

### MICHIGAN DEPARTMENT OF TRANSPORTATION

An Evaluation of 8-Phase Signal Control

TSD 486-81

Peter M. Briglia, Jr.

by

Safety Programs Unit

November 1981

### STATE TRANSPORTATION COMMISSION

Hannes Meyers, Jr. Chairman

Rodger D. Young Commissioner

Lawrence C. Patrick, Jr. Commissioner Carl V. Pellonpaa Vice-Chairman

Weston E. Vivian Commissioner

William C. Marshall Commissioner

DIRECTOR John P. Woodford

#### ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance of the following Michigan Department of Transportation, Traffic and Safety Division employees in the preparation and running of the NETSIM computer simulations. Their patience was greatly appreciated.

> Jim Eisfelder - Electronic Systems Unit Karen McDonald - Safety Programs Unit Ken Slee - Safety Programs Unit

Other Traffic and Safety Division employees who furnished data used in this report include:

ſ

. . *E* .

 $\dot{U}$ 

Terry Berquist (presently working in Design Division) Stan Lingeman Michael Sibal

#### ABSTRACT

A before-and-after study was undertaken by the Michigan Department of Transportation to assess accident experience and changes in travel time, stopped delay, fuel consumption, and vehicle emissions after changing from two-phase, fixed-time control to 8-phase, fully-actuated control at nine Michigan intersections.

The intersections selected for 8-phase control were unique in that they were generally located at or near large regional shopping centers in a suburban setting. Variable and high left-turning volumes were present resulting in significant delays and a pattern of head-on, left-turn accidents for leftturning motorists.

Total, property damage, and injury accidents and injuries decreased. Property damage accidents were reduced at six intersections, combined injury/fatal accidents were reduced at seven, and combined injuries/fatalities were reduced at eight. Left-turn, angle, and head-on accidents were decreased and rear-end accidents were increased. Property damage accident rates decreased at five intersections and combined injury/fatal accident rates decreased at eight. Tests of statistical significance are discussed in the text.

NETSIM modelling of three intersections at a non-peak hour showed increases in travel time, stopped delay, fuel consumption, and vehicle emissions.

## TABLE OF CONTENTS

and the second se

|                                        | Page |
|----------------------------------------|------|
| Acknowledgements                       | i    |
| Abstract                               | íi   |
| List of Tables                         | iv   |
| Summary                                | v    |
| Introduction                           | 1    |
| Location Map                           | 2    |
| Conclusions                            | 3    |
| Volumes                                | 4    |
| Accident Frequency                     | 6    |
| Accident Rates                         | 8    |
| NETSIM Traffic Model ,                 | 10   |
| Appendix A - Accident Tabulation       | 13   |
| Appendix B - Statistical Analysis      | 16   |
| Appendix C - NETSIM Simulation Summary | 25   |

## LIST OF TABLES

····

j

| Number     | Title                                       | Page |
|------------|---------------------------------------------|------|
| ʻ <b>1</b> | Daily Approach Volumes                      | 5    |
| 2          | Non-Peak Hour Volumes (11 A.M. to Noon)     | 5    |
| ିଞ         | Peak Hour Volumes                           | 5    |
| 4          | Expected and Observed Accidents             | 7    |
| 5          | Number of Accidents by Type                 | 8    |
| 6          | Accident Rates                              | 9    |
| 7          | Results of NETSIM Modelling (Non-Peak Hour) | 11   |

#### SUMMARY

A before-and-after study was undertaken by the Michigan Department of Transportation to assess accident experience and changes in travel time, stopped delay, fuel consumption, and vehicle emissions after changing from two-phase, fixed-time control to 8-phase, fully-actuated control at nine Michigan intersections.

The intersections selected for 8-phase control were unique in that they were located at or near large regional shopping centers generally in a suburban setting. Variable and high left-turning volumes were present resulting in significant delays and a pattern of head-on, left-turn accidents for leftturning motorists.

Volume changes at all intersections ranged from a 7 percent decrease to a 24 percent increase. Left-turn volumes at the three intersections selected for NETSIM modelling increased by 50 percent.

The total number of accidents at the nine intersections decreased by 10 percent. Property damage accidents decreased by 6 percent, injury accidents decreased by 20 percent, and injuries by 28 percent. The small number of fatal accidents and fatalities make it impossible to draw legitimate conclusions concerning them.

Six of the nine intersections experienced fewer property damage accidents than had been anticipated. Seven of nine showed fewer combined injury and fatal accidents and eight of nine showed fewer combined injuries and fatalities. The overall reductions in accidents for the three categories were statistically significant at the 99 percent confidence level.

Left-turn, angle, and head-on accidents decreased by 91 percent, 67 percent, and 33 percent, respectively. Rear-end accidents increased by 66 percent.

Property damage accident rates decreased at five intersections and increased at four intersections. The combined injury and fatal accident rates decreased at eight intersections and increased at one intersection. The difference in property damage accident rates was not statistically significant. The difference in combined injury and fatal accident rates was significant at the 99 percent confidence level.

NETSIM modelling of three intersections at non-peak hour (11 a.m. to noon) volumes showed average increases of 65 percent in travel time, 656 percent in stopped delay, 51 percent in fuel consumption, 37 percent in hydrocarbon emissions, 55 percent in carbon monoxide emissions, and 7 percent in emissions of oxides of nitrogen.

v

on a h

#### Introduction

Michigan's first 8-phase traffic-actuated signal was installed in May, 1970, at the junction of Jackson (BL-94) and Maple Roads in Ann Arbor. Eleven additional 8-phase signals were installed between 1970 and 1977. These signals were generally located at or near large regional shopping centers in suburban settings. Variable and high left-turn volumes were present resulting in significant delays and a pattern of head-on, left-turn accidents for left-turning motorists. The signals were installed to reduce left-turn delay by freeing left-turning movements of opposite-direction, through-traffic conflicts.

Nine intersections controlled by 8-phase traffic-actuated signals were evaluated to determine the effects of this control compared to the two-phase signal controls they replaced. Three intersections were deleted from consideration due to extensive changes in the roadway between the before and after periods. The factors evaluated were accident experience, travel time, stopped delay, fuel consumption, and vehicle emissions. These factors were evaluated using a NETSIM analysis of several of these intersections.

The nine intersections, their locations (see Location Map, page 2), dates of 8-phase signal installation, and speed limits are:

- Jackson (BL-94) at Maple, Ann Arbor, 5-4-70 Posted Speed: 35 mph (both roads)
- Saginaw (M-43) at Waverly, Lansing, 2-22-70 to 10-21-71
   Posted Speed: Saginaw (40 mph), Waverly (45 mph)

(This signal operated under 4-phase, fixed-time control for brief periods during the installation period due to malfunctions of the 8-phase, fully actuated signal).

- Logan (M-99) at Holmes, Lansing, 1-10-72 Posted Speed: Logan (40 mph), Holmes (WB-30 mph, EB-35 mph)
- Cedar (BL-96) at Jolly, Lansing, 12-23-74
   Posted Speed: Cedar (NB-35 mph, SB-45 mph), Jolly (35 mph)
- 5. Grand River (M-43) at Hagadorn, East Lansing, 7-28-76 Posted Speed: Grand River (WB-35 mph, EB-40 mph), Hagadorn (35 mph)
- Washtenaw (M-17) at Carpenter, Ann Arbor, 10-28-76
   Posted Speed: Washtenaw (45 mph), Carpenter (35 mph)
- Logan (M-99) at Jolly, Lansing, 5-25-77
   Posted Speed: Logan (40 mph), Jolly (35 mph)
- Fair (M-139) at Napier, Benton Harbor, 8-12-77 Posted Speed: Fair (45 mph), Napier (35 mph)
- 9. 28th Street (M-11) at East Beltline (M-37), Grand Rapids, 10-27-77 Posted Speed: 28th Street (WB-45 mph, EB-50 mph), East Beltline (50 mph)





į.



(e. . .

#### Conclusions

The purpose of installation of 8-phase, fully-actuated traffic control was to effectively accommodate large, variable, left-turning movements.

These signals reduced injuries and injury accidents by 20 and 28 percent, respectively. Seven of the nine intersections showed fewer combined injury and fatal accidents than expected and eight of the nine showed fewer combined injuries and fatalities than expected. The combined injury and fatal accident rates decreased at eight intersections and increased at one. The overall decrease was statistically significant. Although total accidents decreased by 10 percent and property damage accidents decreased by 6 percent, these decreases were not uniform. Five of the nine intersections showed decreased property damage rates, but the overall change in rates was not statistically significant.

The 8-phase signals produced the expected changes in accident types - i.e. decreasing left-turn, angle, and head-on accidents and increasing rear-end accidents. The overall effect of the installation of the 8-phase signals on accident types was to reduce accident types that occurred at the actual intersection (i.e. between crosswalks) and increase accident types that occurred on the approaches (i.e. parking, rear-end, and "other" accidents). This shift in accident types was presumably due to the longer back-ups created at these signals and the increased conflicts at driveways in the vicinity of these intersections as a result of these back-ups.

It was not possible to classify injuries by severity in this study. An additional study, using a smaller sample size and actual accident reports indicating injury severity, would aid in evaluating changes in average severity.

The results of NETSIM modelling indicated increased travel time, stopped delay, fuel consumption, and vehicle emissions. These changes ranged from a 7 percent increase in oxides of nitrogen emissions to a 656 percent increase in stopped delay during a non-peak hour. Part of these increases may be attributed to the volume increases at two of the three intersections and the increase in left-turning volumes of 50 percent, and part to the increased delay due to the installation of 8-phase control. Back-up delay studies conducted for two of the intersections indicated peak hour delays may be up to twice the non-peak hour delays. Field observations and the results of the NETSIM modelling indicate that adequate storage must be provided to accommodate these large back-ups without impacting an excessive number of intersections and driveways in the vicinity.

A study utilizing the NETSIM program currently being developed to better simulate fully-actuated signals would be useful to confirm the results of this study and simulate the peak hour.

Clearly, the installation of an 8-phase, fully-actuated signal is a drastic measure, to be used when significant left-turn volumes cause the left-turn delay and head-on, left-turn accidents to become excessive. Fixed-time signals with left-turn phases may provide similar operational characteristics and cost less to install and maintain. A comparative study would prove beneficial to traffic engineers seeking to more effectively accommodate left-turning vehicles.

#### Volumes

Daily approach volumes were obtained from machine counts performed before and after installation of the 8-phase signals. For three intersections only one count was available (i.e. either the before or after count was not taken), and the same volumes were used for the before and after periods. These volumes are shown in Table 1.

### Table 1 Daily Approach Volumes

|    |                                            |        | Pere  | centage |
|----|--------------------------------------------|--------|-------|---------|
|    | Location                                   | Before | After | Change  |
| 1. | Jackson (BL-94) at Maple                   |        | 39018 |         |
| 2. | Saginaw (M-43) at Waverly                  | 59537  | 56618 | - 5     |
| 3. | Logan (M-99) at Holmes                     | 40798  | 46699 | +14     |
| 4. | Cedar (BL-96) at Jolly                     | 42017  | 47469 | +13     |
| 5. | Grand River (M-43) at Hagadorn             | 50888  | 51982 | + 2     |
| 6. | Washtenaw (M-17) at Carpenter              | 43354  | 53841 | +24     |
| 7. | Logan (M-99) at Jolly                      | 35147  |       |         |
| 8. | Fair (M-139) at Napier                     | 33666  |       |         |
| 9. | 28th Street (M-11) at East Beltline (M-37) | 57291  | 53056 | - 7     |

"Same count used for "before" and "after" daily approach volume.

Table 2 shows the total hourly approach volumes and hourly left-turn volumes of all approaches at the non-peak hour (11 a.m. to noon) for the three intersections selected for NETSIM modelling. Table 3 shows the same information for the peak hour.

