Evaluation of Five
Safety Improvement Projects TSD-422-80

TRAFFIC and SAFETY DIVISION

MICHIGAN DEPARTMENT
OF
TRANSPORTATION

Evaluation of Five
Safety Improvement Projects
TSD-422-80

By
R. E. Maki
L. D. Bunker
in cooperation with

The Federal Highway Administration
Through Task Order No. Three, "Tmplementation of Highway Safety Project Evaluation Procedures" under Basic Agreement DOT-FH-11-9211

STATE TRANSPORTATION COMMISSION

Hannes Meyers, Jr. Chairman	Carl. V. Pellonpaa Vice-Chairman
Rodger D. Young Commissioner	Weston E. Vivian Commissioner
Lawrence C. Patrick, Jr. Commissioner	William C. Marshall Commissioner
	JTRECTOR

Preface

This evaluation was undertaken to satisfy a need for the uniform presentation of the results of highway improvements thus producing a nationwide data base to provide for the most cost-effective expenditure of funds.

The projects evaluated were funded through the Michigan Safety (Ms) Program, a 100 percent state funded program in existence since fiscal 1965-66. These five projects were selected to present the different types of improvements that have been characteristic of this program. All were of recent construction at the time of selection to eliminate bias from knowledge of "after period" accident experience. This presents a data collection problem in some cases as only $2 \frac{1}{2}$-year "after" accident experience is available at this time.

The format follows the procedural guide developed as part of this project and treats each improvement project in a different section of the report. Data is presented in a manner that facilitates comparison, before and after the improvement.

The experimental plan in all cases is a modified "before and after." Accident experience before and after the improvement is included in the analysis with a histogram showing accident experience at similar sites. This is the ultimate in control group comparisons, though our presentation is more qualitative than quantitative in this respect.

MIDAS Comparison

A computer model was developed to identify sites with correctable accident patterns independent of the number of total accidents.

Detailed information on this model is included in a report by Thomas L. Maleck, P.E., entitled The Michigan Dimensional Accident Surveillance Model, A Report of Progress, Michigan Department of Transportation, Lansing, April, 1978.

Principally the concept is to aggregate locations with similar geometric and environmental characteristics into cells and evaluate accident parameters.

Histograms are generated showing the accident experience at locations with the particular cell type being studied. Those locations with accident experience deviating from the mean by some predetermined statistical level are printed out.

For the purpose of this report we will attempt to show that the project locations were, in fact, significantly different than their peers in the "before period" but they did not deviate significantly from the mean in the "after period," according to their Measures of Effectiveness (MOE's). By using this model, we can show that a deviate can be transferred to the new cell type with accident experience near the mean after improvement. Even more important than what happens to the study site in these comparisons is that little change is noted in the control group as a whole.

Since the model must be constantly updated when major geometric changes are effected at any location, we may find some errors in cell grouping for those locations of recent construction.

Table of Contents
Page
Introduction 1
Part A - M-43 (AB Avenue) at 32nd Street
Route Turn Modifications and Clear Vision 2
Part B - BL-94 (Michigan at Lovell)
Minor Geometric Changes and Skidproofing 21
Part C - M-60 at Moscow Road
Passing Flare and Right-Turn Lane. 40
Part D - BL-94 (Michigan) from Ganson to US-127
Section Widening from Four to Five Lanes 51
Part E - M-24 at Flint Street
Intersection Widening from Four to Five Lanes 64
Summary of Conclusions and Recommendations 78

Introduction

The report is divided into five parts, A through E, with each part devoted to an evaluation of an individual project of a type common to the Michigan Safety (Ms) Program.

A uniform format is followed that first introduces the reader to the site via "before and after" pictures and then proceeds with a narrative introduction and background history. Anticipated project benefits are compared to study results. Study parameters are then presented, following the intent of the procedural guide as close as reader comfort will permit. Necessary items are included, such as Purpose of Project, Objectives, Measures of Effectiveness, and Data Requirements.

Following these preliminaries, the actual comparison of "before and after" data is shown with explanation of exposure factor calculations where needed. The appropriate accident sumary table is then exhibited and economic analysis follows. MIDAS comparisons are subsequently discussed.

At the back of each section the bulk of the study data can be found. This includes the location map, graphical summary sheets for "before and after" manual traffic surveys, a geometric sketch of the improvement (if helpful), and additional photographs. Collision diagrams were omitted (except for Part A) in favor of the summary tables.

Following Part E is the study summary of recommendations and conclusions which discusses the evaluation procedure, rather than individual project evaluations.

PART A

Northbound BEFORE

Northbound AFTER

Introduction

The intersection of M-43 (32nd Street) and M-43 (AB Avenue), Richland Township, Kalamazoo County, was improved to facilitate a route turn operation by providing a storage lane for left turns and a clear sight triangle. (See map and sketch, pages 9 and 13.) Construction period was 9/15/75-10/10/75 at a cost of $\$ 78,000$ including $\$ 7,000$ right-of-way costs.

M-43 in this area is a rural 2-1ane, two-way roadway carrying 6,000 vehicles a day and winding north from Kalamazoo to Hastings. Although the alignment is not very good throughout this section, one particular location was isolated as having significant correctable accident experience that could be alleviated through reconstruction with funding by the Safety (Ms) Program. The trunkline turns north to east at a right angle while $32 n d$ Street continues north on tangent. The southbound nontrunkline leg is under stop control and the trunkline free flows. The northbound through movement was actually a left turn from the trunkline with no storage area and also limited sight distance to the east (oncoming. trunkline traffic).

Problems were encountered not only with this conflict but also with lost control run-off-road accidents. By making the trunkline alignment more visible, it was conceivable that almost all associated accidents could be eliminated.

Total accidents were reduced from 24 in the three years before the project to 2 in the three years after representing a yearly dollar savings of $\$ 34,300$. When this benefit is compared to the cost over an assumed 20 -year project life, the benefit cost ratio is 4.0 .

Study Parameters
Purpose of Project: Reduce total accident experience and related injuries through reduction in run-off-road and angle accidents.

Objective: Determine the effect of the project in reducing total, run-off-road, and angle accidents and associated injuries.

Measures of Effectiveness:

1. Percent change in total accidents.
2. Percent change in run-off-road and right-angle accidents.
3. Percent change in associated injuries.

Data Requirements:
Total accidents (by severity and type)
Run-off-road and angle accidents (by severity)
Manual turning volume counts
Project cost
Construction period

Parametric Comparison

Determination of exposure factors for the intersection of M-43 at $M-43$ ($A B$ Avenue)

Use

$$
\begin{array}{ll}
8 / 17-18 / 72 & \text { Survey } \\
6 / 13-14 / 78 & \text { Survey }
\end{array}
$$

1972 24-hour approach volumes
822
2630
1870
5322

1978 24-hour approach volumes
853
$2270 \quad 6223$
$\frac{3100}{6223} \quad \frac{-5322}{901}$

$$
\frac{901}{5322}=17 \% \text { increase }
$$

Using linear growth, traffic increased almost 12 percent between midpoints of the "Before and After" periods 1973 and 1977.

