federal	HS20	$\mathrm{RF}=1.00$	
	Federal	HS20	$\mathrm{RF}=1.22$	
	MI 1-Unit	Truck 1	$\mathrm{RF}=1.22$	
Operating	MI 2-Unit	Truck 6	$\mathrm{RF}=1.22$	
	MI 3-Unit	Truck 19	$\mathrm{RF}=1.22$	
	MI Overload	Class A	$\mathrm{RF}=1.22$	

OWNER MDOT/Superior SECTION BO1 of 11111		SPREADSHEET VERSION	1.0	$10 / 31 / 2012$	
DESCRIPTION		COMP. BY	ABC	DATE	$11 / 1 / 2012$

Figure 1: Measurement of Culvert Properties
*For unsymmetrical structures, structures deflected more than 5% from design shape, or those that show localized distortions require that the actual maximum radius be determined in those distorted areas as show above. Use two times the actual maximum radius rather than the span in structural design checks. Typically this provides a conservative evaluation of the structure. Calculate maximum existing top radius by taking measurements around the upper periphery of the culvert using a ruler of length " P " to obtain values of " M ". This should be done at selected stations along length of culvert, particularly at locations with noticeable sag.

Structure Information (from existing bridge plans \& field measurements):			
	Structure Type (to determine Minimum Cover):	Corrugated Metal Pipe	\leftarrow choose from a drop-down list
	Seam Type (to determine Seam Strength):	Annular pipe w/ spot welded, riveted or bolted seam	\leftarrow choose from a drop-down list
Structure Category (based on NCSPA Design Data Sheet No. 19)		Typical (NCSPA design data sheet No. 19, II. A. 1.)	\leftarrow choose from a drop-down list
$\begin{gathered} \text { * Depth of Fill "H" (tt) }=1 \\ \hline \text { (fill depth used for dead load calculations) } \end{gathered}$		3.60	Warnings:
* Minimum Cover Depth "H $\mathrm{H}_{\text {min }}$ " $(\mathrm{tt})=$ (fill depth used to check minimum cover requirement)		3.60	
Span Length "S" (ft) =		10.00	
Rise "R" (tt) =		6.00	(For documentation purposes, not used in calculations)
	Longitudinal Length of Structure "L" (tt) =	46.00	see * above
Clear Roadway Width (Face to face of gaurdrail) (tt) =		36.00	
Actual Top Radius " R_{t} " ft) = (can be determined by field measurementsor hand calculations)		0.00	
Metal Corrugation \& Gage Information:		Metal Type	Steel
		Corrugation (if known)	6×2 (steel structural plate pipe) \leftarrow choose from a drop-down list
		Gage number (if known)	\square Note: if corrugation \& gage number are known, leave the input cells for "c", "d" \& "t" blank; if corrugation \& gage number are unknown, field measurements of "c", "d" \& "t" are required.
		c (in) $=$	
		d (in) $=$	
		t (in) $=$	
Pipe Crown Deflection ** (if any) =		0\%	
Metal Loss based on materials field evaluation (if any) $=$		0\%	
Pipe CrossSection Properties	$\mathrm{A}_{\mathrm{s}}\left(\mathrm{in}^{2} / \mathrm{f}\right.$) F	2.003	input these values based on metal type, corrugation, gage number or pipe wall thickness, see tables in worksheet "section property tables".
	r (in) $=$	0.6840	
	$1 \times 10^{-3}\left(\mathrm{in}^{4} / \mathrm{in}\right)=$	78.175	
Pipe Seam Strength	Seam Strength (k/ft) =	62.0	input the seam strength value based on metal type, corrugation, gage number or pipe wall thickness, see tables in worksheet "seam strength tables"
Backfill	$\bar{\delta}=$ Soil density ($\mathrm{k} / \mathrm{tr}^{3}$) $=$	0.120	1.15 used here for select granular backfill, change the factor φ_{E} to 1.0 for all other cases.
	$\varphi_{E}=$ Factor for Distribution of Live Load with Depth of Fill based on Backfill Type (per AASHTO LRFD 3.6.1.2.6)	1.15	
Load Factors	η_{R} (lor nonredundant members) $=$	1.05	AASHTO LRFD 12.5.4. \& 1.3.4
	$\chi_{E v}$ (verical Eart Pressure tor CMPs) $=$	1.95	input the load factors based on the "LRFR Load Factors" table on the right
	YLL (HL-93 Loading - Inventory) $=$	1.75	
	YLL (HL-93 Laading - Operating) $=$	1.35	
Condition Factor	$\phi_{\mathrm{c}}=$	1.00	AASHTO MBE 2nd Edition Table 6A.4.2.3-1 \& C6A.4.2.3-1
System Factor	$\phi_{\mathrm{s}}=$	1.00	AASHTO MBE 2nd Edition Table 6A.4.2.4-1
	$\phi_{c} \phi_{s} \geq 0.85=$	1.00	

OWNER MDOT/Superior	SPREADSHEET VERSION	1.0	$10 / 31 / 2012$
	SECTION B01 of 11111	COMP. BY	ABC

LRFR of In-Service, Corrugated Metal Pipe Structures

Based on AASHTO LRFD Bridge Design Specifications, Section 3, 4 \& 12 \& NCSPA Design Data Sheet No. 19
Adapted by MDOT from the original spreadsheets developed by the Ohio DOT

Do NOT use this spreadsheet to load rate Structural Plate Box Culverts

Design Dimensions

1. For typical structures, use the actual field measured span for calculations.
2. For unsymmetrical structures or those deflected over 5% :
a. use $2 x$ the top radius $\left(2 R_{t}\right)$ in lieu of span for calculations.
b. base critical buckling stress calculations on the theoretical design span, reducing the resulting allowable buckling stress by the appropriate buckling strength reduction factor " f " (NCSPA Design Data Sheet No. 19, Figure B.1.1).
3. For all long span structures (horizontal ellipse, low and high profile arches, inverted pear shapes and pear arches), as well as other horizontal ellipses, use 2 x actual top radius (2Rt) in all cases.

For typical structures :	Design Span = Actual Span "S" (ft) $=$	10.00
For unsymmetrical or deflect more than 5\% structures:	Design Span (ft) $=2 \mathrm{R}_{\mathrm{t}}=$	0.00
	Puckling Strength Reduction Factor, $\mathrm{f} *=$	0.95

* reduction factor f is based on NCSPA Design Data Sheet No 19, II Structural Evaluation A.2.b \& Appendix B.1, Figure B.1.1 for Unsymmetrical structures or structures deflected over 5\% only.

long span structures:	Design Span (ft) $=2 \mathrm{R}_{\mathrm{t}}=$		0.00	
Structure Category:	Typical (NCSPA design data sheet No. 19, II. A. 1.)			
Then, Span Length used in Load Rating Calculation (ft)= Then, \mathbf{R}_{t} used in Load Rating Calculation (ft)=$\mathbf{R}_{\mathrm{t}(\max)} *(\mathrm{ft})=$		10.00	Warnings:	
		0.00		

Design Properties

Conduits Mechanical \& Section Properties:

Mechanical Properties:

