HE
$147 n 6$
. ME
F17

ytatewide Transportation Analysis \& Research

MICHIGAN'S STATEWIDE TRAVEL FORECASTING MODEL

> US-23 CORRIDOR LOCATION STUDY PRELIMINARY TRAVEL IMPACT ANALYSI

$$
\begin{aligned}
& \text { Repont no.17 } \\
& \text { JANUARY 28, } 1975
\end{aligned}
$$

MICHIGAN DEPARTMENT

OF

STATE HIGHWAYS AND TRANSPORTATION BUREAU OF TRANSPORTATION PLANNING

MICHIGAN'S STATEWIDE TRAVEL FORECASTING MODEL

US-23 CORRIDOR LOCATION STUDY PRELIMINARY TRAVEL IMPACT ANALYSIS

$$
\begin{aligned}
& \text { Repont no.17 } \\
& \text { JANUARY } 28,1975
\end{aligned}
$$

STATE HIGHWAY COMMISSION

E. V. Erickson

Chairman

Peter B. Fletcher

> Charles H. Hewitt
> Vice Chairman

DIRECTOR

John P. Woodford
highway Commission
E. V. ERICKSON GHAIRMAN
CHARLES H. HEWITT VICE CHAIRMAN PETER 日. FLETCHER CARL V. PELLONPAA

STATE OF MICHIGAN

WILLIAM G. MILLIKEN, GOVERNOR
DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION
STATE HIGHWAYS BUILDING - POST OFFICEDRAWER K - LANSING, MIGHIGAN 48904 JOHN P. WOODFORD, DIRECTOR

January 28, 1975

Mr. Keith E. Bushnell, Administrator Multi-Regional Planning Division

Dear Keith:
The following report documents the preliminary traffic impact analysis for the US-23 corridor location study. This report was initiated for several reasons:
(1) to uncover errors prior to alternate transmittal,
(2) to outline the typical output from a standard alternate run,
(3) to discover new applications and analysis techniques which might prove useful in the future and
(4) to act within itself as a medium of data transmittal.

The report was prepared by Mr. Lawrence J. Swick under the supervision of Mr. Richard E. Esch.

Sincerely,

Richard J. Lilly, Administrator Highway Planning Division

PAGE

Figure	1
Figure	2
Figure	3
Figure	4
Figure	5
Figure	6
Figure	7
Figure	8
Figure 9	
Figure 10	
Figure 11	
Figure 12	
Figure 13	
Figure 14	
Figure 15	
Figure 16	
Figure 17	
Figure 18	
Figure 19	
Figure 20	
Figure 21	
Figure 22	
Figure 23	
Figure 24	
Figure 25	
Figure 26	
Figure 27	
Figure 28	
Figure 29	
Figure 30	
Figure 31	

$$
\text { Analysis Region "A" } 2
$$

Analysis Region "B" 3
Analysis Region "C" 4
Alternate 77. 6
Alternate 72 7
Alternate 73. 8
Alternate 74. 9
Alternate 75 10
Alternate 76 11
lst Page Congestion Levels of Service 13
2nd Page Congestion Levels of Service 14
Alt 77 Level of Service 16
Alt 72 Level of Service 17
Alt 73 Level of Service 18
Alt 74 Level of Service 19
Alt 75 Level of Service 20
Alt 76 Level of Service 21
Cutline Locations 50
Alt 77 AADT Plot 51
Alt 72 AADT Plot 52
Alt 73 AADT Plot 53
Alt 74 AADT Plot 54
Alt 75 AADT Plot 55
Alt 76 AADT Plot 56
Cutline Summary Sheet 57
Vehicle Miles Area 62
Vehicle Hours Area "A" 63
Vehicle Miles Area "B" 64
Vehicle Hours Area "B" 65
Vehicle Miles Area "C" 66
Vehicle Hours Area "C" 67
TABLE 1 Alt 77 Region A Summary Table 28
Table 2 Alt 72 Region A Summary Table 29
Table 3 Alt 73 Region A Summary Table 30
Table 4 Alt 74 Region A Summary Table 31
Table 5 Alt 75 Region A Summary Table 32
Table 6 Alt 76 Region A Summary Table' 33
Table 7 Alt 77 Region B Summary Table 34
Table 8 Alt 72 Region B Summary Table 35
Table 9 Alt 73 Region B Summary Table 36
Table 10 Alt 74 Region B Summary Table 37
Table ll Alt 75 Region B Summary Table 38
Table 12 Alt 76 Region B Summary Table 39
Table 13 Alt 77 Region C Summary Table 40
Table 14 Alt 72 Region C Summary Table 41
Table 15 Alt 73 Region C Summary Table 42
Table 16 Alt 74 Region C Summary Table 43
Table 17 Alt 75 Region C Summary Table 44
Table 18 Alt 76 Region C Summary Table 45

INTRODUCTION

INTRODUCTION

This is the second report in a continuum of reports which are to deal with the preliminary travel impact analysis for corridor study alternates.