### Table 2 Non-Peak Hour Volumes (11 a.m. to Noon)

### Left-Turn Volume All Approaches

Total Approach Volume

| Location                       | Before        | After | Percentage<br>Change | Before | After | Percentage<br>Change |
|--------------------------------|---------------|-------|----------------------|--------|-------|----------------------|
| Saginaw (M-43) at Waverly      | 436           | 681   | +56                  | 3,706  | 3,379 | ~ 9                  |
| Cedar (BL-96) at Jolly         | 346           | 519   | +50                  | 2,087  | 2,628 | +26                  |
| Grand River (M-43) at Hagadorr | 1 <b>32</b> 5 | 499   | +54                  | 1,843  | 2,818 | +53                  |

### Table 3 Peak-Hour Volumes

### Left-Turn Volume All Approaches

Total Approach Volume

| Location                      | Before | After | Percentage<br>Change | Before | After | Percentage<br>Change |
|-------------------------------|--------|-------|----------------------|--------|-------|----------------------|
| Saginaw (M-43) at Waverly     | 451    | 808   | +79                  | 4,800  | 4,521 | - 6                  |
| Cedar (BL-96) at Jolly        | 405    | 715   | +77                  | 3,058  | 3,879 | +27                  |
| Grand River (M-43) at Hagador | n 449  | 752   | +67                  | 3,424  | 4,323 | +26                  |

#### Accident Frequency

Three years of "before" accident data were evaluated for all intersections. Three years of "after" accident data were evaluated for all intersections except Logan (M+99) at Jolly; Fair (M+139) at Napier; and 28th Street (M+11) at East Beltline (M-37): Only two years and seven months of data were available for these because of their more recent installation of 8+phase signals. The data for these intersections were extrapolated by straight-line method to reflect 3-year periods. The complete accident data for all nine intersections are shown in Appendix A. Accidents were obtained for distances of 500 feet on either side of the intersections to include any increase in driveway accidents due to traffic backed+up at the signals. All intersections were controlled by two-phase, fixed+time signals in the "before" period and 8+phase; fully-actuated signals in the "after" period.

The numbers of accidents for all nine intersections for three years are shown below:

|                           | Béfore | After      | Percentage Change |
|---------------------------|--------|------------|-------------------|
| Total Accidents           | 1,556  | 1,402      | -~ <b>10</b> ()   |
| Property Damage Accidents | 1,113  | 1,049      | - 6               |
| Injury Accidents          | 442    | 350        | - 21              |
| Injuries                  | 706    | 511        | - 28              |
| Fatal Accidents           | 1      | 3          | +200              |
| Fatalities                | 1      | <b>4</b> 2 | +300              |

Despite volume changes ranging from a 7 percent decrease to a 24 percent increase, the total number of accidents at these intersections decreased by 10 percent. Property damage accidents decreased by 6 percent, injury accidents decreased by 21 percent, and injuries decreased by 28 percent. The small number of fatal accidents and fatalities make it impossible to draw legitimate conclusions.

The numbers of property damage accidents, injury and fatal accidents, and injuries and fatalities expected to occur in the "after" period were projected using the corresponding numbers in the "before" period and the rate of change of these factors for the entire state (Table 4). Injury accidents and fatal accidents, and injuries and fatalities were combined due to the low number of fatal accidents and fatalities. Chi-square tests were used to determine the statistical significance of the reductions (Appendix B). The overall reductions in property damage accidents, injury and fatal accidents, and injuries and fatalities for all nine intersections were statistically significant at the 99 percent confidence level. However, two intersections (Grand River at Hagadorn and Fair at Napier) were the major contributors to the property damage accident Chi-square value. Two intersections (Grand River at Hagadorn and 28th Street at East Beltline) were the major contributors to the injury and fatal accident Chi-square value. Three intersections (Grand River at Hagadorn, Fair at Napier, and 28th Street at East Beltline) were the major contributors to the injuries and fatalities Chi-square value.

Six of the nine intersections showed fewer "after observed" than "after expected" property damage accidents. Seven showed fewer injury and fatal accidents and eight showed fewer injuries and fatalities.

|                                                 | Property      | 7 Damage A        | Accidents         | <u>Injury a</u> | nd Fatal          | Accidents         | Injuries and Fatalities |                   |                   |  |  |  |  |
|-------------------------------------------------|---------------|-------------------|-------------------|-----------------|-------------------|-------------------|-------------------------|-------------------|-------------------|--|--|--|--|
| Location                                        | <u>Before</u> | After<br>Expected | After<br>Observed | Before          | After<br>Expected | After<br>Observed | Before                  | After<br>Expected | After<br>Observed |  |  |  |  |
| Jackson (BL-94)<br>at Maple                     | 21            | 25                | 35                | 18              | 16                | 12                | 25                      | 28                | 16                |  |  |  |  |
| Saginaw (M-43)<br>at Waverly                    | 159           | 187               | 160               | 57 ·            | 51                | 55                | 101                     | 107               | 79                |  |  |  |  |
| Logan (M-99)<br>at Holmes                       | 128           | 139               | 137               | 57              | 53                | 51                | 77                      | 67                | 74                |  |  |  |  |
| Cedar (BL-96)<br>at Jolly                       | 127           | 134               | 141               | 39              | 37                | 39(1)             | 74                      | 67                | 51(2)             |  |  |  |  |
| Grand River (M-43<br>at Hagadorn                | 140 140       | 169               | 112               | 72              | 85                | 58(2)             | 105                     | 126               | 99(2)             |  |  |  |  |
| Washtenaw (M-17)<br>at Carpenter                | 157           | 190               | 152               | 56              | 66                | 33                | 94                      | 113               | 51                |  |  |  |  |
| Logan (M-99)<br>at Jolly                        | 60            | 66                | 70*               | 26              | 29                | 23*               | 34                      | 38                | 34*               |  |  |  |  |
| Fair (M-139)<br>at Napier                       | 188           | 206               | 105*              | 50              | 55                | 38*               | 83                      | 92                | 52*               |  |  |  |  |
| 28th Street (M-11<br>at East Beltline<br>(M-37) | 133           | 146               | 137*              | 68(1)           | 75                | 44*               | 114(1)                  | 126               | 59*               |  |  |  |  |

# Table 4Expected and Observed Accidents (3-Year Total)

\*Two years, seven months of data extrapolated to three years. ( ) denotes number of fatal accidents and fatalities.

> There were three "after" period fatal accidents. In 1979, a motorist passing through the intersection of Grand River and Hagadorn on the amber signal struck a pedestrian resulting in a fatality. The other fatal accident at Grand River and Hagadorn occurred in 1977 and involved a rear-end collision. The remaining fatal accident occurred in 1975, at the intersection of Cedar and Jolly and was a fixed object collision that resulted in two fatalities.

Table 5 shows the total number of accidents, by type, for all nine intersections. As expected, angle, left-turn, and right-turn accidents decreased and rear-end accidents increased. Chi-square tests were used to evaluate the significance of the changes (Appendix B). The accident types were divided into two categories,

those that increased and those that decreased, and separate Chi-square tests were performed on each. Both categories experienced statistically significant changes at the 99 percent confidence level. The major contributors to the Chi-square value for those intersections which had increases were parking and "other" accidents. Rear-end accidents contributed a minor amount to the overall Chi-square value. The major contributors for those intersections which had decreases were head-on, angle, and left-turn accidents. The large increase in "other" accidents was attributed to an increase in driveway and entrance-exit accidents near these intersections caused by longer traffic queues.

The overall effect on accident types of the installation of the 8-phase signals was to reduce the types of accidents which occur at the actual intersection (i.e. between crosswalks - angle, left-turn accidents) and increase the types that occur on the approaches (i.e. rear-ends, parking, and "other" accidents).

| · · ·          | Before | After | Percentage Change |
|----------------|--------|-------|-------------------|
| Head-On        | 15     | 10    | - 33              |
| SS             | 61     | 64    | . + 5             |
| Angle          | 313    | 103   | - 67              |
| Left-Turn      | 407    | 38    | - 91              |
| Right-Turn     | 34     | 14    | - 59              |
| Rear-End       | 469    | 779   | + 66              |
| Backing        | 16     | 22    | + 38              |
| Parking        | .149   | 173   | + 16              |
| Other          | 38     | 145   | +282              |
| Other - Misc.* | 54     | 54    | 0                 |
| Total          | 1,556  | 1,402 | - 10              |

#### Table 5 Number of Accidents By Type (3-Year Totals)

\*Involving other than two motor vehicles.

The signals at four of these intersections (Saginaw at Waverly, Cedar at Jolly, Grand River at Hagadorn, and 28th at East Beltline) were interconnected with other signals in the before period, while operating under two-phase control. However, the distance between the interconnected signals was so great that traffic progression generally was not very good. Therefore, no attempt was made to assess the effects of the installation of the 8-phase signals on traffic progression.

#### Accident Rates

Table 6 shows the yearly accident rates per million vehicles for all nine intersections. The volumes used to calculate these rates are those shown in Table 1. Property damage accident rates decreased at five intersections and increased at four intersections. Injury and fatal accident rates decreased at eight intersections and increased at one intersection.

|                                                  | Propert | y Damag | e Accidents          | Injury | Injury and Fatal Accidents |                      |  |  |  |  |  |  |
|--------------------------------------------------|---------|---------|----------------------|--------|----------------------------|----------------------|--|--|--|--|--|--|
| Location                                         | Before  | After   | Percentage<br>Change | Before | After                      | Percentage<br>Change |  |  |  |  |  |  |
| Jackson (BL-94)<br>at Maple                      | 0.49    | 0.82    | +67                  | 0.42   | 0.28                       | -33                  |  |  |  |  |  |  |
| Saginaw (M-43)<br>at Waverly                     | 2.44    | 2.58    | + 6                  | 0.87   | 0.89                       | + 2                  |  |  |  |  |  |  |
| Logan (M-99)<br>at Holmes                        | 2.87    | 2.68    | - 7                  | 1.28   | 1.00                       | ~22                  |  |  |  |  |  |  |
| Cedar (BL-96)<br>at Jolly                        | 2.76    | 2.71    | - 2                  | 0.85   | 0.75                       | -12                  |  |  |  |  |  |  |
| Grand River (M-43)<br>at Hagadorn                | 2.51    | 1.97    | -22                  | 1.29   | 1.02                       | -21                  |  |  |  |  |  |  |
| Washtenaw (M-17)<br>at Carpenter                 | 3.31    | 2.58    | -22                  | 1.18   | 0.56                       | <del>~</del> 53      |  |  |  |  |  |  |
| Logan (M-99)<br>at Jolly                         | 1.56    | 1.82    | +17                  | 0.68   | 0.60                       | -12                  |  |  |  |  |  |  |
| Fair (M-139)<br>at Napier                        | 5.10    | 2,85    | -44                  | 1.36   | 1.03                       | -24                  |  |  |  |  |  |  |
| 28th Street (M-11)<br>at East Beltline<br>(M-37) | 2.12    | 2.36    | +11                  | 1.08   | 0.76                       | -30                  |  |  |  |  |  |  |

### Table 6 Accident Rates (Accidents/MV)

()

ind Kei H The significance of the changes in accident rates was evaluated using paired T-tests (Appendix B). There was no significant difference in the before and after property damage accident rates. The difference in before and after injury and fatal accident rates was statistically significant at the 99 percent confidence level.

#### NETSIM Traffic Model

Three intersections were modelled using the NETSIM computer program. These were the intersections of Saginaw at Waverly, Cedar at Jolly, and Grand River at Hagadorn. Those intersections were simulated as operating under two-phase, fixed-time control in the "before" period and 8-phase, fully-actuated control in the "after" period. The geometrics of the intersections were simulated as they existed in the before and after periods (Appendix C). The volumes used for these simulations were machine counts taken in the years shown. Turning movement counts, taken in conjunction with the machine counts, were also used. The actual before and after volumes were used, rather than identical volumes, to best simulate the actual operating conditions. Only a non-peak hour (11 a.m. to noon) was simulated. A summary of the simulation is shown in Table 7 and the complete output statistics are shown in Appendix C.

