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Despite existing research and improvements, pedestrian and bicycle-involved crashes, 
injuries, and fatalities have remained relatively stable in Michigan.  Because of this, it is 
important to better identify behaviors and those locations and attributes associated with 
locations that are most prone to such crashes.  
 
However, many state agencies are not able to systematically identify and compare 
areas of high risk for pedestrians. Relying on observed crashes or hotspot analysis can 
be misleading due to statistically anomalies or not properly accounting for pedestrian 
exposure and other risk factors.  
 
A key objective of this project was to create a risk score, based on mapping crashes 
and the risk characteristics, for a defined area or network for the entire state of Michigan. 
This report describes how the project team developed the risk scores and 
corresponding non-motorized exposure estimates. 
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Executive Summary  
 
This reports describes efforts to develop both a pedestrian and bicycle risk 
assessment model for the entire State of Michigan.  This report addresses non-
motorized1 safety risk by introducing a practice ready crash risk assessment 
methodology that incorporates a model of exposure. 
 
Our objective was the development of a robust, statewide pedestrian and bicycle 
crash risk score. To accomplish this, we developed statistical and data science 
methods to help identify the places in need of countermeasure and the factors 
that contribute to pedestrian and bicycle crashes.   
However, pedestrian and bicycle crashes occur relatively infrequently over time 
and space. Therefore, safety analysis based on observed crashes is an 
inadequate and unsatisfactory way to proceed. Many believe that they are nearly 
impossible to predict. On the contrary, our hypothesis is that it is possible to 
accurately predict the time and place of non-motorized crashes. 
A key hypothesis of this report is that it is possible to identify locations in need of 
countermeasures for pedestrian and bicycle crashes using a “risk score” that 
leverages information beyond observed crashes.  
We leveraged the empirical Bayes (EB) methods from the Highway Safety 
Manual in combination with a model of non-motorized exposure to create the risk 
score. With this framework, we developed fine-scale risk score and exposure 
estimates for the entire State of Michigan. The unit of analysis is 400m by 400m. 
Through a limited validation study, we show that the risk score can reliability 
predict the most dangerous areas for pedestrians and bicyclist.  
We results are available in 2 output formats: GIS files and the webtool. The GIS 
tool allows users to interactively view the results in ArcGIS. The webtool allows 
the user to display and interact with the results, without any special software, 
from any web browser including on mobile devices.  

                                            
1 Throughout this report, we use the term “non-motorized” to include both 
pedestrian and bicyclist. 
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1 Introduction 
This reports describes our efforts to develop a both a pedestrian and bicycle risk 
assessment model for the entire State of Michigan.  This report addresses non-
motorized2  safety risk by introducing a practice ready crash risk assessment 
methodology that incorporates a model of exposure. 
 
Walking and bicycling promote healthy and socially connected neighborhoods 
and positively impact the local economy. Despite all of these benefits, bicyclists 
and pedestrians are at risk and lack protection in a crash with motor vehicles. In 
the State of Michigan, 38 bicyclists were killed and an additional 1,526 bicyclists 
were injured in motor vehicle crashes in 2016. The 38 bicyclist fatalities in 2016 
and 33 bicyclist fatalities in the previous year 2015 were the highest numbers 
since 2000. For pedestrians, 165 pedestrians were killed and 1,852 injured on 
Michigan roads in 2016 (Michigan State Police, 2017). Bicyclists in the United 
States are 12 times more likely than car occupants to get killed (72 vs 6 fatalities 
per billion kilometers) in a crash, and bicyclists in the United States are twice as 
likely to get killed as bicyclists in Germany and over three times as likely as 
bicyclists in the Netherlands (Pucher and Dijkstra, 2003).   
 
The aim of this project is to reduce the number of bicycle and pedestrian crashes 
in Michigan. To accomplish this, we developed statistical and data science 
methods to help identify the places in need of countermeasure and the factors 
that contribute to pedestrian and bicycle crashes.  The Federal government and 
other states are currently undertaking similar efforts. They are adopting and 
advocating data driven safety analysis (DDSA) (8). The stated purpose of DDSA 
is 
 
“to analyze crash and roadway data to predict the safety impacts of highway 
projects allows agencies to target investments with more confidence and reduce 
severe crashes on the roadways”(p.2). 
 
There are two main DDSA approaches: predictive and systemic. Predictive 
approaches seek to develop analytic tools to estimate the number of crashes in a 
specific location for certain types of roads and circumstances. Systemic 
approaches seek to identify the common set of underlying risk factors across a 
large swath of crash types. This project used the predictive approach for safety 
analysis. 
 
We embarked on a research project to assess the crash risk to pedestrians and 
bicyclists. Specifically, the objective was the development of a robust, statewide 
pedestrian and bicycle crash risk score. The department’s non-motorized safety 
engineers wanted a measure of risk that goes beyond merely counting the 
                                            
2 Throughout this report, we use the term “non-motorized” to include both 
pedestrian and bicyclist. 
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number of vehicle-pedestrian or vehicle-bicycle crashes in a given area. They 
wanted to understand the risk factors underlying pedestrian crashes. It is in this 
context that the risk score methodology presented in this report was developed. 
Unfortunately, the Highway Safety Manual (HSM)3, intended to offer guidance to 
states, provides an unsatisfactory solution to measure pedestrian risk. In the 
HSM, the safety performance functions (SPFs) for vehicle-pedestrian have only 
vehicle and road geometry factors, but no pedestrian factors. Even SPFs 
specifically calibrated for Michigan (34) do not consider pedestrian factors such 
as exposure. These factors provided the rationale for this present study. 
 
The HSM provides the set of best practices for predictive safety analysis. 
Specifically, section 2c of the HSM presents predictive methods to estimate the 
crash frequency for many road types and circumstances. The prescribed method 
to predict vehicle-pedestrian and vehicle-bicycle crashes utilize information about 
the vehicle and roadway characteristics but does not include information about 
pedestrian and bicycle exposure. However, exposure is a critical element in 
prediction, given that it is difficult to have a vehicle-pedestrian crash in the 
absence of a pedestrian. 
 
Recognizing this limitation, we developed a pedestrian and bicycle crash risk 
score that combines empirical Bayes methodology used by the HSM and the 
model of demand (MoPED) developed by Clifton et al. (1). A key contribution of 
this report is demonstrating how to scale MoPED and the risk score to a 
statewide level. We accomplish this by populating MoPED with imputed 
statewide multi-way tables of the household variables of interest using both the 
US Census Public Use Microdata Sample (PUMS) and the American Community 
Survey (ACS). 

1.1 Background 
Pedestrian and bicycle-involved crashes are an emphasis area of the traffic 
safety community.  Given the emphasis of non-motorized transportation at the 
local, state and national level, there has been additional interest in further 
understanding pedestrian and bicyclist safety issues. Despite existing research 
and improvements, pedestrian and bicycle-involved crashes, injuries, and 
fatalities have remained relatively stable in Michigan.  Because of this, it is 
important to better identify behaviors and those locations and attributes 
associated with locations that are most prone to such crashes.  
 

1.1.1 Objectives 
Given the overarching importance of non-motorized safety particularly in urban 
areas, many cities and metropolitan planning organizations are devoting 
considerable resources towards addressing it. However, many state agencies 

                                            
3 Manual, H. S. (2010). American association of state highway and transportation 
officials (AASHTO). Washington, DC, 10. 
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are not able to systematically identify and compare areas of high risk for people 
using non-motorized modes. Relying on observed crashes or hotspot analysis 
can be misleading due to statistical anomalies or not properly accounting for the 
intensity of travel.  From the outset, this research project had six primary 
objectives: 
 

• Document and learn from existing research on modeling/mapping 
pedestrian and bicycling safety areas. 

• Gather new data on how to model/map pedestrian and bicycling crashes 
in Michigan. 

• Analyze these data in order to produce a model/mapping tool that best 
determines locations in Michigan that could benefit from pedestrian and 
bicycling crash countermeasure installations. 

• The methodologies/tool(s) will be able: 
a. Visualize both pedestrian and bicycle crashes  
b. Provide a risk score (based on mapping crashes and the risk 

characteristics mentioned above) for a defined area or network 
(with crash summaries) 

c. Provide risk scores across the entire state (with crash summaries) 
d. Provide a process that results in viable output formats (GIS 

oriented: .kml, .dbf, .csv) and the process to add data and update 
regularly. 

• Report out methodology and results of this analysis. 
• Produce a dataset for use in a GIS tool. 

 

1.1.2 Scope 
 
This is a statewide analysis. 

1.2 Statement of hypotheses  
This research is intended to determine locations in Michigan that could benefit 
from pedestrian and/or bicycle crash countermeasure installations. To 
accomplish this, we developed a method to produce a model/mapping tool that 
best determines locations that could benefit from pedestrian and/or bicycle crash 
countermeasures. 
 
Pedestrian and bicycle crashes occur relatively infrequently over time and space. 
However, these crashes are often fatal when they occur. Therefore, safety 
analysis based on observed crashes is an inadequate and unsatisfactory way to 
proceed.  
A key hypothesis of this report is that it is possible to identify locations in need of 
countermeasures for pedestrian and bicycle crashes using a “risk score” that 
leverages information beyond observed crashes.  
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2 Literature Review 
To put this report into context, we review the relevant research literature on 
pedestrian and bicycle crash risk assessment.  
 

2.1 Review of previous research 
Current practice defines risk as the probability of a crash occurring given 
exposure to potential crash events. This definition is intuitive; however, 
measuring exposure to potential crash events is difficult. We first survey the 
various approaches to risk, and then we discuss ways to measure and 
incorporate exposure into a pedestrian risk score. 
 
An approach suggested by Raford and Ragland (9) is to define pedestrian risk as 
the number of observed crashes in a given geographical area divided by the daily 
pedestrian volume. The authors make the case that the level of pedestrian risk 
can be defined as the annual number of pedestrian-involved crashes divided by 
exposure, which is represented by the annual estimated pedestrian volume (9-
12). 
 
Given that pedestrian crashes occur infrequently, the aforementioned methods 
assign a risk of 0 to many areas. Traffic safety engineers have known for some 
time that evaluating risk solely by counting observed number of crashes 
simultaneously leads to an overestimation of risk in high risk areas and an 
underestimation in low risk areas. To address this issue, Hauer et al. (13) 
proposed the Empirical Bayes (EB) method for the estimation of the level of risk 
that is capable of correcting for regression-to-the mean bias.  
 
The EB method combines a model of predicted crash frequency and observed 
crash frequency to obtain a pedestrian risk score. The predicted number of 
crashes is determined by a parametric regression function referred to as SPF. 
SPF predicts the crash frequency for roads that are similar to the one under 
investigation. Traditionally, SPF was developed using a negative binomial 
regression model to predict the number of crashes for a particular site based on 
known information, such as annual average daily traffic (AADT) and road 
geometry (14-15). Unfortunately, SPFs for pedestrian-vehicle crashes do not 
include a measure of pedestrian volume. This report contributes to the literature 
by incorporating a measure of pedestrian exposure into an SPF model. 
 