The summary table for "before and after" accident and exposure data, Table Al, shows three years accident experience before and after, as well as estimated average exposure volumes based on 1972 and 1978 traffic surveys. Intersectional rates are used since the section is less than 0.1 mile.

The Poisson technique was selected for significance testing at the 95 percent confidence level. The reductions in total, angle, and run-off-road accidents are significant.

Economic Analysis
Initial cost of project paid in $1976=\$ 78,000$
Assume changes in maintenance costs are minimal
Annual average benefits
a. No fatalities reduced
b. $\quad 5.7$ personal injuries reduced
3.67 property damage only accidents reduced

M-43 @ AB Avenue
Table A-1: Data Summary Table For The Before and After Study

	Full	Full
	1972, 1973 \& 1974	1976, 1977 \& 1978
Data Variables	Before	After
Accidents		
Total (PDO, I (I), $\mathrm{F}(\mathrm{K})$	$24(13,11(17), 0)$	$2(2,0,0)$
ROR: (PDO, I (I) , F (K)	$10 \cdot(4,6(11), 0)$	0
Angle (PDO, I (I), F(K)	$5(3,2(3), 0)$	0
Severity		
Above		
Exposure		
Average Daily Approach Volumes	5480	5950
MV (Million Vehicles)	6	6.5
Rates		
Total (PDO, I, F)/MV	$4.0(2.2,1.8,0)$	$.31(.31,0,0)$
ROR ($\mathrm{PDO}, \mathrm{I}, \mathrm{F}$)/MV	$1.7(.67,1.0,0)$	0
Angle (PDO, I, F)/MV	.83. $(.5, .33,0)$	0

c. 1.33 run-off-roadway PDO accidents reduced
3.67 ROR injuries reduced
1.0 angle PDO accidents reduced
1.0 angle injuries reduced

Use 1977 National Safety Council figures:
$\$ 5500$ for an injury
$\$ 800$ for PDO
The estimated service life for this project is 20 years with zero salvage value. Interest rate selected: 9 percent.

Equivalent Uniform Annual Cost and Benefit
EUAC $=(I) C R \frac{i}{n}+K-(T) S F \frac{i}{n}$
($\mathrm{K}=0, \mathrm{~T}=0$)
$\mathrm{EUAC}=\$ 78,000 \cdot(.1096)=\$ 8,580$
Since the study period is relatively short, an average value was used for each injury and property damage accident reduced rather than determining the equivalent uniform annual benefit of the present worth of the sum of individual yearly benefits.

$$
\begin{aligned}
& \mathrm{EUAB}=5.7 \times 5500= \$ 31,400 \\
& 3.67 \times 800 \begin{array}{l}
\frac{\$ 2,900}{\$ 34,300} \\
\\
\\
\\
\\
\\
\\
\$ 34,300 \\
\$ 8,580
\end{array}
\end{aligned}
$$

For simplicity, an interest rate of zero is often used in this analysis. The supporting logic for this is that safety funds must be spent each year and not invested and that inflated injury costs outpace increases in construction costs or interest rates.

A method commonly used in ranking candidates for the Safety (Ms) Program has been a simple time of return (TOR) of investment method. In this case the TOR is:

$$
\frac{\$ 78,000}{\$ 34,300}=2.3 \text { years }
$$

MIDAS Comparisons
M-43 (AB Avenue) at 32nd Street

The following two pages are portions of the MIDAS printouts before and after the improvement. In this case the "before" data for our study location is really applicable for only nine months due to construction late in 1975, but the illustration is clear. During that 9 -month period, this intersection experienced three injury accidents (printout is in order of control section rather than number of accidents) and is listed as an outlier.

The histogram graphically displays the distribution of locations with the headed cell parameters. (Note that this analysis is limited to locations that had at least one accident.)

There were 592 locations that had one accident, 158 that had two, 38 that had three, etc. Any location that experienced three or more total accidents is considered suspect. While the accident type being studied here is total injury accidents, it may be any other combination of type and severity; that is, run off road - property damage only, angle - injury, etc.

On the facing page is the "after" printout with similar characteristics. Note that the average 24 -hour trunkline volume increased 6 percent and that average accident experience increased 2 percent. The study location had zero accidents and did not appear in the listing.

When dealing with such low numbers of accidents, the yearly accident experience is quite erratic. Note that very few of the locations appear on both lists even though no changes were made. To analyze such locations several years of data are combined to get meaningful results.

Thus the fact that $M \sim 43$ and $A B$ Avenue did not appear on the after histogram is less important then the fact that the control group as a whole did not change appreciably, the average remaining near 1.4 accidents per location. (We have shown the reduction at the study location to be significant using the Poisson Test.)

Closer examination of the data beneath the two histograms shows that the number of locations is different, being 818 before and 877 after. MIDAS formerly would only assign Average Daily Traffic to a site if it experienced one accident. Thus we are limited to only those locations that, in fact, did experience at least one accident.

As indicated earlier, our use of MIDAS for control group comparisons in this report is qualitative. If the experimental plan chosen had been before and after with control sites, expected accident experience would have been used to determine reductions and these values used in the economic analysis.

NUMBER OF LOCATIONS
$1 \begin{array}{llllllllllll}2 & 3 & 5\end{array}$
ACC* 123456789012345678901234567890123456789012345678901234567890123
0*

Z \quad XX
$3 * 0000000000000000000000000000000000000$
$4 * 0000000006000000000$
$5 * 000000$
$6 * 000$
7*00
ACCIDENT TYPE $=1$
LOCATIONS $=81 \mathrm{~B}$
AVE 24HR VOLUME = 6088
AVE ACCIDENTS $=1.418$
UPPERLIMIT $=2.990$
HIGH HAZZARD LOCATYONSma 68

