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INTRODUCTION 

In 2020, the Michigan Department of Transportation (MDOT) initiated the development of a new 
pavement management tool known initially as the Project Identification Tool (PIT). Designed to 
assist in prioritizing and optimizing pavement project selection across Michigan’s road network, 
the PIT software was expected to be fully operational by early 2024. However, issues arose that, 
at the time of publication of this report, development had been suspended.  Since the future of 
PIT is unknown at this point, the remainder of this report shall refer to it as the Pavement 
Management Tool (PMT). The accuracy and utility of this tool depends on the quality of the 
input data used to characterize pavement deterioration, identify treatment thresholds, and 
estimate the effects of various maintenance and rehabilitation strategies. 

While initial inputs to the PMT were based on engineering experience and expert judgment, there 
is a clear need to enhance the tool with inputs grounded in historical pavement condition data 
and maintenance records maintained by MDOT. These inputs will help ensure that the PMT 
recommendations reflect observed pavement behavior, typical performance trends, and treatment 
effectiveness over time. 

This project aimed to generate such data-driven inputs by analyzing pavement condition trends, 
maintenance cycles, and treatment outcomes using a comprehensive dataset derived from 
MDOT’s Pavement Analysis, Valuation, Examination, and Tracking (PAVETrack) system. The 
dataset consists of categorized GroupRecords files (outputs of PAVETrack), each representing a 
parent fix type. The term parent fix refers to the specific type of reconstruction or rehabilitation 
applied to a pavement section, at which point the pavement’s age is reset to zero. After a parent 
fix, the section is treated as a new pavement for analysis purposes. While the Physical Road (PR) 
number typically remains the same, the Beginning Mile Point (BMP), and Ending Mile Point 
(EMP) may differ slightly from the previous project due to changes in project limits or 
segmentation.  

The parent fix types are categorized as follows: 

• Flexible and Composite Pavement Parent Fixes:
o Multi-Course Overlay HMA
o HMA Reconstruction
o HMA over Crush & Shape HMA
o HMA over Rubblized Concrete
o HMA over Asphalt Stabilized Crack Relief Layer (ASCRL)

• Rigid Pavement Parent Fixes:
o JPCP reconstruction
o JRCP reconstruction
o Concrete Overlay (Unbonded)
o Thin Concrete Overlay
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The research team received nine Excel sheets from MDOT, each containing pavements for a 
specific parent fix type, and these files are referred to as GroupRecords files throughout this 
report. A snapshot of a list of GroupRecords files received from MDOT for this project shown in 
Figure 1. These records served as the foundation for modeling deterioration and assessing the 
impacts of treatment. 

Figure 1. A snapshot of a list of GroupRecords files received from MDOT 

The report is organized around four main technical components as listed below. 

• Task 9 – GCR Modeling: Develop both stepwise and formula-based deterioration
models for key pavement condition indicators across surface types.

• Task 10 – Action Benefits: Evaluate the effect of specific treatments on condition
improvements and estimate how long these treatments defer future maintenance.

• Task 11 – Utility Scoring: Review how other state highway agencies apply utility
scoring to pavement management, including methods for scaling condition metrics and
assigning weights.

• Task 12 – Network Policy: Identify statistically supported thresholds and policy rules
for determining when specific treatments should be triggered based on pavement
condition data.

This project was a continuation of an earlier effort titled “Evaluation of MDOT’s Methodologies 
for Quantifying Pavement Distress and Modeling Pavement Performance for Life-Cycle Cost 
and Remaining Service Life Estimation Purposes.” The original project included the first eight 
tasks, which can be found in the MDOT Report SPR-1737. As a result, the tasks in this phase 
begin with Task 9 and proceed sequentially through Task 12 to reflect the extended scope of 
work. 

It should be noted that the Pavement Distress Score (PDS), developed during Phase I of this 
project, is referenced throughout this report. PDS is a composite metric designed to quantify 
overall pavement surface condition using individual distress measurements collected through 
MDOT’s Surface Defect Survey (SDS) program. It is calculated using a weighted sum of 
normalized distress quantities, with distinct coefficients assigned to each distress type—such as 



 
 

longitudinal cracking, transverse cracking, block cracking, and patching. The PDS formulation is 
shown below: 

 [1] 

  = 25 ∗ (𝑒𝑒1.386294−(0.045∗𝑇𝑇𝑇𝑇𝑇𝑇))𝑃𝑃𝑇𝑇𝑃𝑃 [2] 

      
         

          
  

 
   

  
 

   
  

    
 

 

 
      

            
    

 

        
     

where, TWD = total weighted distress, n = number of distresses, Di = quantity at each distress-
severity combinations, wi = weights for each distress, PDS = Pavement Distress Score. Although 
the PDS is not yet implemented in MDOT’s current pavement management system, it serves as a 
consistent and performance-aligned indicator used throughout this report to support condition-
based modeling and facilitate comparisons across pavement types. PDS values for each section 
were computed using PDSComp V0.1, a software tool developed during the earlier phase of this 
research. Details of this tool and its methodology are documented in the full report titled 
“Evaluation of MDOT’s Methodologies for Quantifying Pavement Distress and Modeling 
Pavement Performance for Life-Cycle Cost and Remaining Service Life Estimation Purposes” 
(Report RC-1737). 

TASK 9: GENERAL CONDITION RATING (GCR) DETERIORATION 
MODELING 

The objective of this task was to develop performance models that characterize the deterioration 
of key pavement condition metrics, referred to in the PMT as General Condition Ratings 
(GCRs). The GCRs considered in this project include the International Roughness Index (IRI), 
cracking (CRK), rutting (RUT), faulting (FLT), and the Pavement Distress Score (PDS). Among 
these, IRI, CRK, and PDS are evaluated for both flexible and rigid pavement types. In contrast, 
RUT is applicable only to flexible pavements, while FLT is used exclusively for rigid pavements. 
It is noted that the cracking (CRK) is the cracking percent (%) that was computed by following 
Highway Pavement Management System (HPMS) data reporting guidelines1. 

The deterioration models were designed to operate at two levels: 

• Discrete Modeling: Estimates the time required for a pavement section to transition 
between predefined condition states—such as from Good to Fair, or from Fair to Poor— 
starting from an idealized initial condition (e.g., 100% Good). 

1 https://www.fhwa.dot.gov/policyinformation/hpms/fieldmanual/page06.cfm#toc249159741 
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• Continuous Modeling: Uses mathematical functions to describe the full progression of a 
condition metric over time, capturing the continuous degradation of pavement 
performance throughout its service life. 

DATA PREPARATION 

The data processing and analysis conducted in this project rely on two primary source files: 

• The “stack” file: This file is a consolidated compilation of GroupRecords data (see 
Figure 2). Each original GroupRecords file corresponds to a specific parent fix type 
(referred to as “Parent”) and contains pavement performance and maintenance data for 
sections treated with that fix. The parent fixes are categorized as either flexible or rigid. 
All GroupRecords files were combined into a single, unified dataset—referred to as the 
“stack”—which serves as the foundational input for all technical tasks in this project.  
GroupRecords files are an output of the PAVETrack application. 

• The pavement list: This file provides a summary of road network data, roughly 
corresponding to the “Parent” rows in the stack. It includes key information such as 
opening year, ending year (if applicable), and reconstruction/rehabilitation identifiers, 
which are critical for tracking section “connectivity” over time.  These lists were 
maintained by MDOT.  

Figure 2 displays a screenshot of the “stack” file, which has been extended to include PDS 
values. These values were generated using specially prepared pavement lists that includes both 
Control Section (CS) and Physical Road (PR) identifiers. CS and PR are two different versions 
of MDOT’s linear referencing system (LRS).  CS is the legacy LRS, while PR is the more 
modern system that MDOT has transitioned to. While pavement sections in the stack were 
originally labeled using PR numbers, only the PDS data collected after 2020 could be computed 
using PR-based identifiers, whereas data from before 2019 follows a CS-based structure. 
Consequently, accurately merging the PDS values into the stack required establishing a reliable 
mapping between PR and CS identifiers, including their respective beginning and ending 
mileposts. 



