MTOHTGAN
STATE HTGHWAY DEPARTMENT
Charles M. Ziegler
State Highway Commissioner

> Reporit+45

DESIGN OF CONCRETE RESURPACING

$$
\begin{aligned}
& 43=-7 \\
& 1443
\end{aligned}
$$

RESEARCH LABORATORY
TESTING AND RESEARCH DIVISTOA
EAST LANSTING WICHIGAN
May 21, 1943

DESTGN OF CONCRETE RESUREACTNG

The following repart is based on the findings and conclusions resulting from a speciel study of concrete resurfacing by members of the Comittee on Design of the Highway Research Board, (1) and by R.D.Bradbury. (2) The study included special condtion surveys of several experimental concrete resurfecing projects located in New Yowk, Michigan, Virginia, North Carolina, Iowa, Pennsylvanie, Missouri and Ohio. Also recomendations by the Portlend Cerent Association are included. (3)

The features of design especially considered in the studies were: condition of old suxface, thickness of resurfacing, joint construction, reinforcement, size of aggregates, and bond between the two concrete slabs.

Condition of 01d Surface:

The extent of cracking, breakage and uneveness of surface of old pavement exerts a genexal influence on the ultimate stmactural condition of the resurfacing slab. This influence is strongly resisted and often over come through the use of increased resurfacing thickness, a "Bond breaker" between the old and new concrete, properly distributed reinforcement and the provision of frequent joints.

Thickness of Resurfacing:

Recommended thickness for various classes of support and traffic are indicated in Table I.

Joints:

Both longitudinal and transverse joints should be provided in resurfacing. The same basic requixements for types and specimens of transverse joints that apply to monolithic concrete pavements are applicable also to concrete resurfacing.

Strictly local traffic of lightweight vehicles on residential street	LOCATION AND COHDTTIONS			
	Rigid old pavement not badly broken		Flexible old paverent or sisic old pavement badly broken	
	$\begin{aligned} & \text { To Free } \\ & \text { joints } \\ & \text { br edges } \end{aligned}$	Free Joints or edges slong which wheels can run	Joints or edges not free	Joints or edges free
	$\frac{3-i n}{\text { thickness }}$	4 -in. or 3-in. thickened to 4 at joints and edges	4 min.	5 -in. or 4 -in. thickened to 5 at joints and edges
Business or through street or county road carrying moderately heavy vehicles	4 La	5-in. or 4-in thickened to 5 at joints and edges	5-in.	b-in., or 5 -in. thickened to 6 at joints and edges
Road or street carrying a large volume of heavy vehicles	5-in.	6 -in. or 5 -in. thickened to 6 at joints and edges	6 -in.	7-in., or 6-in. thickened to 7 at joints and edges
*Free joints are those withou hoad. Free edges are those coinc from traveling along them.	bars, dowel rith the edg	mechanical bond to assure the ola pavement and not	Jjacert nt to cur	b carrying part of the which prevent wheels

Transverse joints in resurfacing need not necessarily extend through the old pavenent. The joints should be located exactly over any old joints, or not less than 6 or 8 feet from them.

Longitudinal joints should divide the slabs into strips not more than 15 feet wide. Longitudinal joints are generally of the weakened plane types held together in the usual manner by tie bars.

Reinforcement:

Experience indicates that reinforcement is desirable in resurfacing. Hesh of closely spread small diameter bars weighing from 40 to 60 lbs per 100 sq . ft. has been found to be satisfactory. The square $6^{\prime \prime}$ by 6^{n} mesh is quite extensively used. Reinforcement should not extend across transverse joints.

Agregates:

The proportions used in standard concrete pavement construction are suitable for resurfacing. The maximum size of coarse aggregate should not exceed one-third the depth of the resurfacing.

Bond Between New and old Concrete:

Experience has not conclusively shown the need for taking special precautions to break bond between the old and new work. While successful resurfacing projects have been built by casting the new slab directily on the old pavement surface, still the practice of first covering the old slab with a layer of bond-breaking material such as asphalt, tar, paper or sand, has in some cases proved to be definitely beneficial.

If bond is sure to accrue due to roughness of the old surface, it may be good practice to provice for the best bond possible. This would mean that the old slab must be perfectly clean and properly treated to obtain intinate contact between old and new concrete.

Preparation of 010 Surface:

The old surface is cleaned of any accumulation of foreign material. Pote holes and irregularities in the old slab are filled with a suiteble material to restore the contour of the old surface. Concrete is recommended as a filler material in order to insuxe uniform and adequate bearing support to the new concrete surface.

Widening:

Widening in connection with resurfacing may involve either increasing the width of existing lanes or the addition of one or more full traffic lanes.

Such work requires specinl design considerations for each particular project. Therefore reference to such matters is made to the Manual on Salvaging old Peverents with Concrete published by the Portland Cement Association which has suggested designs for resurfacing.

Reforences:

1. Resurfacing with Portland Cement Concrete E.M. Fleming, 12th Annual Proceediags of the Highway Research Board, Paxt 1, 1932.
2. Reinforced Concrete Pavements, R. D. Bradbury, Publication by the Wire Reinforcement Institute, 1938.
3. Salvaging 0ld Pavements with Concrete, Portland Cement Association Bulletin, 1938.
4. Construction of Roads and Favenents, T. R. Agg, Publication by McGraw Hill Book Company, 1940

43185

4 fitcorcaymut