An attempt was made to simulate the peak hour for the three intersections, however, the results seemed unrealistic. Apparently, the volumes experienced by these intersections during the peak hour are beyond the ability of the traffic-actuated portion of the NETSIM model to handle adequately.

#### Table 7 Results of NETSIM Modelling (Non-Peak Hour - 11 a.m. - 12 Noon)

|                                                  | Sagi    | naw @ Wave | •           | C       | edar @ Jol | ly          | Grand R | Average |             |             |
|--------------------------------------------------|---------|------------|-------------|---------|------------|-------------|---------|---------|-------------|-------------|
| · · · · · · · · · · · · · · · · · · ·            | Before  | After      | %<br>Change | Before  | After      | %<br>Change | Before  | After   | %<br>Change | %<br>Change |
| Year of Count                                    | 1969    | 1980       |             | 1972    | 1979       |             | 1969    | 1978    |             |             |
| Hourly Volume                                    | 3,706   | 3,379      | -9          | 2,087   | 2,628      | +26         | 1,843   | 2,818   | +53         | + 23        |
| Stopped Delay/Vehicle (Min.)                     | 0.15    | 1.70       | +1033       | 0.14    | 1.16       | +729        | 0.14    | 0.43    | +207        | +656        |
| Travel Time/Veb Mile (Min./V-Mile) <sup>1/</sup> | 2.04    | 4.21       | +106        | 2.13    | 3.58       | +68         | 2.16    | 2.63    | +22         | + 65        |
| Fuel Consumption (Gallons/Year)                  | 701,100 | 888,900    | +27         | 372,500 | 599,400    | +61         | 325,500 | 541,600 | +66         | + 51        |
| MPG                                              | 12.78   | 9.08       | -29         | 13.46   | 10.40      | -23         | 13.74   | 12.45   | -9          | - 20        |
| Vehicle Emissions                                |         |            |             |         |            |             |         |         |             |             |
| Hydrocarbons (grams/mile)                        | 2.60    | 4.01       | +54         | 2.39    | 3.38       | +41         | 2.33    | 2.71    | +16         | + 37        |
| Carbon Monoxide (grams/mile)                     | 38.79   | 69.34      | +79         | 34.40   | 55.67      | +62         | 32.85   | 40.50   | +23         | + 55        |
| Oxides of Nitrogen (grams/mileO                  | 6.39    | 6.97       | +9          | 5.60    | 6.08       | +9          | 5.38    | 5.60    | +4          | + 7         |

1/Travel time is computed over a distance beginning 2,000 feet upstream and ending 2,000 feet downstream of the intersection.

Averaging the results for the non-peak hour simulation for the three intersections gave a 65 percent increase in travel time, a 656 percent increase in stopped delay, a 51 percent increase in fuel consumption, and increases in vehicle emissions of 37 percent for hydrocarbons, 55 percent for carbon monoxide, and 7 percent for oxides of nitrogen.

Back-up delay studies conducted at Grand River at Hagadorn and Saginaw at Waverly in the after period indicated delays of 0.8 minutes and 1.2 minutes, respectively. These agree fairly well with the NETSIM figures for stopped delay of 0.4 and 1.7 minutes for the two intersections. These back-up delay studies also indicated delays of 1.8 minutes and 1.1 minutes for these intersections during the peak hour. This increase in delay is partly due to the installation of the 8-phase signals, but part must also be attributed to the increase in left-turning volumes and the increase in total approach volumes at two of the three intersections, as shown in Tables 2 and 3.

## APPENDIX A

## Accident Tabulation

- 7

|                    |                 | Grand River (M-43) at Hagadorn |      |      |       |                               |      |      |       | Jackson (BL-94) at Maple |      |       |       |      |      |       | Saginaw (M-43) at Waverly Road |      |      |      |       |      |             |       |       |
|--------------------|-----------------|--------------------------------|------|------|-------|-------------------------------|------|------|-------|--------------------------|------|-------|-------|------|------|-------|--------------------------------|------|------|------|-------|------|-------------|-------|-------|
|                    |                 | 1072                           | -    | fore |       | After<br>1977 1978 1979 TOTAL |      |      | 1067  |                          | Fore | TOTAT | 1071  | Aft  |      | TOTAL | Before<br>1967 1968 1969 TOTAL |      |      |      | 1070  |      | cer<br>1974 | TOTAT |       |
|                    |                 | 1973                           | 1974 | 1975 | TOTAL | 1911                          | 1910 | 1979 | TOTAL | 1907                     | 1909 | 1909  | TOTAL | 19/1 | 1914 | 19/5  | TOTAL                          | 1907 | 1900 | 1909 | TOTAD | 1914 | 1975        | 19/4  | TOTAL |
|                    | P.D. Accidents  | 44                             | 42   | 54   | 140   | 31                            | 39   | 42   | 112   | 3                        | 7    | 11    | 21    | 8    | 15   | 12    | 35                             | 48   | 45   | 66   | 159   | 53   | 63          | 44    | 160   |
|                    | Inj. Accidents  | 24                             | 25   | 23   | 72    | 17                            | 18   | 21   | 56    | 2                        | 6    | 10    | 18    | 6    | 4    | 2     | 12                             | 20   | 16   | 21   | 57    | 19   | 16          | 20    | 55    |
|                    | Injuries        | (34)                           | (39) | (32) | (105) | (30)                          | (36) | (31) | (97)  | (2)                      | (11) | (12)  | (25)  | (7)  | (6)  | (3)   | (16)                           | (35) | (28) | (38) | (101) | (29) | (22)        | (28)  | (79)  |
|                    | Fatal Accidents | 0                              | 0    | 0    | .0    | 1                             | 0    | 1    | 2     | 0                        | 0    | 0     | 0     | 0    | 0    | 0     | 0                              | 0    | 0    | 0    | 0     | 0    | 0           | 0     | 0     |
|                    | Fatalities      | (0)                            | (0)  | (0)  | (0)   | (1)                           | (0)  | (1)  | (2)   | (0)                      | (0)  | (0)   | (0)   | (0)  | (0)  | (0)   | (0)                            | (0)  | (0)  | (0)  | (0)   | (0)  | (0)         | (0)   | (0)   |
|                    | Total Accidents | 68                             | 67   | 77   | 212   | 49                            | 57   | 64   | 170   | 5                        | 13   | 21    | 39    | 14   | 19   | 14    | 47                             | 68   | 61   | 87   | 216   | 72   | 79          | 64    | 215   |
|                    | Head-On         | 0                              | т    | 0    | 1     | 2                             | 0    | n    | 2     | 0                        | 0    | Ω     | 0     | 0    | 0    | 0     | . 0                            | 0    | 2    | 0    | 2     | 0    | 0           | 1     | 1     |
|                    | SS-SM & SS-OP   | 1                              | 1    | 2    | 4     | 2                             | 4    | ĩ    | 7     | õ                        | õ    | 1     | ĩ     | Ő    | 2    | 2     | 4                              | 7    | ī    | 6    | 14    | 2    | 3           | 3     | 8     |
|                    | Angle           | 5                              | 9    | 14   | 28    | 4                             | 6    | 5    | 15    | · 4                      | 3    | 6     | 13    | 1    | 1    | 1     | 3                              | 23   | 25   | 20   | 68    | ī    | ĩ           | 2     | 4     |
|                    | L-Turn          | 14                             | 17   | 19   | 50    | 3                             | I    | 3    |       | 0                        | 5    | 8     | 13    | 1    | ō    | 1     | 2                              | 15   | 13   | 23   | 51    | 0    | 1           | 4     | 5     |
|                    | R-Turn          | 0                              | 1    | 0    | 1     | ō                             | 1    | 1    | 2     | 0                        | õ.   | 2     | 2     | Ō    | Ő    | õ     | 0                              | 0    | 3    | 5    | 8     | 0    | 1           | 1     | 2     |
|                    | Rear-End        | 35                             | 30   | 27   | 92    | 24                            | 30   | 41   | 95    | 1                        | 5    | 3     | 9     | 7    | 8    | 8     | 23                             | 20   | 11   | 26   | 57    | 38   | 48          | 40    | 126   |
| <b>س</b> ر<br>د با | Backing         | 2                              | 0    | 0    | 2     | 0                             | 2    | 1    | 3     | 0                        | 0    | 0     | 0     | 1    | 0    | 0     | 1                              | 1    | 0    | 1    | 2     | 0    | 2           | 0     | 2     |
|                    | Parking         | 4                              | 3    | 5    | 12    | 9                             | 0    | 0    | 9     | 0                        | 0    | 0     | 0     | 2    | 7    | 2     | 11                             | 0    | 0    | 0    | 0     | 29   | 22          | 11    | 62    |
|                    | Other           | 3                              | 2    | 0    | 5     | 0                             | 12   | 5    | 17    | 0                        | 0    | 0     | 0     | 1    | 0    | 0     | 1                              | 1    | 4    | 6    | 11    | 2    | 1           | 2     | 5     |
|                    | Other-Misc.**   | 4                              | 3    | 10   | , 17  | 5                             | 1    | 7    | 13    | 0                        | 0    | 1     | 1     | 1    | 1    | 0     | 2                              | 1    | 2    | 0    | 3     | 0    | 0           | 0     | 0     |
|                    | Total           | 68                             | 67   | 77   | 212   | 49                            | 57   | 64   | 170   | 5                        | 13   | 21    | 39    | 14   | 19   | 14    | 47                             | 68   | 61   | 87   | 216   | 72   | 79          | 64    | 215   |
|                    |                 |                                |      |      |       |                               |      |      |       |                          |      |       |       |      |      |       |                                |      |      |      |       |      |             |       |       |

.

\*\*Accidents involving other than two motor vehicles.