CSECT	Mp	ACC	ROUTE	XROAD/AIOGLOCK	LOCAL GOV'T COUNTY
6072	9.52	3	US-23	AT JCT, M-65	OMER CITY AREMAC
1107 t	7.55	3	45140	at napier avenue	GAINBRIOGE TGERRIEM
13011	1.57	4	4-37	AT BOWAE ROAD	BEDFDRO TAF CALHOUN
13031	13.60	3	M-66	AT 8 DR N	Battle creekcalhoun
14031	9.22	3	M=62	AT BRICK CHURCH ROAD	JEFFERSON TPGASS COU
14042	0.00	3	U5-12	AT Ma05.5 pT Huy	HASON TAP CASS COE
15091	11.19	4	US 131		MELRCSE THP CHARLEYOI
18011	12.56	4	M 115	AT HARDING RD 5	Surrey thp clare.
18022	4.08	3	US308R	RURAL MIDELOCK $I^{\text {a }}$	Clare gity clare
18041	14.70	4	m61/US276R	AT SECOND ST	HARRISON CTYCLARE
19021	0.32	3	I=968	AT FRailcis RD	WATERTOWN TPCLIMTON
22031	1,21	3	U5-141	AT JCT USC.US-141	QUINNESEC VIDICKINSG
24011	4.90	3	UK 31/M68	AT PARKVIEH DR	RESORT TAP EMGET
25092	2.00	5	Mal 15	AT RICHFIELD RORO	RICHFIELO T GEMESEE
25042	8.00	4	Mol 15	AT DOOGE ROAD	FOREST THP GENESEE
28011	2.45		US 31	AT JCT M137	GREEN LK TMPGR TRAV
28012	0.99	3	U531/m37	AT REWAIE SCHOOL RD	GLAIR TWP GR THAV
28051	9.91	3	M 37	AT TDWHHALL RD	ELAIR TNP GR TRAVE
34011	13.60	4	M-21	AT GTMREY RO	BELDING CITYIONIA C
39082	4,61	4	M43**E9	at o avemue	COMSTOCK PWFKALAMAZ
39082	4967	3	1443-480	AT ZTTH STREET	COMSTOCK THPKALA:HAZOO
39082	10,94	3	M43-489	AT 3end avenab averue	comstock thpxalayaz
41031	5.28	5	M-37	4 T 63TH ST	caleonia taxemt co
41031	7.55		M-37	AT $521105 T$	PARIS THP KENT CO
41031	8.72	6	$\mathrm{N}=3$?	AT UATH ST	PARIS TWP KENT CO
41033	10.50	6	i 1 - 37	AT 13 MILE RO	SPARTA THP KEAT CO
41051	0.02	3	$M=44$	AT KiAPD ST	GRAND RAPIDSKEMT CO
41101	0.00	4	M-44	AT U5-131	PLAIMFIELO YKEAT CO
44031	4.33	3	$M=53$	AT DRYDEH POAD	ALHONT TAP, LAPEER

HIGH HAZZARD LOCATYONS= 92

CSECT.	MP	ACC	ROUTE	XROADMIDBGOCK	LOCAL GOVIT COUNTY
3021	0.40	4	14-89	RURAL MIDELOCK IN	sajgatuck tpallegan
8011	1.02	4	M +38	RURAL MIDBEOCK IN	garaga villg baraga
11071	13.00	3	$\mathrm{M}=140$	AT OAN SMITH ROAD	WATERVLIET TBERRIEN
13031	11.52	3	$M=66$	AT 8 OR 5	LEROY THP CALMOUN 6
14031	1.47	3	M-6?	at may street	ONTAA TWC CASS COUN
14042	0.00	3	US-1?	AT Moze5,5 pt Hay	MASON TWP CASS EOUN
14061	1.52	5	M60.M02.160	at huntley street	HOMARO Tap cass coun
14.01	1.78	3	$M=152$	at tonnall r road s	SILYER CREEKCASS COUN
19001	9.00	3	M 21	AT FRANCIS RD	BENGAL TAP CLIMTON
21021	6,36	3	U5m2, 45×41	AT CR $521 \mathrm{S.c} \mathrm{CR} 533 \mathrm{~N}$	HYDE VILLAGEDELTA COU
24011	10.30	3	Us 31/M 68	AT PICKEREL LAKE RO	EEAR CRK TMPEMmET
2403:	3.77	3	US 131	AT INTERTONN RO	BEAR CREEK TEADET
25091	9,60	3	Mol 15	AT LIPPINCOTT RD,	DAVISON THP, GENESEE
25101	5.90	3	Mos 57	AT ELMS ROAD	VIENNA THP: GENESEE
25101	Q,97	3	M-57	AT JENNINGS ROAD	VIENNA TMP, GENESEE
25102	1,76	4	M-5 7	AT LEWIS ROAD	THETFORD TMPGENESEE
25102	2.77	4	Mow 57	AT BRAY ROAD	THETFORD THPGENESEE
28011	6.18	4	US 31	AT STATE ST	BLATR THP GR TRAVER
28012	4,61	3	US31/M37	AT FRANKE RO	GARFIELD TKPGR TRAVER
23013	7.02	3	US31/M72/M37	AT 5 MILE RO	ACME TWP GR TRAVER
29021	6.43	4	M -57	at ely Hay	Evible fap gratiot
29041	0,97	3	$M=46$	AT FERRIS RD	NEVILLE TwP gratiot
37022	3.95	3	$\mathrm{M}=20$	AT SHEPARO PD	CHIPPENA TWPISAEELLA
38061	12.34	3	M $=60$	AT FAIRNAY DR:	SPRNG ARGR TJACKSON
38071	4.94		M-50, US 12789	AT MILES DR.	NAPOLEON THPJACKSON
38073	12.20	3	M-50	AT RIVES JCT RD.	BLACKMAN THPJAEKSON
39042	7,81	3	6L94, M96,0443	AT 33RD STREET	COMSTOCK THPKLMZOO CO
40011	11.12	3	U131/M72/M60	AT S JCT M ${ }^{\text {S }}$ /1466	KALKASKA TMPXALKASKA
					maiminnta takEmiten

M-43 at AB Avenue

BEFORE
VEHICLE VOLUME COUNT
GRAPHIC SUMMARY SHEET
Study \# 272

CONTROL SECTION 39082 NP 10.890 - 11.040

PART B

```
BL-94 (Michigan) at Lovel1
```


Curbed Median Divider
BEFORE

Curbed Median Divider AFTER

Part B

Introduction

A section of BL-94 (Michigan) from just east of BL-94 (Stadium) to east of Main Street, city of Kalamazoo, Kalamazoo County, was resurfaced with a skid resistant overlay. The total project cost of $\$ 76,000$ included geometric revisions to effect turning throat widening (see map and sketch, pages 33 and 34).

The project was completed in two steps, with the geometric changes being done during August of 1976 and the skid resistant overlay applied in 1977 (with construction dates from $6 / 23 / 77$ to $8 / 28 / 77$). Thus there will be some inherent overlap of study periods. Measurements of Effectiveness were selected to minimize interference and the two improvements will be treated separately. This allows for a 3-year before and after evaluation of the geometric changes but only $2 \frac{1}{2}$ years after for the surface treatment.

The project site is located near Western Michigan University in the city of Kalamazoo, population 85,000 . The trunkline carried 27,000 cars a day according to 1975 data. There are four intersecting major city streets within the study area as well as another major trunkline. This study will compare before-and-after wet surface accident experience in the entire section as well as left-turn related accident experience at Lovell Street where a dual left-turn movement was needed from a capacity standpoint. Only two lanes were available on the trunkline to turn into and this resulted in several sideswipe accidents. In addition, Lovell Street (one-way) continues on to the north through this intersection and many accidents involved vehicles going through to the north in the left lane colliding with left-turn vehicles from the right curb lane. Overhead lane assignment signing denoting through movement from right curb lane only was not effective.