The initial analysis deals with the Northeast Region Corridor study and the grain one impact of various alternates on the traffic congestion problems which are forecast for that area in the year 2000 .

All travel impact data used in this report are produced through the application of the Statewide Transportation Modeling System and related analysis tools. Primary data originates through the use of (1) the level of Service program and subsequent bandwidth plots, and (2) the System Impact Summary program.

All of this information can be considered as "standard output" from each alternate application. Other subsequent travel impact data such as effective speed, capacity adequacy, etc. can be supplied for grain two analysis but initial efforts are limited to that data which are immediately available from standard alternate series programs.

ALTERNATE DEFINITION

A BRIEF BACKGROUND

A total of six alternates were assigned for preliminary analysis within the Northeast Region US-23 corridor area. The southern tip of each alternate began as a connection with the US-23, M-76 freeway near Standish and proceeded north through various alignments until they all reached existing US-23 north of Alpena. One of the six alternates was a "do-nothing" or "neutral" alternate in that it contained all of the committed highways assumed to be existing by the year 2000 except for the US-23 route. This was done for two reasons, first: to provide a no-build alternative situation as required by Federal law and, secondly: to create a neutral constant situation from which to compare the relative effects of each alternate upon the total highway system.

Traffic volumes which appear on the alternates are for the design year 2000. The six alternates are numbered beginning at 72 and continuing to 77 with 77 being the neutral assignment. These five alignments and their locations are illustrated on the following pages. The analysis of the six alternates is divided on a three region basis to satisfy different but integrated planning requirements. The counties which appear in these regions are also illustrated in the following pages and are referred to as analysis regions "A", "B", and "C" respectively.

Analysis region "A" contains the following counties and is illustrated below.
(1) ALCONA
(4) ALPENA
(16) CHEBOYGAN
(20) CRAWFORD
(60) MONTMORENCY (68) OSCODA (69) OTSEGO (71) PRESQUE ISLE

ANALYSIS REGION "A"

FIGURE 1

(6) ARENAC
(26) GLADWIN
(65) OGEMAW
(18) CLARE
(35) IOSCO
(72) ROSCOMMON

ANALYSIS REGION "B"

Analysis region "C" contains the following counties
(1) ALCONA
(4) ALPENA
(6) ARENAC
(35) IOSCO

ANALYSIS REGION "C"

The following graphics illustrate the alignment of each proposed alternate beginning with alt 77 which is the neutral or "do-nothing" situation. They then follow with alt 72 and continue to alt 76 which are the five preliminary "build" situations.

ALTERNATE 77

FIGURE 4

FIGURE 5

ALTERNATE 72

ALTERNATE 73

ALTERNATE 74

FIGURE 7

ALTERNATE 75

ALTERNATE 76

FIGURE 9

LEVEL OF SERVICE

The next set of graphics detail the levels of service for each alternate. The level of service is the measure of adequacy of each highway in terms of its capacity to handle the amount of traffic that is expected to use the facility. With regard to the bandwidth plots which are shown, the wider the bands appear for each route or section of highway, the less adequate the individual road or system is expected to be under that proposed set of circumstances (See Figures 10, 11). In following, the narrower the lines appear, the better the highways are handling the expected traffic burden and in turn, serving the motoring public. For a thorough review of the definition and application of Level of Service, refer to Report Volume 1-H LEVEL OF SERVICE SYSTEMS ANALYSIS MODEL.

Working in conjunction with the graphic bandwidth plots, the system summary program details the exact number of miles of highway experiencing each specific level of service band per designated analysis region plus displaying other relevant travel impact data. By reviewing the bandwidth plots and the summary program data together - valid conclusions regarding travel impact can be made for each alternate consideration. The bandwidth plots are presented on the following pages beginning with the "do-nothing" situation (alternate 77). By comparing this alternate with the five "build" alternates one can draw preliminary conclusions regarding the effectiveness of each proposal relative to its effect on the efficiency of the total system.

PREFACE TO ANALYSIS SECTION
As mentioned in the introduction, this report and the following brief analysis are of a preliminary nature and are not intented to "select" a given alternate as the final choice for construction. The alternate alignments themselves are experimental and are intended only to grasp an overview of the possible solutions to future travel problems within these selected study regions. They were run to produce, if you will, topics for discussion relative to the task at hand of analyzing the merits of new construction within these areas.

The analysis format follows the general pattern in which the travel data are produced from the analysis batteries themselves. Each grouping of data relates to the individual study areas A, B and C with specific categories of information pointing to the impact of each of the six alternates within the region. Reference is made as to one alternate being higher or lower in one capacity as opposed to another but it is done for that purpose only . . . reference. Final conclusions are left to the future and to the people in charge of the responsibility.

柬
－20－

Level of Service Deficiencies:
The three areas of analysis are superimposed over the alt 77 bandwidth plot to give perspective to the plots themselves. (Refer to Figure 12)

To further clarify Level of Service and the individual bandwidths, a one line band represents Level of Service "A" (under capacity) two lines "B" etc. - on up to L.S. - "F" (over capacity). For quick comparison, three lines represent level of service "C" or the point of service where the design hour of the highway matches exactly the one hour capacity of that highway - these capacities vary and are related directly to the type of facility and lanes thereon in order to provide a reliable and realistic comparison.

