

Michigan Department of Transportation

Infrastructure Protection and Rehabilitation Response to High Lake Levels

MDOT OR21-013

Appendix B: Proposed Coastal Design Criteria

March 2022 (Final)

Infrastructure Protection and Rehabilitation Response to High Lake Levels MDOT OR21-031

Appendix B: Proposed Coastal Design Criteria

March 2022 (Final)

Primary Author:

Arcadis of Michigan, LLC 300 Washington Square, Suite 315 Lansing Michigan 48933

Phone: 517 337 0111

Contributing Author:

Michigan Technological University 1400 Townsend Dr, Houghton MI 49931

Phone: 986 4087 226

Our Ref:

30080765

Prepared For:

Michigan Department of Transportation

Hal Zweng, P.E.

Environmental Services Section Manager

Michael Townley

Research Administration Section

Research Project Administration Manager

Bureau of Field Service

Disclaimer

This publication is disseminated in the interest of information exchange. The Michigan Department of Transportation (hereinafter referred to as MDOT) expressly disclaims any liability, of any kind, or for any reason, that might otherwise arise out of any use of this publication or the information or data provided in the publication. MDOT further disclaims any responsibility for typographical errors or accuracy of the information provided or contained within this information. MDOT makes no warranties or representations whatsoever regarding the quality, content, completeness, suitability, adequacy, sequence, accuracy or timeliness of the information and data provided, or that the contents represent standards, specifications, or regulations.

This material is based upon work supported by the Federal Highway Administration under SPR-1712. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Federal Highway Administration.

The statements, analysis or calculations in this report are based on information provided to Arcadis by third parties and shall be used as general information only. The terms "engineer" and "engineering" used in this report are general terms that do not refer to final engineering design but are only used in terms of high level or conceptual engineering. The plans included in this report are not intended for construction purposes and should be checked and verified for changing field conditions prior to further development.

As Arcadis does not have a complete control over the accuracy of the data used in the conceptual engineering and design completed in this report, it is recommended that the results shown not be used without first obtaining additional information and confirming all results. This includes, but is not limited to, the roadway survey data, the recommended bridge structures, the soils and geotechnical data, the erosion control calculations, the wave calculations, future high water and wave forecasts, and all other engineering design. The statements provided herein shall not be relied upon for any specific application without independent verification and assessment of suitability by the project's engineer of record, architect, or another party acting in similar capacity, as stipulated by the authority having jurisdiction or other applicable contractual regulations.

Therefore, while preliminary recommendations, calculations, and engineering design are based on sound and established principles, they shall not be deemed as instruction for any specific application or project without subsequent independent analysis, evaluation, verification and assessment of appropriateness for such an application by the engineer and/or architect of the project.

Based on the preceding, Arcadis hereby denies any liability whatsoever for losses and/or damages of whatever kind (and sustained by whomever) that might result from the above.

Table 1. MDOT Current Drainage Criteria

Asset Type	Design Year Storm	Check Year Storm	Freeboard Required	Design Life	Tie-in Grading Slopes	Longitudinal Slopes	Manual Reference	Comments
Storm Sewers	10-year just full; 50- year in sags or depressed sections of roadway	Allowed to surcharge for less frequent storms	1' below gutter grade	50-years	-	-	MDOT Drainage Manual, 7.4.1	-
Pavement Spread	10-year storm for high volume roads		Keep spread within shoulder. With no shoulder, 3' maximum spread.	-	-	-	MDOT Drainage Manual, 7.4.3.4	-
Culverts	2% or 50-year storm	1% or 100-year storm	1.5' below edge of shoulder for 50-year storm and no greater than elevation where flow diverts around the culvert, i.e. overtopping elevation	Cross culverts 50-years; Drive culverts 25-years	-	Match the existing stream bottom slope	MDOT Drainage Manual 5.3, FHWA FAPG, Part 650, and Order 1977-4 "State Flood Hazard Management Plan"	Note that a culvert with a drainage area above 2 square miles, an environmental permit under part 31 of the NREPA from the MDED are required. A detailed hydraulic analyses is required and is performed by MDOT Hydraulics Unit.
Bridges (Waterway Opening)	50-year storm (no overtopping of the bridge)	100-year storm shall not cause harmful interference	Where practical, a minimum clearance of 2' between the water surface and low chord during the design flood	75 years	-	-	MDOT Drainage Manual, 6.3.2	-
Bridges (Scour)	100-year storm	500-year storm	-	75 years	-	-	MDOT Drainage Manual, 6.3.2	Geotechnical Engineer reviews foundation design using a safety factor of 1.0
Streams	Design over a range of storms - from the 10-year to the 100-year	100-year	1.5' below edge of shoulder	-	1V:3H or flatter	0.10% absolute minimum and 0.30% preferred minimum	MDOT Drainage Manual, 4.3	-
Roadway Channels	Design over a range of storms - from the 10-year to the 100-year	100-year	1.5' below edge of shoulder	-	1V:3H or flatter	0.10% absolute minimum and 0.30% preferred minimum	MDOT Drainage Manual, 4.3	-

