Pavement Demonstration Program Project Finalization Low Volume (Thin) Concrete Reconstruction Projects – M-13 & M-99 (MDOT Job Numbers 53356 & 75184)

Final Technical Report

Prepared by:

Zhanping You, Ph.D., P.E. Kwadwo Ampadu Boateng, Research Assistant Syed Waqar Haider, Ph.D., P.E Dongzhao Jin, Ph.D. Lei Yin, Research Assistant

MTUengineering

CIVIL, ENVIRONMENTAL, AND GEOSPATIAL ENGINEERING

Michigan Technological University 1400 Townsend Drive Houghton, MI 49931

Submitted to:

Michigan Department of Transportation 8885 Ricks Road Lansing, MI 48909

Report No. OR23-304, B

April 2024

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
OR23-304, B	N/A	N/A	
4. Title and Subtitle		5. Report Date	
Pavement Demonstration Program Proje	ct Finalization	April 2024	
Low Volume (Thin) Concrete Projects -	M-13 & M-99	6. Performing Organization Code	
(MDOT Job Numbers 53356 & 75184)		N/A	
7. Author(s)		8. Performing Organization Report No.	
Zhanping You, Kwadwo Ampadu Boate	ng, Syed W. Haider, Dongzhao Jin,	N/A	
Lei Yin			
9. Performing Organization Name and Ad	ldress	10. Work Unit No.	
Michigan Technological University		N/A	
1400 Townsend Drive,		11. Contract or Grant No.	
Houghton, MI 49931-1295		Contract 2022-0432: Z1	
12. Sponsoring Agency Name and Addres	s	13. Type of Report and Period Covered	
Michigan Department of Transportation (MI	(TOC	Final Report, 03/20/2023 -08/31/2024	
Research Administration		-	
8885 Ricks Road		14. Sponsoring Agency Code	
P.O. Box 33049		N/A	
Lansing, Michigan 48909			
15 Supplementary Notes			

15. Supplementary Notes

Conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration. MDOT research reports are available at <u>www.michigan.gov/mdotresearch</u>.

16. Abstract

All demonstration projects are continually being evaluated to determine whether there is enough information to create appropriate performance curves and/or determine their applicability as an MDOT standard practice. This report summarizes projects for which a final determination can be made to finalize and end their designation as a demonstration project. This document is a final comprehensive report on the "Low Volume (thin) Concrete Reconstruction" projects on M-13 in Bay County and M-99 in Jackson County, with MDOT job numbers 53356 and 75184, respectively. The M-13 and M-99 projects were constructed in 2005 and 2006, respectively. These demonstration projects were designed to assess a cost-effective concrete cross-section alternative for reconstructing roadways with low traffic volumes (both overall and commercial traffic). Typically, MDOT concrete reconstruction consists of jointed plain concrete pavement (JPCP) designed to have a thickness of 8 inches or greater with 12-foot joint spacing and load transfer at the transverse joints. In contrast, these demonstration projects were evaluated using 6-inch jointed plain concrete panels with shorter joint spacing and no load transfer at the transverse joints. Like standard JPCP construction, these demonstration concrete pavements were designed with a 20-year design life. After 16 and 17 years of service for M-99 and M-13, respectively, no major contracted maintenance has been done on these projects. Additionally, the projects continue to provide satisfactory structural and functional performance. Thin concrete pavements provide a cost-effective alternative to traditional 8-inch thick JPCP reconstruction due to their lower initial cost and comparable maintenance costs. Low-volume, thin concrete pavement reconstruction is deemed acceptable, and this fix type is suitable for MDOT use where appropriate on low-volume, non-freeway roadways.

17. Key Words		18. Distribution Stat	ement	
Fault; concrete; panel; pavement; crack; distress; cost; low-volume; maintenance		No restrictions. This document is also available to the public through the Michigan Department of Transportation.		
19. Security Classif. (of this report)	lassif. (of this report) 20. Security Classif. (o		21. No. of Pages	22. Price
Unclassified	Unclassified		98	N/A

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Disclaimer

This report is disseminated to facilitate information exchange. The Michigan Department of Transportation (referred to as MDOT hereafter) explicitly denies any form of liability, regardless of nature or cause, that may arise from the use of this document or the information and data presented within it. MDOT also takes no responsibility for typographical errors, or the accuracy of the information included in this content. MDOT does not provide any warranties or assurances regarding the quality, substance, comprehensiveness, suitability, sufficiency, order, accuracy, or timeliness of the provided information and data. Moreover, MDOT does not assert that the contents establish standards, specifications, or regulations.

Acknowledgments

The Michigan Department of Transportation (MDOT) sponsored the research work. The authors extend their gratitude for the direction and engagement of Justin Schenkel, Andre Clover, Michael Eacker, Fawaz Kaseer, and Kevin Kennedy, all affiliated with MDOT. Additionally, the authors acknowledge Emily Kastamo for her role as the English editor for this report.

Disclaimer	III
Acknowledgments	III
Introduction	1
Project Description	1
Traffic Assessment and CESAL Estimation	
Pavement Condition Surveys	5
Early-Stage Pavement Condition Findings	6
Pavement Condition Findings	10
Pavement Performance Data Analysis	
Cost Comparison	17
Performance Comparison	
Conclusions and Recommendations	19
References	
Appendix A: Pavement Design Records, Estimates, and Miscellaneous Notes	
Appendix B 1: Interim Warranty Inspection Report for M-99	56
Appendix B 2: Final Warranty Inspection Report for M-99	72
Appendix C: CESAL Computations	

Table of Contents

List of Tables

Table 1. M-13 and M-99 Concrete Panel Summary	2
Table 2. M-13 and M-99 Demonstration Project Test Section Descriptions	3
Table 3. CESALs for M-13 and M-99 Projects	4
Table 4. Yearly Progression of IRI and DI for M-13	4
Table 5.Yearly Progression of IRI and DI for M-99	14
Table 6. Yearly Progression of Right Wheel Path Faulting for M-13	6
Table 7. Yearly Progression of Right Wheel Path Faulting for M-99	16
Table C 1. M-13 Actual CESAL Estimation Data from Mary Street to North Street	€7
Table C 2. M-99 Actual CESAL Estimation Data from Mechanic Street to Pearl Street) 8
Table C 3. M-99 Initial Design CESAL Estimation Data for M-13 and M-99) 8

Figure 1. M-13 Demonstration Project Location	
Figure 2. M-99 Demonstration Project Location	2
Figure 3. Lane Configuration for M-13, Google Maps Image 2023	5
Figure 4. Lane Configuration for M-99, Google Maps Image 2014	6
Figure 5. Field Survey Pictures of M-13	7
Figure 6. Distress Slabs South of Pinconning Bridge on M-13	
Figure 7. Field Survey Pictures of M-99	9
Figure 8. Transverse and Corner Cracks on M-99 from MDOT Warranty Report SW	/AD 2870
(2009)	
Figure 9. Joint Spalling and Transverse Cracks on M-99 from MDOT Warranty Repo	ort SWAD
2870 (2011)	
Figure 10. Percentage of Cracked and Repaired Panels for M-13	
Figure 11. Percentage of cracked and repaired slabs for M-99	
Figure 12. Yearly IRI Performance for M-13 and M-99	
Figure 13. Yearly Distress Index Performance for M-13 and M-99	
Figure 14. Yearly PASER Performance for M-13 and M-99	
Figure 15. Yearly Average Height of Faults in the Right Wheel Path for M-13 and M-9	917
Figure 16. Deterioration Curve of Pavement Preservation Strategy	
Figure A 1. M-13 Proposed Cross-section Design Notes	
Figure A 2. M-99 Proposed Cross-section and Design Notes	
Figure A 3. Cross Section of Low-Volume Concrete on M-13 and M-99	
Figure A 4. FWD Test Results on M-99 Northbound	
Figure A 5. FWD Test Results on M-99 Southbound	
Figure A 6. DCP Results for M-99 Northbound Station 37+50	
Figure A 7. DCP Results for M-99 Northbound Station 38+00	
Figure A 8. DCP Results for M-99 Northbound Station 38+50	
Figure A 9. DCP Results for M-99 Northbound Station 39+00	
Figure A 10. DCP Results for M-99 Northbound Station 40+00	
Figure A 11. DCP Results for M-99 Northbound Station 40+50	
Figure A 12. DCP Results for M-99 Northbound Station 41+00	

List of Figures

Figure A 13. DCP Results for M-99 Northbound Station 41+50	. 32
Figure A 14. DCP Results for M-99 Northbound Station 42+00	. 33
Figure A 15. DCP Results for M-99 Southbound Station 37+50	. 34
Figure A 16. DCP Results for M-99 Southbound Station 38+00	35
Figure A 17. DCP Results for M-99 Southbound Station 38+50	. 36
Figure A 18. DCP Results for M-99 Southbound Station 39+00	. 37
Figure A 19. DCP Results for M-99 Southbound Station 39+50	. 38
Figure A 20. DCP Results for M-99 Southbound Station 40+00	. 39
Figure A 21. DCP Results for M-99 Southbound Station 40+50	. 40
Figure A 22. DCP Results for M-99 Southbound Station 41+00	. 41
Figure A 23. DCP Results for M-99 Southbound Station 41+50	42
Figure A 24. DCP Results for M-99 Southbound Station 42+00	. 43
Figure A 25. Subgrade Density Results on M-99 Northbound	. 44
Figure A 26. Subgrade Density Results on M-99 Southbound	. 45
Figure A 27. Subbase Density Results on M-99 Northbound	. 46
Figure A 28. Subbase Density Results on M-99 Southbound	. 47
Figure A 29. Proposed Typical Section M-13 (4 lanes)	. 48
Figure A 30. Proposed Typical Section M-13 (5 lanes)	49
Figure A 31. Proposed Typical Section M-99 (4 lanes)	50
Figure A 32. April 2022 Field Evaluation Report for M-99	. 51
Figure A 33. April 2022 Field Evaluation Report for M-13, Page 1	52
Figure A 34. April 2022 Field Evaluation Report for M-13, Page 2	. 53
Figure A 35. April 2022 Field Evaluation Pictures for M-13	. 53
Figure A 36. April 2022 Field Evaluation Pictures for M-99	. 54
Figure A 37. MDOT LCCA Cost Estimation for Thin Concrete Reconstruction	. 55
Figure A 38. MDOT LCCA Cost Estimation Spreadsheet for Standard PCC Reconstruction	. 55

Introduction

Public Act 457 of 2016, MCL 247.651h contains what is referred to as the pavement life-cycle law. This law requires the Michigan Department of Transportation (MDOT) to conduct a life-cycle cost analysis (LCCA) on projects with pavement costs of \$1.5 million or more. The LCCA process is a tool to select the lowest-cost pavement design over the expected service life of the pavement. By law, the LCCA process must include historical information for initial construction and maintenance costs and performance (service life). This information is unavailable for new pavement design types and technologies. Thus, it cannot be used in the pavement selection process until substantial information has been obtained. Accordingly, Public Act 457 of 2016, MCL 247.651i, the pavement demonstration law, provides a means for trying new and innovative ideas through demonstration projects. These demonstration projects are not subject to an LCCA process. Pavement demonstration outcomes are intended to increase service life, improve pavement condition, improve ride quality, and/or lower service life costs. Future LCCAs may utilize the demonstration projects' cost, performance, and maintenance information. Selection of candidate projects is collaborative among MDOT Construction Field Services pavement personnel, MDOT region personnel, and paving industry groups. Once the demonstration project is identified, it goes to MDOT's Engineering Operations Committee for formal approval. Once approved, the project becomes part of the Pavement Demonstration Program. All costs for the demonstration project are funded by the respective MDOT region's rehabilitation and reconstruction template budget. These projects are monitored until a final decision is made regarding the suitability of adopting them as MDOT standard practice. This report evaluates two projects for the "Low Volume (Thin) Concrete Reconstruction" pavement demonstration fix type on M-13 in Pinconning township, Bay County, and M-99 in Springport Village, Jackson County, with MDOT job numbers 53356 and 75184, respectively.

Project Description

The M-13 and M-99 demonstration projects were constructed in 2005 and 2006, respectively. The M-13 project is from Mary Street to North Street in Pinconning, Michigan. The M-99 project is from Mechanic Street to Pearl Street in Springport, Michigan. Both projects used a 20-year design life to have 6-inch thick concrete panels with the bars at the longitudinal joints but no dowel bars at the transverse joints. However, they differ in panel dimensions, as M-13 panels are 5.5 feet by 5.5 feet, and M-99 panels are 6 feet by 6 feet. Table 1 shows the description of concrete panels and spacing. Both projects placed the concrete pavement over 6 inches of dense-graded unbounded aggregate base over 12 inches of sand subbase. The cross-section is shown in Appendix Figures A1 and A2, and project descriptions of M-13 and M-99 are provided in Table 2. The maps in Figures 1 and 2 show the locations of M-13 and M-99, as detailed in Table 2.

These demonstration projects are unique from standard MDOT concrete reconstruction in key aspects. Standard concrete reconstruction designs also use a 20-year design life, but commonly, slab thickness is at least 8 inches and utilizes dowel bars at the transverse joints. Standard concrete reconstruction base construction also consists of an open-graded aggregate instead of a dense-graded base, and the sand subbase is 10 inches instead of 12 inches. Finally, standard reconstruction panels are larger, with transverse joints spaced at a minimum of 12 feet (depending on slab thickness), and longitudinal spacing is typically 12 feet.

	Project Location	Plan Panel Depth (inches)	Transverse Joint Spacing (feet)	Longitudinal Joint Spacing (feet)
	M-13	6	5.5	5.5
ſ	M-99	6	6	6

Table 1. M-13 and M-99 Concrete Panel Summary

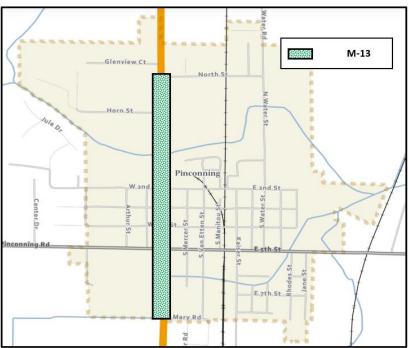


Figure 1. M-13 Demonstration Project Location

Figure 2. M-99 Demonstration Project Location

Route	Test Section Description	Length of Test Section (miles)	P.R. Number	PR BMP	PR EMP
M-13	JPCP concrete on dense-graded	0.870	767610	22.403	23.273
M-99	unbound aggregate base on sand subbase	1.252	897108	7.934	9.186

Table 2. M-13 and M-99 Demonstration Project Test Section Descriptions

* Note: P.R. is Physical Road, BMP is Beginning Mile Point, EMP is Ending Mile Point. P.R. and M.P. information is per PR Version 22.

For M-99, additional testing beyond standard construction acceptance was conducted for the aggregate base, subbase, and subgrade. This consisted of falling weight deflectometer (FWD), dynamic cone penetrometer (DCP), and density gauge testing. The FWD data is shown in the Appendix in Figures A4 and A5. The DCP results for the base materials are shown in Figures A6 to A24. The densities of the subgrade and subbase materials are presented in Figures A25 to A28. No significant material issues or variations in performance or quality were observed. Furthermore, all materials are considered to have met construction acceptance criteria.

For M-13 and M-99, Ground Penetrating Radar (GPR) data was conducted in 2022 and 2023, respectively. It should be noted that GPR measurements are estimates since core data is not available to confirm them. Nevertheless, this data indicates that almost all tested concrete meets or exceeds the design pavement thickness of 6 inches, with average thickness of approximately 6.5 inches for M-13 and 6.8 inches for M-99. The only notable exception is M-13, where the thickness decreases to approximately 3.5 inches within 200 feet on either side of the Pinconning River bridge.

Traffic Assessment and CESAL Estimation

Traffic loading is a crucial contributing factor to pavement performance and durability. Excessive traffic volumes can initiate or propagate pavement distress, eventually leading to pavement failure. The impact of traffic on the performance of the low-volume concrete reconstruction projects on M-13 and M-99 was evaluated by computing the Concrete Equivalent Standard Axle Load (CESAL). Two-way Commercial Annual Average Daily Traffic (CAADT) data was obtained from MDOT's Transportation Data Management System (TDMS) for CESAL computation input. Both projects were designed for a 20-year design life. The 20-year design CESAL estimation was based on the AASHTO 1993 design method, using the following equation:

 $CESALs_{Estimated} = CAADT \times 365 \times DD \times LD \times TF \times GF$

Where:

 $GF = growth factor, [(1+g)^n - 1]/g$ g = growth rate expressed as a decimal n = number of years The design CESAL value was estimated because it was unavailable from the original design and construction records for either project. Accordingly, the directional distribution (DD), lane distribution (LD), and truck factors (TF) were estimated using data from other similar low-volume MDOT projects to make accurate estimations. Therefore, a DD of 51% and TF of 0.78 were used for both routes. A LD of 80% was adopted for M-13, and 100% was used for M-99. As indicated on the project plan cover sheets, the growth rate (g) for M-13 and M-99 were calculated to be 3% and 0.17%, respectively. Similarly, per the project plan cover sheets, the initial year CAADT for M-13 and M-99 were 509 and 103, respectively.

In comparison, the actual CESALs were calculated per the summation of each year's CESAL using the actual measured (or estimated actual measure) CAADT, using the following equation:

$CESALs_{Actual} = CAADT \times 365 \times DD \times LD \times TF$

M-13, constructed in 2005, has traffic volume data available on TDMS from 2008 to 2022, excluding 2010 and 2015. To estimate the CAADT values for 2006 and 2007, the design growth rate of 3% was used to depreciate the 2008 value accordingly. For the 2010 and 2015 CAADT values, the surrounding CAADT values of 2009 and 2011, and 2014 and 2016 were averaged, respectively. Future projections of CAADT values from 2023 to 2025 were estimated using the 2022 data and applying a growth rate of 3%.

M-99, constructed in 2006, has TDMS traffic volume data from 2011 to 2022, excluding 2015. Following a similar approach as M-13, the CAADT values for 2014 and 2016 were averaged to estimate the missing 2015 value. For the years before 2011 and beyond 2022 (from 2023 to 2026), a growth rate of 3% was assumed, instead of using the M-99 design growth rate of 0.17%. This decision was made due to the negligible impact of the 0.17% growth rate, which resulted in minimal changes when applied to computations for CAADT values. Additionally, this approach provides a more conservative estimate to avoid underestimating the CAADT values.

The same factors for DD, LD, and TF were assumed to estimate actual CESAL, except the M-13 LD was increased to 90% due to updated general LD assumptions of Michigan roadways. The estimated actual and the initial design CESALs are shown in Table 3. Figures C1, C2, and C3 in the Appendix provide detailed computation of the estimated and actual CESAL values. Over the same 20-year period, both projects are anticipated to have similar actual CESALs as was estimated during the initial design, so these projects appear to be reasonably designed.

Route	Location	Period	Estimated Design CESALs	Actual Computed CESALs
M-13	Mary Street to North Street	2006-2025	pprox 1,600,000	≈ 1,200,000
M-99	Mechanic Street to Pearl Street	2007-2026	≈ 300,000	≈ 330,000

 Table 3. CESALs for M-13 and M-99 Projects

Pavement Condition Surveys

The pavement condition of all MDOT demonstration projects is documented annually in the MDOT Pavement Demonstration Program Legislative Status Report, *Pavement Demonstration Program Status Report Public Act 457 of 2016* [4]. Typically, this annual report includes a summary of distress conditions, including scaling, spalling, joint deterioration, cracking, and repairs. These reports are derived from the field survey notes, with the 2022 evaluation notes shown in Appendix Figures A32, A33, and A34. Annual surveys collected data in both directions for demonstration projects. Data were collected on all lanes except for the center left turn lane of M-13. Typical lane configurations of M-99 and M-13 are shown in Figures 3 and 4. It should be noted that the travel lanes of M-99 include outside parking, so these lanes are 4 panels wide to accommodate intermittent street parking along this route, as opposed to 2 panels on M-13. Furthermore, M-13 has two travel lanes in both directions versus one in each direction for M-99. Due to this variation in the number of lanes and panels, the condition and performance of M-99 and M-13 may not be directly comparable.

Figure 3. Lane Configuration for M-13, Google Maps Image 2023

Figure 4. Lane Configuration for M-99, Google Maps Image 2014

Early-Stage Pavement Condition Findings

Annual surveys noted that within the first 5 years of service, the M-13 project experienced minimal overall distress. Still, field surveys observed 9 cracked panels, some faulting along the longitudinal middle joint of the northbound outside lane, and minor intermittent joint spalling/raveling (less than 1" wide and 12" long). Notably, some of the cracked panels were at or near drainage structures. Additionally, the Pinconning Bridge had construction work conducted in 2010, for which heavy equipment (large crane, etc.) was parked on the travel lanes approximately 100 feet south of the bridge. Accordingly, the following year, 16 slabs were found to be cracked in all lanes and both directions of that area. As previously noted, the slab thickness decreases below the design thickness within 200-feet of the bridge. This may have also been a contributing factor along with the construction equipment. Examples of the observed pavement distresses are shown in Figures 5 and 6.

For M-99, several cracks were immediately observed within a few weeks of construction. Accordingly, since early cracking was observed and was within the five-year warranty period, two distress surveys were conducted to evaluate the warranty performance; one was in 2009 (3 years after construction), and the other was in 2011 (5 years after construction). See Appendix Figures B1 and B2 for the distress survey reports, *Warranty Inspection Report SWAD 2870* [1,2]. The concrete pavement was evaluated based on eight distresses: transverse cracking, longitudinal cracking, map cracking, spalling, scaling, corner cracking, joint seal failure, and shattered slabs. All distress types were observed in both surveys, except for map cracking and shattered slabs. Example images of the observed pavement distresses as documented in the warranty reports are shown in Figures 7, 8 and 9. Since the distress exceeded the allowable amount as defined by the

five-year warranty, approximately 3 slabs were replaced, and the remaining cracks and spalls were repaired with crack-sealing techniques.

