Ruch

 MOEELENG SYSTEVOLGME XIB
michigan celes
MULTI - MODAL

JUEY, 1974

MICHIGAN DEPARTMENT

OF

STATE HIGHWAYS AND TRANSPORTATION (BUREAU OF TI ANSPORTATION PLAMNING

 MORELING SYSTE EM
VOLUNE X KH
michigan goes
MULTI - MODAL

JULY. 1974

STATE MIGHMAY COMMISSION
E. V. Erickson

Chairman

Peter B. Fletcher
charlas H. Hewinf
Vice Chairman

Carl V. Pellonpare

DIRECTOR

John P. Woodiord

WILLIAM G. MILLIKEN, GOVERNOR

Mr. Sam F. Cryderman Deputy Director Bureau of Transportation Planning

Dear Mr. Cryderman:
The Highway planning Division is pleased to present the opening report of Volume XIII in the Statewide Transportation Modeling System series. Entitled "Michigan Goes Multi-Modai", the report documents the preparation of an automated battery of procedures which will become the basis for the passenger travel by four modes - highway, bus, rail, and air - at the statewide or regional level.

Recent federal legislation, the energy crisis, and financial difficulties besetting carriers in all modes make it imperative that department a of transportation be equipped to do multi-modal statewide transportation planning. A modeling system such as the one described herein seems to be an important step in achieving this capability.

The programs described in this report were implemented by Miss Joyce Newell. The report was written by Miss Newell and Mr. Terry Goths; Mr. Thomas Franklin participated in the production of the graphics. All are members of the statewide Interagency Procedures Research and Development Section, managed by Mr. Richard E. Esth.

Richard J, Lilly, Administrator Highway Planning Division

TABLE OF CONTENTS

 \section*{\title{"MICHGAN GOES MULTI-MODAL"
}}
 \section*{\title{
"MICHGAN GOES MULTI-MODAL"
}}
bySovee A. Newell
and
Terry L. Gottspage
PREFACE 1
INTRODUCTION 4
GOALS FOR STATEWIDE TRANSPORTATION PLANNING 6
MODEL SELECTION 8
HIGHWAY NETWORK 11
BUS NETWORK 16
AIR NETWORK 19
RAIL NETWORK 22
NET PROGRAM 24
PATH PROGRAM 37
MODAL SPLIT PROGRAM 44
NET LOAD PROGRAM 50
CONCLUSION 73

FIGURE 1

FIGURE 1

PREFACE

PREFACE

Transportation planning is rapidiy becoming a senalictve and complecaced task. Most transportation departments have come to realige chat many igsues which were once relatively unimportant have, in recent years, grown so greatly in value that now their consideration is vital to aky cotally successful transportation project. This is reflected in the Section 109 (h) guidelines of title 23 , United States Code, added to the code by section 136 (b) of the Federal-Aid Highway Act of 1970. These guidelines "call on Highway Agencies to adopt procedures and assign responsibilities to insure early identification of potental social, economic, and environmental eifects, both beneficial and adverge. The Action Plan ts co cover condidexation of alternative courses of action, including the option of no higkway limprovement and, where appropriate, alternative scales or highway fmprovements and reliance upon other Eransportation modes " (Report to Congress on Section $109(\mathrm{~h})$, Title 23, United states Code Deparcment of Transportation Federal Highway Administration, June 1972)
"The process by which decisions are reached should be such as to merit public confidence in the Highway Agency. To achieve this objective, it ie the Federal Highway AGmutatration's policy that" (among other things)" . . . appropriate combideration be given to reasonable alternatives, including the altexative of not building the project and alcernative modes . . . appropriate alternatives which might minimize or avoid adverse social economic. or envirommental effects should be studied and described. . . . The key tradewoffs among the alternatives should be presented". (Section 109 (h) guidelines).

The guidelines go on to state that the Action Plan must identify and
assign responsibility and procedures to ensure that "the development of new transportation modes or the improvement of other modes are adequately considered, where appropriate." Because of these dixect references requiring the consideration of other modes, it is now imperative that taansportation agencies develop some systematic method of evaluating multi-modal alternatives.

Even without such directives. present conditions make consideration of such alternatives invaluable. In the face of a potentially gerious energy crisis, for example, mass transit may become an absolute necessity. For instance it has been shown that if rail travel were uripized to its full extent, both for freight and passenger service, energy consumption would be drastically reduced. A Rand Corporation Study of 1971--nThe Effect of Fuel Price Increases on Energy Intensiveness of Frefght Transport'attempted to measure thodes of transportation by approximate average energy intensiveness, expresaed in BTU's per ton mile. Watexways were reported at 500, railroads at 750 , ripelines at 1,850 , trucks at 2,400 more than three times the railroad figure-and air cargo came in at an astonishing 63,000. Other issues which alternate modes of transportation may help to address are air and noise pollutiong envirommental effecta and land use.

Scarcities of resources are not limited to enexgy, moreover. In the face of increased demands on tax revemues departments of transportation cannot afford to allocate money to projects without some degree of assurance that the money will be doing as much good as possible. A statewide multimodal model such as the one described here could help to apporiton funds to a transportation system which is "best" for the whole state.

In addition, the subject of multi-modal accessibility is becoming important. This topic actually encompasses two relevant issues. First, one might measure the accessibility of various socio-economic groups to various modes of travel. This is espectally pertinent in the case of older or lower-income segments of the population. Second, accessibility by means of a particular mode could be calculated and compared between modes. This concept also is especially applicable in goods novement to choosing the optimal combination ofshipping modes.

