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EXECUTIVE SUMMARY

Introduction

In Michigan over 25 percent of fatal traffic crashes take place on non-freeway trunkline
| highways. Research has consistently demonstrated that crash rates on horizontal curves
are many times higher than that of the tangent sections on the same road, and most studies
have found the degree of curvature to be the most significant single factor related to curve
. crashes. However, other roadway features, such as superelevation and skid resistance of
the pavement surface, traffic control elements, driving environment and human fact;)rs,
individually or in combination are major contributors as well.

Several models, most notably the Glennon Model and the Zegeer Model, have been
developed to explain the'relationship between curve features and curve crashés. However,
when applied to Michigan data, their results are not sufficiently reliable to establish
corrective or preventative programs.

The purpose of this study was to analyze horizontal curve crashes experienced on two-
lane trunkline roads in the State of Michigan, and to devise procedures to identify curved
road segment grouping attributes that correspond to the crash rate on curves. A second
goal was to identify curves that exhibited crash frequencies significantly higher than the

mean for their group, or which potentially may exhibit such crash frequencies.

Regression analysis results

To accomplish the objective of this study, a multi-step approach was utilized. Step one
was to acquire geometric dgta for all the rural, two-way, two-lane trunkline Highways in
Michigan. Based on the selection criteria shown in Table 1, the candidate curves were
selected and the control section (reference system used by MDOT for trunklines) and the

mile points of the beginning and ending of the curves were noted.



Table 1: Selection criteria

Rm“al two-lane, two-way.

No taper, no extra lanes.

No éurb, no parking.

No median, and no intersections.

At least 306 meters (0.19 mile, about 1000 feet) of tangent at each end of
each curve.

At least 611 meters (0.38 mile) of 'tangent between the two curves.

In addition to the data from the geometric file and the crésh daté ﬁlc, data was obtained
from the photo logs and the curve superelevation and pavement friction were obtained in
the field. |

For each of the 220 curves, all the crashes corresponding to the mile points from 306
meters (0.19 mile) before the start of the curve to 306 meters (0.19 mile) after the end of
the curve were extracted from the MDOT crash ﬁiés for the six year period of 1989 to
- 1994, yielding 3107 total crashes.

The crash report forms for these crashes were obtained and processed to verify the
location of the individual crash as being on the curve or on the tangent.

The Geometric data included 44 variables such as degree of curvature, curve length,
average lane widfh, total shoulder width (right and left), etc. The crash data consisted of
120 variables such as mile point of crash, highway area type, highway area code, etc.

The photo log data were used for variables such as the presence 6_f traffic signs (arrow,

chevron, etc.), the mile point at which the curve was first observed, etc. The data also
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included a subjective measure of the roadside clearance/hazard, on a scale of one to
seven. The data acquisition was performed twice, once for each direction of the traffic
flow.

The field data collection was performed to obtain only two variables; a measure of the
| superelevation of the road, and a measure of the skid resistance of the pavement surface.
For the analyses used in this project, only the Curve Related crashes consisting of the

following types of crashes were considered:

Table2: Curve related crashes
CODE DESCRIPTION

000 Miscellaneous 1 Vehicle
010 Overturn

060 Fixed Object

070 Other Object

141 | Head-on

543 Side-Swipe Opposite

Selection of the curve related crashes yielded 994 crashes corresponding to the 178
roadway segments which had at least one related crash. Not all of the selected roadway

| segments had crashes in both the tangent and curve portion of the roadway segment.

In addition to analyzing all related crashes, crashes occurring under different road surface

‘conditions, weather conditions and lighting conditions were also analyzed. |

A sub-set of curves consisting of only those with the field data were analyzed scparately.

All analyses were based on the assumption that the non-measurable, non-quantifiable
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environmental and traffic conditions along the entire length of each curve can be
considered to be the same as that of the average of the tangents at each end. The basic
unit of tangent length at each end of the curves was 306 meters (0.19 mile). To corﬁparc
the curve crashes with the tangent crashes, 611 meters (0.38 mile) was used as a unit
| length and fhc curve crash rate was adjusted for this length. The resulting variables were
called Cper380 for curve crashes and Tper380 for tangent crashes. Another variable, C-T
was defined to represent the difference between curve and tangent crashes. This variable
has a value equal to Cper380-Tper380.

Two sets of simple regressions, one for the curve crashes (Cper380), and the other for the
difference between the curve crashes and tangent crashes C-T, versus the independent |
variabies were performed. The re.gression lines, and the coefficients of regression aﬂ
indicate that simple regression models are poor predictors of crashes. The use of multiple
regressions models improved the predictive capability of the models, but these models
still explained only a small percentage of the variation in the crash rate on curves.

The difference between the design speed and the advisory speed or posted speed limit was
calculated and linear regression models for the Cper380 and C-T values were developed.
These models were also found to indicate a weak comrelation. |

The curve crash data versus their predicted value from the Glennon and Zegeer models
were then calculated. While both models appear to Show the correct trends, neither model

explains the curve crash variation in Michigan data, as shown in Figure 1 and Figure 2.
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Discriminant analysis and cluster analysis models.

The conclusion from these analyses was that neither simple linear regression nor multiple
linear regression are powerful enough tools to depict the large variations in the curve
crash rate, or to be useful in establishing crash reduction policies for the Department.

‘Having detéxmined that the variation in crash frequency found on Michigan curves can
not be satisfactorily explained by models based on simple linear regression, simple non-
linear regression, multiple linear regression or multiple non-linear regression, alternative
 statistical techniques were tested to determine which techniques could satisfactorily
explain the data.variation. Discriminant analysis and cluster analysis techniques were

found to accomplish the task.

DISCRIMINANT ANALYSIS

| Discriminant analysis is a multivariate technique used to distinguish between two or more
groups of cases and for studying the overlap between gfoups, or divergence of one gi'oup
from the others.
The variables with a high contribution toward .explaining membership in each group,
generally not all the original variables, are considered the prédictor variables or the
discriminating variables.
For this study, discriminant analysis was used to determine the \-!ariables which can be
used to distinguish between high and low crash rate curves. Table 3 shows the results of

the analysis using the curve crash rate as the grouping variable.
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" Predicted Group
Membership
: GRPCLTS - 1.00 2.00 Total
Onginal . count T.00 64 24 88 |
' 2.00 26 64 90
% 1.00 72.7 273 100.0
2.00 28.9 71.1 100.0
a. 71.9% of original grouped cases correctly classified.
Sig.of F ik
. . ilks'
Variables | 1jarance Rergnoove Lambda
HCLFT .866 .001 827
HCRFT .848 .002 822
ADT .978 .002 .821

Results of the discriminant analysis for curve crash rate
(Cper380)

Table 3
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Group one represents curves with the expected value of the crash rate is lower than 5.0
crashes per 306 meters (1000 ft), and group 2 represents curves with an expected value
greater than 7 crashes per 306 meters.

The curve length, the preéence of a turn or curve warning sign, the radius of the curve and
the tangent crash rate are the discriminating variables identified in this case. Using these
variables 79.1% of the curves were correctly classified. A second analysis was conducted
using the difference between the curve crash rate (Cper380) and the tangent crash rate
(Tper380) as the grouping measure.

As shown in Tablel4, the curve radius, curve length and the presénce of a warning sign
are the three most important discriminating variables. For this analysis, 75.6% of the
curves were correctly classified using these three variables. Using this model, 90.7% of
the high érash rate curves were correctly identified.

Discriminant analysis provides information useful in meeting the objectives of this study. l
Specifically, it can be used to identify thoée characteristics of low crash rate curves which
distinguish them from high crash rate curves. Having done this, it can be uéed to identify
those curves with a high crash rate that should tbased on their characteristics) have a low
 crash rate. These curves are the ones that should be studied for possible countermeasure

- implementation.




~Predicted Group
Membership
LOCMNST 1.00 2.00 Total
Original Count T.00 5 23 28 |
2.0(_) 10 | 97 107
"% 1.00 17.9 82.1 100.0
2.00 8.3 80.7 100.0
~ 75.6% of original grouped cases correctly classified.
Sig. of F
. to Wilks'
Step Variables § Tgjerance | Remove | Lambda
T HCRF] 1. .000
2 HCRFT 087 003 917
CTSIGN .987 .004 912
Tabled  Results of the discriminant analysis for modified curve

minus tangent crash rate (ModC-T)




Using the discriminant analysis results from the modified Cper380 analysis, sixteen
curves fell in this category. The crash rate on these curves ranged from 7.13 to 21.71
when they should have fallen in the group with a crash rate below 5.0. These curves are
~shown in Table 5, along with the.value of some of tﬁe variables used in the analysis.
The siéﬁiﬁcant characteristics of these curves include:

Most do not have curve signs, target arrows and delineators

There are no chevrons

The observed sight distance is usually short

The radius is relatively large |

The tangent crash rate is low -
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(x

CRVno| CS | BMP | CTsign |[CHEVRON|ARROW |DLNTR| OBSDSTW [HCLFT|HCRFT| Tper380 | Cper380
136 |45012| 5540 | 0O o | 1 1 10 | 845 | 1042 | o000 | 713
{4 | 5051 | 7280 0 0 0 0 40 264 | 2865 100 | 7.60
72 |24011| 4377 | 1 0 0 0 23 1056 | 2292 | 3.00 7.60
200 |73131] 0 0 0 0 0 0 264 | 2865 { 2.00 | 7.60
3 2021 [15020] © 0 0 0 40 739 | 1810 | 1.00 8.14
38 |12021| 490 0 0 0 0 70 739 | 2292 | 3.00 8.14
33 [10011] 5620 1 0 1 0 33 475 | 2865 | 0.00 8.44
82 |28052] 5530 0 0 1 0 40 475 | 1910 | 1.00 8.44
81 [28052| 4790 1 0 0 0 50 634 | 2865 | 2.00 9.50
94 |31013| 5810 O 0 0 1 30 370 | 1910 | 3.00 10.86
117 [38071| 7490 1 0 1 0 10 1214 | 2865 | 8.00 1322
87 |30062] 1640 1 0 0 1 10 1478 | 2456 0.00 13.57
156 |51011 50 | o | 0o | © 0 | 50 | 581 | 1146 | 1.58 | 13.82
19 | 8011 | 8990 0 0 0 1 80 | 211 | 1763 | 4.00 | 19.00
193 |67011] 2130 | O 0 1 1 40 475 | 1637 4.00 2141
172 58032 4150 0 0 0 0 80 370 | 2644 | 4.00 | 2171

Table 5 Curves with a high curve crash rate (Cper3890) from the

discriminant analysis




CLUSTER ANALYSIS

Cluster Analysis is a systematic technique to look for regularities in a data set. Once the -
regularities are depicted, this procedﬁre groups the data based on these regularities and
_their interpretations. Uh]ike Diécriminate Analysis, which requires prior knowledge of the
group membership for the ciata cases, cluster aﬁalysis does not require such knowledge.
Cluster analysis was used to identify the variables with a strb'ng association with the crash
rate. Whilé any nurhber_ of clusters can be created, three clusters were used in this study.
One ;:Iuster identified the variables associated with curves that have a low crash rate, a
second cluster was formed around curves with an intermediate crash rate, and the third
around high crash rate curves,

Utilizing cluster analysis produced results which proved to be useful for the objectives of
this study. Table 6 shows the output for a three cluster case in which Modified Cper380,
as discussed previously, was used to define the number of curves included in the
analysis.