Figure 5. Field Survey Pictures of M-13

Figure 6. Distress Slabs South of Pinconning Bridge on M-13

Figure 7. Field Survey Pictures of M-99

Figure 8. Transverse and Corner Cracks on M-99 from MDOT Warranty Report SWAD 2870 (2009)

Figure 9. Joint Spalling and Transverse Cracks on M-99 from MDOT Warranty Report SWAD 2870 (2011)

Pavement Condition Findings

According to the April 2022 field survey of M-13, after 17 years of service, approximately 2.4 percent of all concrete panels are cracked or repaired. This percentage is relatively minimal over this timespan. Excluding the cracked and repaired slabs at the south side of the Pinconning River Bridge, this percentage decreases to 1.9 percent. Figure 10 shows the overall trend of crack and repair through the pavement's design life. Otherwise, some intermittent scaling and joint spalling

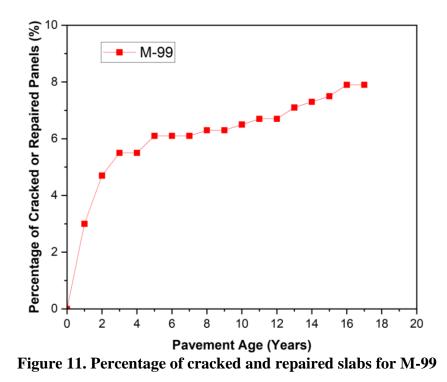

were observed. This primarily occurred within the first 550 feet of the project's south end within the northbound lanes. To address this, these have been filled with a spray-on asphalt emulsion patching material (commonly referred to by its commercial name AMZ). This joint deterioration is commonly related to the timing of the sawing operation. In both directions, the mid-lane longitudinal joint of the rightmost lane is exhibiting some widening and low levels of faulting at various locations. Accordingly, the field survey described the pavement's overall performance as good*. The April 2022 field survey notes are shown in Appendix Figure A34. Pictures of the current pavement condition on M-13 are shown in Appendix Figure A35.

Figure 10. Percentage of Cracked and Repaired Panels for M-13

* Note: "Condition ratings of good/fair/poor have been assigned to each project based on a subjective evaluation of the condition at the time of the latest field visit. Ratings are intended to provide a general sense of the performance (in terms of anticipated distress and ride quality per the design type) of each project and may not reflect future decisions about performance after all relevant information is obtained to make a final determination."

According to the April 2022 field survey of M-99, after 16 years of service, approximately 7.9 percent of all concrete panels are either cracked or repaired. While this percentage is higher than that of M-13, construction-related issues are at least partly contributing to this, including construction warranty repairs and initial spalling due to late sawing of the joints. This spalling is consistent with observations of the early annual reviews, where cracking was observed within inches of the joint. There are some faults, but they are isolated and minimal. As shown in Figure 11, like M-13, the progression of distress is steady. Accordingly, the field survey described the pavement's overall performance as fair*. The April 2022 field survey notes are shown in the Appendix, Figures A32 and A33. Pictures of the current pavement condition on M-99 are shown in Appendix Figure A36.

* Note: "Condition ratings of good/fair/poor have been assigned to each project based on a subjective evaluation of the condition at the time of the latest field visit. Ratings are intended to provide a general sense of the performance (in terms of anticipated distress and ride quality per the design type) of each project and may not reflect future decisions about performance after all relevant information is obtained to make a final determination."

Pavement Performance Data Analysis

For MDOT roadways, pavement performance for each project is measured by a variety of methods, including faulting, MDOT's Distress Index (DI), International Roughness Index (IRI), and the Pavement Surface Evaluation and Rating (PASER). Faulting is the difference in elevation across joints (or cracks), measured in inches. The total number of faults is identified by the number of times an elevation difference is observed. The DI measurement is the total accumulated distress point value for a given pavement section normalized to a 0.1-mile length. It is a unitless value that indicates a pavement's 2-dimensional surface distress condition (so faulting and rutting are not included). The IRI measurement is the roughness of the road profile in inches/mile (so that physical distresses such as faulting and rutting can impact its measurement). PASER is a visual method of assessing road conditions on a scale of 1 (failed) to 10 (excellent). Measurements for this data are to be taken in the rightmost lane (outside lane) unless this lane was unavailable due to construction or other lane obstruction. Accordingly, on M-13, the data was collected on the outside lane in the northbound direction. On M-99, the data was obtained on the outside lane in the eastbound direction. Therefore, the performance measurements may not be directly comparable to the annual site condition surveys since performance measurements are taken in one direction and on one lane.

Note that historically through 2019, MDOT network-level data collection for DI, IRI, and rut-or-fault was intended to be obtained every other year for any given route segment (including both directions of divided routes). However, the following is a list of exceptions to that biennial schedule:

- Starting in 2009, the annual IRI collection began in at least one direction of all National Highway System (NHS) routes.
- Starting in 2018, the annual IRI collection on at least one direction of all NHS routes was reduced to only Interstate routes.
- Also, starting in 2018, the annual collection of DI and rut-or-fault began (in addition to IRI) on one direction of the Interstate routes.
- Schedules for data collection are subject to roadway availability, so construction or similar operations may prevent data collection for that anticipated year.

The IRI and DI performance of the demonstration projects on M-13 and M-99 are shown in Tables 4 and 5 and Figures 12 and 13. Both pavements had high initial IRI, partly due to initial construction conditions as observed in the condition surveys, but is also due to their intersections, turning movements, and/or parking conditions. These conditions will cause stopping or slow speeds, which can affect the magnitude of roughness measurements. Therefore, the evaluation of IRI should be based on its relative increase over time instead of comparing it to a single threshold value. Accordingly, the IRI increase over time was very slow for both pavements, where M-13 and M-99 had an average increase of 2.1 and 1.2 inches/mile/year, respectively. Therefore, both projects have provided sufficient ride quality. For DI, Figure 13 shows that for both projects, values remain low, far below 50 DI, which is the value used in the MDOT Pavement Selection Manual [3] to approximate the end of service life. This indicates that both projects remain in good to fair condition. Although there was a spike in DI values in years 7 and 11 on M-13, the corresponding drops in years 9 and 13 indicate that maintenance activities may have occurred on the project. Using the PASER rating as an evaluation tool, both projects have a good to fair rating level, with minimal decline over time, as shown in Figure 14. Faulting measurements are shown in Tables 6 and 7 and Figure 15. M-13 has a low average fault height, remaining below 0.1 inch, which is the FHWA condition threshold for good condition (per FHWA 23 CFR 490.313). M-99 has shown some values above 0.1 inches, with a very high average fault height of 0.25 inches at 4 years of age. Still, this value was within the warranty period, so it was likely corrected for, as this value decreased in year 6. The latest value at year 15 shows that the value is 0.13 inches, which is considered fair, as this is below a poor condition of 0.15 inches. Therefore, both sections are performing adequately in terms of faulting.

Data Year	Route - M-	13
(Pavement Age)	IRI (in/mi)	DI
2006 (1)	118	0.028
2007 (2)	116	2.05
2010 (5)	132	1.102
2012 (7)	132	12.613
2014 (9)	142	5.957
2015 (10)	143	-
2016 (11)	143	9.025
2017 (12)	146	-
2018 (13)	147	4.877
2022 (17)	144	-

Table 4. Yearly Progression of IRI and DI for M-13

Table 5.Yearly Progression of IRI and DI for M-99

Data Year	Route - M-99	
(Pavement Age)	IRI (in/mi)	DI
2007 (1)	214	2.596
2010 (4)	232	0.147
2012 (6)	221	2.117
2014 (8)	222	2.018
2015 (9)	219	-
2016 (10)	242	1.284
2017 (11)	240	-
2018 (12)	246	4.515
2022 (16)	224	-

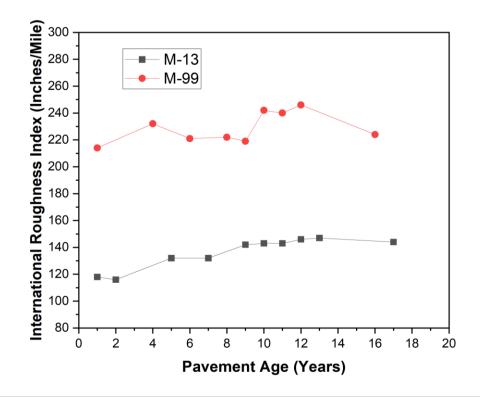


Figure 12. Yearly IRI Performance for M-13 and M-99

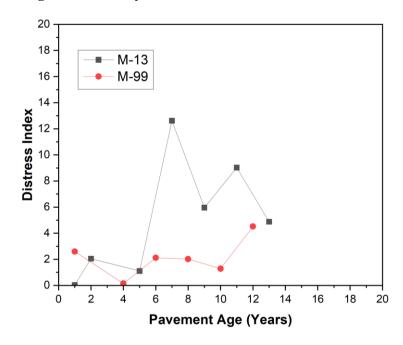


Figure 13. Yearly Distress Index Performance for M-13 and M-99

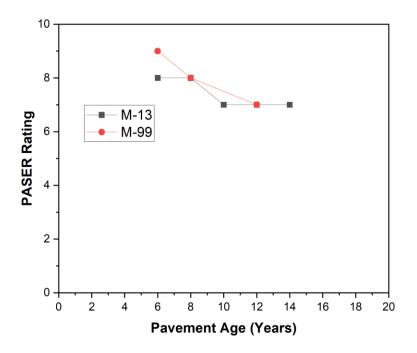


Figure 14. Yearly PASER Performance for M-13 and M-99

Table 6. Yearly Progression of Right Wheel Path Faulting for M-13

	Route - M-13		
Data Year (Pavement Age)	Total No. Faults/Mile	Avg Fault (in)	
2006 (1)	3	-	
2007 (2)	5	-	
2010 (5)	2	-	
2012 (7)	292	0.06	
2014 (9)	251	0.05	
2016 (11)	437	0.09	
2018 (13)	266	0.08	
2022 (17)	-	0.05	

Table 7. Yearly Progression of Right Wheel Path Faulting for M-99

	Route - M	-99
Data Year (Pavement Age)	Total No. Faults/Mile	Avg Fault (in)
2007 (1)	0	0
2010 (4)	1	0.25
2012 (6)	58	0.08
2021 (15)	-	0.13

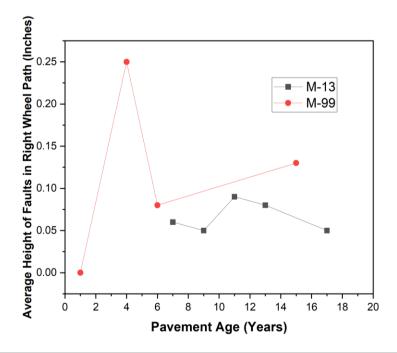


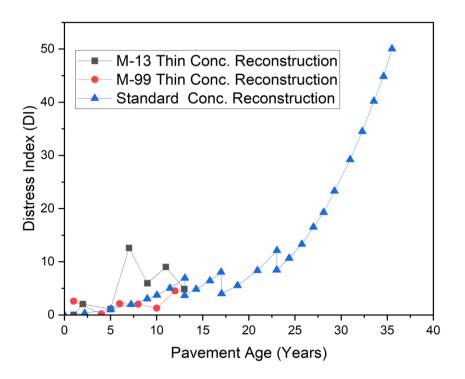
Figure 15. Yearly Average Height of Faults in the Right Wheel Path for M-13 and M-99

Cost Comparison

All costs included in this report have been adjusted to 2019 dollars to enable direct comparison with the standard cost provided in the MDOT Pavement Selection Manual [3]. The cost adjustment followed the procedure described in Chapter 6, Section F of that manual. The initial cost for construction was approximated by using unit prices (per 10/11/2022) and the estimation method for the pavement surface cost (including joints) as described in Chapter 2, Section A of the MDOT Pavement Selection Manual. Note that this method does not consider any base and subbase materials, rubblization, embankment, pre-repair/prep work, or HMA separator layers. Accordingly, see Appendix Figures A37 and A38 for an example of the MDOT LCCA cost estimation spreadsheet used to estimate the initial construction pavement cost.

To facilitate the following comparisons, the low-volume concrete reconstruction demonstration projects will be evaluated against the standard concrete reconstruction performance curves and cost data provided in the MDOT Pavement Selection Manual [3]. The full dataset of standard concrete reconstruction projects was used instead of some subset of its projects, such as non-freeway or low-volume pavements because the subset results were found to be consistent with the overall results. This is likely because all standard concrete reconstruction projects are designed according to their traffic and location characteristics, so their resulting performance should correlate.

The initial construction cost of low-volume concrete pavement reconstruction is estimated at approximately \$209,00 per lane-mile in 2019 dollars. This cost assumes 6 inches of pavement having 6-foot transverse and longitudinal joint spacings without dowel bars. Accordingly, the MDOT "Joint, Contraction, C3p" unit price for transverse contraction joints without load transfer was used to approximate the joint construction cost. The "Conc Pavt, Nonreinf, 8-inch, High


Performance" unit price was prorated to the per-inch cost to estimate the cost at 6-inch thickness. In contrast, the estimated pavement cost for a standard reconstruction concrete pavement at 8 inches is \$287,00 per lane-mile. Therefore, approximately \$78,000 per lane-mile, or about 27% of the initial cost, is saved using a thin concrete reconstruction versus the standard concrete reconstruction. While there is more cost associated with the joint construction for thin concrete, this cost is offset by the costs of dowels and material of the thicker standard concrete reconstruction.

In addition to the pavement's initial cost, its maintenance is a major contributing factor to the overall cost of a pavement. Other than the initial warranty work for M-99, no contracted maintenance activities occurred for either demonstration project. This warranty work should not be included in this assessment because it was needed to facilitate adequate initial construction. Still, intermittent minor repairs have been observed during field surveys. This type of noncontracted minor repair work is commonly conducted on various routes throughout the state, but it isn't easy to compare or assess the relative amount of this work per route because this type of minor repair work is not fully tracked for every roadway segment. Still, to assess the maximum potential cost of maintenance work, considering the total number of repairs observed for each project, it can be approximated that the minor repair work is roughly equal to a single contracted maintenance cycle. In comparison, per the MDOT Pavement Selection Manual, the standard concrete reconstruction indicates that, on average, preventive maintenance cycles occur after 13, 17, and 23 years of service, with a reconstruction or major rehabilitation (R&R) estimated to occur after 36 years. Accordingly, the cost per lane mile of these maintenance fixes is estimated at \$44,164, \$46,592, and \$64,015, respectively, so the total estimated maintenance cost for standard concrete reconstruction is \$154,771 per lane mile in 2019 dollars.

Therefore, low-volume concrete reconstruction has a lower initial cost than standard concrete reconstruction. Furthermore, to date, the maintenance costs of the demonstration projects have been much lower. Even if maintenance increases over time to match that of standard reconstruction, due to the initial cost savings, thin concrete reconstruction provides a cost-effective option.

Performance Comparison

The DI values of the demonstration projects and the average DI performance curve for standard concrete are shown in Figure 16. Since the DI values of the demonstration projects are not a broad average of statewide project values, these will have more variability and include the impacts due to maintenance events. The variations in growth trends during the early stage of pavement service life (0-10 years) can be attributed to warranty issues on M-99 and the high severity of pavement distress due to heavy bridge equipment on M-13. After year 10, both M-13 and M-99 appear to follow a similar growth trend compared with the standard concrete reconstruction performance curve. Moreover, so far, both pavements are on track to meet or exceed the estimated service life of a standard concrete reconstruction of 36 years (when a subsequent R&R would occur).

Figure 16. Deterioration Curve of Pavement Preservation Strategy

Conclusions and Recommendations

The performance of both reconstruction projects on M-13 and M-99 is considered acceptable. Both projects were designed for a 20-year design life. After 17 years in service, M-13 has performed well with minimal maintenance. M-99 has comparable performance to M-13 after 16 years. As documented in the warranty inspection, the early development of distress on M-99 can be attributed to construction variability. These demonstration projects have shown that a 6-inch-thick concrete reconstruction can achieve a service life proportional to a standard 8-inch-thick concrete reconstruction, with lower initial construction costs and similar maintenance costs. Most of the observed distress for the demonstration projects can be attributed to joint sawing. Therefore, since thinner concrete pavements are cured more rapidly, saw-cutting must be done immediately after construction.

Per the findings of this report, low-volume, thin concrete reconstruction can provide an acceptable, cost-effective construction approach compared with traditional 8-inch thick JPCP reconstruction, suitable for MDOT use where appropriate. It is recommended that the monitoring of this demonstration project by MDOT be ended, and the project evaluations considered complete. It should be noted that the basis of this conclusion was drawn from low-volume, non-freeway roads. Therefore, this reconstruction fix type may not apply to high-volume and/or freeway roadways. The small panel size requires twice as many joints as standard reconstruction, which may increase noise and potential for joint faulting. Furthermore, since the thin concrete reconstructions do not have dowels, the risk for load transfer distresses, such as faulting or spalling, increases for routes with high traffic volume and larger truck classes.

References

- Jackson TSC. Warranty Inspection Materials and Workmanship Warranty for New / Reconstructed Jointed Plain Concrete Pavement Interim Inspection SWAD ID : 2870. 2009.
- Jackson TSC. Warranty Inspection Materials and Workmanship Warranty for New / Reconstructed Jointed Plain Concrete Pavement Interim Inspection SWAD ID : 2870. 2011.
- 3. Michigan Department of Transportation Pavement Selection Manual. Pavement selection. 2021.
- 4. Schenkel J. Pavement Demonstration Program Status Report Public Act 457 of 2016 [Internet]. 2022. Available from: https://www.michigan.gov/mdot/about/governmentalaffairs

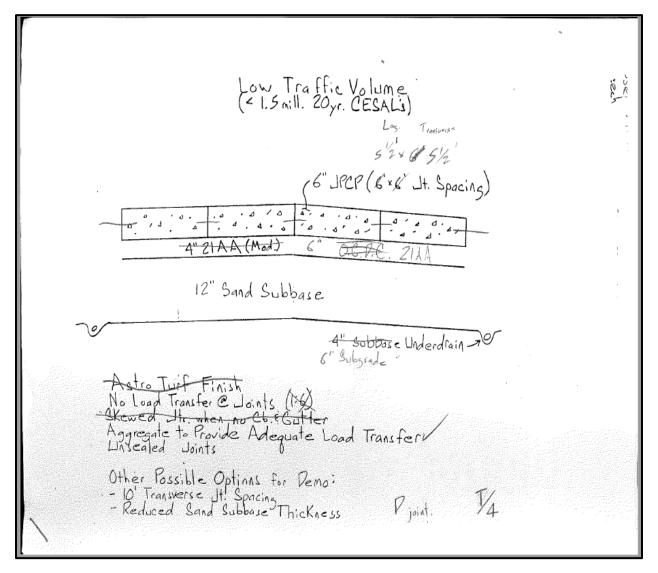


Figure A 1. M-13 Proposed Cross-section Design Notes

Low Traffic Volume (< 1.5 mill. 20yr. CESALi) 6" JPCP (6'x6' Jt. Spacing) ⊿ 4 ۵ 4 . ۵ ZIAA (Mod.) 4" 12" Sand Subbase 4" Subbase Underdrain -Astro Tuif Finish No Load Transfer & Joints (1:6) Skewed Jli. when no Ch. & Gutter Aggregate to Provide Adequate Load Transfer Muscaled Joints Other Possible Options for Demo: - 10 Transverse Ut. Spacing - Reduced Sand Subbase Thickness J_{ig} Thickness

Figure A 2. M-99 Proposed Cross-section and Design Notes

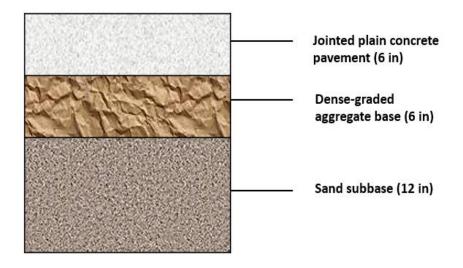


Figure A 3. Cross Section of Low-Volume Concrete on M-13 and M-99

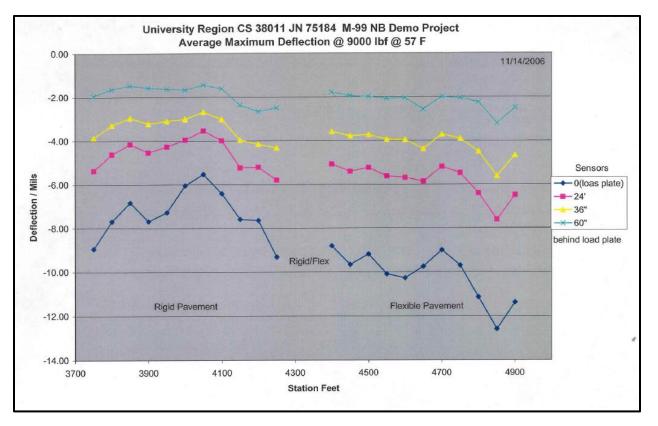


Figure A 4. FWD Test Results on M-99 Northbound

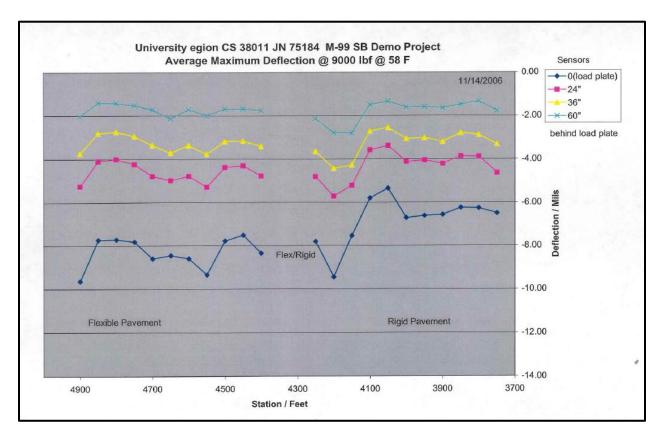


Figure A 5. FWD Test Results on M-99 Southbound

Date:	10/13/2006	-					Personnel	M. Eacker - D.	Zemcik
	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	<u>10.1(2)</u>	Aggregate	<u>. 17.6(1)</u>	<u>x</u>
1 Input Number of	Input Accumulative	2 kaput Accumulative	3 Penetration Between	4. Penetration per	5 Input Hammer Blow	6 DCP	7 CBR	8 Elastic Deformation Modulus	9 Depth
Blows	Penetration inch	Penetration	Readings mm	Blow	Factor (1 or 2)	Index mm/blow	%	_(E) .psi	inch
0 2 2 2 3 3 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4	0 1.3 2.5 3.5 4.7 6.1 7.3 8.4 9.6 10.7 11.9 13 14.1 15.3 16.5 17.7 18.9 20.1 21.3 22.4 23.6 24.7 25.8 27 28.3 29.4	33.02 63.50 88.90 119.38 154.94 185.42 213.36 243.84 271.78 302.26 330.20 358.14 388.62 419.10 449.58 480.06 510.54 541.02 568.96 599.44 627.38 655.32 685.80 718.82 746.76	33.02 30.48 25.40 30.48 35.56 30.48 27.94 30.48 27.94 30.48	$\begin{array}{c} 16.51\\ 15.24\\ 12.70\\ 10.16\\ 11.85\\ 15.24\\ 13.97\\ 10.16\\ 9.31\\ 10.16\\ 9.31\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 7.62\\ 6.98\\ 7.62\\ 6.98\\ 7.62\\ 8.26\\ 9.31\\ \end{array}$	* * * * * * * * * * * * * * * * * * * *	$\begin{array}{c} 16.51\\ 15.24\\ 12.70\\ 10.16\\ 11.85\\ 15.24\\ 13.97\\ 10.16\\ 9.31\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 10.16\\ 2.698\\ 7.62\\ 6.98\\ 7.62\\ 8.26\\ 9.31\\ \end{array}$	13 14 17 22 18 14 15 22 24 24 22 22 22 22 22 22 22 22 22 22	12931 13694 15606 18313 16398 13694 14576 18313 19492 18313 18313 18313 18313 18313 18313 18313 22507 23956 22507 23956 22507 23956 22507 23956 22507 23956	1.30 2.50 3.50 4.70 6.10 7.30 8.40 9.60 10.70 11.90 13.00 14.10 15.30 16.50 17.70 18.90 20.10 21.30 22.40 23.60 24.70 25.80 27.00 28.30 29.40
Total <u>Blows</u> 77					Average Stdev. Max. Min. C. of V.	DCI 10 3 17 7 0.3	CBR(%) 23 6 33 13 0.3	<u>E(psi)</u> 18881 3234 23956 12931 0.2	Maximum Depth(in.) 29.4