More and more, txansportation agencies will be expected to address many issues with regard to multi-modal statewide planning systematically and efficiently as some of the above examples indicate. This report deals with the development of just such a system for Michigan.

INTRODUCTION

It quickly becomes obvious that the task set before transportation agencies is no small one. Tf the Federal guidelines are to be followed carefully, certain tools and methods must be developed to aid in a systematic, accurate evaluation of the proposed and viable alternatives tio more effectively address the task now assigned, many transportation agencies are kuruing to analysis at the statewide and regional system level. For chis purpose, transportation models have been created which are capable of evaduating the social, economic, and environmental aspects of projected exavel. Such a model of the Michlgan Mighway sybtem is now being used extexsively to monitor these hlghway tmpacts. This computer model makes the considexation of travel; social, economic, and environmental impacts fox given altexnatives much simpler, for the groposed system additions or changes may be made within the base data files and the most likely results will be simulated in a very systematic mamex.

Up uncil this xeport, howewery Michigan's model was mainiy a highway model. An invaluable addition to the system is the option of evaluating other travel modes and che interaction of those modes with daily highway travel. This multimodal option is currently being tested at the regional level and hopefully wll be available for general statewide use within the next year. To accomplish this, it has been necessary to define statewide networks for each mode, defining these transportation systems in such a way as to permit travel to be diverted from one mode to another in response to changing priorities and service levels. Figure i shows the four model. networks as they have been developed during the implementation of the multi-modal transportakion modeling system. These networks make it possible
to simulate the effect removing bus service between two cities will have upon air and highway usage, for example. It may also prove invaluable to explore the effects of reinstating rall passenger service. Along certain corridors this might alleviate some environmental and economic effects of ever-increasing automobile traffic in these cases.

In addition, once a passenger-demand model for Michlgan has been calibrated at the system level, the basic networks can sexve a dual purpose and be used to formulate a statewide commodity-flow model. The increasing costs of consumer goods and the current energy shortage demands that comodities be moved by the most economical and efficient means available.

An effective statewide multi-modal modeling system for Michigan must therefore be designed so as to provide a framework not only for testing the adequacy of existing facilities within present corridors but also to facilitate long-range transportation planning. As such, it must be flexible enough to be able to reflect changing attitudes, goals, objectives, and economic conditions at a regional level. Moreover it must have the capability of testing the probable effects of the tmplementation of a number of alternative multi-modal plans and to contrast the sociomeconomic and environmental impacts of each. Only in this way can Michigan address itself to true longmange system planning, rather than restricting its vision to stopgap measures and disjoint transportation plans which may not be advantageous to the state as a whole and, in many instances, local communities.

GOALS FOR STATEWIDE

 transportation planning

GOALS FOR STATEWIDE TRANSPORTATION PLANNING

A workable multimodal transportation modeling syatem fis worth little if it does not address itself to system-level transportation planning goals. It is also important that the set of goals be the same for all modes. In this way, they become transportation goals rather than mode-specific goals and make possible comprenensive statewide transportation planning. In the real world, each mode competes with other modes for its share of passengers and commodities. It follows that any set of goals and objectives which treats each mode as if it existed in a vacumm camot really reflect reallcy.

A parthal list of possible statewfe transportation planning goals may be divided into three general categories: user goals, carrier goals, and goals for the state as a whole. User goals include such things as decreasing travel time and cost, increasing safety, and increasing accessibility. This last item is especially imporeant both to passengers and to shippers; passengers wish to be made accessible to a greater variety of opportunities for work, shopping, and recreation, and shippers would like access to wider markets and improved sources of supply. In both cases, a user should be able to choose between modes; an effective modeling systen should be able to provide enough information so that a user's choice of modes is the best choice for him.
"Carrier goals" deal mainly with the carrier ${ }^{\text {'s }}$ ability to make a profit. The carrier would like to minimize capital costsmehicle costss terminal costs, and the cost of equipment for loading, unloading, and storage. He wishes to minimize his administrative, maintenance, and
operating costs. He can increase profit by increasing the volume of passengers or goods he carries, and he should seek to accompany an increase in volume with an increase in efficiency. To answer a carrier's questions, a multi-modal modeling system ought to be able to show him the effects of his policy decistons on progress toward his parifcular get of goals.

Because any goals defined for an entire state must reflect the interests of all segments of the state's population , they tend to be less precisely drawn. However some goals of transportation planning can be stated in general terms at the statewide level. For example, any state would like its transportation system to increase che accessibility of its citizens to opportunity, and to do this so that all segments of the population are treated equitably. In the area of land use, transportation may be used to promote desixable patterns of growth. An important goal of any state is to reduce the adverse impacts of itcs transportation system on the environment. pinally, a transportation system should acrve as a support system for increased productivity of goods and services. In order to plan transportation that serves statewide goals such as these, decision-makers need a modeling system which can show the statewide impacts of multi-modal planning decisions.

MODEL SELECTION

MODEL SELECTION

In many situations within the state, a countyolevel zone system would be an acceptable level for present analysis. However, without a finer system, it might be difficult to test the future effects of adding or deleting short branches from a given mode. Therefore "Michigan's 547 -zone trafic-forecasting zone system was selected as the appropriate level of detail. The instate zones, shown in Figure 2, are either cities, townships, or combinations of townships. The outwofwstate zones are county-1evel or coarser.

Two alternatives were possible for the development of a passenger-demand model. Either an entirely new model could be formulated, or an existing modeling package could be adapted for use at the 547 -zone level. Two major factors strongly influenced the decision to choose the later course of action.