The clustering of high, medium and low crash rate cufves with other variables ié clear,

_ with cluster one having a crash réte of 3.08, cluster two a crash rate of 7.78 whil'elthe
third cluster has a crash rate of 18.05. Some variables, such as curve length and radius,
show great variations between at least two of the three clusters. Tﬁis is an indication of an
important variable in the prediction model. The important variables are shown in Table 7.
The same variables identified in the discriminant analysis were important in the cluster
analysis. The ADT, curve radius and length, and the presence of traffic control devices

(arrow and chevron)are all important in defining the clusters. Interestingly, the high crash

xiil



Cluster
1 2 3
ADT "472.72 536.05 549.14
ALW 11.31 1119t 11.06
ARROW 21 09 29
CHEVRON 03 .03 13
CLRNCW 3.69 3.66 4.09
CTSIGN 34 44 .56
DLNTR _ 31 19 27
EDGLN 1.00 . .98 1.00
GRAIL | 21 13 23
HCLFT 1704 580 520
HCRFT 2471 2383 963
MODCPER 3.08 7.78 18.05
MPHS .10 .09 .30
NPZC .90 1.06 1.96
OBSDSTW 45.24 44.27 . 38.37
PSL 54.66 54.53 - 53.29
PSW 10.79 6.56 7.03
SCT 1.66 1.53 1.60
TPER380 2.52 3.44 2.58
TSW 19.45 18.72 18.56

:[abie 6  The numerical values of all variables in defining the clusters
| grouped by the modified curve crash rate (ModCper)
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Cluster

1 2 3
~ADT 372. 536.00 548.14
ALW

| ARROW 21 - .09 29
CHEVRON .03 .03 A3

CLRNCW .

CTSIGN.

DLNTR

EDGLN

GRAIL

HCLFT 1704 590 520
HCRFT 2471 2383 863
MODCPER 3.08 7.78 18.05
MPHS
NPZC
OBSDSTW
PSL

PSW

SCT
TPER380
TSW

Table7  The nminerical values of the important variables in defining the
clusters grouped by the modified curve crash rate (MeodCper)
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rate curves are associated with the highest probability of having chevrons and target
arrows deployed. However, this is explained by the fact that this cluster contains the short
radius curves, Where these devices tend to be deployed. Perhaps the most interesting
cluster is the third one, which clusters moderately high crash rate cufves with curves of |
large radius but short length. These tend to not have traffic control devices deployed
because of their large radius and subsequently their high design speed.

Similar results were found when C-T waé used as the grouping variable. This is
consistent with the results above, since most of the misclassified curves had a low value

of Tper380, they would fall in the high range of C-T values.

The results of the cluster analysis are consistent with prior studies, but they also
provide additional information that may be useful in reducing traffic crashes. Low crash
rates are clustered with curves with a lérge radius and long length. The average radjus for
curves in this group (based on modified Cper380) is 398 meters (1305 ft). The éverage
length for the same curves is 274 meters (900 ft). These curves tend to have target arrows
but no chevrons.

| High crasﬁ rates are clustered with short, sharp curves as expected. These curves
) tend to have both chevrons and target arrows in place, but still tend to experience c.rashes
because of their geometry.

The third cluster is the most difficult to explain, and possibly the group of curves |
where countermeasures may be most effective. These curves have a crash réte over twice

as high as the low crash rate curves, even though they have approximately the same
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radius. The primary geometric difference is that they are very short curves, averaging 95
meters ( 312 ft ). These curves generally do not have chevrons or target arrows in place.

Chevrons and target arrows are not intended for these types of curves according to

the Michigan Manual of Uniform of Traffic Control Devices (MMUTCD), since they do

not constitute a sharp change in alighment. However, based on the‘an'alysis, it may be

appropriate to consider the use of these signs to increase the visibility of the curves.

This same clustering of curves into these groups are observed whether the crash
rate variable was Cper380, Modified Cper380, C-T, or modified C-T. There were
approximately 70 curves that belong to this cluster. Table 8 lists the curves for which

both the Cper380 and C-T were signiﬁcantly higher than the average for this cluster.

Xvii



nax

CRVno cS BMP | Cisign |CHEVRO | ARROW | DLNTR | BSDST | HCLFT | HCRFT | Tper380 | Cper380 | CmnsT
30 12021 490 0 0 0 0 70 739 2292 3.00 8.14 5.14
200 73131 0 0 0 0 i 0 264 2865 2.00 760 | 560
68 23051 2220 1 1 0 0 20 845 2083 6.00 11.88 5.88
177 61012 4910 0 0 0 0 48 327 2392 12.00 | 18.39 6.39
14 5051 7280 0 0 0 0 40 264 2865 1.00 7.60 6.60
4 2021 23640 0 0 0 1 70 581 2865 0.00 6.91 6.91

3 2021 15020 0 0 0 0 40 739 1810 1.00 8.14 7.14

82 28052 5530 0 0 1 0 40 475 1910 1.60 8.44 7.44

81 28052 4790 1 0 0 0 50 634 2865 2.00 9.50 7.50

94 31093 5810 0 0 0 1 30 370 1910 300 10.86 7.86

733777 710011 | 5620 9 0 1 0 33 475 2865 0.00 8.44 8.44
A2 |7 E0317 7 3000 1 o 0 0 60 370 2292 | 200 | 108 | 886
2447 7 81031 | 750 1 | "o 0 0 10 |7 317 2202 | fo00 | 19.00 | 9.00
100 | 31051 | 9143 i | 7o |0 0 13 338 1910 100 | 1188 | 1088

1727 | 58032 4150 0 0 0 0 80 370 2644 4.00 21.71 17.71
88 30062 2900 1 0 0 1 30 581 1719 | 3.00 20.73 17.73
19 8011 8990 0 0 8 1 80 211 1763 1.00 19.00 18.00
101 32011 3050 1 0 0 0 30 370 2292 4.00 27.14 23.14
62 22021 499 0 0 0 0 49 306 1879 16.00 4586 29.86
140 45013 | 11700 1 0 1 0 60 634 1910 2.00 34.83 32.83
215 81031 1370 1 1 0 0 70 370 2089 6.00 4343 37.43
71 23111 3670 1 0 0 0 30 211 1910 3.00 4750 | 4450

Table 8 Curves with both a high curve crash rate (Cper380) and a high

curve minus tangent crash rate (C-T)




CONCLUSIONS

Based on the analyses conducted in this study, the following conclusions were reached.

1. The variation in the crash frequency or rate between horizontal curves with
similar geometry is too large to be explained by regression techniques. The only
studies that report high corr:lation coefficients are those that aggregate curves into
groups with similar characteristics and then conduct the regression analysis on the

group means. This type of analysis may be useful in the design of new highways, but

it is not useful in meeting the objectives of this study.

2.  The predicted crash rate using existing models (Zegeer and Glennon) does nof
accurately depict the actual crash rates on Michigan t_wo-Way, two-lane rural
trunklines. These models can not be used to identify curves locations where
countermeasures could successfully be deployed to reduce crashes.

3. The distance on the approach at which the curve first becomes visible to the
motorist is not highly correlated with the crash rates as a single variable, but it was
found to be a contributor to some of the models that use multiple variables.

4. The addition of data on superelevation and the drag factor contributed little to the

 prediction capabilify of the models.

5. Discriminant‘anﬁlysis techniques, using the vén'ables collected for this study, can
successfully distinguish the high crash rate curves from the low crash rate curves.
This technique can be used to identify outliers in each of the two categories (high and
low) for both the absolute crash rate on curves (Cper380) or the difference in the

crash rate between the curve and the tangent roadway segments (C-T).

6. Cluster analysis identified three distinct groups of curves. The group with a high
crash rate (Cper380) is characterized by short radii and short curve lengths. These
curves generally are marked with a curve sign, advisory speed panels and chevrons or

delineators. The high crash rate on the first group of curves is probably related to
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constraints the geometry imposes on driver ability to negotiate the curve at their
approach speed. |
The group with a low crash rate are characterized by large radii and long

- curve length where the curve is obvious, and little or no driver input is required.

| The third group, with an intermediate crash rate, are characterized by large
radii but short curve lengths. The intermediate crash rate curves appear to be the
group of curves where the benefits of low cost traffic engineering measures may be
most effective. The crashes on these curves may be related to the driver perception (or
lack of perception) of the presence of a curve. Thus, even though the curve geometry
does not require extraordinary driver input to negotiate safely, the presence of the

curve is not being effectively communicated to the driver.
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RECOMMENDATIONS

1.

The curves identified in Table 5 from the discriminant analysis results should be
targeted for analysis and potential countermeasures implémcntation. These sixteen
curves have the characteristics of low crash rate curves, but are experiencing a high
rate of crashes.

The curves identified in Table 9 from the cluster analysis results should be
targeted for analysis and potential countermeasure implementation. These curves
have been identified as experiencing a crash rate at least twice that of the average

crash rate for curves in their cluster.

Curves characterized by a large radius and short length should be analyzed to

determine if there are inexpensive countermeasures that could be applied at these
curves to reduce the crash rate. These curves have been identified from the cluster
analysis as having a higher crash rate than that explained by the curve geometry.
The curves from this group with both a high crash rate and a large difference in the
curve crash rate compared to the tangent crash rate are shown in Table 8.

Discriminant analysis and cluster analysis techniques should be used to analyze
other sets of curves on state trunkline highways. These techniques have been useful
in identifying specific cﬁrves that are candidates for countermeasures. It should be
determined whether these techniques are equally valid for curves that are not screened
for approach tangents and intersections. The techniques may also be useful to identify
high crash rate curves on four-lane cross sections. | ‘

¥f recommendations 1, 2, and 3 are adopted, a careful before and after study
should be designed to document any change in the crash rate resulting from
implementation of the selected countermeasures. |

If resources are available in the Department of Transportation, these analyses
could be conducted internally. Alternatively, these analyses could form the basis of a

study for the Miéhigan State University Center of Excellence.
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CTsign | CHEVRON| ARROW |DLNTR| OBSDSTW | HCLFT

Table 9

the average for their cluster

CRVno| CS | BMP HCRFT| Tperd80 | Cperd80 (C> 2Mn
23 | 8031 [ 2990 1 0 1 1 50 1267 | 1763 | .00 9.50 285
35 |[11052[14040] 1 0 0 0 10 1320 | 2865 | 12.00 | 10.64 309
117 |38071] 7490 i 0 1 0 10 1214 | 2865 | 8.00 13.22 6.56

87 | 20062} 1640 1 0 0 1 10 1478 | 2456 | 0.00 13.57 6.92
92 |31012| 4227 ) 0 0 [ 17 343 | 477 4.00 35.08 0.87
28 |10011) 7470 1 0 5 1 30 158 | 521 2.00 38.00 3.79
152 [47041}21730] 1 1 0 1 60 158 286 |  2.00 38.00 379

181 |62031] 3160 0 0 0 0 10 264 820 7.00 | 3800 379

211 [79081) 8450 | O 0 1 1 18 539 | 1008 7.00 44.71 10.50
18 | 8011 | 7100 1 0 0 0 30 211 229 4.00 47.50 1329
196 |72051| 7673 0 0 0 0 10 143 | 1146 | 1.00 56.30 22.00