The improvement resulted in cutting back a median divider and widening the trunkline slightly to open the throat for this turn as well as narrowing the opposing street opening to allow through movements from the curb lane only (sketch page 34).

The estimated benefit of $\$ 55,000 /$ year was derived by assuming that the percentage of wet to total accidents would be reduced to the district average for each year if the skid coefficients were increased to acceptable levels. Standard ASTM skid tests showed values averaging 0.30 at 40 miles per hour before resurfacing and values averaging 0.43 after. Also included in this estimate is assumed elimination of all left-turn accidents at Lovell Street.

Year	Total Accs.	Wet Accs.	\% Wet Surface Accs.	Dist. Average $\%$ Wet.
1976	181	81	45	20
1975	122	61	50	21
1974	$\frac{102}{405}$	$\underline{40}$	40	25
Total				

Dual Left-Turn Accidents at Lovell Street

Year	No. of Accs.
1976 (Construction)	7
1975	17
1974	$\frac{10}{34}$
Total	

The actual benefit in accident savings was computed to be $\$ 110,000 /$ year based on the elimination of 49 accidents with 13 injuries. Left-turn accidents were reduced 80 percent and wet surface accidents decreased 62 percent.

Study Parameters

Purposes of project:

1. Reduce total accident experience by reducing wet surface accident experience.
2. Reduce left-turn accidents at Lovell Street.
3. Reduce injuries associated with above accidents.

Objectives:

1. Determine the effect of the project on total accident experience.
2. Determine the effect of the project on wet surface accident experience.
3. Determine the effect of the project on left-turn accident experience at Lovell Street.
4. Determine the effect of the project on injuries associated with above accidents.

Measures of Effectiveness:

1. Percent change in total accidents by severity, number, and rate.
2. Percent change in wet surface accident experience.
3. Percent change in left-turn accident experience at Lovell Street.
4. Percent change in associated injuries.

The experimental plan will be a modified before-and-after.
Data Requirements:
Total accidents (by type and severity)
Wet surface accidents (by type and severity)
Left-turn accidents at Lovell (by severity)
Manual turning volume counts at Lovel].
Project cost

Construction period
Before-and-after wet surface friction skid tests
Rainfall Data

Parametric Comparison

Determination of exposure factors for the intersection of Lovell at BL-94 Michigan-Stadium:

1975 Survey 4/1-2/75
1978 Suxvey $12 / 11-12 / 78$
1975 - hour manual volumes
1975 machine 24 -hour approach volumes 3902
5588
10,109
(High)
11,214
$\frac{8,318}{29,641}$
1978 - hour manual volumes 5121
6735
1978 machine 24 -hour approach volumes 9,142 (Low) 14,424
$\frac{4839}{16,695} \times 2=33,390$
$\frac{8,264}{31,830}$
(As a rule of thumb, a good estimate of the 24 -hour volume is twice the standard [7 a.m.-9 a.m., 11 a.m. -1 p.m., 2 p.m. -6 p.m.] 8-hour count.)

Based on the above, use 28,000 for 1975 use 33,000 for 1978
$1974=26,300 \quad 1976=29,700 \quad 1977=31,400 \quad 1979=34,800$
Assuming linear relationship
Midpoint of before volume $=27,150 \quad$ After $=32,200$
The dual left-turn increased 10 percent from 2974 to 3263 in eight hours.
The summary table for "before and after" accident and exposure data, Table B1, shows intersection accident rates as well as number of accidents by type, for the 3-year before and 3-year after periods.

Reductions in total, left-turn, and left-turn injury accidents are significant at the 95 percent level using the Poisson curve. This represents a significant change in all applicable measures of effectiveness.

Economic Analysis
Initial cost of project in 1976=\$19,000
(geometric changes only)

Table B-l: Data Sumary Table For The Before and After Study

	3 Years	3 Year
Data Variables	Before	After
Accidents		
Total Accidents	138	88
Left-Turn Accidents	42	8
Severity		
Fatal Accidents	0	0
Personal Injury Accidents	27 (31)	19(27)
Left-Turn Injury Accidents	5 (7)	1(1)
Exposure		
Average Daily Traffic	27,150	32,200
Million Vehicles	29.6	35.2
Rates		
Total Accidents/MV	4.66	2.50
Left-Turn Accidents/MV	1.42	. 23
Fatals/MV	0	0
Personal Injury Accidents/mv	. 91	. 52
Left--Turn Personal Injury Accidents/MV	. 17	. 03

Assume changes in maintenance costs are minimal.
Annual average benefits:

1. No fatalities reduced
2. Yearly average of $6 / 2=3$ left-turn injuries reduced

Yearly average of $30 / 3=10$ left-turn $P D O$ accidents reduced
1978 National Safety Council figures:
\$5,800 for an injury
$\$ 850$ for property damage only
The estimated service life for this project is 20 years with zero salvage value. Interest rate selected: 9 percent.

Equivalent Uniform Annual Cost and Benefit

$$
\begin{aligned}
& \text { EUAC }=(\mathrm{I}) \operatorname{CR} \frac{\mathrm{i}}{\mathrm{n}}+\mathrm{K}-(\mathrm{T}) \mathrm{SF} \mathrm{i} \\
&(\mathrm{~K}=0, \mathrm{~T}=0) \\
& \mathrm{EUAC}= 19,000(.1096)=\$ 2,082 \\
& \mathrm{EUAB}= 3.0 \times 5800=\$ 17,400 \\
& 10 \times 850=\frac{8,500}{\$ 25,900}
\end{aligned}
$$

Since the study period is relatively short an average value was used for each injury and property damage accident reduced rather than annualizing the present worth of the sum of individual yearly benefits.

The benefit/cost ratio is:

$$
\frac{\$ 25,900}{\$ 2,082}=12.44
$$

The effect of the skidproofing portion of the project has been neglected in this analyses. The entire skidproofing project will now be analyzed separately.

Parametric Comparison

Summary Table B-2 shows the accident and exposure data with the resulting rates for three years before and $2 \frac{1}{2}$ years after data. Note that only mainline volumes are used and that the section length was 0.6 miles and section rates are given.

Reductions in the following accident types were significant at the 95 percent confidence level using the Poisson curve. Since volumes increased only slightly, numbers rather than rates are used in this analysis.