 

 
6 

 
Figure 2. Partial screenshot of the “stack” file (i.e., compiled GroupRecords data). Data 
corresponding to one section extends over several rows. The first row of each section is 

highlighted (dark gray for flexible sections, lighter gray for rigid sections) 

To facilitate this integration, the unique pavement sections in the ‘stack’ were consolidated into a 
new pavement list that includes both CS- and PR-based identifiers (see Figure 3). To perform the 
matching between PR and CS, a reference file titled ‘hist_cmpst_sgmts_cs_info_2019.csv’—
provided by MDOT—was used. A screenshot of this file is shown in Figure 4. This file contains 
0.1-mile segment data from the Highway Pavement Management System (HPMS) and includes 
both PR-based fields (PR, PR_BMP, PR_EMP) and CS-based fields (CS, CS_DIR, CS_BMP, 
CS_EMP), among other attributes. This mapping enabled the integration of PDS data into the 
correct pavement segments in the stack.  
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Figure 3. Partial screenshot of the pavement lists with both PR-based fields (PR, PR_BMP, 

PR_EMP) and CS-based fields (CS, CS_DIR, CS_BMP, CS_EMP) 

 
Figure 4. Partial screenshot of the ‘hist_cmpst_sgmts_cs_info_2019.csv’ file  
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Additionally, FLT values were removed from flexible pavement sections, and RUT values were 
removed from rigid sections to ensure logical consistency across surface types. A data 
adjustment and preparation process was also applied to the data, as outlined below: 

• RUT data scaling: Due to changes in data collection vendors, RUT (FLX) measurements 
showed inconsistencies over time. To address this, a correction factor was applied to 
RUT data collected during 2006–2011 and 2018–2019 to align it with values from the 
more stable periods of 2012–2017 and 2021–2023. These timeframes were identified 
based on year-to-year mean variations exceeding 10%.  More details about this 
adjustment can be found in Report RC-1737. 

• Very high values: Outliers and unusually high condition metric values were removed 
from the dataset. Thresholds used for filtering include: 300 in/mile for IRI, 0.5 in for 
RUT, and 0.3 in for FLT. 

• No Age-0 data: Some entries in the stack, although not labeled as “Parent” sections, 
contained condition metric values recorded at Age 0. These entries were removed to 
maintain consistency in how initial condition data is interpreted. 

Preparation and Evaluation of Condition Metric Records for Model Fitting 

Exclusion of Post-Treatment Data 

To accurately capture pavement deterioration over time, it is essential to isolate condition data 
that reflects a continuous period of performance between major treatments. Since the application 
of a fix interrupts normal deterioration, condition metric values recorded after a treatment are 
excluded from model fitting. This ensures that each performance curve reflects a single, 
uninterrupted lifecycle phase. Figure 5 illustrates this process using data from a section treated 
with an HMA Overlay – Single & Mill. The chart on the right displays the filtered dataset, 
retaining only the pre-treatment values for modeling purposes. The vertical dashed line marks the 
treatment year. 
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Figure 5. Example of excluding post-treatment data from condition metric records. Left: 
full record. Right: data retained for modeling. Section ID: 4137. 



 

 
9 

This filtering process was applied uniformly across all sections and condition metrics. Figure 6 
shows the distribution of IRI FLX values aggregated across sections after treatment-related 
values were removed. The general trend of deterioration is visible, while the increasing 
variability at later ages reflects the smaller number of segments that remain untreated as they 
age. 

 
Figure 6. Top: Boxplot of IRI FLX values using only pre-treatment data. Bottom: count of 

segments contributing data by age. 
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Screening Condition Records for Fitting 

Before condition metric records were used for model fitting, a set of quality control checks was 
applied to ensure that the data was suitable and representative. These screening criteria helped 
remove anomalous or insufficient records while maximizing the dataset’s usefulness. The 
following conditions were enforced: 

• Minimum Number of Data Points: To be eligible for fitting, a section had to include at 
least: 

o Three data points for IRI, CRK, RUT, and PDS 
o Two data points for FLT, due to limited data availability 

In addition, a synthetic data point was added at Age 0 to represent the initial 
condition following the most recent treatment.  These Age 0 values are explained 
later in this chapter. 

• Deterioration Trend Requirement: The overall trend of the condition metric must 
reflect deterioration over time: 

o For IRI, CRK, RUT, and FLT, the linear trend must be positive 
o For PDS, the trend must be negative 

A small tolerance was allowed to include records with near-zero slopes, provided 
they still represented a plausible aging pattern. 

• Exclusion of Records with Sudden Unexplained Changes: To avoid fitting unreliable 
or inconsistent data, any record showing abrupt changes between consecutive points was 
excluded. The following thresholds were applied: 

o IRI FLX: change > 76 in/mile (80% of Good/Fair threshold) 
o IRI RIG: change > 57 in/mile (60% of Good/Fair threshold) 
o CRK FLX: reduction > 20% 
o CRK RIG: reduction > 15% 
o RUT: reduction > 0.16 in (80% of 0.2 in threshold) 
o FLT: change > 0.1 in 
o PDS: improvement > 40 points (80% of Fair/Poor threshold) 

These thresholds were developed and refined through an iterative calibration process. Individual 
condition records were reviewed to assess the impact of each criterion and ensure the final 
dataset was both comprehensive and reliable for performance modeling. 

MODEL SELECTION AND FITTING OF CONDITION METRIC DATA 

Once the condition metric records were filtered according to the criteria described earlier (i.e., 
post-treatment data removed, validity thresholds applied), each section was evaluated 
individually to fit a deterioration model appropriate for the corresponding condition metric. This 
fitting process involves determining the optimal parameters of a selected mathematical model 
that best represents how the condition metric evolves with pavement age. 



 

 

  
   

 

   
   
 

 
   

 

  

  

  

  

 
   

 

   
    

 
  

 

   

  
 

   
  

 

  

  
    

The primary goal of the fitting process is to develop simple yet versatile models that can capture 
the full deterioration trend of each condition metric over time. The models were selected based 
on their ability to: 

• Accurately represent a wide range of deterioration patterns, 
• Use a minimal number of parameters for ease of implementation, 
• Support both interpolation within available data and extrapolation beyond observed data, 

and 
• Conform to expected physical behavior at pavement age zero. 

Each condition metric was assigned a distinct model equation, as summarized below: 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡) = 𝐼𝐼𝐼𝐼𝐼𝐼0 × 𝑒𝑒𝐵𝐵𝑡𝑡𝐴𝐴  [3]  

𝐶𝐶𝐼𝐼𝐶𝐶(𝑡𝑡) = 𝑒𝑒𝐴𝐴+𝐵𝐵𝑡𝑡 [4] 

[5]𝐼𝐼𝑅𝑅𝑇𝑇(𝑡𝑡) = 𝐴𝐴 × 𝑡𝑡𝐵𝐵 

[6]𝐹𝐹𝐹𝐹𝑇𝑇(𝑡𝑡) = 𝐴𝐴 × 𝑡𝑡𝐵𝐵 

100 [7]𝑃𝑃𝑇𝑇𝑃𝑃(𝑡𝑡) = 
1 + (𝑡𝑡⁄𝐴𝐴)𝐵𝐵 

In these equations, t represents the pavement age in years. Each model was fit to the condition 
metric data of individual sections that passed the screening criteria. The resulting parameters (A, 
B, and where applicable, IRI₀) were stored for further analysis and reporting. 

For Rutting and Faulting, the equations above are the same as one of the models evaluated in the 
Phase I of this project (power model). For IRI, the equation above is similar to the Dubai model 
used in the Phase I of the project, with addition of A on the exponent of t to make the fits better. 
For PDS, the ASigmoid and Logistic equations were too complicated and we thought a two 
parameter model (simpler) can more easily be modeled in MDOT’s internal software tools. 

Each model was constrained to follow physically meaningful behavior at age zero: 

• IRI₀ (initial IRI) was estimated for each section using a back-casting algorithm described 
later in the report. 

• CRK(0) was set to 0.01 %. As a result, the constant A in the CRK model is fixed at 
ln(0.01) ≈ -4.6.  The model used will not work if Age 0 is exactly 0. 

• RUT(0) and FLT(0) were defined as 0, consistent with the assumption of no initial rutting 
or faulting post-construction. 

• PDS(0) was defined as 100, representing perfect condition at the start of the lifecycle. 