Figure A 6. DCP Results for M-99 Northbound Station 37+50

Date:	10/13/2006						Personnel	M. Eacker - D.	Zemcik
Project:	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	<u>10.1(2)</u>		17.6(1)	X
Location:	M-99 NB(EB) S	Sta. 38+00				Soil Type:	Aggregate	e Base	
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration mm	3 Penstration Between Readings mm	4 Penetration per Blow mm	5 Input Hammer Blow Factor (1 or 2)	8 DCP Index mm/blow	7 GBR %	8 Elastic Deformation Modulus (E) psi	9 Depth inch
0 2 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 1.1 2.2 3.3 4.5 5.7 6.7 7.8 8.9 10 11.2 12.2 13.3 14.3 16.4 16.5 17.7 18.9 20 21 22.1 23.2 24.3 25.4 26.6 27.8 29	27.94 55.88 83.82 114.30 144.78 170.18 198.12 226.06 254.00 284.48 309.88 337.82 363.22 391.16 419.10 449.58 480.06 508.00 533.40 561.34 589.28 617.22 645.16 675.64 706.12 736.60	27.94 27.94 30.48 30.48 25.40 27.94 27.94 27.94 25.40 27.94 25.40 27.94 27.94 30.48 30.48 30.48 27.94 27.94 27.94 27.94 27.94 27.94 30.48 30.48 30.48 30.48 30.48 30.48 30.48	$\begin{array}{c} 13.97\\ 9.31\\ 6.99\\ 7.62\\ 7.62\\ 8.47\\ 9.31\\ 9.31\\ 10.16\\ 8.47\\ 9.31\\ 10.16\\ 8.47\\ 9.31\\ 10.16\\ 10.16\\ 10.16\\ 9.31\\ 8.47\\ 5.59\\ 6.98\\ 6.99\\ 6.98\\ 7.62\\ 7.62\\ 7.62\\ 7.62\end{array}$		13.97 9.31 6.99 7.62 7.62 8.47 9.31 9.31 10.16 8.47 9.31 8.47 9.31 10.16 9.31 10.16 9.31 10.16 9.31 8.47 5.59 6.98 6.98 6.98 7.62 7.62 7.62	15 24 33 30 27 24 24 27 24 27 24 27 24 22 24 27 43 33 33 30 30 30 30	14576 19492 23956 22507 20870 19492 19492 19492 19492 20870 19492 20870 19492 20870 19492 19492 19492 18313 18313 18313 19492 20870 28111 23956 23956 23956 23956 23956	1.10 2.20 3.30 4.50 5.70 6.70 7.80 8.90 10.00 11.20 12.20 13.30 14.30 14.30 15.40 16.50 17.70 18.90 20.00 21.00 22.10 23.20 24.30 25.40 26.60 27.80 29.00
Total Blows 88					Average Stdev, Max. Min. C. of V.	DCI 9 2 14 6 0.2	CBR(%) 27 5 43 15 0.2	<u>E(psi)</u> 20977 2669 28111 14576 0.1	Maximum Depth(in.) 29.0

Figure A 7. DCP Results for M-99 Northbound Station 38+00

			D	CP DATA SHI	EET				
Date:	10/13/2006							M. Eacker - D.	
Project:	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:				X
Location:	M-99 NB(EB) S	Sta. 38+50				Soil Type:	Aggregat	e Base	
1 Input Number of Blows	Input Accumulative Penetration	2 Input Accumulative Penetration	3 Penetration Between Readings	4 Penetration per Blow	5 Input Hammer Blow Factor	6 DCP Index	7 GBR	8 Elastic Deformation Modulus (E)	9 Depth
DIOWS	inch	nim	mm	mm	(1 or 2)	mm/blow	%	psi	inch
0	0	07.04	07.04	07.04		07.04	-	paco	4.40
1	1.1	27.94 55.88	27.94 27.94	27.94 13.97	1	27.94 13.97	7	8869 14576	1.10 2.20
2 4	3.2	81.28	27.94 25.40	6.35	1	6.35	37	25650	3.20
4	4.3	109.22	25.40	6.99	1	6.99	33	23956	4.30
3	5.3	134.62	25.40	8.47	1	8.47	27	20870	5.30
4	6	152.40	17.78	4.45	i	4.45	55	33122	6.00
5	7.5	190.50	38.10	7.62	1	7.62	30	22507	7.50
4	8.5	215.90	25.40	6.35	1	6.35	37	25650	8.50
3	9.7	246.38	30.48	10.16	1	10.16	22	18313	9.70
3	10.7	271.78	25.40	8.47	1	8.47	27	20870	10.70
3	11.8	299.72	27.94	9.31	1	9.31	24	19492	11.80
4	12.9	327.66	27.94	6.98	1	6.98	33	23956	12.90
4	14.2	360.68	33.02	8.26	1	8.26	27	21252	14.20
3	15.3	388.62	27.94	9.31	1	9.31	24	19492	15.30
3	16	406.40	17.78	5.93	1	5.93	40	26950	16.00
3 3	17.6 18.8	447.04 477.52	40.64 30.48	13.55 10.16	1	13.55 10.16	16 22	14901 18313	17.60 18.80
3	20	508.00	30.48	10.16	1	10.16	22	18313	20.00
3	21.1	535.94	27.94	9.31	1	9.31	24	19492	21.10
3	22.1	561.34	25.40	8.47	1	8.47	27	20870	22,10
3	23.2	589.28	27.94	9.31	1	9.31	24	19492	23.20
4	24.4	619.76	30.48	7.62	1	7.62	30	22507	24.40
4	25.5	647.70	27.94	6.99	1	6.99	33	23956	25.50
4	26.7	678.18	30.48	7.62	1	7.62	30	22507	26.70
4	. 27.9	708.66	30.48	7.62	1	7.62	30	22507	27.90
3	28.9	734.06	25.40	8.47	1	8.47	27	20870	28.90
3	29.9	759.46	25.40	8.47	1	8.47	27	20870	29.90
Total						DCI	CBR(%)	E(psi)	Maximum
Blows					Average	9	28	21116	Depth(in.
90					Stdev.	4	9	4459	29.9
					Max.	28	55	33122	
					Min. C. of V.	4 0.5	7 0.3	8869 0.2	

Figure A 8. DCP Results for M-99 Northbound Station 38+50

DCP DATA SHEET										
Date:	10/13/2006					Personnel: M. Eacker - D. Zemci				
		5184 M-99 Demo	Designed		Hammer:			17.6(1)	×	
			Project		nammer:	10.1(2)			<u> </u>	
Location:	M-99 NB(EB) S	ita. 39+00				Soil Type:	Aggregat	e Base		
1 Input Number	Input	2 Input	3 Penetration	4 Penetration	5 Input Hammer	6	7	8 Elastic Deformation	9	
of Blows	Accumulative Penetration inch	Accumulative Penetration	Between Readings	per Blow	Blow Factor (1 or 2)	DCP Index mm/blow	CBR	Modulus (E) psi	Depth inch	
0	D	- 4100	41000	483518	(1012)	-	1.	- Pol	nich	
3	1.1	27.94	27.94	9.31	1	9.31	24	19492	1.10	
3	2.2	55.88	27.94	9.31	1	9.31	24	19492	2.20	
3 3	3.3 4,4	83.82	27.94 27.94	9.31	1	9.31 9.31	24 24	19492 19492	3.30 4.40	
3	5.6	111.76 142.24	30.48	9.31 10.16	1	10.16	22	18313	5.60	
3	7.2	182.88	40.64	13.55	1	13.55	16	14901	7.20	
2	8.2	208.28	25.40	12.70	1	12.70	17	15606	8.20	
2	9.3	236.22	27.94	13.97	1	13.97	15	14576	9.30	
2	10.3	261.62	25.40	12.70	1	12.70	17	15606	10.30	
3	11.6	294.64	33.02	11.01	1	11.01	20	17292	11.60	
2	12.6	320.04	25.40	12.70	1	12.70	17	15606	12.60	
3	13.8	350.52	30.48	10.16	1	10.16	22 17	18313	13.80	
3	15.3	388.62 414.02	38.10 25.40	12.70 12.70	1	12.70 12.70	17	15606 15606	15.30 16.30	
2 2	16.3 17.3	439.42	25.40	12.70	1	12.70	17	15606	17.30	
2	18.3	464.82	25.40	12.70	1	12.70	17	15606	18.30	
3	19.3	490.22	25.40	8.47	1	8.47	27	20870	19.30	
4	20.3	515.62	25.40	6.35	1	6.35	37	25650	20.30	
4	21.4	543.56	27.94	6.98	1	6.98	33	23956	21.40	
4	22.4	568.96	25.40	6.35	1	6.35	37	25650	22.40	
4	23.5	596.90	27.94	6.99	1	6.99	33	23956	23.50	
4	24.7	627.38	30.48	7.62	1	7.62	30	22507	24.70	
4	25.9	657.86	30.48	7.62	1	7.62	30	22507	25.90	
3	26.9 27.8	683.26 706.12	25.40 22.86	8.47 7.62	1	8.47 7.62	27 30	20870 22507	26.90 27.80	
3	29	736.60	30.48	10.16	1	10.16	22	18313	29.00	
Total					•	DCI	CBR(%)	E(psi)	Maximum	
Blows 77					Average Stdev.	10 2	24 7	19131 3483	Depth(in.) 29.0	
					Max.	14	37	25650	20.0	
					Min.	6	15	14576		
					C. of V.	0.2	0.3	0.2		

Figure A 9. DCP Results for M-99 Northbound Station 39+00

Date: 10/13/2006 Personnel: M. Eacker - D. Zemcik. Project: CS 38011 JN 75184 M-99 Demo Project Hammer: 10.1(2) 17.6(1) X ocation: M-99 NB(EB) Sta. 40+00 Soil Type: Aggregate Base Soil Type: Aggregate Base Personative Metabolity Depth 1 Input Modulus Accumulative Penetration inch Accumulative Penetration Penetration Radings Penetration Radings Penetration Modulus Penetration Penetration Penetration Radings Penetration Radings Penetration Radings CBR Radings Penetration Radings Penetrati					CP DATA SHE	ET		10.00			
Occation: M-99 NB(EB) Sta. 40+00 Soil Type: Aggregate Ease 1 Input Number 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 1 0 0 0 0 0 0 0 0 0 0 1 1 2 30.48 30.48 1 30.48 6 8332 1.20 2 3.4 80.36 0.48 15.24 1 15.24 14 13894 2.40 2 3.4 85.6 25.40 12.70 1 12.70 17 15606 4.40 3 5.6 142.24 30.48 10.16 1 10.16 22 18313 5.60 4 9.9 226.06 25.40 6.35 1 6.35 37 25650 8.90 4 9.9 221.46 25.40 6.35 1 </th <th>Date:</th> <th>10/13/2006</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Personnel</th> <th>M. Eacker - D</th> <th>Zemcik</th>	Date:	10/13/2006						Personnel	M. Eacker - D	Zemcik	
1 Input Number 1 accumulative Penetration 2 input Penetration 3 per Blows 4 input Blows 5 input Blows 6 input Blows 7 ber CBR 5 ber Modulus 9 ber DCP 0	Project:	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	x	
Input of Blow Input Accumulative Penetration Input Batween man Ponstration perification mon Input Penetration mon Input Blow Input Blow CBR CBR Elastic Deformation fractor DCP DCP CBR CBR DEscription Definition Depth Definition 0 0 0 30.48 30.48 1 30.48 6 8332 1.20 2 3.4 85.36 25.40 12.70 1 12.70 17 15606 3.40 3 5.6 142.24 30.48 10.16 1 10.16 2 18313 5.60 3 6.7 170.15 27.94 9.31 1 9.31 22.507 7.90 4 8.9 226.06 25.40 6.35 1 6.35 37 26650 8.90 4 12 30.48 10.16 1 10.16 1.33 337.82 33.02 8.26 1 6.35 37 26650 9.90 4 113.3 337.82	ocation:	M-99 NB(EB) \$	Sta. 40+00		ers direct		Soil Type:	Aggregat	e Base		
1 1.2 30.48 30.48 1 30.48 1 30.48 6 8332 1.20 2 2.4 60.96 30.48 15.24 1 15.24 14 13694 2.40 2 3.4 85.36 25.40 12.70 1 12.70 17 15606 3.40 3 5.6 142.24 30.48 10.16 1 10.16 22 18313 5.60 4 7.9 200.66 30.48 7.62 1 7.62 30 22507 7.90 4 8.9 226.06 25.40 6.35 1 6.35 37 25650 9.90 4 11 279.40 27.94 6.98 1 6.98 33 23966 11.00 4 13.3 337.82 33.02 8.26 1 8.28 27 21252 13.30 3 16.7 424.18 27.94 9.31 1 <t< th=""><th>Input Number of</th><th>Accumulative Penetration</th><th>Input Accumulative Penetration</th><th>Penetration Between Readings</th><th>per Blow</th><th>Input Hammer Blow Factor</th><th>DCP Index</th><th></th><th>Elastic Deformation Modulus (E)</th><th>Depth</th></t<>	Input Number of	Accumulative Penetration	Input Accumulative Penetration	Penetration Between Readings	per Blow	Input Hammer Blow Factor	DCP Index		Elastic Deformation Modulus (E)	Depth	
2 2.4 60.96 30.48 15.24 1 15.24 14 13694 2.40 2 3.4 86.36 25.40 12.70 1 12.70 17 15606 3.40 3 5.6 142.24 30.48 10.16 1 10.16 22 18313 5.60 3 6.7 170.18 27.94 9.31 1 9.31 24 19492 6.70 4 9.9 226.06 25.40 6.35 1 6.35 37 25650 9.90 4 9.9 251.46 25.40 6.35 1 6.35 37 25650 9.90 4 12 304.80 25.40 6.35 1 6.35 37 25650 9.90 3 14.5 386.30 30.48 10.16 1 10.16 12.00 12.00 4 13.3 37.82 33.02 8.26 1 8.26 27		-			y ta sa						
2 3.4 86.36 25.40 12.70 1 12.70 17 15606 3.40 2 4.4 111.76 25.40 12.70 1 112.70 17 15606 4.40 3 5.6 142.24 30.48 10.16 1 10.15 22 18313 5.60 4 7.9 200.66 30.48 7.62 1 7.62 30 22507 7.90 4 9.9 251.46 25.40 6.35 1 6.35 37 26650 9.90 4 11 279.40 27.94 6.98 1 6.98 33 23966 11.00 4 13.3 337.82 33.02 8.26 1 8.26 27 21252 13.30 3 14.5 368.30 30.48 10.16 1 10.16 22 18313 14.50 3 15.6 396.24 27.94 9.31 1 9.31								1			
2 4.4 111.76 25.40 12.70 1 12.70 17 16606 4.40 3 5.6 142.24 30.48 10.16 1 10.16 22 18313 5.60 4 7.9 200.66 30.48 7.62 1 7.62 30 22507 7.90 4 8.9 226.06 25.40 6.35 1 6.35 37 26660 9.90 4 11 279.40 27.94 6.98 1 6.35 37 26660 12.00 4 12 304.80 25.40 6.35 1 6.35 37 26660 12.00 4 12 304.80 25.40 6.35 1 6.35 37 26660 12.00 3 14.5 366.30 30.48 10.16 1 10.16 22 18313 14.50 3 16.7 424.18 27.94 9.31 1 9.31											
3 5.6 142.24 30.48 10.16 1 10.16 22 18313 5.60 3 6.7 170.18 27.94 9.31 1 9.31 24 19492 6.70 4 8.9 226.06 25.40 6.35 1 6.35 37 25650 8.90 4 9.9 251.46 25.40 6.35 1 6.35 37 25650 9.90 4 12 304.80 25.40 6.35 1 6.35 37 25650 12.00 4 12 304.80 25.40 6.35 1 6.35 37 25650 12.00 3 14.5 386.30 30.48 10.16 1 10.16 22 18313 14.50 3 15.6 396.24 27.94 9.31 1 9.31 24 19492 15.60 3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.90 3 17.8 452.12 27.94 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></td<>		-						1			
3 6.7 170.18 27.94 9.31 1 9.31 24 19492 6.70 4 7.9 200.66 30.48 7.62 1 7.62 30 22507 7.90 4 8.9 226.06 25.40 6.35 1 6.35 37 25650 9.90 4 11 279.40 27.94 6.98 1 6.96 33 23956 11.00 4 12 304.80 25.40 6.35 1 6.35 37 25650 9.90 4 13.3 337.82 33.02 8.26 1 8.26 27 21252 13.30 3 14.5 386.30 30.48 10.16 1 10.16 22 18313 14.50 3 15.6 396.24 27.94 9.31 1 9.31 24 19492 16.70 3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.70 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 17.80 3 19 462.60 30.48 10.16 1 10.16											
4 7.9 200.66 30.48 7.62 1 7.62 30 22507 7.90 4 8.9 226.06 25.40 6.35 1 6.35 37 25650 8.90 4 9.9 251.46 25.40 6.35 1 6.35 37 25650 9.90 4 11 279.40 27.94 6.98 1 6.98 33 23956 11.00 4 12 304.80 25.40 6.35 1 6.35 37 25650 9.90 4 12 304.80 25.40 6.35 1 6.35 37 25650 12.00 4 13.3 337.82 33.02 8.26 1 8.26 27 21252 13.31 14.50 3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.70 3 19 482.60 30.48 10.16 1 10.15 22 1833 19.00 3 20.1 510.54 27.94										1	
4 8.9 226.06 25.40 6.35 1 6.35 37 25650 8.90 4 9.9 251.46 25.40 6.35 1 6.35 37 25650 9.90 4 11 279.40 27.94 6.98 1 6.98 33 23956 11.00 4 12.30.48.0 25.40 6.35 1 6.35 37 25650 12.00 4 13.3 337.82 33.02 8.26 1 8.26 27 21252 13.30 3 14.5 368.30 30.48 10.16 1 10.16 22 18313 14.50 3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.70 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 17.80 3 20.1 50.54 27.94 9.31 1 9.31 24 19492 20.10 3 20.1 50.54 27.94 9.31			11.4.1.4								
4 9.9 251.46 25.40 6.35 1 6.35 37 25660 9.90 4 11 279.40 27.94 6.98 1 6.95 33 22956 11.00 4 12 304.80 25.40 6.35 1 6.35 37 25650 12.00 4 13.3 337.82 33.02 8.26 1 8.25 27 21252 13.30 3 14.5 368.30 30.48 10.16 1 10.16 22 18313 14.50 3 15.6 3362.41 27.94 9.31 1 9.31 24 19492 15.60 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 10.70 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 20.10 3 20.1 510.54 27.94 9.31 1 9.31 24 19492 20.10 3 21.2 538.48 27.94											
4 12 304.80 26.40 6.35 1 6.35 37 25650 12.00 4 13.3 337.82 33.02 8.26 1 8.26 27 21252 13.30 3 14.5 368.30 30.48 10.16 1 10.16 22 18313 14.50 3 15.6 396.24 27.94 9.31 1 9.31 24 19492 15.60 3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.70 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 16.70 3 19 482.60 30.48 10.16 1 10.16 22 18313 19.00 3 20.1 510.54 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 6.99 1 6.99 33 23956 23.40 4 24.5 622.30 27.94						-					
4 13.3 337.82 33.02 8.26 1 8.26 27 21252 13.30 3 14.5 366.30 30.48 10.16 1 10.16 22 18313 14.50 3 15.6 396.24 27.94 9.31 1 9.31 24 19492 15.60 3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.70 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 17.80 3 19 482.60 30.48 10.16 1 10.16 22 18313 19.00 3 20.1 510.54 27.94 9.31 1 9.31 24 19492 20.10 3 21.2 538.48 27.94 9.31 1 9.31 24 19492 20.10 3 21.2 538.48 27.94 6.99 1 6.99 33 23956 22.30 4 24.5 62.50 647.70	4	11	279.40	27.94	6.98	1	6.98	33	23956	11.00	
3 14.5 368.30 30.48 10.16 1 10.16 22 18313 14.50 3 15.6 396.24 27.94 9.31 1 9.31 24 19492 15.60 3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.70 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 17.80 3 19 452.60 30.48 10.16 1 10.15 22 18313 19.00 3 20.1 510.54 27.94 9.31 1 9.31 24 19492 20.10 3 21.2 538.48 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 6.99 1 6.99 33 23956 22.30 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 25.5 647.70 25.40	4	12	304.80	25.40	6.35	1	6.35	37	25650	12.00	
3 15.6 396.24 27.94 9.31 1 9.31 24 19492 15.60 3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.70 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 17.80 3 19 482.60 30.48 10.16 1 10.16 22 18313 19.00 3 20.1 510.54 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 6.99 1 6.99 33 23956 22.30 4 23.4 594.36 27.94 6.99 1 6.99 33 23956 24.50 4 25.5 647.70 25.40 6.35 1 6.35 37 25660 25.50 4 25.6 675.64 27.94	4	13.3	337.82	33.02	8.26	1	8.26	27	21252	13.30	
3 16.7 424.18 27.94 9.31 1 9.31 24 19492 16.70 3 17.8 452.12 27.94 9.31 1 9.31 24 19492 17.80 3 19 482.60 30.48 10.16 1 10.16 22 18313 19.00 3 20.1 510.54 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 6.99 1 6.99 33 23956 22.30 4 23.4 594.36 27.94 6.99 1 6.99 33 23956 23.40 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 26.60 4 28.8 731.52 27.94	3	14.5	368.30	30.48	10.16	1	10.16	22	18313	14.50	
3 17.8 452.12 27.94 9.31 1 9.31 24 19492 17.80 3 19 482.60 30.48 10.16 1 10.16 22 18313 19.00 3 20.1 510.54 27.94 9.31 1 9.31 24 19492 20.10 3 21.2 538.48 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 6.99 1 6.99 33 23956 22.30 4 23.4 594.36 27.94 6.99 1 6.99 33 23956 22.30 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 25.5 647.70 25.40 6.35 1 6.35 37 25650 25.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 27.70 4 28.8 731.52 27.94						F					
3 19 482,60 30.48 10.16 1 10.16 22 18313 19.00 3 20.1 510.54 27.94 9.31 1 9.31 24 19492 20.10 3 21.2 538.48 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 6.99 1 6.99 33 23956 22.30 4 23.4 594.36 27.94 6.99 1 6.99 33 23956 22.30 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 25.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 26.60 4 27.7 703.58 27.94 6.99 1 6.99 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td>						,					
3 20.1 510.54 27.94 9.31 1 9.31 24 19492 20.10 3 21.2 538.48 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 6.99 1 6.99 33 23956 22.30 4 23.4 594.36 27.94 6.99 1 6.99 33 23956 23.40 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 26.5 647.70 25.40 6.35 1 6.35 37 25660 25.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 26.60 4 27.7 703.58 27.94 6.99 1 6.99 33 23956 28.80 4 28.8 731.52 27.94 6.99 1 6.99 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>						-					
3 21.2 538.48 27.94 9.31 1 9.31 24 19492 21.20 4 22.3 566.42 27.94 6.99 1 6.99 33 23956 22.30 4 23.4 594.36 27.94 6.99 1 6.99 33 23956 22.30 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 22.30 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 26.5 647.70 25.40 6.35 1 6.99 33 23956 25.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 27.70 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.80 4 28.8 731.52 27.94 6.99 1 6.99 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td>										1	
4 22.3 566.42 27.94 6.99 1 6.99 33 23956 22.30 4 23.4 594.36 27.94 6.98 1 6.96 33 23956 23.40 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 23.40 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 25.5 647.70 25.40 6.35 1 6.35 37 25650 25.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 26.60 4 27.7 703.58 27.94 6.99 1 6.99 33 23956 28.60 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.60 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.60 5 8 4268 28.80						-	1	1			
4 23.4 594.36 27.94 6.98 1 6.96 33 23956 23.40 4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 25.5 647.70 25.40 6.35 1 6.35 37 25650 25.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 26.60 4 27.7 703.58 27.94 6.99 1 6.98 33 23956 26.60 4 27.7 703.58 27.94 6.99 1 6.99 33 23956 27.70 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.60 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.60 5 8 4268 5 8 4268 28.80 28.80 28.80 Notal Notal <td colspa<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>6</td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td> <td></td>								6		
4 24.5 622.30 27.94 6.99 1 6.99 33 23956 24.50 4 25.5 647.70 25.40 6.35 1 6.35 37 25650 25.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 26.60 4 27.7 703.58 27.94 6.98 1 6.98 33 23956 26.60 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.80 7 703.58 27.94 6.99 1 6.99 33 23956 28.80 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.80 7 703.58 27.94 6.99 1 6.99 33 23956 28.80 7 70 71.52 27.94 6.99 1 6.99 33 23956 28.80 86 86 8 73.52 27.94 5 8<						-					
4 25.5 647.70 25.40 6.35 1 6.35 37 25650 25.50 4 26.6 675.64 27.94 6.99 1 6.99 33 23956 26.60 4 27.7 703.58 27.94 6.98 1 6.96 33 23956 27.70 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.80 7 703.58 27.94 6.99 1 6.99 33 23956 28.80 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.80 7 703.58 27.94 6.99 1 6.99 33 23956 28.80 7 70 70 70 70 70 70 70 8 731.52 27.94 6.99 1 6.99 33 23956 28.80 Total 28 28 73 20738 20738 20738 20738 20738 20738						-				1	
4 26.6 675.64 27.94 6.99 1 6.99 33 23956 26.60 4 27.7 703.58 27.94 6.98 1 6.96 33 23956 27.70 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.00 Total											
4 27.7 703.58 27.94 6.98 1 6.98 33 23956 27.70 4 28.8 731.52 27.94 6.99 1 6.99 33 23956 23956 28.80 Total											
4 28.8 731.52 27.94 6.99 1 6.99 33 23956 28.80 Total	4					1					
Blows Average 10 27 20738 Depth(in. 86 Stdev. 5 8 4268 28.8	4	28.8	731.52	27.94	6.99	1	6.99	33	23956	28.80	
86 Stdev. 5 8 4268 28.8						Average					
Min. 6 6 8332 C. of V. 0.5 0.3 0.2						Min.	6	6	8332		