First time is of the essence. In both the public and the private sector of the economy, attention is increasingly being turned to the problem of whether modes of travel other than highway could be more efficient in the allocation of limited resources of energy and of money. In view of the pressing nature of these questions, a method of providing answers and possible solutions as quickly as possible holds a definite advantage.

Second, it was discovered that Stanford Research Institute had developed a battery of the Stanford Network Analysis Package computer programs for predicting inter-city multi-modal passenger demand, under the auspices of the now-defunct Inter agency Transportation Council. The SRT package had \% been calibrated to Michigan data and was already oriented to system-level analysis. The modular nature of the battery allows the use of only the specific programs which directly apply to the zone-level intercity passenger-

demand situation. Finally, it offers the potent al to answer many management questions; such as trade-offs between subsidizing alternative modes, generation of revenues through augmentation of service, and the calculation of avoidable costs through abandoment of specific routes.

Therefore, it was decided to adapt portions of the SNAP battery to the 547-zone system. In this way, a multi-modal passenger-movement model could be prepared with the least duplication of effort and expendifure of monetary and manpower resources. At a later stage, a commodity-flow model will be added, using data from the U.S. Department of Transportation Rail Waybill Surveys, trucking comoditymflow tnformation taken by Michigan Department of State Highways and Transportation survey crews, and data on goods movement by aix freight.

HIGHWAY NETWORK

The present highway network was first developed by the Statewide Studies Unit in 1966, with the cooperation of the consultant firm of Arthur D. Little. Inc. It contains all state trunklines plus selected county roads and principal segments of highway in neighboring states. Figure 3 is a plot of this network. The zone system associated with this network contains 547 zones; 508 are in Michigan and the remadnder are outstate zones. Each Michigan zone is a city, township, or a group of townships (see Figure 2). The outstate zones are county-level or coarser (Figure 4). A "centroid" or center of population has been chosen for each zone. This is a given point within the zone at which all travel is assumed to originate or terminate. The basic element of the highway network is a "link", a small segment of highway approximately 1×5 miles in length. Each link is uniquely identified by a pair of numbers, called nodes, designating its endpoints; this is referred to as an "A-node, B-node" format. A node number is found at each intersection and often at county lines. Thus a link is generally a segment of highway between two consecutive intersections. To complete the highway link file, other links, called "access" or "centroid" links are included which connect the centroids to the highway system. These are the short lines with one end unconnected which are easily spotted in Figure 3.

Many useful applications of this network would be impossible, however, without the information which is stored in a number of link specific fields called "volume words". As many as 25 pieces of data which describe the physical characteristics may be stored on each link. A 1ist of the information

FIGURE 4:
MICHIGAN'S TRANSPORTATION MODELING SYSTEM
 OUTSTATE AMALYMS 2GME

now available is given in Figure 5.
Because this network has been in use for many years and many programs have been developed in conjunction with this network descriptlon, it was obviously the only appropriate choice when selecting a highway network to use in conjunction with other modes.

STATEWIDE HIGHWAY NETWORK

LINK PHLE

CONTENTS OFEACH HIGHWAY SEGMENTOW IHNR

DISTANCE

TYPROFEOUTE

COMMEMEASTRMPRGVOUME
DESIGM HOUK MOUME

ACCIDRNTINJURY RATE
ACCIDEMT RATE
NUMBEREREANES

SUR劳ACECONITION
MIBHT OF WAY
SICHT RESTRICTON

BUS NETWORK

The bus network dfffers from the aik and zaill networks in one major respect: buses use public highways. Because of this, it secmed only logical to use the existing highway network mentioned in the prevfous section to create the desired bus network. With the SRI NRT BUILD program in mind, the bus network was selected from "Russell's Officlal National Motor Coach Guide". Each Michigan route was studied and those which were unique (in terms of stops) from all others were listed for a tocal of 177 routes. These routes were then coded onto the highway network by successive node numbersy with negative nodes for nodes at which the bus did not stop, and positive node mubers for nodes at which the bus stopped. Using this description, the Net Buld Program selects the necessary highway links to create a bus network. Since this network is subject to change whenever routes are added or deleted, this method of defining the bus network should be very convenient. Each bus link also has a volume word containing the frequency per day of buses along that link.

In addition, the location of each bus station appears in the Statewide Public and Private Facility File (Figure 6). This permits the calculation of the accesplblifty of people to bus stations with a mimum of effort and may be used in other statewide multimodal analysis. higure 7 is a plot of the bus network as it has been developed during the impleraentation of the Statewide mult-modal ravel forecasting process.

STATEWIDE FACILITY FILE

ARPORTS
AMBULANCE SERVICE
BUS TERMINALS
CAM GROUNDS，PURHCAND PRIVA思思
CERTIFIED INDUSTRIAL PM M
CITIES VR良 30,000 POPULATIO
CITIES OVES 5．000 POPUEATION
CVIL DEERENSTRRMINALS
COLABES，思ON－PUBLIC
COHABES．PUKHECOMMUNITY

COMVHNTION CENTERS

OOHCOHMSES
HBG SCHOCLS
HISTOUESITES

HOSMITAS

MENTAL HEALTH CENTERS
NEWSPABERS，DAHLY

NURSINGHOMES
POTME

SEWAGE TEEATMENTPACHITRES
SK1 \＆ESORTS
SNO M MOM MEMTRAILS

STATEPARKS

STATEPOLCEMOSTS

TRUCK TERMMNATS
UNEMPIOYMENT OFFICES
WEATHER SERVICE SYATIONS－MATIONAL
WHOLESALE TRADP CENTERS

$-18 \cdot$

AIR NETWORK

The air network, again similar to the highway network system, consists of all Michigan airports with regularly scheduled passenger flights and links joining those airports which are actually connected by at least one flight. To determine those airports and links which qualified, the "Officlal Adrline Guide, North American Edicion was consulted. Node rambers are located at each airport. The links in this network are one-way links, since in some cases, flights are only scheduled in one ditection between two airports. Each link contains the travel time from origin to destination and the zone of destination (see Figure 8). A few outstate alxports have also been included in the network so that, at present, all direct fights from every Michigan airport has a corresponding oneway link with the exception of Detroit Metropolitan Airport. Only the closest outscate airports are currently in the network, but plans have been made to add all other airports connected to Michigan (via Detroft Metro Airport) by direct filghts, Also, because of changes in scheduled Flights, network changes will perfodically be required. A computer plot of Michigan's air network is depicted in Figure 9.