Metal Type:	Steel		
	$\mathrm{F}_{\mathrm{y}}=$ Minimum Yield Point of the Metal	33	ksi
	$\mathrm{F}_{\mathrm{u}}=$ Minimum Tensile Strength of the Metal	45	ksi
	$\mathrm{E}_{\mathrm{m}}=$ Modulus of elasticity of metal	29000	ksi

Section Properties:

	OWNER MDOT/Superior	SPREADSHEET VERSION		1.0	10/31/2012
	SECTION B01 of 11111	COMP. BY	$A B C$	DATE	11/1/2012
	DESCRIPTION Pleasant Road Over Raging River	CHECK BY	DEF	DATE	11/9/2012

Design Calculations:

Structure Type:	Corrugated Metal Pipe		Warnings:
Seam Type:	Annular pipe w/ spot welded, riveted or bolted seam		
	Longitudinal Length of Structure "L" (ft) =	46.00	
	AASHTO minimum cover, "h" (tt) =	1.25	
Depth of cover used to check AASHTO minimum cover requirment " $\mathrm{H}_{\text {min }}$ " $(\mathrm{ft})=$		3.60	
$\varphi_{\text {Ioss }}=$ Section Properties reduction factor on the basis of metal loss from the $\begin{array}{r}\text { materials field evaluation }= \\ \end{array}$		1.00	
$\varphi_{1}=$ Resistance Factor for wall area and buckling (Table 12.5.5-1)		1.00	
$\varphi_{2}=$ Resistance Factor for seam strength (Table 12.5.5-1)		0.67	
$\bar{\delta}=$ Soil density (k/ti)		0.120	
$\mathrm{k}=$ soil stiffness factor $=$		0.22	
$\varphi_{E}=$ Factor for Distribution of Live Load with Depth of Fill based on Backfill		1.15	

Calculate the $f_{c r}$ (critical buckling stress) :
(AASHTO LRFD 12.7.2.4)
if: $S<\frac{r}{k} \sqrt{\frac{24 E_{m}}{F_{u}}}$, then $f_{c r}=F_{u}-\frac{F_{u}{ }^{2}}{48 E_{m}}\left(\frac{k S}{r}\right)^{2}$
if: $\quad S>\frac{r}{k} \sqrt{\frac{24 E_{m}}{F_{u}}}$, then $f_{c r}=\frac{12 E_{m}}{(k S / r)^{2}}$
Compare:

$S(\mathrm{in})$	$=\square 120.00$
\mathbf{f}_{cr}	$=\square \mathrm{ksi}$

$<\frac{r}{k} \sqrt{\frac{24 E_{m}}{F_{u}}}=$ \qquad

Therefore,
$f_{c r}=\square \mathrm{ksi}$
Calculate the $\mathrm{T}_{\text {cap }}$ (thrust capacity of the wall) :
Seam Strength $(\mathrm{k} / \mathrm{ft})=\square 62.0$

$\mathrm{T}_{\text {cap }}=$ less of:	1. wall yield strength $=\varphi_{1} \varphi_{\text {loss }} \mathrm{F}_{\mathrm{y}} \mathrm{A}=$	66.1
	2. wall buckling strength $=\mathrm{f} \varphi_{1} \varphi_{\text {loss }} \mathrm{f}_{\mathrm{cr}} \mathrm{A}=$	85.8
	3. seam strength $=\varphi_{2} \times($ seam strength $)=$	41.5

Therefore, | $\mathrm{T}_{\text {cap }}=$ | 41.5 | k / ft |
| :---: | :---: | :---: |

Calculate the T_{E} (pipe wall thrust due to earth cover) :

$\mathrm{T}_{\mathrm{E}}=$ higher value of :	1. $\delta \mathrm{H}(\mathrm{S} / 2)=$	2.16
	2. $\delta \mathrm{HR}_{\mathrm{t}}=$	0.00

Therefore,

$\mathbf{T}_{\mathbf{E}}=$	2.16	k / ft

	OWNER MDOT/Superior	SPREADSHEET VERSION		1.0	10/31/2012
,	SECTION B01 of 11111	COMP. BY	$A B C$	DATE	11/1/2012
	DESCRIPTION Pleasant Road Over Raging River	CHECK BY	DEF	DATE	11/9/2012

Calculate the $T_{(L+1)}$ (pipe wall thrust due to live load plus dynamic load allowance):

Calculations based on AASHTO LRFD 3.6.1.2.5 \& 6:

Figure 2: Load distribution through structural fill
Where, $\mathbf{W}_{T}=$ Tire contact width, $\mathbf{L}_{T}=$ Tire contact length, $\mathbf{W}_{\mathrm{D}}=$ Distributed load width, $\mathbf{L}_{\mathrm{D}}=$ Distributed load length

The surface tire contact area for HL-93 loading (also applied to MI trucks) (per AASHTO LRFD 3.6.1.2.5):

$\mathbf{W}_{T}=20^{\prime \prime}=$	1.67	ft
$\mathbf{L}_{\mathrm{T}}=10^{\prime \prime}=$	0.83	ft

Distribution of wheel loads through earth fills (per AASHTO LRFD 3.6.1.2.6):
for HL-93 Design Truck (also applied to MI trucks)

$W_{D}=1.67+\varphi_{E} H=$	5.81	$f t$
$L_{D}=0.83+\varphi_{E} H=$	4.97	$f t$

Truck Load at Depth					
	HL-93 Truck/Tandem	MI 1-Unit	MI 2-Unit	MI 3-Unit	MI Overload
	(Unfactored)	(Factored)	(Factored)	(Factored)	(Factored)
Controling Truck	1-Axle	Truck 2	Truck 10	Truck 20	Class A
wheel spacing on axle	6.00	6.00	6.00	6.00	8.00
$\mathbf{W}_{\text {D Wheel }}(\mathrm{ft})$	5.81	5.81	5.81	5.81	
Controlling number of loaded lanes	1	1	1	1	1
Controlling $\mathrm{W}_{\text {D axie(total) (tt) }}$	11.61	11.61	11.61	11.61	12.14
Max W_{D} provided by structure (ft)	40.14	40.14	40.14	40.14	40.14
Rating W_{D}	11.61	11.61	11.61	11.61	12.14
Multiple Presence Factor	1.20	1.20	1.20	1.20	1.20
Impact + Operating Truck Line Load (k/ft)	7.78	8.14	8.14	7.49	20.28
Load on Culvert, $\rho_{(L+1 M)}$	0.80	0.84	0.84	0.77	2.00
$\mathrm{T}_{(\mathrm{L}+\mathrm{lm})}(\mathrm{k} / \mathrm{ft})$	4.02	4.21	4.21	3.87	10.02

Load factors have not been applied to the HL-93 Truck and Tandem but will be in the next section
Transverse pressure overlaps are considered. Longitudinal pressure overlaps are considered for each MI truck configuration

Load Rating Factors for Ring Compression Structures:

1. Operating Load Rating Factor $\left(\mathrm{RF}_{\mathrm{O}}\right)$:
a. RF_{O} based on wall strength

$$
R F_{O-W}=\frac{\varphi_{c} \varphi_{s} T_{c a p}-\gamma_{E V} \eta_{R} T_{E}}{\gamma_{L L} T_{(L+I M)}}
$$

b. RF_{o} based on minimum cover requirements

$$
R F_{O-C}=\frac{H_{\min }^{2}}{C(h)^{2}}
$$

Where,

$$
C=2.36 \frac{H_{\min }}{S}+0.528 \leq 1.0=
$$

Operating Load Rating Factors, $\mathrm{RF}_{\text {o }}$					
	HL-93 Truck/Tandem	MI 1-Unit	MI 2-Unit	MI 3-Unit	MI Overload
$\mathrm{T}_{\text {cap }}$	41.54	41.54	41.54	41.54	41.54
$\phi_{c} \phi_{\text {s }}$	1.00	1.00	1.00	1.00	1.00
T_{E}	2.16	2.16	2.16	2.16	2.16
$Y_{E v}$	1.95	1.95	1.95	1.95	1.95
$\eta_{\text {R }}$	1.05	1.05	1.05	1.05	1.05
$\mathrm{T}_{(\mathrm{L}+1 \mathrm{M})}$	4.02	4.21	4.21	3.87	10.02
Y_{LL}	1.35	1.00	1.00	1.00	1.00
Is culvert burried deep enough to neglect LL?	NO	NO	NO	NO	NO
$\mathrm{RF}_{\text {ow }}$	6.84	8.82	8.82	9.60	3.70
$\mathrm{RF}_{\text {o.c }}$	8.29	8.29	8.29	8.29	8.29
$\mathrm{RF}_{\text {o }}$	6.84	8.29	8.29	8.29	3.70
\square					

	OWNER MDOT/Superior	SPREADSHEET VERSION		1.0	10/31/2012
	SECTION B01 of 11111	COMP. BY	ABC	DATE	11/1/2012
	DESCRIPTION Pleasant Road Over Raging River	CHECK BY	DEF	DATE	11/9/2012

2. Inventory Load Rating Factor $\left(\mathrm{RF}_{\mathrm{i}}\right)$:
a. RF_{i} based on wall strength

$$
R F_{i-W}=\frac{\varphi_{c} \varphi_{s} T_{c a p}-\gamma_{E V} \eta_{R} T_{E}}{\gamma_{L L} T_{(L+I M)}}
$$

b. $R F_{i}$ based on minimum cover requirements

$$
R F_{i-c}=\frac{H_{\min }^{2}}{h^{2}}
$$

Inventory Load Rating Factor, $\mathrm{RF}_{\boldsymbol{i}}$	
	HL-93 Truck/Tandem
$\mathrm{T}_{\text {cap }}$	41.54
ϕ_{c} ¢ $_{\text {s }}$	1.00
T_{E}	2.16
γ_{EV}	1.95
$\eta_{\text {R }}$	1.05
$\mathrm{T}_{(\mathrm{L}+1 \mathrm{M})}$	4.02
$\gamma_{\text {LL }}$	1.75
$\mathrm{RF}_{\mathrm{i} \text {-w }}$	5.28
$\mathrm{RF}_{\mathrm{i} \text { - }}$	8.29
RF_{i}	5.28

Load Rating Summary:				Warnings:
		Controling Truck	Rating Factor	
Inventory	Federal	HL-93	RF=5.28	
	Federal	HL-93	RF=6.84	
	MI 1-Unit	Truck 2	RF=8.29	
Operating	M1 2-Unit	Truck 10	$\mathrm{RF}=8.29$	
	MI 3-Unit	Truck 20	$\mathrm{RF}=8.29$	
	MI Overload	Class A	$\mathrm{RF}=3.70$	

OWNER MDOT/Superior		SPREADSHEET VERSION	1.0	10/31/2012
SECTION B01 of 11111	COMP. BY	$A B C$	DATE	11/1/2012
DESCRIPTION Pleasant Road Over Raging River	CHECK BY	DEF	date	11/9/2012

Load \& Resistance Factor Rating (LRFR) - Modified for Minimum Cover CORRUGATED METAL STRUCTURE (CIRCULAR \& PIPE ARCH) \& ARCHES

Figure 1: Measurement of Culvert Properties

* For unsymmetrical structures, structures deflected more than 5% from design shape, or those that show localized distortions require that the actual maximum radius be determined in those distorted areas as show above. Use two times the actual maximum radius rather than the span in structural design checks. Typically this provides a conservative evaluation of the structure. Calculate maximum existing top radius by taking measurements around the upper periphery of the culvert using a ruler of length " P " to obtain values of " M ". This should be done at selected stations along length of culvert, particularly at locations with noticeable sag.

SPREADSHEET VERSION	1.0	$10 / 31 / 2012$	
COMP. BY	ABC	DATE	$11 / 1 / 2012$
CHECK BY	DEF	DATE	$11 / 9 / 2012$

LRFR of In-Service, Corrugated Metal Pipe Structures - Modified for Minimum Cover

Based on AASHTO LRFD Bridge Design Specifications, Section 3, 4 \& 12 \& NCSPA Design Data Sheet No. 19
Adapted by MDOT from the original spreadsheets developed by the Ohio DOT

DO NOT use this spreadsheet to load rate Structural Plate Box Culverts

Design Dimensions

1. For typical structures, use the actual field measured span for calculations.
2. For unsymmetrical structures or those deflected over 5\%:
a. use $2 x$ the top radius $\left(2 R_{t}\right)$ in lieu of span for calculations.
b. base critical buckling stress calculations on the theoretical design span, reducing the resulting allowable buckling stress by the appropriate buckling strength reduction factor " f " (NCSPA Design Data Sheet No. 19, Figure B.1.1).
3. For all long span structures (horizontal ellipse, low and high profile arches, inverted pear shapes and pear arches), as well as other horizontal ellipses, use $2 x$ actual top radius (2Rt) in all cases.

For typical structures :	Design Span = Actual Span "S" $(\mathrm{ft})=$	10.00
For unsymmetrical or deflect more than 5\% structures:	Design Span (ft) $=2 \mathrm{R}_{\mathrm{t}}=$	0.00
	Pipe Crown Deflection $=$	0%
	Buckling Strength Reduction Factor, $\mathrm{f} *=$	0.95

* reduction factor f is based on NCSPA Design Data Sheet No 19, II Structural Evaluation A.2.b \& Appendix B.1, Figure B.1.1 for Unsymmetrical structures or structures deflected over 5\% only.