85 [20042] 6270 0 0 0 0 20 106 | 1146 | 400 | 57.00 22.79
168 | 56032| 8814 1 0 0 ) 34 380 | 1146 | 4.00 58.06 2385
199 | 73061 3930 0 1 0 1 10 370 727 6.00 | 65.14 30.94

T 28 (10011] 8920 1 0 1 0 30 317 215 3.00 82.33 48.13

151 |47041)19440| 1 1 0 0 30 211 | 744 | 800 | 9580 | 6079

177 _[s1012] 4910 0 0 0 0 48 327 | 2202 | 1200 | 1838 314
19 | 8011 /890 © 0 | 0 1 80 211 {1763 | 1.00 | 18.00 375
214 [81031} 750 1 0 0 0 10 317 | 2202 | 10.00 | 19.00 3.75
88 |30062| 2900 1 0 0 1 30 5§81 | 1719 | 3.00 20.73 5.48
172 | 58032| 4150 0 0 0 0 80 370 | 2644 | 4.00 21.71 6.47

101 |32011] 3050 1 0 | o ) 30 370 | 2202 | 4.00 27.14 11.90
140 |45013|11700| 1 0 1. 0 60 834 | 1910 | 2.00 34.83 19.59
215 81031} 1370 1 1 0 ] 70 370 | 2989 | 6.00 43.43 28.18
62 |[22021| 499 0 0 0 7 49 306 | 1879 | 16.00 | 45.86 30.62
71 23111} 3670 1 0 0 0 30 241 | 1910 | 3.00 47.50 32.25

Curves with a crash rate (Cper380) greater than twice



INTRODUCTION:

In Michigan over 25 pefcent of fatal traffic crashes ‘take place on non-freeway trunkline
highways. These highways typically have all the elements associated with a high number
 of serious crashes. Lack of a separation bﬁffer from the opposing traffic, combined with
rather high speeds, lack of, or at times adverse lighting conditioﬁs sets the stage for such
crashes.

Research has consistently demonstrated that crash rates on horizontal curves are many
times higher than that of thé tangent sections on the same road, and most studies have
found the ﬁegree of curvature to be the most significant single factor related to curve
crashes, However, other roadway features, such as superelevation and skid resistance of
_ the pavement surface, traffic control elements, driving environment and human factors,
individualiy or in combination are major contributors as well.

Several models, most notably the Glennon Model and the Zegeer Model, have been
developed to explain curve crashes. However, when applied to Michigan data, the results

are not suffiéiently reliable for establishing corrective or preventative programs.




OBJECTIVES:

The purpose of this study was to analyse horizontal curve crashes experienced on two-
lane trunkline roads in the State of Miéhigan, and to devise procedures to identify curved
road segment grouping attributes that correspond to the crash rate on these curves. A
second goal was to identify curves that exhibited crash frequencies significantly higher.
than the mean for their group, or which potentially may exhibit such crash frequencies.

The specific objectives were to:

- 1) Identify the factors influential in horizontal curve crashes based on Michigan’s

crash data.
2) Prepare guidéiines as to where and to what extent improvement of horizontal

curves is warranted.




LITERATURE REVIEW:

Modeling of Crashes on Horizontal Curves:

Prior to 1985, mbdeling of crash frequencies or rates on horizontal curves was
normally based on a single variable. For example, Jorgenson l(l) in 1978 reported a
linear relationship between crashes and the degree of curvature.

~ In 1985, Glennon et. al. (2) published a report titled " Safety and Operationa’l
Considei:ation for Design of Rural Highway Curves". The research was performed to
study the safety 'and operational characteristics of iwo—lane., rural highway curves. A
series of independent research methodologies were employed, including (a) multivariate
crash analyses; (b) simulation of vehicle/driver operations using Highway Vehicle
Operation Simulation Model (HVOSM); (c) field studies of vehicle behavior of
highway curves; and (d) analytical studies of specific problems involving highway
curve operations.

The cfash studies indicate thgt, in general, the Jorgenson model is correct; as curve
radius dcéréases, crash rate increases. However, :adius_ of curve is not the only
geometric element affecting safety. The crash and field studies showed that the design
of highway curves must consider a series of trade-offs among the basic elements of a
curve-radius, superelevation, and curve length.

The study also found that either very sharp or very long highway curves tend to

produce more crashes. Larger angles (i.e., greater than 45 degree) require either sharp




curvature, or a long curve length and should be avoided when possible.

Studies of crashes on highway curves showed single-vehicle run-off-road crashes to be
of paramount concern. Roadside treatment countermeasures were found to offer the
greatest poténﬁal for mitigating the frequency and severity of crashes on rural highway
curves. Studies involving a single factor have generally reached the following

conclusions:

Lane Width
. The crash studies did not conclusively establish a meaningful effect of lane width on
crash rates at highway curves. This lack of sensitivity probably resulted because very

few roads less than 20 feet wide were observed in the crash study data base.

~ Shoulder Width
As shoulder width increases, the probabilify that the highway curve will be a high

crash location decreases.

Roadside Character
The crash studies indicate that roadside character ( roadside slope, clear zone width,
and coverage of fixed-objects) is the most dominant contributor to the probability that a

highway curve is a high-crash location.

Pavement Sm‘fﬁc’e



As pavement skid resistance decreases, the probability that a highway curve will be a

high-crash location increases.

lStopping Sight Distance

Limited sight distance increases the probability that a éurve will be a high crash
location. Two special considerations of stopping sight distance are important:

(a) the increased friction demand of a vehicle that is both cornering and braking; and
(b) the loss of the eye height advantage for truck drivers on highway curves when the

- horizontal sight restriction is either a row of trees, a wall, or vertical rock cut.

Approach Conditions
The crash studies did not indicate a measurable effect of approach conditions (such as
approach sight distance, preceding vertical or horizontal alignment, etc.) on the crash

experience of highway curves.

MODELING EFFORTS:

Based on these analyses, a crash model, namely Glennon model, §vas developed and
| presented m the Trzinsportation Research B_oard's Special Report 214.

A= ARs (L)(V) + 0.0336 (DXV)  forL>=Lc

where,

A=Total number of crashes on the roadway segment.




ARs=Crash rate on comparable straight roadway segments in crashes per
million vehicle miles.

L=Length of roadway segment in mniles

V=Traffic volume in millions of vehicles

D=Curvature in dégrees

Lc=Length of curved component in miles

In the development of this model, cross-tabulations and data analysis supported -the

 following findings:

1). Lane width may have a minor éffect on reported érash rates (not in the
model).

2).V61umes appear to have a small effect as well.

3). The data shéwed no consistent and pronounced relationship between crash

rate and either curve length or curve central angle.

As noted in Special Report 214, the accuracy of this horizontal curve model "may be
diminished for curves sharper than about 15 degrees, the approxﬁnate limit recorded in
the data base from which the model was calibrated”. This model does not consider the

following factors and curve design parameters: Curve length, Superelevation and

superelevation run-off, Spiral tramsitions, Cross-slope break, Roadside, Geometric
design consistency.

In 1986, Zegeer et al (3) reported the result of their study "Safety Effects of Cross-



section Design for Two-lane Roads, Volurﬁe [". In this study, they quantified the
effects of lane width, shoulder width, and shoulder type on highway crash experience
on extended sections of roadways based on an analysis of data for nearly 5,000 miles
of two-lane highway from seven states. The following crash prediction model resulted
from. that study:
AQ/M/Y = 0.0019 (ADT) *¥* (0.8786) ¥ (0.9192) ™ (0.9316) **
(1.2356) H (0.8822) ™M (1.3221) T°R
where:
AO/M/Y= related crashes (i.e., single-vehicle plus head-on plus opposite
direction sideswipe plus samé direction sideswipe crashes) per mile per year.
ADT= average daily traffic
W= lane width in feet.
PA= average paved shoulder width in feet.

up

it

average unpaved shoulder width in feet.
H= roadside hazard rating, a subjective measure with values of 1 to 7 (least to
most hazardous), based on a visual assessment.
TER1= 1 if terrain is flat, otherwise 0.
TER2= 1 if terrain is mountainous, otherwise 0.
The mc;del is applicable only to:
. - two-lane, two-way paved fu‘ral highways of state primary and seéondary
systems.
- lane widths of 8 to 12 feet.

- shoulder widths of 0 to 10 feet.




- ADT's less than 10,000 vpd.

- homogenous roadway sections.
The model does not inciude the intersection related crashes 6r those within the
horizontal curve that are not éxpressly stated on the previous page. The model did not
eﬁplaiﬁ the variance in crash eﬁperience on horizontal curves, as it does not consider
the effects of horizontal or vertical alignment or the frequency of horizontal curves, the
frequency of sight-restricted vertical crest curves, etc.
In 1991 Zegeer et al- (5) formulated a model for predicting crashes on horizontal
© curves:
A=[1.552(L)(V)+0.014(D)(V)- 0.012 (S}(V)])(0.978)*=?
where: |

A=number of total crashes on the curve in a 5-year peridd.

L=length of curve in miles (or fraction of a mile)

V=volume of vehicles in million vehicles in a 5-year period passing through
the  curve (both directions)

D=degree of éurve

S=presence of spiral, S=0 if no spiral exists and S=1 if there is a spiral.

W=width of the roadway on the curve in feet.
The purpose of this study was to determine the horizontal curve features which affect
safety and operations and to quantify the effects on crashes of various cMe-reiated
improvemehts. The primary data base developed and analyzed consisted of 10,900
horizontal curves in Washington State. Three existing federal data bases on curves

were also analyzed. These data bases included the cross-section data base of nearly



5,000 miles of roadway from seven states, a surrogate data base of vehicle operations

on 78 curves in New York state, and 3,277 curve roadway segments from four states.

Based on statistical analyses and model development, variables found to have a
significant effect on crashes include degree of curve, roadway width, curve length,

ADT, presence of a spiral, superelevation, and roadside condition.

In a comprehensive review of design features related to highway safety, MéGee et al
_(6) concluded that the Zegeer and Glennon models were the best models available for
predicting crashes on horizontal curves. They reported that:

"The Zegeer model relating crashes to horizontal alignment appears to represent the
best available relationship to estimate the number of crashes on individual horizontal
.curves on two-lane rural roads, although it does have limitétions. While the model
explicitly considers curve length, dégree of curvature, roadway width, and presence of
a ;pirai transition, it does not explicitly'cor'lsidcr roadside parameters or the effect of
upstream or downstream alignment. The fact that it does not. consider roadside. or even
some surrogate rating for roadside is a major limitation, especially since crash research
has shown that roadside design is a detcfminant of horizontal curve safety.

The model does not consider the effect of vertical alignment or the consistency with
respect to the design of all curves within the highway section (e.g., geometric design
consistency). Thg: model also c}oes not consider the frequency of horizontal curves
gréater than three df.;grees within the section, the frequency of sight-restricted vertical

crest curves, or the percent grade. The average operating speeds or design speeds are




also not considered explicitly. The model does not consider the influence of access

points, driveways or intersections that may be in close proximity to the subject curve."