The names and locations of all airports included in the current National Airport Systems Plan and the State Areport Systems Plan are included in the Statewide facility file together with data on the passenger travel originating and terminating at each airport. shis was obtained through the cooperation of the Aeronautics Commission.

A-node	Bmode	Travel Time		Destination Zone
7503	7511	.5 hrs		151
7511	7503	.5 hrs	237	
7503	7507	.4 hrs	410	
7507	7503	.4 hrs		237
7507	7511	.5 hrs.	151	

FIGURE 8: EXAMPLE OF ONE WAY AIR LINKS

RAIL NETWORK

This network was created in nearly the same fashion as was the highway network. The "Official Railway Map of the State of Michigan, January 1, 1965" was used as a guide. All the tracks on this map, except those known to have been removed, have become part of the coded rail network, An inventory of all stations appearing on this map resides in the facility file in Figure 6. Each segment of rail. txack between two consecutive stations (or intersections) was coded as one link for a total of $2300+$ links. Each link as present contains six volume words. The information on these links is listed here:

1) Distance
2) Destination Zone
3) Maxinum speed (As defined by the Rail
4) Contro1 Section Numbers
5) Number of Tracks Planing Section of the Modal Planning Division)
6) Track Company Binary Code

Some links also have passenger and freight tmes, but in most cases, this information is still being collected and edited before being placed in the rail network. Blanks may also occur in the other volume fields, indicating that this information has not yet been located for our use. In particular, speeds have not yet been coded for the entire state. Outstate xail links and car ferry links are being added to the network at chis time.

The network, as it presently appears, contains sone branches which are not operational. This is not an oversight. Every link need not be used in every assignment, but it is important to be able to test quickly the effects of reactivating a given branch line. This can be done most easily if the line already exists in the network and need only be "opened" internally. A plot of the Statewide rail network is shown in Figure 10.

$-23 m$

NET PROGRAM

This program produces a complete transit link deck for a specified transit system from general transit systera from a genexal kransit network link deck and a description of the desired transti metwoxk. thia description Is given in terms of the consecutive nodes on each oneway transit route and the local "centroid" 1inks conmecting the zone centroide to the transit network. Since only one route is allowed to use a glven link, artificial links are generated for those links used by severay routea. Each oneway link in the final transtit link deck is thus assoctaced with earacty one route (with the exception of local links). The transit route on a given link has stops at both the origin and destination nodes. If in the original description of the desixed transit network there were intermediate nodes, the link distances, thmes, etc. are combined to give the correct data from stop to stop. In this way, for example, a bus route with five stops which travels over 15 highway links can be condensed into four links (see Figure 11). The existing highway link deck is utlized to creace "local limks", which connect each zone centroid to the transit stops (stacions) via highway. These local links are included in the final transit network.

After this program had been used a few tines, and the succeeding programs examined, the program was revised slightly to create another file to ald in building the zonewcomone frequency of service matrix needed ${ }^{-1} n$ the MODAL SPLIT Program. This revision was very minoxg but greatly simplified the task of building the necessary matrix.

Since portions of the output of the NET BUILD program aye included, a few explanations should be made. In the node description of the transit ("BUS") routes, the node numbers refer to successive nodes on the general.

FGGURE $11:$ EXPRESS LINKS

transit link deck-min this case, the existing highway link file. Negative node numbers are used if the bus does not stop at that node: positive nodes indicate bus stops (Figure 12). Routes must be mabexed consecutively from one, and at present, may not exceed thirty-nine. For purposes of later convenience and cime-saving, all nodes at which a bug stogs are renumbered, beginning with zone centroids. The program lists the renumbering scheme, as well as listing the routes which stop at each of ehe bue gtops (see Figure 13). The next 1lsting from the program groups the cransit links as regular, express, and local (Figure 14). Regular links are those found in the highway network at which a bus stops at both the origin node and the destination node of the link. Express links axe defined as those for which several highway links were combined to form one bus crangit link, and local links are links connecting zone centroids to bus stops via highway links.

The last table printed by this program is the final cransit link deck (Figure 15). Artiflcial links were added wherever two routes coincided on a given link; these links are assigned the same data as the oxiginal link, except that a new node number was used. Dummy links are then used to connect the nodes (see Figure 16). These dumay links are given negligible distances, so that they contribute nothing to the length of a trip.

The transit network created by chis progran becones a majox building block for each of the succeeding programs. The pogara is used co create any transit network desired. A Elow chart is shown in Figures $17 a-e$ which documents the detailed operation of this program.

TRANSIT ROUTES

ROUTE

NUMBER
-NODE DESCRIPTION OF ROUTE..