As evidenced by the neutral bandwidth plot, the northsouth movements of traffic from the southern metropolitan areas creates an overloading situation on all four major north-south routes which extend from US-23, M-76 near Standish. These routes include, from west to east, M-76 itself, M-33, M-65 and US-23. Nothing profound could be said of the situation, with the neutral acceptance of the fact that the majority of the trips are recreational in nature and occur on the weekends as motorists in the high density areas head for the retreat of the northern woods. The apparent destinations of their efforts can be seen as the L.S. bands diminish in size as they proceed in a northly direction. The major areas of deficiencies occur within the area south of Alpena.

All four routes display "F" levels of service below this imaginary cutline. Specifically on $M-76$, levels of Service "F" occur northerly to a point near Grayling. From this point further north they drop to "E" and eventually to "D" and "C". As M-33 departs from $M-76$, it displays level of service "F" until it reaches the junction of $M-72$. M-65 appears to be the least effected by the influx as it "bottoms out" as it reaches the Au Sable River - a point nearer the south than any other route - US-23 carries its share of the "F" level burden until it reaches Harrisville and M-72. Aside from the heavy influence of the recreational traffic other trip purpose categories are partially responsible for the overloading problem on sections of highway which extend between proximal cities such as Oscoda and Tawas City and Harrisville on US-23. This can be seen as alternates are plugged into the system and overloading still occurs sporadically between these areas. The effects of the specific alternates on Level of Service can be reviewed on the remaining bandwidth plots. (See Figures 13, 14, 15, 16, 17).

Alternate 72:
An "F" L.S. on M-76 now only extends to the junction of M-33. M-33 itself drops to an "E" L.S. until it reaches Rose City and proceeds from that point north on a "C" L.S. until the junction of $\mathrm{M}-72$ causes some problems. M-65 seems to be relieved from all of its problems and US-23 only shows capacity difficulties as it separates from the new freeway and on the link south of Harrisville on the junction of M-72. M-55 between M-65 and US-23 appears to be adversely affected by the new freeway as the general eastwest movement in that area is intensified.

ALTERNATE 73:

Alternate 73 appears to produce the same results on M-76 and M-33 but the effects on M-65 and US-23 are a little less dramatic. Higher levels of service are now seen on M-65 north of M-55 and F - Levels of Service occur all along US-23 until M-72 is reached near Harrisville. This brings to light the planning idea that building near success brings success. In other words; the present north-south routes serve their purpose by location quite well - as alternates or new highways are moved from a location near the existing facility to a location farther from the facility, the probable success of the new route diminishes. This is not always true but the years of subsequent building along existing north-south routes such as $\mathrm{M}-33$, $\mathrm{M}-65$ and US-23 aid to the self-inherent adequacy of these routes as being located on the path people wish to travel. When these routes become overly "successful" new routes need to be added to either supplement them or replace them. In this case the new freeway will not be built over an existing location due to cost of R.O.W., therefore the degree to which it supplements the existing routes appears to be related to the proximity of the new route to the old. The specific location of the new freeway and the "success" thereof now falls within the definition of the goals set for the new highway. Should the goal of the new freeway be to drastically reduce the traffic on US-23 alone or M-65 alone or some combination of the north-south routes. As review of the alternates continues it will be seen that a healthy compromise is difficult but more likely to succeed as the demands of the more traveled highway are met. This decision too should
be weighted against the overall effects within the individual study areas. This data will be presented in subsequent sections.

Alternate 74

As we proceed through the presentation of the impacts of these alternates , - the alternates themselves are "moving" or being located in a more westerly direction. Alt 72 is located near US-23 and alt 76 is located to the west of $M-65$. This was pointed out because as the alts are moved to the west - the greater the impact they appear to have on the L.S. of $M-76$. This is first noticeable with this alt (74). Levels of Service "F" are now entirely diminished along the M-76 corridor although they do still portray an "E" level of service which is still questionably in terms of adequacy. An unusual thing occurs, however, on M-33 the level of service actually deteriates from an "E" level to an "F" level just north of the intersection with M-55.

M-65 does not change except for a minor decrease in service on the M-76 link south of M-32. US-23 does not appear to be affected by the shift and still remains over-capacity. Another area which demands some attention and has not been mentioned is the US-23 area north of the connection with the proposed freeway. The connection of the freeway to the existing US-23 facility imposes an added burden to the route but not one which presses the road to its absolute limit or "F" level capacity. This can be seen on all alternates which should bring some relief to concern focused on that area.

This alternate places a little more pressure on M-76 between M-61 and M-33. This pressure is not entirely negative as the effect on M-76 above M-33 is a slight improvement with several links dropping to a "D" from an "E" L.S. when compared to alt 74. M-33 is still deficient south of Rose City but more consistant with an "E" L.S. compared to an "F" on the neutral as well as the previous alt. M-65 drops dramatically in assignment and appears to be operating at a level far below the intended capacity of the road. US-23 is still operating at an "F" level from M-65 to Harrisville.