In 1992, Ka;h and Benac (7) used the Zegeer and Glennon models and Michigan
Trunkline data, and found a poor fit between the predicted and actual crash frequency,

as shown in Figures 1, 2 and 3.
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After reviewing the mod;;:ls devéloped by Glennon and Zegeer, they identified the
following weaknesses of these models:
1. Total crashcé are predicted, instead of "curve related" crash types:
A Fi};ed—Object

B. Overturn

C. Head-On

D. Sideswipe-Opposite
2. Models do not recognize an "influence zone" for curves.
3. Models do- not adequz;teiy address the actual variability in the crash experience for
all the curves with a given length and degree of curvaturé.
In 1995, Fink and Krammes (8) reported on a study of the effect of tangent length and
sight distance on crashes at horizontal curves. This study included a review of
previous models.
Their report concluded that most models for evatuating operating-speed consistency on
two-lane rural highways estimate operating-speed profiles based upon tangent length
and degree of horizontal curvature. Some modeis also consider the effect of sight
distance to horizontal curves. To add insight on the effects of these variables on safety
and qperations at horizontal curves, a base r_elationship_ between crash rates ét
horizontal curves and degree of curvature was established, and tﬁe effects of approach

tangent length and approach sight distance on this relationship were examined.

The results confirm that degree of curvature is a good predictor of crash rates on

horizontal curves. Although the effects of approach tangent length and sight distance

14



were not as clear, the results suggest that the adverse safety effects of long approach
tangent length and short approach sight distance become more pronounced on sharp
curves.

Four other studies considered tangent length among a set of candidate predictors of
crash rates at horizontal curvés (10-13). Their findings with respect to tangent length
were mixed. Datta et al. (10) found tangent length to be a significant predictor of
outside-lane crash rates for one subset of 25 curve sites in Michigan. Terhune and
Parker (11) evaluated tangent length (among other variables) using data bases of 78
curves ir; New York, 40 curves in Ohio, and 41 curves in Alabama, and concluded that
tangent length wﬁs not significant. Matthews and Bames (12) studied 4,666 curves on
the_ rural two-lane portion of Sﬁte highways in New Zealand.

They found a significant relationship that involved tangent length in combination with
"other variables and concluded that crash risk was particularly high on short radius
curves at the end of long tangents, on steep down grades, and on relatively straight
sections of roads.

Zegeer et al. (13) evaluated the signiﬁcanée of the minimum and maximum distanée to
the adjacent curve; although neither variable was significant, they observed, "there
appears to be evidence that tangents above a certain length may result in some increase
in crashes on the curve ahead.”

Glennon et al. (14) concluded tilat approach sight distance was not a sigmificant
variable in a discriminate analysis of curve sites with high and low crash rates.
Fambro et al. (15) copcluded that available stopping sight distance is not a good

indicator of crashes, with the exception that "when there are intersections within
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limited sight distance portions of crest vertical curves, there is a marked increase in
crashes.”.

The study by Fink and Krammes (8) developed two models:

1) A regression model for predicting mean crashes per million vehicle kilometers

versus mean degree of curvature:
mean crash rate = 0.05 + 0.23 mean degree of curvature

.. The model has an r* value of 0.94. The r* is much higher than typically observed in
crash analyses, because the unit of observation is a grouping of curve sites into nine
degree-of-curvature categoriés which eliminates mmuch of the variability among

individual sites.

2) A regression model for predicting the crash rate based on the approach tangent
1éngth. Three categories were defined representing the shortest 25 percent (< =107 m
{350 ft]), middle 50 percent (107 m[350 ft] to 427 m {{(1400 ft]), and longest 25 percent
(>427 m [1400 fi]) of tangent lengths in the database. The regression models were as
follows:

* Shortest 25% .

mean crash rate = 0.35 -+ 0.16 mean degree of curvature
* Middle 50%:
mean crash rate = -0.30 +0.32 mean degree of curvature

* Longest 25%:

16



mean crash rate = 0.52 + 0.20 mean degree of curvature

The results indicate that the slope and intercept for the middle 50 percent of tangent
lengths are significantly different from the slope and intercept for the shortest and the
longest 25 percent. (See Figure 4)

These modelé, like those of Zegeer aﬁd Glennon, fail to explain the variation in crash
rafe experienced at different curves with the same degree of cufva’mre or the same
approach tangent leﬁgth. |

While all of the models found in the literature may have some value when considering
| design alternatives, none are suitable for identifying hazardous curves.

They also provided ﬁo assistance- in determining countermeasures ‘onée a location is

identified as being hazardous.
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METHODOLOGY:

To accomplish the objective of this study, a multi-step approach was utilized. Step one
was to acquire geometric data for all the rural, two-way, two-lane trunkline highways in
Michigan from the Michigan Dep.artme'nt of Transportation (MDOT). Based on the
selection criteria, (Table 1) the candidate curves were selected and the éontrol section
(referencé system used by MDOT for trunklines) and the mile points of the beginning and
eniiing of the curves were noted.
The next step consisted of oﬁtaining additional data from the Photo log. In additioﬁ to
“data a"cquisiti'on, data verification was also performed and locations which, bésed on this
observation, did not meet the selection criteria were removeid from the database.
While this step was in progress, field data collection was being performed to obtain the
curve superelevation and pavement friction. Field data collection further rendered some
of the curves invalid. After this step 220 curves were left for fhc final analysis. For each
of the 220 curves, all the crashes corresponding to the mile points from 306 meters (0.19
mile) before the start of the curve to 396 meters (0.19 mile) after the end of the curve
were extracted from the MDOT crash files. This procedure was performed six times for
" the six year period of 1989 to 1994, yielding 3107 total crashes ( Table 6).
The crash report forms for all these crashes were 'olbtaincd and processed to locate the
individual crash as being on the curve or on the tangent. After this step, various analyées_
were performe&, including compan'soﬁ of the actual curve crashes and those predicted by

the models.
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THE DATA:

Data for the project consists of the four following sets:

1) Geometric data provided by the MDOT

2) Six years of crash data for the years 1989 through 1994
3) Data obtained from the photo log fo; all 220 segments

4) Field data for 81 segments (see page 95)

The Geometric data consisted of 44 variables such as Control Section, Beginning Mile
point, Ending Mile Point, Average Lane Width, Total Shoulder Width (Right and Left),

etc. The variables selected from this file for use in this study are shown in Table 3.

The crash data are from thé Michigaﬁ State Police “State of Michigan crash Master File”.
This file contains information on up to three vehicles involved in a crash, but the data 'for_
the second and third vehicles were not used in the study. The original source of the data is
the “State of Michigan Traffic Crash Report” (Form UD-10). The data consisted of 120
variables such as District, Control Section, Mile point of Crash, Highway area Type,
Highway Area Code, etc. The data were for the crashes for both traffic directions

combined. The variables selected from this file for use in this study are shown in Table 4.
The photo log data were used for dichotomous variables such as the presence of traffic

signs (Arrow, Chevron, etc.) and other variables such as the mile point at which the curve

was first observed, etc. The data also included a shbjective measure of the roadside
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clearance/hazard, on a scale of one to seven. One being “Clear” (least hazardous) and
seven being “Not Clear” (most hazardous). The data acquisition was performed twice,

once for each direction of the traffic flow.

'fhc field data coIlet_:tion was perforrned to obtain only two variables; a measure of the
superelevation of the road, and a measure of the skid resistance of the pavement surface.
The superelevation was obtained by use of an ordinary 48 inch long level. The difficulty
with superelevation is the fact that unlike some other variables, an average value will not
‘substitute‘ for the lowest value and the highest value. If there is an optimal value, any
déviation from it, positive or negative, could result in lower safety. However, since there
was no procedure available to record continuous values of superelevation, feprcsentative '
locations on the curve were .selected and the average value for each lane was coded.
Occasionally the supere]cvatioﬁs were in the opposite direction, i.e., banking towards the

outside of the curve. In these cases the superelevation is coded with a negative sign.

The friction factor ‘was obtained and caiculated by dragging a piece of tire filled with
concrete to weigh 22.7 kilograms (50 1bs) (16). The horizontal force reqt;ired to pull it
over the pavement (divided by its weight), would have been the friction factor, had the
tire been smooth. However, the reading corresponded to a value higher than the actual
friction fact;)r because the treads of the tire and the gravel particles on the road would
“engage” and to soﬁ‘xe ;axtent act like teeth gears. Occasionally the required horizontal

force exceeded 22.7 kilograms, yielding friction factors higher than one. Since this
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variable was for comparison across the curves and not for the absolute values, the
resulting values were used for the study. However, to avoid confusion it was referred to

as the Drag Factor rather than the Friction Factor.
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TABLE 1

CURVE SELECTION CRITERIA:

a) Rural two-lane, two-way.

b) No taper, no extra lanes.

c) No curb, no parking.

d) No median, and preferably no intersections.
‘) At Ieast 306 meters (0.19 mile, about 1000 feet) of tangent at each end 6f each curve.:
| ) Preferably at least 611 mete;s (0.38 mile) of fangent between the two curves.

g) Degree of curvature greater than one.

This geometric selection criteria yielded a total of 285 roadway segments, each consisting
of a curve and two tangents. Based on the photo log observation, 50 of the selected
roadway segments did not fit the specified criteria and were eliminated from the study.
Fifteen more were eliminated from the list based on the field observation. Examples of
such cases are listed in Table 2, The final data set consisted of 220 valid roadway

segments.
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Contro]

Section

23111
32092
38073
38073
46011
46012
46051

46074

Table 2
Examples of the Disqualified Roadway segments:

(based on the photo log/field observations) -

Listed  Listed Length  Actual : Comments
BMP* EMP*  km Length
km
3670 3710 0.06 0.21  Intersection Corner.
6 190 021 - Intersection widening (M-52/M-36)
| 9810 9920 0.18 0.26  Curve not found.
14350 14500 0.24 | - “Curve not found.
5770 5900 021 0.10  Three Lanes (intersection with left turn lane)
110 300 031 - ‘Three Lanes (intersection with left turn lane)
380 490 0.18 0.27  Not found. Two curves near listed location.

20 130 0.14 ~ 018  Intersection (with median and right turn lanes).