1686-1687-1891-2611-1688-1758-1764-1772-1771-1769
$2120-2174-2117-2058-2059-1841-1834-1835-1833-1832-1831-1844-2718-1870-1853-1854-1851-1852-1849$
1882-2686-1547-2789-1693-2783-1586-1687-1891-2611-1688-1758-1764-1772-1771-1769
$2120-2122-2125-2127-2128-2523-2197-2689-2688-1838-1836-1835-1833-1832-1831-1844-2718-1870-1853-1854$ $1850-1851-1852-1849-1882-2686-1547-2789-1693-2788-1686-1687-1891-2611-1688-1758-1764-1772-1771-1769$
$2120-2122-2125-2123-2197-2689-2688-1838-1837-2495-1833-1832-1831-1844-2718-1870-1853-1854-1850-1851$ 1852-1849-1882-2686-1547-2739-1693-1692-1691-1690-1774-1661-1769
1686-1687-1689-1691-2608-1691-1690-1774-1651-1769
1769-1661-1 774-1690-1691-1692-1693-2789-1547-2686-1882-1849-1852-1851-1854-1853-1870-2718-1844-1831 1832-1833-1835-1834-1841-2059-2058-2117-2174-2120
1769-1771-1772-1764-1758-1688-2611-1891-1687-1686-2788-1693-2789-1547-2686-1882-1849-1852-1851-1850 1854-1853-1870-2718-1844-1831-1832-1833-1835-1836-1838-1838-2688-2689-2197-2123-2128-2127-2125-2122
$1769-1771-1772-1764-1758-1688-2611-1891-1687-1686-2788-1693-2789-1547-2686-1882-1849-1852-1851-18506$ 1854-1853-1870-2718-1844-1831-1832-1833-1835-1834-1841-2059-2058-2117-2174-2120
1769-1661-1774-1690-1691-1692-1693-2789-1547-2686-1882-1849-1852-1851-1850-1854-1853-1870-2718-1844 1831-1832-1833-2496-1847-1838-2689-2197-2123-2128
1686-2788-1693-2789-2547-2686-1882-1849-1852-1851-1850-1854-1870-2718-1844-1831-1832-1833-1835-1854 1834-1841-2059-2058-2117-2174-2120
$1769-1661-1774-1690-1691-2058-1691-1689-1687-1686$
$1769-1771-1772-1764-1758-1688-2611-1891-1687-1685$
$1850-1847-1846-1845-1678-2970-1685-1684-1552-1563-1555-1674-1673-2630-2963-1679-1668-1679-2574-2708$ 1598-1610-1605-2438-1602
$1602-2438-1605-1609-1612-1623-1612-1609-1610-1598-2708-2574-1670-1658 \cdot 1679-2968-2630-1673-1674-1565$ $1563-552-1684-1685-2970-2678-2845-2846-2847-2850-2552-2853-2852-2013-1859-1866-2807-1866-1868-1871$ $2562-2150-2144-2151-2162-2163$
$1602-2438-1605-1509-1612 \cdot 1623-1512-1609-1610-1506.2708-2574-1670-1665-1675-2968-2630-1673-1674-1565$ $1563-1552-1684-1685-2970-1678-1835-1845-1846 \cdot 1847-1850-1851-1852-1851-1013-1859-1866-1868-1871-2562$ 2144-2151-2162-2163
$2163-2162-2151-2144-2150-2562-1871-1868-1866-2807-1856-1859-1013-1851-1852-1851-1847-1845-1845-1850$ $1578 \cdot 2970-1685-1864-1552-1563-1675-1674-1673-1671-2575-1628-1624-1614-1610-1605-2438-1602$
A. NODE RENUMBERING SCHEME

LOCAL LINKS

1	100	2.00	25	1817
100	1	2.00	1817	25
2	100	11.00	26	1817
100	2	11.00	1817	26
3	100	21.00	27	1817
100	3	21.00	1817	27
4	99	17.00	28	1815

c. TRANSTT LINK DECK

PATH PROGRAM

This routine, using each selected transit network from the NET BUlLD Program, determines minimum time paths for each zone centroid paix. Matrices of wait plus transfer time, access plus egress time and total transit travel time are calculated for the minimum tine paths. The paths are produced for later use in the NET LOAD Program. A headway time - - the average time between runs must be entered for each route. The wait time is then calculated by adding onewhalf the headwaye for all routes on the minimum path. This use of headways is not completely saifisfactory and changes have been considered; but the changes would be very time-consuming, both in making them and in computer run time; so they have been postponed until more routine applicathon of the system has been conpleted.

It should also be mentioned that since the flow chate was prepared for this program, three small subroutines have been added to it. These subroutines create zonewtomone cost, fare, and frequency of service matrices for use in the succeeding programs.

Figure 18 gives a listing of the input parameters. This is followed by the minimum path cable in Figure 19. The first three numbers are from the time matricesmothe first is total transit time from zone 1 to zone 2, the second is access plus egress time, and the third is total wait time (all times are in mimates). Next follows the minimum time pach, to be read from right to left. The mumbers in parenthesis are ronte numbers. the others are node numbers. Thus the first path begins at node $\# 1$ (zone centroid), goes to node 100 (nearest bus stop) and then to node 3 (zone centroid). These node numbers are the newly assigned numbers from the NET BULLD program. Note that the path between these two zones does
not utilize a bus route and hus the wait time is set equal to zero. When the frequency of service matrix is built, this will be noted and subsequentiy the frequency of bus service between Zones 1 and 2 will become zero, $i, e .$, no routes in any given day. Also of interest is the additional wait time which is encountexed when a traveler must switch buses (indicated by a change in route numbers). A flow chart of the more detailed program operation appears in Figures 20amc.