|   | Location        | Logan (M-99) at Jolly<br>Before After |     |      |       |      |      |     |       | Fair (M-139) at Napier<br>Before After |            |      |       |      |      | 28th Street (M-11) at Beltline (M-37)<br>Before After |       |      |      |      |       |      |      |      |       |  |
|---|-----------------|---------------------------------------|-----|------|-------|------|------|-----|-------|----------------------------------------|------------|------|-------|------|------|-------------------------------------------------------|-------|------|------|------|-------|------|------|------|-------|--|
|   |                 | 1974                                  | 1.4 |      | TOTAL | 1978 |      |     | TOTAL | 1974                                   |            |      | TOTAL | 1978 |      |                                                       | TOTAL | 1974 |      |      | TOTAL | 1978 |      |      | TOTAL |  |
|   | P.D. Accidents  | 15                                    | 28  | 17   | 60    | 28   | 23   | 9   | 60    | 67                                     | 62         | 59   | 188   | 38   | 35   | 17                                                    | 90    | 40   | 40   | 53   | 133   | 52   | 50   | 16   | 118   |  |
|   | Inj. Accidents  | 10                                    | 8   | 8    | 26    | -8   | 8    | 4   | 20    | 19                                     | 17         | 14   | 50    | 19   | 11   | 3                                                     | 33    | 15   | 21   | 31   | 67    | 13   | 14   | 11   | 38    |  |
|   | Injuries        | (14)                                  | (9) | (11) | (34)  | (12) | (13) | (4) | (29)  | (36)                                   | (27)       | (20) | (83)  | (25) | (17) | (3)                                                   | (45). | (25) | (30) | (58) | (113) | (16) | (17) | (18) | (51)  |  |
|   | Fatal Accidents | 0                                     | 0   | 0    | 0     | 0    | 0    | 0   | 0     | 0                                      | 0          | 0    | 0     | 0    | 0    | .0                                                    | 0     | 0    | 0    | 1    | 1     | 0    | 0    | 0    | 0     |  |
|   | Fatalities      | (0)                                   | (0) | (0)  | (0)   | (0)  | (0)  | (0) | (0)   | (0)                                    | (0)        | (0)  | (0)   | (0)  | (0)  | (0)                                                   | (0)   | (0)  | (0)  | (1)  | (1)   | (0)  | (0)  | (0)  | (0)   |  |
|   | Total Accidents | .25                                   | 36  | 25   | 86    | 36   | 31   | 13  | 80    | 86                                     | 79         | 73   | 238   | 57   | 46   | 20                                                    | 123   | 55   | 61   | 85   | 201   | 65   | 64   | 27   | 156   |  |
|   | Head-On         | 0                                     | 1   | 0    | 1     | 0    | 0    | 0   | 0     | 1                                      | 1          | 1    | 3     | 1    | 0    | 1                                                     | 2     | 0    | 2    | 0    | 2     | 0    | 0    | 1    | 1     |  |
|   | SS-SM & SS-OP   | 1                                     | 2   | 1    | 4     | 1    | Ö    | ò   | 1     | 1                                      | 4          | 3    | 8     | 3    | 4    | 0                                                     | 7     | 6    | 1    | 4    | 11    | 3    | 5    | 1    | 9     |  |
|   | Angle           | 5                                     | 5   | -0   | 10    | 5    | 5    | 1   | 11    | 13                                     | 22         | 12   | 47    | 3    | 3    | 1                                                     | 7     | 7    | 8    | 9    | 24    | 3    | 4    | .8   | 15    |  |
|   | L-Turn          | 7                                     | 8   | 12   | 27    | -0   | 0    | ò   | 0     | 20                                     | 16         | 5    | 41    | 2    | 2    | 1                                                     | 5     | 23   | 25   | 40   | 88    | 3    | 2    | 1    | 6     |  |
|   | R-Turn          | 0                                     | ĩ   | 1    | 2     | 0    | 0    | 0   | 0     | 2                                      | 4          | 0    | .6    | ò    | 1    | 0                                                     | 1     | . 0  | 0    | 2    | 2     | 1    | 0    | .0   | 1     |  |
|   | Rear-End        | 10                                    | 9   | 6    | 25    | 20   | 14   | 10  | 44    | 16                                     | 10         | 27   | 53    | 24   | 21   | 11                                                    | 5.6   | .9   | 17   | 23   | 49    | 34   | 40   | 15   | 89    |  |
|   | Backing         | 1                                     | 1   | 0    | . 2   | 2    | 1    | 0   | 3     | 1                                      | 2          | 1    | 4     | Ó    | 0    | 0                                                     | 0     | Ö    | 0    | Ó    | 0     | 0    | 2    | 1    | 3     |  |
| ÷ | Parking         | 0                                     | 5   | - 5  | 10    | 0    | 0    | ò   | Ó     | 28                                     | 18         | 19   | 65    | 1    | 1    | 0                                                     | 2     | 8    | 6    | 5    | 19    | 0    | 0    | 0    | 0     |  |
| 4 | Other           | 0                                     | 1   | 0    | 1     | 5    | 8    | 2   | 15    | 1                                      | 1          | 0    | 2     | 21   | 14   | 6                                                     | 41    | 2    | 2    | 1    | 5     | 14   | 11   | 0    | 25    |  |
|   | Other-Misc.**   | 1                                     | 3   | 0    | 4     | 3    | 3    | Ø   | 6     | 3                                      | <u>j</u> 1 | 5    | 9     | 2    | 0    | 0                                                     | 2     | o    | ò    | 1    | 1     | 7    | 0    | 0    | 7     |  |
|   | Total           | 25                                    | 36  | 25   | 86    | 36   | 31   | 13  | 80    | 86                                     | 79         | 73   | 238   | 57   | 46   | 20                                                    | 123   | 55   | 61   | 85   | 201   | 65   | 64   | 27   | 156   |  |
|   |                 |                                       |     |      |       |      |      |     |       |                                        |            |      |       |      |      |                                                       |       |      |      |      |       |      |      |      |       |  |

-4

19 0 6

0 0 6£ 0 0 οī τ

2

90152 1975 9791

مرتجعة فبرارية

والأرسي ا

\*January through July \*\*Accidents involving other than two motor vehicles.

|   | Location Logan (M-99) at Holmes<br>Before After                                                  |                                         |                                         |                                            |                                               |                                        |                                             | Cedar (BL-96) at Jolly<br>Before After |                                               |                                             |                                        |                                             |                                               |                                       | Washtenaw (M-17) at Carpenter<br>Before After |                                            |                                         |                                              |                                        |                                              |                                                |                                            |                                   |                                        |                                               |
|---|--------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------------------|
|   |                                                                                                  | 1969                                    |                                         |                                            | TOTAL                                         | 1973                                   |                                             |                                        | TOTAL                                         | 1971                                        |                                        |                                             | TOTAL                                         | 1975                                  |                                               |                                            | TOTAL                                   | 1973                                         |                                        |                                              | TOTAL                                          | 1977                                       |                                   |                                        | TOTAL                                         |
| · | P.D. Accidents<br>Inj. Accidents<br>Injuries<br>Fatal Accidents<br>Fatalities<br>Total Accidents | 48<br>20<br>(29)<br>0<br>(0)<br>68      | 47<br>23<br>(29)<br>0<br>(0)<br>70      | 33<br>14<br>(19)<br>0<br>(0)<br>47         | 128<br>57<br>(77)<br>0<br>(0)<br>185          | 50<br>19<br>(28)<br>0<br>(0)<br>69     | 42<br>16<br>(19)<br>0<br>(0)<br>58          | 45<br>16<br>(27)<br>0<br>(0)<br>61     | 137<br>51<br>(74)<br>0<br>(0)<br>188          | 39<br>9<br>(19)<br>0<br>(0)<br>48           | 47<br>15<br>(31)<br>0<br>(0)<br>62     | 41<br>15<br>(24)<br>0<br>(0)<br>56          | 127<br>39<br>(74)<br>0<br>(0)<br>166          | 46<br>13<br>(17)<br>1<br>(2)<br>60    | 52<br>10<br>(15)<br>0<br>(0)<br>62            | 43<br>15<br>(17)<br>0<br>(0)<br>58         | 141<br>38<br>(49)<br>1<br>(2)<br>180    | 56<br>20<br>(36)<br>0<br>(0)<br>76           | 56<br>15<br>(22)<br>0<br>(0)<br>71     | 45<br>21<br>(36)<br>0<br>(0)<br>66           | 157<br>56<br>(94)<br>0<br>(0)<br>213           | 49<br>14<br>(23)<br>0<br>(0)<br>63         | 52<br>9<br>(16)<br>0<br>(0)<br>61 | 51<br>10<br>(12)<br>0<br>(0)<br>61     | 152<br>33<br>(51)<br>0<br>(0)<br>185          |
|   | Head-On<br>SS-SM & SS-OP<br>Angle<br>L-Turn<br>R-Turn<br>Rear-End<br>Backing<br>Parking<br>Other | 1<br>31<br>12<br>2<br>15<br>1<br>0<br>4 | 1<br>15<br>12<br>4<br>31<br>0<br>0<br>2 | 0<br>1<br>5<br>8<br>2<br>14<br>2<br>8<br>4 | 2<br>3<br>51<br>32<br>8<br>60<br>3<br>8<br>10 | 1<br>3<br>1<br>0<br>32<br>0<br>23<br>1 | 0<br>6<br>3<br>1<br>2<br>23<br>1<br>17<br>1 | 1<br>4<br>0<br>1<br>25<br>2<br>22<br>1 | 2<br>13<br>10<br>2<br>3<br>80<br>3<br>62<br>3 | 1<br>0<br>10<br>9<br>1<br>19<br>0<br>4<br>3 | 0<br>5<br>17<br>1<br>24<br>1<br>5<br>1 | 0<br>1<br>8<br>16<br>0<br>21<br>1<br>6<br>0 | 1<br>6<br>23<br>42<br>2<br>64<br>2<br>15<br>4 | 0<br>2<br>1<br>2<br>42<br>3<br>3<br>2 | 0<br>4<br>2<br>0<br>39<br>1<br>13<br>0        | 0<br>2<br>1<br>2<br>1<br>41<br>1<br>6<br>0 | 0<br>8<br>5<br>3<br>122<br>5<br>22<br>2 | 1<br>4<br>20<br>20<br>1<br>22<br>0<br>7<br>0 | 1<br>4<br>23<br>1<br>21<br>1<br>6<br>0 | 1<br>2<br>17<br>20<br>1<br>17<br>0<br>7<br>0 | 3<br>10<br>49<br>63<br>3<br>60<br>1<br>20<br>0 | 0<br>4<br>8<br>0<br>1<br>42<br>1<br>5<br>1 | 2<br>1<br>10<br>0<br>39<br>0<br>9 | 0<br>10<br>4<br>1<br>33<br>1<br>0<br>9 | 2<br>5<br>28<br>4<br>2<br>114<br>2<br>5<br>19 |
|   | Other-Misc.**<br>Total                                                                           | 1<br>68                                 | 4<br>70                                 | 3<br>47                                    | 8<br>185                                      | 5<br>69                                | 4<br>58                                     | 1<br>61                                | 10<br>188                                     | 1<br>48                                     | 3<br>62                                | 3<br>56                                     | 7<br>166                                      | 3<br>60                               | 1<br>62                                       | 58                                         | 8<br>180                                | 1<br>76                                      | 2<br>71                                | 1<br>66                                      | 4<br>213                                       | 1<br>63                                    | 0<br>61                           | 3<br>61                                | 4<br>185                                      |

line ( ) i

\*\*\*Accidents involving more than two motor vehicles.

ز شب

tan Antoin

## APPENDIX B

. . .

a management

-----

## Statistical Analysis

1

14

(4.4

| Location |                                            | Middle |                | Property Injury Injuries |                        | _                 | y Damage<br>dents | and               | ury<br>Fatal<br>dents | Injuries<br>and<br>Fatalities<br>After |        |     |
|----------|--------------------------------------------|--------|----------------|--------------------------|------------------------|-------------------|-------------------|-------------------|-----------------------|----------------------------------------|--------|-----|
|          |                                            |        | ear<br>e/After | Damage<br>Accidents      | and Fatal<br>Accidents | And<br>Fatalities | Before            | After<br>Expected | Before                | After<br>Expected                      | Before |     |
|          | 1 Jackson (BL-94) at                       | 1968   |                |                          |                        |                   |                   |                   |                       |                                        |        |     |
|          | Maple                                      |        | 1972           | +.201                    | 131                    | ÷.113             | 21                | 25                | 18                    | 16                                     | 25     | 28  |
|          | 2 Saginaw (M-43) at<br>Waverly             | 1968   | 1973           | +.174                    | 098                    | +.055             | 159               | 187               | 57                    | 51                                     | 101    | 107 |
|          | 3 Logan (M-99) at                          | 1970   | 107/           |                          | o.c                    | 107               | 100               | 100               |                       | 5.0                                    |        | 67  |
|          | Holmes<br>4 Cedar (BL-96) at               | 1972   | 1974           | +.085                    | 065                    | 127               | 128               | 139               | 57                    | 53                                     | 77     | 67  |
|          | Jolly                                      |        | 1976           | +.052                    | 059                    | 090               | 127               | 134               | 39                    | 37                                     | 74     | 67  |
|          | 5 Grand River (M-43)<br>at Hagadorn        | 1974   | 1978           | +.208                    | +.176                  | +.198             | 140               | 169               | 72                    | 85                                     | 105    | 126 |
|          | 6 Washtenaw (M-17)                         | 1974   |                |                          |                        |                   |                   |                   |                       |                                        |        |     |
|          | at Carpenter                               |        | 1978           | +.208                    | +.176                  | +.198             | 157               | 190               | 56                    | 66                                     | 94     | 113 |
| 16       | 7 Logan (M-99) at<br>Jolly                 | 1975   | 1979           | +.096                    | +.104                  | +.103             | 60                | 66                | 26                    | 29                                     | 34     | 38  |
|          | 8 Fair (M-139) at                          | 1975   |                |                          |                        |                   | -                 |                   |                       |                                        |        |     |
|          | Napier                                     | 1075   | 1979           | +.096                    | +.104                  | +.103             | 188               | 206               | 50                    | 55                                     | 83     | 92  |
|          | 9 28th Street (M-11)<br>at Beltline (M-37) | 1975   | 1979           | +.096                    | +.104                  | +.103             | 133               | 146               | 68                    | 75                                     | 114    | 126 |

