SUBBASE DRAINAGE CRITERIA




SUBBASE DRAINAGE CRITERIA

F. T. Hsia

Research Laboratory Section
Testing and Research Division
Research Project 75 E-56
Research Report No. R-991

Michigan State Highway Commission
Peter B. Fletcher, Chairman;
Carl V. Pellonpaa, Hannes Meyers, Jr.
John P. Woodford, Director
Lansing, March 1976




-
I
!

P

The information contained in this report was compiled exclusively for the
use of the Michigan Department of Stato Highways and Transportation. Recom-
mendations contained herein are based upon the vesearch data cbtained and the
expertise of the researchers, and are not necessarily to be construed as Depart-
ment policy. Ne material contained herein is o be reproduced—whelly or in
part—without the expressed permission of the Engineer of Testing and Research,



INTRODUCTION

Gradation, and to some extent permeability, have beenused as criteria
for subbase drainability in Michigan. Novak (1) noted that effective poro-
sity, as well a s permeability, should also be incorporated in drainage
analysis. An approximate theoretical analysis method, based on Darcy's
Law and the concept of effective porosity, was developed by Casagrande (2).
Casagrande's analytical method, originally developed for airfield base
course drainage, is only applicable to very simple pavement cross sections
and is therefore considered too imprecise to be used for drainage analysis
of Michigan's highway subbases, which are much more complex in geome-
try than those of airfield base courses. This report presents an extension
of Casagrande's work to establish a theoretical analytical method for the
analysis of drainability which can distinguish between the acceptable and
unacceptable subbase materials.

Although the finite element method might be considered as another ap-
proach to this problem, its accuracy is still questionable and the develop-
ment and application of this method would be cumbersome for a practical
engineering problem.

CASAGRANDE'S METHOD OF ANALYSIS

Subbase drainage occurs under either steady or transient flow condi-
tions. Steady flow occursina pavement subbase that isbeneath the ground-
water itable and where seepage water can only be carried away by edge
drains. Transient flow occurs when the quantity of water seeping through
the subbase varies during a given time interval. For example, water en-
tering the subbase during a rainstorm would be drained away under tran-
sient flow conditions. Since normal subbase drainage occurs under tran-
sient flow conditions, the suitability of subbase materials will be determined
on the basis of this type of flow.

Subbase drainage is affected by three factors:

1) Properties of the subbase soil; such as effective porosity and per-
meability.

2) Geometric layout of the subbase; such as thickness, length, super—
elevation, and location of the plan grade.

3) Boundary conditions of the subbase; such as length and location of
the open boundaries and impervious boundaries.
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A correlation of the above factors was first formulated by Casagrande
through the application of Darcy's Law. Laboratory experiments proved
the validity of his basic formulations of the differential equations used for
the analysis (2).

Casagrande's analysis is based upon several simplified assumptions:

1) The bottom and cne side of the subbase are iﬁlpervious boundaries
(cross-hatched areasg in Fig. 1).

2} The subbase is assumed to be 100 percent water-saturated at the
time drainage sfarts.

3) No further water enters the subbase once drainage begins.

4) Open discharge is assumed at one side which is suddenly opened
for free drainage.

5} The phreatic surface is assumed to be a straight line (Fig. 1).

6) The effective porosity, ng, is assumed to be independent of height
above the impervious boundary.

Figure 1 shows the phreatic surface as it gradually changes from posi-
tion 1-4 to 1-3. Differential equations can be established by considering
the position of the phreatic surface at elapsed time t, then at time (¢t + dt).
In the time element dt, the quantity, dq, discharged per unit width is equal
to the area of the narrow, shaded triangle 1-5-6, multiplied by the effec-
tive porosity n,. The effective porosity is the ratio of the volume of voids
that can be drained under gravity flow to the total volume of soil mass.
The quantity discharged can be expressed:

H
dq = ._En_@. dx (1a)

-dﬁ.*_-k-(—i-h-

m a A) states that rate of discharge dq can be com-

Darcy's Law ( m

_puted as the product of permeability k, hydraulic gradient %lh » and the total

cross-sectional area of the flow. Since the total head dh is the only head
that determines flow, it is used in Darcy's Law to compute gradients.