Alternate 76:
This alternate paints an almost identical picture to that imposed by alt. 75. M-76 remains the same. M-33 remains the same; M-65, US-23 etc. Only minor differences become evident and at expected small areas of concern.

In total, Alternate 72 appears to have the greatest impact on the Level of Service for existing US-23. Alternate 75 appears to relieve the greatest amount of traffic pressure on M-65 the tradeoffs of the others are debateable but can be seen from a better perspective as the summary program output is analyzed. Histograms and Tables which display element unpact are presented now for review. These data are divided by alternate impact by study area (A, B, C) and as will be found, the impact of the alternates can be defined by goals of the areas and should be very helpful in public presentations. The bandwidth plots covered the graphic responsibility of analysis while the summary tables and histograms should cover the statistical aspects of analysis.

The following tables list the pertinent data by alternate by region. These table pages include such information as total miles, annual accidents, number of miles of F.A.P. at level of service "C", etc.

```
        MICHIGAN STAFFGTOE TRANSAORTATIOS MONELINGR SYSTEM
                            RASIC TQAVEI IMPACTS
                            RIJRAL HTGHNAYS ALTERNATF NEATT REGION
REGION CONSTSTS OF COHNTIFSNDS. 1, 4.,16, 20,60.68,60.61,
        NORTHEAST REGTOM CORRIDOR STUDY ALTS 70*77 STUOY AREA *A"
```

TVTER	FAP	FAP	FAS	TOTAL
STATF	FWY	NON FWY		
88	6	283	223	601

ANNHAL
VEHICLE=MILES $\quad 545590 \quad$ 2538? $\quad 48871 \quad 12549641$
(THOUSANDS)

ANNUAL
$\begin{array}{llllll}\text { VEHICLEHOURS } & 11335 & 445 & 8379 . & 3875 & 24037\end{array}$ (THOUSANDS)

ANNUAL						
ACCIDENTS		RO1	21	1474	601	2848
ACCIDENT RATES						
ACCIDENTS	PFR	194	ล?	349	344	227
100 MILLION VEH=MI						
ACPIDFNTS	PFR	7070	4731	16996	15513	11849
100 MILLION	VFH					

TABLE 1

NOTE MOLLUMNS OF MILEAGE AND RUWS MAY NOT ADO DUE TO RDUNDING TABLE 2

moter-columns of mileage ano ruws may nut ado due to ruunding
TABLE 3

NOTE-COLUMNS OF MILEAGE AND RUWS MAY NOT ADO DUE TD ROUNDING
TABLE 4
MICHIGAN GTATENTDE TRANSPGRTATIDN MONELINGR SYSTEM BASIC TRAVEI TMPACTS
RURA! HTGUHYS ALTERNATE NEATS REGION
REGION CONSISTS OF COMNTIFS NOS. $1,4,16,20.60 .68 .69,71$. NORTHEAST RFGION CORRIDIR STUOY ALTS $72-77$ STIDY AREA "A "

IUTFR	FAP	FAP	FAS
STATE	FAY	TOTAL	

TOTAL MILES	98	57	277	273	646

ANNIAL
$\begin{array}{cccccc}\text { VEHICLE=MILFS } & 443975 & 111019 & 334094 & 134022 & 1223012 \\ \text { (THOUSANDS) } & & & \end{array}$

| ANNIIAL | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VEHICLEMHOURS | 11309 | 1943 | 6831 | 2998 |
| (THOUSANDS | | | | |

ANNUAL ACCIDENTS		891	149	1191	452	2653
ACCIDENT RATES						
ACCIDFNTS	PER	133	134	356	337	216
100 MILLION VEH-MI						
ACCIDENTS	PER	7514	7651	17437	15084	11493
100 MILLION	VEH					

MILES LS $=1$	n	57	9	55	121
UILES LS =?	\bigcirc	n	160	127	288
YILES LS $=3$	34	0	53	29	126
YILES LS $=4$	21	0	1%	2	47
1LLES LS $=5$	22	0	11	8	47
1ILES LS $=6$	9	$?$	14	0	24

NOTE WCOLUMNS OF MTIEAGE AND ROWS MAY NOT ADD DIE TO ROUNOING
TABLE 5

```
            SYSTFM IMMPAG S S M M M K Y
        NICHIGAN STATENIUK TKANSHORTATITN MUUELING SYSTEM
                        BASIC THAVEL INPACTS
                            RUHAL HIGHNAYS ALTERNATE NEAT6 KEGIGN
FLGION CONSISTS OF COUNTILS NOS. !, 4, 16, 20, 00. 60. 69, 71,
    NORTHEAST FEGION GORFIDUK STULY ALTS 72-77 STUUY AKEA "A"
```