Figure A 10. DCP Results for M-99 Northbound Station 40+00

				CP DATA SH	EET	+1+			
Date:	10/13/2006						Personnel	M. Eacker - D	Zemcik
Project:	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	х
Location:	M-99 NB(EB) \$	Sta. 40+50				Soil Type:	Aggregat	e Base	
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration mm	3 Penetration Between Readings rum	4 Penotration per Blow mm	5 Input Hammer Blow Factor (1 or 2)	6 DCP Index mm/blow	7 CBR %	8 Elastic Deformation Modulus (E) psi	9 Depth inch
0	0			111					
1	1.3	33.02	33.02	33.02	1	33.02	6	7868	1.30
2	2.6 3.7	66.04 93.98	33.02 27.94	16.51	1	16.51	13 24	12931	2.60
3	4.9	93.96 124.46	30.48	9.31 7.62	1	9.31 7.62	30	19492 22507	3.70 4.90
4	4.9 6.1	154.94	30.48	7.62	1	7.62	30	22507	6.10
3	7.1	180.34	25.40	8.47	1	8.47	27	20870	7.10
3	8.1	205.74	25.40	8.47	1	8.47	27	20870	8.10
3	9.3	236.22	30.48	10.16	1	10.16	22	18313	9.30
3	10.5	266.70	30.48	10.16	1	10.16	22	18313	10.50
3	11.6	294.64	27.94	9.31	1	9.31	24	19492	11.60
3	12.6	320.04	25.40	8.47	1	8.47	27	20870	12.60
4	13.3	337.82	17.78	4.45	1	4.45	55	33122	13.30
3	14.8	375.92	38.10	12.70	1	12.70	17	15606	14.80
4 4	15.9	403.86	27.94	6.99	1	6.99	33	23956	15.90
4	17 18	431.80 457.20	27.94 25.40	6.98 8.47	1	6.98 8.47	33 27	23956 20870	17.00
3	19	482.60	25.40	8.47	1	8.47	27	20870	19.00
4	20.2	513.08	30.48	7.62	1	7.62	30	22507	20.20
3	21.3	541.02	27.94	9.31	1	9.31	24	19492	21.30
3	22.3	566.42	25.40	8.47	1	8.47	27	20870	22.30
4	23.6	599.44	33.02	8.26	1	8.26	27	21252	23.60
4	24.7	627.38	27.94	6.98	1	6.98	33	23956	24.70
3	25.7	652.78	25.40	8.47	1	8.47	27	20870	25.70
6	26.8	680.72	27.94	4.66	1	4.66	52	32036	26.80
7	27.9 29.2	708.66 741.68	27.94	3.99	1	3.99 5.50	62 43	35778 28420	27.90
5	23.2	741.00	33.02	5.50	5	0.00	+3	20420	29.20
Total					-	DCI	CBR(%)	E(psi)	Maximun
Blows 93					Average Stdev. Max.	9 5 33	29 12 62	21831 5815 35778	<u>Depth(in.</u> 29.2
					Min. C. of V.	4 0.6	6 0.4	7868 0.3	

Figure A 11. DCP Results for M-99 Northbound Station 40+50

Date:	10/13/2006						Personnel	M, Eacker - D.	Zemcik
Project:	CS 38011 JN 75	5184 M-99 Demo	Project		<u>Hammer:</u>	<u>10.1(2)</u>		17.6(1)	х
ocation:	M-99 NB(EB) S	Sta. 41+00				Soil Type:	Aggregat	e Base	
1 Input Number of Biows	Input Accumulative Penetration	2 Input Accumulative Penetration	3 Penetration Between Readings	4 Penetration per Blow	5 Input Hammer Blow Factor	6 DCP Index	7 CBR	8 Elastic Deformation Modulus (E)	9 Depth
0	inch 0	min	min	mm	(1 or 2)	mm/blow	%	psi	inch
3	2.2	55.88	55.88	18.63	1	18.63	11	11860	2.20
3	3.5	88.90	33.02	11.01	1	11.01	20	17292	3.50
3	4.7	119.38	30.48	10.16	1 '	10.16	22	18313	4.70
3	5.7	144.78	25.40	8.47	1	8.47	27	20870	5.70
3	6.7	170.18	25.40	8.47	1	8.47	27	20870	6.70
3	7.7	195.58	25.40	8.47	1	8.47	27	20870	7.70
3	8.8	223.52	27.94	9.31	1	9.31	24	19492	8.80
4	9.8	248.92	25.40	6.35	1	6.35	37	25650	9.80
4	11.2 12.4	284.48 314.96	35.56 30.48	8.89 7.62	1	8.89 7.62	25 30	20153 22507	11.20
4	13.4	340.36	25.40	6.35	1	6.35	37	25650	12.40 13.40
4	14.4	365.76	25.40	6.35	1	6.35	37	25650	14.40
4	15.5	393.70	27.94	6.99	1	6.99	33	23956	15.50
4	16.5	419.10	25.40	6.35	1	6.35	37	25650	16.50
4	17.7	449.58	30.48	7.62	1	7.62	30	22507	17.70
3	18.7	474.98	25.40	8.47	1	8.47	27	20870	18.70
3	19.7	500.38	25.40	8.47	1	8.47	27	20870	19.70
4	20.8	528.32	27.94	6.99	1	6.99	33	23956	20.80
4	21.8	553.72	25.40	6.35	1	6.35	37	25650	21.80
5	22.8	579.12	25.40	5.08	1	5.08	47	30099	22.80
6	23.8	604.52	25.40	4.23	1	4.23	58	34301	23.80
6 9	24.8 25.9	629.92 657.86	25.40 27.94	4.23 3.10	1	4.23 3.10	58 82	34301 42841	24.80
7	26.9	683.26	25.40	3.63	1	3.63	69	38308	25.90 26.90
7	27.9	708.66	25.40	3.63	1	3.63	69	38308	27.90
7	28.9	734.06	25.40	3.63	1	3.63	69	36308	28.90
Total Blows					Average	<u>DCI</u> 7	<u>CBR(%)</u> 38	<u>E(psi)</u> 25735	Maximum Depth(in.)
114					Stdev.	3	18	7661	28.9
					Max.	19	82	42841	20.0
					Min.	3	11	11860	

Figure A 12. DCP Results for M-99 Northbound Station 41+00

Project: CS 38011 JN 75184 M-99 Demo Project Hammer: 10.1(2) 17.6(1) X Location: M-99 NB(EB) Sta. 41+50 Soil Type: Aggregate Base 1 Input Input Penetration Penetration Biows Soil Type: Aggregate Base 0 0 Accumulative Penetration Penetration Penetration Biows CBR Modulus Penetration 0 0 0 Accumulative Readings Path Table Transform Penetration Pen	Date:	10/13/2006			CP DATA SH			Personnel	M. Eacker - D	. Zemcik
1 Input Number of Blows 1 Ponetration Penetration 2 Input Accumulative Penetration 2 Input Accumulative Penetration 3 Penetration Readings nm 4 Penetration Penetration 5 Penetration Penetration 6 Penetration 7 Penetration 8 Penetration 9 Penetration 0 Penetration 0 Pen	Project:	CS 38011 JN 75	5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	х
Input Number of Blows Input Accumulative penetration inch Input Accumulative mm Input Between readings mm Input Blow Blow mm Input Hammer Blow mm Input Hammer Blow mm Input Hammer Blow mm Eastic DCP Factor (1 or 2) Elastic DCP CBR Between Modulus (E) 0	Location:	M-99 NB(EB) S	sta. 41+50				Soil Type:	Aggregate	e Base	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Number of Blows	Accumulative Penetration inch	Input Accumulative Penetration	Penetration Between Readings	Penetration per Blow	Input Hammer Blow Factor	DCP Index	CBR	Elastic Deformation Modulus (E)	Depth
	1 2 2 3 3 2 2 4 3 4 4 3 4 4 4 4 4 6 5 5 10 9	1.1 2.2 3.2 4.5 5.8 6.9 8.1 9.2 10.2 11.5 12.7 13.8 15 16.1 17.1 18.2 19.2 20.3 21.5 22.5 23.6 24.6	55.88 81.28 114.30 147.32 175.26 205.74 233.68 259.08 292.10 322.58 350.52 381.00 408.94 434.34 462.28 497.68 515.62 546.10 571.50 559.44 624.84	27.94 25.40 33.02 27.94 30.48 27.94 25.40 33.02 30.48 27.94 30.48 27.94 25.40 27.94 25.40 27.94 25.40 27.94 30.48 25.40 27.94 30.48	13.97 12.70 11.01 13.97 15.24 6.99 8.47 8.26 7.62 9.31 7.62 6.99 6.35 6.99 6.35 6.98 6.35 4.66 6.10 5.08 2.79 2.82	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.97 12.70 11.01 11.01 13.97 15.24 6.99 8.47 8.26 7.62 9.31 7.62 6.99 6.35 6.98 6.35 6.98 6.35 4.66 6.10 5.08 2.79 2.82	15 17 20 20 15 14 33 27 27 30 24 30 24 30 33 37 33 37 52 39 47 92 91	14576 15606 17292 14576 13694 23956 20870 21252 22507 19492 22507 23956 25650 23956 25650 32036 26411 30099 46201 45870	2.20 3.20 4.50 5.80 6.90 8.10 9.20 10.20 11.50 12.70 13.80 15.00 16.10 17.10 18.20 19.20 20.30 21.50 22.50 23.60 24.60

Figure A 13. DCP Results for M-99 Northbound Station 41+50

Date:	10/13/2006		14	DCP DATA SH			0		
		- 5184 M-99 Demo	Project		Hammer:	10.1(2)	Personne	<u>: M. Eacker - E</u> <u>17.6(1)</u>	X X
	M-99 NB(EB) \$						Aggregat		^
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration mm	3 Penetration Between Readings mm	4 Penetration per Blow mm	5 Input Hammer Blow Factor (1 or 2)	6 DCP Index mm/blow	7 CBR %	8 Elastic Deformation Modulus (E)	Depth
0 2 2 3 3 4 4 3 3 3 3 4 3 4 3 4 4 4 5 5 6 6 7 8 12	0 1.4 2.4 3.5 4.5 5.6 6.9 8 9.2 10.3 11.4 12.7 13.8 15 16 17 18 19.1 20.1 21.1 22.1 23.1 24.2 25.3 25.8	35.56 60.96 88.90 114.30 142.24 175.26 203.20 233.68 261.62 289.56 322.58 350.52 381.00 405.40 431.80 457.20 485.14 510.54 535.94 561.34 586.74 614.68 642.62 655.32	35.56 25.40 27.94 25.40 27.94 30.48 27.94 33.02 27.94 33.02 27.94 33.02 27.94 33.02 27.94 30.48 25.40 27.94 27.94	17.78 12.70 9.31 8.47 6.99 8.26 9.31 10.16 9.31 9.31 8.26 9.31 7.62 8.47 6.35 6.35 6.35 6.35 6.39 5.08 5.08 5.08 4.23 4.23 3.99 3.49 1.06	() (2) 1 1 1 1 1 1 1 1 1 1 1 1 1	17.78 12.70 9.31 8.47 6.99 8.26 9.31 10.16 9.31 9.31 7.62 8.47 6.35 6.35 6.35 6.35 6.35 5.08 5.08 5.08 4.23 4.23 3.99 3.49 1.06	12 17 24 27 33 27 24 22 24 24 24 27 24 20 27 24 30 27 37 37 37 37 37 37 37 37 37 37 37 37 27 27 47 58 58 62 72 274	pei 12262 15606 19492 20870 23956 21252 19492 18313 19492 21252 19492 21252 19492 22507 20870 25650 23956 30099 34301 34301 34301 35778 39372 92653	inch 1.40 2.40 3.50 4.50 6.60 8.00 9.20 10.30 11.40 12.70 13.80 15.00 15.00 16.00 17.00 18.00 19.10 20.10 21.10 22.10 23.10 24.20 25.80
Total Blows 105					Average Stdev. Max. Min. C. of V.	DCI 8 3 18 1 0.4	CBR(%) 44 51 274 12 1.2		Maximum Depth(in.) 25.8

Figure A 14. DCP Results for M-99 Northbound Station 42+00

Date:	10/13/2006						Personnel	M. Eacker - D	. Zemcik
energe -	CS 38011 JN 7		o Project		Hammer:	<u>10.1(2)</u>	Aggregate	<u>17.6(1)</u>	<u>x</u>
Location:	M-99 SB(WB)	2	3	4	5	6	Aggregati	8	9
Input Number of Blows	Input Accumulative Penetration inch	Input Accumulative Penetration mm	Penetration Between Readings mm	Penetration per Blow min	Input Hammer Blow Factor (1 or 2)	DCP Index mm/blow	CBR %	Elastic Deformation Modulus (E) psi	Depth
0 2 2 3 3 2 2 2 3 3 3 3 3 3 3 3 4 4 4 3 4 4 3 3 3	0 1.5 2.7 4 5.5 6.7 7.9 8.9 10.2 11.5 12.7 14 15.3 16.7 18 19.3 20.4 21.5 22.7 23.7 24.9 26.2 27.2 28.3 29.4	38.10 68.58 101.60 139.70 170.18 200.66 226.06 259.08 292.10 322.58 355.60 388.62 424.18 457.20 490.22 518.16 546.10 576.58 601.98 632.46 665.48 690.88 718.82 746.76	38.10 30.48 33.02 38.10 30.48 30.48 25.40 33.02 33.02 33.02 33.02 33.02 33.02 33.02 33.02 33.02 33.02 33.02 33.02 33.02 27.94 30.48 33.02 25.40 30.48 33.02 25.40 30.48 25.40 30.48 25.40 30.48 27.94	19.05 15.24 11.01 12.70 15.24 12.70 11.01 11.01 11.01 11.01 11.01 11.01 11.01 11.01 11.01 11.01 11.01 11.01 11.01 11.01 8.99 7.62 8.47 7.62 8.26 8.47 9.31 9.31		19.05 15.24 11.01 12.70 15.24 12.70 11.01 1.010	11 14 20 17 14 14 17 20 20 20 20 20 20 20 20 20 20 20 33 30 27 27 24 24	11670 13694 17292 15606 13694 13694 15606 17292 17292 18313 17292 17292 16398 17292 17292 17292 17292 23956 23956 23956 22507 20870 22507 21252 20870 19492	1.50 2.70 4.00 5.50 6.70 7.90 8.90 10.20 11.50 14.00 15.30 16.70 18.00 19.30 20.40 21.50 22.70 23.70 24.90 26.20 27.20 28.30 29.40
Total <u>Blows</u> 72					Average Stdev, Max. Min. C. of V.	DCI 11 3 19 7 0.3	CBR(%) 22 6 33 11 0.3	<u>E(psi)</u> 18109 3337 23956 11670 0.2	Maximun Depth(in, 29.4