The flow through volume 1-5-7 in Figure 1 is computed by Darcy's

Law. The simplest assumption is to use 5 a8 the average area per unit of




width through which flow takes place, and to assume an average effective

H
gradient of g Then the rate of flow is expressed as:

dg ., HH _ HZ
dt k2 X ka (1b)
By applying the chain rule dz _ dx @', Eq. (1a) and Eq. (1b) can be com~
dt dg dt
bined as:
_le x
dt == 5 dx  (le)
This equation is to be solved as:
_De x2
t K (ZH) + C (1d)

where C is the integration constant.

The boundary condition of this differential equation is that x = 0 when
t = 0, Hence C = 0 whenthe boundary condition is substituted into Eq. (1d).
The final form of Eq. {1d) is now:

t=7 GF) (2)

Eq. (2) represents the time required fo remove a certain amount of
water from the subbase which isgenerally defined as the drainability of the
subbase.

Figure 2 shows the phreatic surface changes from position 1-3 to posi-
tion 1-2. The variable triangle 1-5-6 has a constant base length L and a
variable height h. The starting equations are:

Lne
dg = Tdh (3a)
dg _ _, b2
a5l (3b)

The negative sign in Eq. (3b) indicates that total head, h, is decreasing
with increasing time. '




With the boundary condition h = H when t = 0, Eq. (32) and Eq. (3b) can

be solved as:
neg |12
t= % I:EIH-I_ (H - hﬂ (4)

Eq. (2) and Eq. (4) represent the formulation of the drainability for the
simplest geometrical shapes; however, Michigan's pavement subbases are
much more complex. Therefore, drainabilities for various other shapes
rmust be developed. Casagrande established the criteria for satisfactory
drainability as a 10 day maximum to reach the 50 percent degree of drain-
age. The degree of drainage U is defined as the ratio of the drained area
drained ares. area). This criterion was also adopted by the

total area
Hiphway Research Board (3) and recommended by Ref. (1) for the drainage
design of subbase layers.

to the total area (U =

DRAINABILITY FOR BASIC GEOME TRIC SHAPES

Drainability for nine basic gedmetric shapes, other than shown in Fig-
ures 1 and 2, are to be developed inorder to estimate drainability of vari-
ous Michigan highway subbases. I is seen that the basic equations to de-
velop drainability are Eqs. (1a) and (1b). For different geometric shapes,
the content of these two equations varies, but the basic form remains un-
changed. Specifically, the mathematical involvement is nomore than solv-
ing the first order, first degree ordinary differential equations. Although
the formulas for the drainability of some of the shapes may be lengthy,
their calculation is greatly facilitated by the electronic pocket calculators
available today.

Drainability for Shape I

As shown in Figure 3 for Shape I, the impervious base slopes at an
angle o« . The open side boundary slopes up to a horizontal distance k from
point A (the top boundary G~F is horizontal), The phreatic surface gradu-
alty changes from position AF to AG.

In the time element dt, the quantity dq discharged per unii width is
equal to triangle ABC, multiplied by n,.

dq = —nlf Hdx (5a)

The flow through volume ABD is computed by Darcy's Law. To do this it
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is necessary to assume that the average area per unit of width through which
H
flow takes place, and the average effective gradient o is a ratio of area

ABD and area AJBE expressed interms of H. Then flow can be expressed
as:

dgq _ kﬂ l:( area ABD) (H)]

dt X area AJBE
_oH | x(H - xtan O¢)
kx [ 2Hx H:]
kKH(H - xtan
_ I = ek Oc) (5b)
2x
Eq. (5a) and Eq. (5b) can be combined as:
e x <
dt k H - xtan o (5e)
The solution of Eq. (5¢) is:
Do X H
= - - H - o +C
LS [: tan ox tan? O In x tan )] (5d)

where C is the integration constant which can be determined by the boun-
dary condition.