BUS PATHS - - - TEST REGION

PARAMETERS
 1. NUMBER OF ZONE CENTROIDS (NCENT) $=87$

2. NUMBER OF LINKS (NLINK) $=445$ (MAXIMUM VALUE OF NLINK $=32000$)
3. NUNBER OF NODES (NNODE $=374$ (MAXIMUM VALUE OF NNODE $=2400$)
4. NUMBER OF (ONE-WAY) TRANSIT ROUTES (NRTES) $=39$ (MAXIMUM VALUE OF NRTES $=401$
5. FIRST ZONE CENTROID FROM WHICH MINIMUM PATHS TO BE BUILT (NHOME) $=1$
6. LAST ZONE CENTROID FROM WHICH MINIMUM PATHS TO BE BUILT NSTOP) $=87$

TRANSIT ROUTE HEADWAYS -- MINUTES

ROUTE	
NUMBER	HEADWAY
1	10.00
2	10.00
3	10.00
4	10.00
5	10.00
6	10.00
7	10.00
8	10.00
9	10.00
10	10.00

TRANSIT MINIMUM PATH PROGRAM

OUTPUT

PROJECT ID BUSPATHS-TEST REGION

13.00	13.00	0.00	2	(0)	100	(0)	1	$($			
F 23.00	23.00	0.00	3	(0)	100	(0)	1	(
\% 38.50	19.00	5.00	4	(0)	99	(26)	100	(0)	1		
44.60	5.00	5.00	5	(0)	112	(25)	100	(0)	1		
90.00	19.00	10.00	6	(0)	114	(25)	100.	(0)	1		
65.60	26.00	5.00	7	(0)	112	(25)	100	(0)	1		
49.60	10.00	5.00	8	(0)	112	(25)	100	(0)	1		
53.60	14.00	5.00	9	(0)	112	(25)	100	(0)	1		
64.40	10.00	5.00	10	(0)	113	(25)	143	(25)	100	$0)$	1
60.40 47.60	6.00 8.00	5.00 5.00	11	$\binom{0}{0}$	113	(25)	143	(25)	100	$0)$	1
47.60 49.60	8.00 10.00	5.00 5.00	12 13	$\binom{0}{0}$	112	(25)	100	$\binom{0}{0}$	1		
79.00	8.00	5.00 10.00	14	(0)	112 114	(25)	100	($\begin{array}{r}0 \\ (25)\end{array}$	100		
72.40	18.00	5.00	15	(0)	113	(25)	143	(25)	100	0	1
75.00	4.00	10.00	16	(0)	114	(31)	112	(25)	100	0)	1
58.40	4.00	5.00	17	(0)	113	(25)	143	(25)	100	0)	1

MODAL SPLIT PROGRAM

MODAL SPLIT PROGRAM

This is the first program to consider all the desired travel modes and networks which were produced singly in the preceding two programs. The MODAL SPLIT program is an intercity passenger demand model calibrated to intercity travel within the State of Michigan. It performs trip generation, distribution, and modal split based on zone-tomzone modal time, cost, and frequencyoofoservice data, and upon family income levels In origin and destination zones, Any combination of auto, alr, bus, and rail modes may be considered.

The program, based upon the zonemo-zone data, calculaces percentages of trips using each mode, and uses these percentages in combination with auto trip tables and income data to generate trips by mode for each zone pair. This procedure will permit one to compare trips between zones and "trade-offs" between modes if the relative cost of a given mode increases, or frequency of service decreasess or even if required travel wait time is reduced. The program $1 s$ also senstive to changes in the economic structure of a community, since one input is the number of families with incomes exceeding $\$ 10,000$. The zone number listed by this program corresponds to the zone number of the 547 zone system. The trip tables (Figure 21) become input for the NET LOAD Program. A detailed flow chart for the program is shown in Figures 22a-d.

FIGURE

NET LOAD PROGRAM

This is a generalized program for loading trips on different modal networks. Accident data may be entered either (1) by link, or (2) by mode, link type, and 1ink facility code groupings. If desired, accident data by link may be used whenever avallable, and when not available, accident data for that particular group may be substituted by the program. Parking costs by zone and link toll data were also input data for the original program, but have since been omitted because they ace not applicable at the present time. The original program also contained capacity restraint and multi-purpose options which are now, at least temporarily, deleted. A zone-to-zone fare matrix is required for all modes except auto; this matrix is now created by a subroutine of the PATH Program and used to determine the link loadings.

The impact analysis measurements from this program are quite extensive. The first table (Figure 23) prints the accident data entered by method two. Table B of the standard input data would list parking costs by zone (if used), followed by tolls by link in Table C. Next, a listing of parameters (Figure 24) and the transit network may appear if desired. (Tables A and B of modal input data). Table C is printed only when capacity restraint loading is performed and Table D combines the trip table generated by the MODAL SPLIT Program (for given mode) and the zone-tomzone fare matrix. Thus, most of the majox results of the preceeding programs may be consolidated into the output of this program. After these tables of input data are found the output data. The first table (Figure 25) lists links and the link loadings for the first mode being considered based upon the paths and

**** STANDARD INPUT DATA*****

PROBLEM IDENTIFICATION NETLOAD - CODE SUS NO.