* Maximum Plate Radius allowed if Long Span Structural Plate Structures Selected

Design Properties

Conduits Mechanical \& Section Properties:
Mechanical Properties:

Metal Type:	Steel		
	$\mathrm{F}_{\mathrm{y}}=$ Minimum Yield Point of the Metal	33	ksi
	$\mathrm{F}_{\mathrm{u}}=$ Minimum Tensile Strength of the Metal	45	ksi
	$\mathrm{E}_{\mathrm{m}}=$ Modulus of elasticity of metal	29000	ksi

Section Properties:

SPREADSHEET VERSION	1.0	$10 / 31 / 2012$	
COMP. BYCOC DATE	$11 / 1 / 2012$		
		DATE	$11 / 9 / 2012$

Design Calculations:

Structure Type:	Corrugated Metal Pipe		Warnings:
Seam Type:	Annular pipe w/ spot welded, riveted or bolted seam		
	Longitudinal Length of Structure "L" (ft) =	46.00	
	AASHTO minimum cover, "h" (ft) =	1.25	
Depth of cover used to check AASHTO minimum cover requirment " $\mathrm{H}_{\text {min }}$ " $(\mathrm{ft})=$		3.60	
$\varphi_{\text {loss }}=$ Section Properties reduction factor on the basis of metal loss from the materialsfield evaluation $=$		1.00	
$\varphi_{1}=$ Resistance Factor for wall area and buckling (Table 12.5.5-1)		1.00	
$\varphi_{2}=$ Resistance Factor for seam strength (Table 12.5.5-1)		0.67	
$\delta=$ Soil density (k/ft ${ }^{3}$)		0.120	
$\mathrm{k}=$ soil stiffness factor $=$		0.22	
$\varphi_{E}=$ Factor for Distribution of Live Load with Depth of Fill based on Backfill Type (per		1.15	

Calculate the f_{cr} (critical buckling stress) :
(AASHTO LRFD 12.7.2.4)
if: $S<\frac{r}{k} \sqrt{\frac{24 E_{m}}{F_{u}}}$, then $f_{c r}=F_{u}-\frac{F_{u}^{2}}{48 E_{m}}\left(\frac{k S}{r}\right)^{2}$
if: $S>\frac{r}{k} \sqrt{\frac{24 E_{m}}{F_{u}}}$, then $f_{c r}=\frac{12 E_{m}}{(k S / r)^{2}}$
Compare:
Therefore, $\quad \mathrm{S}(\mathrm{in})=\square<\frac{r}{k} \sqrt{\frac{24 E_{m}}{F_{u}}}=\square 386.66$
fsi

Calculate the $T_{\text {cap }}$ (thrust capacity of the wall) :
Seam Strength $(\mathrm{k} / \mathrm{ft})=\square 62.0$

$\mathrm{T}_{\text {cap }}=$ less of:	1. wall yield strength $=\varphi_{1} \varphi_{\text {loss }} \mathrm{F}_{\mathrm{y}} \mathrm{A}=$	66.1
	2. wall buckling strength $=\mathrm{f} \varphi_{1} \varphi_{\text {loss }} \mathrm{f}_{\mathrm{cr}} \mathrm{A}=$	85.8
	3. seam strength $=\varphi_{2} \times($ seam strength $)=$	41.5

Therefore, | $\mathbf{T}_{\text {cap }}=$ | 41.5 | k / ft |
| :---: | :---: | :---: |

Calculate the T_{E} (pipe wall thrust due to earth cover) :

	$\mathrm{T}_{\mathrm{E}}=$ higher value of :	1. $\delta \mathrm{H}(\mathrm{S} / 2)=$	2.16
		2. $\delta \mathrm{HR}_{\mathrm{t}}=$	0.00
Therefore,	$\mathrm{T}_{\mathrm{E}}=$	2.16	k/ft

SPREADSHEET VERSION	1.0	$10 / 31 / 2012$	
COMP. BY	ABC	DATE	$11 / 1 / 2012$
	DHECK BY	DEF	DATE

Calculate the $T_{(L+1)}$ (pipe wall thrust due to live load plus dynamic load allowance) :

Based on AASHTO LRFD 3.6.2.2

Live load Dynamic Load Allowance, $\quad I M=33\left(1.0-0.125 D_{E}\right) \geq 0 \%$
where, $\quad D_{E}=$ the minimum depth of earth cover above the structure (ft)

For this structure: Depth of Fill, | $\mathrm{D}_{\mathrm{E}}=\mathbf{H}$ | $\left.=\begin{array}{l}\mathrm{ft} \\ \mathbf{I M} \\ = \\ (1+\mathbf{I M})\end{array}\right)=18 \%$ |
| ---: | :--- |

Figure 2: Load distribution through structural fill
Where, $\mathbf{W}_{T}=$ Tire contact width, $\mathbf{L}_{T}=$ Tire contact length, $\mathbf{W}_{\mathbf{D}}=$ Distributed load width, $\mathbf{L}_{\mathrm{D}}=$ Distributed load length
The surface tire contact area for HL-93 loading (also applied to MI trucks) (per AASHTO LRFD 3.6.1.2.5):

$$
\begin{array}{rlr}
\mathrm{W}_{\mathbf{T}}=20^{\prime \prime}= & 1.67 & \mathrm{ft} \\
\mathrm{~L}_{\mathbf{T}}=10^{\prime \prime}= & 0.83 & \mathrm{ft}
\end{array}
$$

	OWNER MDOT/Superior	SPREADSHEET VERSION		1.0	10/31/2012
	SECTION B01 of 11111	COMP. BY	$A B C$	DATE	11/1/2012
	DESCRIPTION Pleasant Road Over Raging River	CHECK BY	DEF	DATE	11/9/2012

Distribution of wheel loads through earth fills (per AASHTO LRFD 3.6.1.2.6):
for HL-93 Design Truck (also applied to MI trucks)

Truck Load at Depth					
	HL-93 Truck/Tandem	MI 1-Unit	MI 2-Unit	M1 3-Unit	MI Overload
	(Unfactored)	(Factored)	(Factored)	(Factored)	(Factored)
Controling Truck	1-Axle	Truck 2	Truck 10	Truck 20	Class A
wheel spacing on axle	6.00	6.00	6.00	6.00	8.00
$\mathrm{W}_{\text {D Wheel }}(\mathrm{ft})$	5.81	5.81	5.81	5.81	
Controlling Number of Loaded Lanes	1	1	1	1	1
Controlling $\mathrm{W}_{\text {D axle (tota) }}$	11.61	11.61	11.61	11.61	12.14
Max $\mathrm{W}_{\mathrm{D}} /$ lane provided by structure	40.14	40.14	40.14	40.14	40.14
Rating W_{D}	11.61	11.61	11.61	11.61	12.14
Multiple Presence Factor	1.20	1.20	1.20	1.20	1.20
Impact + Operating Truck Line Load (k/ft)	7.78	8.14	8.14	7.49	20.28
Load on Culvert, $\rho_{(L+1 M)}$	0.80	0.84	0.84	0.77	2.00
$\mathrm{T}_{(\mathrm{L}+\mathrm{IM})}(\mathrm{k} / \mathrm{ft})$	4.02	4.21	4.21	3.87	10.02

Load factors have not been applied to the HL-93 Truck and Tandem but will be in the next section
Transverse pressure overlaps are considered. Longitudinal pressure overlaps are considered for each MI truck configuration

Check Minimum Earth Cover

Calculate The Critical Intensity of Distributed Load $q_{c r}$
(Based on "Theory of Elasticity by Timoshenko" \& "Guide to Stability Design Criteria for Metal Structures, 5th Edition")
This check considers the Federal and MI Legal Trucks, Overload trucks are not used in the main calculations, however a check of $\mathrm{q}_{\text {max }}$ is shown for consideration

$$
\begin{array}{rlrl}
\gamma_{4} & =\frac{q_{c r} S_{c}{ }^{3}}{E I}= & & \\
q_{c r} & =\gamma_{4} \frac{E I}{S_{c}^{3}} \\
\text { Where, } & & & \\
& \mathrm{E}= & 29000 & \mathrm{ksi} \\
\mathrm{I} & & 78.18 & \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{c}} \text { (span length) } & = & 10.00 & \mathrm{ft} \\
\boldsymbol{q}_{\text {cr }} & =\square \mathrm{ksi}
\end{array}
$$