With the boundary condition x = K when t = 0, Eq. (5d) is solved as:

e - H H- K Ox
(k X tan ) (6)

t 7% an o tan2 oc  h - X tan ox

Eq. (6) expresses the drainability of Shape I as functions of geometry, ef-
fective porosity, and permeability.

Drainability for All Bagic Shapes

Investigation into all of the Michigan standard typical pavement cross-

sections indicates that subbases are composed of various combhinations of

nine basiec geometric shapes. Using the procedure as shown for Shape I,
the development of drainabilities for all other basic shapes are included in
Appendix A, Table 1 summarizes these shapes and their drainability equa-
tions. In the sketch, tg indicates the beginning position of the phreatic sur-
face at t = 0, and t indicates the position of the phreatic surface at time t.




Development of Drainage Requirements for Michigan Subbases - The Super-
position Principle -

It is now known that the drainability of the various geometric shapes
are functions of permeability, effective porosity, and shape geometry. For
a certain subbase section, geometry is constant, while only the material

characteristic factor X will determine the time required for drainape.

By

The subbase section is a combination of various basic geometric shapes
summarized in Table 1. Because of the complexity of the geometry of the
subbase section, its drainability has to be estimated on the basis of the
drainability of each individual basic geometric shape, and a superposition
principle is then used to calculate the combined effects. The superposi-
tionprinciple will be stated as: The total time required to drain to a parti-
cular point in the subbase is equivalent to the sum of the drainage time re-
quired to drain each individual geometric shape composing that section to
that particular point.

A subbase section has both of its sides open for drainage at the begin-
ning. Gradually, the phreatic surfaces of the two drainage sides will meet
at a common point at the bottom of the slab. Due to the difference in geo~
metry of the two sides, drainage rates will be different but drainage times
required for the two phreatic surfaces to reach that common point are the
same. The location of this point and the time required to reach it can be
calculated by trial and error. An example was worked out in Appendix B
to illustrate the Superposition Principle, the trial anderror solution of the
drainability, and the minimum drainage requirement.

Drainage Requirements for Michigan Subbases

For a given subbase cross-section, the drainage requirement isa func-

tion of the material characteristic '}f" only. Although any typical cross~-
e
section has several different superelevations, it is not hard to determine

the most critical case among them. In fact, detailed calculations for seve-
ral selected typical cross-sections revealed that values of the material
characteristic factor vary within 15 percent among the different superele-
vations for a certain cross-section. It is also known that the back slope
and the front slope of each cross-sectionare either 1 on 2, 1 on 4, or 1 on
6, depending upon the local relief features. But 1 on 6 is the most common
case and its drainage requirement has control over that for the 1 on 2 or




the 1 on 4 cases. To represent the most general case, and to take the
greatest safety measure, 1 on 6 slope and the most critical superelevation
for drainage requirement are presented for each typical cross—section.

Figures 4 through 11 represent all the common normal and superele-
vated typical Michigan highway cross-sections. The minimum required

material characteristic factors (%{g) for the corresponding crosgs—sections

as calculated by the procedure used in Appendix B are shown in Table 2.

It may be seen from Table 2 that the minimum required material char-
acteristic factor ranges from 34.2 ft/day for a 16-ft concrete ramp to 62,4
ft/day for 9-in. dual 36-ft concrete pavement. Since some of the values
are very close, Table 2 is reassembled into four groups and presented in
a more informative and convenient manner as Figure 12.

To determine the suitability of an in-place subbase material the engi-
neer identifies the pavement cross-section from those shown in Figures 4
to 11, and then by referring to Figure 12 determines the minimum required
_1an ratio for that cross-section, The —kn; ratio can eagily be determined
in the field using the field permeability test described in Ref. (7). The
subbase layer must have a Lk ratio Jarger than the minimum required.

]f]e
Should it be less, the same material can only be accepted under the condi-

tion that supplementary drains be installed.