Figure 7 shows fitted curves for RUT (FLX) across selected sections, with thresholds included 
for visual context. Figure 8a provides some examples of individual fitting results for IRI FLX 
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across selected sections, each plot representing three sections and their respective fits. Figure 8b 
highlights some examples of sections that did not meet the minimum data quality criteria and 
were excluded from modeling.  
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Figure 7. Example fitted RUT (FLX) curves for selected sections. Horizontal axis is section 
age. 
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Figure 8. Examples of IRI FLX model fits for selected sections: (a) Passing and (b) failing 
validation criteria. Horizontal axis is section age  



 

 

     

 
  

    

   
  

  
  

 
  

  

    
 

 
  

     
  

 
   

 
   

      
     

 
    

     

 

    
 

 
 

 
    

  
   

         
 

  

    
 

 

Calculation of times to Good/Fair and Fair/Poor thresholds 

Following the model fitting process, the resulting equations and parameters for each section were 
used to estimate the time required to reach key condition thresholds. Specifically, the time to 
reach the Good/Fair threshold (t_GF) and the time to reach the Fair/Poor threshold (t_FP) were 
calculated for each section using its fitted deterioration model. These times could be determined 
even for sections whose observed data did not extend far enough to cross either threshold, by 
using extrapolation beyond the available data. 

Two condition thresholds were applied consistently across the project to define pavement 
performance categories. These thresholds represent the boundaries between Good, Fair, and Poor 
condition levels for each metric. The specific threshold values used for each condition metric are 
summarized in Table 1. 

Table 1. Thresholds for Good, Fair, and Poor Pavement Condition Classification 

Metric Surface Type Good / Fair 
Threshold 

Fair / Poor 
Threshold Notes 

IRI FLX & RIG 95 in/mile 170 in/mile International Roughness 
Index in inches/mile 

CRK 
FLX 5% 20% 

Cracking in percentage 
RIG 5% 15% 

RUT FLX 0.20 in 0.40 in Rutting in inches 
FLT RIG 0.10 in 0.15 in Faulting in inches 

PDS 
FLX 80 50 Subject to review. 

Placeholder for comparison RIG 80 50 

In many cases, particularly for condition metrics with nearly flat trends, the model predicted 
extremely long times to threshold crossing. To handle these situations consistently, an upper limit 
of 111 years was adopted to represent these values—effectively serving as an artificial infinity 
within the analysis. 

A summary spreadsheet was developed to compile key characteristics for each modeled section. 
This includes identification and network information, the number of valid data points, linear 
trend slope, model constants (A, B, and where applicable, IRI₀), and the extrapolated threshold 
times (t_GF, t_FP). Figure 9 presents a tabular summary of the section properties and fit 
parameters. Key columns include the number of data points (N_DATA), extrapolated times to 
Good/Fair (T_GF) and Fair/Poor (T_FP) thresholds, and model constants (A, B, and IRI₀, where 
applicable). Figure 11 and Figure 12 show examples of fitting results for CRK FLX and PDS 
FLX, respectively, illustrating the general performance trends and fitted curves overlaid on the 
data. The Good/Fair and Fair/Poor thresholds are included for reference. 

By rearranging the equations [3] through [7], the times to Good/Fair (T_GF) and Fair/Poor 
(T_FP) can be computed by using the following formulations, given the fit coefficients and 
target GCR values: 
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𝑡𝑡 = [
ln(IRI/IRI0)

𝐵𝐵
]
1
𝐴𝐴  [8] 

𝑡𝑡 =
ln (CRK) − 𝐴𝐴

𝐵𝐵
 

[9] 

𝑡𝑡 = (
RUT
𝐴𝐴

)
1
𝐵𝐵  

[10] 

𝑡𝑡 = (
FLT
𝐴𝐴

)
1
𝐵𝐵  

[11] 

𝑡𝑡 = 𝐴𝐴 × [
100
PDS

− 1]
1
𝐵𝐵  

[12] 

The last two columns of the sec_fit.xlsx file in the digital appendix contain the implementation 
of the equations described above. Figure 10 presents a snapshot of these columns, illustrating the 
formula used to calculate the time to the Good/Fair threshold. This formula is designed to return 
“n/a” in cases of mathematical errors or invalid inputs and to cap the calculated value at the 
maximum limit specified in cell AZ1. 

 
Figure 9. A partial view of the spreadsheet table (see sec_fit.xlsx in digital appendix) of 
section properties and model parameters, including data count, threshold times (T_GF, 

T_FP), and fitting constants (A, B, IRI₀). 

 

Figure 10. A snapshot of the last two columns of ‘sec_fit.xlsx’ sheet that shows the 
formulation of the time to Good/Fair threshold. 
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(a) CRK FLX, 
condition 

metric record 
of selected 
sections. 

 

(b) CRK FLX, 
fitted model to 
the data of the 

selected 
sections. 

 
Figure 11. Fitted deterioration curves for selected sections using CRK FLX. Good/Fair 

(5%) and Fair/Poor (20%) thresholds are shown. 

(a) PDS FLX, 
condition 

metric record 
of selected 
sections. 
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(b) PDS FLX, 
fitted model to 
the data of the 

selected 
sections. 

 
Figure 12. Fitted deterioration curves for selected sections using PDS FLX. Good/Fair 

(80%) and Fair/Poor (50%) thresholds are shown. 

Comparison of two modeling approaches for representative deterioration trends 

With threshold times (t_GF and t_FP) estimated for each section and condition metric records 
available, two complementary approaches were applied to generate representative deterioration 
trends for selected subsets of pavement sections. These subsets can be defined broadly (e.g., all 
flexible sections) or more specifically by parent fix type or region. 

Approach 1 is based on individual threshold times derived from section-level model fits. For 
each subset, the time to Good/Fair and time to Fair/Poor are aggregated and summarized using 
the median (50th percentile). This statistical approach provides a straightforward way to 
characterize deterioration trends without fitting a new curve across the group. For example, as 
shown in Figure 13, the histogram distributions of IRI FLX threshold times for all flexible 
sections yield characteristic values of 24.4 years to the Good/Fair threshold and 60.1 years to the 
Fair/Poor threshold (the time to Fair/Poor extends beyond the horizontal axis). A summary of 
results for all condition metrics using this method is presented in Table 2.Error! Reference 
source not found. 

 
Figure 13. Approach 1: Distribution of threshold times for IRI FLX. The time to Fair/Poor 

extends beyond the horizontal axis. 



 

 

  
 

 
   

    
 

 
 

  
 

 
 

 
 

   
       

        
          
        
        
        
        
        
        

In contrast, Approach 2 applies a single deterioration model to the aggregated condition metric 
data from all sections in the subset that passed the fitting criteria. Rather than relying on section-
level results, this method generates a continuous, representative curve for the entire group. 
Threshold times are then estimated directly from this curve. As shown in Figure 14, the curve 
fitted to the combined IRI FLX data from all flexible sections indicates a time of 19.0 years to 
the Good/Fair threshold and 45.1 years to the Fair/Poor threshold. Full results for this approach 
are provided in Table 2. 

Figure 14. Approach 2: Characteristic curve fitted to combined IRI FLX data. 

Table 2. Summary of results from Approaches 1 and 2. Subset: All sections, all condition 
metrics 

GCR 
Times to thresholds 

Initial IRI 
Fitting constants 

T_GF T_FP A2 
A1 A2 A1 A2 IRI0 A B 

IRI FLX 24.4 19 60.1 45.1 51.9 0.7805 0.0606 
IRI RIG 36.2 15 111 111 73.5 0.2182 0.1422 

CRK FLX 15.2 19.5 18.6 23.8 N/A -4.6052 0.3192 
CRK RIG 34.9 19.3 41 22.7 N/A -4.6052 0.3222 
RUT FLX 62.2 41.8 111 111 N/A 0.0578 0.3323 
FLT RIG 111 111 111 111 N/A 0.031 0.0094 
PDS FLX 15.9 12.9 28.7 28.9 N/A 28.9145 1.7216 
PDS RIG 82.2 14.3 111 64.7 N/A 64.7059 1.9546 
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Notes: A1 = Approach 1: 50th percentile (median) = Quartile 2 (Q2) of times to Good/Fair, times to Fair/Poor. Fits 
are performed individually, for each section. A2 = Approach 2: A characteristic curve is fitted over the condition 
metric record of the subset. 

While both approaches aim to characterize deterioration behavior, their results are not always 
identical. Differences reflect the nature of each method: Approach 1 captures variability across 
individual sections, while Approach 2 reflects the overall trend of the group. Interestingly, the 
results suggest that the use of the 50th percentile in Approach 1 may sometimes overestimate 
threshold times compared to Approach 2. Adjusting this percentile downward may improve 
alignment between the two methods. Ultimately, both approaches provide valuable insight and 
can be used in complementary ways to support pavement management decision-making. 

It should be noted that the “Histograms” folder in the digital appendix includes several excel 
sheets that can be used to compute the time to Good/Fair and time to Fair/Poor values based on 
different percentiles, instead of the 50th percentile. Figure 15 shows one of the histogram excel 
sheets where the user can enter the desired percentile in cell E19 in fraction format to see the 
percentile result in cell D19. 