* (coded in 0.001 mile with implied decimal point)
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Table 3

Geometric data variables coded for the study and their names:

(Where specific cases were selected the condition is listed under “SELECTED IF:” and

no variable name is listed for them since the item is no longer a variable.)

g VARIABLE DESCRIPTION SELECTED IF: VARIABLE NAME

- District DNO

| Control Section | CS
‘Beginning Mile Point of Roadway segment (MALI) _ - BMP
Ending Mile Point of Ro;adway segmeﬁt (MALID) ' EMP
Roadway Area Type Flag Midblock
Number of Basic Lanes Two
Roadv;ray Type Two—Wéy
Miscellaneous Extra Lanes (Right) None
Miscellaneous Extra Lanes (Left) None
On-Street Parking (Right) No
On~Stréet Parking (Left) . No
Average Lane Width | ALW
Total Shoulder Width (Right) TSWR
Shoulder or Curb Type (Right) No Curb
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Table 3 (continued) -

Paved _Shou}der Width (Right)

Total Shoulder Width (Left)

S‘houldcr or Curb Type (Left)

Paved Shoulder Width (Left)

No Passing Zone Code

Roadside Development Code |

Posted Speed Limit
‘Degree of Curvature, Number of Degrees
Degree of Curvature, Number of Minutes
Roadway segment File Record Number
Intersection File Record Number

Average Daily Traffic (Divided by 10)

No Curb

Rural

PSWR

TSWL

PSWL

'NPZC

PSL

HCD

- HCM

SFRN

- Using BMP, EMP, HCD and HCM, foﬁr more variables were calculated as follows:

Degree of Curvature in decimal degrees
Curve Length in feet
Curve Radius in feet

Central Angle in decimal degrees

HCDD
HCLFT
HCRFT

CANG

Additionally four more variables related to the design speed were calculated as described

on pages 44 and 45.
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Table 4

Crash data used in the study:

District

Control Section

Crash Mile Point
Highway Ar;a Type
Highway Areﬁ Code
Hour of Occuﬁence

Route Class

Wéather Condition
Lighting

~ Road Surface Condition
“A” Injuries

“B” Injuries

“C” Injuries

Road Alignment

Traffic Control

Crash Type

Distance From Crossroads
Direction From Crossroads

Intersecting Street name

Driver 1 Violation

Contrib. Circumst., Vehicle 1
Visual Obstruction, Vehicle 1
Direction of Travel, Vehicle 1
Alcohol/Drug use, Vehicle 1
Object Hit, Vehicie 1
Situation, Vehicle 1

Vehicle Size, Vehicle 1
Impact Code, Vehicle 1
Vehicle Condition, Vehicle 1
Trailer, Vehicle I‘

Road Type, Vehicle 1
Number of Lanes

Average Daily Traffic
Number of Persons Killed
Number of Persons Injured
Number of Occuparits

Crash Location

Crash Route Number
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TABLE 4 (Continued)

Number of Persons Uninjured
Vehicle 1 'fype

Vehicle 1 Make

Age of Driver 1

Residence of Driver 1

- Sex of Driver 1

Degree of Injury to Driver 1

Driver 1 Intent

Original Prime Street Name
Operator Number, Vehicle 1
Year Of Crash

Film Reel Number

Film Frame Number

PR Number

PR Mile Point
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PHOTO LOG and FIELD DATA:

For these variables two values were obtained, one for each direction of traffic, denoted
| with prefix P lforrplus direction and M for minus direction. The plus direction is the
direction of increasing mileage in the coﬁtrol section,

The “Mile Point When Curve Observed” was converted to the “Distance from curve
when it was observed” (cdded in 0.001 mile with implied decimal point). The variables

obtained from these two sources are listed in Table 5.
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Table 5

: Variables_ obtained from the photo log and field observations.

VARIABLE NAME

VARIABLE DESCRIPTION

Curve Sign CURVES
Turn Sign TURNS
Advisory Speéd Sign MPHS
Guard Rail GRAIL
Chevron CHEVRON
Arrow Sign ARROW
Delineator DLNTR
Edge Line EDGLN
Mile point when Curve Observed OBSDSTW
Roadside Clearance/hazard (.ZLRNCW‘
Superelevation SPRELVN
Drag Factor DRGFCTR
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VARIABLE MODIFICATION:

Since the crash data were for ‘f)oth directions, variables with two values, one for each
traffic direction, were re&uced to a single value. These included all the photo log data,
some geometric data and the two field data variables.

For the following variables,l if for either direction of traffic the variable had a value of
YES, the variable was code& as 1. If neither direction had a value of YES, it was coded
as O (zero). Variables in this category consisted of: Curve Sign, Turn Sign, Guard Rail,
' Chevr'on,'Arr;)w Sign and Delineator.

The variabk; “Mile Point Where Curve Observed”, was converted to a distance and the
lower of the two was used. For the subjective value of the “Roadside Clearance”, the
higher of the two values was used.

From the geometric data, Total Shoulder Width Right and Left were combined into one
value, the sum of the two. Similarly the Paved Shdulder Width Right and Left was
replaced by the sum of the two values. The Shoulder or Curb Type Right and Shoﬁlder or
Curb Type Left, each with a value of 1 or 2 were collépsed into one value. If both values
were the same that value was used. If one value was 1 and the other 2, a value of 2 was
used.

The drag factor and superelevation also had two values, one for each side of the road. For
the dx;ag ‘factor the lower of the two was used. For the superelevation, the Jower of the

two was used for one analysis, and then the analysis was repeated using the higher value.
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CRASH TYPES:

For the analyses used in this project, several types of crashes were eliminated from the
crash data. Only the “Curve Related” crashes consisting of the following types of crashes

were considered:

CODE DISCRIPTION
000 Miscellaneous 1 Vchicle
010 Qvertum |
060 | Fixed Object

070 Other Object
141 Head-on
543 Side-Swipe Opposite

Selection of the “Related” crashes yielded 994 crashes coneépondin g to the 178 roadway
segments which had “Related” crashes. Not all selected roadway ‘segmcnts had crashes in

both the tangent and curve portion of the roadway segment.

32



CRASH CASES:

In addition to analyzing all crashes, crashes occurring under different road surface
éonditions, weather conditions and lighting conditions were also analyzed.

A sub-set of curves consisting of only those with the ﬁgld data (superelevation aﬁd drag
factor) were analyzed separately. Similar analyses for the sub-set of crash cases based on

weather, surface or lighting were not performed due to the fact that the two field variables

“were not found to be significant in predicting curve crashes.

DATA CATEGORIES:

The assumption was that the non-measurable, non-quantiﬁable environmental and traffic |
conditions along the entire length of each curve can be considered to be the same as that
of the average of the tangents at each end. The basic unit of tangent length at each end of
the curves was 306 meters (0.19 mile). As such,.to compare the curve crashes with the
tangent crashes, 611 meters (0.38 mile) was used aé a unit length and the curve crash rate
was adjusted for the length of 611 meters (0.38 milé). The resulting variables were called
Cper380 for cuﬁe crashes and Tper380 for tangent crashes. Another variable, C-T was
defined to represent the difference between curve and tangent crashes. This variable has a

value equal to: Cper380-Tper380.
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CRASH LOCATION MILE POINTS:

The location of each crash along its control section is indicated by a mile point. Based on
the mile point of the crash location compared with the mile points of the two ends of a
| curve, one could presumably determine if the crash was on the éurve or tangent.
However, it was evident that locating the crash in the field was not very accurate. A plot
of crashes showed that the crashes tend to accumulate at tenths or ajuarters of a mile from
the néarcst intersection.
To remedy this problem the UD-10s for all crashes were manually checked. If the crash
was drawn on a curve, it was assigned to the curve, even if baseci oﬁ the mile point it
would fall on t‘he tangent. The UD-10 formsJ also provide a check box for the road
alignmént and if the box for curve was checked, the crash was assigned to the curve, The
reason being that it was unlikely that an- investigator would draw a tangent section of a
road showing curve, however they may draw the curve section as a tangent but check the

curve box and use the code for curve.
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SPECIAL DATA CONSIDERATIONS:

Even though typically each roadway segment consists of two tangents of 306 meters
each, and the curve itself, there were exceptions. In 14 cases the control section number
changed within the 306 meters of tangent section of therroadwa.y segment, of v?hi'ch only
10 contained “Related” crashes. In these cases the 306 meters of tangents existed for
both ends of ;:he curve, however, the mi]é'agc of tangents within the same control ;ection
| were less than 306 meters. Pro-rated values were used to determine the tangent crashes
for 612 meters '(Tper380) of these 10 cases. There were no such cases of different

control section numbers within a curve, among the 220 curves.

In another 8 cases Aeven though there were 306 meters of tangents at each end of the
curves, the distance between the end of one curve and start of a_nother was less than 612
meters. In other words there was an overlap between the two taﬁgents. In only two cases
were there crashes in the overlap section of the two tangepts, of which only one case
contained “Related” crashes. The crashes corresponding to this overlapping section of
tangents, (3 crashes), where appropriate, were counted twice, once for one tangent and

again for the other.
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Table 6

FOLLOWING IS THE NUMBER OF ALL CRASHES:

1994 519
1993 491
1992 503
1991 532
1990 503
1989 559

TOTAL 3,107

Out of the 3107 total crashes, 991 were in curves and 2116 in the tangents. The total
number of “Related” crashes were 994 of which. 463 were in the curves and 531 in the

tangents.

NOTE: 13 of the 220 roadway segments did not have any crashes in the curve or the

two tangent sections. For the “Related” crashes only 178 roadway segments had crashes

in either curve or tangent sections.

36



DATA PRESENTATION:

The crash data described in the preceding pages is presénted in graphical form in Figurés
5 through 10.

Figure 5 éhows the Cper380 for the 178 roadway segments which had “related” crashes in
their tangent sections or their curved section. The Cper380 values are sorted in ascending
order including the roadway segments which did not have any crashes in their curved
“section.

Figufc 6 shows the Tper380 for the same 178 roadway segments, some with no crashes in
their tangent sections. Similarly, the Tper380 values are sorted in ascending ‘order.

Figure 7 is the Tper380 values when sorted by ascending values of Cper380. |

Figure 8 is the superimpésed graph of Figure 5 and Figure 7.

Similarly, Figure 9 shows the values of C-T, when sorted in ascending order and Figure
iO is the C-T values sorted Ey ascending values of Cper380.

From the Figurés 7, 8 and 10 it isl clear that the crash rate on the tangent section
approaching the curve is not a reliable predictor of the curve crash rate. This is evidenced
by the fact that the values of Tper380 and C-T do not display a consistent pattern when

compared with the sorted values of Cper380.
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DATA ANALYSIS:

As a first step in the analysis, two sets of simple regressions, one for the curve crashes
(Cper380), and the other for the difference between the curve crashes and tangent crashes
C-T, versus the independent variables ADT, Tper380, HCLFT, HCRFT, CLRNCW and
OBSDSTW were constructed. The results are shown in Figures 11 through 26. The
scattér plots, the regression lines, and the coefficients of regression all indicate that
simple regression models are poor predictors of crashes.

For the variable HCLFT (curve lengthl), it appeared that there might be a nonlinear
relationship. However the quadratic and cubic regression lines showed little improvement
over the linear model, as shown in Figures 23 and 24.

Many different multiple regressions models were analyzed but with unsatisfactory results.
Table 7 shows the results of one such model. In this model, the variables HCRFT,
Tper380, HCLFT and MPHS best explain the “related” curve crashes. These linear
multiple regression models also produced low coefficients of regression, which is |

consistent with previous research results.