Calculate Maxmium Distributed Load $\boldsymbol{q}_{\text {max }}$

COMP. BY \qquad
CHECK BY DEF

Load Rating Factors for Ring Compression Structures:

1. Operating Load Rating Factor $\left(\mathrm{RF}_{\mathrm{o}}\right)$:
a. $R F_{0}$ based on wall strength

$$
R F_{O-W}=\frac{\varphi_{c} \varphi_{s} T_{c a p}-\gamma_{E V} \eta_{R} T_{E}}{\gamma_{L L} T_{(L+I M)}}
$$

b. RF_{O} based on minimum cover requirements

$$
R F_{o-C}=\frac{H_{\min }^{2}}{C\left(h_{\bmod }\right)^{2}}
$$

Where,

$$
C=2.36 \frac{H_{\min }}{S}+0.528 \leq 1.0=
$$

Operating Load Rating Factors, $R F_{0}$					
	HL-93 Truck	MI 1-Unit	MI 2-Unit	MI 3-Unit	MI Overload
$\mathrm{T}_{\text {cap }}$	41.54	41.54	41.54	41.54	41.54
$\phi_{\mathrm{c}}{ }^{\text {¢ }}$ S	1.00	1.00	1.00	1.00	1.00
T_{E}	2.16	2.16	2.16	2.16	2.16
$Y_{\text {EV }}$	1.95	1.95	1.95	1.95	1.95
$\eta_{\text {R }}$	1.05	1.05	1.05	1.05	1.05
$\mathrm{T}_{(\mathrm{L}+1 \mathrm{M})}$	4.02	4.21	4.21	3.87	10.02
$Y_{\text {LL }}$	1.35	1.00	1.00	1.00	1.00
Is culvert burried deep enough to neglect LL?	NO	NO	NO	NO	NO
$\mathrm{RF}_{\text {o-w }}$	6.84	8.82	8.82	9.60	3.70
$\mathrm{RF}_{\text {occ }}$	8.29	8.29	8.29	8.29	8.29
RF_{o}	6.84	8.29	8.29	8.29	3.70
Note					

2. Inventory Load Rating Factor $\left(\mathrm{RF}_{\mathrm{i}}\right)$:
a. $R F_{i}$ based on wall strength

$$
R F_{i-W}=\frac{\varphi_{c} \varphi_{s} T_{c a p}-\gamma_{E V} \eta_{R} T_{E}}{\gamma_{L L} T_{(L+I M)}}
$$

b. $R F_{i}$ based on minimum cover requirements

$$
R F_{i-c}=\frac{H_{\min }^{2}}{h_{\mathrm{mod}}^{2}}
$$

Inventory Load Rating Factor, RF_{i}	
	HL-93 Truck
$\mathrm{T}_{\text {cap }}$	41.54
$\phi_{\mathrm{c}} \phi_{\text {s }}$	1.00
T_{E}	2.16
$Y_{\text {EV }}$	1.95
$\eta_{\text {R }}$	1.05
$\mathrm{T}_{(L+1 M)}$	4.02
YLL	1.75
$\mathrm{RF}_{\mathrm{i}-\mathrm{w}}$	5.28
$\mathrm{RF}_{\mathrm{i} \text { - }}$	8.29
RF_{i}	5.28

Load Rating Summary:				Warnings:
		Controling Truck	Rating Factor	
Inventory	Federal	HL-93	RF=5.28	
	Federal	HL-93	RF=6.84	
	MI 1-Unit	Truck 2	$\mathrm{RF}=8.29$	
Operating	MI 2-Unit	Truck 10	$\mathrm{RF}=8.29$	
	MI 3-Unit	Truck 20	$\mathrm{RF}=8.29$	
	MI Overload	Class A	$\mathrm{RF}=3.70$	

Double Checking Cell References:

Drop down menus

All drop-down menus functioned properly and referenced the correct ranges in "Reference tables".

Sheet	Tested Cell	Referenced Cell/Table Range	Passed?		
input-structure info	C28	'Reference tables'!structure_type	Yes		
input-structure info	C29	'Reference tables'!seam_type	Yes		
input-structure info input-structure info	C30	'Reference tables'!structure_category	Yes		
input-structure info input-structure info	D39	D40	'Reference tables'!metal_type	Yes	CMP Rating
:---					
Calculations					

Auto-filled data

No critical errors were found on the auto-filled data-fields. The only area of concern I had was that many of the formulas had important values embedded in them, which may make the sheet hard to update. See the attached spreadsheet for comments on individual cells.

Sheet	Tested Cell	Referenced Cell/Table Range	Passed?	Notes
CMP Rating Calculations	E15	'input-structure info'!C33	Yes	
CMP Rating Calculations	E17	'input-structure info'!C37	Yes	
CMP Rating Calculations	E18	'input-structure info'!C44	Yes	
CMP Rating Calculations	E19	E18	Yes	
CMP Rating Calculations	E21	'input-structure info'!C37	Yes	Same formula as E17
CMP Rating Calculations	C23	'input-structure info'!C30	Yes	
CMP Rating Calculations	D25	C23, E15, E17	Yes	
CMP Rating Calculations	D26	'input-structure info'!C37	Yes	
CMP Rating Calculations	D27	'input-structure info'!C28	Yes	
CMP Rating Calculations	C33	'input-structure info'!D38	Yes	
CMP Rating Calculations	E34	C33, 'Reference tables'!B32:E36	Yes	
CMP Rating Calculations	E35	C33, 'Reference tables'!B32:E36	Yes	
CMP Rating Calculations	E36	C33, 'Reference tables'!B32:E36	Yes	
CMP Rating Calculations	B39	'input-structure info'!D39	Yes	
CMP Rating Calculations	B40	'input-structure info'!D40	Yes	
CMP Rating Calculations	B41	B39, 'input-structure info'!D41	Yes	
CMP Rating Calculations	B42	B39, 'input-structure info'!D42	Yes	
CMP Rating Calculations	B43	B40, 'input-structure info'!D43, 'Reference tables'!A39:B48 input-structure info'!C28,	Yes	More significant figures in this field than in other fields
CMP Rating Calculations	B44	'Reference tables'!B17	Yes	Only one value in the lookup table
CMP Rating Calculations	C53	'input-structure info'!C28	Yes	
CMP Rating Calculations	C54	input-structure info'! ${ }^{\prime} 29$	Yes	
CMP Rating Calculations	E55	'input-structure info'!C35	Yes	
CMP Rating Calculations	E56	input-structure info'!C28, 'Reference tables'!B2:C6	Yes	
CMP Rating Calculations	E57	input-structure info'!C31, 'inputstructure info'!C32	Yes	
CMP Rating Calculations	E58	'input-structure info'!C45	Yes	
CMP Rating Calculations	E60	input-structure info'!C29, 'inputstructure info'!C29		value in a reference table rather than having the string literal in the formula.
CMP Rating Calculations	C72	C70,D70,E35,E36,E62,B48	Yes	