		$\begin{aligned} & \text { INTER } \\ & \text { STATE } \end{aligned}$	$\begin{aligned} & \text { FAP } \\ & \text { FMY } \end{aligned}$	$\begin{aligned} & \text { FAF } \\ & \text { NON=FMY } \end{aligned}$	FAS	total
tutal miles		88	60	279	283	651
ANNUAL						
VEHICLE-NILES (THOUSARUS)		645279	10260:	335823	145781	1229486
ANNUAL				.		
VEHICLE-FOURS (THOUSANDS)		11.333	1802	6860	3250	23253
ANNUAL						
ACCIOENTS		863	136	1181	505	2686
ACCIDENT RATES						
ACCIDENTS	PER	133	133	351	346	218
100 MILLION VEHAMI						
ACCIEENTS	PER	7617	7592	17200	15538	11552
100 MILLIOA	VEH	HR				

MILES LS $=1$	0	60	11	60	132
MILES LS $=2$	0	0	173	95	268
MILES LS $=3$	34	0	68	45	148
MILES LS $=4$	21	0	0	12	33
MILES LS $=5$	22	0	11	8	42
MILES LS $=6$	9	0	14	0	24

NUTE= ${ }^{\text {FOULUMNS IF MILEAGE AND RUNS MAY NUT ADU DUE TO RUUAUING }}$
TABLE 6

SYSTEM I HFALTESVMAFY
MTCHIGAN STATEWILE THAYSHORTATIUN MOUELING BYSTEM BASIC Thavel inpacts
flifal highways alutfivate neaty regiun.
REGION CONSISTS OF COUNTIES NUS, $6,18,26,35,65,72$,
NORTHEAST KEGION CORAIUOK STUEY ALTS 72-77 STUDY AKEA "E"

notem-columns df mileage ang hows may not aug due tor ruunoing TABLE 7

70

NUTE=COLUMNS OF MILFAGE ANU HOWS MAY NUT ADU DLE TU RULIADING
TABLE 8

```
            S Y S TEM I M F A L T S.U MM A K Y
        NICHIGAN STATFWILE THANSHUKTATIUN MUUELING SYSTEM
                        GASIC TRAVEL INPACTS
                            RUKAL HIGHWAYS ALTEKMAIE NEA73 REGION:
RLGION CONSISTS OF COUNTILS NOS. D, 18, 26, 35,65, 72,
    NORTHEAST REGION CQREIDLK STUDY ALTS 72*77 STIOY AKEA "E"
```

		$\begin{aligned} & \text { INTFR } \\ & \text { STATE } \end{aligned}$	$\begin{aligned} & \text { FAH } \\ & \text { FWY } \end{aligned}$	$\begin{array}{r} F A r^{2} \\ N \mathrm{~N} \sim F W Y \end{array}$	fAS	total
TUTAL MILES		64	126	22%	163	576
ANMUAL						
(THOUSAAOS)						
ANNUAL						
VEHICLE-FGURS (THQUSANOS)		10294	7893	8759	3810	30748
ANNUAL						
ACCIDENTS		758	715	1642	698	3815
ACCIOLNT FATES						
ACCIDENTS	PER	129	156	391	413	233
100 MILLION VEHEMI						
ACCICENTS	FER	7372	9009	18751	18372	12409
100 MILLION	VEH=	HF				

MILES LS $=1$	0	57	4	11	78
MILES LS $=2$	0	38	37	42	123
MILES LS $=3$	0	10	58	72	140
MILES LS $=4$	35	2	32	11	84
MILES LS $=5$	13	0	21	19	60
MILES LS $=6$	15	17	55	0	88

NUTE=COLUMNS OF MILEAGE AND ROWS MAY NOT ADD DLE TU RULNOING

TABLE 9

SYSTE I MFALT SUM MAKY michigan statewiut thansrghtation muleling system hasic travel Impacts
RUKAL HIGHAYS ALTERNATE NEA74 KEGILA
KEGION CONSISTS OF COUNTIES NLS. $6,18,26,35,65,7 \%$,
NORTHEAST REGION CORRIOGK STUQY ALTS $72-77$ STUOY AKEA "E"

		$\begin{aligned} & \text { INTER } \\ & \text { STATE } \end{aligned}$	$\begin{aligned} & \text { FAF } \\ & \text { FWY } \end{aligned}$	$\begin{gathered} \text { FAY } \\ \text { NON }=F W Y \end{gathered}$	FAS	TITAL
tutal miles		64	126	22\%	163	576
annual						
VEHICLE-NILES (THOUSANDS)		563800	430339	402064	170109	1506313
ANNUAL						
VEHICLE-HOURS (THOUSANDS)		9898	7349	8371	382%	29491
ANNUAL						
ACCIDENTS		725	669	1564	702	3666
ACCIDENT RATES 2304234						
100 MILLION VEHENI						
ACCIUENTS	FFR	7334	9042	18750	1837 ?	12434
100 MILLION	VEH	-HR				

MILES LS = 1	0	70	9	11	91
MILES LS $=2$	0	27	31	53	112
MILES LS $=3$	4	11	79	67	162
MILES LS $=4$	24	0	29	11	64
MILES LS $=5$	30	0	30	0	70
MILES LS $=6$	5	17	42	10	74