A - ACCIDENT DATA (RATES PER MILLION VEHICLE - MLES - AUTO MGDE, PER MLBMON BASSENGER - MHLES - TRANSIT MODES)

	LINK - PACILITY		-- NO, OF ACCIDERTS --			TOTAL		- ACCIDENT RATIOS --		TOAL
	TYPE	CODE	FATAL	INUWRY				FATAL	INJURY	
$\underset{i}{i}$	LOCAL	13	8.800	402.200		8651.200		0.873	. 0.618	1.000
	LOCAL	14	8.800	402.200		8655.200		0.873	0.618	1.000
	HWAY	1	1.800	70.500	\cdots	-0.000		0.873	0.562	1.000
	HWAY	2	2.500	143.000		-0.000		0.873	0.597	1.000
	HWWY	3	5.700	\$66.700	-	-0.000		$\bigcirc .762$	0.559	1.000
	HIWAY	4	2.300	328.300		-0.000		0.913	0.618	1.000
	HIWAY	5	7.400	164.100		-0.000		0.686	0.585	1.000
	HWWAY	5	2.400	296.800		-0.000		1.000	0.590	1.000
	HHWAY	7	8.800	402.400		8651.200	-	0.873	0.678	1.000
	Hiway	8	2000	417.300		8551.200		0.946	0.665	1.000
	HWAY	0	4.800	81.000		-0.000		1.000	0.647	1.000
	Hiway	10	5.800	478.800		-0.000		0.750	0.627	1.000
	HIWAY	11	8.800	402.200		8651.200		0.873	0.618	1.000
	HWWAY	12	2.000	411.300		8651.200		0.946	0.666	1.000
	HEway	13	8.800	402.200		8651.200		0.873	0.618	8.000
	HIWAY	88	8.800	402.000		8651.200		0.873	0.618	8.000
	LOCAL	1	8.800	402.200		8657.200		0.873	0.618	1.000
	LOcAl	3	8.800	402.200		8651.200		0.873	0.618	1.000
	Alf	3	0.630	0.000		0.251		0.398	-0.000	1.000

****** INPUT DATA - BUS MODE ******

A- PARAMETERS

PM = AHEES
NFIN $=0$
MINPAT $=2$
NTPURP $=1$
$V E H C A P=50.00$
NRTES $=39$
FIXEAR $=0.00$
PEAK1 $=1.00$
PEAK2 $=1.00$
***** LINK LOADINGS FOR BUS MODE *****

	LINK NUMBER	NODE FROM	$\begin{aligned} & \text { NODE } \\ & \text { TO } \end{aligned}$	ZONE NUMEER	CAPACITY	LANK TYPE	FACILITY CODE	ASSIGNED VOLUME	LATEST SPEED	V/C OR LOAD FACTOR ROUTE	
	1	25	1817	25		LOCAL	1	9.27	30.		0
	2	26	1817	26		LOCAL	1	10.60	33.		0
	3	27	1817	27		LOCAL	1	7.38	43.		0
	4	28	1815	28		LOCAL	1	10.37	39.		0
	91	1565	1850	183	17950.	BUS	4	71.50	49.	0.00	14
	92	1565	2968	192	5770.	BUS	4	44.57	51.	0.01	13
	93	1565	1565	0		DUMAM	1	-0.00	0.		15
	94	1565	1565	0	-	DUMMMY	1	-0.00	$\cdots 0$.		35
	95	1565	2968	112	5770.	BUS	4	3.02	51.	0.00	17
	96	1565	2968	192	5770.	BUS	4	0.46	51.	0.00	18
	97	1585	1602	236	28000.	BUS	2	0.00	60.	0.00	21
	98	1558	2038	238	19000.	BUS	${ }_{3}$	0.00	59.	0.00	22
	99	1585	2596	245	3280.	EUS	3	0.00	55.	0.00	24
	100	1598	237	237		LOCAL	1	29.12	30.	0.00	0
	101	1598	1602	236	28000.	Bus	4	113.42	52.	0.00	13
8	102	1598	1623	236	4410.	BUS	4	11.39	38.	0.00	18
$\underset{\sim}{4}$	103	1598	2708	248	4760.	BUS	3	59.35	45.	0.00	14
1	104	1598	2708	244	4760.	BUS	3	0.00	45.	0.00	15
	105	1598	2708	244	4760.	BUS	3	0.00	45.	0.00	35
	106	1602	1602	336	28000.	BUS	4	0.00	52.	0.00	17
	107	1602	236	236		LOCAL	1	211.78	36.	0.00	0
	181	1815	28	28	3290.	LOCAL	1	10.55	39.	0.03	0
	182	1815	1817	26	3850.	BUS	3	85.99	50.	0.03	25
	183	1815	1981	240		BUS	3	96.26	50.		26
	184	1817	25	25		LOCAL	8	9.48	30.		0
	185	1817	26	26	3390.	LOCAL	1	10.82	33.		0
	186	1817	27	27	5510.	LOCAL	1	7.53	43.		0
	187	1817	1815	26		BUS	3	84.35	50.	0.02	26
	188	1817	2120	55		BUS	4	82.44	44.	0.01	25
	189	1832	119	119		LOCAL.	1	6.83	43.		0
	190	1832	121	121		LOCAL	1	10.18	36.		0
	191	1832	123	123		LOCAL	1	81.14	43.		0
	192	1832	1835	813	7010.	BUS	4	12.70	46.	0.00	7
	193	1832	1850	183	17890.	BUS	4	256.10	5 t.	0.01	2
	194	1832	1850	183	17890.	BUS	4	20.99	51.	0.00	3

ASSIGNED VOLUME IS IN TERNS OF VEHICLES ON LOCAL LINKS AND PERSONS ON ALL OTHER LINKS AN AVERAGE OF 2.0 PERSONS PER VEHICLE WAS ASSUMED
and trips generated by the PATH and MODAL SPLIT Programs, respectively. The next table (Figure 26) totals data by zone of origin. Then the trips are placed into appropriate time intervals which could help form a bar graph, again being grouped by origin zone, and then by destination zone (Figure 27), If trips are sorted by trip purpose, tables are also printed by trip purpose and zone of origin. For modes other than auto, the maximum volume is given for each route and the link listed on which this maximum volume is found (Figure 28). After all desired modes and their tables are completed, two more summary tables are created. The first table lists total passenger miles by mode (Figure 29 a) and the second gives number of accidents by mode and zone of origin (Figure 29b).