Table B-2: Data Summary Table For The Before and Afcer Study

Section length $=0.6$ mile		
	3 Years	21/2 Years
Data Variables	Before	After
Accidents		
Total Accidents	419	241
Rear-End Accidents	186	88
Wet Surface Accidents	179	58
Severity		
Fatals	0	0
Personal Injury Accidents	$62(81)$	$47(65)$
Wet Surface Personal		
Injury Accidents	$29(41)$	$6(9)$
Exposure		
Average Daily Traffic	27,000	27,000
Million Vehicle Miles	17.7	14.8
Rates		
Total Accidents/MVM	23.7	16.3
Rear-End Accidents/MVM	10.5	6.0
Wet Surface Accidents/MVM	10.1	3.9
Personal Injury Accidents/MVM	3.5	3.2
Wet Surface Personal		
Injury Accidents/MVM	1.64	. 41

*Weather station records indicate little change in rainfall

Economic Analysis
Initial cost of project in 1977, \$57,000
Annual average benefits:

1. No fatalities reduced
2. Ten wet surface personal injuries reduced
3. Thirty wet surface property damage only accidents reduced

1978 National Safety Council Figures:
\$5,800 for an injury \$ 850 for PDO

The estimated service life for the surface is 15 years with zero salvage value. Interest rate selected: 9 percent.

Equivalent Uniform Annual Cost and Benefit
$E U A C=(I) C R \frac{i}{n}+K-(T) S F{ }^{i} \quad(K=0, T=0)$
$\mathrm{EUAC}=\$ 57,000(.1241)=\$ 7,074$
$\mathrm{EJAB}=10 \times \$ 5800=\$ 58,000$
$30 \mathrm{x} \$ 850=\frac{\$ 25,500}{\$ 83,500}$
The benefit cost ratio is:

$$
\frac{\$ 83,500}{\$ 7,074}=11.8
$$

The investment again was fully returned through accident savings within the first year after improvement.

```
BL-94 at Love11 Street
```

Looking at the histograms on the next two pages note that, compared to its peers (4-lane two-way signalized locations with trunkline ADT of 25 to 36 thousand vehicles), the intersection of BL-94 (Michigan) and Lovell Street had the highest left-turn property damage accident experience with 17. This is far above the average of 2.5 and also above the upper limit of 4.1.

There was little change in the average daily traffic of the locations, and the change in the average number of left-turn accidents from 2.5 to 2.0 is largely attributed to the reduction at Lovell. Street from 17 to 1. (A check of 1977 accident experience showed that there was only one left-turn accident at Lovell Street, a property damage only.)

STATENIDE, $4 L 2 W, S T R I P . S T G N A L, A D T 25=36000.1975 P D$

LEFT TURN

CSECT	MP	ACC	ROUTE	XROAD/MIDBLOCK		LOCAL GOV	COUNTY
25072	6.01	9	$M=54$	AT		FLINT EITY	GENESEE C
28013	2.69	8	US31/472/M37	AT	E JCT M $37 / \mathrm{GARFIELO}$	TRAVERSE C	GP TRAVER
33011	5.71	12	Mwo 99	AT	ST JOSEPH/USm27	LANSING	INGHAM
39041	3.51	17	1948L-19 m 131	AT	LOVELL STREET	KLMZOO CIYY	KLMZOO CO
63053	3.33	6	U5-10	AT	WARKEN STREET	WATERFORD	OAKLAND C
63131	1.24	9	$M \times 150$	AT	WATTLES/17 MLLE RD	PONTIAC CT	OAKLAND C
73062	4.65	6	$M=46$	AT	3CTM* 47 , MIDLANO RO	SAGINAW TWP	SAGINAW C
73062	7.1) 1	5	Ma46	AT	WHEELER STPEET	SAGINAW CI	SAGINAW C
77091	0.35	5	$U S=25 \quad B R$	AT	10 TH/SCOTT AVES.	PT:HURON C.	STCLAIR

```
                    NUMBER OF LOCATIONS
                1 2 3 4
                    5
                                    6
ACC*1234567890123455678901234567890123456789012345678901234567890123
        O& XXXXXXXXXXXXXXXXXXXXXXXX
        1*XXXXYX
        ZAXXXXXXX
        3*XXXX
        4*00
        5*
        6*0
        7*00
        8*00
        9*
        10*00
ACCIDENT TYPE =4
LOCATIONS # m9
AVE 24HR VOLUME=29459
AVE ACCIDENTS =1.959
UPPER LIMIT = 3.359
HIGH HAZZARD LOCATIONS** 9
```

CSECT	$M P$	$A C C$	ROUTE		AO/MIDELOCK	LOCAL GOVIT COUNTY
9032	2.44	7	M*138I0756L	AT	JENNY STREET	MONITOR TWP BAY COUNT
28013	2.00	10	U531/472/437	AT	E JCT M37/GARFIELO	TRAVERSE CTYGR TRAVER
33011	4.70	8	Man99	AT	MT HOPE AVE	LANSING INGHAM
39082	0.23	10	M4 ${ }^{\text {2 a }}$ M89	AT	RTVERVIEW AVENUE	KLMAZOO CTTYKALAMAZOO
50021	0.98	4	M-59	A 7	CASS STREET	STLG*HTS. CYMACOMB CO
73062	4.65	8	Max 46	AT	JCTMos $47, \mathrm{MPDLAND} \mathrm{RO}$	SAGINAW TWP SAGINAW C
73062	7.44	4		AT	ELM STREET	SAGINAN CITYSAGYNAWC
81032	3.03	7	USw $12, \mathrm{Mas} 17$	AT	PROSPECT ST.	YPSILANTI CYWASHTENA
81032	3.08	6	US-12, M-17	AT	F. JCT. M $17 . \mathrm{ECORS}$	YPSILANTI CYWASHTENAW

VEHICLE VOLUME COUNT
GRAPHIC SUMMARY SHEET
BEEORE
Study |l132

VEhICLE VOLUME COUNT

GRAPHIC SUAMARY SHEET

Study ${ }^{\text {悲402 }}$
AFTER
date 12/11-12/78 day Mon/Tues county Kalamazoo Weather Snow
time \qquad TWP., VILLAGE OR CITY KalamRZOR. \qquad 11 A to $1 P$

BEFORE

AFTER

BL-94 (Michigan at Lovell
 Farside Throat

Open BEFORE

Narrow AFTER

Close-up -Nose of Curb
Median Divider
BEFORE

> Nose of Divider Removed ATTER

PART C

M-60 at Moscow Road

Westbound
BEFORE

Westbound
AFTFR

Part C

Introduction

M-60 is a rural 2 -lane two-way facility that intersects Moscow Road "teeing" in from the south in Spring Arbor Township, Jackson County. The improvement was the addition of a passing flare on the trunkline, as well as a right-turn lane. In addition, an overhead flashing beacon was installed to better define the intersection.

The project was constructed from $7-14-76$ to $8-17-76$ at a cost of $\$ 48,000$.

In this area $\mathrm{M}-60$ had a 1975 average daily traffic of 5200 vehicles. Though the accident experience was not extremely high, a correctable pattern of left-turn rear-end accidents of high severity qualified this location for inclusion in the Safety (Ms) Program. During the 3-year period, 1973 through 1975, there were 24 total accidents, with 10 left-turn rear-end accidents susceptible to correction. These rearmend accidents resulted in a total of 16 injuries and one fatality. (In our analysis we did not use the full dollar value for a fatality, over $\$ 100,000$, but rather used a weighted injury value, approximately $\$ 6,000$ in this case). The anticipated benefit was $\$ 17,000 /$ year (1976 estimate).