 

 
19 

 

Figure 15. An example histogram excel sheet provided in the digital appendix, 
“Histograms” folder. 

Subset analysis by parent fix type and region 

The previous results were based on the entire set of flexible or rigid pavement sections contained 
in the GroupRecords dataset. However, the road network data associated with each section 
includes additional attributes—such as parent fix type and region—which can be used to filter 
the data into meaningful subsets. Applying the two modeling approaches (Approach 1 and 
Approach 2) to these subsets enables a more targeted evaluation of pavement performance within 
specific treatment categories or geographic areas. 

The following analysis focuses on the IRI condition metric and summarizes results obtained 
using Approach 2 for various subsets. Sections were filtered first by parent fix type—with 
flexible results shown in Figure 16 and rigid results in Figure 17—and then by region—with 
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flexible sections shown in Figure 18 and rigid sections in Figure 19. This allows for the 
comparison of deterioration trends across different treatment strategies and locations. 

The results from both approaches, applied to these filtered subsets for IRI FLX and IRI RIG, are 
provided in Table 3 and Table 4 for Approach 1 and Approach 2, respectively. 

 
Figure 16. Approach 2 results for IRI FLX by parent fix type. 
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Figure 17. Approach 2 results for IRI RIG by parent fix type. 

 

 
Figure 18. Approach 2 results for IRI FLX by region. 



 

 

 
  

 

  
 

 
    

     
     
     
     
     
     
      
     
     

 

  

Figure 19. Approach 2 results for IRI RIG by region. 

Table 3. Summary of results of Approach 1. Samples: Sections filtered by Parent fix. 
Condition metric: IRI (FLX and RIG) 

GCR PARENT_FIX 
Approach 1 * 

Thresholds 
T_GF (Q2) T_FP (Q2) IRI0 (Q2) 

IRI FLX ASCRL 24.4 47.4 42.8 
IRI FLX C&S 50.8 111 48.0 
IRI FLX MULTI-CSE HMA 15.4 35.9 54.2 
IRI FLX RECON HMA 25.4 104.5 61.1 
IRI FLX RUBBLIZE 34.3 72.4 56.3 
IRI RIG CONC OVERLAY 111 111 72.7 
IRI RIG CONC OVERLAY THIN 5.2 30.0 80.8 
IRI RIG RECON JPCP 111 111 74.0 
IRI RIG RECON JRCP 11.7 91.7 64.1 
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Table 4. Summary of results of Approach 2. Samples: Sections filtered by Parent fix. 
Condition metric: IRI (FLX and RIG) 

GCR PARENT_FIX 
Approach 2 * 

Fitting constants Thresholds 
A B IRI0 T_GF_FIT T_FP_FIT 

IRI FLX ASCRL 0.6601 0.0868 42.8 28.8 66.1 
IRI FLX C&S 0.9097 0.0232 48.0 41.2 81.2 
IRI FLX MULTI-CSE HMA 0.7492 0.0826 54.2 12.9 33.3 
IRI FLX RECON HMA 0.3951 0.1441 61.1 17.0 111 
IRI FLX RUBBLIZE 1.1650 0.0082 56.3 35.5 67.5 
IRI RIG CONC OVERLAY 0.4719 0.0395 72.7 57.5 111 
IRI RIG CONC OVERLAY THIN 1.1995 0.0241 80.8 4.9 17.5 
IRI RIG RECON JPCP 0.1342 0.1735 74.0 15.1 111 
IRI RIG RECON JRCP 0.1454 0.3013 64.1 6.4 111 

ESTIMATING INITIAL IRI (IRI₀) 

For the IRI condition metric, an initial IRI value (IRI₀) was estimated individually for each 
pavement section. This estimation was performed using a backcasting algorithm based on the 
methodology described in “Backcasting Initial IRI for Surface Roughness Model Local 
Calibration” (Singh and Haider 2024). This methodology is also described in the final report of 
the “Testing Protocol, Data Storage, and Recalibration for Pavement-ME Design” project 
(Haider et al. 2023: SPR-1723). Several methods were applied to backcast IRI₀ to year zero: 

• Linear backcasting using the first ten years of IRI measurements 
• Linear backcasting using all available IRI data 
• Reducing the first measured IRI by 5 in/mile per year to age zero 
• Threshold-based reduction: 

o Reduce by 5 in/mile/year if the first measured IRI > 100 
o Reduce by 4 in/mile/year if IRI is between 70 and 100 
o Reduce by 3 in/mile/year if IRI is below 70 

The final IRI₀ value for each section was selected based on the following rules: 

• Choose the back casted IRI from the above methods that is closest to but below the limit 
of 70 in/mile for flexible and rigid pavements, respectively. 

• If all the back casted IRI from the above methods exceed the limit, select the one that is 
closest above the limit. 

• For a small number of flexible pavement sections where the resulting IRI₀ was 
unreasonably low (e.g., below 30 in/mile), a default value of 30 in/mile was assigned. 
This threshold may be adjusted in future work to better reflect recent observations of very 
smooth new pavements. 
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TASK 10. ACTION BENEFITS 

The objective of Task 10 was to quantify the changes in pavement condition metrics resulting 
from the application of specific fixes. This task is closely linked to Task 12 (Network Policy), as 
both rely on analyzing condition metrics before and after maintenance/rehabilitation events. 

To accomplish this, condition metrics were extracted at two key points for each fix event: the last 
available measurement before the fix ("before" or time 0), and the first available measurement 
after the fix ("after" or time 1). For a valid comparison, these measurements must directly 
precede and follow the fix without any other fix event occurring between them. In cases where a 
section was reconstructed, continuity between segments was maintained using connectivity data 
from the pavement list. The term connectivity data refers to information used to maintain 
continuity of pavement records through major fixes, such as rehabilitation (RHB) or 
reconstruction (RCN). When such a “large” fix is applied, the maintained section is often 
assigned a new segment ID in the database. As a result, any condition measurements taken after 
the fix—even if collected over the exact same physical location—are stored under this new ID 
rather than the original one. The pavement list includes fields identifying the preceding and 
following segment IDs, which represent the same physical location before and after the large fix. 
By using this connectivity information, it is possible to link the “before” condition data from the 
original ID with the “after” data from the new ID. This ensures that the computed improvements 
for RHB and RCN activities reflect true changes in condition across the same location, despite 
the change in segment ID.A comprehensive spreadsheet was developed to support this analysis, 
based on the PDS-expanded stack described in Task 9. This summary file includes a complete list 
of fix events along with the corresponding condition metric values (IRI, CRK, RUT, FLT, and 
PDS) immediately before and after each fix. It also includes road network data such as section 
ID, fix type, fix category (CPM, Reconstruction, or Rehabilitation), parent fix type, region, 
route, direction, tier, and job number. 

Additional information recorded for each fix event includes: 

• Year and age of the pavement at the time of the fix 
• Cycle number of the treatment 
• Dates of before and after measurements, used to calculate the measurement interval 

(MAX_D_YR), limited to a maximum of four years 
• Years since the previous fix (YR_2_PRE) and years until the next fix (YR_2_NXT) 

If both before and after measurements are available, the change (or improvement) in each 
condition metric is computed for that fix event. A screenshot of the spreadsheet is shown in 
Figure 20. 
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Figure 20. Partial view of “Before-and-after” spreadsheet (bef_aft.xlsx). Each row corresponds to a fix-event. The 

“improvement” columns of the condition metrics are highlighted.
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ANALYSIS BASED ON FIX CATEGORIES: RCN, RHB AND CPM 

To analyze changes in each GCR across different improvement categories (RCN, RHB, or 
CPM), histograms were generated using the histogram Excel template developed in Task 9 
(Figure 15). The process involved the following steps: 

1. Filter by pavement surface type – Use the FLX_RIG column in bef_aft.xlsx excel 
sheet to select either FLX or RIG (see Figure 21). 

2. Filter by fix category – Use the FIX_CAT column (see Figure 22). 

3. Exclude blank values – For the selected GCR (e.g., I_IRI, representing improvement in 
IRI; see Figure 23), remove rows with blank cells. 

4. Generate histogram – Copy the filtered GCR data (e.g., I_IRI) into the histogram 
template sheet (Figure 24) to create the histogram and calculate percentile values. Enter 
the desired percentile (as a fraction) in cell E19; the corresponding percentile value will 
appear in cell D19. 