Further more, four new variables were deﬁped and computed . These variables were
calculated based on the “Design Speed” and field mcasqrcmcnts of the superelevation.
The design speeds were calculated from the equation: R=V?/ 15(e+f) where R is the
curve radius in feet, V is the design speed in MPH, e is the superelevation and f is the wet

friction factor for which a value of 0.19 was substituted. Two sets of design speeds were




- computed. The one for the lower value of the superelevation of the two sides of the road
was named “DsgnSde” and the one for the higher value was named “DsgnSpdH”.
The difference between the design speed and the advisory speed was calculated and
named “DiffSpdL” and “DiffSpdH” corresponding to the lower and higher values of the
éuﬁerelevation as described before. Where an advisory speed was not posted, 55 MPH
was used as the posted speed limit. |
The linear regression models for the Cper380 values and these four variables were
analyzed and found to indicate weak correlation.
~ Figures 25 and 26 show two such regression plots for Cper380 versus DsgnSpdL and |
DiffSpdL
Thg conclusion from these analyses was that neither simple linea? regression nor multiple
linear regression are powerful enough tools to depict the large variations in the curve

crash rate.
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Regression Equation: -
CPER380=7.35 MPHS -6.32 HCLKFT+.936 TPER380 -4.73 HCRKFT+20.034

Model R R Square
1 4082 k|
2 484b} 234
3 .519¢ 269
4 5474 .299
Coefficients?®
Standard)
: zed
Unstandardized Coefficien 85% Confidence
Coefficients ts interval for B
' Lower Upper
Model 4 B Std. Error Beta t Sig. . Bound Bound
— (Consiant) 20.034 2802 7.150 ~000 14.504 25.564 |
HCRFT -4.73E-03 .001 -.252 -3.328 .001 -.008 -.002
TPER380 .836 297 205 3.147 .002 .349 1.523
HCLFT -6.32E-03 .002 -223 -3.099 .002 -.010 -.002
MPHS 7.350 2.691 487 2.731 .007 2.039 12.661

a. Dependent Variable: CPER380

Table 7

Results of the multiple linear regression analysis for curve crash rate (Cper380)




TEST OF EXISTING MODELS:

The next step was to compare the curve crash data versus their predicted value from the

Glennon and Zegeer modelis identified in the literature review.

The Glennon Model

A= ARs L)V) + 0.0336 (D)V)  for L>=Lc
where, |
A=Total number of crashes on the roadway segment.
ARs=Crash rate on comparablc straight roadway segmeﬁts in crashes per
million vehicle miles.
L=Length of highway roadway segment in miles
V =Traffic volume in millions of vehicles
D=Curvature in degrees

Lc=Length of curved component in miles

For AR; the value of Tper380 was used. This value was converted to appropriate units for

the comparison.

63



The Zegeer Model

© A=[1.552(L)(V)+0.014(D)(V)- 0.012 (S)(V)](0.978)™0

where:

A=_number of total crashes on the curve in a 5;year period. -

L=length of curve in miles {or fraction of a mile)

V=volume of vehicles in million vehicles in a 5-year period passiﬁg through
the  curve (both directions)

D=degree of curve

S=presence of spiral, S=0 if no spiral exists and S=1 if there is a spiral.

W =width of the roadway on the curve in feet.

For the Zegeer model the predicted values were obtained for both the with spiral,

ZegeerS, and without spiral, ZegeerM, assumptions.

The plots of the predicted values of curve crashes versus actual values of curve crashes,

(Cacc), are shown in Figures 27-31. This analysis considered only “related” curve crashes

with the model adjusted for the length of the individual curves, not for the 612 meters.

While both the Zegeer model and the Glennon model appear to show the correct trend,
neither model explains the variation in “related” crash rates observed in the Michigan
data. Thus it does not appear that these models are beneficial in identifying curves that

shouid be reviewed for possible safety improvements.
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Alternative Model Structures:

Having determined that the variation in crash fréquency found on Michigan curves can
not be satisfactorily explained by models based on simple linear regression, simple non-
linear regression, multiple linear regreésion or multiple non-linear regression, alternative
statistical techniqu.es were tested to determine if these techniques could satisfactorily
“explain” the daté variation.

. Discriminant analysis, cluster analysis and factor analysis ;echniques (as described in the

following sections),were utilized.
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DISCRIMINANT ANALYSIS

DESCRIPTION:

Discriminant analysis is a multivariate technique used to distinguish between two or more-
groups of cases and for studying the overlap between groups, or divergence of one group
from the others. Statistically the objective is to define discriminating functions by
weighting and linearly combining the variables such that the groups become associated
with variables as distinctly as possible. | |

VThe variﬁbles with a high contribution toward explaining membersh_ip in each group,
generally not all the original variables, are considered the predictor variables or the
discriminating variables. It is then possible to predict group membership ‘by their
association wifh. these di;c.criminating variables.

The discriminaht functions can be thought of as the axis of a geometric space in which
each group centroid is a point. The weighting coefficients then can be interpreted as thg
contribution of a variable alqng the respective dimension of such space.

Forl this study, discriminant analysis was used to determine the variables which can be
used to distinguish between high and low crash rate curves. The analysis was conducted
with the definition of high and low crash rates based on Cper380 and then again with

some of the curvés removed from the sample as explained on page 72.
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Analysis and Results:

All of the variables included in the database were used to conduct the first discriminant
analysis. For this study, the analysis was used to define membership in one of two
| groups, either a high crash group or a low crash group. |

A value of Cper380 equals 5 resuited in approximately half of the culrves' b.eing defined as
belonging to the high crash group and the other half being classified as the low crash
group and it Qas selected as the defining value between high and low crash rates.
. The results of this analysis are shown in Table 8. The curve length and the curve radius
were the two most important discriminating variables followed by ADT. Using only these
variables 71.9% of all cases were correctly classified. There were 26 curves that were
placed in the low category that had a Cper380 value of greater than 5, and 24 curves that
were misclassified in the other direction.

Since our primary interest is determining whether it was possible to distinguish between
high crash locations and low crash locétions (rather than some intermediate group), the
data set was reduced to eliminate the curves with a value of Cper380 approximately equal
to five. A new variable called Modified.CperBSO (Modeerj was defined. This variable is
the same as Cper380 but 15 curves wirth a Cpcr380 value near the average for all curves
were excluded from the analysis.

Table 9 shows the resuits of the analysis using the modified Cper380 as the grouping
variable. Group 2 being for ModCper > 7 crashes and group.l for ModCper < 5 crashes.

In this analysis the curve sign and turn sign were replaced by a single variable called
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CTsign. llf either sign were present, CTsign wés assigned the value of 1 otherwise O
(zero).
The curve length, the presence of a turn or curve warning sign, the radius of the curve and
’I_‘per380‘ are the discriminating variables identified in this case. Using these variables
79.1% of the curves were. correctly classified. As expected , removing the marginal cases
improved the predictive capability of the model. With this modification, only 16 curves
were misplaced as lov-v and 18 curves were misplaced as high.
For the next analysis the difference between the curve crash rate (Cper380) and the
tangent crash rate (Tper380) isused as a glfouping measure, This variable, (C-T), was alsor
modified to more clgarly distinguish the curves with higher crash rates relative to their
tangent crash rates. The cases with curve crashes nearly equal to the tangent crashes were
eliminated. A total of 43 curves with C-T=-1.36 to C-T=1.90 were eliminated from the
analysis.
As shown in Table 10, the variables Curve Radius, Curve Length and the presence of a
warning sign are the three most impbrtant discriminatiné variables. For this analysis,
75.6% of | the curves were cormrectly classiﬁéd using these three variables. Using this
model, 90.7% of the high crash rate curves were correctly identified, with only 10 curves
being misclassified in this direction. The problem with this model is that too many low |

crash rate curves, (23) were placed in the high crash category.
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Variables in the Analysis

vL

Sig. of F
, to Wilks'
Step Tolerance { Remove Lambda
3 HCLFT .866 .001 827
HCRFT - .848 .002 822
ADT 978 .002 .821
Classification Results?
Predicted Group
Membership
GRPCLTS §j 1.00 2.00 Total
Original Count 100 b4 24 88 |
C 2.00 26 64 90
% 1.00 727 273 100.0
2.00 - 28.9 71.1 100.0

a. 71.9% of original grouped cases correctly classified.

Table 8 Results of the discriminant analysis for curve crash rate

(Cper380)



SL

Sig. of
to Wilks'
~_ jTolerance | Remove Lambda
~TeeT e =5t
CTSIGN .990 .000 .718
HCRFT .866 .001 .706
TPER380 .971 004 .697

Ciassification Restuits

Predicted Group
Membership -
GRPNTS5T7Y 1.00 2.00 Total
“Onginal . count 1.00 : 70 " 18
| - 200 16 59 | - 75
% 700 ~ 795 ~ 205 ~100.0 |
2.00 - 21.3 78.7 100.0

a. 79.1% of original grouped cases correctly classified.

Table 9 Results of the discriminant analysis for modified cﬁrve
crash rate (ModCper)
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Variables in" the Analysis

Sig.of F
| : to Wilks'
Step Tolerance | Remove Lambda
T HCRF] ~1.000 :
2 HCRFT .887 .003 817
CTSIGN .987 .004 912
Classification Results
Predicted Group
| Membership
| LOCMNST 1.00 2.00 Total
(Original Count T.00 . 5 23
| ' 2.00 10 g7 107
% 1.00 17.9 82.1 100.0
2.00 8.3 80.7 100.0

75.6% of original grouped cases correctly classified.

Table 10  Results of the discriminant analysis for modified curve
minus tangent crash rate (ModC-T)




The next group of analyses was performed using Cluster Analysis.

CLUSTER ANALYSIS

DESCRIPTION:

Cluster Analysis is a systematic technique to look for regularities in a data set. Once the
regularities are depicted, this procedtre groups the data based on these regularities and
their interpretations. Unlike Discriminate Analysis, which requires prior knowledge of the
group membership for the data cases, cluster analysis does not require such knowledge.
Cluster analysis uses the concépf of “distance” and “similarity” in generating new
clusfers or collapsing them in_to a lesser number of clusters. There are many methods of
calculating “distance” and the analyst must use interpretative judgment and inspection in
addition to the quantifative analysis. |

Cluster analysis was used to i.dentify the variables with a strong association with the crash
rate. While any number of clusters can be created, three clusters were used in this study.
One cluster identified the variables associated with curves that have a low crash rate, a
second cluster was formed around curves with an intermediate crash rate, and the third

around high crash rate curves.

Analysis and Results:

Utilizing cluster analysis produced results which proved to be usefu_l for the objectives of
this study. Tablc 11 shows the output for a three cluster case in which Modified Cper380,
as discussed previously, was used to define the number of curves included in the

analysis.
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The clustering of high, medium and low crash rate curves with other variables is clear,
with cluster one having a crash rate of 3.08, cluster two a crash rate of 7.78 while the
third clustef has a crash rate of 18.05. Variables such as Lane Width (ALW), that show
little variance between the three clusters indicate that either this variable is unimportant in
predicting the curve crashes, or that fhere is little variance in the variable across all
_ curves.. For this variable the latter is true. Other &aﬁables, such as Curve Length and
Radius, show great variations between at least two of the .three clusters. This is an
indication of an important variable in the prediction model. The important variables are
shown _in Table 12.
The same variables identified in the discriminant analysis were important in the cluster
analysis. The ADT curve radius and length, and the presence of ;rafﬁc control devices
(arrow and chevron)are all important in defining the clusters. Interestingly, the high crash
rate curves are associated with the highest probability of having chevrons and té.rget
arm\-avs deployed. However, this is explained by the fact that this cluster contains the short
radius curves, where these devices tend to be deployed. |

An analysis using Cper380 instead of Modeer_sﬁows similar results (Table 13). Most
notably, the clustering of high crash rates with short curves and low radii while the low
crash rate curves are clustered with long curves with large radii. This finding is
consistent with prior research. Using this rﬁeasure of the crash rate, ADT was replaced by
the presence of an advisory speed plate and the paved shoulder width as explanitory
variables. Perhaps the most interesting cluster is the third one, which clusters moderately

high crash rate curves with curves of large radius but short length. These tend to not
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have traffic control devices deployed because of their large radius and subsequently their
high design speed.