Study Parameters

Purpose of Project:

1. Reduce total accidents and associated severity by reducing left-turn and rear-end accidents.

Objective:

1. Determine the effect of the project on total accident experience and related severity, especially left-turn and rear-end accidents.

Measures of Effectiveness:

1. Percent change in total accidents, specifically left-turn and rear-end related accidents and associated severity.

The experimental plan will be a modified before and after.
Data Requirements:
Total accidents (by severity and type)
Trunkline left-turn rear-end accidents (by severity)
Traffic volumes (manual turning movement counts)
Total project cost
Construction period
Parametric Comparison
Summary Table Cl shows numbers and rates of accidents for three years before and three years after the improvement. Though the reductions appear to be

	3 Years	3 Years
Data Variables	Before	After

Accidents
Total Accidents
24
8
Left-Turn Rear-End Accidents
5
2

Severity

Fatal Accidents	$1(1)(3)$	0
Total Personal Inj. Accidents	$9(19)$	$5(8)$
Left-Turn Rear-End Inj. Acc.	$1(1)(3)$	$1(2)$
	$4(12)$	

Exposure
Average Daily Traffic
9,900
11, 100
10.8
12.1

Rates

Total Accidents/MV	2.22	.66
Left-Turn Rear-End Acc./MV	.46	.17
Fatals/MV	.09	.00
Personal Inj. Acc./MV	.83	.41
Left-Turn Rear-End Personal Inj.	.46	.08

good, they are not statistically significant at the Poisson 95 th percentile level.

The results may prove to be significant when a longer study period is used or when this project is grouped with similax ones to get a significantly large data base.

No economic analysis can be performed at this time.

MIDAS Comparisons
M-60 at Moscow Road

The following histograms are for similar roadway and volume characteristics as those for $\mathrm{M}-43$ at AB Avenue, but in this case the accident type was specified as rear-end property damage only rather than total injury. Only locations that experienced at least one property damage accident are included in the calculations, but many experienced no rear-end property damage accidents.

Again note the lack of repetition of many locations on the lists due to randomness at intersections of low accident frequency. While the M-60, Moscow Road intersection appears on the "before" histogram and not on the "after" is not of great interest to us, note the average rear-end accident change from 0.319 before to 0.266 after.

REAR END

REAR END

```
                    NUMBER OF LOCATTONG
                1 2 3 3 4 0
ACC*123456789012345678901234567800123456789012345678901234567890123
    OWXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 10 108
    Q %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYXXXXXXXXXXXXXXXXXXXXXXYXXXXX 253
    Z*XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    3*00000
    4*0000
    5*
    6*
    7*0
    8*0
ACCIDENT TYPE # 3
LOCATIONS = 1319
AVE ZAHR VOLUME= 6910
AVE ACCIDENTS =0.266
UPPER LIMIT = 2.990
HIGH HAZZARD LOCATIONSm 11
```

CSECT MP ACC ROUTE XROADMMDOBLOCK LOCAL GOVIT COUNTY

11052	21.13	3	US31.33
12022	5.18	3	US $\mathrm{S}_{1} 12$
23041	15.47	4	Ma43
39082	2.75	4	M43 $=1489$
39102	2.74	3	Mmb 89
41031	5.28	3	Mos 37
44042	7.75	3	$\mathrm{M}=021$
50022	3.01	8	M-59
61073	0.26	4	USw318R
77033	1.94	4	M-25
81031	14.02	7	US*12

RURAL MIDBLOCK IN ST JOSEPH CIBERRIEN G AT DUINCY GRANGE ROAD QUINCY THP BRANCH CO AT JENNE ST GRAND LEDGE EAYON at hemaple avenue klmazoo twp kalamazoo AT $37 T H$ STREET RICHI.AND TEPKALAMAZOO AT 68TM ST CALEDONFA THKENT CO AT LK. PLEASANT RD/CR ATTICA THP. LAPEER CO AT HAYES ROAD MACACLINT TMACOMB CO AT S WHITEHALL RO WHITEHALL TWMUSKEGON at metcalf road burtchyille stclatre AT STATE RD. PITTSFIELD TWASHTENAN

BEFORE

VEHICLE VOLUME COUNT

GRAPHIC SUMMARY SHEET
Study \$34

DATE 3-30/31-72 DAY Thur.-Fri. COUNTY_Jackson

8 HOUR TOTAL

Moscow Rd. 50

PART D

> BL-94 (Michigan) at Kroger

Part D

A one-half mile section of BL-94 (Michigan) in a strip commercial area between Ganson Street and US-127 in Blackman Township, Jackson County, was widened from four to five lanes. The project cost was $\$ 489,000$ including acquisition of right-of-way, and construction took place between September of 1976 and July of 1977.

BL-94 (Michigan) through this area was a 4-lane roadway east of the city of Jackson, population 46,000 , that carried an average of 20,000 vehicles per day in 1975. Roadside environment is strip commercial that had intensified to the point where turning movements and accidents justified reconstruction. There is also a signalized intersection, Dettman Road, in this section that experienced a disproportionate number of left-turn related accidents.

Previous studies on similar developed areas showed significant reductions in left-turn and rear-end type accidents after reconstruction. The anticipated benefit was $\$ 50,000$ per year (1976 estimate) which may appear low when compared with the large initial expenditure. It was felt that the accident experience would increase greatly as the development continued if no action was taken. It should be noted that this project was delayed for two years due to problems with acquisition of right-of-way.

The following analysis shows that there was a significant reduction in most measures of effectiveness when the period after construction was compared to that of the one before. Dollar savings in injury/fatals and property damage accidents amounted to $\$ 186,000$ per year. The benefit/cost ratio is 3.5 .

Study Parameters

The Major Purpose of the Project:

1. Reduce total accident experience and related severity primarily through reduction in left-turn and rear-end accidents.

Major Objective of Study:

1. Determine the effect of the project on the above.

Measures of Effectiveness:

1. Percent change in total accidents.
2. Percent change in left-turn and rear-end accidents.
3. Percent change in driveway related accidents.
4. Percent change in associated injuries.

Data Requirements:

Total accidents (by severity and type)
Left-turn accidents and rear-end accidents (by severity)
Traffic volumes (manual turning movement at drives and Dettman Road)
Project cost
Construction period

Parametric Comparison

Sumary Table D1 contains accident and exposure data for three years before and $2 \frac{1}{2}$ years after the improvement. Section rates are shown although there is a major signalized intersection included, as well as several driveways. Graphical summary sheets for the driveway volume counts on pages and show redistribution of traffic necessitated by the closure of drive No. 2 and geometric revisions at Ganson-Peach.