Figure A 15. DCP Results for M-99 Southbound Station 37+50

Date:	10/13/2006						Personnel:	M. Eacker - D	. Zemcik
A ANA	CS 38011 JN 7		Project		Hammer:	<u>10.1(2)</u> Soil Type:	Aggregate	<u>17.6(1)</u>	X
Location:	M-99 56(WD) 3	5ta. 30+00					Aggregate		
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration min	3 Penetration Between Readings mm	4 Penetration per Blow mun	5 Input Hammer Blow Factor (1 or 2)	6 DCP Index mm/blow	7 CBR %	8 Elastic Deformation Modulus (E) psi	9 Depth inch
0	0							10001	
2	1.3	33.02	33.02	16.51	1	16.51	13	12931	1.30
3	2.6	66.04	33.02	11.01	1	11.01	20	17292	2.60
3	3.8	96.52	30.48	10.16 10.16	1	10.16 10.16	22 22	18313 18313	3.80
3 3	5 6.2	127.00 157.48	30.48 30.48	10.16	1	10.16	22	18313	6.20
3	7.5	190.50	33.02	11.01	1	11.01	20	17292	7.50
3	8.6	223.52	33.02	11.01		11.01	20	17292	8.80
3	10.1	256.54	33.02	11.01	1	11.01	20	17292	10.10
3	11.3	287.02	30.48	10.16	1	10.16	22	18313	11.30
3	12.4	314.96	27.94	9.31	1	9.31	24	19492	12.40
3	13.7	347.98	33.02	11.01	1	11.01	20	17292	13.70
3	14.9	378.46	30.48	10.16	1	10.16	22	18313	14.90
3	15.9	403.86	25.40	8.47	1	8.47	27	20870	15.90
3	16.9	429.26	25.40	8.47	1	8.47	27	20870	16.90
3	18.3	464.82	35.56	11.85	1	11.85	18	16398	18.30
3	19.4	492.76	27.94	9.31	1	9.31	24	19492	19.40
3	20.4	518.16	25.40	8.47	1	8.47	27	20870	20.40
5	21.6	548.64	30.48	6.10	1	6.10	39	26411	21.60
4	22.6	574.04	25.40	6.35	1	6.35	37	25650	22.60
4	23.7	601.98	27.94	6.98	1	6.98	33	23956	23.70
4	24.8	629.92	27.94	6.99	1	6.99 6.98	33 33	23956	24.80
4	25.9 27.1	657.86 688.34	27.94 30.48	6.98 7.62		7.62	30	23956 22507	25.90 27.10
4	28.2	716.28	27.94	6.98		6,98	33	23956	28.20
4	29.3	744.22	27.94	6.99		6.99	33	23956	29.30
4	30.4	772.16	27.94	6.98	1	6.98	33	23956	30.40
Total						DCI	CBR(%)	E(psi)	Maximum
Blows					Average	9	26	20279	Depth(in.)
87					Stdev. Max.	2 17	7 39	3393 26411	30.4

Figure A 16. DCP Results for M-99 Southbound Station 38+00

Date:	10/13/2006						Personnel	M. Eacker - D.	Zemcik
	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	x
Location:	M-99 SB(WB)	Sta. 38+50				Soil Type:	Aggregate	e Base	
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration stm	3 Penetration Between Readings min	4 Penstration per Blow mm	5 Input Hammer Blow Factor (1 or 2)	6 DCP Index mm/blow	7 CBR %	8 Elastic Deformation Modulus (E) psi	9 Depth inch
: D	0								
2	1.5	38.10	38.10	19.05	1	19.05	11	11670	1.50
3	2.5	63.50	25.40	8.47		8.47	27	20870	2.50
4	3.7	93.98	30.48	7.62	1	7.62	30	22507	3.70
4	4.8	121.92	27.94	6.99		6.99	33	23956	4.80
5	6	152.40	30.48	6.10		6.10	39	26411	6.00
4	7.2	182.88 210.82	30.48 27.94	7.62 9.31		7.62 9.31	30 24	22507 19492	7.20 8.30
	8.3 9.4	238.76	27.94	9.31		9.31	24	19492	9.40
3	10.4	264.16	25.40	8.47		8.47	24	20870	10.40
3	11.5	292.10	27.94	9.31		9.31	24	19492	11.50
3	12.5	317.50	25.40	8.47		8.47	27	20870	12.50
4	13.7	347.98	30.48	7.62		7.62	30	22507	13.70
3	14.9	378.46	30.48	10.16		10,16	22	18313	14.90
3	16.1	408.94	30.48	10.16		10.16	22	18313	16.10
3	17.3	439.42	30.48	10,16		10.16	22	18313	17.30
3	18,4	467.36	27.94	9.31		9.31	24	19492	18,40
3	19.5	495.30	27.94	9.31	1	9.31	24	19492	19.50
4	20.7	525.78	30.48	7.62	1	7.62	30	22507	20.70
4	21.7	551.18	25.40	6.35	1	6.35	37	25650	21.70
4	22.7	576.58	25.40	6.35	1	6.35	37	25650	22.70
5	23.3	591.82	15.24	3.05	1	3.05	84	43408	23.30
5	25.1	637.54	45.72	9.14	1	9.14	24	19750	25.10
4	26.1	662.94	25.40	6.35	1	6.35	37	25650	26.10
4	27.2	690.88	27,94	6.98	1	6.98	33	23956	27.20
4	28.3	718.82	27.94	6.98	1	6.98	33	23956	28.30
4	29.5	749.30	30.48	7.62	1	7.62	30	22507	29.50
4	30.8	782.32	33.02	8.26	1	8.26	27	21252	30.80
Total						DCI	CBR(%)	E(psi)	Maximur
Blows					Average	8	30	22180	Depth(in
98					Stdev.	3	12	5255	30.8
					Max.	19	84	43408	
					Min.	3	11	11670 0.2	

Figure A 17. DCP Results for M-99 Southbound Station 38+50

ula Berez. Maria di J				CP DATA SH	EET				
Date:	10/13/2006						Personnel	M. Eacker - D.	Zemcik
Project:	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	<u>10.1(2)</u>		17.6(1)	<u>×</u>
Location:	M-99 SB(WB)	Sta. 39+00				Soil Type	Aggregat	e Base	
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration	3 Penetration Between Readings mm	4 Penetration per Blow mm	5 Input Hammer Blow Factor (1 or 2)	5 DCP Index mm/blow	7 CBR %	8 Elastic Deformation Modulus (E) psi	9 Depth inch
0	0	Construction of the second second		and a second	(1012)			1997 C	
2	1.1	27.94	27.94	13,97	1	13.97	15	14576	1.10
3	2.4	60.96	33.02	11.01	1	11.01	20	17292	2.40
2	3.5	88.90	27.94	13.97	1	13.97	15	14576	3.50
4	4.8	121.92	33.02	8.26	1	8.26	27	21252	4.80
3	6.2	157.48	35.56	11.85	1	11.85	18	16398	6.20
2	7.2	182.88	25.40	12.70	1	12.70	17	15606	7.20
3	8.6	218.44	35.56	11.85	1	11.85	18	16398	8.60
3	9.8	248.92	30.48	10.16	1	10.16	22	18313	9.80
3	11.1	281.94	33.02	11.01	1	11.01	20	17292	11.10
3	12.5	317.50	35.56	11.85	1	11.85 10.16	18	16398 18313	12.50
3 3	13.7 14.9	347.98 378.46	30.48 30.48	10.16	1	10.16	22 22	18313	13.70 14.90
3	15.9	403.86	25.40	8.47	1	8.47	27	20870	15.90
4	17.1	434.34	30.48	7.62	1	7.62	30	22507	17.10
3	18.4	467.36	33.02	11.01	1	11.01	20	17292	18.40
3	19.6	497.84	30.48	10.16	1	10.16	22	18313	19.60
3	20.8	528.32	30.48	10.16	1	10.16	22	18313	20.80
3	21.9	556.26	27.94	9.31	1	9.31	24	19492	21.90
3	22.9	581.66	25.40	8.47	1	8.47	27	20870	22.90
4	24	609.60	27.94	6.98	1	6.98	33	23956	24.00
4	25.1	637.54	27.94	6.99	1	6.99	33	23956	25.10
4	26.1	662.94	25.40	6.35	1	6.35	37	25650	26.10
4	27.5	698.50	35.56	8.89	1	8.89	25	20153	27.50
4 3	28.7	728.98	30.48	7.62		7.62 9.31	30 24	22507	28.70
5	29.8	756.92	27.94	9.31		5.51	24	19492	29.80
Total <u>Blows</u> 79				-	Average Stdev. Max.	DCI 10 2 14	CBR(%) 24 6 37	<u>E(psi)</u> 19124 2983 25650	Maximum <u>Depth(in.)</u> 29.8

Figure A 18. DCP Results for M-99 Southbound Station 39+00

oonoim. Tastiisett				OCP DATA SH	EET			M Factor D	7
Date:	10/13/2006						Personnei	M. Eacker - D.	Zemcik
Project:	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	X
Location:	M-99 SB(WB)	Sta. 39+50				Soil Type:	Aggregat	e Base	
1 Input Number of Blows	Input Accumulative Penetration	2 Input Accumulative Penetration	3 Penetration Between Readings	4 Penstration per Blow	5 Input Hammer Blow Factor	6 DCP Index	7 CBR %	8 Elastic Deformation Modulus (E)	9 Depth inch
0	inch D	rprn -	mm	mm	(1 or 2)	mm/blow	10 10 10 10 10 10 10 10 10 10 10 10 10 1	pst	men
2	1.2	30.48	30.48	15.24	1	15.24	14	13694	1.20
2	2.5	63.50	33.02	16.51	1	16.51	13	12931	2.50
3	3.6	91.44	27.94	9.31	1	9.31	24	19492	3.60
3	4.7	119.38	27.94	9.31	. 1	9.31	24	19492	4.70
3	5.7	144.78	25.40	8.47	1	8.47	27	20870	5.70
3	6.9	175.26	30.48	10.16	1	10.16	22	18313	6.90
3	7.9	200.66	25.40	8.47	1	8.47	27	20870	7.90
3	9.2	233.68	33.02	11.01	1	11.01	20	17292	9.20
3	10.6	269.24	35.56	11.85	1	11.85	18	16398	10.60
3	11.8	299.72	30.48	10.16	1	10.16	22	18313	11.80
3	13	330.20	30.48	10.16	1	10.16	22	18313	13.00
3	14.1	358.14	27.94	9.31	1	9.31	24	19492	14.10
4	15.3	388.62	30.48	7.62	1	7.62	30	22507	15.30
3 3	16.7 18.1	424.18 459.74	35.56 35.56	11.85 11.85	1	11.85 11.85	18 18	16398 16398	16.70 18.10
3	19.6	497.84	38.10	12.70	1	12.70	17	15606	19.60
2	20.6	523.24	25.40	12.70	1	12.70	17	15606	20.60
3	21.6	548.64	25.40	8.47	1	8.47	27	20870	21.60
4	22.7	576.58	27.94	6.98	1	6.98	33	23956	22.70
5	23.9	607.06	30.48	6.10	1	6.10	39	26411	23.90
4	24.9	632.46	25.40	6.35	1	6.35	37	25650	24.90
4	25.9	657.86	25.40	6.35	1	6.35	37	25650	25.90
4	26.9	683.26	25.40	6.35	1	6.35	37	25650	26.90
4	27.9	708.66	25.40	6.35	1	6.35	37	25650	27.90
4	29	736.60	27.94	6.98	1	6.98	33	23956	29.00
4	30.1	764.54	27.94	6.99	1	6.99	33	23956	30.10
Total Blows					Average	DCI 10	CBR(%) 26	E(psi) 20144	Maximur Depth(in
85					Stdev. Max.	3 17	8 39	4038 26411	30.1

Figure A 19. DCP Results for M-99 Southbound Station 39+50

	ener Southanna			CP DATA SH	EC 1		Demonstra	M Easter D	7
Date:	10/13/2006						Personnel	M. Eacker - D.	
Project:	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	10.1(2)		<u>17.6(1)</u>	X
Location:	M-99 SB(WB)	Sta.40+00				Soil Type:	Aggregat	e Base	
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration mm	3 Penetration Between Readings mm	4 Penetration per Blow mm	5 Input Hammer Blow Factor (1 or 2)	6 DCP- Index mm/blow	7 CBR %	8 Elastic Deformation Modulus (E) psi	9 Depth inch
0	0	1							
2	1.2	30.48 58.42	30.48 27.94	15.24	1	15.24	14 15	13694 14576	1.20 2.30
3	2.3	58.42 88.90	30.48	13.97 10.16		10.16	22	14576	3.50
3	4.6	116.84	27.94	9.31	1	9.31	24	19492	4.60
3	5.6	142.24	25.40	8.47	1	8.47	27	20870	5.60
4	6.8	172.72	30.48	7.62	1	7.62	30	22507	6.80
3	8.1	205.74	33.02	11.01	1	11.01	20	17292	8.10
3	9.2	233.68	27.94	9.31	1	9.31	24	19492	9.20
4	10.5	266.70 297.18	33.02 30.48	8.26 7.62		8.26 7.62	27 30	21252 22507	10.50
4	11.7	325.12	27.94	9.31		9.31	24	19492	12.80
4	14.1	358.14	33.02	8.26	ii	8.26	27	21252	14.10
4	15.4	391.16	33.02	8.26	1	8.26	27	21252	15.40
4	16.6	421.64	30.48	7.62	1	7.62	30	22507	16.60
4	17.8	452.12	30.48	7.62	1	7.62	30	22507	17.80
4	19	482.60	30.48	7.62	1	7.62	30	22507	19.00
4	20.2	513.08	30.48 25.40	7.62 6.35	1	7.62 6.35	30	22507 25650	20.20
4 5	21.2 22.4	538.48 568.96	30.48	6.10		6.10	39	26411	21.20
5	23.5	596.90	27.94	5.59	1	5.59	43	28111	23.50
4	24.6	624.84	27.94	6.99	1	6.99	33	23956	24.60
4	25.7	652.78	27.94	6.98	1	6.98	33	23956	25.70
4	26,8	680.72	27.94	6.99	1	6.99	33	23956	26.80
4	27.9	708.66	27.94	6.98		6.98	33	23956	27.90
4	29.2	741.68	33.02	8.26	1	8.26	27	21252	29.20
Total Blows 92					Average Stdev. Max.	DCI 8 2 15	CBR(%) 28 7 43	<u>E(psi)</u> 21571 3320 28111	Maximur Depth(in 29.2

Figure A 20. DCP Results for M-99 Southbound Station 40+00

Date:	10/13/2006						Personnel:	M. Eacker - D	Zemcik
Project:	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	х
1995	M-99 SB(WB)						Aggregate		
1 Input Number of Blows	Input Accumulative Penetration	2 Input Accumulative Penetration	3 Penetration Between Readings	4 Penetration per Blow	5 Input Hammer Blow Factor	6 DCP Index	7 CBR	3 Elastic Deformation Modulus (E)	9 Depth
	inch	mm	BIR .	mm	(1 or 2)	mm/blow	%	psi	inch
0 2	0	33.02	33.02	16.51	1	16.51	13	12931	1.30
3	2.5	63.50	30.48	10.16	1	10.16	22	18313	2.50
3	3.3	83.82	20.32 33.02	6.77	1	6.77 8.26	34 27	24490 21252	3.30
4	4.6 5.6	116.84 142.24	25.40	8.26 6.35	1	6.35	37	25650	4.60
5	5.6	167.64	25,40	5.08	1	5.08	47	30099	6.60
5	7.7	195.58	27.94	5.59	1	5.59	43	28111	7.70
4	8.8	223.52	27.94	6.99	1	6.99	33	23956	8.80
4	10.1	256.54	33.02	8.25	1	8.25	27	21252	10.10
3	11.2	284.48	27.94	9.31	1	9.31	24	19492	11.20
4	12.4	314.96	30.48	7.62	1	7.62	30	22507	12.40
4	13.8	350.52	35.56	8.89	1	8.89	25	20153	13.80
5	14.9	378.46	27.94	5.59	1	5.59	43	28111	14.90
3	15.9	403.86	25.40	8.47	1	8.47	27	20870	15.90
3	18.1	459.74	55.88	18.63	1	18.63	11	11860	18.10
4	19.2	487.68	27.94	6.98	1	6.98	33	23956	19.20
4	20.2	513.08	25.40	6.35	1	6.35	37	25650	20.20
4	21.3	541.02	27.94	6.99	1	6.99	33	23956	21.30
4	22.3	566.42	25.40	6.35	1	6.35	37	25650	22.30
4	23.3	591.82	25.40	6.35	1	6.35	37	25650	23.30
4	24.4	619.76	27.94	6.98	1	6.98	33	23956	24.40
5	25.4	645.16	25.40	5.08	1	5.08	47	30099	25.40
4	26.4	670.56	25.40	6.35	1	6.35	37	25650	26.40
5 6	27.5	698.50	27.94	5.59	1	5.59 5.08	43 47	28111 30099	27.50 28.70
6 7 6	28.7 29.7	728.98 754.38	30.48 25.40	5.08 3.63	1	3.63	47 69	38308	29.70
Total Blows					Average	DCI	<u>CBR(%)</u> 34	<u>E(psi)</u> 24236	Maximum Depth(in.)
113					Average Stdev.	3	12	5455	29.7
113					Max.	19	69	38308	£-9.1
					Max. Min.	4	11	11860	

Figure A 21. DCP Results for M-99 Southbound Station 40+50

Date:	10/13/2006			CP DATA SH			Personnel	M. Eacker - D.	Zemcik
1999		5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	x
1000	M-99 SB(WB)					Soil Type:	Aggregat	e Base	
1 Input Number of Blows	Input Accumulative Penetration inch	2 Japut Accumulative Penetration mm	3 Penatration Between Readings mm	4 Penetration per Blow mm	5 Input Hammer Blow Factor (1 or 2)	6 DCP index mm/blow	7 CBR %	8 Elastic Deformation Modulus (E) psi	9 Depth inch
D	0								1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
2 3	1.1 2.2 3.2	27.94 55.88 81.28	27.94 27.94 25.40	13.97 9.31 8.47	1 1 1	13.97 9.31 8.47	15 24 27	14576 19492 20870	1.10 2.20 3.20
3 4	4.3	109.22	27.94	6.99	1	6.99	33	23956	4.30
3 4	5.4	137.16 165.10	27.94 27.94	9.31 6.99	1	9.31 6.99	24 33	19492 23956	5.40 6.50
3	7.7	195.58 223.52	30.48 27.94	10.16 9.31	1	10.16 9.31	22 24	18313 19492	7.70
3	10	254.00	30.48	10.16	1	10.16	22	18313	10.00
3	11 12.3	279.40 312.42	25.40 33.02	8.47 8.26	1	8.47 8.26	27	20870 21252	11.00
4 3	13.3	337.82	25.40	8.47	1	8.47	27	20870	13.30
3	14.3	363.22	25.40	8.47	1	8.47	27	20870	14.30
4	15.5	393.70	30.48	7.62	1	7.62	30	22507	15.50
4	16.6	421.64	27.94	6.99	1	6.99	33	23956 25650	16.60
4	17.6	447.04 474.98	25.40 27.94	6.35 3.99	1	6.35 3.99	62	35778	17.60 18.70
7	19.7	500.38	25.40	3.63	1	3.63	69	38308	19,70
7	20.8	528.32	27.94	3.99	1	3.99	62	35778	20.80
6	21.9	556.26	27.94	4.66	1	4.66	52	32036	21.90
7	23.1	586.74	30.48	4.35	1	4.35	56	33615	23.10
7	24.1	612.14	25.40	3.63	1	3.63 3.99	69 62	38308 35778	24.10
5	25.2 26.2	640.08 665.48	27.94 25.40	3.99 5.08		5.08	47	30099	25.20 26.20
4	27.2	690.88	25.40	6.35	1	6.35	37	25650	27.20
3	28.3	718.82	27.94	9.31	1	9.31	24	19492	28.30
4	29.6	751.84	33.02	8.26	1	8.26	27	21252	29.60
Total						DCI	CBR(%)	E(psi)	Maximum
Blows					Average	7	37	25205	Depth(in.)
117					Stdev. Max.	3 14	16 69	7009 38308	29.6

Figure A 22. DCP Results for M-99 Southbound Station 41+00

Date:	10/13/2006						Personnel	M. Eacker - D	Zemcik
	CS 38011 JN 7	5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	x
Project: CS 38011 JN 75184 M-99 Demo Project Location: M-99 SB(WB) Sta. 41+50						Soil Type:	Aggregat	e Base	
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration nsm	3 Penetration Between Readings mm	4 Penetration per Blow num	5 Input Hammer Blow Factor (1 or 2)	6 DCP Index mm/blow	7 CBR %	8 Elastic Deformation Modulus (E) psi	9 Depth Inch
0	0								
2	11	27.94	27.94	13.97	1	13.97	15	14576	1.10
4	2.3	58.42	30.48	7.62	1	7.62	30	22507	2.30
4	3.4	86.36	27.94	6.99	1	6.99	33	23956	3.40
4	5.1	129.54	43.18	10.80	1	10.80	20	17535	5.10
4	6.3	160.02	30.48	7.62	1	7.62	30	22507	6.30
3	7.6	193.04	33.02	11.01	1	11.01	20	17292	7.60
3	8.8	223.52 251.46	30.48	10.16	1	10.16	22	18313	8.80
3	9.9		27.94 30.48	9.31	1	9.31	24	19492	9.90
	11.1	281.94	33.02	7.62 8.26	1	7.62	30 27	22507	11.10
4	12.4	314.96 340.36	25.40	6.35	1	8.26 6.35	37	21252 25650	12.40
4	13.4 14.6	370.84	30,48	7.62	1	7.62	30	20000	13.40
4	15.8	401.32	30.48	7.62	1	7.62	30	22507	14.60
4	16.9	429.26	27.94	6.98	1	6.98	33	23956	16.90
4	18.1	459.74	30.48	7.62	1	7.62	30	22507	18.10
4	19.2	487.68	27.94	6.98	1	6.98	33	23956	19.20
4	20.3	515.62	27.94	6.99	1	6.99	33	23956	20.30
4	21.4	543.56	27.94	6.98	1	6.98	33	23956	21.40
5	22.5	571.50	27.94	5.59	1	5.59	43	28111	22.50
5	23.3	591.82	20.32	4.06	1	4.06	61	35319	23.30
5	24.6	624.84	33.02	6.60	1	6.60	35	24939	24.60
6	25.7	652.78	27.94	4.66	1 1	4.66	52	32036	25.70
6	26.8	680.72	27.94	4.66		4.66	52	32036	26.80
6	27.7	703.58	22.86	3.81	1	3.81	65	36991	27.70
8	29.1	739.14	35.56	4.45	1	4.45	55	33122	29.10
Total <u>Blows</u> 108					Average Stdev. Max. Min.	DCI 7 2 14 4	CBR(%) 35 13 65 15	E(psi) 24459 5678 36991 14576	Maximu Depth(in 29.1