Pedestrian exposure is defined as the measure of the number of potential 
opportunities for a pedestrian-involved crash to occur (16). However, in contrast 
to vehicular behavior, pedestrian trips are of a different variety in terms of trip 
purposes, and their route choices are less well defined (17). Therefore, new 
methods that adequately reflect the context specific nature of pedestrian crashes 
are required for estimating the volume of pedestrian trips.  
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There are many studies regarding pedestrian exposure models using built 
environment, socioeconomic characteristics, demographic characteristics, and 
other factors to predict pedestrian volume (18-19). Notably, Clifton et al. (1,20) 
introduce an innovative model called the model of pedestrian demand (MoPED) 
that modifies the conventional four-step modelling (FSM) to better represent 
pedestrian walking behavior at a uniform 80-meter-by-80-meter raster grid cell, 
called pedestrian analysis zone (PAZ). The redrawn boundary at a more granular 
level enables the prediction of finer pedestrian behavior at a microscopic level 
than traffic analysis zone (TAZ). Mode choices for travelers are highly related to 
the built environment and socioeconomic factors (21). To estimate the amount of 
walking trips generated by a household in each PAZ, MoPED uses a binary logit 
model based on socio-demographic characteristics of travelers and built 
environment to split walking trips from all person trips estimated by conventional 
travel forecasting model.  
 
Clifton’s study further applies a multinomial logit destination choice model to 
distribute those walking trips to destinations within the aggregations of 25 (5x5) 
PAZs. It is known that distance to destinations plays a determinant role in 
destination choice models (22). Additionally, attractiveness, pedestrian supports, 
pedestrian barriers and traveler characteristics also play key roles in the 
destination choice model.  The destination choice model provides a linkage 
between built environment and pedestrian destination choices (23).  
 
Finally, the trip generation and destination models are combined to predict the 
probability of a walking trip traveling from one zone to another. The output of 
MoPED is a predicted measure of daily pedestrian volumes at a very fine 
geographic resolution (i.e. 80 meters by 80 meters). The key inputs to the 
method are socio-demographic variables, trip generation tables, detailed 
employment data, built environment data, and a travel survey.   
 
Nevertheless, MoPED requires trip generation tables typically created by a 
region’s metropolitan planning organization (MPO), which limits the statewide 
application of MoPED because trip generation tables are often not available in 
many places (i.e. small to medium sized cities without membership with an MPO). 
One of contributions of this report is the modification of MoPED by estimating 
walking trip generation directly from a statewide travel survey without the need 
for a general trip generation tables. We generate walk trip generation tables by 
creating synthetic households using iterative proportional fitting. 
 
The MoPED regression models for predicting walking trips require disaggregate 
household and traveler demographics data as input. Since disaggregated data of 
household and traveler characteristics are typically not available at more granular 
geographic levels, a method for generating synthetic population data is needed. 
The Iterative Proportional Fitting (IPF) approach is applied to construct a 
population synthesizer for the purpose of obtaining population estimates in a 
generic way (24). The IPF process requires both aggregate data and 
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disaggregate data as inputs. Specifically, the process starts by assigning initial 
values retrieved from disaggregate data, and then proceeds by iteratively 
updating the estimates based on the marginal totals of the same list of 
characteristics obtained from aggregate data. The disaggregate data represent a 
sample of households or individuals with values for a list of characteristics, and 
the most popular data source is the Public Use Microdata Sample (PUMS) (25-
26). The PUMS consists of a 5 percent representative sample of people and 
housing units from contiguous geographic units containing no fewer than 100,000 
people each, named Public Use Micro Area (PUMA) (27). As for aggregate data, 
it is normally drawn from Census summary tables at different aggregate level 
(e.g., Census Block Group or Census Tract) based on the specific needs of the 
researcher. 
 

2.2 Summary of state-of-the-art 
We conducted a thorough review of the research literature to identify the 
evidence base for including factors into the risk score assessment.  A detailed 
summary and categorization of these factors are available in the Appendix.  We 
also investigated the potential of using naturalistic driving study (NDS) data to 
estimate non-motorized travel demand.  The conclusions from this investigation 
are also in the Appendix. 

3 Methodology 
The project team created a methodology that facilitates the identification of 
locations in Michigan that could benefit from pedestrian and/or bicycle crash 
countermeasure installations. To accomplish this, we developed statistical 
regression models of both pedestrian and bicycling crashes by combining a 
variety of data sources, as noted earlier and elaborated on in Section 3.1.  
 
The methodology is general, and applies equally to both pedestrian and bicycle 
risk assessment. In order to reduce redundant statements that apply to both the 
pedestrian and bicycle model, we first present the method in the context of the 
pedestrian model (Sections 3.2-3.3). Section 3.4 delineates the deviations from 
the general method as it applies to bicycle risk assessment model. 
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Figure 1 Project methodology for non-motorized crash risk assessment 
 
Figure 1 provides a panoramic view of the study methodology that applies for 
both estimating pedestrian and bicyclist risk scores. It shows the essence our 
methodology, which is to combine the EB methods from the Highway Safety 
Manual with a model of non-motorized exposure. As noted earlier, we believe the 
number of crashes involving non-motorized users does not solely determine the 
risk level. We argue that non-motorized exposure should also play an important 
role in influencing the risk level. Given the importance of exposure in estimating 
risk, we first provide a detailed discussion of our exposure model (Section 3.2) 
and then discuss how exposure is integrated into the overall risk scores (section 
3.3). The bulk of Section 3 focuses on pedestrian exposure and risk scores. We 
develop the bicycle risk scores using the same methodology with some notable 
modifications that we describe in Sections 3.4 

3.1 Data Sources  
One of our objectives in deciding the input data sources for the risk assessment 
was to select data that are 1) widely available, and 2) updated frequently. 
The key inputs to the framework are: a statewide travel survey called MI Travel 
Counts, the American Community Survey (ACS), the public use microdata 
sample (PUMS), roadway geometry data as well as statewide crash records.  
 
ACS is the model's main source of block-group level socio-demographic and 
household variables including household size, number of vehicles, and number 
of workers. The framework in Figure 1 requires disaggregate household 
characteristics in order to be applied statewide. We utilize the PUMS which 
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contains the disaggregate responses of approximately 5% of households to the 
U.S. census.  Vehicle-pedestrian crashes are derived from Michigan police crash 
reports from 2005-2015 (30).  

3.1.1 Michigan Traffic Crash Facts 
Michigan Traffic Crash Facts (MTCF) is a web-based depository of official police-
reported crash data for the state of Michigan (see 
https://www.michigantrafficcrashfacts.org/). The website contains a publication 
section with crash data statistics dating back to 1952, as well as a data query tool, 
which allows public users to search the dataset and display results in variety of 
formats (e.g., maps, tables, lists, charts).  

3.1.2 American Community Survey (ACS) 
ACS is a nationwide yearly census administered by the U.S. Census bureau4. It 
is the premier data source for socio-economic information about households and 
individuals. The ACS is the model's main source of block-group level socio-
demographic and household variables including household size, number of 
vehicles and number of workers.  
 

3.1.3 ACS Public Use Microdata Sample (PUMS) 
We utilized the ACS PUMS which contains the disaggregate responses of 
approximately 5% of households to the U.S. census.  

3.1.4 MI Travel Counts III (MTC III) 
MI Travel Counts III (MTC III) is a travel survey conducted in 2015 by the 
Michigan Department of Transportation (MDOT)5. MTC III contains samples of 
16,276 households across the state reporting their weekday trips. Each surveyed 
trip includes mode, origin and destination, travel time, activities at each 
destination, and also household characteristics.  
 

 
Figure 2 MI Counts Traveler and Household Data 

                                            
4 https://www.census.gov/programs-surveys/acs/ 
5 http://www.michigan.gov/mdot/0,1607,7-151-9615_51690---,00.html 
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3.1.5 Reference USA 
We rely on ReferenceUSAⓇ  6for the location of businesses and employment data 
across the state (28). 

3.1.6 Highway Performance Monitoring System (HPMS) 
The roadway geometry data are taken from the Highway Performance Monitoring 
System (HPMS) (29)7. These data include number of lanes, road width, and 
segment length. 

3.1.7 Unit of Analysis 
Our basic unit of analysis is called a Pedestrian Analysis Zone (PAZ)8, which is 
400 meters by 400 meters. The state of Michigan is comprised of nearly 95,000 
PAZs. The following graph compares the scale between PAZs with typical urban 
streets. This unit of analysis more appropriate for the shorter travel distances of 
non-motorized travel compared to the longer travel distances vehicle travel. The 
term PAZ is coined in contrast to the well-known traffic analysis zone (TAZ). 
 

 
Figure 3 Pedestrian Analysis Zone (PAZ) 
 
 

                                            
6 www.referenceusa.com 
7 https://www.fhwa.dot.gov/policyinformation/hpms.cfm 
8 Clifton et al., call this unit a Super PAZ. However, we simply use PAZ for ease of exposition. 
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3.2 Risk Score 
Here we describe how to compute the risk score for each PAZ. The basic idea of 
the risk score is to make joint use of the observed number of crashes between 
non-motorized users and vehicles (historical data), and the predicted number of 
pedestrian-vehicle crashes for similar geographic areas. The pedestrian risk 
score for a PAZ is the expected number of crashes. The empirical Bayes 
estimate of the risk score for a PAZ is   
 

  Rpaz = w ⋅µpaz
spf + 1−w( )⋅ypaz

spf                                        

(1)    

where  ypaz
obs   is the number of observed crashed in the target PAZ ,  µpaz

spf  is the 
predicted number of crashes, overdispersion parameter 𝜙 and 𝑤is 

  

w =
1

1+
µpaz

spf

φ

                                                                           (2) 

is between 0 and 1.   
 
We subsequently develop a SPF for the predicted number of crashes. Our SPF 
includes not only the AADT, but also the exposure and an interaction term 
between vehicle AADT and pedestrian exposure. The resulting negative binomial 
regression model specification is 

   (3)    

 

The regression coefficients a, c, b, d and the overdispersion parameter 𝜙 are 
calculated via maximum likelihood estimation. In the next couple of sections, we 
provide more details on the development of the exposure measure used in the 
SPF. 
 
This risk assessment framework leverages data from several categories:  built 
environment, characteristics of the people traveling, crash data and roadway 
features.  
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Figure 4 We compose data from diverse sources to develop the risk score. 
 

3.3 Non-motorized Exposure Model 
Our model of non-motorized exposure borrows from the MoPED framework of 
Clifton et al. (1) with a few notable exceptions discussed here. First, we deviate 
from MoPED and the traditional 4 step method (see Figure 2) in that we do not 
estimate mode split.  Instead, we generate trips directly from the statewide travel 
survey (see Figure 3).  Second, we extend MoPED so that it can be applied 
statewide by estimating disaggregate Block Group household characteristics via 
iterative proportional fitting. This allows us to generate trips statewide, even in 
areas that do not currently have an MPO that creates trip generation tables.   
 