Statistically significant changes in two of the measures of effectiveness are apparent, total accidents and left-turn accidents. The Poisson curve for 95 percent leve? was again used.

Economic Analysis
Initial cost of project paid in $1977=\$ 489,000$
Neglect charges in maintenance costs.
Annual benefits:
a. The fatality reduced will be treated as a combined injury/fatality
b. An annual average of 22.7 personal injury/fatalities reduced. 11.5
property damage only accidents reduced
c. Left-turn accidents were reduced from an average of 20 per year to seven

Use 1978 National Safety Council Figures

```
$5,800 for an injury
$ 850 for PDO
```

The weighted injury/fatality value is $\$ 7,550$.
The estimated service life for this project is 20 years with zero salvage value. Interest rate selected: 9 percent.

Equivalent Uniform Annual Cost and Benefit:

$$
\begin{aligned}
\text { EUAC }= & (\mathrm{I}) C R \frac{i}{n}+K-(T) \operatorname{SE} \frac{\mathrm{i}}{\mathrm{i}} \\
& (\mathrm{~K}=0, \mathrm{~T}=0) \\
\mathrm{EUAC}= & \$ 489,000(.1096)=\$ 53,600
\end{aligned}
$$

Table D-1: Data Summary Table For The Before and After Study

	3 Years	23 Years	
Data Variables	Before	After	+
Accidents			¢
Total Accidents	247	145	
Left-Turn Accidents	59	18	\%
Rear-End Accidents	44	41	\%
Severity			\%
Fatal Accidents		0	
Total Personal Injury Accidents	$77(124)$	32 (49)	\%
Left-Turn Personal Inj. Acc.	18(31)	3(5)	,
Rear-End Personal Inj. Acc.	12(18)	$8(9)$	
Exposure			\%
Average Daily Traffic	33,400	35,600	\%
Million Vehicle Miles	18.3	16.3	\%
Rates			\%
Total Accidents/MVM	13.50	8.90	
Left-Turn Accidents/MVM	2.68	1.66	\%
Rear-End Accidents/MVM	2.40	2.52	+
Fatals/MVM	. 05	0.0	
Personal Injury Accidents/MVM	4.21	1.96	

Again an average value was used for the annual benefit using the weighted injury value of $\$ 7,550$ and PDO of $\$ 850$.

$$
\begin{aligned}
& 22.7 \times \$ 7,550=176,000 \\
& 11.5 \times \$ 850=\frac{10,000}{\$ 186,000}
\end{aligned}
$$

$B / C=\frac{\$ 186,000}{\$ 53,600}=3.5$
Using the simplified zero interest approach, our estimated updated TOR (time of return) is:

$$
\$ 489,000 / \$ 186,000=2.6 \text { years }
$$

BEFORE

YEHICLE YOLUME COURT GRAPHIC SUMMARY SHEET

VEhCE VOLUME count
 GRABHIC SUMAMARY SHEET

Study \#035
AFTER

Dettman Rd.

AFTER

PART E

M-24 at F1Int Street
 Looking South

AFTER

Part E

Introduction

This project involved widening $\mathrm{M}-24$ in the village of Lake Orion, Oakland County, from four lanes to five to provide a center lane for left turns at Flint Street as well as a short section to Shadbolt Street, an adjacent crossroad. Construction occurred between June and October in 1977 at a cost of $\$ 214,000$ including right-of-way costs.

Background History and Analysis: Lake Orion, population 3,000, is located in the southeast portion of the state approximately 30 miles north of the heart of Detroit. $M-24$ is a major north-south route carrying 25,000 vehicles per day. In the vicinity of Flint and Shadbolt Streets, the trunkline cross section was four lanes with curb and gutter. The M-24, Flint Street intersection is signalized. Studies showed that the south to eastbound left-turn movement was 697 in the standard 8 -hour manual survey. A consistent, correctable pattern of rear-end and head-on left-turn accidents was defined. (Work was delayed for two years due to right-of-way acquisition.)

Previous before-and-after studies performed on this type of project revealed a reduction of approximately 50 percent in trunkline left-turn and rear-end type accidents.

This table shows three years of accident experience with only the trunkline rear-end and left-turn accidents shown in the "Susceptible to Reduction" column. Based on past experience, when computing expected reductions, the improvement is assumed to cause no increase in other types of accidents.

The anticipated annual benefit through accident reduction was $\$ 50,000 /$ year (1976 estimate). Analysis of before and after data indicates the actual benefit to be $\$ 72,000$ and the benefit/cost ratio to be 3.1 .

Study Parameters

Purpose of Project:

1. Reduce total accident experience and associated injuries by significantly reducing trunkline rear-end and left-turn accidents.
2. Reduce associated left-turn delay and signal violation (several turns were occurring on red).

The objectives of the evaluation are:

1. Determine the effect of the project on total accidents.
2. Determine the effect of the project on the severity of accidents.
3. Determine the effect of the project on left-turn and rear-end accidents and related severity.
4. Determine the effect on left-tum delays and signal violations.

Measures of Effectiveness:

1. Percent change in total accidents.
2. Percent change in injuries.
3. Percent change in left-turn and rear-end accidents.
4. Percent change in left-turn delays and signal violations.

Data: Requirements:
Total accidents (by type and severity)
Trunkline left-turn and rear-end accidents (by severity)
Traffic volumes (manual turning movement counts)
Delay and signal indication observance study
Total project cost
Construction period

Parametric Comparison

Summary Table E-1 shows three years before and $2 \frac{1}{2}$ years after accident experience and exposure data based on traffic surveys conducted in 1972 and 1978.

Total accidents were reduced 38 percent which is significant at the Poisson 95 percent level of confidence.

Economic Analysis

Initial cost of project paid in $1977=\$ 214,000$
Neglect charges in maintenance costs
Annual Benefits:
a. No fatals reduced.
b. 11.4 personal injuries reduced, 7.3 PDO accidents reduced.
c. Left-turn and rear-end accidents were reduced from 23 to 11.

Table E1: Data Summary Table For The Before and After Study

	3 Years	27 $\frac{1}{2}$ Years
Data Variables	Before	After
Accidents		
Total Accidents	118	63
Trunkline Rear-End Acc.	28	20
Trunkline Left-Turn Acc.	42	7
Severity		
Personal Injury Acc.	$36(63)$	$13(24)$
Trunkline Rear-End Personal Inj. Acc.	7 (11)	$2(2)$
Trunkline Left-Turn Personal Inj. Acc.	15(33)	$4(10)$
Exposure		
Average Daily Traffic	33,700	36,000
Million Vehicles for 3 Years and $2 \frac{1}{2}$ Years	36.9	33.8
Rates		
Total Accidents/My	3.20	1.86
Personal Injury Acc./MV	. 98	. 38
Trunkline Rear-End Personal Inj. Acc./MV	. 19	. 06
Trunkline Left-Turn Pesonal Inj. Acc./MV	. 41	. 12

Use 1978 National Safety Council Figures:

```
$5,800 for an injury
$ 850 for PDO
```

The estimated service life for this project is 20 years with zero salvage value. Interest rate selected: 9 percent.