Figure A 23. DCP Results for M-99 Southbound Station 41+50

a da star	N. 1		0	CP DATA SH	EET				
Date:	10/13/2006						Personnel:	M. Eacker - D.	Zemcik
Project:	CS 38011 JN 75	5184 M-99 Demo	Project		Hammer:	10.1(2)		17.6(1)	
ocation:	M-99 SB(WB) \$	Sta. 42+00			Soil Type:	Aggregate	e Base		
1 Input Number of Blows	Input Accumulative Penetration inch	2 Input Accumulative Penetration rom	3 Penetration Between Readings pm	4 Penetration per Blow mm	5 Input Hammer Blow Factor (1 or 2)	6 DCP Index mm/blow	7 GBR %	8 Elastic Deformation Modulus (E) psi	9 Depfh inch
0	0								
2	<u>. 1.1</u>	27.94	27.94	13.97	1	13.97	15	14576	1.10
3	2.3	58.42	30.48	10.16	1	10.16	22	18313	2.30
3	3.5 4.7	88.90 119.38	30.48 30.48	10.16 7.62	1	10.16 7.62	22 30	18313 22507	3.50 4.70
4	4./ 5.8	147.32	27.94	6.99	1	6.99	33	23956	5.80
3	6.8	172.72	25.40	8.47	1	8.47	27	20870	6.80
3	8	203.20	30.48	10.16	1	10.16	22	18313	8.00
3	9.3	236.22	33.02	11.01	1	11.D1	20	17292	9.30
3	10.6	269.24	33.02	11.01	1	11.01	20	17292	10.60
3	11.6	294.64	25.40	8.47	1	8.47	27	20870	11.60
3	12.7	322.58	27.94	9.31	1	9.31	24	19492	12.70
3	13.8	350.52	27.94	9.31	1	9.31	24	19492	13.80
3	14.8	375.92	25.40	8.47	1	8.47	27	20870	14.80
3	15.8	401.32	25.40	8.47	1	8.47	27	20870	15.80
4 3	17.1	434.34	33.02 25.40	8.26 8.47	1	8.26 8.47	27 27	21252 20870	17.10 18.10
3	18.1	459.74 485.14	25.40	8.47	1	8.47	27	20870	19.10
3	20.1	510.54	25.40	8.47	1	8.47	27	20870	20.10
4	21.2	538.48	27.94	6.98	1	6.98	33	23956	21.20
5	22.3	566.42	27.94	5.59	1	5.59	43	28111	22.30
5	23.4	594.36	27.94	5.59	1	5.59	43	28111	23.40
4	24.4	619.76	25.40	6.35	1	6.35	37	25650	24.40
6	25.6	650.24	30.48	5.08	1	5.08	47	30099	25.60
6	26.7	678.18	27.94	4.66	1	4.66	52	32036	26.70
5 6	27.8 29.3	706.12 744.22	27.94 38.10	5.59 6.35	1	5.59 6.35	43 37	28111 25650	27.80 29.30
Total Biows 97					Average Stdev.	DCI 8 2	CBR(%) 30 9	<u>E(psi)</u> 22254 4352	Maximum Depth(in.) 29.3
					Max.	14	52	32036	
					Min. C. of V.	5 0.3	15 0.3	14576 0.2	

Figure A 24. DCP Results for M-99 Southbound Station 42+00

	9/21/2006		Control Section	38011		Job N	umber 7	5184	
	ocation:	M-99 S. of	Maple/Mechanic/W. I	Main Jct. to E	. of Pearl S	St.			
Site:	Concrete					_			
						ess Range Iodulus Ra			
				Soil		Nuclear Gauge Me			
Test	land.	Test Lo	ocation	Layer	Stiffness		Dry Density	Moisture	
No.	Station	Lane	Dist. from CL (ft.)	Туре	klbf/in	kpsi	lbs/ft^3	%	
Loren 1 erritte	37+50	NB(EB)	6	Subgrade	40.84	9.85			
2	37+50	NB(EB)	6	Subgrade	41	9.89			
Average	37+50			Subgrade	40.92	9.87	113.8	4.0	
Arrestati			-						
1	38+00	NB(EB)	6	Subgrade	43.42	10.47			
2	38+00	NB(EB)	6	Subgrade	44.17	10.66			
Average	38+00			Subgrade	43.80	10.57	118.0	4.2	
1	38+50	NB(EB)	6	Subgrade	46.74	11,15			
2	38+50	NB(EB)	6	Subgrade	46.74	11.15		+	
Average	38+50	NO(LD/		Subgrade	46.75	11.22	116.9	4.4	
Average	30,00			Casgiado	40.10				
1	39+00	NB(EB)	6	Subgrade	35.81	8.64			
2	39+00	NB(EB)	6	Subgrade	35.87	8.65			
Average	39+00	,,		Subgrade	35.84	8.65	109.6	3.6	
1	39+50	NB(EB)	6	Subgrade	35.56	8.58			
2	39+50	NB(EB)	6	Subgrade	35.38	8.53			
Average	39+50			Subgrade	35.47	8.56	112.2	3.7	
1	40+00	NB(EB)	6	Subgrade	39.44	9.51			
2	40+00	NB(EB)	6	Subgrade	40.24	9.71	105.1		
Average	40+00			Subgrade	39.84	9.61	105.4	3.9	
1	40+50	NB(EB)	6	Subgrade	35.64	8.6			
2	40+50	NB(EB)	6	Subgrade	37.28	8.99		+	
Average	40+50	(indicit)		Subgrade	36.46	8.80	111.8	5.2	
tterage	-10.00								
1	41+00	NB(EB)	6	Subgrade	43.07	10.39		-	
2	41+00	NB(EB)	6	Subgrade	43.95	10.6		1	
Average	41+00			Subgrade	43.51	10.50	111.7	4.7	
1	41+50	NB(EB)	6	Subgrade	43.76	10.56			
2	41+50	NB(EB)	6	Subgrade	44.24	10.67			
Average	41+50			Subgrade	44.00	10.62	107.5	4.9	
	10.00	ND/CD)		Cuberrada	00.45				
1	42+00	NB(EB)	6	Subgrade Subgrade	39.15	9.44			
2	42+00 42+00	NB(EB)	6		40.91 40.03	9.87	122.2	7.8	
Average	42+00			Subgrade	40.03	5.00	122.2	- 1.0	
1	42+50	NB(EB)	6	Subgrade	45.07	10.87		+	
2	42+50	NB(EB)	6	Subgrade	46.11	11.12			
Average	42+50		<u> </u>	Jubgrade	45.59	11.00	119.6	7.1	

Figure A 25. Subgrade Density Results on M-99 Northbound

Date:	9/21/2006		Control Section	38011		Job N	umber 7	5184
		M OD S of	Manle/Mechanic/W		ef Doorl 9			
Project	Location:	W-99 5. 01	Maple/Mechanic/W. I	Main Jct. to E	. of Pearls	ы. Эц.		
Site:	Concrete				Soil Stiffne	ee Pango	= 17 - 399	kihf/in
						odulus Ra		
					Soil	Youngs	Nuclear Gauge Me	
Test	Sec.	Test Lo	cation	Layer	Stiffness	Modulus	Dry Density	Moisture
No.	Station	Lane	Dist. from CL (ft.)	Туре	klbf/in	kpsi	lbs/ft^3	%
1	37+50	SB(WB)	6	Subgrade	42.49	10.25		
2	37+50	SB(WB)	6	Subgrade	42.76	10.32		
Average	37+50	SB(WB)		Subgrade	42.63	10.29	111.8	4.0
ne selendi N	Salat Art							
1	38+00	SB(WB)	6	Subgrade	42.39	10.22		
2	38+00	SB(WB)	6	Subgrade	43.04	10.39	446.0	
Average	38+00	SB(WB)		Subgrade	42.72	10.31	113.9	4.6
		00/10/01		Cuber 1	00.00	0.00		
1 :	38+50	SB(WB)	6	Subgrade	38.68	9.33		_
2	38+50	SB(WB)	6	Subgrade	38.87	9.38	440.0	
Average	38+50	SB(WB)		Subgrade	38.78	9.36	112.6	4.0
4	39+00	SB(WB)	6	Subgrade	34.59	8.34		
1 2	39+00	SB(WB)	6	Subgrade	34.59	8.17		
4 Average	39+00	SB(WB)	0	Subgrade	34.23	8.26	109.9	3.7
Average	39700	SP(MP)		Subgrade	34.23	0.20	103.5	
1	39+50	SB(WB)	6	Subgrade	42.1	10.16		
2	39+50	SB(WB)	6	Subgrade	42.46	10.24		
Average	39+50	SB(WB)	Ŷ	Subgrade	42.28	10.20	114.6	3.9
ritelage		00(110)		cabgrade	12.20			
1	40+00	SB(WB)	6	Subgrade	37.93	9.15		1
2	40+00	SB(WB)	6	Subgrade	38.53	9.29		
Average	40+00	SB(WB)		Subgrade	38.23	9.22	117.3	4.7
				- Ŭ				
1	40+50	SB(WB)	6	Subgrade	31.56	7.61		
2	40+50	SB(WB)	6	Subgrade	32.19	7.76		
Average	40+50	SB(WB)		Subgrade	31.88	7.69	108.6	4.2
1	41+00	SB(WB)	6	Subgrade	34.64	8.36		
2	41+00	SB(WB)	6	Subgrade	36.38	8.77		
Average	41+00	SB(WB)		Subgrade	35.51	8.57	123.9	7.4
1	41+50	SB(WB)	6	Subgrade	49.24	11.88		
2	41+50	SB(WB)	6	Subgrade	49.99	12.06		
Average	41+50	SB(WB)		Subgrade	49.62	11.97	107.9	9.8
1	42+00	SB(WB)	6	Subgrade	22.47	5.47		
2	42+00	SB(WB)	6	Subgrade	24.05	5.8	440.0	
Average	42+00	SB(WB)		Subgrade	23.26	5.64	119.3	10.1
	10:50	CD(MD)	~	Outerrate				
1	42+50	SB(WB)	6	Subgrade				
2	42+50 42+50*	SB(WB) SB(WB)	6	Subgrade	NA	NA	NA	NA
Average	42750	30(440)	*Contractor equipme		11111	NA .	AN	NA

Figure A 26. Subgrade Density Results on M-99 Southbound

Data	0/22/2006		Control Section	38011		Job N	umber 7	5184	
	9/22/2006						/		
Project l	Location:	M-99 S. of	Maple/Mechanic/W.	Main Jct. to E	of Pearl S	t			
Site:	Concrete								
	ani: -					ess Range			
						odulus Ra	nge = 3.8 - 89 k		
		Test	cation		Soil		Nuclear Gauge Me	A Moisture	
Test	Ctation	Test Lo Lane	Dist. from CL (ft.)	Layer	Stiffness klbf/in	Modulus kpsi	Dry Density Ibs/ft^3	Moisture %	
No.	Station 37+50	NB(EB)	Dist. from CL (ft.)	Type Sand Sub.	36.62	кря 8.83	108/11/5	70	
1	37+50	NB(EB)	6	Sand Sub. Sand Sub.	30.62	8.95			
	37+50	NB(EB)	0	Sand Sub.	36.87	8.89	113.7	4.6	
Average	37450	ND(ED)		Sand Sub.	50.07	0.05		4.0	
	38+00	NB(EB)	6	Sand Sub.	39.64	9.56		-	
2	38+00	NB(EB)	6	Sand Sub.	39.69	9.57			
Average	38+00	NB(EB)		Sand Sub.	39.67	9.57	116.5	5.3	
riterage				Sund Outer					
1	38+50	NB(EB)	6	Sand Sub.	36.61	8.83			
2	38+50	NB(EB)	6	Sand Sub.	36.94	8.91			
Average	38+50	NB(EB)	-	Sand Sub.	36.78	8.87	144.0	4.9	
	1.000							1.00	
1	39+00	NB(EB)	6	Sand Sub.	43.5	10.49		n a an an	
2	39+00	NB(EB)	6	Sand Sub.	44	10.61			
Average	39+00	NB(EB)		Sand Sub.	43.75	10.55	114.3	4.2	
1	39+50	NB(EB)	6	Sand Sub.	44.25	10.67			
2	39+50	NB(EB)	6	Sand Sub.	44.33	10.69			
Average	39+50	NB(EB)		Sand Sub.	44.29	10.68	114.8	4.1	
The second se									
1	40+00	NB(EB)	6	Sand Sub.	40.69	9.82			
2	40+00	NB(EB)	6	Sand Sub.	41.49	10.01			
Average	40+00	NB(EB)		Sand Sub.	41.09	9.92	111.1	4.9	
1	40+50	NB(EB)	6	Sand Sub.	38.67	9.32			
2	40+50	NB(EB)	6	Sand Sub.	39.06	9.42	1100		
Average	40+50	NB(EB)		Sand Sub.	38.87	9.37	106.1	4.0	
			-						
1	41+00	NB(EB)	6	Sand Sub.	39.33	9.49			
2	41+00	NB(EB)	6	Sand Sub.	40	9.65	448.0		
Average	41+00	NB(EB)		Sand Sub.	39.67	9.57	117.3	4.6	
	44.50	ND/CD		Canal Cult	00.07	0.00			
1	41+50	NB(EB) NB(EB)	6	Sand Sub.	36.97	8.92			
2	41+50 41+50	NB(EB)	6	Sand Sub. Sand Sub.	37.07 37.02	8.94 8.93	115.6	= = 0	
Average	41+50	ND(EB)		Sand Sub.	37.02	0.93	110.0	5.0	
4	42+00	NR/ED)	c	Sand Sub	43.92	10.59			
1 2	42+00	NB(EB) NB(EB)	6	Sand Sub. Sand Sub.	43.92	10.59		_	
	42+00	NB(EB)	0	Sand Sub.	41.56	10.69	117.0	5.3	
Average	42,00	ND(LD)		Sand Sub.	42.14	10.04		5.5	
1	42+50	NB(EB)	6	Sand Sub.	41.56	10.03			
2	42+50	NB(EB)	6	Sand Sub.	41.50	10.03			
	42+50	NB(EB)	0	Sand Sub.	41.78	10.09	108.5	6.5	
Average		10(00)		Janu Bub.	41.70	10.00	100.0	0.0	

Figure A 27. Subbase Density Results on M-99 Northbound

Date:	9/22/2006		Control Section	38011		Job N	umber 7	5184
Project	Location:	M-99 S. of	Maple/Mechanic/W. I	Main Jct. to E	. of Pearl S	t.		
Site:	Concrete			•				
one.	COncrete				Soil Stiffn			
						odulus Ra		
		Teatle	action	1	Soil	-	Nuclear Gauge Me	Moisture
Test	Station	Test Lo	Dist. from CL (ft.)	Layer	Stiffness klbf/in	Modulus	Dry Density Ibs/ft^3	WOISTURE %
No. 1	37+50	SB(WB)	6	Type Sand Sub.	33.14	kpsi 8.05		/0
2	37+50	SB(WB)	6	Sand Sub.	33.69	8.13		-
Average	37+50	SB(WB)		Sand Sub.	33.42	8.09	114.2	4.3
	1.40)							
1	38+00	SB(WB)	6	Sand Sub.	37.58	9.07		
2	38+00	SB(WB)	6	Sand Sub.	38.02	9.17		
Average	38+00	SB(WB)		Sand Sub.	37.80	9.12	114.9	5.0
na se d	288	4.5						
.1	38+50	SB(WB)	6	Sand Sub.	41.89	10.13		
2	38+50	SB(WB)	6	Sand Sub.	42.45	10.24		
Average	38+50	SB(WB)		Sand Sub.	42.17	10.19	114.4	4.9
		00000		0	10.00	44.50		
2	39+00 39+00	SB(WB) SB(WB)	6	Sand Sub. Sand Sub.	48.06 48.54	11.59		
-	39+00	<u> </u>	6			11.11 11.35		
Average	39+00	SB(WB)		Sand Sub.	48.30	11.35		
1	39+50	SB(WB)	6	Sand Sub.	41	9.89		
2	39+50	SB(WB)	6	Sand Sub.	41.1	9.91		+
Average	39+50	SB(WB)	<u>v</u>	Sand Sub.	41.05	9.90	115.8	4.4
Trendge				ound oub.	-11.00	0.00		- ···
1	40+00	SB(WB)	6	Sand Sub.	38.42	9.27		
2	40+00	SB(WB)	6	Sand Sub.	38.8	9.36	and the second	
Average	40+00	SB(WB)		Sand Sub.	38.61	9.32	109.0	-5.3
							C	
1	40+50	SB(WB)	6	Sand Sub.	38.65	9.32		
2	40+50	SB(WB)	6	Sand Sub.	38.83	9.37		
Average	40+50	SB(WB)		Sand Sub.	38.74	9.35	107.8	4.4
1	41+00	SB(WB)	6	Sand Sub.	40.89	9.86	1	
2	41+00	SB(WB)	6	Sand Sub.	41.67	10.05	400.0	
Average	41+00	SB(WB)		Sand Sub.	41.28	9.96	108.2	7.0
4	41+50	SD(MD)	P	Sand Cub	47.02	44.64		
2	41+50 41+50	SB(WB) SB(WB)	6	Sand Sub. Sand Sub.	47.83	11.54		
2 Average	41+50	SB(WB)	0	Sand Sub.	48.08	11.57	115.7	5.4
trenage	41.00	55(115)		Sand Out.	41.50	11.07		-
1	42+00	SB(WB)	6	Sand Sub.	46.81	11.29		+
2	42+00	SB(WB)	6	Sand Sub.	47.5	11.46		1
Average	42+00	SB(WB)		Sand Sub.	47.16	11.38	110.2	6.4
·		· · ·						
1	42+50	SB(WB)	6	Sand Sub.	39.15	9.44		
2	42+50	SB(WB)	6	Sand Sub.	39.47	9.52		
Average	42+50	SB(WB)		Sand Sub.	39.31	9.48	110.1	9.3

Figure A 28. Subbase Density Results on M-99 Southbound

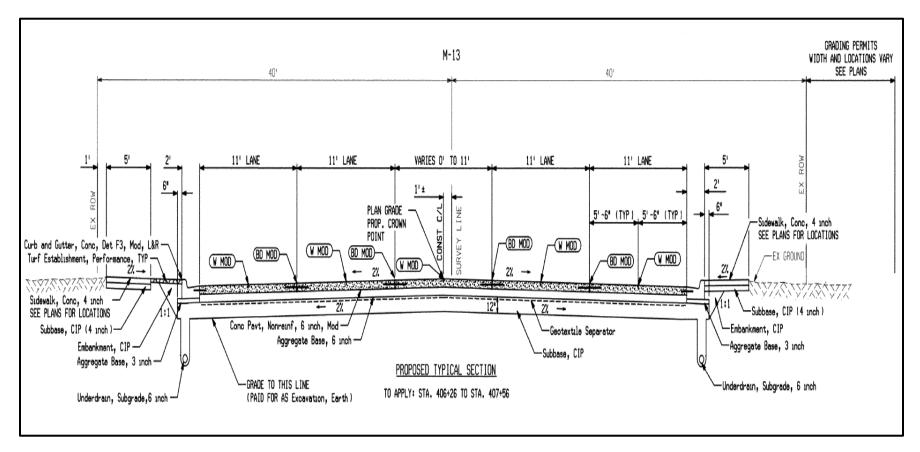


Figure A 29. Proposed Typical Section M-13 (4 lanes)

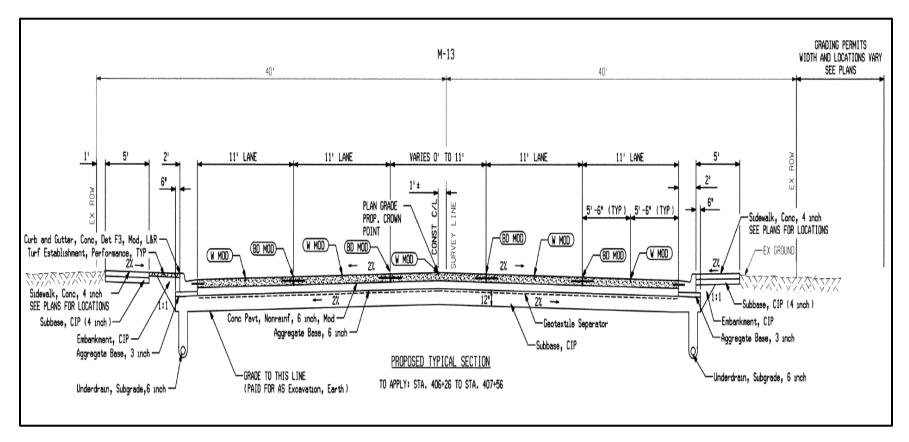


Figure A 30. Proposed Typical Section M-13 (5 lanes)

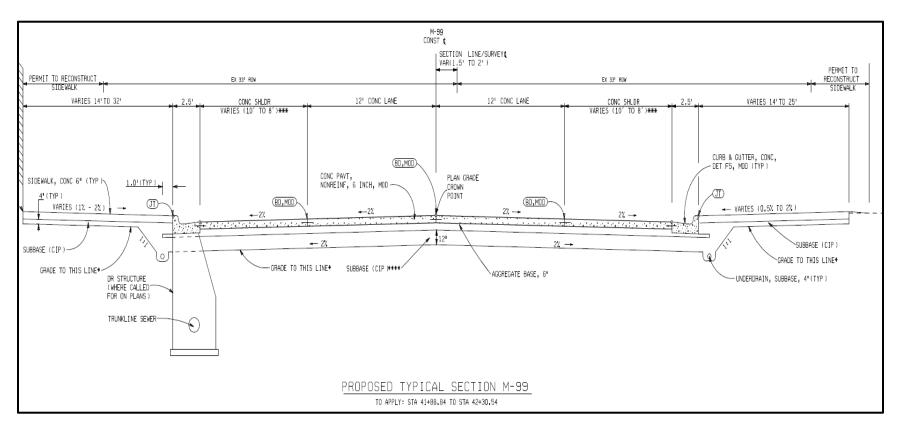


Figure A 31. Proposed Typical Section M-99 (4 lanes)

F. Mic Cor	Sheet of		
Research Proj.:	ny		
Proj. Manager:	Control Sec./Jo	ob No.: 38011 / 75184	Attendance:
Item(s) Surveyed: Low-volum	ne Concrete Demor	nstration Project	J. Schenkel
Location: M-99 in the Villa	age of Springport	:	E. Akerly F. Kaseer
Contractor(s):			A. Hargrove
Objective: Yearly visual ev	valuation		
Only 3 additional sla	ncrete slabs we abs had noted spa rity of existing	re noted this year within th alling this year as compared g distresses, including crac	to last year.
Eastbound & Westbound (EB & - Only 4 new cracked co Only 3 additional sla Accordingly, the seve corner breaks remaine Conclusions: Like previous	surveys, the pro-	re noted this year within th alling this year as compared g distresses, including crac	to last year. ks, spalls, and r and severity of

Figure A 32. April 2022 Field Evaluation Report for M-99

	onstruction Fie	ent of Transportation eld Services Division nagement Section	of
Research Proj.:	Weather: 40°F, partially cl	loudy	
Proj. Manager:	Control Sec./Jo	ob No.:	Attendance:
Item(s) Surveyed: Low-volu	ame Concrete Demo:	nstration Project	J. Schenkel
Location: M-13 in Pinconn:	ing		F. Kaseer
Contractor(s):			E. Akerly A. Hargrove
Objective: Yearly visual (evaluation		
Observations:			
 Started at south end 	d, traveling in th	he northbound direction.	
heavy scaling and sp - From the south end i lane have corner cr o Note that the noted in 2019 o These corner s to be wearing slabs may be r repairs have s	palling. POB north approxim acking/spalling be se corner spalls of , but these may he spalls were repain out and segregat: moving causing the failed. orner spalls are s	of the right lane has intern mately 550', the 2 slabs maki etween themselves. were not considered "cracked ave been considered "cracked red with mastic material, but ing. The corner spalling may e repair to break down. Abou showing signs of washout under	ing up the right panels." This was panels" in 2018. t this repair seems be growing, or at half of the
River. - 49 repaired slabs. - Longitudinal joint :	in the middle of 1 (right before the	the south approach to the bri the right lane looks the same pavement changes to asphalt)	e as NB.
distressed panels than las The number of previously	st year, (~2.3% of noted damaged sla e remained unchang	ppears relatively stable. Si f slabs last year to ~2.4% of abs (due to bridge construct) ged, (with 4 few observed cra	f slabs this year). ion) near the

Figure A 33. April 2022 Field Evaluation Report for M-13, Page 1

Field Evaluation Report

Michigan Department of Transportation Construction Field Services Division Pavement Management Section Sheet $\frac{2}{2}$ of $\frac{2}{2}$

Future Work:

Per past Pavement Demonstration Program Project Evaluation technical reporting, it was recommended that monitoring of this demonstration project end with final report because this project is performing as good or better than standard concrete reconstruction projects. Since their initial construction costs are generally lower than the standard 8inch minimum design, and their performance is at least equivalent, it is concluded (based on qualitative and quantitative evaluation of available data) that they are a costeffective alternative for low-volume roadways.