Sheet	Tested Cell	Referenced Cell/Table Range	Passed?	
CMP Rating Calculations	E136	E135, E134	Yes	lanes Not
CMP Rating Calculations	F136	F134, E123	Yes	on
CMP Rating Calculations	B137	E126, E127, E123, E127	Yes	-
CMP Rating Calculations	C137	E126, E127, E123, E127	Yes	Same formula as B137 OK, fric ${ }^{2}$
CMP Rating Calculations	D137	E126, E127, E123, E127	Yes	Same formula as B 137 <
CMP Rating Calculations	E137	E126, E127, E123, E127	Yes	Same formula as B137
CMP Rating Calculations	F137	E126, E127, E123, E127	Yes	Same formula as B137
CMP Rating Calculations	B134	none	Yes	should this value be in a reference table somewhere or is it always the same?
CMP Rating Calculations	C134	none	Yes	should this value be in a reference table somewhere or is it always the same?
CMP Rating Calculations	D134	none	Yes	should this value be in a reference table somewhere or is it always the same?
CMP Rating Calculations	E134	none	Yes	should this value be in a reference table somewhere or is it always the same?
CMP Rating Calculations	B138	B136, B137	Yes	
CMP Rating Calculations	C138	C136, C137	Yes	
CMP Rating Calculations	D138	D136, D137	Yes	
CMP Rating Calculations	E138	E136, E137	Yes	
CMP Rating Calculations	F138	F136, F137	Yes	
CMP Rating Calculations	B139	B132, B118, E123	Yes	
CMP Rating Calculations	C139	\$E\$123,'M1 Trucks'!\$C\$7:\$R\$13	Yes	
CMP Rating Calculations	D139	\$E\$123,'MI Trucks'!\$C\$7:\$R\$13	Yes	
CMP Rating Calculations	E139	\$E\$123,'MI Trucks'\$\$C\$7:\$R\$13	Yes	
CMP Rating Calculations	F139	F131, \$E\$123,'MI Trucks'!C17:R19, 'MI Trucks'!C23:R25, 'MI Trucks'!C29:R31	Yes	
CMP Rating Calculations	B140	B139, B138	Yes	
CMP Rating Calculations	C140	C139, C138	Yes	
CMP Rating Calculations	D140	D139, D138	Yes	
CMP Rating Calculations	E140	E139, E139	Yes	
CMP Rating Calculations	F140	F139, F138	Yes	

$\stackrel{n}{0}$			

Passed? for its own unit. for its own unit.
formula references B159/160 instead of same value for its own unit.
 for its own unit.

Referenced Cell/Table Range
C81
C81
C81
C81
C81
C87
C87
C87
C87
C87
B141
C141
D141
E141
F141
B158, B159, B160
B158, B159, C160

B158, B159, E160 B158, B159, F160 C154
C154

C154 Tested Cell CMP Rating Calculations \quad B141 CMP Rating Calculations C141 CMP Rating Calculations D141 CMP Rating Calculations E141 CMP Rating Calculations F141 CMP Rating Calculations C154 CMP Rating Calculations B158 CMP Rating Calculations C158 CMP Rating Calculations D158 CMP Rating Calculations E158 F158 B159 C159 6STO | 글 |
| :--- |
| 푸 | F159 8

0
∞ C160 D160 을 은
긴 F160 $\begin{array}{r}-7 \\ - \\ - \\ \hline\end{array}$ 1915 D161 $\begin{array}{ll}-1 \\ -1 & -1 \\ -1\end{array}$ $\stackrel{-1}{-1}$
 CMP Rating Calculations CMP Rating Calculations

MDOT CMP LFE
i) Buckling Steength Reouction Factor

NCSPA DEsign Data Sheet No. 19
Pace 7, Flguee B.l.I * missing
2) cmp Rating Calculatlons

DESIGN CALCUGATIOAS
VCG AASHTO SHO $\frac{12.6 .1 .3}{} \phi_{1}=$ CARACITY MOOIFICATION FACTOR FOR WALL AREA ANO QUCIKLING

* note where to look up in cooe
$V_{C G} A A S H T O$ STD,SR. $\phi_{2}=$ GAPAGITY MOOIFIGATION FACTSE FOR SEAM STEENGTH
Cb
* Nate whece to loak up im cooe

Calculate the TCAR
(G) * foe consispenci in roemula replace A with A_{y}

Design Dimenesiones

- Defined from NCSPDA defintion at Design Dmations. 3. fer all lomaspion structures....

Gemeral Commeut
IF IH THE FUTURE IT WOULD OE POSSIQLE FO PROVIDE THE AQILITY TO CLEAE THE FORM OF USEE INAUTS (GREEN CELLS) IT MIGHT MINIMIZE THE POTENTIAL FOR MIXIMG OLD ANO NEW DATA.

* Note that in example cross Section Properties \& Seam Strength ARE EASE LO ON 10 GAGE INSTEAD OF 3 GAGE MATEEIAG CHECK CALCULATION FOE ORIGINAL EKAMALE

Foe Fer $\quad S=10 \mathrm{At}=120 \mathrm{~N}$

$$
\begin{gathered}
\text { IF } S<\frac{0.6840}{0.22} \sqrt{\frac{24(29,000)}{45}} \Rightarrow 45-\frac{(45)^{2}}{48(29,900)}\left(\frac{0.22(120)}{0.6840}\right)^{2} \\
120<387 \quad \text { THEN } F_{C h}=42.83 \mathrm{ksi}
\end{gathered}
$$

Foe $T_{\text {CAP }} \quad$ Less of $\quad(1.0)(1.00)(33)(2.003)=66.1$

$$
(0.95)(1.0)(1.00)(42.83)(2.003)=81.5 \quad 85.8
$$

* ff only use if C2H is unsymmetrical or deflect over 5%

$$
\begin{aligned}
& (0.67)(62)=41.5 \\
& T_{C A R}: 41.5
\end{aligned}
$$

For $T_{E} \quad$ HIGHER of

$$
\begin{gathered}
(0.120)(3.6)(10 / 2)=2.16 \\
(0.120)(3.6)(15)=6.48 \\
T_{E}=6.48
\end{gathered}
$$

Foe $R F_{\text {ow }}$

$$
\begin{gathered}
\frac{41.5-1.95(6.48)}{7.84} \\
=3.68 \stackrel{\mathrm{KE}}{=}
\end{gathered}
$$

For RF,

$$
\begin{aligned}
& c=2.36\left(\frac{3.6}{10}\right)+0.528=1.38 \leq 1.0 \quad 0 \leq 1.0 \\
& R F_{0-0}=\frac{(3.6)^{2}}{138(1.25)^{2}} \\
& =6048.29
\end{aligned}
$$

* ADO note to clarify what C value to use based on \leq
OWNER
SECTION
DESCRIPTION Test 1

Load Factor Rating (LFR):

CORRUGATED METAL STRUCTURE (CIRCULAR \& PIPE ARCH) \& ARCHES
Adapted by MDOT from the original spreadsheets developed by the Ohio DOT

*For unsymmetrical structures, structures deflected more than 5% from design shape, or those that show localized distortions require that the actual maximum radius be determined in those distorted areas as show above. Use
 upper periphery of the culvert using a ruler of length "P" to obtain values of "M". This should be done at selected stations along length of culvert, particularly at locations with noticeable sag.