\*Calculated using data from Michigan Traffic Accident Facts prepared by Michigan Department of State Police.

|          |        |                   |                   | and the second | i sanaan sa internet a sa i |                                                     |
|----------|--------|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Location | Before | After<br>Expected | After<br>Observed | AEXP <sup>-A</sup> OBS                                                                                           | $(A_{EXP} - A_{OBS})^2$                                                                                         | $\frac{\left(A_{EXP}^{-A_{OBS}}\right)^2}{A_{EXP}}$ |
| 1        | 21     | 25                | 35                | 10                                                                                                               | 100                                                                                                             | 4.0                                                 |
| 2        | 159    | 187               | 160               | 27                                                                                                               | 729                                                                                                             | 3.9                                                 |
| 3        | 128    | 139               | 137               | 2                                                                                                                | 4                                                                                                               | 0.0                                                 |
| 4        | 127    | 134               | 141               | 7                                                                                                                | 49                                                                                                              | 0.4                                                 |
| 5        | 140    | 169               | 112               | 57                                                                                                               | 3249                                                                                                            | 19.2                                                |
| 6        | 157    | 190               | 152               | 38                                                                                                               | 1444                                                                                                            | 7.6                                                 |
| . 7      | 60     | 66                | 70*               | 4                                                                                                                | 16                                                                                                              | 0.2                                                 |
| 8        | 188    | 206               | 105*              | 101                                                                                                              | 10201                                                                                                           | 49.5                                                |
| 9        | 133    | 146               | 137*              | 9                                                                                                                | 81                                                                                                              | 0.6                                                 |
|          |        |                   |                   |                                                                                                                  |                                                                                                                 | 0                                                   |

Property Damage Accidents (3 Years)

 $x^2 = 85.4$ 

.

\*2 years, 7 months of data adjusted to 3 years

df = (9-1)(2-1) = 8
 P < 0.001
:.There is a significant
 difference between the
 after expected and
 after observed</pre>

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   | <u>-</u>               |                          |                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------------|-------------------|------------------------|--------------------------|-------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location  | Before     | After<br>Expected | After<br>Observed | AEXP <sup>-A</sup> OBS | $(A_{EXP}^{-A}_{OBS})^2$ | $\frac{(A_{EXP} - A_{OBS})^2}{A_{EXP}}$                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         | 18         | 16                | 12                | 4                      | 16                       | 1.0                                                               |  |  |
| k zi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>3    | 57<br>57   | 51<br>53          | 55<br>51          | 4<br>2                 | 16<br>4                  | 0.3 0.1                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4         | 39         | 37                | 39                | 2                      | 4                        | 0.1                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5         | 72         | 85                | 58                | 27                     | 729                      | 8.6                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6         | 56<br>26   | 66                | 33<br>23*         | 33                     | 1089                     | 16.5<br>1.2                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7<br>8    | 26<br>50   | 29<br>55          | 38*               | 6<br>17                | 36<br>289                | 5.3                                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9         | 68         | 75                | 44*               | 31                     | 961                      | 12.8                                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          | $x^2 = 45.9$                                                      |  |  |
| 84<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |            |                   |                   |                        | df = (9-<br>P < 0        | (1)(2-1) = 8<br>0.001                                             |  |  |
| and the second se | *2 years, | 7 months o | f data adjus      | sted to 3 yea     | ırs                    | differ<br>after          | is a significant<br>ence between the<br>expected and<br>observed. |  |  |
| 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
| 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · ·   |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •         |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |            |                   | . *               |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
| $\left( \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            | 1.                |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •         |            |                   |                   |                        |                          |                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |            |                   |                   |                        |                          |                                                                   |  |  |

## Injury & Fatal Accidents (3 Years)

| Location | Before | After<br>Expected | After<br>Observed | AEXP <sup>-A</sup> OBS | (A <sub>EXP</sub> -A <sub>OBS</sub> ) <sup>2</sup> | $\frac{\left(A_{EXP}^{A}-A_{OBS}^{A}\right)^{2}}{A_{EXP}^{A}}$ |
|----------|--------|-------------------|-------------------|------------------------|----------------------------------------------------|----------------------------------------------------------------|
| 1        | 25     | 28                | 16                | 12                     | 144                                                | 5.1                                                            |
| 2        | 101    | 107               | 79                | 28                     | 784                                                | 7.3                                                            |
| <b>3</b> | 77     | 67                | 74                | 7                      | 49                                                 | 0.7                                                            |
| 4        | 74     | 67                | 51                | 16                     | 256                                                | 3.8                                                            |
| 5        | 105    | 126               | 99                | 27                     | 729                                                | 5.8                                                            |
| 6        | 94     | 113               | 51                | 62                     | 3844                                               | 34.0                                                           |
| 7        | 34     | 38                | 34*               | 4                      | 16                                                 | 0.4                                                            |
| 8        | 83     | 92                | 52*               | 40                     | 1600                                               | 17.4                                                           |
| 9        | 114    | 126               | 59*               | 67                     | 4489                                               | 35.6                                                           |
|          |        |                   |                   |                        |                                                    | $x^2 = 110.1$                                                  |

## Injuries & Fatalities (3 Years)

\*2 years, 7 months of data adjusted to 3 years

:.There is a significant difference between after expected and after observed.

df = (9-1)(2-1) = 8

P < 0.001

ţ

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                                                  |                                                                                                              | •                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        | Chi-Square Tes                                                                                   | st of Accidents                                                                                              | by Type                                                                                                                                                  |
| 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        |                                                                                                  | pected Values                                                                                                |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        | · · · · · · · · · · · · · · · · · · ·                                                            |                                                                                                              |                                                                                                                                                          |
| [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |                                                                                                  |                                                                                                              |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        | Before                                                                                           |                                                                                                              | After                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                                                  |                                                                                                              |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Head-On                                                                | $\frac{25}{2958}$ X 1556 = 13                                                                    | •                                                                                                            | $\frac{25}{2958}$ X 1402 = 12                                                                                                                            |
| • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                  |                                                                                                              | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                  |
| 175 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-SM & SS-OP                                                          | $\frac{125}{2958}$ X 1556 = 66                                                                   |                                                                                                              | $\frac{125}{2958}$ X 1402 = 59                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                                                  |                                                                                                              | 4000                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Angle                                                                  | $\frac{416}{2958}$ X 1556 = 219                                                                  |                                                                                                              | $\frac{416}{2958} \times 1402 = 197$                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        | 2000                                                                                             |                                                                                                              |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-Turn                                                                 | $\frac{445}{2958}$ X 1556 = 234                                                                  |                                                                                                              | $\frac{445}{2958}$ X 1402 = 211                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                                                  |                                                                                                              |                                                                                                                                                          |
| 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R-Turn                                                                 | $\frac{48}{2958}$ X 1556 = 25                                                                    |                                                                                                              | $\frac{48}{2958}$ X 1402 = 23                                                                                                                            |
| <b>K</b> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                        |                                                                                                  |                                                                                                              | 4700                                                                                                                                                     |
| en angewan<br>Light de la de la<br>Light de la de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R-End                                                                  | $\frac{1248}{2958}$ X 1556 = 656                                                                 |                                                                                                              | $\frac{1248}{2958}$ X 1402 = 592                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                                                  |                                                                                                              |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Backing                                                                | $\frac{38}{2958}$ X 1556 = 20                                                                    |                                                                                                              | $\frac{38}{2958}$ X 1402 = 18                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                                                  |                                                                                                              |                                                                                                                                                          |
| na sport service star<br>Ngga paratasa ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Parking                                                                | $\frac{322}{2958}$ X 1556 = 169                                                                  |                                                                                                              | $\frac{322}{2958}$ X 1402 = 153                                                                                                                          |
| - 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>.</b>                                                               | 2004                                                                                             |                                                                                                              | 2950                                                                                                                                                     |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Other                                                                  | $\frac{183}{2958}$ X 1556 = 96                                                                   |                                                                                                              | $\frac{183}{2958}$ X 1402 = 87                                                                                                                           |
| and and a second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        | 4700                                                                                             |                                                                                                              | -,                                                                                                                                                       |
| 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Other-Misc.                                                            | $\frac{108}{2958}$ X 1556 = 57                                                                   |                                                                                                              | $\frac{108}{2958}$ X 1402 = 51                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        | 2330                                                                                             |                                                                                                              | 2930                                                                                                                                                     |
| and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                                                                                                  | 2                                                                                                            | 2                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OBS EXP                                                                | OBS-EXP                                                                                          | (obs-exp) <sup>2</sup>                                                                                       | $\frac{(O-E)^2}{EXP}$                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                                                  |                                                                                                              | EXP                                                                                                                                                      |
| \$1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |                                                                                                  |                                                                                                              | _                                                                                                                                                        |
| and on an end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 13                                                                  | 2                                                                                                | 4                                                                                                            | 0.31                                                                                                                                                     |
| 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 12                                                                  | 2                                                                                                | 4                                                                                                            | 0.33                                                                                                                                                     |
| stre.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61 <b>66</b>                                                           | 5                                                                                                | 25                                                                                                           | 0.38                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64 59                                                                  | 5                                                                                                | 25                                                                                                           | 0.42                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |                                                                                                  |                                                                                                              |                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 313 219                                                                | 94                                                                                               | 8836                                                                                                         | 40.35                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103 197                                                                | 94                                                                                               | 8836<br>8836                                                                                                 | 40.35<br>44.85                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103197407234                                                           | 94<br>173                                                                                        | 8836<br>8836<br>29929                                                                                        | 40.35<br>44.85<br>127.90                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10319740723438211                                                      | 94<br>173<br>173                                                                                 | 8836<br>8836<br>29929<br>29929                                                                               | 40.35<br>44.85<br>127.90<br>141.84                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103197407234382113425                                                  | 94<br>173<br>173<br>9                                                                            | 8836<br>8836<br>29929<br>29929<br>81                                                                         | 40.35<br>44.85<br>127.90<br>141.84<br>3.24                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1031974072343821134251423                                              | 94<br>173<br>173<br>9<br>9                                                                       | 8836<br>8836<br>29929<br>29929<br>81<br>81                                                                   | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1031974072343821134251423469656                                        | 94<br>173<br>173<br>9<br>9<br>187                                                                | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969                                                          | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1031974072343821134251423469656779592                                  | 94<br>173<br>173<br>9<br>9<br>187<br>187                                                         | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969                                                 | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07                                                                                     |
| <ul> <li>Constraints</li> <li>Constrai</li></ul>                                                                                                                                                                                                                                                                                                                                     | 10319740723438211342514234696567795921620                              | 94<br>173<br>173<br>9<br>9<br>187<br>187<br>4                                                    | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16                                           | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80                                                                             |
| <ul> <li>Constraints</li> <li>Constrai</li></ul>                                                                                                                                                                                                                                                                                                                                     | 103197407234382113425142346965677959216202218                          | 94<br>173<br>173<br>9<br>9<br>9<br>187<br>187<br>4<br>4                                          | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16                                     | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80<br>0.89                                                                     |
| <ul> <li>Constraints</li> <li>Constrai</li></ul>                                                                                                                                                                                                                                                                                                                                     | 103197407234382113425142346965677959216202218149169                    | 94<br>173<br>173<br>9<br>9<br>9<br>187<br>187<br>4<br>4<br>4<br>20                               | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16<br>16<br>400                        | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80<br>0.89<br>2.37                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103197407234382113425142346965677959216202218149169173153              | 94<br>173<br>173<br>9<br>9<br>9<br>187<br>187<br>4<br>4<br>4<br>20<br>20                         | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16<br>16<br>400<br>400                 | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80<br>0.89<br>2.37<br>2.61                                                     |
| <ul> <li>An annual and a second s</li></ul> | 1031974072343821134251423469656779592162022181491691731533896          | 94<br>173<br>173<br>9<br>9<br>9<br>187<br>187<br>4<br>4<br>4<br>20<br>20<br>20<br>58             | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16<br>16<br>400<br>400<br>3364         | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80<br>0.89<br>2.37<br>2.61<br>35.04                                            |
| <ul> <li>An annual and a second s</li></ul> | 103197407234382113425142346965677959216202218149169173153389614587     | 94<br>173<br>173<br>9<br>9<br>9<br>187<br>187<br>4<br>4<br>4<br>20<br>20<br>20<br>58<br>58<br>58 | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16<br>16<br>400<br>400<br>3364<br>3364 | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80<br>0.89<br>2.37<br>2.61<br>35.04<br>38.67                                   |
| <ul> <li>Constraints</li> <li>Constrai</li></ul>                                                                                                                                                                                                                                                                                                                                     | 1031974072343821134251423469656779592162022181491691731533896145875457 | 94<br>173<br>173<br>9<br>9<br>187<br>187<br>4<br>4<br>4<br>20<br>20<br>20<br>58<br>58<br>58<br>3 | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16<br>16<br>400<br>400<br>3364<br>3364 | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80<br>0.89<br>2.37<br>2.61<br>35.04<br>38.67<br>0.16                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103197407234382113425142346965677959216202218149169173153389614587     | 94<br>173<br>173<br>9<br>9<br>9<br>187<br>187<br>4<br>4<br>4<br>20<br>20<br>20<br>58<br>58<br>58 | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16<br>16<br>400<br>400<br>3364         | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80<br>0.89<br>2.37<br>2.61<br>35.04<br>38.67                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                   | 94<br>173<br>173<br>9<br>9<br>187<br>187<br>4<br>4<br>4<br>20<br>20<br>20<br>58<br>58<br>58<br>3 | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16<br>16<br>400<br>400<br>3364<br>3364 | $\begin{array}{r} 40.35\\ 44.85\\ 127.90\\ 141.84\\ 3.24\\ 3.52\\ 53.31\\ 59.07\\ 0.80\\ 0.89\\ 2.37\\ 2.61\\ 35.04\\ 38.67\\ 0.16\\ 0.18\\ \end{array}$ |
| <ul> <li>An annual and a second s</li></ul> | 1031974072343821134251423469656779592162022181491691731533896145875457 | 94<br>173<br>173<br>9<br>9<br>187<br>187<br>4<br>4<br>4<br>20<br>20<br>20<br>58<br>58<br>58<br>3 | 8836<br>8836<br>29929<br>29929<br>81<br>81<br>34969<br>34969<br>16<br>16<br>16<br>400<br>400<br>3364<br>3364 | 40.35<br>44.85<br>127.90<br>141.84<br>3.24<br>3.52<br>53.31<br>59.07<br>0.80<br>0.89<br>2.37<br>2.61<br>35.04<br>38.67<br>0.16                           |