Below, we summarize the key aspects of our modified MoPED framework along 
the following dimensions: unit of analysis, pedestrian index of environment (PIE), 
trip generation, creating a synthetic population and pedestrian destination choice. 
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Figure 5 Traditional Four Step Method (FSM) 
 
 

 
Figure 6 Modified Four Step Method 
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3.3.1 Built Environment Factors 
To measure the impact of built environment on travel choices, our model 
employs a statewide travel survey data from MTC III and built environment data 
from various sources. Following Clifton et al.(23),  we categorize the data into 
five groups as shown in Figure 6 for pedestrians.  

 
Figure 7 Model inputs including the Pedestrian Index of Environment (PIE) 
 
We collect the index of environment variables above for each PAZ. In Figure 6, 
“Traveler characteristics” contain socio-demographic information from MTC III. 
The column “Attractiveness” corresponds to the potential number of trips as 
measured by the number of households and the number of jobs per PAZ.  
 
“Pedestrian supports” encompasses seven dimensions shown in third column of 
Figure 6. Except for access to parks, the other six factors are grouped and called 
PIE. Access to parks was dropped from PIE because of its limited influence. 
Sidewalk extent was not available for the entire state. So we developed a proxy 
measure based on the road classification. Details of this proxy are in the 
Appendix. Factors in PIE are quantified on a scale from 0 to 5 for each individual 
PAZ cell, in which a score of 0 means no access to certain infrastructure. A 
subtotaled score of weighted PIE factors helps to illustrate geography specific to 
the most granular spatial unit; otherwise, users can aggregate the PIE into larger 
spatial units, for example, census block or tract level. We used ArcGIS to 
quantify all the factors in pedestrian supports category. In addition, we estimated 
coefficients for PIE index by running a logistic regression. Our approach is similar 
Clifton et al. (23).  PIE is an index with values between 0 and 100. More 
information on the construction of PIE is in the Appendix. 
 
“Pedestrian Barriers” include the mean slope in the destination zone, the 
presence of freeways and the proportion of industrial-type employment. We 
processed data in ArcGIS via the spatial join tool, so that every PAZ contains a 
value about slope, and information about whether freeway or industry appears.  
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As a measure of “Impedance,” we directly used travel times reported in MTC III, 
which reflects time cost between the centroid of origin PAZ and destination PAZ 
along the network that includes the complete street network and major off-street 
paths.   
 

3.3.2 Trip Production Model 
The Conventional Four Step Method (FSM) for travel demand estimation (Figure 
2) uses multiple techniques including cross-classification or linear regression to 
estimate total trip generation. However, the analysis unit of the FSM, which is 
generally a transportation analysis zone (TAZ), is way too large for people using 
non-motorized modes. Also, when pedestrians make decisions about where they 
walk, it is understandable that distance should matter. Again, TAZs are unable to 
capture the variation of travelers’ walking distance since most of the walking trips 
would be intra TAZ trips rather than inter TAZ.  
 
To overcome these limitations of TAZ in analyzing pedestrian behavior, we refer 
to the notion of PAZ proposed by Clifton et al. (1) as mentioned above. We found 
that about 63 percent of walking trips, in the travel survey MTC III, are from one 
PAZ to another, an improvement from the 38.5 percent found for inter Census 
Block Group. With built environment measured for PAZ, we further model 
household and employee’s walking behavior for home-based and non-home 
based trips respectively. The exact walking behavior we model is the total 
number of walking trips produced from each PAZ, which is believed to be 
associated with household characteristics, built environment, and the number of 
employees.  
 
Moreover, following the manner of FSM, trips are divided into five categories 
based on trip purposes (31): home-based other (HBOther); home-based 
shopping (HBShopping); home-based school (HBSchool); non-home-based other 
(NHBO); and non-home-based work (NHBW).  We perform regression analysis 
on each of them. Furthermore, based on the nature of the data, we choose a 
negative binomial regression and linear regression to fit the data for home-based 
trips and non-home based trips respectively. The regression can be represented 
by the following functions:  
 

Number of HB walking trips = f(number of households+household characteristics + built 
environment) 

 
and 
 

Number of  NHB walking trips = f(number of employees +  built environment). 
 
In Section 4.1.1, we present regression results including model coefficients and 
goodness of fit. 
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Synthetic Population  
In order to generate trip production estimates, the composition of household 
characteristics must be known at the PAZ level. This is a very fine level of 
geographic scale not available in the American community survey (ACS). 
 
Pedestrian exposure measures the intensity of pedestrian activities in each 
analysis zone. However, to measure exposure, it is essential for us to know the 
population for each PAZ first (i.e., the synthetic population). The synthetic 
population is comprised of households and individuals associated with list of 
characteristics -- e.g., household size, number of vehicles, gender or age (33). In 
our case, due to the limited level of detail regarding individual characteristics 
recorded by the travel survey, we only chose household characteristics to 
generate the synthetic population.  
 
Nevertheless, as noted earlier, such disaggregated data are not available at a 
small geographical scale like Census Block due to privacy concerns. To address 
this issue, our team generated the synthetic population for the state of Michigan 
at Census Block Group level based on following the iterative proportional fitting 
process (IPF)9. Specifically, based on the household characteristic needed for 
subsequent analysis and data availability, we took four household characteristics 
into account: household size; presence of children in the household; presence of 
workers in the household; and the number of vehicles owned by the household. 
Also note that for simplicity, we do not differentiate family households from non-
family households. A section of the synthetic population results for Census Block 
Group 261614032001 is as follows: 

 
Table 1 Sample synthetic population with GEOID 261614032001 

Number of Persons Presence of Children 
(binary) 

Number of Vehicles Presence of 
Workers (binary) 

Count of this 
type of  

Households 
1 0 0 1 11 
1 0 1 0 13 
2 1 1 1 5 

3 and more 1 2 and more 1 25 
 
The output of the IPF process is a cross-tabulation of household variables for 
every census block group in Michigan. Finally, the PAZs within each block group 
are assigned synthetic households uniformly at random.  The details of synthetic 
population generation are in the Appendix. 
 

                                            
9 https://github.com/UDST/synthpop 
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3.3.3 Destination Choice Model 
Now that we know how many trips are produced per day in each PAZ, we next 
ask: where do the trips terminate? The destination choice model answers this 
question. 
 
The destination choice model utilizes a logistic regression, and given a set of 
variables of a possible destination PAZ, the model predicts the probability that a 
pedestrian would go to that PAZ. The explanatory variables are categorized into 
pedestrian impedance, attraction, support and barrier (see Figure 6). 
 
The destination choice model is based on logistic regression, and the regression 
is built upon household travel survey (i.e., MI Travel Counts). To prepare training 
data for the regression model, for every actual walking trips by trip type, we 
create a 1.5 mile buffer zone around the origin PAZ, and randomly sample nine 
PAZs as possible destinations Figure 7 illustrates this process. The dependent 
variable for the travel records corresponding to the actual destination equal 1; 
while the records of the sampled destinations equal 0.   
 
 

 
Figure 8 Destination model is based on sampling of real and possible destinations. 
 
For each pair of origin and destination (O-D) PAZ, the destination choice model 
above helps us predict the probability that a pedestrian would walk between this 
O-D. After calculating the probability between all O-D within the buffer, we 
normalize these probabilities to make them add up to 1. The detailed destination 
choice regression results are in the Appendix. 
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Finally, for each origin PAZ, we multiply the total number of trips produced by the 
normalized destination choice probability to arrive at the total number of trips 
attracted to each possible destination PAZ.  
 

3.3.4 Route choice (Network Assignment) 
Now that we know where the trips are likely to begin and end; how do people 
travel from the origin to the destination? The route choice model answers this 
question. Once we know the route, we can aggregate over all of the trips to 
estimate the exposure for each network segment. 
The following diagram illustrates how we calculate the exposure at the roadway 
segment level. To clarify, the destination PAZ below is one of all possible 
destinations within the 1.5 miles buffer zone of the origin PAZ. For convenience, 
we make them close to each other.  
 
As mentioned above, we multiply the walking trip production by the normalized 
probability to estimate walking trips attraction. Because some PAZs would 
produce more walking trips given that they would attract more walking trips, 
certain streets are expected to have larger pedestrian exposure than others. To 
capture this, we assign walking trips that happen between each O-D along 
roadway network. Since the number of walking trips between each O-D is known 
from the last step, the network assignment is to find a route connecting each O-D. 
However, the O and D are not represented by the exact coordinates but an ID, 
thus we first try using the centroid of the PAZ as the O and D. Nevertheless, the 
results are not realistic because we observe that many streets have not been 
traveled.  
 
To overcome this, as the following diagram suggests, we randomly choose one 
of the three nearest network nodes as O and D. With O and D represented by 
nodes on the roadway network, we presume each pedestrian would take the 
shortest route to reach their destination, and hence we utilize Dijkstra’s algorithm 
to find the shortest path (represented by the orange line). After performing the 
same procedure for each O-D, we end up getting the routes and their 
corresponding weights, i.e., the number of walking trips between the O-D.   
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Figure 9 Route choice – Network Assignment Approach 
 
This is a computational expensive task given that it is calculated for a very large 
number of origin and destination pairs of PAZs in the entire state of Michigan. In 
order to improve computational times, we developed several approximations to 
the shortest path problem. These included searching over a subnetwork ( <  2 
miles) for the shortest path instead of the entire road network. We were also able 
to use previously computed shortest paths in subsequent calculations.  By using 
these approximations, the computational times decreased an order of magnitude. 
 

3.4 Bicycle Risk Model 
This section delineates the differences from the general framework as it relates 
to developing a bicycle risk model.  

3.4.1 Data Sources 
There are no changes in the data sources.   Additionally, the unit of analysis is 
the same 400m by 400m area. 

3.4.2 Risk Model  
We use the same Empirical Bayes risk model as explained above in Section 3.2 

3.4.3 Exposure Model 
To develop the bicycle exposure model, we build the trip production, destination 
choice model using the reported bicycle trips in the MTC III travel survey.  We 
replaced PIE with an analogous built environment measure called the Bicycle 
index of environment (BIE). In BIE, the sidewalk extent is replaced by the bike 
facilities extent. 
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Figure 10 Bicycle specific built environment factors 
 
The details of these factors and the construction of the index BIE are in the 
Appendix. 

Bicycle Trip Production Model 
The structure of the trip production is the same as the pedestrian model with BIE 
replacing PIE. 

Bicycle Destination Choice Model 
We increase the catchment and search radius of possible destination BAZs from 
1.5 miles to 4 miles for the bicycle destination choice model.  We justify this by 
the fact that bicycle trips are longer than pedestrian trips.  
 

Bicycle Route choice (Network Assignment) 
The bicycle route choice procedure is identical to the general approach described 
above in Section 3.3.4. 

3.5 Experimental Design (Model Specification and Analysis) 
This project did not contain an experiment. In order to test our key hypothesis the 
developed the risk assessment framework, and applied it to data derived from 
the state of Michigan. Finally, we tested the model predictions on data from 
Michigan to ascertain the accuracy of the risk scores. 

3.6 Equipment 
The statistical models and spatial analysis depended on a combination of ArcGIS 
Pro and Python.  We relied heavily on the Python packages: pandas, geopandas 
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and network x.  All models were run on a PC with an Intel Xeon CPU at 3.50 GHz 
and 32.0 GB RAM.  