An additional benefit to be derived from methods described in this re-
port is that drainage requirements for newly developed subbase sections, in
the future, can be evaluated by the procedure used in Appendix B and the
equations listed in Table 1. ‘

Additional Requirements

It is theoretically possible for a subbase material to meet the drainage
criteria as represented hy the material characteristic factor and still re-
main nearly 100 percent saturated because its effective porosity, ng, ap-
proaches zero. A limitation on the capillary water content of a subbase
material is then required. As indicated inreports by Mullis (5) and Novak
{6) there is justification for requiring all base and subbase materials to be
less than 90 percent saturated if they may be subjected to freezing. There—
fore, it should be required that all subbase materials, when gravity drained,
be less than 90 percent saturated, and this factor should be controlled by
the inspector at the time of construction,
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TABLE 2
SUBBASE DRAINAGE REQUIREMENT FOR
STANDARD TYPICAL CROSS-SECTIONS AT tgg = 10 DAYS

Cross- Subbase Maximum Minimum
Section Pavement Type * Thick- Length k/ng,
Type ness, in. | O SRS | gt/ day
A Dual 24 ft Concrete (9-in.) 10 68. 33 55.2
B Dual 24 ft Concrete (8-in.) 10 67.19 55.2
C Dual 36 ft Concrete (9-in.} 10 80,47 62.4
D 16 ft Concrete Ramp (9-in.} 10 56,57 34.2
E Two Way 24 ft Concrete (9-in.) 10 70.20 53.5
F Two Way 24 ft Bituminous Concrete i5 74.56 46,0
G? Two Way 24 ft Bituminous Concrete 25 87.06 52.5
H?®  Two Way 24 ft Bituminous Concrete 25 87,41 52.5

! Fipures in pareuntheses indicate the thickness of pavement,
2 ADT 2, 000-3, 000 '
3 ADT 3, 000-6, 000

CONCLUSIONS

1) When supplemented with a maximum allowable percent saturation
requirement, Casagrande's 10 day for 50 percent drainage requirement
appears to be a practical criterion for determining the acceptability of sub-
base materials for drainage requirements.

2) Subbase drainage requirement isexpressed by a minimum material
k . .
characteristic factor, ‘ﬁ'g Figure 12 specifies the minimum requirements
for various standard typical cross-sections of Michigan pavements.
3} Material characteristic factors can either be field determined or

laboratory determined. If field determined, Figure 12 can serve as the
fastest reference for the engineer to make his determination.

4) Subbase material rejected by the conventional gradation evaluation

method should be re~cvaluated based upon its drainability characteristic
factor, which may result in acceptance.

-18 -
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APPENDIX A

DEVELOPMENT OF DRAINABILITY EQUATIONS

-21 -




Drainability for Shape II

As shown in Figure A-1, Shape II is essentially similar to that shown
in Figure 1, except that the vertical open boundary is replaced by a slope
line AF. Phreatic surface changes gradually from AF to AE.

The starting equations, similar to those in Figure 1, are:

H
dg = Eg_, dx | (A-1a)
d H2
@ = Kor (A-1b)

Together with the boundary condition x = K when t = 0, this set of equations

is solved as:
- 2 2
t= [““m x - K ):I (A-2)

One should note that as long as Darcy's Law calls for the implementation
of the total head instead of the pressure head in its calculation of the gra-
dient, the open boundaries can either be open air or attached to some kind
of drained media. :

Drainability for Shape I

Shape III is similar to Shape I except that the horizontal top boundary
in Shape I is replaced by an inclined boundary at the same slope as that of
the bottom boundary. As shown in Figure A-2, phreatic surface changes
gradually from AF to AE.