Tables 14 and 15 show two more cluster analysis results. These results are also in
~agreement with the previous findings. In Table 14 the difference between the curve crash
and the tangent crash (C—T), is used as the curve crash rate variable, while in Table 15 the
variabie, ModC-T, as described before, was used.

It was hypothesized that the variation in crash rates within ‘each cluster would be lower
than that of all curVes combined, and thus regression analysis techniques might show
better results.

To test this hypothesis, simple and multiple regression were applied to each of the three
clusters qbtained from the cluéter analysis. HoWever, regression failed to depict even
mild correlation. As examples Figurcé 32 through 37 show the regression plofs of

Cper380 with HCRFT and HCLFT for each of the referenced three clusters.
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Final Cluster Cerniters

Cluster
1 2 3
AD1 A72.72 . 549.14 |
ALW 11.31 11.19 11.06
ARROW 21 .09 28
CHEVRON .03 .03 A3
CLRNCW 3.69 3.66 4.09
CTSIGN 34 44 .56
DLNTR 31 .19 27
EDGLN 1.00 .98 1.00
GRAIL 21 13 23
HCLFT 1704 590 520
HCRFT 2471 2383 963
MODCPER 3.08 ‘ 7.78 18.05
MPHS A0 09 .30
NPZC .90 1.06 - 1.986
OBSDSTW 45,24 44 27 38.37
PSL 54.66 54.53 53.29
PSW 10.79 6.56 7.03
SCT 1.66 1.53 1.60
TPER380 2.52 3.44 2.98
TSW 19.45 18.72 18.56

Number of Cases in each Cluster

rClaster 1 ~28.000 |
: 2 64.000
3 70.000
Valid - 163.000
Missing 15.000

Table 11  The numerical values of all variablés‘ in defining the clusters
- grouped by the modified curve crash rate (ModCper)
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Final Cluster Centers

Cluster

2 3

AL
ALW
ARROW
CHEVRON
- CLRNCW
CTSIGN
1 | DLNTR
EDGLN
GRAIL
HCLFT
HCRFT
MODCPER
MPHS
NPZC
OBSDSTW
PSL
PSW
sCT
TPER380
TSW

472.12

.21
.03

1704
2471
3.08

.09 29
.03 A3

590 520
2383 963
7.78 18.05

Number of Cases in each Cluster

“Ciuster

Valid
Missing

i
2
3

29.000 |
64.000
70.000

- 163.000

_15.000

Table 12 The numerical valnes of the important variables in defining the
clusters grouped by the modified curve crash rate (ModCper)
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- Final Cluswer Centers

Cluster
1 2 3

AL
ALW |
ARROW 19 30 10
'CHEVRON .03 14 .03
CLRNCW |
CPER380 3.33 17.10 7.62
CURVES
DLNTR
EDGLN
GRAIL
HCLFT 1707 522 608
HCRFT 2490 | 974 2392
MPHS .09 32 10
OBSDST

PSL
PSW 11.09 7.26 6.53
sCT

TPER380
TSW

TURNS

Number of Cases in each Cluster

Claster 1 ~ 32.000 |
2 76.000
3 70.000

Valid _ ' 178.000

Missing .000

Table 13 The numerical values of the important variables in defining the
clusters grouped by the curve crash rate (Cper380)

82




Final Cluster Centers

Cluster
1 2 3

AU
ALW
ARROW A0 .30 19
CHEVRON 03 14 .03
CLRNCW ,
CMNST ' 4.32 14.05 .88

CTSIGN
DLNTR

T EDGLN

GRAIL
HCLFT 608 522 1707
HCRFT 2392 974 2490
MPHS | A0 32 .09

OBSDSTW
PSL .

PSW 6.53 7.26 | 11.09

SCT ' '

TSW

Table 14 The numerical values of the important variables in defining the
clusters grouped by the curve minus tangent crash rate (C-T)
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Final Ciuster Centers

Cluster
1 2 3
AL
ALW -
ARROW A1 .33 25
CHEVRON .04 .18
CLRNCW
CTSIGN
DLNTR
EDGLN
GRAIL 07 . 25 20
HCLFT 607 471 1757
HCRFT _ 2351 902 - 2481
MODCMNST | 5.59 17.67 | 1.40
MPHS .09 37 15
PSL -
PSW 6.78 7.15 12.90
SCT :
TSW
§ OBSDSTW

Table 15 The numerical values of the important variables in defining the
: clusters grouped by the modified curve minus tangent
“crash rate (ModC-T) |
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FACTOR ANALYSIS

DESCRIPTION:

‘While variables aré the common method of describing statistical values, other concepts
‘which are readily understood by individuals, (such as aggressiveness) may not be
describable by variables. Often, the number of variables required to describe such a
- concept are numefous, with interdependencies and interrelations; and the variables

included may even be seemingly contradictory.

Factor analysis is a technique used to reduce many variables into a smaller set of factors.
Each factor describes a “concept”. Ideally the concept will be readily understood by
individuals and there may even be an existing name for the concept. If not, the analyst can

often understand the concept and give it an appropriate name.

Factor analysis 'starts with a set of variables, or better stated, the scores related to a set of
variables. Next, a set of new variables is constructed.based on the interrelations exhibited
in the data. The first factor is defined as the best linear combination of variables
explaining the variance in the data as a whole. The other factors are similarly defined as
the best linear combination of variables which éxplains the variance remaining in the data
as a whole. As such, the first factor is more important than the second one and so on. The

first few factors usually explain most of the variance in the data.
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Analysis and Results:

. Factor analysis was conducted for many cases of differing variables, factoring criteria,
rotation method and number of extracted factors. However, the use of this technique did
not add significanly to an understanding of the relationships among the variables and
crash rates.

Table 16 shbws the results of one factor analysis with the first three factofs extracted. The
variables that contribute the most to the factor score coefficients for thg three factors are
those shown in Table 17. Only one of the three factors includes the crash rate {Cper380).

Factor 1 includes Cper380 and the presence of certain traffic control devicés (chevron and
advisory speed panels), curve length, radius, and roads.ide cléarance (inversely). All of
these variables, with the exception of the roadside clearance variable were also included

in the discriminant analysis and cluster analysis results.

Factors 2 describes curves with high ADT énd safe roadside, while Factor 3 describes
curves with more hazardous roadside conditions and a lower ADT. This can be
interpréted to indicate that the high volume State Trunkline roads have a safer roadside
than do thosé trunkline highways Wiﬂ‘l lower volumes. However, nothing is reveﬂcd

about the difference in crash rates between these two combinations of variables.
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Factor Score Coefficient Matrix

Factor

_ 1 2 3
gl 014 507 207
ALW -032 .066 -.089-
ARROW .033 -.109 .053
CHEVRON .128 .032 .009
CLRNCW -.176 -.289 B11
CPER380 321 .018 =019
CURVES 018 -.004 .049
DLNTR 012 -.022 .006
EDGLN 013 018 012
iGRAlL ‘ -012 -013 101
HCLFT -124 .041 024
HCRFT -.347 05 -038
MPHS 218 039 | 071
OBSDST =004 .006 .006
PSL .002 -033 -.018
PSwW -.029 .097 -.031
SCT .013 181 -.024
TPER380 .035 142 417
TSW -.004 124 -.044
TURNS 103 -.062 -.063

Factor Score Covariance Matrix

[ Factor 1 2 "3

1 738 | 1.850E-03 | 4.219E-02 |
2 1.850E-03 766 | 4.699E-02

3 4.219E-02 | 4.699E-02 .768
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Factor Score Coefficient Matrix

Factor
1 2 3
"ADT 507 207 |
ALW :

ARROW
CHEVRON 128
CLRNCW -176 -.289 611
CPER380 321 |
CURVES
DLNTR
EDGLN
GRAIL I
HCLFT -124
HCRFT -.347
MPHS 218
OBSDST
PSL

PSW

SCT

TPER380
TSW

TURNS

Table 17  Factor score coefficient matrix of relatively hlgh values
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ANALYSES INCLUDING FIELD DATA:

The next set of analysis was performed using the subset of curves for which the field data,
~ superelevation and drag factor, were coliected. A total of 81 roadway segments
containing 531 crashes, (279 in tangents and 252 in curlvers), were among those with the
field data. Only 71 of the 81 roadWay segments had crashes on their curved section. The
values of these variables for the 81 roadway segments are shown in Figures 38-40.
Analyses similar to those performed previously for all the roadway segments, were
conducted for only the roadway segments with the field dﬁta. The analyses were
conducted with the addition of the two field data variables, supefelevation and drag
factor, fqr each dircction of traffic individually and combined. The analysis was done
twice, once for the higher values of the superelevation for the two directions, S?R.ELVN
and again for their lower value, SELELO.

Figures 41 and 42 show éaphs sorted by ascending value of Cper380 for those curves
with the field data. Figures 43-48 show the simple linear regression results of Cper380
and C-T with these variables.

‘Ncitlrller the drag factor.nor the superelevation, individually or in combination, showed
any significance in explaining the curve crashes or assisting in the identification of curves

to be modified.
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DISCUSSION OF THE RESULTS:

Discriminant analysis provides information uéeful in meeting the objectives of
this study, Sp'eciﬁlcally, it can be used to identify those characteristics of low crash rate
curves whicﬁ distinguish them from high crash rate curves. Having done this, it can be
used to identify those curves with a high crash rate that should (based on their
characteristics) have a low crash rate. These curves are the ones that should be studied

for possible countermeasure implementation.

Using the discriminant analysis results from the modified Cper380 analysis, sixteen
curves fell in this category. The crash rate on these curves ranged from 7.13 to 21.71
when théy should have fallen in the group with a crash rate below 5.0. .These curves are
shown in Table 18, along with the value of some of the variables used in the analysis.
The significant characteristics of these curves include:

@ Most do not have curve signs, target arrows and delineators

e There are no chevrons

e The observed sight distance is usually short

e The radius is relatively large |

e The tangent crash rate is low
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801

ARROW

HCLFT|HCRFT

CRVno| CS | BMP | CTsign |CHEVRON DLNTR| OBSDSTW Tper380 | Cper3s0
136 |45012) 5540 0 0 1 1 10 845 1042 0.00 7.13
14 5051 | 7280 0 0 0 0 40 264 2865 1.00 7.60
72 | 24011) 4377 1 0 0 0 23 1056 | 2292 3.00 7.60
200 {73131 O 0 0 0 0 0 264 2865 2.00 7.60
3 2021 | 15020 0 0 0 0 40 739 1910 1.00 8.14
39 |12021| 490 0 0 0 0 70 739 2292 3.00 8.14
33 [10011] 5620 1 0 1 0 33 475 2865 0.00 8.44
82 |2B052] 5530 it 0 1 0 40 475 1910 1.00 8.44
‘81 28052 4790 1 0 0 0 50 634 2865 2.00 9.50
94 31013 5810 | O 0 0 1 30 370 1910 3.00 10.86
117 | 38071 7490 1 0 1 0 10 1214 | 2865 8.00 13.22
87 |30062| 1640 1 0 0 1 10 1478 | 2456 0.00 13.57
156 (51011{ 50 0 0 0 0 50 581 1146 1.58 13.82
19 8011 | 8990 0 ¢ 0 1 80 211 1763 1.00 19.00
193 |67011] 2130 0 0 1 1 40 . 475 1637 4.00 21.11
172 | 58032 4150 0 0 0 0 80 370 2644 4.00 21.71

Table 18  Curves with a high curve crash rate (Cper380)




Similar results were found when C-T was used as the grouping variable. This is
consistent with the results above, since most of the misclassified curves had a low value

of Tper380, they would fall in the high range of C-T values.