Figures $30 a-n$ show a flow chart of the program logic. It includes all options as found in the original program, even though some are not being used at this time.

Special note should be made of the data cotals by zone of origin table for modes other than auto. The colum headed "Fare Charges" represents revenue for the transit company, and with minor adjustments should be useful in estimating revenue by station or perhaps even by transit company,

* * * * D DATA TOTALS BY ZONE OF ORIGIN FOR BUS MODE * ****

NETLOAD---BUS
** * TRAVEL TINE DISTRIBUTION BY ZONE OF ORIGIN FOR BUS MODE \#\#

- PERSON TRIPS SMONN FOR INDICATEO TRAVEL TIME INTERVALS -

TAAVEL. THME INTERVAL - MIN

ORIGIN 2ORE	15. 20.	20.-23.	25.- 30.	30. 35.	35.- 40.	40.- 45.	45.- 50.	$t 50$.
25	0.060	0.000	0.000	0.760	2.100	4.010	0.540	11.130
26	0.000	0.000	0.000	0.000	0.000	1.210	2.650	17.430
27	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.760
28	0.000	0.000	0.000	0.850	0.000	2.380	0.000	17.510
55	3.770	3.960	2.650	4.290	6.210	4.630	4.100	67.600
56	0.000	0.000	0.000	0.270	0.200	0.190	1.920	4.190
67	0.000	0.000	0.000	0.000	0.000	1.310	0.760	10.440
E8	0.000	3.060	3.220	2.150	3.480	5.080	2.960	51.080
59	0.000	0.000	1.110	1.950	0.000	1.530	1.350	17.820

***** TRAVEL TIME DISTRIBUTION BV ZONE OF DEST FOR BUS MODE

- PERSON THEPS SHOWN EOR INOICATEO TRAVEA TIME INTERVALS -

DEST 2ORE	15.- 20.	20.-	25.	25.-	30.	30.-	35.	35."	40.	40.-	45.	45.-	50.	+ 50.
25	0.000	0.000		0.000		0.760		2.100		4.010		0.540		11.550
28	0.000	0.000		0.000		0.000		0.000		1.200		2.650		17.870
27	0.000	0.000		0.000		0.000		0.000		0.000		0.000		15.060
28	0.000	0.000		0.000		0.850		0.000		2380		0.000		17.860
56	3.540	3.880		2.490		4.250		6.350		4.970		4.100		75.850
56	0.000	0.000		0.000		0.290		0.220		0.200		1.920		4.360
57	0.000	0.000		0.000		0.000		0.000		1.240		0.750		11.180
58	0.000	2.870		3.150		2.020	;	3.440		5.140		3.530		56.110
59	0.000	0.000		1.040		1.870		0.000		1.520		1.510		19.600

FIGURE 28: MAXIMUM VOLUMES BY ROUTE

MAXPMUIN VOLUMES ON ROUTES

ROUTE	LINK	-NODES-	NOLUMES	
1	149	96	98	134.
2	193	101	104	256.
3	290	112	113	29.
4	158	97	98	419.
5	329	119	104	61.
6	241	105	98	451.
7	175	98	96	131.

$\ldots-$		- AUTO MODE $-\cdots$		
LOCAL.	ARTERIAL.	FREEWAY	ACCESS	TRANSIT
1974474.	3451242.	2647718.	12949.	22498.

- BUS MODE .-.

ACCESS TRANSIT
38459. 156678.

- RAIL MODE --.-

ACCESS TRANSIT
$20876 . \quad 35789$.

FIGURE 29a

TOTAL NUMBERS OF ACCIDENTS BY ZONE OF ORIGIN

FIGURE 29b

CONCLUSION

CONCLUSION

New Federal legislation has demanded that regional transportation systems planning must include the consideration of modal options and the adequacy of existing facilities within present corridors. In order for the results of such considerations to influence the actual selection of a transportation plan, there nust exist a multi-modal transportation modeling system which enables decision-makers to monitor the trademoffs between alternative plans and to do this quickly and efficiently. Further, such a modeling system must be flexible enough to reflect changing goals, attitudes, and sociomeconomic conditions.

Michigan is currently testing such a planning-oriented modeling system. The basic programs in Michigan's package modifications of routines were developed specifically for Michigan by the Stanford Research Institute. At this writing, networks for air, rail, bus, and highway have been defined, the four basic programs have been converted to the Burroughs B-5500 computer used at the Michigan Department of State Highways and Transportation, and passenger traffic assignments for all four modes have been accomplished in a test region. A report soon to follow will document the use of the system in regional multi-modal planning, in which trade-offs between modes will be examined in the test region.

This modeling system holds the potential for addressing many questions which are currently at issue, such as branch line abandonments, avoidable costs, subsidy trade-offs between modes, and induced revenues generated by improvements in frequencies of service. It allows management to compute needed capital expenditures by route or to begin to do cost-benefit or cost-effectiveness analysis on proposed improvements. Its bymproducts include the ability to monitor increased or decreased social interaction,
farm-to-market or factory-to-outlet costs and times, and regional economic stimulation or depression as result of adding or deleting service in one or more modes of travel. In short, such a modeling framework is necessary if effective long-range multi-modal transportation system planning is to become feasible in Michigan.