Equivalent Uniform Annual Cost and Benefit:
EUAC $=(I) C R \frac{i}{n}+K-(T) S F E$
($K=0, T=0$)
EUAC $=\$ 212,000(.1096)=\$ 23,235$
A single value was again used for the annual benefit using $\$ 5,800$ per injury reduced and $\$ 850$ for PDO eliminated.

$$
\begin{array}{r}
11.4 \times \$ 5,800=\$ 66,120 \\
7.3 \times \$ 850=\frac{\$ 6,205}{\$ 72,325} \\
B / C=\frac{\$ 72,325}{\$ 23,230}=3.11
\end{array}
$$

Using the simplified zero interest approach, our estimated updated TOR (time of return) is:

$$
\frac{\$ 212,000}{\$ 72,325}=2.9 \text { years }
$$

Comparison of Left-Turn Data

M-24 at Elint Street

Though little statistical significance should be assumed in comparing these two samples, it appears that the increase in capacity afforded by the project was overcome by the volume increases and the number of signal violations increased rather than decreased. One then questions the relationship between signal violations and accident experience.

MIDAS Comparisons

M-24 at Flint Street

Histograms presented on the next two pages are for demonstration only and show the study location appearing in 1975 but not in 1977 for the parameters given; left-turn accidents at 4-lane, two-way signalized intersections with average daily traffic between 25,000 and 36,000 vehicles. Since the construction occurred in 1977, no inference can be made here. The format for MTDAS was changed in 1978 from injury only accidents to total so no comparison is available for the "after" year.

LEFT TURN
BEFORE

> NUMBER OF LOCATIONS
$1 \quad 2 \quad 3 \quad 3$
5
6
$A C C * 123456789012345678901234567890123456789012345678901234567890123$
O* $X X$
$1 * X X X X X X X X X$
2* $\times X \times X \times X$
3*0
4*0000
$5 * 0$
6*
$7 * 0$
$A C C D D E N T$ TYPE $=4$
LOCATIONS $=48$
AVE 24HR VOLUME $=29849$
AVE ACCIOENTS $=1.083$
UPPER LIMIT $=2.990$
HIGH HAZZARO LOCATIONS\& 7

CSECT	MP	$A C C$	ROUTE		AD/MIDBLOCK	b.OCAL GOVIT	county
50031	6.55	5	M-97	AT	MASONIC ROAD	FRAZER CITY	MACOME CO
63041	17.64	7	M=59	AT	CASS LAKE RGAO	WATERFORD T	OAKLAND C
63041	18.62	4	M-59	AT	VOORHETS ROAD	WATERFORD T	OAKLANO
63053	1.51	4	US-10	AT	ANDERSONVILLE ROAD	WATERFORD	OAKLANO C
63112	7.32	4	$\mathrm{M}=24 / \mathrm{I}-75 \mathrm{BL}$	AT	FLINT/LAKE STS.	WK, ORION C	YOAKLAND
63131	1.24	3	$\cdots=150$	AT	WATTLES/17 MIEERD	POWTIAC CITY	YOAKL AND
73062	7.01	4	M-4 46	AT	WHEELER STREET	SAGINAW CITY	SAGINAW

LEFT TURN

AFTER

NUMBER OF LOCATIONS				
1	2	3	4	5

```
ACC*123456789012345678901234567890123456789012345678901234567890123
    0* XXXXXXXXXXXXXXXXXXXXXXXXXX
    1* *XXXXXXXXXXXX
    Z#XXXXXXXX
    3*000
    4*000
    5*0
ACCIDENT TYPE =4
IOCATIONS = 47
AVE 24HR VOLUNE=29055
AVE ACCIDENTS = 1.035
UPFER LIMIT = 2.990
HIGH HAZZARD LOCATIONS=% 7
```

CSECT	MP	$A C C$	ROUTE	XROAD/MIOQLOCK		LOCAL GOV'T COUNTY	
28013	2.00	4	US31/472/137	AT	E UCT M $37 / G A R F I E L D$	TRAVERSE	CTYGR TRAVER
33011	4.70	3	Ma99	AT	MT HOPE AVE	LANSING	INGHAM
39082	0,23	3	M43 m M ${ }^{\text {ma }}$	AT	RIVERVIEN AVENUE	KLMAZOO	CJTYKALAMAZOO
73002	3.95	4	M-46	AT	RIVEP ROAD	SHIELDS	VILLSAGINAM C
73062	4.65	5	Mast 6	AT	JCTMm47, MIDLAND RD	SAGINAN	THP SAGTNAW C
73062	5.83	4	$M=46$	AT	CENTER ROAD	SAGINAW	TWP SAGINAN C
73062	7.44	3	M*460	AT	ELM STREET	SAGINAW	CITYSAGINANC

VEHICLE VOLUME COUNT
GRAPHIC SUMMARY SHEET

Study \#346

M-24 (Lapeer Rd.)
8 Hour Total
NW
$-$

Flint St.

HNOICATES PEDESTRIANS CROSSING AT INTEPSECTION C - CHILDREN
A - AOULTS

- ALL PEDESTRIANS

VEHICLE VOLUME COUNI
 GRAPHIC SUMMARY SHEET

Study \#033
AFTER
DATE4/24-25/78 DAY, Mon/Tues_county_oak1and time

M-24 at FLTNT Street Looking North

BEFORE

AFTER

Perhaps the most important contribution the workshop participants can make is to objectively analyze the work they have performed these past months preparing the evaluation and offer recommendations for future evaluation of projects.

In general, the procedures are quite straightforward and easy to follow. At the onset the requirements for listing objectives and purposes and measures of effectiveness seemed trivial, but they are important in setting up a study plan, of less importance for inclusion in a final report.

It is our feeling now, as was the consensus of those at the September 1977 evaluation seminar, that too much of the Student Manual is devoted to functions A through D which involve rather rudimentary tasks. More training is required in functions E, F, and G which involve the parametric comparisons, statistical significance, and economic analysis. The methods followed in evaluating these five projects were quite effective in determining project success or failure. If any one area requires more emphasis it is the statistical significance testing portion as well as statistical design of study sample sizes and measures of effectiveness.

Our use of MIDAS has demonstrated its benefits as both a surveillance tool in selecting locations for improvement and as an evaluation tool as the ultimate in control group comparison.

The cost of this evaluation training (including this report.) is about $\$ 9,000$ or 1 percent of the total cost of the five projects evaluated. The cost of the projects and the evaluation were returned to the taxpayers in less than three years.

12-10-80
$\operatorname{REM}(14 \mathrm{G}-527)-7$