NUTE-COLUMNS OF mILEAGE ANO ROWS MAY NOT ADO DUE TU RUUNDING

TABLE 10

NUTE=COLUMNS OF MILEAGE ANO RUNS MAY NUT ADD DUE TU FUUNDING

TABLE 11

MILES LS $=1$	0	26	*	41	77
MILES LS $=2$	0	66	35	48	151
MILES LS $=3$	0	10	53	49	113
MILES LS $=4$	35	2	34	0	71
MILES LS $=5$	13	0	33	19	66
MILES LS $=6$	15	17	50	4	$9 \overline{3}$

NOTE-*COLUMNS OF MILEAGE ANU HOWS MAY NUT ADD dUE TU RUUNDING

TABLE 12

TABLE 14


```
        MICMIGAN STATEMILK THANSHOHTATICN NGLELING SYSTEN
                        gASIC TfAVEL ImpACTS
    R\MAL HIGHWAYS ALTERFIATE IEAY3 HEGIUT:
KEGION CENSISTS OF COUNTIES NLS. 1: 4% 6* 35,
    NORTHEAST REGIOR COPRIDLH STUDY AL.TS 7C*7T STUDY AREA "C"
```

INTER	FAP	FAr	FAS	TOTAL
STATE	Fwy	NONmFiny		

TOTAL MILES	17	96	140	120	382

ANNUAL $\begin{array}{llllll}\text { VEHICLEWILES } & 194445 & 248332 & 316440 & 81445 & 840272\end{array}$ (ThOUSANDS)

ANNUAL				
VEHICLERHOURS	3417	4359	6090	15685
(THOUSANUS)				

MILES	$L S=1$	0	82	9	7	99
MILES	$L S=2$	0	4	$4 i$	72	119
MILES	$L S=3$	O	8	26	28	64
M1LFS	$L S S=4$	0	0	12	11	76
MLLES	$L S=5$	2	0	1	0	6
MILES	$L S=0$	15	0	50	6	06

NUTE=COLUMNS IF MILFAGE ANU KURS MAY NUT AUE DUE TO RULNOING

TABLE 15

MILES	$L S=1$	0	83	y	0	92
MILES	$L S=2$	0	4	34	64	129
MLLES	$L S=3$	0	8	29	24	62
MILES	$L S=4$	0	0	12	11	26
MILES	$1 . S=5$	12	0	3	0	16
MILES	$L S=0$	5	0	50	0	55

NUTE * COLUMNS OF MILEAGE ANU FOWS MAY NOT ADO DUE TO RUUNOING

TABLE 16

NUTE=-COLUMNS DF MILEAGE ANG RGAS MAY NGT AUO DUE TO ROUROING TABLE 17

NUTE-COLUMNS OF MILEAGE ANU RUNS MAY NOT ADO DUE TO KUUNUING

TABLE 18

Level of Service indicators, to this point, have been referred to by letter A, B, C, etc. On the table output, levels of service are now referenced in numerical form $1,2,3$ etc. The 1 represents an "A" level of service, a "2" a "B" level, etc. Now mathematical comparisons can be made which deomonstrate the impact of an alternate on the level of service of individual classes of highways as well as entire systems within the given study areas (A, B, C). This can be done with simple percentages or a weighted average method which proves quite effective as a measure of total area impact. To perform this operation one has to simply multiply the number of miles of highways within each L.S. class by that class L.S. number and add the products together for each group - then divide by the total number of miles in the area system.

This will give the weighted average L.S. for all highways within the study area. By comparing weighted Level of Service Indexes (ISI) for each alternate, rankings can be determined as to the total effect of each alternate upon the area. Not only that, but by dividing the highest alternate LSI into the lowest alternate LSI for each area the percentage impact of improvement of service within that area can be measured. For example, the LSI for each alternate is listed below under the respective study areas.

STUDY AREA

ALTERNATE	A	B	C
77	2.876 High	4.012 High	4.013 High
72	2.566	3.184 Low	2.585 Low
73	2.524	3.329	2.786
74	2.437 Low	3.230	2.763
75	2.483	3.298	2.652
76	2.469	3.309	2.691
$\frac{2.437}{2.876}=15.27 \%$	$\frac{3.184}{4.012}=20.64 \%$	$\frac{2.585}{4.013}=35.59 \%$	