3.7 Procedures 
We sequentially developed the risk and corresponding exposure models for each 
county in the state.  

4 Results 
In this section, we describe the risk score results, as well as the exposure 
estimates for Wayne county. The results for all of counties in the state of 
Michigan are available in both the GIS files and the webtool. The GIS tool allows 
users to interactively view the results in ArcGIS. The webtool  allows the user to 
display and interact with the results, without any special software, from any web 
browser including on mobile devices.  

4.1 Method of analysis 
We ran the risk assessment model on the entire state, which consists of 83 
counties. A model for each of these counties was run separately to minimize 
memory requirements on our computer. Each county took approximately 45 
minutes to run on a PC with an Intel Xeon CPU at 3.50 GHz and 32.0 GB RAM.  

4.1.1 Trip Production 
We used the Michigan household travel survey (MTC III) to fit our trip production 
model. As mentioned in the trip production model, we divided trips into five 
categories, namely home-based other (HBOther), home-based shopping 
(HBShopping), home-based school (HBSchool) and non-home-based other 
(NHBO) and non-home-based work (NHBW) and run the regression separately. 
In Tables 2 and 3, we highlight the results for home based other (HBO) and non-
home based other (NHBO) trips. 
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Table 2 Pedestrian Trip production estimates for home based other trips. 

 
 
Table 3 Pedestrian Trip production estimates for non-home based other trips. 

 
The results match our expectation for both home based trips and non-home 
based trips. The coefficients of PIE are always positive, which is reasonable 
because a larger PIE value stands for more pedestrian-friendly environment. For 
home based trips, the absence of vehicles is the most significant factors that 
make households choose to walk. However, owning more cars would make a 
household increasingly less likely to walk.  Regarding non-home based trips the 
number of employees in a PAZ largely impacts the number of walking trips.  
Estimation results for the other trip purposes are in the Appendix. 
 

4.1.2 Destination Choice 
The table below summarizes the results of the destination choice model for 
pedestrians for all trip purposes. 
 

Variable    Coef      Std err     P > |z| [95.0% Conf. Int.] 

Constant -0.7348 0.034 0.000 -0.801 -0.669 
HHSIZE_1 -0.6565 0.071 0.000 -0.795 -0.518 
HHSIZE_2 -0.1999 0.051 0.000 -0.299 -0.101 
HHSIZE_3_or_more -0.1217 0.073 0.0094 -0.021  0.264 
HHVEH_0  0.8794 0.095 0.000  0.693  1.065 
HHVEH_1 -0.2959 0.055 0.000 -0.404 -0.188 
HHVEH_2 -0.5610 0.053 0.000 -0.664 -0.458 
HHVEH_3_or_more -0.7573 0.067 0.000 -0.888 -0.626 
HHCHILD_0 -0.4110 0.051 0.000 -0.512 -0.310 
HHCHILD_1_or_more -0.3238 0.059 0.000 -0.439 -0.208 
HHWORKER_0 -0.2714 0.040 0.000 -0.349 -0.194 
HHWORKER_1_or_more -0.4635 0.039 0.000 -0.540 -0.387 
PIE  0.0272 0.002 0.000  0.022  0.032 

Sample size  12062         
Log-Likelihood -7457.5         

 

Variable Coef   Std err      P > |z|  [0.025    0.0975] 

Constant -0.1958 0.015 0.000 -0.226 -0.166 

Number_of_employees -0.0675 0.002 0.000 -0.064  0.071 

PIE  0.0049 0.000 0.000  0.004  0.006 

Sample size  11650         

Log-Likelihood -10927.0         
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Table 4 Pedestrian Destination choice model results 

 
 
In general, the model looks reasonable, distance, slope consistently have 
negative effect on making destination choice. Specifically, for a quarter mile (400 
meters) increase in distance, the odds ratio in choosing a PAZ as destination 
varies from 0.461 to 0.628. In comparison, an increase of ten degree in the slope 
would lead to an odds ratio being as small as about 0.05, which is quite 
surprising. Moreover, an increase in PIE tends to increase the probability of 
choosing that PAZ as destination although its effect varies for different types trips. 
For example, for home-based work trips, a twenty-point increase in PIE would 
produce an odds ratio being 1.34. However, some values of the results could be 
counterintuitive. For example, proximity to park is not statistically significant for all 
trip purpose, and retail jobs would deter walking trips whose purpose is for school. 
 

4.2 Presentation of results 

4.2.1 Risk Score 
The main step in generating the risk score is to estimate the safety performance 
function (SPF).  This is accomplished by a negative binomial regression. The 
input variables to the SPF are: 1) log  (AADT), 2) log of exposure, and an 
interaction term log(AADT)*log(exposure).  Another input to the risk score is the 
number of observed crashes. For this case study, we aggregate the crash data 
from 2004-2015.   We estimate the using a negative binomial distribution. Both 
the pedestrian SPF estimation results and bicycle SPF estimation results are 
below. 
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Figure 11 Estimation results for the pedestrian SPF negative binomial regression. 
 

 
Figure 12 Estimation results for the bicycle SPF negative binomial regression. 
 
Once the SPF is estimated and the observed crash data are compiled, the risk scores 
are generated from the empirical bayes Equation (1). Figure 4 displays the risk score for 
Wayne County over the same extent as the exposure map. The risk score has the 
interpretation of the expected number of crashes in the next 11 years. The results for 
both pedestrian and bicycle are presented below. 
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Figure 13 Map of Pedestrian risk score in Wayne County 
 

 
Figure 14 Map of Bicycle risk score in Wayne County 
 
We computed the risk score for every county in the state using the same 
approach. 
 
 

Pedestrian	Analysis	Zone	

							Zoom	into	Detroit	

Bicycle	Analysis	Zone	

							Zoom	into	Detroit	
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4.2.2 Exposure 
 
Pedestrian Exposure 
The resulting pedestrian exposure results are presented in Figures 15 and 16 for 
Wayne County. Exposure is measured as the number of daily walking trips that 
originate and terminate in a PAZ. Through the PIE index the exposure measure 
accounts for the population and job density, transit access, block size, and urban 
living infrastructure. The multi-way tables for household variables are created via 
IPF. The resulting household variables and PIE are the inputs to the trip 
generation model described in Section 3.3.2. 
 

 
Figure 15 Map of daily pedestrian exposure in Wayne County at the PAZ level 
 
Exposure for each road segment is also an output of the route choice and 
network assignment.  
 

Pedestrian	Analysis	Zone	

							Zoom	into	Detroit	
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Figure 16 Map of daily pedestrian exposure in Wayne County at the road segment level. 
 
Bicycle Exposure 
The resulting bicycle exposure results are presented below for Wayne County. 
Exposure is measured as the number of daily bicycling trips that originate and 
terminate in a BAZ. Through the BIE index the exposure measure accounts for 
the population and job density, transit access, block size, and urban living 
infrastructure. The multi-way tables for household variables are created via IPF. 
The resulting household variables and BIE are the inputs to the trip production 
model. 
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Figure 17 Map of daily bicycle exposure in Wayne County at the BAZ level. 
 
The corresponding level of bicycle exposure at the roadway segment is below. 
 

 
Figure 18 Map of daily bicycle exposure at the road segment level. 
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4.2.3 Model Validation  
In order to test the accuracy of the risk score, we conducted a limited validation 
study. The risk score has the interpretation of the expected number of crashes in 
the next 11 years.  We test the accuracy of our predictions by building the risk 
score model using only 90 percent of the PAZs. We then use the remaining 10 
percent of the PAZs to test the accuracy. 
  
However, in the last 11 years, zero crashes have occurred in most of the 
PAZs.  You would be pretty accurate if you estimate a risk score of zero for every 
PAZ.  However, this zero risk model does not capture the true intent of 
transportation planners.   
 
To get around the issue of most PAZ having zero crashes, we can we create a 
list of the most dangerous PAZs. We define a PAZ to be dangerous if we expect 
more than 2 crashes in the next time period. Thus, we test how accurately our 
risk score methodology predicts the most dangerous PAZ. 
 
To do this, we select a random subset of the PAZs to build the model using all 
years of data, and test on the remaining hold out PAZs. In order to test the 
prediction we use trained model to predict the “most dangerous” in the test data. 
Next, we use the actual crash data to construct a “most dangerous” list for the 
holdout PAZ sample. 
 
A prediction is correct if the PAZ is a member of both “most dangerous lists.”  We 
repeat this process 20 times, selecting a random 10 percent of PAZ as the test 
set. 
 
The results indicate that on average the risk score method identifies 9.8 percent 
of PAZs as “dangerous” when, in fact, they are actually not dangerous. This is 
called the false positive rate. Additionally, the relative prediction error for the 
number of PAZ identified as dangerous is 6 percent.  Thus the risk score model 
reliably identifies the number of dangerous PAZs and has a modest false positive 
rate. 
 

4.3 Discussion and Validity of hypotheses 
 

We recall that the key hypothesis of the project, 
A key hypothesis of this report is that it is possible to identify locations in 
need of countermeasures for pedestrian and bicycle crashes using a “risk 
score” that leverages information beyond observed crashes.  

We have demonstrated an approach for estimating non-motorized crash risk that 
goes beyond the observed number of crashes. We created fine scale risk scores 
and corresponding exposure measures for each county. Our limited validation 
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study results provide evidence to support our key hypothesis. The next section 
describes some of the factors that affected our results. 

4.3.1 Factors affecting the results 
The project methodology and application have some limitations. These include 
our assumptions about “exposure,” as well as data quality and availability. 
Definition of “exposure to risk” 
Our proposed risk score and corresponding safety performance function consider 
a PAZ to be increasingly risky with the product of vehicle AADT and pedestrian 
exposure. However, our current approach does not guarantee that pedestrians 
and vehicles are actually interacting. For example, pedestrian walking on a 
separated path near a road is not distinguished from pedestrians walking on a 
sidewalk. This may lead to spurious predictions of high risk areas. 
 
If we revisit the concept of pedestrian’s exposure to crashes, pedestrian 
exposure measures the number of potential opportunities for a crash to occur 
(Turner et al. 2017), although no consensus has been made about how to 
quantify it. In our approach, we use zonal walking trips made by pedestrian as a 
proxy for exposure, which is pedestrian travel demand indeed, and use demand 
times AADT to explore the interaction between pedestrians and vehicle traffic, 
which seems more like pedestrian exposure to me. Nevertheless, this might be 
problematic. For example, we have identified areas where pedestrian travel 
demand is high due to large number of employees, and crossed by highway, 
which makes the AADT measure affiliated to corresponding PAZ being high. As a 
result, the interaction term between travel demand and vehicle traffic turns out to 
be high as well. However, since that section of highway does not have access for 
pedestrians, there should be no pedestrian walking on the highway, the 
pedestrian exposure to crashes should be close to zero. Similar situations might 
exist that two PAZs have similar AADT and pedestrian travel demand, but one 
with relatively good pedestrian facilities (sidewalk, signalized intersection, stop 
signs, etc.) while the other does not. The exposure of pedestrians walking on the 
latter should be much higher than the former, but it has not been captured in our 
approach so far. 
 