These steps were repeated for each GCR within each fix category. The resulting histogram Excel 
files are listed in Figure 25 and provided in the digital appendix. For each histogram, the 25th, 
50th, and 75th percentiles were calculated and compiled in the file 
FIX_CAT_Histograms_summary.xlsx, under the sheet “DistressI”, whose contents are shown 
in Table 5. 

It is important to note that some GCRs have a limited number of available data points, and their 
results should be interpreted with caution. For example, Table 5 shows that the 50th percentile 
improvement in cracking (I_CRK) for rigid pavement (RIG) rehabilitation (RHB) is 79.5%, but 
this is based on only 20 data points. In contrast, the corresponding value for flexible pavement 
(FLX) rehabilitation (RHB) is 9%, calculated from 283 data points. 
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Figure 21. Filtering “bef_aft.xlsx” sheet based on “FLX_RIG” column 

 
Figure 22. Filtering “bef_aft.xlsx” sheet based on “FIX_CAT” column 
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Figure 23. Filtering “bef_aft.xlsx” sheet based on “I_IRI” column to exclude the blank cells 

 
Figure 24. Pasting data into the histogram excel sheet template to compute the histogram 

and the desired percentile: for I_IRI. 
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Figure 25. Histogram excel sheets prepared for each of the fix categories. 

Table 5. Contents of the “DistressI” tab of “FIX_CAT_Histograms_summary.xlsx” excel 
sheet showing the improvements in each GCR 

Surface FIX_CAT Improvement in 
GCR 

25th 
Percentile 

50th 
Percentile 

75th 
Percentile 

Units 

FLX 1_CPM I_CRK -2 0 2 % 
FLX 2_RHB I_CRK 3 9 23 % 
FLX 3_RCN I_CRK 1.25 5 16.75 % 
RIG 1_CPM I_CRK -2 0 7 % 
RIG 2_RHB I_CRK 19 79.5 93.25 % 
RIG 3_RCN I_CRK 6.5 32.5 76 % 
RIG 1_CPM I_FLT -0.01 0.01 0.03 in 
RIG 3_RCN I_FLT 0.035 0.11 0.13 in 
FLX 1_CPM I_IRI -6 -1 10 in/mile 
FLX 2_RHB I_IRI 37.75 60.5 97 in/mile 
FLX 3_RCN I_IRI 38 66.5 91 in/mile 
RIG 1_CPM I_IRI -7 -1 5 in/mile 
RIG 2_RHB I_IRI 64 113 140 in/mile 
RIG 3_RCN I_IRI 33 61 118.7 in/mile 
FLX 1_CPM I_PDS -4.2 0.0 8.4 - 
FLX 2_RHB I_PDS 12.7 34.5 58.7 - 
FLX 3_RCN I_PDS 4.0 31.2 55.3 - 
RIG 1_CPM I_PDS -5.4 -0.4 1.9 - 
RIG 2_RHB I_PDS 10.1 14.4 28.7 - 
RIG 3_RCN I_PDS 7.1 17.3 37.5 - 
FLX 1_CPM I_RUT -0.02 0 0.03 in 
FLX 2_RHB I_RUT 0.06 0.09 0.14 in 
FLX 3_RCN I_RUT 0.04 0.07 0.14 in 

Figure 26 presents the 50th percentile improvement in IRI for each fix category, separated by 
pavement type. Among flexible pavements, reconstruction (RCN) and rehabilitation (RHB) show 
substantial median IRI reductions of approximately 66.5 in/mi and 60.5 in/mi, respectively, while 
CPM shows no meaningful improvement (−1 in/mi). For rigid pavements, rehabilitation (RHB) 
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yields the highest improvement at roughly 113 in/mi, followed by reconstruction (RCN) at about 
61 in/mi, with CPM again showing negligible change (−1 in/mi).  

Importantly, there are two reasons why some combinations of fix categories and GCRs 
demonstrate very little or no change. The first is that the fix type does not cause a change in the 
specific GCR value, such as the case for IRI and CPM. Many studies (e.g., Rada et al., 2016) 
show that the majority of preservation treatments do not cause an immediate change in IRI. The 
second reason is that a fix type is applied to a pavement in good condition, so the maximum 
possible change is small. CPM is expected to be performed on pavements in relatively good 
condition, so the possible percentage improvement in condition is also small. For example, if a 
CPM is placed on a pavement with a PDS of 90, then the most it can improve is 10 percent. 

 
 

Figure 26. IRI improvement for each fix category 

Figure 27 shows the 50th percentile improvement in PDS for each fix category by pavement 
type. For flexible pavements, the median PDS improvement is highest for rehabilitation (RHB) 
at about 34.5 points, followed closely by reconstruction (RCN) at 31.2 points, while CPM shows 
no change (0 points). For rigid pavements, reconstruction (RCN) yields the largest median 
improvement at roughly 17.3 points, rehabilitation (RHB) achieves 14.4 points, and CPM results 
in a slight decrease (−0.4 points) 

Figure 28 illustrates the 50th percentile improvement in cracking (I_CRK) for each fix category, 
separated by pavement type. For flexible pavements, rehabilitation (RHB) achieves the highest 
median improvement at 9%, followed by reconstruction (RCN) at 5%, while CPM shows no 
change (0%). In contrast, rigid pavements exhibit substantially larger gains from major 
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interventions, with rehabilitation (RHB) producing a median improvement of 79.5% and 
reconstruction (RCN) yielding 32.5%. CPM for rigid pavements shows no measurable 
improvement (0%). 

 

 

 
Figure 27. PDS improvement for each fix category 
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Figure 28. CRK improvement for each fix category 

Figure 29 presents the 50th percentile improvement in rutting (I_RUT) for each fix category in 
flexible pavements. Rehabilitation (RHB) achieves the highest median improvement at 
approximately 0.09 inches, followed closely by reconstruction (RCN) at 0.07 inches, while CPM 
shows no change (0 inches). 

Figure 30 shows the 50th percentile improvement in faulting (I_FLT) for each fix category in 
rigid pavements. Reconstruction (RCN) delivers the highest median improvement at 
approximately 0.11 inches, followed by CPM at 0.01 inches. Rehabilitation (RHB) values are not 
reported for I_FLT in the available dataset due to lack of before-fix and/or after-fix faulting data 
for all projects. 



 

 
33 

 

 

 
 

Figure 29. RUT improvement for each fix category 

Figure 30. FLT improvement for each fix category 

ANALYSIS BASED ON EACH INDIVIDUAL FIX TYPE 

The procedure described in the previous section was repeated for each specific fix type (as listed 
in the FIX_TYPE column) rather than for the broader fix categories (FIX_CAT). The resulting 
histogram Excel sheets are provided in the “FLX_Histograms” and “RIG_Histograms” folders in 
the digital appendix. As examples, Figure 31 and Figure 32 present these histograms as boxplots 
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for IRI FLX and PDS FLX, respectively. The full set of before-and-after data, calculated 
improvements, and summary figures is included in the digital appendix for further analysis. 

The digital appendix also contains two summary files—FLX_Histograms_summary.xlsx and 
RIG_Histograms_summary.xlsx—which list the 25th, 50th, and 75th percentiles for each fix type 
(like Table 5 but for reach fix type). Due to the length of these lists, they are not reproduced in 
this report to maintain brevity. 
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Figure 31. Improvement in IRI FLX by fix type. 
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Figure 32. Improvement in PDS FLX by fix type. 
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TASK 11. UTILITY SCORING 

The potential new PMT utilizes the concept of utility, where utility is a scaled value from 100 to 
0, with 100 representing a “perfect” pavement and 0 representing the absolute worst. Each GCR 
is measured on a different scale with units that are not directly comparable to one another, and 
therefore, the utility score allows for a direct comparison of the GCR values. The change in 
utility score from just before an action to after the action is used to calculate a cost/benefit value. 
Furthermore, the utility scores are incorporated into a weighted overall decision tree to calculate 
a weighted utility score for each pavement segment. 

This chapter presents the results of work conducted to develop a more systematic approach to 
constructing the utility curves for the GCRs. This task began with a review of practices used by 
other DOTs to calculate utility and scaling values to develop recommendations for MDOT. Then, 
a simple Excel® based tool was developed to implement the recommendations. The remainder of 
this chapter presents the review's results and the resulting recommendations. 

REVIEW OF PRACTICES IN UTILITY THEORY 

Utility theory is a concept that is extensively used in applications involving complex decision-
making (Edwards, 1954; Fishburn, 1990; Dyer et al., 1992). More recently, the use of cross-asset 
utility theory in transportation asset management has highlighted the application of utility theory 
(Maggiore & Ford, 2015). Bryce et al. (2014) demonstrated how utility theory can be applied to 
investigate the tradeoff between the condition of a pavement network, its maintenance and 
rehabilitation budget, and the environmental impacts of managing that pavement network. 