Drop down I st contains
 Standard confiscators that (used me e value cis mace 3) Do nor courting the same AASHTO Gives properties for. Only AASHTO sections were reprodveed, sources for ot he conformations,

					* 14
394	OWNER	SHEET NO	1	OF	4
	SECTION	COMP. BY	JAK	DATE	9/24/2012
4.	DESCRIPTION	CHECK BY		DATE	

Load Factor Load Rating of In-Service, Corrugated Metal Pipe Structures
 on NCSPA Design Data Sheet No. 19 \& ASHTO Standard Specinication for Highway Bridges
 Adapted by MDOT from the original spreadsheets developed by the Ohio DOT

Spreadsheet last modified: September 28, 2012

DO NOT use this spreadsheet to load rate Structural Plate Box Culverts

Design Dimensions

1. For typical structures, use the actual field measured span for calculations.
2. For unsymmetrical structures or those deflected over 5% :
a. use $2 x$ the top radius $\left(2 R_{)}\right)$in lieu of span for calculations.
b. base critical buckling stress calculations on the theoretical design span, reducing the resulting allowable buckling stress by the appropriate multiplier to account for deflection " $\mathrm{f}^{\prime \prime}$ (NCSPA Design Data Sheet No. 19, Figure B.1.1).
3. For all tong span structures (horizontal ellipse, low and high profile arches, inverted pear shapes and pear arches), as well as other horizontal ellipses, use 2 x actual top radius $\left(2 \mathrm{R}_{\mathrm{V}}\right)$ in all cases.

For typical structures:	Design Span = Actual Span "S" (ft) $=$		15.33
For unsymmetrical or deflect more than 5\% structures:	Design Span (fi) $=2 R_{4}=$		0.00
	Pipe Crown Deflection $=$		0\%
	Buckling Strength Reduction Factor, $\mathrm{f}=$		0,95
long span structures:	Design Span (ft) $=2 \mathrm{R}_{\mathrm{t}}=$		0.00
Structure Category: \quad Typical (NCSPA design data sheet No. 19, I1. A. 12)			
Then, Span Length used in Load Rating Calculation(ft) $=$		15.33	Wamings:
Then, R_{t} used in Load Rating Calculation (ft) $=$		0.00	
$\mathrm{R}_{\mathrm{t}_{\text {(max })}}{ }^{(f t)}=$		4	

Design Properties
 Mechanical Properties:

Steel		
$\mathrm{F}_{\mathrm{y}}=$ Minimum Yield Point of the Metal	33	ksi
$\mathrm{F}_{u}=$ Minimum Tensile Strength of the Metal	- 45	ksi
$\mathrm{E}_{\mathrm{m}}=$ Modulus of elasticity of metai	29000	ksi

Section Properties:

Corrugation:	2. 6.6×2 (steel structural plate pipe).	
Gage Number:		
$\mathrm{d}(\mathrm{in})=$	4\% \%	\% 4- Warnings:
$\begin{aligned} t(i n) & = \\ t_{(\text {min }}{ }^{* *}(\mathrm{in}) & =\end{aligned}$	W.	,
	** Required Minimum Top Arc Thickness if Long Span Structural Plate Structures Selected	
$\begin{aligned} A_{s}\left(i^{2} / f t\right) & = \\ r^{+}(i n) & = \end{aligned}$	2.003	input these values based on metal type, corrugation, gage number or pipe wall thickness, see tables in worksheet "section property tables".
	0.6840	
175	- 78.175	

Design Calculations:

Structure Type:			Warnings:
Seam Type:	Annular pipe $w /$ spot welded, rivered or bolted seam		
	Longitudinal Length of Structure "L" (ft) $=$	114.00	
	AASHTO minimum cover, $\mathrm{h}(\mathrm{ft})=$	+ 1.92	
(the lowest cover over the structur	Height of cover above crown "H" (ft) = a traffic area based on field measurement)	700	
$\varphi_{\text {ioss }}=$ Section Properties reduction fact	the basis of metal loss from the materials field evaluation $=$	100	
$\varphi_{1}=$ capaci	odification factor for wall area and bucking	1.0	
	pacity modification factor for seam strength	0.67	
	$\delta=$ Soil density $\left(\mathrm{k} / \mathrm{ff}^{3}\right)$	0.120	
	$k=$ soil stiffness factor $=$	0.22	

Calculate the F_{cr} (critical buckling stress) :

> if: $S<\frac{r}{k} \sqrt{\frac{24 E_{m}}{F_{u}}}$, then $F_{c r}=F_{u}-\frac{F_{u}^{2}}{48 E_{m}}\left(\frac{k S}{r}\right)^{2}$
> if: $S>\frac{r}{k} \sqrt{\frac{24 E_{m}}{F_{u}}}$, then $F_{c r}=\frac{12 E_{m}}{(k S / r)^{2}}$

Compare:
S (in)

So:
$F_{\mathrm{cr}}=4 \mathrm{ksi}$

Calculate the $\mathrm{T}_{\text {eap }}$ (thrust capacity of the wall):

Input the seam strength value based on metal type, corrugation, gage number or pipe wall thickness, see tables in worksheet "searn strength tables"

$\mathrm{T}_{\text {cap }}=$ less of:	1. wall yield strength $=\varphi_{1} \varphi_{\text {lase }} F_{y} A=$	66.1
	2. wall buckling strength $=\mathrm{f} \varphi_{1} \varphi_{\text {ioss }} F_{\text {c }} A=$	79.9
	3. seam strength $=\varphi_{2} \times$ (searn strength $)=$	415

Caiculate the T_{E} (pipe wall thrust due to earth cover) :

So:		$\mathrm{T}_{\mathrm{E}}=$	6.44	kff

Calculate the $T_{(t+1)}$ (pipe wall thrust due to live load plus impact):

$\mathrm{T}_{(L+1)}=$ higher value of :	$\begin{array}{\|lll} \text { 1. } & \rho_{(L+1)}(S / 2)= \\ \text { 2. } & \rho_{(L+1)} & R_{t}= \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline k / f t \\ \hline k / t \\ \hline \end{array}$	
Based on AASHTO 3.8.2.3:	Live load Impact, I =	30\%	for $0^{\circ}-0^{\prime \prime}<\mathrm{H}^{\prime \prime}<1^{\prime}-0^{\prime \prime}$
		20\%	for $1^{1}-1^{\prime \prime}<H<2^{\prime}-0^{\prime \prime}$
		10\%	for $2^{\prime}-1^{\prime \prime}<H<2^{\prime}-11^{\prime \prime}$
		0\%	for $\mathrm{H} \geq 3^{\circ}-\mathrm{O}^{\prime \prime}$

So, for this structure: Depth of Fill, $\mathrm{H}=$

Pressure on the tire contact area is distributed on the culvert through the cover depth, Dimension as:
$W_{\mathrm{D}}=\mathrm{W}_{\mathrm{w}}+1.75 \mathrm{H}$
$\mathrm{L}_{\mathrm{D}}=\mathrm{L}_{\mathrm{w}}+1.75 \mathrm{H}$

The surface tire contact area for HS20 loading (per AASHTO 3.30):

$W_{W}=20^{\prime \prime}=$	1.67	$f t$
$L_{W}=10^{\prime \prime}=$	0.83	$f t$

The tire surface contact area for Legal MI Trucks is assumed to be the same as the HS 20 truck.
The tire surface contact area for Ml overioad vechicles is considered to be part of the measurement for wheel spacing on axle (out to out)