 $P \lt 0.001$  critical value = 27.877 :. Significant difference in before and after

df = (10-1)(2-1) = 9

| Chi-Square | Test o | of Acci | dents | by Type |
|------------|--------|---------|-------|---------|
| Accider    |        |         |       |         |

|         |            | Before                               | After                        | Total                 |
|---------|------------|--------------------------------------|------------------------------|-----------------------|
| SS-SM & | SS-0P      | 61                                   | 64                           | 125                   |
| R-End   | 00 02      | 469                                  | 779                          | 1248                  |
| Backing |            | 16                                   | 22                           | 38                    |
| Parking |            | 149                                  | 173                          | 322                   |
| Other   |            | 38                                   | 145                          | 183                   |
|         |            |                                      |                              |                       |
| Total   |            | 733                                  | 1183                         | 1916                  |
| SS-SM & | SS-OP      | $\frac{125}{1916} \times 733 = 48$   | $\frac{125}{1916}$ x 1183 =  |                       |
| R-End   |            | $\frac{1248}{1916} \times 733 = 477$ | $\frac{1248}{1916}$ X 1183 = | 771                   |
| Backing | the second | $\frac{38}{1916}$ x 733 = 15         | $\frac{38}{1916}$ X 1183 =   | 23                    |
| Parking |            | $\frac{322}{1916}$ X 733 = 123       | $\frac{322}{1916}$ X 1183 =  | 199                   |
| Other   |            | $\frac{183}{1916} \times 733 = 70$   | $\frac{183}{1916}$ X 1183 =  | 113                   |
| OBS     | EXP        | OBS-EXP                              | (OBS~EX) <sup>2</sup>        | $\frac{(0-E)^2}{EXP}$ |
| 61      | 48         | 13                                   | 169                          | 3.52                  |
| 64      | 77         | 13                                   | 169                          | 2.19                  |
| 469     | 477        | .8                                   | 64                           | 0.13                  |
| 779     | 771        | 8                                    | 64                           | 0.08                  |
| 16      | 15         | 1                                    | 1                            | 0.07                  |
| 22      | 23         | 1                                    | 1                            | 0.04                  |
| 149     | 123        | 26                                   | 676                          | 5.50                  |
| 173     | 199        | 26                                   | 676                          | 3.40                  |
| 38      | 70         | 32                                   | 1024                         | 14.63                 |
| 145     | 113        | <u>32</u>                            | <u>1024</u>                  | 9.06                  |
|         |            |                                      | _                            |                       |

1916 1916

 $x^2 = -38.62$ 

df = (5-1)(2-1) = 4

P < 0.001 critical value = 18.467 :. Significant difference in before · and after 

|          |         |                                    | re Test of Accidents<br>dent Types That Decr |                       |
|----------|---------|------------------------------------|----------------------------------------------|-----------------------|
|          |         | Before                             | After                                        | Total                 |
| Head-On  |         | 15                                 | 10                                           | 25                    |
| Angle    |         | 313                                | 103                                          | 416                   |
| L-Turn   |         | 407                                | 38                                           | 445                   |
| R-Turn   |         | 34                                 |                                              | 48                    |
| Total    |         | 769                                | 165                                          | 934                   |
|          |         |                                    |                                              |                       |
| Head-On  |         | $\frac{25}{934}$ X 769 = 21        | $\frac{25}{934}$ X 165 = 4                   |                       |
| Angle    |         | $\frac{416}{934} \times 769 = 343$ | • -                                          |                       |
| L-Turn   |         | $\frac{445}{934} \times 769 = 366$ | $\frac{445}{934}$ X 165 = 79                 |                       |
| R-Turn   |         | $\frac{48}{934} \times 769 = 40$   | $\frac{48}{934}$ X 165 = 8                   |                       |
| OBS      | EXP     | OBS-EXP                            | (OBS-EXP) <sup>2</sup>                       | $\frac{(0-E)^2}{EXP}$ |
| 15       | 21      | . 6                                | 36                                           | 1.71                  |
| 10       | 4       | 6                                  | 36                                           | 9.00                  |
| 313      | 343     | 30                                 | 900                                          | 2.62                  |
| 103      | 73      | 30                                 | 900                                          | 12.33                 |
| 407      | 366     | 41                                 | 1681                                         | 4.59                  |
| 38       | 79      | 41                                 | 1681                                         | 21.28                 |
| 34<br>14 | 40<br>8 | 6<br>6                             | 36                                           | 0.90                  |
| 14       | O       | 0                                  | 36                                           | 4.50                  |
| 934      | 934     |                                    |                                              | $x^2 = 56.93$         |
|          | df =    | (4-1)(2-1) = 3                     |                                              | P < 0.001             |
|          |         |                                    |                                              | 0-1-1-1-1             |

Critical Value = 16.266 :. Significant difference in before and after

|          | Paired 1                    | <u>Test - Prope</u>        | rty Damage Accide                | nt Rates          |
|----------|-----------------------------|----------------------------|----------------------------------|-------------------|
| Location | Before<br>(X <sub>B</sub> ) | After<br>(X <sub>A</sub> ) | d=X <sub>A</sub> -X <sub>B</sub> | d <sup>2</sup>    |
| 1        | 0.49                        | 0.82                       | +0.33                            | 0.1089            |
| 2        | 2.44                        | 2.58                       | +0.14                            | 0.0196            |
| 3        | 2.87                        | 2.68                       | -0.19                            | 0.0361            |
| 4        | 2.76                        | 2.71                       | -0.05                            | 0.0025            |
| 5        | 2.51                        | 1.97                       | -0.54                            | 0.2916            |
| 6        | 35.34                       | 2.58                       | -0.73                            | 0.5329            |
| 1        | 1.56                        | 1.82                       | +0.26                            | 0.0676            |
| 8        | 5.10                        | 2.85                       | -2,25                            | 5.0625            |
| 9        | 2.12                        | 2.36                       | +0.24                            | 0.0576            |
|          |                             |                            | $\Sigma = -2.79$                 | $\Sigma = 6.1793$ |

$$H_{o}: U_{A} = U_{B} \qquad d = X_{A} - X_{B} = 0$$

$$N = 9 \qquad \sum d = -2.79 \qquad \sum d^{2} = 6.1793$$

$$\overline{d} = \sum d/N = -2.79/9 = -0.31$$

$$S = \sqrt{\frac{\sum d^{2} - (\sum d)^{2}/N}{N-1}} = \sqrt{\frac{6.1793 - (-2.79)^{2}/9}{9-1}} = 0.82$$

$$t = \frac{\overline{d} - 0}{S/\sqrt{N}} \frac{-0.31 - 0}{0.82/\sqrt{9}} = -1.13 / t/ = 1.13$$

$$df = 8 \qquad 0.50 > p > 0.20$$

:.There is no significant difference in before and after

çî ș

ৠ

## Paired t Test - Injury and Fatal Accident Rates

| Location      | Before<br>X <sub>B</sub> | After<br>X <sub>A</sub> | d=X <sub>A</sub> -X <sub>B</sub> | d <sup>2</sup>    |
|---------------|--------------------------|-------------------------|----------------------------------|-------------------|
| 1             | 0.42                     | 0.28                    | -0.14                            | 0.0196            |
| 2             | 0.87                     | 0.89                    | +0.02                            | 0.0004            |
| 3             | 1.28                     | 1.00                    | -0.28                            | 0.0784            |
| <u>3</u><br>4 | 0.85                     | 0.75                    | -0.10                            | 0.01              |
| 5             | 1.29                     | 1.02                    | -0.27                            | 0.0729            |
| 6             | 1.18                     | 0.56                    | -0.62                            | 0.3844            |
| 7             | 0.68                     | 0.60                    | -0.08                            | 0.0064            |
| 8             | 1.36                     | 1.03                    | -0.33                            | 0.1089            |
| 9             | 1.08                     | 0.76                    | -0.32                            | 0.1024            |
|               |                          |                         | $\sum = -2.12$                   | $\Sigma = 0.7834$ |