Data Availability 
Our results were negatively affected by the paucity of data on sidewalk extent 
and bicycle facility extent. While select cities have a complete inventory of 
sidewalk extent and bicycle facilities, they were rare. Thus, our model ingested 
only a proxy measure for these variables.  The risk model accuracy will surely 
improve if, and when, these data become widely available. 

4.4 Implications 
The risk score results should be used with caution until they are further validated 
and possibly corroborated with manual observations. Until then, we recommend 
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that the results be used in combination with existing accepted safety analysis 
procedures.  

5 Conclusions 

5.1 Conclusions from the study 
This report showed that it is possible to conduct a pedestrian and bicycle safety 
analysis that goes far beyond observed crashes. It also provides credence to the 
hypothesis that non-motorized crashes are predictable. 

5.2 Recommendations for further research 
In order to extract value from the project results, we recommend further research 
along several directions. 

5.2.1 Implementation 
The risk score results should be used with caution until they are further validated 
and possibly corroborated with manual observations. Until then, we recommend 
that the results be used in combination with existing accepted safety analysis 
procedures.  

5.2.2 Validation 
We recommend a follow up study to validate risk score and exposure results of 
this report and the current implementation of the tool. This includes research to 
improve the interface and usability of the webtool. 

5.2.3 Improve Safety performance function 
Apart from the aforementioned, areas for further studies should include improving 
the risk score by systematically defining “reference groups” in the Empirical 
Bayes computation. The reference groups will be based on roadway geometry as 
well as built environment and socio-demographics variables.  
 

5.3 Recommendations for implementation 
Further research is needed on the implementation of the tool into MDOT 
processes. Finally, the exposure results are of independent interest and are 
possibly relevant to crime and health outcomes. 
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8 Appendix 

8.1 Glossary 
Throughout this report, we use the term “non-motorized” to include both 
pedestrian and bicyclist. 

8.2 List of Acronyms, Abbreviations and Symbols 
BIE – Bicycle Index of Environment 
EB – Empirical Bayes 
HSM – Highway Safety Manual 
IPF – Iterative Proportional Fitting 
PAZ – Pedestrian Analysis Zone 
PIE – Pedestrian Index of Environment 
MTC - MI Travel Counts III 
SPF – Safety Performance Function 
 

8.3 Other Appendices 

8.3.1 Experimental data 
 
Trip Production Model Results 
 
HBShop Trips 
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HBO Trips 

 
 
HBS Trips 

 
 
The results show that the different types of trips have different statistical 
significance patterns for these variables. However, the measure of accessibility is 
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always statistically significant, this verifies our assumption that the ease to reach 
destinations would influence pedestrians’ mode choice. Also, the number of 
vehicles within the household is significant for both trips with other purpose and 
shopping trips. But we cannot observe that for school trips, which might due to 
the fact that children can take the school buses to school. Many interesting 
observations can be make from these results, for example, as the number of 
household vehicles increases, the coefficient, which is negative value, decreases, 
indicating that traveler has less probability to travel by walking. These reasonable 
outputs can be further processed to remove non-statistical significant variables 
and used to estimate the walk mode choice.   
 

8.3.2 Analytical technique details 
 

ArcGIS Spatial Analysis 
We used ArcGIS and python as our principal tools in the spatial analysis part. 
The following sections are about geo-reference of Michigan, data preparation for 
modeling, and weights calculation for selected factors. 

  

Geo-Reference10 
To specify limits in distortions, Michigan adopted State Plane Coordinate System 
of 1983, which broke the territory into three separate horizontally oriented 
projections. The entire Upper Peninsula makes up the northern zone, the 
northern half of the Lower Peninsula is the central zone, and the southern half of 
the Lower Peninsula is the southern zone. However, for a project that scopes for 
the whole state, using three different projections is inefficient. Thus, we decided 
to use the alternative system named Michigan GeoRef. Even though GeoRef 
allows more variance on distance and area, it was designed to project the State 
using a single zone rather than three zones. Specifically, we chose NAD 1983 
Michigan GeoRef in US feet. The following graphics show the differences 
between the two systems. 
 
 
 
 
 
 

 

 

 

                                            
10 Michigan Department of Natural Resources, available at: 
http://www.michigan.gov/documents/DNR_Map_Proj_and_MI_Georef_Info_20889_7.pdf 
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Figure 15 Geo-reference System 

 
 

Pedestrian Index of Environment (PIE) 
In addition, a key component, which is a comprehensive measure of the built 
environment, called Pedestrian Index of Environment (PIE) is introduced into our 
model. Ideally, the PIE will replace the accessibility in our model and functions as 
an important indicator of pedestrians’ mode choices and destination choices. 
With a combination, the walk trip production model and destination choice model, 
we are able to estimate the walk trips productions and attractions in a much finer 
geographical range in near future.  
 
The first report, OTREC-ED-510,11 addresses the walk trip production while the 
second report, NITC-RR-677,12 focuses on walk trip distribution. These two 
methodologies in combination were used to estimate how many walk trips are 
produced within each analysis unit and where these walk trips end. In 
comparison, these methodologies have demonstrated many advantages over our 
previous GIS-based Accessibility Model, especially its inclusiveness of 
sociodemographic characteristics of the travelers as well as its much finer 
geographical range to capture the subtlety of pedestrian’s mode choice. 
Furthermore, these reports also validate how their models can achieve relatively 
high accuracy in estimating pedestrian demand in Portland Metropolitan Area, 
Oregon. It is noteworthy that bicycle demand estimation was not introduced in 
these reports, nevertheless, similar methodologies can be readily applied to 
estimate bicycle trips. Finally, we note that the first report was produced in 2013, 
and second report was not released until September 2015. These relatively new 
reports somewhat represent the recent trend in the research field with regard to 
modelling walk trips. Based on these advantageous features and the availability 
of the data, our team supposes these methodologies are worth a try in the 

                                            
11 Clifton, Kelly J., Patrick Allen Singleton, Christopher Devlin Muhs, Robert J. Schneider, and Peter Lagerwey. "Improving 
the Representation of the Pedestrian Environment in Travel Demand Models, Phase I." (2013). 
12 Clifton, Kelly, Patrick Allen Singleton, Christopher D. Muhs, and Robert J. Schneider. "Development of a Pedestrian 
Demand Estimation Tool." (2015). 
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context of Michigan, and ideally, output can be integrated into the formation of 
the risk score.  
 
Data Requirement 
 
In general, MoPeD 2.0 mainly involves travel survey data and built environment 
data. In terms of the nature of the method, the required data could be 
categorized into five groups. The groups are traveler characteristics, 
attractiveness, pedestrian supports, pedestrian barriers, and impedance. Each 
group contains several factors, some of the factors will be weighted and 
subtotaled to group value to serve as a variable in later logit models, and the 
others factors in each group will be studied individually. The team followed the 
data gathering and deduction process that Dr. Clifton had done for Portland, but 
made some minor changes based on Michigan settings. All the data are 
manipulated at PAZ level. 
 
Group 1: Traveler Characteristics 
The first group was called traveler characteristics, which contained socio-demographic 
information from the statewide travel survey, MTC III. In the original report, data from 
2011 Oregon Household Activity Survey was partitioned for the modeling and validation 
process to see if the social-demographic status of travelers have significant impact on 
their choices of walking and destinations. In addition, they randomly selected 90% of the 
travel survey trips to estimate the model, and retained the other 10% for model validation. 
The team followed the report’s method but applied MTC III in this case. MTC III was a 
travel survey conducted in 2015 by MDOT, sampled 16,276 households across the state 
reporting their weekday trips. 
 
There were five factors in this group: household income, age, number of workers, 
number of children, and number of vehicles. All the information could be easily retrieved 
from the MTC III raw data, the questionnaire was designed internally for advanced 
analysis.  
 
We used the merged table from “household.dbf” and “person.dbf”. “person.dbf” 
contained all the information for a complete tour that a surveyed person made for the 
designated date; while “household.dbf” was about the demographic information of 
surveyed households, which could be joined to “person.dbf” based on sample IDs. The 
following table indicates the factors and its corresponding field name in MTC III dataset. 
We cooperated the factors into mode split and destination choice modeling later 
individually. 
 

     Table 5 Select MTC Survey Field Names 
Factor Field Name 

Household Income “HHINC” 
Age “AGE_AAGE” 

Number of Workers “HHWORKER” 
Number of Children “HHCHILD” 
Number of Vehicles “HHVEH” 
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Group 3: Pedestrian Supports 
Pedestrian supports is the most complicated group of factors, which will possibly 
but not definitely increase the willingness of people to walk. Dr. Clifton’s study 
was built on an existing index in Portland metro area, named Metro Context Tool. 
It is an index of built environment that encompasses seven dimensions: 
population and job density, block size, transit access, sidewalk extent, urban 
living infrastructure, bicycle access, and access to park.13 Each dimension is 
quantified on a scale of one to five for individual PAZ cell. A subtotaled score of 
equally weighted seven dimensions represents the character of the built 
environment of each PAZ through the measurement of objective conditions. The 
index helps to illustrate geography specific to a finest spatial unit, or it can be 
aggregated to whatever level, for instance, census block group level, and city 
level. 
However, the Metro Context Tool does not address the possibility that some 
components are more influential than the others. In other words, weighting each 
component equally will overestimate the influence of factors that have weak 
relationships with walking and underestimate the influence of factors that have 
stronger relationships with walking. Therefore, after tested and calibrated the 
Metro Context Tool, Dr. Clifton and the team introduced a new index, called the 
Pedestrian Index of Environment (PIE). They built a series of binomial logit 
regression model to derive weights for each dimension in Metro Context Tool. It 
turned that access to park had the weakest relationship with  
pedestrian trip mode choice, and park itself will potentially mislead the results. 
Therefore, access to park was dropped from consideration of the PIE, it serves 
as a supplementary factor of pedestrian supports. 
Consequently, the pedestrian supports group is consisted of two sub-groups: PIE 
and access to park. PIE is an intermediate value derived from six dimension. In 
the report, the score of each dimension ranges from 1 to 5, but we considered it 
is possible in rural Michigan that people have neither access to transit, nor 
bicycle path. Thus, in our version, the score ranges from 0 to 5, in which a score 
of 0 means no access to certain infrastructure. In the following paragraphs, we 
will discuss how we assigned scores to each PAZ. The general information of 
each dimension is shown in the table. 
 
 
 
 
 
 
 
 

                                            
13 Clifton, Kelly, Patrick Allen Singleton, Christopher D. Muhs, and Robert J. Schneider. "Development of a Pedestrian 
Demand Estimation Tool." (2015). 
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Table 6 Pedestrian Supports Data Description 

Dimension	 Buffer	 Classification	(0	to	5;	
low	to	high)	

Data	Source	

Population and 
Number of Jobs ¼	mile	 Natural	Breaks	 ACS	2015,	ReferenceUSA	

Block	Size	
(Intersection	Density)	

¼	mile	 Natural	Breaks	 U.S.	Census	Tiger	

Transit	Access	 ¼	mile	 Natural	Breaks	
AAATA,	U	of	M	Transit	Service,	
DDOT,	SMART,	Google	Maps	

Sidewalk	Extent	(NFC)	 ¼	mile	 Natural	Breaks	 U.S.	Census	Tiger	

Urban	Living	
Infrastructure	 ¼	mile	 Natural	Breaks	 ReferenceUSA	

Bicycle	Access	(AADT)	 1	mile	 Natural	Breaks	 Highway Performance 
Monitoring System (HPMS) 

Park	Access	
¼	mile,	½	mile,	¾	
mile,	1	mile,	1¼	

mile	
Linear	Breaks	 Esri 

 
Transit Access 
 
Accessing to transit has always been a key driving force for people to walk. Due 
to data unavailability, transit accessibility was simply measured by the number of 
transit stops within quarter-mile buffer of a PAZ. If more data were available, 
analysis involving transit frequencies should have been done to increase the 
models’ accuracy.  
 