Fill depth, H (ft)	-
Structure Total Length, L (ft)	
Clear Roadway Width (Face to face of gaurorail) (f)	Uuthary
Lane Width (fi)	
Number of Lanes	Cumulu

Factored Truck Load at Depth					
	HS20	Mil 1-Unit	M1 2-Unis	Mil 3-Unit	M1 Overioad
Controling Truck	1-Axle	Truck 4	Truck 17	Truck 23	Class A
wheel spacing on axle	6.00	6.00	6.00	6.00	8.00
$W_{\text {Dwhee! }}(\mathrm{ft})$	13.92	13.92	13.92	13.92	4t.
$W_{\text {D axiectotan }}$	19.92	19.92	19.92	19.92	20.25
Max W_{0} llane provided by structure	13.42	13.42	13.42	13.42	55.25
Rating W_{0}	13.42	13.42	13.42	13.42	20.25
FACTORED Operating Truck Line Load + Impact (k/ft)	3.18	2.87	3.60	3.12	7.00
, Factored Load on Culvert, $\rho_{(l+1)}$	0.24	0.21	0.27	0.23	035
	182	1.64	2.06	1.78	2.65
Transverse pressure overlaps are considered. Longitudinal	s are con	configuratio			

Load Rating Factors for Ring Compression Structures:
Operating Load Rating Factor ($R F_{\circ}$):
a. RF_{0} based on wall strength

$$
R F_{o-w}=\frac{T_{c a p}-1.95 T_{E}}{T_{(L+1)}}
$$

*Note: $T_{(a+1)}$ is factored
b. RF_{O} based on minimum cover requirements

$$
R F_{o-C}=\frac{H^{2}}{C(h)^{2}}
$$

Where,

$$
C=2.36 \frac{H}{S}+0.528 \leq 1.0=1.00
$$

$$
\text { So, } R F_{o c}=\square 13.34
$$

Note: The equation has an upper limit of 1.0 , therefore if the calculation is greater than 1.0 a value of 1.0 is to be used.

2. Inventory Load Rating Factor $\left(R F_{i}\right)$:
a. $R F_{\text {; }}$ based on wall strength

$$
R F_{i-w}=\frac{3}{5} R F_{o-w}
$$

b. $R F_{1}$ based on minimum cover requirements

$$
R F_{i-c}=\frac{H^{2}}{h^{2}}
$$

Ingur - Stencture Iheo
Leao Factoes SLL could be removed for egemar eoc wos remoze specitic es not tue disisu
remave $g_{G L}$ COMO LeGal loads - OpGearing - ensec an AAOT. fROM SPAGAOSHEET LEFE LOAD FACTORS TABLE
$\phi_{S} \&$ TAQLE 6A.4.2.4-1
Do not see a SUPERTRUGTUBe TYpe that MATGHES CMP

Page 8 of 10
Foemuga foe "Operating Lomo Raring Factor" ano "Inventoey laao Ratmg Factoe" and Operating load Eatimg Factoes, RE:" table

* symbols should be uniform

$$
\begin{aligned}
& \gamma_{e v}=g_{e v} \\
& \gamma_{L L}=g_{L L}
\end{aligned}
$$

PaGE 8 of 10
For C
NOTE THAT IF ≤ 1.0 USE CALCULATED NUMB,

$$
\text { IF }>1.0 \text { Use } 1.00
$$

LRFE Speeaosheet Hami Calculations CHECK Ceitical Buckling Steess

$$
\begin{gathered}
S=15.33^{\prime}=183.96^{\prime \prime} \quad \frac{0.6840}{0.22} \sqrt{\frac{24(29,000)}{45}}=386.7 \mathrm{NN} \\
\text { IF } S<\frac{(45)^{2}}{48(29.000)}\left(\frac{0.22(189.96)}{0.6840}\right)^{2} \\
\text { THEN } f_{c r}=45-\frac{(1)}{48}
\end{gathered}
$$

FoE H6-93 Thuck TAMOEN
ToAP
(1.) 62.8
(3.) 41.5
$T_{E}=6.14$
(1.) 6.44
(2.) 75.9

$$
\begin{aligned}
& W_{0}=1.67+1.15(7) \\
& W_{0}=9.72 \mathrm{~V} \\
& L_{0}=0.83+1.15(7) \\
& L_{0}=8.88 \mathrm{~V}
\end{aligned}
$$

(2.) 0.00

$$
T_{C A P}=0.67(62)=41.5^{\mathrm{V}}
$$

$$
\begin{aligned}
& e_{(L 1+\mathrm{M})}=\frac{4.04}{12.02}=0.34 \mathrm{~V} \quad T_{(L+2 \mathrm{M})}=0.34(15.33 / 2)=2.61 \\
& =(0.34)(15.93)=5.21 \times 5.16^{\circ}
\end{aligned}
$$

T($\angle+I M$) Teuck Lono DEDTM TABLE CHECKEO OTHEE TRUCKS OK

Opeentina load Ratimg Fhetore

$$
\begin{aligned}
& R F_{0-k}=\frac{(1.00)(41.5)-1.95(1.05)(6.44)}{1.35(2.58)} \\
& =8.13 \vee \quad 8.15 \% \quad O^{P E P^{A T} R^{f}} \\
& \text { ok } \\
& R F_{0-C}=\frac{(7.0)^{2}}{1.00(1.92)^{2}} \\
& =13.29 \mathrm{r} \quad 13.34 \% \\
& C=2.36\left(\frac{7.00}{15.33}\right)+0.52 \\
& =1.61 \leq 1.00 \\
& \text { * } 100 \text { nate: } \\
& \text { If } \leq 1.0 \text { Appếfictulismere } \\
& 1 f>1.0 \text { use } 1.00
\end{aligned}
$$

Inventory bano Eafine factoc (EFi)

$$
\begin{aligned}
E_{i-W} & =\frac{1.00(4.5)-(1.95)(1.05)(6.44)}{1.75(2.53)} \\
& =6.27 \mathrm{~V} \\
E_{i \cdot c} & =\frac{(7)^{2}}{(1.92)^{2}}=13.29 \mathrm{~V}
\end{aligned}
$$

*

$$
R F_{i}=M \omega=6.29
$$

Foe MSE $L^{M D}$

$$
\begin{aligned}
& f_{c r}=39.9 \text { Feom previous catc. } \\
& T_{\text {EAA }}=4 / .5 \quad T_{E}=6.44 \\
& W_{0}=9.78 \\
& \text { WhetG } \\
& W_{D_{A K L E}}=16.05-
\end{aligned}
$$

$$
E F: 6.07 \% \text { opferine }
$$

$$
\begin{aligned}
& 3+1020 \\
& v_{0} \quad P_{6=m}=\frac{(1.00)(41.5)-(1.75)(1.05)(6.44)}{(1.75)(2.58)} \\
& =6.27 \mathrm{C} \quad 6.29 \mathrm{IN} \\
& \text { BE: }=13.34 \text { Feom peevous }
\end{aligned}
$$

[^0]: ** reduction in rise divided by the span length from design shape in the unit of percentage