Utility theory is a method in which a decision maker's values are quantified over a range of 
feasible outcomes. Then, the values are combined with the corresponding probabilities of each 
outcome to form a set of utility values. The motivating factor behind utility theory is that if an 
appropriate utility is assigned to each possible outcome and the expected utility of each 
alternative is calculated, the best alternative is the one that maximizes the overall utility (Keeney 
and Raiffa, 1993). The strength of utility theory lies in the use of the relative scale of preference 
between possible outcomes for each variable to determine the best alternative from the set of 
feasible alternatives. In other words, the range of values and differences in potential values are 
used to scale preferences. For example, it is not assumed that increasing a variable four times the 
original amount is preferred twice as much as increasing it by a factor of two.   

For uni-dimensional utility theory, the utility value describes one attribute, such as a single GCR. 
However, the condition of a pavement is generally defined by many attributes taken together. 
Thus, multidimensional utility theory is employed, and the individual utility values are combined 
to describe multiple attributes (i.e., multiple GCR values) in a given state. 

The majority of applications of utility theory in the transportation engineering literature are for 
use in cross-asset resource allocation, as detailed in the National Cooperative Highway Research 
Program (NCHRP) Report 806 (Maggiore & Ford, 2015). Spy Pond Partners, LLC, et al. (2019) 
and Nicolosi, et al. (2023) present case studies of cross-asset resource allocation. Cross-asset 
resource allocation is the application of decision analysis techniques to address the question of 
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how to best allocate resources (e.g., finances) from a single source among the various types of 
assets an agency manages. For example, the NCHRP Report 806 demonstrates the application of 
common decision analysis techniques, such as utility theory and the Analytical Hierarchy 
Process (AHP), to scale and apply weights to the outcomes of individual management systems, 
thereby determining the amount of resources to distribute to the assets under consideration.  

The Texas DOT utilizes utility theory to calculate its Distress Score (Gharaibeh et al., 2012). 
Each severity for each distress is measured using a density, such as the quantity of distress per 
section area, and then a utility score is assigned based on the density. The calculation of a distress 
density is not the same for each distress, but follows a similar structure to American Society of 
Testing Materials (ASTM) Standard 6433 for the calculation of the Pavement Condition Index 
(PCI). A utility score is calculated for each distress-severity combination for each family of 
pavements. The Distress Score is calculated as 100 times the product of all relevant utility 
values. Figure 33 shows an example utility curve used by Texas DOT, and can be interpreted as 
follows: 

• For density values between zero and 15, the utility value is maximum, meaning that the 
given distress and severity does not reduce the distress score 

• For density values 15 to 30, small increases in density lead to significant decreases in 
utility values 

• Density values above 40 remain near the minimal utility value, meaning that there is 
practically no difference between a severity of 40 and a severity of 100.  

 

Figure 33. Example utility curve (Gharaibeh, et al. 2012) 

The utility scores used by the Texas DOT were developed based on expert opinion and have been 
recalibrated based on evaluations from the Performance Management System (PMS). Abu-Samra 
et al. (2017) describe another approach developed for utilizing utility theory in pavement 
condition data analysis and demonstrate its application with data from the Nebraska DOT. The 
approach of Abu-Samra et al. (2017) is similar to that of the Texas DOT, and the utility curves 
were also developed using expert opinion.  
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Li and Sinha (2004) described the use of utility theory for informing tradeoff analysis across 
highway assets. Several performance measures were defined, including pavement condition and 
utility curves were developed for each of these measures. Similar to Gharaibeh, et al. (2012) and 
Abu-Samra et al. (2017), Li and Sinha (2004) developed the utility curves based on expert 
opinion.  

There is no standard method in the literature for developing utility curves; however, several steps 
can help guide the procedure. Keeney and Raiffa (1993) present a five-step process to help guide 
the process. Each of the five steps is discussed in further detail next. 

Step 1 – Preparing for the Assessment 

This step involves explaining the reasons for developing the utility curves, which describe the 
decision makers' preferences, and other initial steps to prepare the decision maker for the 
assessment. Another aspect of this step is defining the range over which the preferences will be 
evaluated. The range of values is critical because a range that is significantly larger than the scale 
of achievable values will minimize the impact of the achievable values in the decision-making 
process. However, it is important to note that the upper bound on the utility curve does not 
necessarily need to reflect what is currently achievable, only that the range of values for the 
utility curve are feasible estimates for the variable being modeled. An example given in Keeney 
and Raiffa (1993) is that given a range of criteria from 0 to 8.75, setting the bound of the utility 
curve at 0 and 10 is reasonable, whereas setting the upper bound at 10,000 would have very little 
meaning to the decision maker. 

Step 2 – Identify the Relevant Qualitative Characteristics 

Some key steps in identifying the relevant criteria are to determine whether the utility curve is 
concave or convex and to identify the range of values to which the utility curve is most sensitive. 
For the example shown in Figure 33, the utility curve is not sensitive to changes in density 
between 0 and 15 or above 40.   

Step 3 – Specifying Quantitative Restrictions 

This step involves addressing multiple points along the utility curve, including identifying the 
midpoint of the curve. Qualitative preferences can be translated to quantitative constraints during 
this step. For example, the analyst can specify the following: 

• Changes in PDS from 80 to 70 should have twice the impact as changes in PDS from 100 
to 90 

• A PDS of 70 should have a utility of 0.5 

Figure 34 shows an example utility curve that meets the above-specified criteria: the change in 
utility values when PDS changes from 100 to 90 is approximately 0.1, and the change in utility 
values when PDS changes from 80 to 70 is approximately 0.2.  
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Figure 34. Example PDS Utility Curve 

This step also includes checks for consistency among the expert opinions, typically by asking 
questions where the answer can be verified using previous responses provided by the decision-
makers. For example, if an IRI value of 140 inches per mile is selected as having a utility value 
of 0.5, then an IRI value of 160 inches per mile cannot be assigned a value of 0.6.  

Step 4 – Choosing Utility Curve 

Choosing the utility curve involves more than just fitting a curve to the data points; it is also 
important for the curve to match the preferences of the experts. Examples of multiple different 
utility curves are demonstrated later in this chapter.  

Step 5 – Checking for Consistency  

Several checks for consistency can be used to validate the curve and preferences developed by 
the decision maker. Many of these checks are made in real time as the curve is defined. This step 
should also include a sensitivity analysis, such as the simple sensitivity analysis shown later in 
this chapter. 

DEVELOPMENT OF SIMPLE UTILITY CURVE TOOL 

A simple Excel-based tool was developed for MDOT to update its utility curves for the GCRs 
and PDS. The objectives of the tool are to: 

• Present many example utility curves for percent cracking, rutting, faulting, and IRI. 
• Provide users with the ability to update performance curves and visualize the results. 
• Allow users to specify different levels of importance to each GCR and display the results 

by combining the utility values. 
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• Be constructed in such a way that future users can simply update it and that it does not
require external add-ins or macros to use.

The following are the sheets included in the Excel® tool: 

• Instructions sheet provides very basic instructions to using the tool
• Util_Calculation AC sheet is where GCR values are input, each GCR is weighted and

the overall utility values are calculated for asphalt pavements
• Util_Calculation PCC sheet is where GCR values are input, each GCR is weighted and

the overall utility values are calculated for concrete pavements
• IRI_Util is where the analyst modifies the coefficients for equation [13] or equation [14]

to define the preferred utility curve. The following sheets serve the same purpose for
different GCRs: Rutting_Util, Cracking_Util, Faulting_Util and PDS_Util.

• IRI_ExampleCurves provides a set of utility curves for IRI using equation 1 and
equation 2 for the analyst to use as guidance. The following sheets serve the same
purpose for different GCRs: Rutting_ExampleCurves, Cracking_ExampleCurves,
Faulting_ExampleCurves and PDS_ExampleCurves.

The next sections of this chapter describe the main components of the tool. 

Example Utility Curves 

Two example utility curves were selected based on those found in literature, and they are shown 
in equations below: 

𝑈𝑈     

) [13] 

𝑐𝑐

𝑈𝑈   

 [14] 

where U is the utility value, which ranges from zero to one, the coefficients a, b and c are 
modified to fit the curve and x is the input, which changes for each GCR. For example, x is 
defined as IRI minus IRIref (IRIref = a reference IRI for roughness), and percent cracking plus 
one for cracking. Adding small values to cracking, rutting and faulting in the equations ensures 
that a utility value can be calculated when any of those values are zero. The value for IRIref was 
selected as an approximate lower bound for the IRI, and allows for the curvature for low values 
of IRI to be more sensitive to the model coefficients.  