Since there was no statewide transit authority, data were collected from several 
sources. Bus and light rail stops in Detroit metropolitan region were obtained 
from Data Driven Detroit,14 credits to DDOT and SMART. Bus stops in Ann 
Arbor-Ypsilanti area were available at City of Ann Arbor Data Catalog,15 credits to 
AAATA and U of M Transit Service. Bus stops in Kent County were downloaded 
and reorganized from Grand Rapids Open Data,16 credits to The Rapid. The 
other regions, including City of Kalamazoo, Traverse City, Tri-County region, 
data were extracted from Google Maps.   
We used spatial join tool in ArcMap to get counts of transit stops in each buffer 
zone. PAZ with no stop has no access to public transit, while PAZ with more 
stops has higher transit accessibility, so we assigned score according to 
following table.  

 

 

 

                                            
14 http://portal.datadrivendetroit.org/datasets?q=bus+stop&sort_by=relevance 
15 http://www.a2gov.org/services/data/Pages/default.aspx 
16 http://data.grcity.us/dataset/gtfs 
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         Table 7 Value Breaks in Transit Access Measure 
Score Value (Number of Transit Stops) 
0 0 
1 0 < x ≤ 3 
2 3 < x ≤ 12 
3 12 < x ≤ 25 
4 25 < x ≤ 55 
5 55 < x 

 
Population and Number of Jobs 

 
We measured this factor by population and number of jobs per spatial unit. 
Population at census block group level was retrieved from American Community 
Survey (ACS) 5-Year Estimate 2011-2015 at Social Explorer.17 Job data was 
obtained from ReferenceUSA,18 which provided location based information of 
verified businesses, including NAICS code and actual location employees. It is 
noteworthy that we corrected one obvious error in ReferenceUSA employee data, 
the Dow Chemical Company at 1801 Larkin Center Dr., the location number of 
employee should be 150 instead of 88,000.19 
 
Before applied spatial join tool, we created random points within each census 
block group based on population data, each point represents one person. It 
would be easier to distribute total number of population from census block groups 
into PAZs in this case. Afterwards, we joined both number of jobs per location 
and population points into quarter-mile buffered PAZ. PAZs with more population 
and jobs were assigned higher score according to following table.  

 
 

 

 
Table 8 Value Breaks of Score for Measuring Population and Number of Jobs 

Score Value (Number of People in 
Total) 

0 0 
1 0 < x ≤ 649 
2 649 < x ≤ 2,317 
3 2,317 < x ≤ 6,127 
4 6,127 < x ≤ 17,817 
5 17,817 < x 

 
 
 
 

                                            
17 http://www.socialexplorer.com/tables/ACS2015_5yr 
18 http://www.referenceusa.com/UsBusiness/Search/Custom/ 
19 https://www.dandb.com/businessdirectory/thedowchemicalcompany-midland-mi-2446318.html 
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Block Size 
 
To simplify the process, we used number of road junctions per PAZ to measure 
block size. Usually, more junctions in a certain area mean tighter networks, which 
is more appealing to pedestrians.  
 
The data was derived from road feature from U.S. Census Tiger product. First, 
we used vertices in the point tool to get endpoints of each road segment. Second, 
we used collect events tool to identify number of endpoints at intersections. The 
final step was to filter out road junctions out of geometric nodes. The rule was 
keeping nodes, which contain equal or greater than three endpoints, which 
means at least three road segments intersect and form a road junction. PAZs 
with more junctions were assigned higher score according to following table. 

 
   Table 9 Value Breaks of  Score for measuring Block Size 

Score Value (Number of Junctions) 
0 0 
1 0 < x ≤ 4 
2 4 < x ≤ 18 
3 18 < x ≤ 38 
4 38 < x ≤ 64 
5 64 < x 

 
 
Urban Living Infrastructure (ULI) 
 
Certain destination types were measured within a quarter-mile radius of each 
PAZ. Business location data from ReferenceUSA were queried for specific 
NAICS codes to determine the accessibility of PAZs to day-to-day living needs, 
such as K-12 schools, grocery stores, cafes, restaurants, clothing and other retail 
stores, dry cleaners, and entertainment venues. To put it simply, ULIs are 
businesses that provide service and financial activities, the NAICS of involved 
industries are listed as follow. And the score should be assigned according to the 
number of ULIs with quarter-mile buffer of each PAZ as shown in the following 
table.  

      Table 10 NAICS Codes for Urban Living Infrastructure 
NAICS Category 
44-45 Retail Trade 

522 Credit Intermediation & Related 
Activities 

54 Professional, Scientific & 
Technical Services 

6111 Elementary & Secondary Schools 
71 Arts, Entertainment & Recreation 
722 Food Services & Drinking Places 
812 Personal & Laundry Services 
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    Table 11 Value breaks for Measuring Urban Living Infrastructure (ULI) 

Score Value (Number of ULI) 
0 0 
1 0 < x ≤ 13 
2 13 < x ≤ 50 
3 50 < x ≤ 134 
4 134 < x ≤ 452 
5              452 < x  

 
Sidewalk Extent 
 
Ideally, this measure should have been the interaction of total length and 
condition of sidewalk per PAZ. However, due to statewide sidewalk data deficits, 
we had to use road function classification as substitute. Again, we used the road 
system data, which was obtained from U.S. Census Tiger.20 The field “NFC” in 
attribute represented national road function classification. It was categorized into 
eight levels. For interstates and other freeways, we assumed there should not be 
pedestrians, so we assigned 0 on these categories. For the other road categories, 
we constructed a comparison table of presence of sidewalk and NFC code in 
Kent County, where we had the most comprehensive sidewalk data. The 
comparison table shows that higher level of road has higher probability of having 
sidewalk, so they will get higher scores. The scores should be assigned 
according to the following table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                            
20 https://www.census.gov/cgi-bin/geo/shapefiles/index.php 
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Table 12 Cross Comparison between the presence of Sidewalks and NFC codes. 
	

	
	
	
	

 
           Table 13 Value breaks of Score for Measuring Sidewalk Extent 

Score Value (NFC) 
0 1, 2 
1 0 
2 7 
3 6 
4 5 
5            3, 4 

 
 

Park Access 
 

Park access as factor was dropped from PIE, but worked individually in 
pedestrian supports in Clifton’s report. In any case, park is an important 
destination for people choosing to walk to, especially there are so many 
recreational walking trips in MTC III. The park data was retrieved from ArcGIS 
Online,21 Esri has a default dataset of parks in the U.S., ranging from national 
parks and forests to local parks. We applied a series of buffers with ¼ mile 
interval around every park’s boundary. Areas being closer to parks got higher 
score, vice versa. Areas away from parks more than 1¼ mile were considered as 
no walking access to park. Scores were assigned according to the following table. 

                                            
21 https://www.arcgis.com/home/index.html 

NFC Description 

No 
Sidewal
k/Segme

nts 

No 
Sidewalk/
Percenta

ge 

Has 
Sidewal
k/Segme

nts 

Has 
Sidewalk/
Percentag

e 

All 
Roads 

Segment
s 

Score 

1 Interstate 275 89.9% 31 10.1% 306 0 

2 Other 
Freeway 114 91.9% 10 8.1% 124 0 

3 
Other 

Principle 
Arterial 

50 5.8% 816 94.2% 866 5 

4 Minor Arterial 65 5.6% 1091 94.4% 1156 5 

5 Major 
Collector 92 14.2% 558 85.8% 650 4 

6 Minor 
Collector - - - - - 3 

7 NFC Local 1029 20.2% 4064 79.8% 5093 2 
0 Non-certified 692 87.3% 101 12.7% 793 1 

Total 2317 25.8% 6671 74.2% 8988  
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Table 14 Value breaks for score for measuring bicycle access 

Score Value (Distance from Park 
Boundary/ Mile) 

0 1¼ < x 
1 1 < x < 1¼ 
2 ¾ < x ≤ 1 
3 ½ < x ≤ ¾  
4               ¼ < x ≤ ½  
5              0 ≤ x ≤ ¼  

 
 
 
Group 4: Pedestrian Barriers 
Barriers to pedestrian travel include the mean slope in the destination zone, the 
presence of freeways and the proportion of industrial-type employment as a proxy for 
industrial land uses. For slope, we used DEM data from Michigan Open Data Portal to 
generate the average slope in degree per PAZ. The freeways can be found in the 
attribute of road system downloaded from US Census Tiger by NFC. The presence of 
freeways is a dummy variable, if there is any freeway intersect with a PAZ, the score 
should be 1; if there is not any freeway present in a PAZ, the score should be 0. For 
industrial-type jobs, again, we utilized employment data ReferenceUSA. We filtered out 
retail, service, finance and government jobs, and the remaining categories are industry-
type jobs. The NAICSs of industry-type job are 11, 21, 23, 31, 32, 33.  
	
Group 5: Impedance 
As a measure of impedance, we calculated the shortest path distance (in miles) between 
the centroid of production zones and attraction zones along a network that included the 
complete street network and major off-street paths. We have already built up the road 
network, but the scale of the zone remains open to questions. The production and 
attraction zone could be based on either PAZ or SuperPAZ, but the calculation is 
extremely time consuming, but the finest level zones are able to capture the most 
accurate pedestrian flow. We could also calculate the impedance based upon census 
block group, but the details will be gone. 

Calculating Weights  
Build upon these data, we took a further step to calculate the weights for factors 
in PIE. Because PIE is a union of several predictors, equal weighted factors 
should be nice as a general index, however, setting up weights can better predict 
the preference of pedestrians on built environment. We ran a series binomial 
logistic regressions to get coefficients for each factor. The coefficients quantified 
the relationship between factor values and the observed utility of choosing to 
walk rather than the other modes. 
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At first try, we followed Dr. Clifton’s report but failed to standardize the weights 
because the coefficients of sidewalk extent and bicycle access turned to be 
negative. These two factors needed to be further reexamined.  
 
After dropping sidewalk extent and bicycle access, we started to consider 
developing a new index. Since we are developing statewide level models, for the 
convenience of model maintenance, data availability should be our prior concern. 
For all other data-available factors under pedestrian supports category, we could 
group them together as a new index, we called it PIE, which contained five 
factors: people per acre, block size, transit access, ULI and park access. We ran 
the regressions again, and the results turned to be promising. From the 
coefficients we could tell, population density was the strongest variable, and park 
access was the weakest. All the factors were statistically significant. Using the 
coefficients, we were able to calculate the weights. To make PIE more intuitive, 
we set a value range from 0 to 100. When we maintained the ratios among the 
coefficients, we scaled them to weights respectively. The weights and maximum 
weighted value for each factor in PIE is listed as follow. In the future, if the data 
deficits issue is solved, different factors and weights will be applied. 
 