In the time element dt, the gquantity dg discharged per unit width is
equal to:

dq = ng —= (A-3a)

Flow through volume ABD is again computed by Darcy's Law with
H+t xtan O¢
x

-23 -
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in terms of H as the average areaper unit of width to assume this gradient.

dg _ K H + xtan O (area ABD) (H)
dt X (area AGBD)

(A-3b)

- kH+xtanO( H
2

X

With the boundary condifion x =k whent = 0, Eq. {A-3a) and Eq. (A-3b)
can be solved as:

t:E@“(X_'k H H + ktan O
k ‘tan ox tan2ox O H + xtan Ox

) (A-4)

Drainability for Shape IV

Shape IV (Fig. A-3) isexactly the same as Shape II. However, phrea-
tic surface changes gradually downward, instead of horizontally, from AE
to AD. It has to be noted here that as long as the drainability is desired in
the vertical direction, only the undrained area, such as {riangle AED in
Figure A-3, is accounted for. Consequently, the positionof ¥, beyond AE,
ig irrelevant. The same drainability would be obtained even if F coincided
E in the figure.

In the time element dt, the quantity dq discharged per unit width is equal to
the product of n, and the triangle area ABC.

Ldh

dq = n, P (A~5a)

h
Flow through volume ACD is computed by Darcy's Law withz as the gra-

dient and ratio of area ACD to the rectangular area AGCD expressed in
terms of h as the average area per unit of width. The negative sign indi-
cates that total head h is decreasing with increasing time.

da . . h {area ACD) _
IR I:(area accp) (A-5b)

With the boundary condition h = H when t = 0, Eq. (A-5a) and Eq. (A-5b)
are solved as:

_ D 9 H-h
" [L (_ET)] (B-6)

- 25 -
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Drainability of Shape V

The difference between Shape IV and Shape V is thatone has a horizon-
tal base, while the other has a sloping base, with an angle o« from the hori-
zon. Otherwise, both drain gradually downward from the top of the imper-
vious side boundary. ‘

As Figure A-4 shows, the flow through volume ACD has a gradient
h + Ltan O '

L .
and parallelogram AGCD, expressed interms of h. The starting equations
are:

and an average areaper unit width as the ratio of triangle ACD

dg = n, e (A-Ta)

dg _ , h+Ltanx h A

dt k L 2 (A-Th)
With boundary condition h=H- Ltan < when t = 0, the final solution of Eq.
(A-7a) and Eq. {A-7h) is:

e L ‘H - Ltan C= ) (h + Ltan ox )
Ik ‘ tan ¢ In Hh ( )

Drainability for Shape VI

The impervious side houndary of Shape VI is a slope with an angle <x .
Asshownin Figure A-5, phreatic surface changes gradually from AD to AE.

. (L - o d
Flow through volume AFB had agradient * x)xtan and anaverage area

per unitwidth as the ratio of triangle AFB and rectangle AFBG as expressed
in terms of height (L ~ x)tan oc . The starting equations are:

Litan ¢ dx

dg = ng 5 (A-9a)

dg _ (L, - x)tan cx 1 _
dt k [ < 5 (L. - x)tancx (A-9h)
Boundary condition for this set of equations isx =L - when t=0,

tan ¢
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and the solution to themn is:

t:f_g,_ L L(H - Ltan O + xtan o)
k tan ¢ (L - x}H
(A-10)

+1n (L ~« x)tancx ]

H

Drainability for Shape VII

Drainability is desired to change the phreatic surface gradually from
AD to AE in Figure A-6, Shape VII has a slope base with an anglecc . In
the time element dt, the quantity dq discharged per unit width is the pro-
duct of the triangular area ABC and the effective porosity n_.

si;lﬂ;’ (H+ftan?” )cosV
dq = n, 5 (A-11a)
The flow through volume AFC, computed by Darcy's Law, has —-—_.i}.:.-._._.}r
-
L- tan 7

as the gradient and the average areaper unit widthis the ratio of area AFC
to area AFCG expressed in terms of height CF.

h {area ATC)
dg _
dt -k h - [(area AFCG) (CF)]
- tan Y
h 1 h -1y
- | ——— - (L - Ytan o
kL h - by (2) I:h ( tan ¥ ]
tan Y

- % h(Ltan ¥ + hy)tanoc - h2 (tanoc + tan ¥ )
2(Ltan¥Y - h + hy)

(A~11b}

Eq. (A-1la) and Eq. (A-11b), together with the boundary condition h = H
when t = 0, can be solved as:
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Figure A-6. Shape ViI P