 $\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1}$ 

$$H_{o} = U_{A} = U_{B} \qquad d = X_{A} - X_{B} = 0$$

$$N = 9 \qquad \sum d = -2.12 \qquad \sum d^{2} = 0.7834$$

$$\tilde{d} = \sum d/N = -2.12/9 = -0.24$$

$$S = \sqrt{\frac{\sum d^{2} - (\sum d)^{2}/N}{N-1}} = \sqrt{\frac{0.7834 - (-2.12)^{2}/9}{8}} = 0.19$$

$$t = \frac{\tilde{d} - 0}{S/\sqrt{N}} = \frac{-0.24 - 0}{0.19/\sqrt{9}} = -3.79 \qquad /t/ = 3.79$$

$$df = 8 \qquad p \leq 0.005$$

:. There is a significant change in before and after

 $(1, \gamma)$ 

## APPENDIX C

## NETSIM SIMULATION SUMMARY

Ť

ĊΛ

SIMULATION OF TRAFFIC THE UTCS-1 MODEL 

### BRIGLIASIGSTUDY/SAG/WAV (EEFD?E- 1969)

BRIGLIAFXTIME/4PHASE, LANSING , MI 0 02/23/81

SEED FOR RANDOM NUMBER GENERATOR IS 7581

| LII   | λK∘ I | LANE | SPAN | POC<br>L |            | MEAN<br>U-F | н  |    |     |    | MENTS<br>DIAG | DEST<br>LEFT |     |   |    | LOST | PED<br>DEN | LAN<br>1 2 |   |     | I<br>5 TYP | EG | L    | IDENTIFICATION |
|-------|-------|------|------|----------|------------|-------------|----|----|-----|----|---------------|--------------|-----|---|----|------|------------|------------|---|-----|------------|----|------|----------------|
| (800, | 1)    | 2    | 1000 | o        | o I        | ENTRY       | 21 | 0  | 100 | 0  | 0             | о            | 5   | о | 0  | 37   |            | 0. C       | 0 | 0 0 | ) 1        | 2  | 1    |                |
| ( 1,  | 5)    | 2    | 2000 | 12       | 0          | 45          | 21 | 6  | 66  | 28 | 0             | 2            | 3   | 4 | 0  | 37   | 0          | 0.0        | 0 | 0 0 | ) 1        | 2  | 2    |                |
| (802. | 3)    | 2    | 1000 | 0        | όΙ         | ENTRY       | 21 | 0  | 100 | 0  | 0             | 0            | 5   | 0 | 0  | 37   |            | 0.0        | 0 | 0.0 | ) 1        | 2  | 3    |                |
| ( 3,  | 5)    | 2    | 2000 | 10       | 0          | 45          | 21 | 23 | 62  | 15 | - 0           | 4            | 1   | 2 | 0  | 37   | 0 '        | 0.0        | 0 | 0.0 | ) 1        | 2  | 4    |                |
| (803, | 4)    | 4    | 1000 | 0        | 0          | ENTRY       | 21 | 0  | 100 | 0  | 0             | 0            | 5   | 0 | 0  | 37   |            | 3 0        | 0 | 3 0 | ) 1        | 2  | 5    |                |
| (4.   | 5)    | 4    | 2000 | 0        | 0          | 40          | 21 | 11 | 73  | 16 | 0             | 1            | 2   | з | 0  | 37   | 0          | 4 C        | 0 | 1 0 | ) 1        | 2  | 6    |                |
| (801  | 2)    | 4    | 1000 | 0        | Ó I        | ENTRY       | 21 | 0  | 100 | 0  | Ō             | 0            | 5   | 0 | 0  | 37   |            | зс         | 0 | 3 0 | ) 1        | 2  | 7    |                |
| ( 2.  | 5)    | 4    | 2000 | ò        | <u>o</u> . | 40          | 21 | 8  | 89  | 3  | Ó             | · 3          | 4   | 1 | Ó  | 37   | 0          | 0 C        | Ó | 1 0 | > 1        | 2  | 8    | •              |
| ( 5.  | 1)    | 2    | 2000 | ō        |            | 45          | 21 | Ō  | 100 | Ő  | ō             | ō            | 800 | Ó | ō. | 37   | ō          | ōc         |   | 0.0 | ) 1        | 2  | 9    |                |
| ( 5.  | 2)    | 2    | 2000 | ŏ        | -          | 40          | 21 |    | 100 | ŏ  | ŏ.            | -            | 801 | ŏ | õ  | 37   | õ          | 0 c        | - |     |            | 2  | . 10 |                |
| ( 5.  | 3)    | 2    | 2000 | õ        |            | 45          | 21 | -  | 100 | ŏ  | Ň             | -            | 802 | ŏ | ŏ  | 37   | õ          | õč         | - |     |            | 2  | 11   |                |
| (5.   | 4)    | ŝ    | 2000 | ŏ        | -          | 40          | 21 |    | 100 | ŏ  | õ             | -            | 803 | ŏ | ŏ  | 37   | õ          | οc         |   |     |            | 2  | 12   |                |



### THE UTCS-1 MODEL

## BRIGLIASIGSTUDY/SAGEWAY (AFTER - 1980)

BRIGLIA/8PHASE LANSING , МІ 0 05/01/81

SEED FOR RANDOM NUMBER GENERATOR IS 7581

| LINK | POCK<br>LANE SPAN L R | MEAN<br>Ũ~F | TURNING MOVEMENTS<br>H LEFT THRU RT DIAG | DESTINATION NODES<br>LEFT THRU RT DIAG | PED<br>LOST DEN | LANE CHAN<br>1 2 3 4 5 TYPE G | L | IDENTIFICATION |
|------|-----------------------|-------------|------------------------------------------|----------------------------------------|-----------------|-------------------------------|---|----------------|
|      |                       |             |                                          |                                        |                 |                               |   |                |

| (800,   | 1) | 2     | 1000        | 0  | 0   | ENTRY | 21 | 0   | 100 | 0  | 0   | 0 | 5   | 0 | 0  | 37 |    | 00000 | 1 | 2 | 1  |  |
|---------|----|-------|-------------|----|-----|-------|----|-----|-----|----|-----|---|-----|---|----|----|----|-------|---|---|----|--|
| ( 1,    | 5) | 2     | 1999        | 40 | ö   | 45    | 21 | 13  | 52  | 35 | Ö   | 2 | 3   | 4 | Ó  | 37 | 0  | 00000 | 1 | 2 | 2  |  |
| (80†.   | 2) | 2     | 1000        | ಿರ | Ö   | ENTRY | 21 | 0   | 100 | Ô. | 0   | Ó | 5   | Ó | Ó  | 37 |    | 00000 | 1 | 2 | Э  |  |
| (2,     | 5) | 3     | 1999        | 40 | 0   | 40    | 21 | 11  | 86  | Э  | 0   | 3 | 4   | 1 | ö  | 37 | 0. | 00000 | 1 | 2 | 4  |  |
| (802.   | 3) | 2     | 1000        | 0  | Ó   | ENTRY | 21 | 0   | 100 | 0  | 0   | 0 | 5   | 0 | Ó  | 37 |    | 00000 | 1 | 2 | 5  |  |
| ( 3.    | 5) | 2     | 1999        | 40 | 0   | 45    | 21 | 42  | 45  | 13 | 0.  | 4 | 1   | 2 | Ó, | 37 | 0  | 00000 | 1 | 2 | 6  |  |
| (803,   | 4) | 2     | 1000        | 0  | Ø   | ENTRY | 21 | 0   | 100 | 0  | 0   | Ó | 5   | Ò | 0  | 37 |    | 00000 | t | 2 | 7  |  |
| ( 4     | 5) | 2     | 1999        | 40 | 9   | 40    | 21 | 21  | 64  | 15 | Ö   | i | 2   | 3 | Ó  | 37 | Q  | 00000 | 1 | 2 | 8  |  |
| ( 5,    | 1) | 2     | 1999        | 0  | 0   | 45    | 21 | Ó   | 100 | 0  | 0   | Ó | 800 | 0 | Ó  | 37 | Ó. | 00000 | 1 | 2 | 9  |  |
| ( 5,    | 2) | 2     | 1999        | Ò  | Ô   | 40    | 21 | 0   | 100 | Ö  | 0   | 0 | 801 | 0 | Ó, | 37 | Ó, | 00000 | 1 | 2 | 10 |  |
| (5,     | Э) | 2     | 1999        | Ö  | 0   | 45    | 21 | Ö   | 100 | 0  | 0   | Ö | 802 | 0 | 0  | 37 | Ö  | 00000 | 1 | 2 | 11 |  |
| (5.     | 4) | 2     | 1999        | 0  | Ò   | 40    | 21 | 0   | 100 | Ö  | 0   | 0 | 803 | 0 | Ó  | 37 | 0  | 00000 | 1 | 2 | 12 |  |
| · · · · |    | 1 - C | 1.1.1.1.1.1 |    | 1.1 |       |    | 6.0 | 1   |    | 1.1 |   |     |   |    | -  |    |       |   |   |    |  |



### THE UTCS-1 MODEL

### BRIGLIASIGSTUDY/GRHDRIV/HAG (BEFORE - 1969)

۰,

BRIGLIAFXTINE/4PHASE, LANSING , HI 0 03/02/81

SEED FOR RANDON NUMBER GENERATOR IS 7581

| LINK L | ANE                                     | SPAN                                                         | POI<br>L                                   | R     | MEAN<br>U=F | н                                       | TURN:<br>Left                 |     | OVENE<br>Rt (                      |                                                          |   | INATI<br>Thru |             |                                                          | LOST                         | PED<br>DEN                           |                                 |                                         |  | TYP                                                | EG                      | L            | IDENTIFICATION |
|--------|-----------------------------------------|--------------------------------------------------------------|--------------------------------------------|-------|-------------|-----------------------------------------|-------------------------------|-----|------------------------------------|----------------------------------------------------------|---|---------------|-------------|----------------------------------------------------------|------------------------------|--------------------------------------|---------------------------------|-----------------------------------------|--|----------------------------------------------------|-------------------------|--------------|----------------|
|        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1000<br>2000<br>1000<br>2000<br>2000<br>2000<br>2000<br>2000 | 14<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 00000 | ENTRY       | N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 35<br>32<br>9<br>12<br>0<br>0 | 100 | 0<br>24<br>30<br>0<br>11<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Ó |               | 04020102000 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3777777777<br>37773377777777 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 000000000000000000000000000000000000000 |  | । কর্ম পারে করে পারে পারে পারে করে বাব বাবে করে কর | ע ע ע ע ע ע ע ע ע ע ע ע | 125456789011 |                |



THE UTCS-1 MODEL

|                           |                                                           |                                      | 1                                        | BRIGLI                                    | 45ÏG                             | STUDY              | GRNI                                | RVØF               | IAG (AF | TER - 197    | 8)                       |                  |               |                                  |            |            |           |           |             |          |                |                |
|---------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------|--------------------|-------------------------------------|--------------------|---------|--------------|--------------------------|------------------|---------------|----------------------------------|------------|------------|-----------|-----------|-------------|----------|----------------|----------------|
|                           |                                                           |                                      | ļ                                        | BRÍGLI                                    | 478P                             | HĂŚĖ               |                                     | ; []               | INSING  |              |                          | 8                | MI            |                                  |            | Ö          | ŰS7       | 017       | 81          | •        |                |                |
|                           |                                                           |                                      |                                          |                                           |                                  | SE                 | ËD I                                | OR F               | RANDOM  | NUMBER       | <b>GEN</b>               | ERA              | TOR IS        |                                  | 758        | îî.        |           |           |             |          |                |                |
| LINK                      | LANË                                                      | SPAN                                 | POCR<br>L R                              | HEAN<br>U-F                               | Ĥ                                | TURNI<br>LEFT      | ING M<br>THRI                       | IOVER<br>RT        | DIAG    | DEST<br>Left | ÍNATI<br>THRU            | ON I<br>RT       | NODES<br>DIAG | LOST                             | PED<br>Den | `∟)<br>- 1 | NE<br>2 3 | CHÂI<br>4 | і<br>5 түрі | ËĜ       | Ė              | IDENTIFICATION |
| (801, 2)                  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                   | 1000<br>1999<br>1000<br>1999<br>1000 | 0<br>40<br>40<br>40<br>9<br>40<br>9<br>6 | 35<br>Entry<br>40<br>Entry                | 21<br>21<br>21<br>21             | 37<br>37<br>11     | 100<br>42<br>100<br>79<br>100<br>37 | 21<br>0<br>10      |         | NO NO        | 5                        | 0<br>4<br>0<br>1 |               | 37.37.37                         | 0          | 00000      |           | 0         |             |          | - N            |                |
| (3, 5<br>(803, 4<br>(4, 5 |                                                           | 1999<br>1000<br>1999<br>1999         | 40 9<br>0 0<br>40 9<br>0 0               | 35<br>ENTRY<br>35<br>35<br>40<br>35<br>35 | 21<br>21<br>21<br>21<br>21<br>21 | 11<br>27<br>7<br>0 | 37<br>100<br>83<br>100<br>100       | 36<br>0<br>10<br>0 | 0000    | 401          | 5<br>2<br>800            | 20300            | Č<br>Č        | 37<br>37<br>37<br>37<br>37<br>37 | 000        | 000000     |           | 0         |             | กะพ.พ.พ. | 107800         |                |
|                           | $\begin{array}{c} 2 \\ 0 \\ 2 \\ 1 \\ 2 \\ 2 \end{array}$ | 1999<br>1999<br>1999                 | 00                                       | 35<br>35                                  | 21                               | Ŭ<br>Ŭ             | 100                                 | Ö                  | Ô       | Ŏ            | 800<br>801<br>802<br>803 | 0<br>0           | ŏ             | 37                               | 0<br>D     | 0          |           | 0 (       |             | N N N    | 10<br>11<br>12 |                |