In the interim, monitoring of this project will continue until its final report is officially approved by MDOT.

Notes taken by: <u>Justin Schenkel</u>

Figure A 34. April 2022 Field Evaluation Report for M-13, Page 2

Figure A 35. April 2022 Field Evaluation Pictures for M-13

Figure A 36. April 2022 Field Evaluation Pictures for M-99

Alternative 2: Rigid Construction								
	Concrete		Thickness					
Pa	vement Ty	pe	(in)		Total Cost			
	JPCP		6.0	\$29.81	\$209,880.00			
No. of Mid- Panel	Transv. Joint	No. of						
Long.	Spacing	Transv.	Total Length					
Joints	(ft)	Joints	of Joints (ft)	Price	Total Cost			
1	6	880	15840	\$2.23	\$35,323.20			
	Conc Pavt	, Ovly, Fini	shing and Curing	Price	Total Cost			
				\$2.03	N/A			
					\$245,203.20			

Figure A 37. MDOT LCCA Cost Estimation for Thin Concrete Reconstruction

Alternative 2	: Rigid Co	nstruction			
	Concrete	Thickness			
Pav	ement Type		(in)	Price	Total Cost
	JPCP		8.0	\$39.75	\$279,840.00
No. of Mid-	Transv.				
Panel Long.	Joint	Transv.	Total Length		
Joints	Spacing (ft)	Joints	of Joints (ft)	Price	Total Cost
N/A	12	440	5280	\$10.94	\$57,763.20
					T 1 1 0 1
Conc D	avt, Ovly, Fini	ching and Cu	ring	Price	Total Cost
Concera	avı, Oviy, Filli	shing and Cu	i i i g	\$2.03	N/A
					\$337,603.20

Figure A 38. MDOT LCCA Cost Estimation Spreadsheet for Standard PCC Reconstruction

Appendix B 1: Interim Warranty Inspection Report for M-99

The HNTB Companies Engineers Architects Planners 119 S. Evans Street Tecumseh, Michigan 49286 Telephone (517) 424-4682 Facsimile (517) 424-4680 www.hntb.com

April 27, 2009

Mr. Jeff Bigelow, PE MDOT Jackson TSC 2750 N. Elm Road Jackson, Mi. 49201

HNTB

Re: University Region Warranty Inspections

Dear Jeff,

A warranty inspection (Interim) was recently completed on the following projects, which were administered by the Jackson TSC:

- SWAD ID 2870 / The warranty location is on Main Street (M-99) in downtown Springport from Maple Street to East of Pearl Street: M&W Warranty for New/Reconstructed Jointed Plain Concrete Pavement. Contract ID 38011-75184 / The Contractor was Mead Bros. Excavating Inc.
- SWAD ID 2871 / The warranty location is on Main Street (M-99) in downtown Springport from Maple Street to East of Pearl Street: New/Reconstructed Hot Mix Asphalt Pavement. Contract ID 38011-75184 / The contractor was Mead Bros. Excavating Inc.

Attached to this correspondence you shall find MDOT Form 1884 (SWAD 2870) / JPCP / JRCP (First Cursory Inspection). As noted on the form, there was evidence of some distresses noted. It is probable that warranty work will be required in the future.

Form 1134 / Superpave and Hot Mix Asphalt (First Cursory Inspection) is also attached to the report pertaining to SWAD 2871. No evidence of any pavement distresses were noted in the HMA portion of this contract.

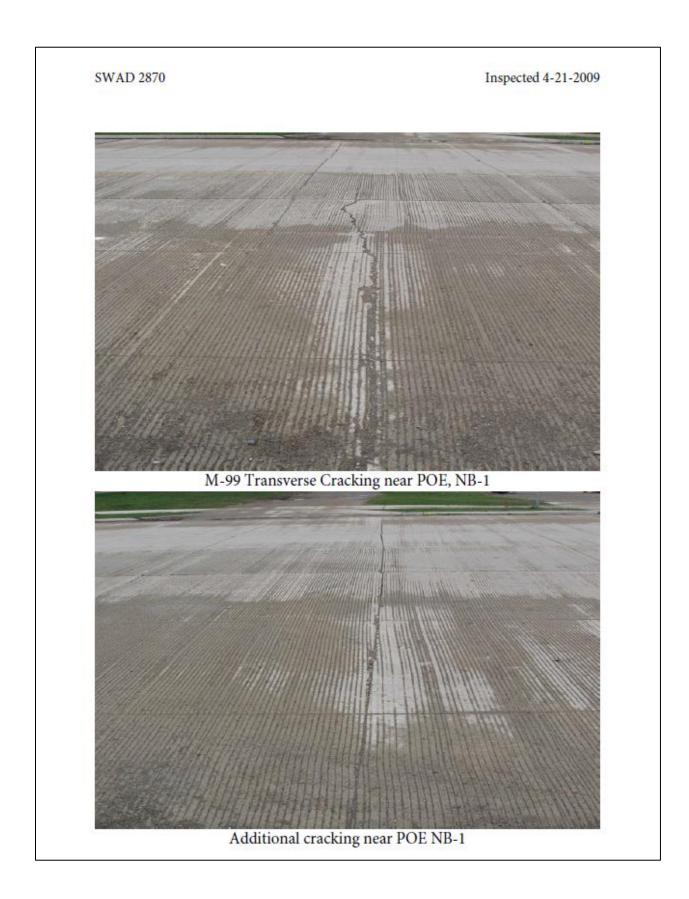
A PDF file of this inspection will also be e-mailed to you for your future use. Feel free to call at anytime should you have questions and/or concerns pertaining to this warranty report.

Sincerely, HNTB, Michigan, Inc.

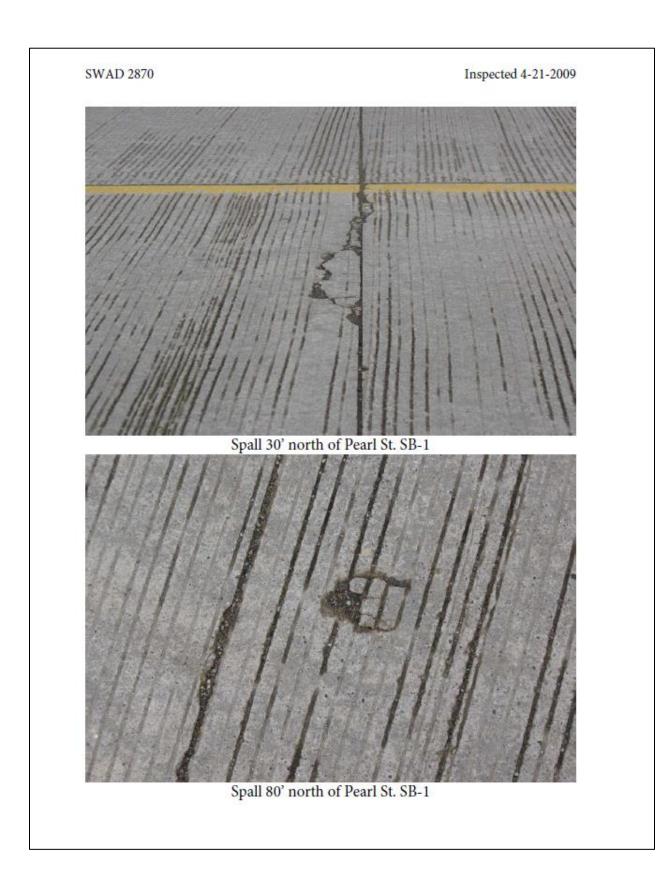
-Tom freely

Tom Shultz

CC: Mike Irwin, MDOT Joe VanPoppel, MDOT Erin Chelotti, MDOT File SWAD 2870


Inspected 4-21-2009

Warranty Inspection Materials and Workmanship Warranty for New/Reconstructed Jointed Plain Concrete Pavement


Interim Inspection


SWAD ID: 2870 Contract ID: 38011-75184

Description: Downtown Springport. Main Street (M-99) from Maple Street to East of Pearl Street. Village of Springport.

SWAD 2870

Inspected 4-21-2009

Inspected 4-21-2009

SE quad of M-99 and Maple.

Michigan Department of Transportation

1884 (07/07)

FIELD EVALUATION OF WARRANTY PERFORMANCE

FOR: FUSP 602(I) & 602(D)

Clear Form

JPCP / JRCP (FIRST CURSORY INSPECTION)

CONTRACTOR	INSPECTION DATE
Mead Bros. Excavating	04/21/09
CONTROL SECTION	INSPECTED BY
38011	Shawn Tinkey/Dustin Black
ЈОВ NUMBER	REVIEWED BY
75184 (SWAD 2870)	Tom Shultz
ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow
INSPECTION LIMITS	

2870, Station 36+02.23 to 43+52 along M-99, also on W. Main St., Mechanic St. and Pearl St. in village of Springport

DO ANY OF THE FOLLOWING DISTRESSES APPEAR?

DISTRESS TYPE	YES	NO	COMMENTS
TRANSVERSE CRACKING	\checkmark		
LONGITUDINAL CRACKING	✓		
MAP CRACKING		\checkmark	
SPALLING	✓		
SCALING	\checkmark		One isolated area
CORNER CRACKING	\checkmark		Minor corner cracking
JOINT SEAL FAILURE	\checkmark		Predominately on Maple
SHATTERED SLABS		\checkmark	

GENERAL COMMENTS ON LOCATION AND SEVERITY OF DISTRESSES:

Transverse Crack lanes 1 and 1A near POE: Corner Crack 64' from POE in lane 1: Transverse crack 90' from POE

in across entire roadbed: Spalling 30' north of Pearl SB-1: Spalling 80' north of Pearl St. SB-1: Corner Cracking

100' North of Pearl St. SB-1: Transverse Crack 100' north of Pearl St. NB-1: Transverse crack 150' south of Maple

in NB-1: Transverse crack 130' north of Pearl across entire roadbed: Scaling around patch on CL near 136 Main St.

Transverse Crack 180' north of pearl across entire roadbed: Transverse crack 225' north of Pearl across entire

roadbed: Spalling in NB-1 240' North of Pearl: Spalling 75' south of Maple SB-1: Spalling near springpoint in NE

quad of Maple and M-99: Joint sealant failure in intersection of Maple and M-99 near north leg: Transverse Crack in

intersection of Maple and M-99 North leg: Longitudinal crack in south leg of Maple/M-99 intersectionNB-1:

Transverse Crack in NB-1 mid radius of the SE quad of Maple and M-99:

Also note that there was faulting occuring at one location near the east spring point of the SE quad of Maple and

M-99 in a slab that did not show signs of distress.

It is our opinion that future warranty work will be necessary on this portion of the project.

DISTRIBUTION: REGION OFFICE, TSC MANAGER, RESIDENT ENGINEER, WARRANTY CONTRACTOR, SURETY COMPANY12

1 - DISTRIBUTION AT THE END OF THE WARRANTY PERIOD

Appendix B 2: Final Warranty Inspection Report for M-99

The HNTB Companies Engineers Architects Planners 5495 Ann Arbor Road Jackson, MI 49201 Telephone (517) 764-3345 Facsimile (517) 764-3477 www.hntb.com

HNTB

June 7, 2011

Mr. Kelby Wallace, PE MDOT Jackson TSC 2750 N. Elm Road Jackson, Mi. 49201

Re: University Region Warranty Inspections

Dear Kelby,

A warranty inspection (Final) was recently completed on the following project, which was administered by the Jackson TSC:

 SWAD ID 2870/ The warranty location is on M-99 (Downtown Springport/Main Street)from Maple Street to east of Pearl Street. / Contract ID: 38011-75184: The warranty is a M&W Warranty for new/Reconstructed Jointed Plain Concrete Pavement. The Warranty Contractor is mead Bros. Excavating, Inc.

Attached to this correspondence you shall find MDOT Forms 1831, JPCP/JRCP (Second Cursory Inspection-Worst Segments) and 1885, JPCP/JRCP (Detail Inspection – Questionable Segments). As noted on the forms, there is evidence of warranty parameters being exceeded. Therefore, warranty work is required. A PDF file of this inspection will also be e-mailed to you for your future use.

It should be mentioned that transverse cracking near the relief cuts was noted shortly after construction was completed. Additional cracking was also noted during the Interim Inspection of this contract. Because of the experimental nature of this contract representatives from C&T have been monitoring the condition of the pavement.

Feel free to call at anytime should you have questions and/or concerns pertaining to this warranty inspection. It should also be mentioned that all pictures taken during the field survey are identified by geo-tagging. Geo-tagging, with the use of Google Maps, pinpoints the exact location where the pictures were taken. If you desire, we will furnish you with the needed software and send you individual pictures of the field inspection, or just the ones that you want. The geo-tagging software does not work with the report in its current PDF format.

Sincerely, HNTB, Michigan, Inc.

Tom Shultz

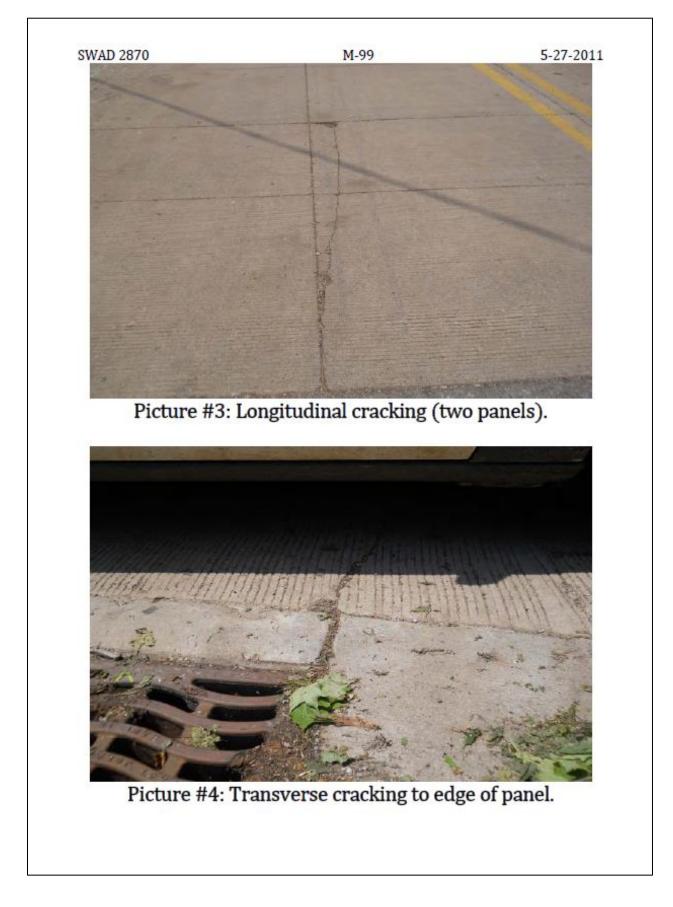
CC: Mike Irwin, MDOT Joe VanPoppel, MDOT Erin Chelotti, MDOT File

.

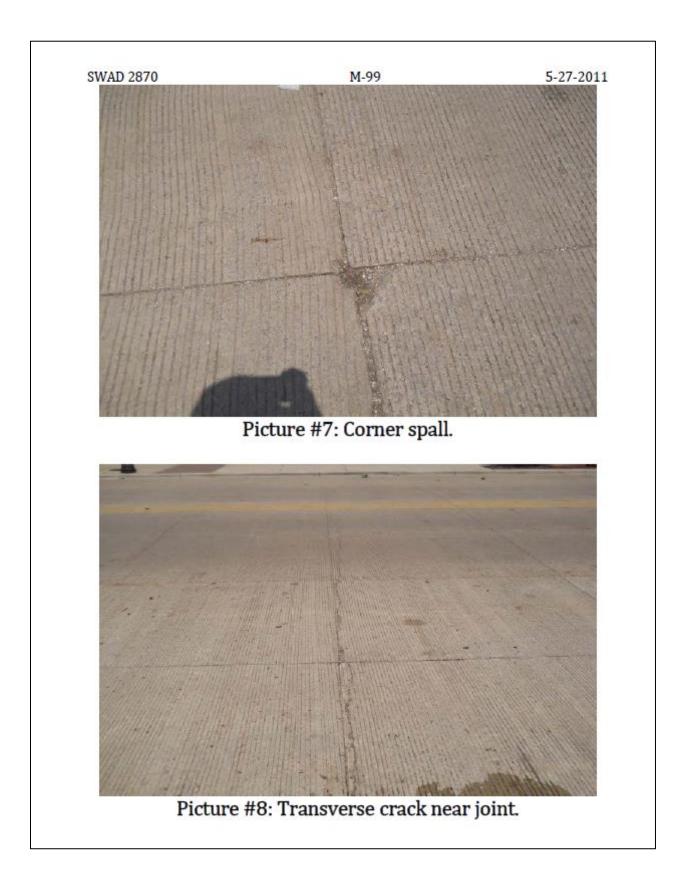
SWAD 2870

M-99

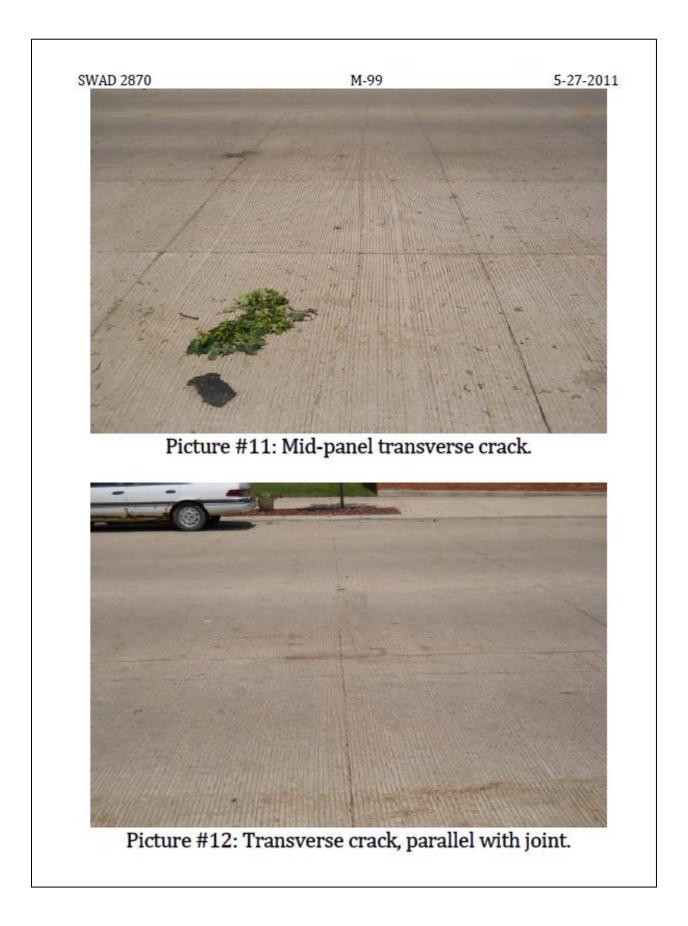
5-27-2011

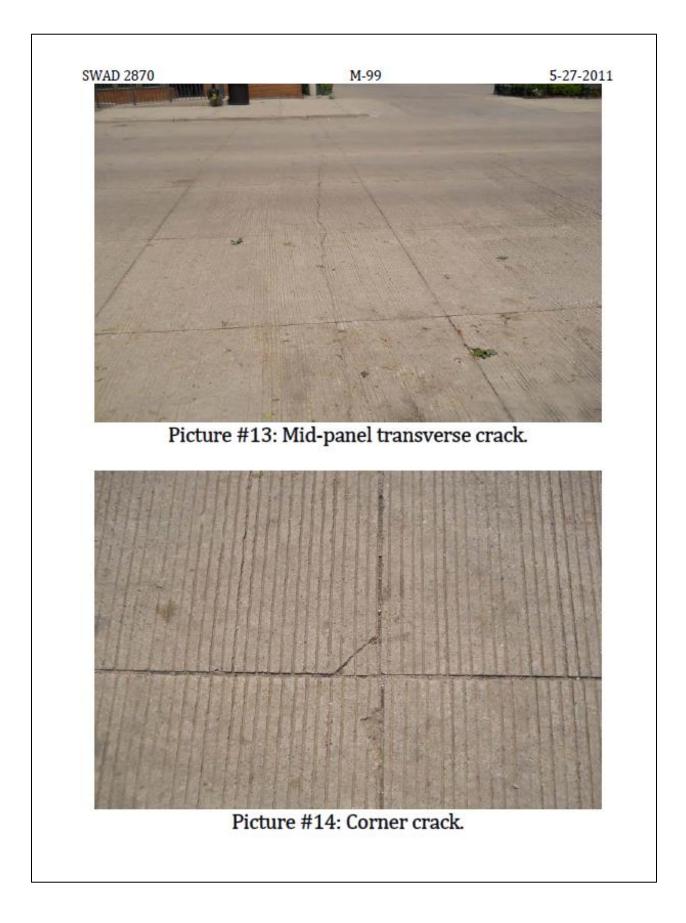

Warranty Inspection M & W Warranty for New/Reconstructed Jointed Plain Concrete Pavement