Figure A-7. Shape VI

DRAIN
3

H~CX~L) TAN Y

da

T
>
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p = e H -+ £sin ¥ k)
k tan ¥y tanox H

H + Ltan 7
tance (tan 7  + tan << )

h (tan oc +tan ¥ ) - (Ltan ¥ +hy)tan o

In (A-12)

H(tan o¢ +tan ¥ ) - (Ltan ¥ +hy)tan <

Drainability for Shape VIII

Shape VII, ag shownin Figure A-7, has aphreatic surface that changes
gradually from AD to AE. In the time element dt, the quantity dq discharg-
ed per unit width is:

dx
cos 7

dg = n, AABC:ne—'é‘ (I +Rtan ¥ )cos ¥

_n, (H+ftan ¥ )
2

(A-13a)

The flow through volume ABFG (water below GF cannot drain toward A),

. Hy - {x - L)ytan?Y + Ltancx .
computed by Darcy's Law, has a gradient

X

Since both o and ¥ are small (tap ¥ = 0,035 max, and tancc = 0,02 max

in all cases) average area per unit width can be estimated as BE or
2

Hy (x ~ L)tan ¥

2

dg _ kH1-(x—-L)tan Y+ Ltanc Hy - (x - Lytan Y

dt - < 9 {A-13b)

With the boundary condition x = L when t = 0, Eq. (A~13a) and Eq. (A-13b)
are solved as:

H +Ltan ¥
t =% Ltan2 Y tan o Hy + L{tanY + tan o)

Hy + L{tancc + tan Y ) - xtan Y
Hl + Litan ¢

In

Hy + Ltan? -~ xtan?”
- Hy +tan” ) In H, (A=14)
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]

dq

~
.

H+ 0 TAN O< 4
{X=~AYTANY
<

r——-

Figure A-8, Shape IX

Drainability for Shape IX

Phreatic surface in Shape IX, shown in Figure A-8, changes gradually
from AD to AE. In the time element dt, the quantity dq discharged per

unit width is:
gin{( ¥ - Cx{l

The flow through volume ABGJ, computed by Darcy's Law, had a gradient
H+ Ltanoc + (x~ Litan Y
X

dg = n, + AABC = 1, (%BC * AF)
(A-15a)

cos Y

= (l)( dx ) H L
Te 2 cos Y " cos Y

. Sinceboth cx and ¥ are small (tan & = 0, 02
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inax, tan ¥ = 0,07 max in all cases), average area per unit width to as-

sume this gradient can be estimated as 5

dq _ , H+ Ltapn & + (x - Litan¥Y H Ae
e k . p (A~15b)
With the boundary condition x = L when t = 0, Eq. (A-153) and Eq. (A-15b)
can be solved as:

D Heog?Y - Lgin( ¥ - o )
k Hecos? ¥ tan Y

tz

I:X_L_H+L(tancx - tan Y )

tan ¥
g At Ltano - tany ) + xtan ¥ (A-16)
H + Ltan ¢
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APPENDIX B

AN ILLUSTRATIVE EXAMPLE TO CALCULATE THE
DRAINAGE REQUIREMENT
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Figure B-larepresents the subbase of atypical cross-section of a 24-
ft concrete pavement roadway with a superelevation of 0.035 ft per lineal
foot. The particular point in question is point P, Phreatic surface at the
left portion of the section changes gradually from AB to AC to AD to AE,
and then to AF. In the same manner, the phreatic surface at the right por-
tion changes gradually from A'B' to A'E'. The twophreatic surfaces finally
meet at point P. In other words, time required for drainage from AB to
AP is the same as that from A'B' to A'P, According to the superposition
principle: b

taB - AP) ~ YaB - ac) T taac - A(D') * YAD - ARE)
Ttar - aF) " YAF - AP) (B-1a)
tams - APy T Barp - Arcn) T Rare - A'DY)
+ tap - A'EY) T Yagr - AP) (B-1b)

t(AB - AC) is the time required to relocate the phreatic surface from
AR to AC (or to drainthe triangle ABC)., Other elements in these two equ~
ations are designated in a similar manner. Figures B-1b to B-1j repre-
sent every individual basic geometric shape, along with Figure B-la, as-
sociated with these twoequations. Also, for both sides to drain to P at the
same time, the following relationship has to exist:

tAB - AP) T YarB' - A'P) | (B-2)