For study area "A" alternate 74 brings the L.S.I. down to a low weighted average for the system of 2.437 . The neutral do-nothing alternate (77) displays an L.S.I. of 2.876. This shows initially that study area "A", in this year 2000, will apparently not suffer from as great a capacity problem as areas B and C which shows L.S.I.'s for the do-nothing at 4.012 and 4.013 respectively. It also shows that alternate 74 would have the greatest positive effect of reducing what congestion there is within the study area. This impact can be measured as a percentage by dividing 2.437 (Alt. 74 L.S.I.) by 2.876 (Alt. 77 L.S.I.) and arrive at a total L.S. impact effect of 15.27 percent. This could be restated that construction of the proposed alternate 74 would provide an overall reduction of congestion in the area of 15.27%. In study area "B" alternate 72 provides the greatest L.S. impact by displaying a low L.S.I. of 3.184 . This is the lowest L.S.I. but an L.S.I. over 3.000 still
represents a minor capacity problem situation. When this figure is divided by the do-nothing (77) L.S.I. of 4.012, the total reduction in congestion can be listed at 20.64\%. In study area "C" alternate 72 also provides the greatest margin of congestion relief: 2.585 compared to 4.013 or a total impact relief of 35.59%. By comparing the relative percentages of the best alternate for each area, Region C can be seen to have been more positively affected by freeway construction, with B and A following in that order. In other words, construction of a new facility within the proposed corridor would benefit the residents of area "C" moreso than those of areas A and B. Residents in area A would probably opt for alternate 74 whereas residents in areas B and C would probably opt for alternate 72. This again is based only on Level of Service impact. Other impacts may alter each area feeling for the pros and cons of the respective alternatives. This is now, under law, at the option of the parties involved.

CUTLINE ANALYSIS

CUTLINE

This a brief summary of the impacts of the various alternates on the traffic volumes of major trunklines surrounding the proposed construction area. This is done through the use of cutlines. On the north, a cutline is extended through M-53, M-65 and US-23. On the west, M-32, $\mathrm{M}-72$ and $\mathrm{M}-55$. On the south by $\mathrm{M}-33, \mathrm{M}-65$, the alternate itself and US-23. These cutline locations are pictured in Figure 18. They are also extended along the first AADT plot (Figure 19) to show the principal locations. The remaining AADT plots follow this example. A summary sheet is also included at the end to detail these impact explanations.

CUTLINE LOCATIONS

ALT 77	7616	(6)
72	7758	(5)
73	7810	(3)
74	7917	(2)
75	7780	(4)
76	8108	(1)

Figure 25 .

NORTHERN BORDER TRAFFIC TOTALS
(M-33, M-65, US-23)

Collectively, the largest southbound movement of traffic occurs under alternate 76 (8108 AADT) and the smallest under alternate 77 (7,616 AADT). Individually M-33 carries the heaviest burden under the do-nothing situation (ALT 77-2260 $A A D T$) and the smallest level of traffic under alternate 72 (1900-AADT). The situation on M-33 could be occurring due to the traffic "draw" of the alternates to an easterly direction. In other words the alternates are located to the east of M-33 and pull traffic in that direction and off M-33 thus leaving the do-nothing with no relative advantage to M-33. Conversely, alt 72 appears to draw more traffic off M-33 than any other alternate and the importance of this fact can be left to the analysts and general public.

M-65 shows the highest AADT under alt 76 (2136 AADT) and the lowest under alt 75 (1122 AADT). This would be due principally to the location of alt 76 relative to M-65 - it is the closest alternate to $M-65$ and would consequently draw (or disperse) the most traffic to that facility. On US-23, alt 75 raises the traffic level to its highest point (AADT-4756) with alt 75 displaying the lowest AADT (3794). The terms highest and lowest in this case are not as profound as might be anticipated. The actual differences in traffic volumes on this route as well as others may not be statistically significant and the explanation of causal factors should remain vague and assuming so as not to draw undue attention to one alternate over another. Basic highs and lows in some
situations can be explained, others cannot. In this instance, only 52 vehicles separates alt 75 from alt 72. Therefore, weighted decisions as to the impact of one alternate over another should include references to all aspects of impact along with degree of impact. This would normally go without saying, but the data itself and the differences thereof demand a word of caution.

WESTERN BORDER TRAFFIC TOTALS (M-32, M-72, M-55)

This particular situation, above others, lends itself to a logical explanation. In reviewing the westbound totals, the closer the alternate moves to the west, or to the cutline itself, the higher the volumes appear on the cutline. The closer the alternate to the cutline the more traffic is drawn or dispersed within the area over the existing routes. Travel advantages due to tree changes, etc., are known to the reader.

The "clinker" in this ideal situation appears in the alternate 77 high total of 9,272 AADT. If the above explanation holds true alt 77 , or the route furtherest to the east, should draw the least amount of traffic. Not true. What appears to be happening is a major shifting of travel needs and scales with the construction of the new facility: especially this north-south facility in terms of east-west movement. Upon review of the AADT plots, what appears to be happening is that the alternates are creating a heavier east-west movement between M-65 and US-23 instead of between the cutline boundaries of M-33 and M-65. The alternates are taking traffic off of M-33 and M-65 and therefore creating a smaller degree of
east-west traffic interchange between the two; whereas alt 77 causes more people to use $M-33$ and $M-65$ thus causing the higher cut-line interchange figures. The location of the cutline and the shifting of north-south traffic caused by the alternates appear to suffice as an explanation.

SOUTHERN BORDER TRAFFIC TOTALS (M-33, M-65, ALT, US-23)

Alternate 74 shows the greatest interchange of traffic on the southern border of the construction area (AADT 23,487). Alternate 77 (do-nothing) displays the lowest. (AADT 21,974). Individually on M-33 alt 76 provides the greatest degree of congestion relief with alt 75 a close second. A review of the location of these alternates relative to $\mathrm{M}-33$ will provide the explanation for the relief. On $M-65$, aside from alt 76 which actually replaces it, alt 75 provides the next to lowest total relief to $M-65$. Again location provides the answer.