)

A

THE UTCS∞1 MODEL

### BRIGLIASIGSTUDY/CEDAR/JOLLY (BEFORE - 1972)

BRIGLIAFXTIME/4PHASE, LANSING , MI 0 03/02/81

SEED FOR RANDON NUMBER GENERATOR 15 7581

| LIU           | ĸ        | LANE | SPAN         | PO(<br>L |   | MEAN<br>Uof |          |          |           | 10VEH<br>J R¶ |    |        | INATI<br>THRU |        | IODES<br>DIAG | LOST     | PED<br>DEN |   |   |     |            |     | EG | Ł  | IDENTIFICATION |
|---------------|----------|------|--------------|----------|---|-------------|----------|----------|-----------|---------------|----|--------|---------------|--------|---------------|----------|------------|---|---|-----|------------|-----|----|----|----------------|
| (800,<br>( 1, | 1)<br>5) | -    | 1000<br>2000 |          |   | ENTRY<br>35 | 21<br>21 | U<br>1 1 | 100<br>72 | 0<br>17       | 0  | 0      | 5             | 0      | 0             | 37<br>37 | 0          |   |   |     | 0 0        |     | 2  | 1  |                |
| (802)         | 3)       |      | 1000         | -        | - | ENTRY       |          | 1 L<br>0 |           | 11            | ő  | ح<br>0 | 2             | 4<br>0 | 0             | 37       | 0          | • | - | -   | 0 0<br>0 0 | •   | 2  | č, |                |
| ( 3,          | ້ຈັງ     | -    | 2000         |          |   | 45          | ŝi       | *        | 73        | š             | .ŏ | ŭ      | 1             | ž      | ŏ             | 37       | 0          |   |   |     | o o        |     | Ş  | Â  |                |
| (801,         | 2)       | 2    | 1000         | 0        | 0 | EHTRY       | 21       | ้ง       | 100       | Û             | 0  | 0      | ŝ             | ō      | Ō             | 37       | -          | - |   |     | 0 0        |     | ž  | 5  |                |
| (2,           | 5)       | 2    | 2000         | . 0      | - | 35          | 21       | 15       | 59        | 26            | 0  | 3      | 4             | 1      | 0             | 37       | 0          | 0 | 0 | 0 ( | 0 0        | . 1 | 2  | 6  |                |
| (803,         |          | 2    | 1000         | 0        | 0 | ENTRY       | 2۱       | 0        | 100       | 0             | 0  | 0      | 5             | 0      | 0             | 37       |            | 0 | 0 | 0 ( | 0 0        | . g | 2  | 7  |                |
| ( 4,          | ຽງ       | S    | 2000         | 0        | 0 | 35          | 21       | 25       | 47        | 28            | 0  | 1      | ŝ             | 3      | 0             | 37       | 0          | Q | 0 | 0 ( | 0 0        | 1   | 2  | 8  |                |
| ( 5,          | 1)       | 2    | 2000         | Q.       | 0 | 35          | 21       | 0        | 100       | Û             | 0  | 0      | 800           | 0      | 0             | 37       | Û          | 0 | 0 | 0 ( | 0 0        | 1   | 2  | 9  |                |
| ( 5,          | 2)       | 2    | 2000         | 0        | û | 35          | 21       | 0        | 100       | 0             | 0  | 0      | 801           | 0      | 0             | 37       | 0          | 0 | 0 | 0 ( | 0 0        | 1   | 2  | 10 |                |
| ( 5,          | رد .     | 2    | 2000         | 0        | ¢ | 45          | 51       | 0        | 100       | ŷ             | 0  | 0      | 802           | Q      | 0             | 37       | 0          | 0 | Û | 0 ( | 0 0        | 1   | 2  | 11 |                |
| ( 5,          | 4)       | 2    | 5000         | 0        | 0 | 35          | 51       | Ŭ,       | 100       | Û             | 0  | 0      | 803           | Ø      | 0             | 37       | Ð          | 0 | 0 | 0 ( | 0 0        | 1   | 2  | 12 |                |



THE UTCS=1 MODEL

### BRIGLIASIGSTUDY/CEDAROJOLLY (AFTER - 1979)

BRIGLIA/8PHASE 0 05/01/81 , LANSING / MI

> SEED FOR RANDOM NUMBER GENERATOR IS 7581

| ( In          | ΚĹ        | ANE    | SPÁN         | PO<br>L | CK<br>R |             |          |         | ing m<br>Thru |         |        | DEST<br>LEFT | INATI<br>Thru |        |        | LOST     | PED<br>DEN | L.A<br>. 1 |      |   |            |   | EĢ       | ٤       | IDENTIFICATION |
|---------------|-----------|--------|--------------|---------|---------|-------------|----------|---------|---------------|---------|--------|--------------|---------------|--------|--------|----------|------------|------------|------|---|------------|---|----------|---------|----------------|
| (800,         | 1)<br>S 1 | 2      | 1000         |         | 1.1     | ENTRY<br>35 | 21<br>21 | 0       | 100<br>77     | 0<br>9  | 0<br>0 | 0<br>2       | Ň             | 0<br>4 | 0<br>0 | 37<br>37 | •          | 0          | •    |   | 0 0        |   | 2        | 1       |                |
| ( 1,<br>(80), | 2)        | Ž      | 1000         | -       |         | ENTRY       |          |         | 100           | 0°      | Ŏ.     | c<br>Q       | Ś             | 0      | 0      | 37       | .0         | •          |      |   | 0 0        |   | 2        | 3       |                |
| ( 2,          | 5)        | 2      | 1999         | 10      | Ø       | 35          | 21       | 25      | 56            | 19      | 0      | 3            | 4             | 1      | 0      | 37       | 0          |            |      |   | 0 0        |   | 2        | 4       |                |
| (802,         | 3)<br>51  | 2<br>S | 1000<br>1999 |         |         | ENTRY       | 21<br>21 | 0<br>19 | 100<br>73     | 67<br>8 | 0      | 0<br>A       | 5             | 0      | 0      | 37<br>37 | o,         |            | ÷    | - | 0 0<br>0 0 |   | 2<br>A   | 5       |                |
| (803,         | 4)        | ş      | 1000         | -       | •       | ENTRY       |          |         | 100           | ő       | ŏ      | ō            | ŝ             | 0      | õ      | 37       | e          | -          | - T. | - | οŭ         | _ | z        | Ť       |                |
| 6 40          | 5)        | 5      | 1999         |         | -       | 35          | 21       |         | 47            | 26      | 0      | 1            | 2             | 3      | 0      | 37       | 0          | -          | -    | - | 0 0        |   | 2        | 8       |                |
| (5)<br>( ¢    | 1)        | Š      | 1999         | -       | 0       | 35<br>35    | 51       |         | 100<br>100    | Ŭ,      | 0      | 0            |               | 0      | 0      | 37<br>37 | 0          | •          | -    | - | 0 0<br>0 0 | - | ~ ~<br>~ | 9<br>10 |                |
| (5,<br>(5,    | 2)<br>3)  | 2      | 1999         | •       | 0       |             | 51       |         | 100           | 0<br>3  | ő      | -            | 805           | ů.     | 0      | 37       | Ű.         | Ŭ.         |      |   | 0 0        |   | Z        | 11      |                |
| ( 5.          | 41        | 2      | 1999         | -       | 6       |             | 2        |         | 100           | a.      | 0      |              | 803           | Ő.     | Ċ.     | 37       | 0          | Ű.         | ú    | Q | 0 0        | Ē | 2        | 12      |                |



ł

).

10.0

## OFF-PEAK HOUR

|                               | SAGIN<br>AT<br>WAVER |         | %<br>CHANGE | CED<br>AT<br>JOE | :       | %<br>CHANGE | GRAND<br>AJ<br>HAGAI | n<br>-  | %<br>CHANGE |
|-------------------------------|----------------------|---------|-------------|------------------|---------|-------------|----------------------|---------|-------------|
|                               | Before               | After   |             | Before           | After   |             | Before               | After   |             |
| Vehicle-Miles                 | 2818.92              | 2477.20 | -12         | 1577.83          | 1929.23 | +22         | 1401.33              | 2114.19 | +51         |
| Vehicle-Minutes               | 5759.9               | 10427.2 | +81         | 3361.5           | 6900.6  | +105        | 3024.5               | 5550.6  | +84         |
| Vehicle-Trips                 | 3724                 | 3322    | -11         | 2087             | 2593    | +24         | 1848                 | 2796    | +51         |
| Stops/Vehicle                 | 0.66                 | 1.02    | +55         | 0.63             | 0.98    | +56         | 0.61                 | 0.88    | +44         |
| Moving/Total Trip Time        | 0.716                | 0.350   | -51         | 0.769            | 0.456   | -41         | 0.777                | 0.635   | -18         |
| Ave. Speed (MPH)              | 29.36                | 14.25   | -51         | 28.16            | 16.77   | -40         | 27.80                | 22.85   | -18         |
| Mean Occupancy (Veh.)         | 95.6                 | 173.4   | +81         | 55.8             | 114.7   | +106        | 50.2                 | 92.2    | +84         |
| Ave. Delay/Vehicle (Sec.)     | 26.33                | 122.37  | +365        | 22.32            | 86.80   | +289        | 21.94                | 43.48   | +98         |
| Total Delay (Min.)            | 1634.4               | 6775.1  | +315        | 776.4            | 3751.3  | +383        | 675.7                | 2025.9  | +200        |
| Delay/VehMile (Min/V-Mile)    | 0.58                 | 2.74    | +372        | 0.49             | 1.94    | +296        | 0.48                 | 0.96    | +100        |
| ≌ Travel Time/VehMile         |                      |         |             |                  |         |             |                      |         |             |
| (Min/V-Mile)                  | 2.04                 | 4.21    | +106        | 2.13             | 3.58    | +68         | 2.16                 | 2.63    | +22         |
| Stopped Delay as a Percentage |                      |         |             |                  |         |             |                      |         |             |
| of Total Delay                | 34.8                 | 83.5    | +140        | 37.1             | 80.5    | +117        | 39.6                 | 58.8    | +48         |
| Fuel Consumption (Gallons)    | 192.08               | 243.54  | +27         | 102.06           | 164.22  | +61         | 89.17                | 148.38  | +66         |
| M.P.G.                        | 12.78                | 9.08    | -29         | 13.46            | 10.46   | -23         | 13.74                | 12.45   | -9          |
| HC (Grams/Mile)               | 2.60                 | 4.01    | +54         | 2.39             | 3.38    | +41         | 2.33                 | 2.71    | +16         |
| CO (Grams/Mile)               | 38.79                | 69.34   | +79         | 34.40            | 55.67   | +62         | 32.85                | 40.50   | +23         |
| NO <sub>x</sub> (Grams/Mile)  | 6.39                 | 6.97    | +9          | 5.60             | 6.08    | +9          | 5.38                 | 5.60    | +4          |

11-13-81 PHB(63B-604)-7 Safety Programs Unit

Sec.