The example wasworked out numerically here for demonstration pur-
poses. Since the exact location of P is unknown, it is assumed to be x dis-
tance from point A, and x' from A'. They are then solved by trial and er-
ror, AIl pertinent data are read directly from '"Typical Cross-Sections”
published by the Department.

for t(ag - AC), Shape V (Fig. B-1b):

From plan data: L =14.5 ft, tan oc = 0.018, H =2.42 fi, h = 1,52 ft.
Using Eq. (A-8):

_ Dy L (H - Ltanoc ) (h + Ltan o)
taB - AC) T g Hh

= 36 &
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ad

. t(AB-AP)-LEFT
|C s = t(N B'-A'P) T RIGHT
S B X+X'=7072

-
(b)
SHAPE ¥

tcaB-AC)

(g)
SHAPE X
teap'- AChH

(¢) < D
SHAPE I
YAC-AD)

t(AD-AE)

Y (1)

SHAPE X
t(a' D'-AED

(e) E
SHAPE YIL
t(AE-AF)

()
. | SHAPE IX
f) LAE-AP)

SHAPE NIIT
EAF-AP)

Figure B-1. Subbase for a two-way concrete pavement.
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for t(AC ~ AD)s Shape III (Fig. B-1c):

From plan data: x = L =2.,51 fi, K = 14.5ft, H = 1,52 ft, tan oc~
0.018. Using Eq. (A-4):

n L-K H
t = _8 N 1 H + Ktan <
(AC - AD) k ‘tancoc  tanoc  H + Ltan o

Je
70 =

for t(AD - AE) Shape V (Fig. B-1d):

From plan data: L = 21,5 ft, tan oc = 0,018, H=1.9 ft, h =1.15 ft.
Using Eq. (A~8):

t e L {H-Ltanc) (bt Lian )

for t(AE ~ AF)’ Shape VI (Fig. B-le):

From plan data: L =27.5ft, £= 21,5 ft, H= 1.5 ft, h = hy = 1,32 ft,
tan & = 0,018, tan ¥ =sin ¥ = 0,035, Using Eq. (A-12):

¢ b | Ha+/lsinY b H +Ltan ¥
(AE - AF) tan Y tanox O H  tancx (tanY tan <)
h(tan &+ tan ¥ ) ~ (Ltan Y+ hj) tan
H(tan o + tany ) - (Ltan¥Y  + hy)tan o
- Dg
209 I

for tsp _ Apy» Shape VII (Fig. B-1f):

From plan data: L = 27.5ft, £ = 21.5 ft, H = 1.5 ft, Hy = 0.83 ft,
tan o = 0,018, tan ¥ = 0.035. Using Eq. (A-14): :

Ny H +Ztan ¥
k Ltan2 ¥ tan o Hy + L{tanY + tance) |

YAF - AP)
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| Hy + Litan ¢ + tan? ) - xtan ¥
n

Hy + Ltan o

Hy + Ltan ¥ - xtan VY
Hy

'-(H + LtanY ) In

8496 In (1.7264 - 0.0264x)
- 6657 In (2.1596 - 0,0422x) £

for t(argr - Arct), Shape V (Fig. B-1g):

Fromplan data: L= 11.7ft, H= 1,95 ft, H= 1,1 ft, tan oc = 0.02.

n
AR - ArCY) T -8 L (H - Ltanox ) (b + Ltanoc)
(A'BT - AICT) k [ta.noc In ' Hh
~ 38 =
k

for t(Alcl - A'D') Shape IH (Fig. B-1h):