On US-23, congestion relief comes principally in the form of alternate 72 (US-23 AADT 4468). Alts 73 (6956) and 74 (6967) are comparable in terms of impact and so is the grouping of alts 75 (7894) and 76 (7882). The leader in the alternate north-south movement on this border is alternate 76 with 11,034 vehicles on an average day. Alt 75 provides the least amount of traffic $(8,028)$ and alt 72 with 10,835 vehicles provides the second highest choice.

Again, diagnosis of the impact of these proposed facilities must be measured in terms of goals and public purpose.

VEHICLE MILES - VEHICLE HOURS
A review of the following histograms will offer a quick visual comparison between alternates in terms of vehicle miles and vehicle hours for each study area (A, B, and C).

Caution is advised, however, when examining these figures due to the presence and influence of fluctuating generated trips or trip tables. This is brought about through the needed combination of different alternate alignments and their respective effects on the Statewide Model trip generation process. Without this standard process, valuable and realistic trip assignment information would be lost.

In order to create the desired situation for alternate efficiency comparison, a constant (identical trip table) can be assigned to each alternate as additional analysis is required.

In this way the trips would be held constant and the only differences to appear in vehicle hours, etc., would be caused, logically, by the configureation and advantage of each alternate. This is the recommended approach to vehicle mile and vehicle hour analysis.

- VEHICLE MILES VEHICLE HOURS

SYSTEM IMFACO CUMFAKISGN
MIChgan statewigh thanspurtatiln mbutlaig system
PROJECT NE
NGRTHEAST REGIOIN CORFIDOH STULY AREA "A" HEGIONAL SUMMARY FOK JNTEKSTATE, FAF, AND FAS HIGHWAYS

Im=-s=0					
1254 I					***
1					***
1					***
1					**
1					***
I					***
1					***
I					**
1					**
1		***			***
I		***		***	***
1		***		***	***
1221					
I		***	***	***	**
I	***	***	**	***	**
I	***	***	***	***	**
I	***	***	$\times *$	***	***
I	***	***	**	***	***
1	***	***	***	***	**
1	***	**	***	***	*
1	***	***	**	***	**
I	***	***	***	***	***
I	***	***	***	***	**
1	***	***	***	***	***

FIGURE 26

I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I
I	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	I

I	***	***		***	***	***
1	***	***		***	***	***
I	***	***		***	***	***
1	***	***		***	***	***
1	***	***		***	***	***
1	***	***		***	***	***
1	***	***		***	***	***
I	***	***		***	*	***
I	***	***		***	***	***
I	***	***		***	***	***
I	***	***		***	***	**
1	***	***		***	***	*
11251	***	***		***	***	***
1	***	***	***	***	***	***
A72		A73	$A \ddot{14}^{4}$	A75	A 76	177
			ALTEF	ATES		

Project Ne
NGRTHEAGT REgION CORRIDOR StIUy ahea "A" REgional summary for interstate, fap, and fas highways

FIGURE 27

HROJECT NE
NOKTHEAST KEGION GORFIDUR STUUY AHEA "B" KEGIUNAL SUNMARY FGR INTEKSTAIE, FAF, AND FAS HTGHWAYS

FIGURE 28

SYSTF1 1 MHAC, COMHAKISGN MICHEGAN STATEMJE THAMSPGRTATION NUUELING SYETEM
proutct Ne ngFtheast kegion corfidgh stuly akea "b" REGIUNAL SUNMARY FCR INTEKETATE, FAF, AND FAS righways

1	***	***	***	***	***	1
	***	***	***	***	*	I
I	***	***	***	***	***	1
I	***	***	***	***	***	1
I	***	***	***	***	***	I
I	***	***	***	***	***	I
I	***	***	***	***	***	i
I	***	***	***	***	***	1
1	***	***	***	***	***	I
I	***	***	***	***	***	I
I	***	***	***	***	***	I
I	***	***	***	***	***	1
294911	***	***	***	***	**	I
I	***	***	***	***	***	I
	A72	A73	4.5	476	A 77	

FIGURE 29
al TERNATES KEGIUNAL SUMNARY FOR INTEKSTATE, FAF, AND FAS HIGHAYS

PROJKCT NE
NOKTHEAST KEGION CORRIDOR STUUY AREA "C" KEGILNAL SUMMARY FCR INTEHSTATE, FRF, AND FAS HIGHWAYS

1	***		***
I	***		***
1	***		***
1	***		***
I	***		***
1	***		***
1	***		***
I	***		***
1	***		***
1	***		***
1	***		***
16008			
1	***		***
I	***		***
1	***		***
I	***	***	***
1	***	***	***
I	***	***	***
I	***	***	***
I	***	***	***
I	***	***	***
I	***	***	***
1	***	***	***

FIGURE 31
alternates