Next, a series of example utility curves was developed for each GCR using both equations, and 
these are presented in a series of tabs within the Excel tool. The goal of the example curves was 
to demonstrate a range of potential curves along with the coefficients corresponding to each. 
Figure 35 illustrates an example utility curve derived from equation [13]. The results in Figure 
35 can be interpreted as: 

• There is practically no difference between a PDS equal to zero and a PDS equal to 25 –
values in that range are assigned a utility of zero.
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• A PDS value of 70 is assigned a utility of 0.9, whereas a PDS value 60 is assigned a 
utility of 0.8. This implies that a change in PDS from 100 to 70 has an equal effect on 
utility as a change in PDS from 70 to 60. 

Figure 36 shows an example utility curve using equation [14]. The results can be interpreted as: 

• There is practically no difference between a PDS equal to zero and a PDS equal to 40 – 
values in that range are assigned a utility of zero.  

• A PDS of 90 is assigned a utility of 0.75, and a PDS of 80 is assigned a utility of 0.5, 
which means that changes from 100 to 90 has an equal effect on utility as a change from 
70 to 60. 
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Figure 35. Example utility curve for PDS using equation [13]  
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Figure 36. Example utility curve for PDS using equation [14] 

Utility Curve Development 

The example utility curves are provided as a starting point, and the tool also allows users to 
modify the coefficients in equations [8] and [14]. Figure 37 shows a screenshot of the Excel 
sheet used for developing a PDS utility curve. The values for coefficients A, B, and C can be 
changed, and the updated curves are plotted for the analyst to select the utility curve that best 
represents the user’s preferences.  
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Figure 37. Screenshot of Utility Curve Development Sheet for PDS (PDS_Util) 

The main utility curve development sheets (e.g., PDS_Util, IRI_Util, etc.) in the tool are linked 
directly to the utility calculation sheet (Util_Calculation AC or Util_Calculation PCC). Analysts 
can also choose to change the form of equation 1 or equation 2 by modifying the calculations in 
columns C or G (respectively). The equations are not coded into the main utility calculations in 
sheets Util_Calculation AC and Util_Calculation PCC, so updates to the utility curve 
development sheets will be reflected in the utility calculation sheets. 

Utility Calculations 

The sheets on the Excel® tool labeled Util_Calculation AC and Util_Calculation PCC are where 
GCR data are input and resulting utility values are calculated. Figure 38 is a screenshot of the 
Util_Calculation AC sheet, and contains the following information:  

• A section to define weights (cells A2 through B5). These weights represent the relative 
importance of each GCR for the combined calculation (column M). These weights are 
used to calculate a weighted average of each GCR utility – i.e., the combined utility. 

• A section to select the equation for each GCR (cells A8 through B11). These are 
dropdown menus to select either equation [13] or equation [14], which are directly linked 
to the utility curve sheets, such as PDS_Util.  
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• A section for inputting the GCR values (columns D through G). A series of example data 
are shown in Figure 38. 

• A set of output utility values (columns I through M). These cells should not be modified 
and are linked directly to the utility curve sheets (PDS_Util) to assign utility values using 
either equation [8] or equation [9], depending on the selection made. The combined 
utility is a weighted average calculation based on the weights assigned. 

 
Figure 38. Screenshot of Util_Calculation AC sheet 

EXAMPLE CALCULATIONS 

A set of example calculations was developed to demonstrate the approach in the tool. The 
following GCRs for asphalt pavements were used: IRI, cracking, rutting, PDS. First, the utility 
curves for each GCR must be assigned. It was decided to use equation [13] and the following 
values were used as coefficients (a, b, and c, respectively): 

• IRI: (a = 1.1, b = 80 and c = 1.9). See Figure 39 for the utility curve. 
• Rutting: (a = 1.1, b = 0.15 and c = 1.9). See Figure 40 for the utility curve. 
• Cracking: (a = 1, b = 12 and c = 1.5). See Figure 41 for the utility curve. 
• PDS: (a = 1.08, b = 62 and c = 5.2). See Figure 42 for the utility curve. 
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Figure 39. IRI utility  curve using equation [13] with  a = 1.1, b = 80 and  c = 1.9. 
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Figure 40. Rutting utility curve using equation [13] with  a = 1.1, b = 0.15 and  c = 1.9 

Next, the input data were developed, and those  are shown in Table 6. The inputs were designed 
to demonstrate a simple sensitivity analysis, beginning with a pavement in very good condition 
and then changing each GCR one at a time to poor values, with the last row representing a  
pavement in very poor condition. All weights were set to one, and the utility values were  
calculated for each GCR  and then combined into a single weighted utility value for  each 
segment. The resulting utility values are shown in Table 7. The pavement in very good condition 
has an overall (combined) utility value of 0.96, whereas the very poor pavement has an overall  
utility of 0.12.  
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Figure 41. Cracking utility curve using equation [13] with a = 1, b = 12 and c = 1.5 
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Figure 42. Faulting utility curve using equation [13] with a = 1.08, b = 62 and c = 5.2 

Table 6. GCR data in example analysis 

Scenario IRI (inch/mile) Percent Cracking Rutting (inches) PDS 
1 80 3 0 90 
2 200 3 0 90 
3 80 20 0 90 
4 80 3 0.5 90 
5 80 3 0 40 
6 200 20 0.5 40 
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Table 7. Calculated utility values for each GCR and a combined weighted utility 

Scenario IRI Cracking Rutting PDS Combined 
1 0.90 0.99 1.00 0.94 0.96 
2 0.13 0.99 1.00 0.94 0.77 
3 0.90 0.35 1.00 0.94 0.80 
4 0.90 0.99 0.01 0.94 0.71 
5 0.90 0.99 1.00 0.00 0.72 
6 0.13 0.35 0.01 0.00 0.12 

DISCUSSION 

Utility theory has proven to be a valuable tool for investigating problems with multiple criteria 
that cannot be easily compared (e.g., combining GCR values). A strength of utility theory is that 
a non-linear function can easily describe preferences. For example, utility theory allows for the 
same change in input value (e.g., a 20-inch increase per mile for IRI) to have different levels of 
significance depending on the starting value. A change in IRI from 60 to 80 inches per mile is not 
required to have the same impact as a change in IRI from 120 to 140 inches per mile. Those non-
linear preferences are described using the utility curve. 

While many sources of literature in pavement and transportation engineering detailed the use of 
utility theory, most did not provide details on how the utility curves were formed. Some sources 
of literature described the use of expert input or survey data to develop the utility curves, but 
detailed examples were not provided. However, the broader literature on utility theory, 
particularly the field of decision analysis, provided more guidance and insight into the 
development of the utility curves. That guidance was distilled into five steps and discussed in 
this chapter. Example utility curves were developed and provided in the simple Excel-based tool 
developed in the task described in this chapter. 

While this chapter presents one framework for the application of utility theory, numerous 
modifications can be made and implemented within the framework. For example, different 
equations for utility functions can be introduced, and the simple Excel-based tool can be 
modified to include these equations. Another change is how the utility values are combined. The 
method in this chapter assumes linear additive combinations of utility values, but some sources 
use multiplicative combinations to account for interactions between the variables. The additive 
utility functions in this chapter are based on the assumption that the utility curves for one 
criterion are independent of the values of other criteria (e.g., the utility curve developed for IRI 
does not depend on the distribution of rutting values). Multiplicative utility functions are used 
when that assumption of independence is expected to be violated. Consider the case of two 
measures that each have a utility value of 0.5: the additive score is 1.0 and the multiplicative 
score is 0.25. A direct comparison of the utility scores has no meaning, so a comparison of the 
sensitivity of the combined scores to changes in the individual scores must be evaluated. 
Changing one score to 0.9 while leaving the other at 0.5, the additive score is 1.4 (40 percent 
change from the original 1.0 stated above) and the multiplicative score is 0.45 (80 percent 
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change from the original 0.25 stated above). In this case, the relative change in the multiplicative 
score is much higher than the relative change in the additive score.  