Asset Type	Design Year Storm	Check Year Storm	Freeboard Required	Design Life	Tie-in Grading Slopes	Longitudinal Slopes	Manual Reference	Comments
Ditch Erosion Protection	-	-	-	-	-	0.10% absolute minimum and 0.30% preferred minimum	MDOT Drainage Manual, 4.4.3.2.3	Ditch erosion protection is based on slope and not on velocity or shear stress. No mention of rock channel protection or any criteria for when to use it. Special rock designs/ energy dissipaters are referred to FHWA HEC Manuals
Detention Facilities	10-year for enclosed primary device and 25-year for open channel device	100-year for auxiliary and emergency overflow device	1.5' above 100-year elevation	75 years	1V:3H or flatter	0.30% minimum bottom slope	MDOT Drainage Manual, 8.3	-

Table 2. Proposed Coastal Criteria. Note, the following is example criteria only.

Asset Type	AADT	Design Water Level	Check Design Water Level	Freeboard Required	Design Life	Design Elevation Calculation	Maximum Side Slopes	Minimum Setback from Shoreline	Specific Methodology to Use	Wave Data to Use	Comments
Coastal Roads for Inundation	Roads with ADT < 2000 vpd	25-Year	50-Year	1.5' below EOP	100-year	DWL + Wave Height +Wave Runup	2:1 Max, 3:1 preferred	75'	For wave height assume: Hb = 0.78*ds and Use Surf Similarity Eq. for Wave Runup	Weekly	-
Coastal Roads for Inundation	Roads with ADT > 2000 vpd	50-Year	100-Year	1.5' below EOP	100-year	DWL + Wave Height +Wave Runup	2:1 Max, 3:1 preferred	75'	For wave height assume: Hb = 0.78*ds and Use Surf Similarity Eq. for Wave Runup	Weekly	-
Coastal Roads for Slope Erosion	Roads with ADT < 2000 vpd	25-Year	50-Year	1.5' below EOP	100-year	DWL + Wave Height	2:1 Max, 3:1 preferred	75'	For wave height assume: Hb = 0.78*ds and Use Hudson Equation	Hourly	Used to Size Armor Stone. Assume ds = scoured depth to be conservative
Coastal Roads for Slope Erosion	Roads with ADT > 2000 vpd	50-Year	100-Year	1.5' below EOP	100-year	DWL + Wave Height	2:1 Max, 3:1 preferred	75'	For wave height assume: Hb = 0.78*ds and Use Hudson Equation	Hourly	Used to Size Armor Stone. Assume ds = scoured depth to be conservative
Coastal Bridges for Inundation	Roads with ADT < 2000 vpd	25-Year	50-Year	2' to bottom of chord	100-year	DWL + Wave Height +Wave Runup	-	75'	For wave height assume: Hb = 0.78*ds and Use Surf Similarity Eq. for Wave Runup	Weekly	-
Coastal Bridges for Inundation	Roads with ADT > 2000 vpd	50-Year	100-Year	2' to bottom of chord	100-year	DWL + Wave Height +Wave Runup	-	75'	For wave height assume: Hb = 0.78*ds and Use Surf Similarity Eq. for Wave Runup	Weekly	-
Coastal Bridges for Erosion and Scour	all	100-Year	500-Year	2' to bottom of chord	100-year	DWL + Wave Height	2:1 Max, 3:1 preferred	75'	For wave height assume: Hb = 0.78*ds	Hourly	-
Revetments (Toe of Slope)	all	25-Year	50-Year	-	50-year	DWL + Wave Height	2:1 Max, 3:1 preferred	-	For wave height assume: Hb = 0.78*ds and Use Hudson Equation	Hourly	Used to Size Armor Stone. Assume ds = scoured depth to be conservative

Asset Type	AADT	Design Water Level	Check Design Water Level	Freeboard Required	Design Life	Design Elevation Calculation	Maximum Side Slopes	Minimum Setback from Shoreline	Specific Methodology to Use	Wave Data to Use	Comments
Revetments (Overtopping & Crest Elevation)	all	50-Year	100-Year	1.5' Overtopping	100-year	DWL + Wave Height +Wave Runup	2:1 Max, 3:1 preferred	-	For wave height assume: Hb = 0.78*ds and Use Surf Similarity Eq. for Wave Runup	Hourly	-
Sea Walls (Toe of Slope)	all	25-Year	50-Year	-	50-year	DWL + Wave Height	-	-	-	Hourly	Need to do a typical retaining wall analysis for global stability, i.e. overturning and sliding with a FS = 2.0
Sea Walls (Overtopping)	all	50-Year	100-Year	1.5' Overtopping	100-year	DWL + Wave Height +Wave Runup	-	-	For wave height assume: Hb = 0.78*ds andSurf Similarity Eq. for Wave Runup	Hourly	Need to do a typical retaining wall analysis for global stability, i.e. overturning and sliding with a FS = 2.0

Notes:

adt = average daily traffic

ds = depth of water at structure toe

DWL includes normal high water level plus surge height

Hb = wave height

vpd = vehicles per day

Arcadis of Michigan, LLC 300 S Washington Square, Suite 315 Lansing Michigan 48933 Phone: 517 337 0111

Fax: 517 267 4755 www.arcadis.com