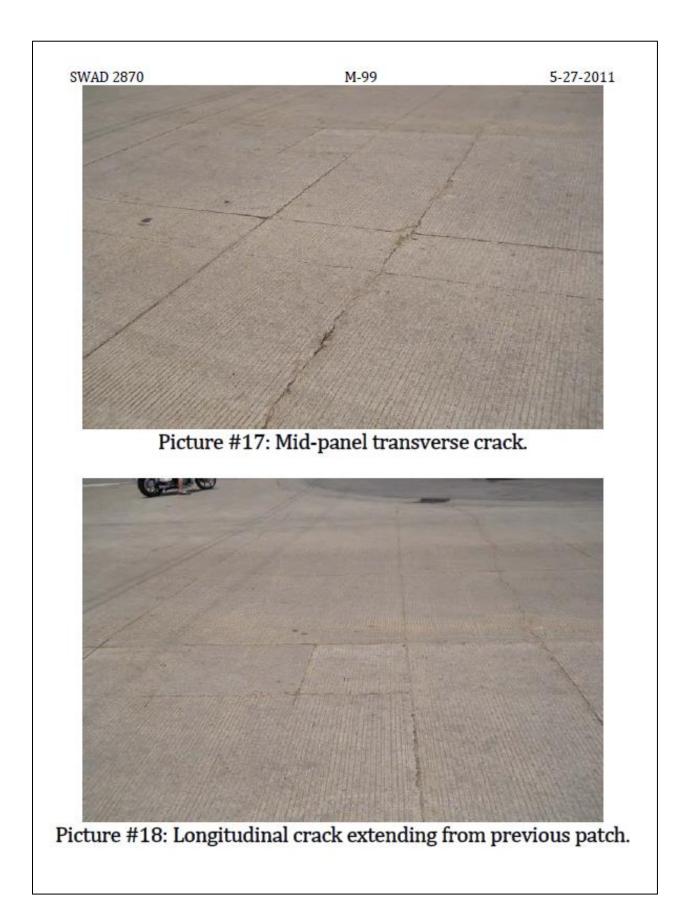
Final Inspection


SWAD ID: 2870 Contract ID: 38011-75184

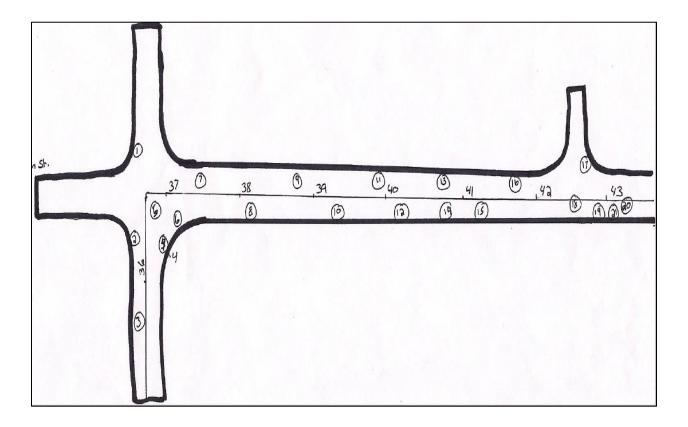
Description: Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.











Michigan Department of Transportation 1831 (07/07)

FIELD EVALUATION OF WARRANTY PERFORMANCE

JPCP / JRCP (SECOND CURSORY INSPECTION - WORST SEGMENTS)

CONTRACTOR	INSPECTION DATE
Mead Bros. Excavating Inc.	05/27/11
CONTROL SECTION	INSPECTED BY
38011	D. Black
JOB NUMBER	REVIEWED BY
75184 (SWAD 2870)	Tom Shultz
ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow (Kelby Wallace)
INSPECTION LIMITS	

Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

TRANSVERSE CRACKING (> 5 FEET)

TRANSVERSE C	RANSVERSE CRACKING (> 5 FEET) (THRESHOLD LIMIT JPCP = 1, JRCP = 2)				
SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF DISTRESSES	COMMENTS	
TC-1	NB	0.0 (POB)	1	See picture #6.	
TC-2	NB	0.0 (POB)	1	See picture #8.	
TC-3	SB	0.0 (POB)	1	See picture #9.	
TC-4	NB	0.0 (POB)	1	See picture #10.	
TC-5	SB	0.0 (POB)	1	See picture #11.	

LONGITUDINAL CRACKING (> 5 FEET)

"(THRESHOLD LIMIT = 5% OF SEGMENT LENGTH)

SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL % OF DISTRESS	COMMENTS
LC-1	SB	0.0 (POB)	2	See picture #3.
LC-2	NB	0.0 (POB)	1	See picture #5.
LC-3	NB	0.1	<1	See picture #18.
LC-4	SB	0.1	4	See picture #20.
LC-5				

MAP CRACKING

"(THRESHOLD LIMIT - 10% OF SEGMENT AREA) DISTANCE FROM DOB TO ESTIMATED TOTAL & OF

SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	COMMENTS
MC-1			No deficiencies noted.
MC-2			
MC-3			
MC-4			
MC-5			

PALLING	"(THRESHOLD LIMIT - 2 SLABS, 10% OF SLAB PERIMETER)			
SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF SLABS	COMMENTS
SP-1	NE quad Mechanic	0.0 (POB)	1% of perimeter	See picture #1.
SP-2	NB	0.0 (POB)	1% of perimeter	See picture #7.
SP-3	SB	0.1	21% of perimeter	See picture #16.
SP-4	NB	0.1	3% of perimiter	See picture #19.
SP-5				

1 OF 2 FOR: FUSP 602(I) & 602(D)

SCALING	1		"(THRESHOLD LIMIT - < 1 SL	, to a of SERB AREA,
SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF SLABS	COMMENTS
SC-1				No deficiencies noted.
SC-2				
SC-3				
SC-4				
SC-5				
CORNER CRACI	ĶING		"(THRESHOLD LIMIT - 1)	
SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF DISTRESSES	COMMENTS
CC-1	SE quad Mechanic	0.0 (POB)	1	See picture #2.
CC-2	NB	0.0 (POB)	1	See picture #14.
CC-3				
CC-4				
CC-5				
JOINT SEALANT	FAILURE		"(THRESHOLD LIMIT - < 2 SL	ABS, 10% OF SLAB PERIMETER)
SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF SLABS	COMMENTS
JSF-1				No deficiencies noted.
JSF-2				
JSF-3				
JSF-4				
JSF-5				
SHATTERED SL	ABS		"(THRESHOLD LIMIT - NONE)
SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF SLABS	COMMENTS
SS-1				No deficiencies noted.
SS-2				
SS-3				
SS-4				
SS-5				
	ORK REQUIRED?		ОИ	
		S AND WORKMANSHIP PAVEM		E PROJECT DRIVING LANES FROM THE
		VORK IS REQUIRED IF THE RES		

Michigan Department of Transportation 1885 (07/07)

FOR: FUSP 602(I) & 602(D) Page 1 of 8

FIELD EVALUATION OF WARRANTY PERFORMANCE JPCP / JRCP (DETAIL INSPECTION - QUESTIONABLE SEGMENTS)

CONTRACTOR	INSPECTION DATE
Mead Bros. Excavating Inc.	05/27/11
CONTROL SECTION	INSPECTED BY
38011	D. Black
JOB NUMBER	REVIEWED BY
75184 (SWAD 2870)	Tom Shultz
ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow (Kelby Wallace)
INSPECTION LIMITS (DRIVING LANES)	

Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF SLABS	COMMENTS
SC-1				No deficiencies noted.
SC-2				
SC-3				
SC-4				
SC-5				
SC-6				
SC-7				
SC-8				
SC-9				
SC-10				
SC-11				
SC-12				
SC-13				
SC-14				
SC-15				
SC-16				
SC-17				
SC-18				
SC-19				
SC-20				
SC-21				
SC-22				
SC-23				
SC-24				
SC-25				
SC-26				
SC-27				

1 - DISTRIBUTION AT THE END OF THE WARRANTY PERIOD

FOR: FUSP 602(I) & 602(D) Page 2 of 8

FIELD EVALUATION OF WARRANTY PERFORMANCE JPCP / JRCP (DETAIL INSPECTION - QUESTIONABLE SEGMENTS)

CONTRACTOR	INSPECTION DATE
Mead Bros. Excavating Inc.	05/27/11
CONTROL SECTION	INSPECTED BY
38011 (SWAD 2870)	D. Black
JOB NUMBER	REVIEWED BY
75184	Tom Shultz
ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow (Kelby Wallace)

INSPECTION LIMITS (DRIVING LANES) Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF DEFECTIVE SLABS	COMMENTS
SS-1				No deficiencies noted.
SS-2				
SS-3				
SS-4				
SS-5				
SS-6				
SS-7				
SS-8				
SS-9				
SS-10				
SS-11				
SS-12				
SS-13				
SS-14				
SS-15				
SS-16				
SS-17				
SS-18				
SS-19				
SS-20				
SS-21				
SS-22				
SS-23				
SS-24				
SS-25				
SS-26				
SS-27				

1 - DISTRIBUTION AT THE END OF THE WARRANTY PERIOD 2 - DISTRIBUTION WHEN WARRANTY WORK IS REQUIRED

FOR: FUSP 602(1) & 602(D) Page 3 of 8

FIELD EVALUATION OF WARRANTY PERFORMANCE

JPCP / JRCP (DETAIL INSPECTION - QUESTIONABLE SEGMENTS)

Mead Bros. Excavating Inc.	INSPECTION DATE 05/27/11
CONTROL SECTION 38011	INSPECTED BY D. Black
75184 (SWAD 2870)	BEVIEWED BY Tom Shultz
ROUTE M-99	Resident Engineer Jeffrey Bigelow (Kelby Wallace)
INSPECTION LIMITS (OPIMING LANES)	,

Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

TRANSVERSE	CRACKING (> 5 FEET)		(THRESHOLD LIMIT JPCP - 1	, JRCP = 2)
SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF DISTRESSES	COMMENTS
TC-1	NB-1	0.0 (POB)	4	
TC-2	SB-1	0.0 (POB)	3	
TC-3	NB-1	0.1	0	
TC-4	SB-1	0.1	3	
TC-5				
TC-6				
TC-7				
TC-8				
TC-9				
TC-10				
TC-11				
TC-12				
TC-13				
TC-14				
TC-15				
TC-16				
TC-17				
TC-18				
TC-19				
TC-20				
TC-21				
TC-22				
TC-23				
TC-24				
TC-25				
TC-26				
TC-27				

DISTRIBUTION: REGION OFFICE, TSC MANAGER, RESIDENT ENGINEER, WARRANTY CONTRACTOR, SURETY COMPANY1,2

1 - DISTRIBUTION AT THE END OF THE WARRANTY PERIOD

FOR: FUSP 602(I) & 602(D) Page 4 of 8

FIELD EVALUATION OF WARRANTY PERFORMANCE

JPCP / JRCP (DETAIL INSPECTION - QUESTIONABLE SEGMENTS)

ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow (Kelby Wallace)
JOB NUMBER	REVIEWED BY
75184 (SWAD 2870)	Tom Shultz
CONTROL SECTION	INSPECTED BY
38011	D. Black
CONTRACTOR	INSPECTION DATE
Mead Bros. Excavating Inc.	05/27/11

INSPECTION LIMITS (DRIVING LANES) Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF DISTRESSES	COMMENTS
CC-1	NB-1	0.0 (POB)	1	
CC-2	SB-1	0.0 (POB)	1	
CC-3				
CC-4				
CC-5				
CC-6				
CC-7				
CC-8				
CC-9				
CC-10				
CC-11				
CC-12				
CC-13				
CC-14				
CC-15				
CC-16				
CC-17				
CC-18				
CC-19				
CC-20				
CC-21				
CC-22				
CC-23				
CC-24				
CC-25				
CC-26				
CC-27				

1 - DISTRIBUTION AT THE END OF THE WARRANTY PERIOD

FOR: FUSP 602(I) & 602(D) Page 5 of 8

FIELD EVALUATION OF WARRANTY PERFORMANCE JPCP / JRCP (DETAIL INSPECTION - QUESTIONABLE SEGMENTS) CONTRACTOR

Mead Bros. Excavating Inc.	05/27/11
CONTROL SECTION	INSPECTED BY
38011	D. Black
JOB NUMBER	REVIEWED BY
75184 (SWAD 2870)	Tom Shultz
ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow (Kelby Wallace)
INSPECTION LIMITS (DRIVING LANES)	

Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

DINT SEALANT	FAILURE			BS, 10% OF SLAB PERIMETER)
SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF DEFECTIVE SLABS	COMMENTS
JSF-1				No deficiencies noted.
JSF-2				
JSF-3				
JSF-4				
JSF-5				
JSF-6				
JSF-7				
JSF-8				
JSF-9				
JSF-10				
JSF-11				
JSF-12				
JSF-13				
JSF-14				
JSF-15				
JSF-16				
JSF-17				
JSF-18				
JSF-19				
JSF-20				
JSF-1				

DISTRIBUTION: REGION OFFICE, TSC MANAGER, RESIDENT ENGINEER, WARRANTY CONTRACTOR, SURETY COMPANY1,2

1 - DISTRIBUTION AT THE END OF THE WARRANTY PERIOD

FOR: FUSP 602(I) & 602(D) Page 6 of 8

FIELD EVALUATION OF WARRANTY PERFORMANCE

JPCP / JRCP (DETAIL INSPECTION - QUESTIONABLE SEGMENTS)

CONTRACTOR	INSPECTION DATE
Mead Bros. Excavating Inc.	05/27/11
CONTROL SECTION	INSPECTED BY
38011	D. Black
JOB NUMBER	REVIEWED BY
75184 (SWAD 2870)	Tom Shultz
ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow (Kelby Wallace)
INCRECTION LIMITS (DRIVING LANCE)	

INSPECTION LIMITS (DRIVING LANES) Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

SEGMENT NO.	CRACKING (>5 FEET	DISTANCE FROM POB TO	(THRESHOLD LIMIT - 5% OF	COMMENTS
SEGMENT NO.	LANE DESCRIPTION	START OF SEGMENT (miles)	TOTAL %OF DISTRESS	COMMENTS
LC-1	NB-1	0.0 (POB)	1	
LC-2	SB-1	0.0 (POB)	2	
LC-3	NB-1	0.1	0	
LC-4	SB-1	0.1	4	
LC-5				
LC-6				
LC-7				
LC-8				
LC-9				
LC-10				
LC-11				
LC-12				
LC-13				
LC-14				
LC-15				
LC-16				
LC-17				
LC-18				
LC-19				
LC-20				
LC-21				
LC-22				
LC-23				
LC-24				
LC-25				
LC-26				
LC-27				

DISTRIBUTION: REGION OFFICE, TSC MANAGER, RESIDENT ENGINEER, WARRANTY CONTRACTOR, SURETY COMPANY1,2

1 - DISTRIBUTION AT THE END OF THE WARRANTY PERIOD

FOR: FUSP 602(I) & 602(D) Page 7 of 8

FIELD EVALUATION OF WARRANTY PERFORMANCE

JPCP / JRCP (DETAIL INSPECTION - QUESTIONABLE SEGMENTS)

CONTRACTOR	INSPECTION DATE
Mead Bros. Excavating Inc.	05/27/11
CONTROL SECTION	INSPECTED BY
38011	D. Black
JOB NUMBER	REVIEWED BY
75184 (SWAD 2870)	Tom Shultz
ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow (Kelby Wallace)
INCORPORTION LINETO (DEPUNIO LANEO)	

INSPECTION LIMITS (DRIVING LANES) Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	TOTAL % OF DISTRESS	COMMENTS
MP-1				No deficiencies noted.
MP-2				
MP-3				
MP-4				
MP-5				
MP-6				
MP-7				
MP-8				
MP-9				
MP-10				
MP-11				
MP-12				
MP-13				
MP-14				
MP-15				
MP-16				
MP-17				
MP-18				
MP-19				
MP-20				
MP-21				
MP-22				
MP-23				
MP-24				
MP-25				
MP-26				
MP-27				

DISTRIBUTION: REGION OFFICE, TSC MANAGER, RESIDENT ENGINEER, WARRANTY CONTRACTOR, SURETY COMPANY1,2

1 - DISTRIBUTION AT THE END OF THE WARRANTY PERIOD

FOR: FUSP 602(I) & 602(D) Page 8 of 8

FIELD EVALUATION OF WARRANTY PERFORMANCE JPCP / JRCP (DETAIL INSPECTION - QUESTIONABLE SEGMENTS)

CONTRACTOR	INSPECTION DATE
Mead Bros. Excavating Inc.	05/27/11
CONTROL SECTION	INSPECTED BY
38011	D. Black
OB NUMBER	REVIEWED BY
75184 (SWAD 2870)	Tom Shultz
ROUTE	RESIDENT ENGINEER
M-99	Jeffrey Bigelow (Kelby Wallace)

Main Street (M-99) from Maple Street to east of Pearl Street, Village of Springport.

SEGMENT NO.	LANE DESCRIPTION	DISTANCE FROM POB TO START OF SEGMENT (miles)	ESTIMATED TOTAL NUMBER OF SLABS	COMMENTS
SP-1	NB-1	0.0 (POB)	1%	
SP-2	SB-1	0.0 (POB)	1%	
SP-3	NB-1	0.1	3%	
SP-4	SB-1	0.1	21%	
SP-5				
SP-6				
SP-7				
SP-8				
SP-9				
SP-10				
SP-11				
SP-12				
SP-13				
SP-14				
SP-15				
SP-16				
SP-17				
SP-18				
SP-19				
SP-20				
SP-21				
SP-22				
SP-23				
SP-24				
SP-25				
SP-26				
SP-27				
	SION OFFICE, TSC MANAGER, THE END OF THE WARRANTY		NTY CONTRACTOR, SURETY COM	PANY _{1,2}

Appendix C: CESAL Computations

YEAR	CAADT	DD	LD	TF	CESALS
2025	448	0.57	0.9	0.78	65,434
2024	435	0.57	0.9	0.78	63,528
2023	422	0.57	0.9	0.78	61,677
2022	410	0.57	0.9	0.78	59,881
2021	418	0.57	0.9	0.78	61,049
2020	362	0.57	0.9	0.78	52,870
2019	440	0.57	0.9	0.78	64,262
2018	321	0.54	0.9	0.78	44,415
2017	341	0.54	0.9	0.78	47,182
2016	349	0.54	0.9	0.78	48,289
2015	405	0.54	0.9	0.78	56,038
2014	461	0.54	0.9	0.78	63,786
2013	450	0.54	0.9	0.78	62,264
2012	440	0.54	0.9	0.78	60,880
2011	434	0.54	0.9	0.78	60,050
2010	419	0.54	0.9	0.78	57,975
2009	404	0.59	0.9	0.78	61,075
2008	454	0.59	0.9	0.78	68,634
2007	440	0.59	0.9	0.78	66,575
2006	427	0.59	0.9	0.78	64,578
				Cumulative CESALS	1,190,441

Table C 1. M-13 Actual CESAL Estimation Data from Mary Street to North Street

YEAR	CAADT	DD	LD	TF	CESALS
2026	93	0.51	1	0.78	13,564
2025	91	0.51	1	0.78	13,169
2024	88	0.51	1	0.78	12,785
2023	85	0.51	1	0.78	12,413
2022	83	0.51	1	0.78	12,051
2021	86	0.51	1	0.78	12,487
2020	76	0.51	1	0.78	11,035
2019	65	0.51	1	0.78	9,438
2018	65	0.51	1	0.78	9,438
2017	66	0.51	1	0.78	9,583
2016	75	0.51	1	0.78	10,890
2015	74	0.51	1	0.78	10,745
2014	73	0.51	1	0.78	10,599
2013	196	0.51	1	0.78	28,459
2012	192	0.51	1	0.78	27,878
2011	189	0.51	1	0.78	27,442
2010	183	0.51	1	0.78	26,619
2009	178	0.51	1	0.78	25,820
2008	172	0.51	1	0.78	25,046
2007	167	0.51	1	0.78	24,294
				Cumulative CESALS	333,755

Table C 2. M-99 Actual CESAL Estimation Data from Mechanic Street to Pearl Street

Table C 3. M-99 Initial Design CESAL Estimation Data for M-13 and M-99

ROUTE	LOCATION	CAADT	DD	LD	TF	GF	CESALS
	Mary Street	- 0.0	0.51			• • • •	1 700 100
M-13	to North	509	0.51	0.8	0.78	26.87	1,588,690
	Street						
M-99	Mechanic						
	Street to	103	0.51	1.0	0.78	20.33	303,397
	Pearl Street						