          Table 15 Coefficients for the Pedestrian Index of Environment (PIE) 
Factor Coefficient P-Value Pseudo R-Square 

People per Acre 0.50 0.000 0.029 
Block Size 0.46 0.000 0.038 

Transit Access 0.36 0.000 0.027 
ULI 0.32 0.000 0.015 

Park Access 0.18 0.000 0.015 
 
 
Table 16 Weights for Each Factor in PIE 

Factor Score 
Range Weight Maximum 

Weighted Value 
People per 
Acre 0-5 5.495 27.475 

Block Size 0-5 5.055 25.275 
Transit 
Access 0-5 3.956 19.78 

ULI 0-5 3.516 17.58 
Park 
Access 0-5 1.978 9.89 

PIE 100 
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Bicyclist Index of Environment (BIE) 
 
This section gives a step-by-step description on how we estimate bicycle 
supports within each SuperPAZ. With bicycle supports, we can further estimate 
bicycle trip generation and bicycle destination. 
 
Bicycle supports refer to an index of built environment that will support cycling 
activities and possibly encourage people to cycle. Basically, an area with higher 
bicycle support index, the built environment within that area will be friendlier for 
people to cycle. To objectively determine bicycle index of environment, we 
selected five factors to estimate bicycle supports. Each factor is quantified on a 
scale of zero to five for each SuperPAZ cell and is presented as a score. A 
subtotaled score of equally weighted five factors represents the character of the 
built environment of each SuperPAZ through the measurement of objective 
conditions. 
 

• Population and job density: This factor was measured by population 
and number of jobs per spatial unit. We joined both number of jobs per 
location and population points into quarter-mile buffered SuperPAZ. 
SuperPAZs with more population and jobs were assigned higher score. 

• Block size: We used number of road junctions per SuperPAZ to measure 
block size. Usually, more junctions in a certain area means more 
connected networks which is more appealing to cyclists. We calculated 
the number of junctions within each quarter-mile buffered SuperPAZ. 

• Bicycle Access: A one-mile radius around every PAZ was used to 
calculate the bicycle access in that area. In this case, a one-mile radius 
represented the increased accessibility range of bicycles over pedestrian 
travel. Unfortunately, bicycle paths were unavailable statewide, we had to 
use AADT as substitute. Typically, high-traffic roads without bicycle 
facilities are considered as lower biking comfort level, and vice versa. 
Thus, we assumed that “bikability” here in Michigan also follow this 
cognition, in which higher AADT associates lower “bikability”.  

We obtained AADT data directly from MDOT, which covers almost 80% of 
statewide road segments (630,469 out of 794,277). Scores were assigned 
according to the following table.  
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                    Table 17 Value breaks for score for bicycle access 
Score Value (AADT) 
0 Null 
1 7,584 < x 
2 3,454 < x ≤ 7,584 
3 1,645 < x ≤ 3,454 
4 607 < x ≤ 1,645 
5 0 ≤ x ≤ 607 

 

• Transit Access: Transit accessibility was simply measured by the number of 
transit stops within quarter-mile buffer of a PAZ. We counted numbers of transit 
stops in each buffer zone. A SuperPAZ with no bus stop means there is no 
access to public transit, while a SuperPAZ with more stops has higher transit 
accessibility and get the higher score of transit access. 

 
• Urban Living infrastructure: Certain destination types were measured within 

a quarter-mile radius of each PAZ. Infrastructures like K-12 schools, grocery 
stores, cafes, restaurants, clothing and other retail stores, dry cleaners, and 
entertainment venues were all recorded in this factor, which provide service and 
financial activities that support daily living. 

• Bicycle Facilities extent:  Bicycle facilities extent was collected from 
OpenStreepMap which is an open source that users can extract bicycle paths in 
the selected area. After we get the bicycle path length within each SuperPAZ, we 
used Intersect tool in ArcMap to get the length of bicycle paths in each half-mile 
buffer zone. As a result, we assigned scores based on Natural Breaks method, a 
SuperPAZ with less than 10 feet  will be assigned a zero score for bicycle 
facilities extent, while SuperPAZ with longer bicycle paths will have higher score 
for bicycle facilities extent, as shown in the following table: 

Table 18 Bicycle Facilities extent 
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Weight Calculation 
From the previous step, each factor is quantified on a scale of zero to five for each 
SuperPAZ cell and is presented as a score. A subtotaled score of equally weighted five 
factors represents the character of the built environment of each SuperPAZ through the 
measurement of objective conditions. However, weighting each factor equally will 
overestimate the influence of factors that have weaker relationships with cycling and 
underestimate the influence of factors that have stronger relationships with cycling. In 
addition, setting up different weights can better predict the preference of cyclists on each 
bicycle index of built environment. According to Dr. Clifton’s study, they built a series of 
binomial logit regression model to derive weights for each factor. In this research, we 
utilize MI counts as the training data to estimate the correlation between people’s mode 
choice for cycling and factors in the index of built environment. The coefficients of each 
factor will quantify the relationship between factor values and the observed utility of 
choosing to cycle rather than the other modes, as shown in the following table. 

 
Table 19 BIE regression results 

 
Conforming to our predictions, all factors have the positive relationship with people’s 
willingness of cycling, which means people will be more likely to cycle in an area where 
the built environment is more supportive of cycling. Using these coefficients, we could 
calculate their influences on people’s mode choice for cycling. To make bicycle supports 
more intuitive, we set a value range from 0 to 100. When we maintained the ratios 
among the coefficients, we scaled them to weights respectively. The weights and 
maximum weighted value for each factor in bicycle supports is listed as follow. Ultimately, 
we can get the BIE based on the foumula below. 
Table 20 BIE Weights 

 
BIE	=	2.479*ULIScore	+	4.298*TAScore	+	5.785*PPAScore	+	2.479*BFScore	+	
4.959*BSScore 

(Total=100)	
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Table 21 Bicycle model data sources 

 
 

8.3.3 User Manuals 
 
We produced both ArcGIS files and an online web based pedestrian and bicycle 
risk assessment tool22.  The manual for both of these products are available 
online  
https://github.com/caocscar/pedbikeriskexposure/blob/master/draft.md#developin
g-michigan-pedestrian-and-bicycle-safety-models 

8.3.4 Evidence for Factors Associated with Frequency of Non-
Motorized Crashes 

 
As part of this project we conducted a thorough scientific literature review to 
identify the risk factors associated with bicycle and pedestrian crashes. We 
considered the inclusion of each factor below into the model.  We included a 
factor into the model if the data is widely available, effect size is large and under 
the control of MDOT policy actions. The table between lists the factors, 
magnitude of the effect on crashes, and references. 
 
 
 
                                            
22 see http://www.cmisst.org/pedbike-risk-exposure/  

Category Element Data	Source
Size	Term ACS	5-Year	Estimates	2011-2015,	ReferenceUSA	(April,2017)
Retail	Jobs ReferenceUSA	(April,2017)
Finance	Jobs ReferenceUSA	(April,2017)

Government	Jobs ReferenceUSA	(April,2017)
Service	Jobs ReferenceUSA	(April,2017)
Other	Jobs ReferenceUSA	(April,2017)
Households ACS	5-Year	Estimates	2011-2015

Bike	Trail	Mileage GIS	Open	Data(Michigan	DNR	Designated	Bicycle	Trails)
BIE ACS	5-Year	Estimates	2011-2015,	U.S.	Census	Tiger	Porduct,AAATA,	U	of	M	Transit	Service,	DDOT,	SMART,	Google	Maps,	OSM

BIE	(People	per	Acre) ACS	5-Year	Estimates	2011-2015
BIE	(Block	Size) U.S.	Census	Tiger	Product

BIE	(Transit	Access) AAATA,	U	of	M	Transit	Service,	DDOT,	SMART,	Google	Maps
BIE	(ULI) ReferenceUSA	(April,2017)

BIE	(Bike	Facilities	Extent) OpenStreetMap
Slope Michigan	Open	Data	Portal

Freeway U.S.	Census	Tiger	Product
Industrial	Jobs ReferenceUSA	(April,2017)
State	Boundary U.S.	Census	Tiger	Product

Counties	in	Michigan U.S.	Census	Tiger	Product
SuperPAZ Self-Developed

Road	System U.S.	Census	Tiger	Product
Pedestrian	Crash	Only UMTRI

Bike	Crash	Only UMTRI
Bars/	Pubs ReferenceUSA	(April,2017)
Liquor	Stores ReferenceUSA	(April,2017)
Restaurants ReferenceUSA	(April,2017)

AADT U.S.	Census	Tiger	Product,	MDOT
Number	of	Lanes HPMS

Speed	Limit HPMS
AADT	(less) HPMS

Drinking	Related	
Places

Road	Geometry

Bike	Attractiveness

Bike	Supports

Barriers

Base	Map

Crash
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Factors Associated with Frequency of Pedestrian and Bicycle Crashes in US 

  
Factor Effect/Effect Size References 

Socio-demographic Factors 
Sex Increased likelihood of 

pedestrian crashes among 
males. 

Zhou et al. (2013); Campbell et 
al. (2004); Lee and Abdel-Aty 
(2005); Al-Shammari et al. 
(2009); Pulugurtha et al.(2004) 

Age  Increased likelihood of 
pedestrian crashes among 
young people. 
 
 
Middle-aged males are more 
frequently involved in 
pedestrian-vehicle collision. 
 
 
Older pedestrians were found to 
experience a slightly higher 
number of fatal crashes per 
million walk trips per year. 

Age 16-29: Zhou et al. (2013); 
Age under 15: Jang et al. 
(2013); Alluri et al.(2013); Baltes 
(1998) 
  
Mirabella and Zhang(2014) 
 
 
 
 
Alluri et al.(2013) 
 
 
 

African-American or Hispanic 
neighborhoods; greater 
proportion of median-age and 
uneducated populations (or low 
income) 

Significant positive correlation 
between pedestrian crash 
frequency. 

Ukkusuri et al. (2011); Kravetz & 
Nolan (2012) 

Alcohol involvement Positively associated with 
pedestrian crashes. 

Nolan & Quddus (2004); Jang et 
al. (2013); Pulugurtha et 
al.(2004); Kittelson(2014) 

   
Land Use 
Greater number of schools and 
commercial  

Increased pedestrian crashes. 
 
 
 
Center business district(CBD) 
area experiences more crashes 
per site than the residential area 
by about threefold. 

Ukkusuri et al. (2011); Kim & 
Ortega (1999); Lascala et al 
(2000); Azam et al. (2012) 
 
Sheaffer (2008) 

Residential  Greater proportion of residential 
land decreased likelihood of 
pedestrian crashes. 
 
Residential area types 

Kravetz & Nolan (2012); Kim & 
Yamashita (2002)  
 
 
Zegeer, Opiela, and Cynecki 
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increased risk of pedestrian 
crashes. 
 