Multiplicative combinations are considerably different because small variations in individual 
utility values dominate the overall combined utility. For example, the PDS utility value for the 
last two rows in Table 6 and Table 7 is zero. The combined utility values are 0.72 and 0.12 with 
additive utility functions, whereas they are both zero with multiplicative utility. Both additive 
and multiplicative forms of utility theory are used in utility theory, with the multiplicative being 
used when mutual utility independence is not held. For the problem described in this chapter, 
either form can be used. Weighting each GCR is not valid when using a multiplicative function 
to combine the utility values. 

 



 

 
50 

TASK 12. NETWORK POLICY 

This task is closely related and essentially contained in a previous task (Task 10. Action benefits). 
The spreadsheet that was built for the previous task (“Before-and-after” situation, see Figure 20) 
already contains the condition metrics measured immediately before the fix events.   

ANALYSIS BASED ON FIX CATEGORIES: RCN, RHB AND CPM 

To analyze values of GCRs before each of the different improvement categories (RCN, RHB, or 
CPM), histograms were generated using the histogram Excel template developed in Task 9. The 
process involved the following steps, which are very similar to the tasks explained in Task 11: 

1. Filter by pavement surface type – Use the FLX_RIG column in bef_aft.xlsx excel 
sheet to select either FLX or RIG (see Figure 21). 

2. Filter by fix category – Use the FIX_CAT column (see Figure 22). 

3. Exclude blank values – For the selected GCR (e.g., IRI0, representing the value of IRI 
before each improvement; see Figure 43), remove rows with blank cells. 

4. Generate histogram – Copy the filtered GCR data (e.g., IRI0) into the histogram 
template sheet (Figure 44) to create the histogram and calculate percentile values. Enter 
the desired percentile (as a fraction) in cell E19; the corresponding percentile value will 
appear in cell D19. 

These steps were repeated for each GCR within each fix category. The resulting histogram Excel 
files are listed in Figure 25 and provided in the digital appendix. For each histogram, the 25th, 
50th, and 75th percentiles were calculated and compiled in the file 
FIX_CAT_Histograms_summary.xlsx, under the sheet “Distress0”, whose contents are shown 
in Table 8. 
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Figure 43. Filtering “bef_aft.xlsx” sheet based on “IRI0” column to exclude the blank cells 

Figure 44. Pasting data into the histogram excel sheet template to compute the histogram 
and the desired percentile: for IRI0. 
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Table 8. Contents of the “Distress0” sheet of “FIX_CAT_Histograms_summary.xlsx” excel 
file, showing the GCR values before each improvement. 

Surface FIX_CAT GCR value before 
the improvement 

25th 
Percentile 

50th 
Percentile 

75th 
Percentile Units 

FLX 1_CPM CRK0 0 1 6 % 
FLX 2_RHB CRK0 3 12 22 % 
FLX 3_RCN CRK0 2 4.5 13 % 
RIG 1_CPM CRK0 1 22 64 % 
RIG 2_RHB CRK0 19 79.5 93.25 % 
RIG 3_RCN CRK0 8 37 80 % 
RIG 1_CPM FLT0 0.05 0.09 0.12 in 
RIG 2_RHB FLT0 0.12 0.15 0.23 in 
RIG 3_RCN FLT0 0.045 0.125 0.14 in 
FLX 1_CPM IRI0 56.0 70.0 93.0 in/mile 
FLX 2_RHB IRI0 90.1 112.0 159.0 in/mile 
FLX 3_RCN IRI0 99.8 121.0 190.0 in/mile 
RIG 1_CPM IRI0 87.0 104.0 130.5 in/mile 
RIG 2_RHB IRI0 129.0 163.0 208.0 in/mile 
RIG 3_RCN IRI0 108.0 141.0 200.5 in/mile 
FLX 1_CPM PDS0 80.1 94.3 98.7 - 
FLX 2_RHB PDS0 40.3 61.5 87.0 - 
FLX 3_RCN PDS0 45.4 70.6 96.2 - 
RIG 1_CPM PDS0 82.3 93.4 98.7 - 
RIG 2_RHB PDS0 71.3 85.6 89.1 - 
RIG 3_RCN PDS0 61.3 79.8 92.0 - 
FLX 1_CPM RUT0 0.08 0.11 0.15 in 
FLX 2_RHB RUT0 0.12 0.16 0.2 in 
FLX 3_RCN RUT0 0.11 0.14 0.2 in 

Figure 45 shows the median IRI value prior to the application of each fix category, separated by 
pavement type. For flexible pavements, CPM treatments have the lowest starting IRI at 70 in/mi, 
while rehabilitation (RHB) and reconstruction (RCN) begin at much higher median values of 112 
in/mi and 121 in/mi, respectively. This pattern suggests that CPM is generally applied to 
smoother pavements, while RHB and RCN are triggered when ride quality has already 
deteriorated substantially. For rigid pavements, the same trend is evident—CPM starts at 104 
in/mi, compared to 163 in/mi for RHB and 141 in/mi for RCN—indicating that major fixes are 
typically reserved for segments in significantly worse condition. 
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Figure 45. IRI values before for each fix category 

Figure 46 illustrates the median Pavement Distress Score (PDS) before each fix category. For 
flexible pavements, CPM is applied to sections with the highest median PDS (94.3), indicating 
relatively good condition, while RHB and RCN are triggered at lower scores of 61.5 and 70.6, 
respectively. In rigid pavements, CPM also starts at a high PDS (93.4), with RHB and RCN at 
lower medians of 85.6 and 79.8.  

Figure 47 presents the median cracking percentage prior to each fix category. For flexible 
pavements, CPM is applied to sections with very little cracking (1%), while RHB and RCN 
target pavements with higher cracking levels of 12% and 4.5%, respectively. In rigid pavements, 
CPM starts at a higher median cracking level (22%), while RHB and RCN are used on much 
more deteriorated sections, with median cracking of 79.5% and 37%, respectively.  

 

 



 

 
54 

 

 

Figure 46. PDS values before for each fix category 

Figure 47. CRK values before for each fix category 
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Figure 48 presents the median rut depth (in inches) before each fix category for flexible 
pavements. CPM addresses segments with the smallest median rutting (0.11 inches), while RHB 
and RCN are performed on sections with greater rut depths of 0.16 inches and 0.14 inches, 
respectively.  

 
Figure 48. RUT values before for each fix category 

Figure 49 shows the median faulting (in inches) before each fix category for rigid pavements. 
CPM is used on segments with relatively minor faulting (0.09 inches), while RHB and RCN 
address sections with greater faulting, at 0.15 inches and 0.125 inches, respectively. Although the 
absolute differences are small, this trend suggests that major fixes are directed toward segments 
with more pronounced faulting.  

 



 

 
56 

 
Figure 49. FLT values before for each fix category 
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ANALYSIS BASED ON EACH INDIVIDUAL FIX TYPE 

The procedure described in the previous section was repeated for each specific fix type (as listed 
in the FIX_TYPE column) rather than for the broader fix categories (FIX_CAT). The resulting 
histogram Excel sheets are provided in the “FLX_Histograms” and “RIG_Histograms” folders in 
the digital appendix. As an example, Figure 50 present these histograms as boxplots for CRK 
FLX. The full set of before-and-after data and summary figures is included in the digital 
appendix. 

The digital appendix also contains two summary files—FLX_Histograms_summary.xlsx and 
RIG_Histograms_summary.xlsx—which list the 25th, 50th, and 75th percentiles for each fix type 
(like Table 8 but for reach fix type). Due to the length of these lists, they are not reproduced in 
this report to maintain brevity. 
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Figure 50. CRK FLX values before treatment, grouped by fix type. 
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APPENDIX A: DIGITAL APPENDIX 

The report is accompanied by a digital appendix containing supporting files developed 
throughout the project. These files represent processed data, modeling outputs, and analysis tools 
used in the completion of Tasks 9 through 12: 

• All Tasks

o Master “Stack” spreadsheet combining GroupRecords data, extended with
PDS values

• Task 9 – GCR Modeling

o Spreadsheet of model fitting parameters for all sections
o Individual plots of GCR deterioration
o Combined plots grouped by fix type and region

• Tasks 10 & 12 – Action Benefits and Network Policy

o Summary spreadsheets of pre- and post-treatment GCR metrics
o Plots comparing before/after conditions and treatment effectiveness
o Excel spreadsheet for generating histograms from GCR data

• Task 11 – Utility Scoring

o Spreadsheet summarizing utility scaling and weighting outputs

If you require assistance accessing this information or require it in an alternative format, 
contact the Michigan Department of Transportation’s (MDOT) Americans with Disabilities 
Act (ADA) coordinator at Michigan.gov/MDOT-ADA.
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