The results of the cluster analysis are consistent with prior studies, but they also
provide additional information that may l;e useful in reducing traffic crashes. Low cra#h |
rates are clustered with curves with a large radius and long length. The_ﬁverage radius for
curves in this group (based on modified Cper380) is ‘398_ meters‘(_l305 ft). The average
length for the same curves is 274 meters (900 ft). These; curves tend to have target arrows
but no chevrons.

High crash rates are c}usteréd with short, sharp curves as expected. These curves
tend to havelboth chevrons and target arrows in place, but still tend to exi)erience crashes
because of their geometry.

The third cluster is the most difficult to explain, and possibly the group éf curves
where countermeasures may be most effective. These cm-ves have a crash rate over twice
as high as the low crash rate curves, even though they have approximately the same
radius. The primary geometric difference is that they are very sl.iort curves, averaging 95
meters ( 312 ft ). These curves generally do not have chevrons or target arrows in place.

Chevrons and target arrows are not intended for these types of curves ‘according to
the Michigaﬁ Manual of Uniform of Traffic Control Devices (MMUTCD), since they do
not constitute a sharp change in alignment. Howev_cr, based on the analysis, it may be

appropriate to consider the use of these signs to increase the visibility of the curves.
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This same clustering of curves into these groups are observed whether the crash
rate variable was Cper380, Modified Cper380, C-T, or modified C-T. There were
approximately 70 curves that belong to this cluster. Table 19 lists the curves for which

~ both the Cper380 and C-T were significantly higher than the average for this cluster.
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I

Cper380

CRVio cS BMP | Ctsign [CHEVRO | ARROW | DLNTR | BSDST | HCLFT | HCRFT | Tper380 CmnsT
39 12021 | 490 0 0 0 0 70 |7 739 2292 3.00 8.14 5.14
200 73131 0 0 0 0 0 0 264 2865 2.00 760 | 560
68 23051 2220 1 1 0 0 20 845 2083 6.00 11.88 5.88
177 | 61012 4910 0 0 0 0 48 327 2292 12.00 18.39 6.39
14 5051 7280 0 0 0 0 40 264 2865 1.00 7.60 6.60
4 2021 23640 0 0 0 1 70 581 2865 0.00 6.91 6.91
3 2021 15020 0 0 0 0 40 739 1910 1.00 8.14 714
82 28052 5530 0 0 1 0 40 475 1910 1.00 8.44 7.44
81 28052 4790 1 0 0 0 50 634 2665 2.00 9.50 7.50
94 31013 5810 0 0 0 1 30 370 1510 3.00 10.86 7.86
33 10011 5620 1 0 1 0 33 475 2865 0.00 8.44 8.44
12 5031 3900 1 0 0 0 60 370 2292 2.00 10.86 8.86
214 81031 750 1 0 0 0 10 317 . | 2292 10.00 19.00 9.00
100 31051 9143 1 0 0 0 13 338 1910 1.00 11.88 10.88
172 58032 4150 0 0 0 0 80 370 2644 400 21.71 17.71
88 30062 2900 1 0 0 1 30 581 1719 3.00 20.73 17.73
19 8011 8990 0 0 0 1 80 211 | 1763 1.00 18.00 18.00
101 132011 3050 1 0 0 0 30 370 2292 4.00 2744 | 2314
62 22021 499 0 0 0 0 49 306 1879 16.00 45.86 29.86
140 45013 | 11700 1 0 1. 0 60 634 1910 2.00 34.83 32.83
215 81031 1370 1 1 0 0 70 370 2989 6.00 43.43 37.43
71 23111 3670 1 0 0 0 30 211 1910 3.00 47.50 44,50

Table 19 Curves with a high curve minus tangent crash rate (C-T)




The curves categorized in each of the three clusters were then plotted in ascending
order of the value of Cper380 to identify the outliers within each group. Figure 49 shows
these vatues. It is clear that even within a cluster there is a significant réﬁge of values for
the crash rate. These hi gh craz;h rate curves are the ones that should be studied for
possible countermeasure impiementation.. Table 20 lists these curves which have a crash

rate equal to or greater than twice the average value of the cluster.
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Figure49  Curve crash rate (Cper380) for the three clusters, arranged in
‘ ascending order Qf Cper380 within each cluster




1411

"ARROW|DLNTR| OBSDSTW

HCLFT

CRVno| GS | BMP | CTsign | CHEVRON HCRET| Tperad0 | Cper3s0 |C > 2Mn
53 | 8031 | 2980 | 1 0 1 1 50 | 1267 | 1763 | 6.00 | 9.0 2.85
35 | 11052|14040| 1 0 0 0 10 1320 | 2865 | 12.00 | 10.64 | 3.99
117 | 38071| 7490 | 1 0 1 0 10 1214 | 2865 | 8.00 | 13.22 | 6.56
87 30062} 1640 1 0 1 1 10 1478 2456 0.00 13.57 6.92
92 |31012] 4227| 0O 0 0 0 17 343 | 477 | 400 | 3508 | 087
28 10011 | 7470 1 0 1 1 30 158 521 2.00 38.00 3.79
152 |47041]21730] 1 1 0 1 60 156 | 286 | 200 | 38.00 | 3.79
181 |62031] 3160 | 0 0 0 0 10 264 | 820 | 7.00 | 38.00 | 379
211 |79081| 8450 | 0 0 1 1 18 530 | 1008 | 7.00 | 4471 | 10.50
18 8011 | 7100 1 0 0 0 30 211 229 4.00 47.50 13.29
196 | 72051 7673 0 ] 0] 0 10 143 1146 1.00 56.30 22.09
85 290421 6270 0 - 0 0 0 20 106 1146 4.00 §7.00 22.79
168 |56032| 8814 | 1 0 0 0 34 380 | 1146 | 4.00 | 5806 | 23.85
199 |73061| 3930 | © 1 0 i 10 370 | 727 | .00 | e5.44 | 3094

" 29 - {10011| 8920 1 0 1 0 30 317 215 3.00 82.33 48.13

__151 4704119440 1 1 0 0 30 21 744 8.00 95.00 60.79
177 |61012] 4810 | 0 0 0 ) 48 327 | 2292 | 12.00 | 18.39 | 3.4
19 | 8011 | 8990 | © 0 0 1 80 211 | 1763 | 1.00 | 18.00 | 375
214 81031} 750 1 0 0 0 10 317 2292 10.00 19.00 3.75
88 300824 2900 1 0 0 1 30 581 1719 3.00 20.73 5.48
172 | 58032) 4150 0 0 0 -0 80 - 370 2644 4.00 21.71 6.47
101 |32011] 3050 | 1 0 0 0 30 370 | 2292 | 400 | 2744 | 11.90
140 {45013 11700| 3 0 1 0 60 634 | 1010 | 2.00 | 34.83 | 16.59
215 |81031] 1370 | 1 l 0 0 70 370 | 2089 | 6.00 | 43.43 | 28.18
62 |22021] 499 | 0 0 0 0 49 306 | 1679 | 16.00 | 45.86 | 3062
71 |23111] 3670 |1 0 0 0 30 211 | 1970 | 3.00 | 47.50 | 32.25

Table 20  Curves with a curve crash rate larger than twice the mean

for their cluster




CONCLUSIONS

Based on the analyses conducted in this study, the following conclusions were reached.

1) The variation in the crash frequency or rate between horizontal curves with similar
geometry is too large to be explained by regression techniques. The only studies that

report high correlation coefficients are those that aggregate curves into groups with

similar characteristics and then conduct the regression analysis on the group means.
This informatibn may be useful in the design of new highways, but it is not usefﬁl in
meeting the objectives of this study.

2) The predicted crash rate using existing models (Zegeer and Glennon) does not

accurately depict the actual crash rates on Michigan two-way, two-lane rural

trunklines. These models can not be used to identify curves locations where
countermeasures could successfully be deployed td reduce crashes.

3) The addition of data on the distance on the approach at which the curve first Becomes
visible to the motorist is not highly correlated with the crash rates asa single variable,
but it was found to be a contributor to some of the models that use multiple variables.

4) The addition of data on superelevation and the drag factor also showed a low simple

correlation with the crash rate and contributed little to multiple variable analyses.

5) Discriminant analysis techniques, using the variables collected for this study, can
successfully distinguish the high crash rate curves from the low crash rate curves.

This technique can be used to identify outliers in each of the two categories (high and
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6)

7

low) for both the absolute crash rate on curves (Cper380) or the difference in the
crash rate between the curve and tﬁe tangent roadway segments (C-Tper380).

Cluster analysis identified three distinct groups of curves. The group with a high crash
rate (Cper380) is characterized by éhort radii and short curve lengths. These curves
generally are marked with curve sign, advisory speed panels and chevrons or |
delineators.

The group’ with a; low crash rate are characterized by large radii and long curve
lengths.

‘The third group, with an intermediate crash rate, are charactgrizcd by large radii but

short curve lengths. These results are shown in Figure 50 and 51.

. The high crash rate on the first group of curves is probably related to constraint the

geometry imposes on the driver ability to negotiate the curve at their approach speed.
The intermediate crash rate curves may be related to the driver perception (or lack of
perception) of the presence of a curve that does not require extraordinary driver input
to negotiate safely.

The factor analysis results are more difficuit to interpret, but do support the cluster
analyses results. In general, the variables significant in defining the factor groups are

the same as those used to distinguish the groups membership in cluster analysis.
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Figure 51  Curve length in feet (HCLFT) for the three clusters, arranged in
| ascending order of Cper380 within each cluster




1y

2)

3)

4)

RECOMMENDATIONS

The curves identified in Table 18 from the discriminant analysis results should be
targeted for analysis and potential countermeasures implementatiron. These sixteen
curves have the characteristics of low crash rate curves, but are experit_encing a high
rate of crashes.

The curves identified in Table 20 from the cluster analysis results should be targeted

for analysis and potential countérmeasure implementation. These curves have been

- identified as experiencing a crash rate at least twice that of the average crash rate for

curves in their cluster.

Curves characterized by a large radius and short curve length should be analyzed to
determine if there are inexpensive countermeasures that could be applied at thése
curves to reduce the crash rate. - These curves have been identified from theb cluster
analysis as having an intermediate crash rate which is not explained by the curve
geometry. The curves from this groﬁp with both a high crash rate and a large
difference in the curve crash rate compared to the tangent crash rate are shown in
Table 19.

Discriminant analysis and cluster analysis techniques should be used to analyze other
sets of curves on state trunkline highways. These techni_ques have been useful in
identifying specific curves that are candidates for countermeasures. It should be

determined whether these techniques are equally valid for:
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5)

6)

a) curves that are not screched for approach tangents and intersections.

b) curves on four-lane cross sections.

If recommendations 1, 2, and 3 are adopted, a caréful before and after study should
be designed to document any change in the érash rate resulting from implementation
of the selected countermeasures.

If resources are available in the Department of Transportation, these analYSes could be
conducted internally. Alternatively, these analyses could form the Basis of a study for

the Michigan State University’s Center of Excellence.
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