 
 

(1985) 

 The majority of pedestrian 
crashes occurred in urban areas 
and especially in metropolitan 
areas, fatal crashes were 
disproportionately high in rural 
areas. 

Alluri et al.(2013) 
 

Roadway Characteristics 
Road width Increased road width (wider 

streets) associated with higher 
risk of pedestrian crashes. 
 
 
 
Narrower roads and roads with 
higher speeds had increased 
risk for bicyclists. 
 
Two-way streets (compared to 
one-way); wider streets; high 
volumes of turning vehicles all 
increase risk. 
 
Four-legged intersections 
experience a greater number of 
crashes per site than three-
legged intersections. 
 
Sidewalks and wide shoulders 
significantly improve pedestrian 
safety. 
 
Lack of bicycle facility increases 
the risk of bicycle safety. 

Ukkusuri et al. (2012); Garder 
(2004); Zegeer, Opiela, and 
Cynecki (1985); Zegeer, 
Stewart, Huang, and 
Lagerwey(2001); Davis(1990) 
 
Hunter, Stutts, Pein, and Cox 
(1996) 
 
 
Zegeer, Opiela, and Cynecki 
(1985) 
 
 
 
Sheaffer (2008) 
 
 
 
Alluri et al. (2013); McMahon et 
al.(2002) 
 
Kittelson(2014) 

Traffic volume Higher pedestrian and vehicle 
volumes associated with 
increased risk of pedestrian 
crashes (pedestrian volumes 
one of most influential factors). 
 
 
 
 
Major road Average Daily Traffic 
(ADT) have an inverse effect on 
vehicle-pedestrian collision. 
 
Left-turn volume (increased 
volume and increased 

Fernandes et al. (2012); Zegeer, 
Stewart, Huang, Lagerway, 
Feaganes, and Campbell 
(2005); Lyon and Persaud 
(2002); Zegeer, Opiela, and 
Cynecki (1985); Brude and 
Larsson(1993); Sheaffer(2008); 
McMahon et al.(2002); Harwood 
et al(2008) 
 
Leden (2002); Lyon and 
Persaud (2002) 
 
 
Davis (1987); Epperson (1994); 
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proportion of total traffic, 
respectively) is associated with 
pedestrian safety. 
 
 
 

Sorton and Walsh (1994) (peak-
hour traffic volume in the curb 
lane); Landis (1994); Landis, 
Vattikuti, and Brannick (1997); 
Harkey, Reinfurt, Knuiman, 
Stewart, and Sorton (1998) 
(curb-lane volume); Landis, 
Vattikuti, Ottenburg, Petritsch, 
and Crider(2003) and Noel, 
Leclerc, and Lee-Gosselin, 
2003). 
 

Number of lanes Two lane roads accounted for 
60% of crashes. 
 
Greater number of lanes 
associated with more pedestrian 
and bicycle crashes. 
 
Intersections that have collector 
or arterial roadways with 4-lanes 
on at least one approach are a 
risk factor for pedestrian safety. 

Hunter, Stutts, Pein, and Cox, 
(1996) 
  
Zegeer, Stewart, Huang, and 
Lagerwey (2001); 
Kittelson(2014) 
 
 
Kittelson (2014) 

Raised pedestrian crosswalk, 
median or island 

Reduced crashes, especially on 
multilane roads; Curb extension 
and pedestrian node can reduce 
risk of safety for pedestrian. 

Zegeer, Stewart, Huang, and 
Lagerwey ( 2001); Elvik and Vaa 
(2004); Campbell, Zegeer, 
huang, and  Cynecki (2004); 
Alluri et al. (2013); 
Kittelson(2014) 
 
 

Crosswalk marking On 2-lane roads, marked 
crosswalk alone at uncontrolled 
location had no association with 
pedestrian crash risk. On 
multilane roads with volume 
>12,000/day, increased 
pedestrian crash risk. 

Zegeer, Stewart, Huang, 
Lagerway, Feaganes, and 
Campbell (2005) 

Speed limits Three-quarters of crashes 
occurred on roads with speed 
limits of 35 mph or less. 
 
Higher speed limits increase 
pedestrian safety risk. 
 
Speed limit is included as a 
variable in bicycle models. 

Hunter, Stutts, Pein, and Cox, 
1996); Kittelson(2014) 
 
 
McMahon et al.(2002) 
 
 
Davis (1987); Epperson (1994); 
Sorton and Walsh (1994) 
(vehicle speeds in the curb 
lane); Landis (1994); Landis, 
Vattikuti, and Brannick (1997); 
Harkey, Reinfurt, Knuiman, 
Stewart, and Sorton (1998) 
(vehicle speeds in the curb 
lane); and Noel, Leclerc, and 
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Lee-Gosselin (2003). 
Bus operations Presence of bus operations 

associated with increased 
pedestrian risk. 
 
Bus stop is a risk factor for 
pedestrian safety. 

Zegeer, Opiela, and Cynecki 
(1985) 
 
 
 
Kittelson (2014) 

Traffic control  Exclusive pedestrian signal 
timing associated with lower 
pedestrian risk compared to 
concurrent timing at signalized 
intersections without pedestrian 
signals. 
 
An analysis of  leading 
pedestrian interval(LPI) at 
downtown traffic signals shows 
nearly 50% reduction in 
pedestrian-vehicle crashes(LPI 
is a 3 second advance walk 
indication that is given to 
pedestrians prior to the circular 
green indication given to 
vehicles ). 
 
Signalized intersection with 
permitted or protected left-turn 
phases is a risk factor for 
pedestrian safety. 

Zegeer, Opiela, and Cynecki 
(1985); 
Kittelson (2014) 
 
 
 
Sheaffer (2008) 
 
 
 
 
 
 
 
Kittelson (2014) 

Lighting conditions The proportion of fatal crashes 
that occurred during nighttime 
were significantly greater 
compared to the proportion of 
fatal crashes in the  day time. 

Alluri et al. (2013); Kittelson 
(2014) 
 

Safety Performance Functions  
Michigan Urban Trunkline 
Intersections Safety 
Performance Functions (SPFs): 
 
 

This model is developed for 
pedestrian and bicycle crashes 
based on vehicular annual 
average daily traffic(AADT) for 
pedestrian and bicycle crashes. 
Crashes increase with respect 
to major road and minor road 
traffic volumes.  
Multi-linear Model  
                   Variables      
Coefficient 
3ST           AADT(maj)       0.765 
                  AADT(min)       0.385 
3SG          AADT(maj)        0.402 
                  AADT(min)       0.187 
4ST          AADT(maj)        0.547 
                 AADT(min)        0.269 
4SG          AADT(maj)        0.364 
                 AADT(min)        0.173 

Savolainen, Gates, Lord, 
Geedipally, Rista, Barerrette, 
Russo, Hamzeie (2015) 
 
 
 
 
 
 
 
3ST: 3-leg intersection with stop 
control on the minor approach. 
3SG: 3-leg signalized 
intersections. 
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Highway Safety Manual Safety 
Performance Functions (SPFs) 

Vehicle-pedestrian crashes at 
signalized intersections(Multi-
linear 
Regression Model) 
 
Variables                        
Coefficient  
                                    3SG       
4SG 
AADT(total)               0.05       
0.40 
𝐴𝐴𝐷𝑇!"#/𝐴𝐴𝐷𝑇!"#   0.24       
0.26 
PedVol                         0.41      
0.45 
𝑛!"#$%&                          0.09      
0.04 
 
CMFs(crash modification 
factors) 
 
Bus Stops (See chapter 12 pg-
46) 
Schools (See chapter 12 pg-46) 
Alcohol Sales Establishments 
(See chapter 12 pg-47) 
 
           

 
 
 
 
 
 
 
AADT: vehicular annual average              
             daily traffic  
PedVol: pedestrian volume 
𝑛!"#$%&: maximum number of 
traffic  
            lanes crossed by a 
pedestrian  
 
 
 
 
 

SPF Pedestrian SPF (Poisson 
Model) 
Variables                          
coefficient 
ADT                                 
0.0000251 
Bicycle Volume                    
0.000091 
Number of left turn lanes 
0.2296894 
On-street parking             
0.5712769 
Presence of speed signs  -
0.4470537 
Presence of bus stop        
0.9400843 
 
Bicycle SPF:  
(Negative Binomial Model) 
Variables                          
coefficient 
ADT                                 
0.0000419 
Pedestrian volume            
0.0008022 
Number of left turn lanes 

Hamidreza (2014) 
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0.1566364 
Presence of bicycle lanes      
0.5408297 
Presence of bus stop        
0.9032806 

 Pedestrian and Bicycle 
Intersection Safety Indices(ISI) 

Bicycle ISI Model 
Variables                         
Coefficient  
1 Main street ADT               
0.019 
2 Main street speed limit     
0.815 
3 Presence of turning-          
0.650 
   vehicle traffic across the      
   Path of through cyclists    
4 Vehicle right-turn lanes     
0.470 
   and bicycle lane present 
5 Cross street ADT and        
0.023 
   no bicycle lane 
6 Traffic signal and no         
0.428 
   bicycle lane   
7 Parking on approach        
0.200 
   and no bicycle lane 
 
Ped ISI Model 
Variables                          
coefficient 
SIGNAL                            -1.867 
STOP                                 -
1.807 
THRULNS                          0.335 
SPEED                                
0.018 
MAINADT*SIGNAL         0.006 
COMM                                
0.238 

Carter, Hunter, Zegeer et al 
(2006) 
 
 
 
Variable 2,3,4,5,6,7 a value of 1 
indicates that specific condition 
is true 
 
 
 
 
 
 
 
 
 
 
 
 
SIGNAL: traffic signal-controlled    
                 crossing   0=no, 
1=yes 
STOP:  stop sign controlled 
crossing 
             0=no, 1=yes 
THRULNS: number of through     
                   lanes on street 
being  
                   crossed 
SPEED: 85 percentile speed of  
              street being crossed 
MAINADT*SIGNAL: traffic  
              volume on street being  
              crossed 
COMM: predominant land use 
on  
  
               surrounding area is   
               commercial 
development  
               0=no  1=yes 

Behavior 
Direction in relationship to traffic Pedestrians facing traffic had 

77% reduction in fatal and injury 
crashes compared to 
pedestrians walking in direction 

Luoma and Peltola (2013) 
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of traffic. 
   
Crossing behavior Pedestrians who crossed the 

road compared to those who 
walked along the road at higher 
risk. 
 
Through vehicular movements 
at intersections had a greater 
effect on crash rates than left- 
and right-turn movements. 

Sarkar et al. (2011) 
 
 
 
Fernandes et al. (2012) 

Crossing compliance Males are more likely to cross 
without right of way than 
females. 
 
Pedestrians are more unlikely to 
cross against signal when heavy 
vehicle traffic exists. 
 
Groups of more than two 
individuals waiting on curbs are 
more likely to obey traffic laws. 
 
Push buttons positively 
influence compliance. 
 
Intersection with rest in walk and 
pedestrian recall had higher 
compliance rates for pedestrian 
and bicyclist. 
 

Mirabella and Zhang (2014) 

     
 