From plandata: x=L=18,7 ft, K= 11,7 ft, H= 1.1 ft, tan O = 0,02,
Using Eq. (A-4):

n
tvv_1!=—§- L-K+ H H + Ki{anp O
(A'C' - A'DY) T [tanoc tan2 &« M H + Ltan o¢
n
— £
75k

for t(ArD'l -~ A Shape V (Fig. B-1li):

From plan data: L= 18,7 ft, H= 1.5ft, h= 0.75 ft, tan o = 0,02,
Using Eq. (A-8):

£ - Ze L, (H - Ltan o) (h + Litan o)
(A'D' - A'E") tan oc O Hh

n
110 -£
k
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for Shape IX (Fig. B-1j):

(A'E' - A'P)

Fromplandata: L = 21,5 ft, H = 0. 83 ft, tan & = 0,02, tan ¥ = 0. 035,
gin (Y - &) =0.015, cos Y =1. I is also known that x + x'=70.22 ft,
thus x' = 70.22 ft - x, Using Eq. (A~16):

. _ Do | Heog? ¥ - Lsin( ¥ - o)
(A'E' - A'P) Hcos® ¥ tan Y

, H+ Lftan CC - tan Y )
x' - L - ——
tan Y

In

H+ Lftan & - tan Y ) + x'tan ¥
H + Ltancox

n
= |:851 ~17.47x-253.31n(2.3533 -~ 0. 0278}():] —lf

All the values obtained are now to he substituted into Eg. (B-1a) and
Eq. (B"'lb)n

t(AB - AP) © A6+ 70+ 75+ 209 + 8496 In{1.7264 — 0, 0264x)
- n
- 6657 In (2.1596 - 0, 0422x) f

_l
= 390 + 8496 In (1.7264 ~ 0.0264x)
- 6657 In (2.1596 - 0, 0422x) f

—

LAIB! - A'P) © [ 38 + 75 + 110 + 851 ~ 17,47x

0
- 253.3 In (2.3533 - 0.0278;()] -1;9

n
= [ 1074 - 17,47x - 2563.3 1n (2.3533 ~ 0.0278X):l £
’ k

Eq. (B-2) is used for the final solution. Owing to the complicated na-
ture of the equation, a trial and error method is used by assuming a rea~
sonable value of x and substituting this value into the left hand side (LHS)
and right hand side (RHS) of Eq. (B-2),
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First trial: assume x = 31 £t

il

LHS = t(Ap _ AP) 390 + 8496 In [1.7264 - (0. 0264)(31)]

- 6657 In |:2.1596 - (0. 0422)(31):' L
k

633 Me
k

RHS = t(AIB! - A'P) = { 1074 - (17.47)}31) - 253.3 In
n
-253.3 In |:2.3533 - (0. 0278)(31)] } _]f

n

= £
430 ”

Second trial: assume x = 29 ft

De

LHS = t(AB— AP) = 496 &

De
RHS = t(AfB'I - A'P) = 456 <

Third trial: assume x = 28.5 ft

: - e

i

LHS

n
RHS = tpipr - Arpy = 462 7= = LHS

Therefore, P is at a horizontal distance of 28.5 ft from A, and the time

n
required for both sides to drain P is 462 ‘{f‘ .

The degree of drainage for this example, calculated as the ratio of the
area above APA' to thetotal area, is 53.6 percent. Since the criterion was
established as 10 days for U =50 percent, drainability calculated other
than to this degree of drainage has to be converted to the U = 50 percent
condition. The simplest assumption that can be made is to use a linear
relationship between the degree of drainage and drainability.
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U 50% t50 :
= B_
T : (B=3)

X

Therefore, the corresponding time for U = 50 percent is calculated as:

U 50% _ .50 n n
50 "5 g x (536 (162 ~2) = 430.}:{9

To meet the criterion of 10 days for 50 percent drainage, the material
k
characteristic factor, n, should have a minimum value of

k_ _ 430
n, i
_ 430

10

= 43

It should be noted that conformity of units is imperative. In this example,
the unit of permeability is to be ft/day. As longas the effective porosity is

. . . s k
dimensionless, the material characteristic factor, ;l—’ assumes the same

(5}
unit as ft/day.
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