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EXECUTIVE SUMMARY 
 

The main objectives of the study are to (a) identify significant Pavement-ME inputs from 

literature based on design sensitivity, availability, and testing costs, (b) develop a prioritized list 

(most to least critical) of in-situ (including FWD testing) and laboratory tests to be conducted 

during or after construction to obtain significant inputs, (c) develop a protocol for materials 

sampling for laboratory and in-situ testing during or after construction. The protocol would at 

least include project type, test locations, sampling frequency, and schedule/timing for samples. 

The scope and amount of in-situ and laboratory testing should be practical and reasonable within 

the resources available to MDOT, (d) Establish a selection criterion for identifying projects for 

local calibration, (e) determine the applicability and feasibility of using in-situ FWD testing to 

estimate layer moduli instead of using modulus testing in the laboratory to improve efficiency 

and save resources, (f) determine if a tool/database exists for storing construction data (e.g., layer 

material properties relevant to the Pavement-ME software) and can be updated with the future 

acquisition of such data, (g) add collected inputs (construction data and material test results) to 

the database, including data from previous calibration efforts, (h) evaluate the differences in 

performance predictions of version 2.3 and the latest version of the Pavement-ME software, and  

(i) compare pavement designs and, if needed, perform local recalibration of the performance 

models in the version of AASHTOWare Pavement-ME. 

The research team identified and selected  163 new and 121 flexible rehabilitation 

projects. Similarly, the team selected 46 new JPCP and 11 unbonded overlay sections for rigid 

pavements for local calibration of performance models. The team used several statistical 

techniques for the calibrations—no sampling, bootstrapping, split sampling, and repeated split 

sampling. Verification using global models shows that global models could not provide 

reasonable predictions, and there was a need for local calibration. Local recalibration results 

show that the performance model predictions improve significantly after calibration for 

Michigan conditions. The pavement designs using new local models show fatigue and thermal 

cracking for flexible, while IRI and joint faulting are critical distresses for rigid pavements. 

LWD resulted in the lowest moduli values for all pavement layers (base, subbase, and 

subgrade) among in-situ field tests. The laboratory results show that the median subgrade moduli 

for all projects are between 12 and 17 ksi. The FWD and the DCP data estimated higher moduli 

for the subgrade layer for all projects with considerable spatial variability. The median subbase 

moduli values determined in the laboratory range between 15 to 25 ksi for all projects. The LWD 

and DCP data display similar trends with median subbase moduli determined from field tests 

below 10 ksi. FWD data analyses resulted in the highest subbase moduli values, slightly higher 

than the laboratory-determined median subbase moduli values. The laboratory determined 

median base moduli range between 30 to 40 ksi. FWD data analyses resulted in the highest 

moduli values for all the projects. Surface absorptivity data collected on a few projects show that 

there should be a difference between old and new HMA and PCC layers. The results of material 

characterizations for HMA, PCC, and unbound materials validate the design values used for 

various pavement layers. Protocols for in-situ testing frequency and material sampling quantity 

and frequency are developed for collecting material library data in the future. 
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CHAPTER 1 - INTRODUCTION 

1.1 PROBLEM STATEMENT 

The Pavement-ME (mechanistic-empirical) analysis and design procedure has been 
implemented in Michigan for designing new and reconstruct pavements. Several studies were 

performed in the recent past to characterize climate, traffic, material properties, and 
calibration of the performance models to address the local conditions, materials, and 

construction practices in the Pavement-ME procedure. While all the material properties and 

calibration of performance models were addressed to improve the approach's local 
applicability and accuracy, there were still some data gaps, specifically for material 

characterization and pavement construction. Examples of past data gaps that were improved 
include the clustered traffic data, HMA mix, and binder properties. Gaps in data need to be 

estimated (corresponds to Level 3 for Pavement-ME input levels), which may not be accurate 

for the location; therefore, having the actual values for new projects is likely to improve 
mechanistic-empirical (ME) calibration accuracy. Also, a limited number of rigid pavement 

sections were available for previous MDOT calibration (conducted in 2014 and 2017), so 
adding more data from new sections would improve ME performance model prediction. 

Furthermore, MDOT does not have criteria for selecting and a method for storing relevant 
data for calibration, material sampling, and testing for ME inputs for future calibration 

projects. Thus, there is a need to have a consistent procedure to include new pavement 
sections in the performance model calibration and obtain actual as-constructed material 

properties for ME inputs. Such procedures will enhance the accuracy and adequacy of the 

performance models for future pavement designs. 

Additionally, with updated Michigan ME data (climate and performance data), MDOT would 
benefit from a recalibration of AASHTOWare Pavement-ME Design to improve design 

prediction accuracy. Based on the above discussion, the following three main goals are 

accomplished in this study: 

1. A framework was developed to identify and include new pavement projects in the
Pavement-ME database. The framework addresses (a) collecting initial IRI

(smoothness) data, (b) characterizing the in-situ material properties of the pavement

sections by non-destructive and destructive sampling and testing, (c) establishing
climate, traffic and pavement cross-section inputs, and (d) documenting the

construction-related issues (if any). Establishing the framework resulted in a database
to store all the needed Pavement-ME inputs. It is envisioned that as these sections get

older and sufficient performance data becomes available, those can be part of future

calibration efforts to improve performance models' accuracy.
2. Once the framework is established, the input data for the pavement sections used in

the previous local calibration efforts are stored in the database. The input data for
additional pavement sections identified in this study were also appended to the

database. Further, the performance data from the existing (i.e., already in the
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calibration dataset) sections were updated to improve the local calibrations of the 
performance models.  

3. The Pavement-ME performance models were calibrated for Version 2.6. The updated
pavement sections and performance data were used for calibration. The team used

updated Pavement-ME inputs for traffic, HMA mix and binder properties, and

climatic data files. The team also evaluated the effect of calibration on pavement
design.

1.2 BACKGROUND AND SIGNIFICANCE OF WORK 

In 2004, mechanistic empirical-based pavement analysis and design methods were 

implemented in the National Cooperative Highway Research Program 1-37 (1). The method 
modified the empirical pavement design procedure of the American Association of State 

Highway and Transportation Officials (2). The Mechanistic-Empirical Pavement Design 

Guide (MEPDG) provides highway agencies with a practical tool for designing new and 
rehabilitated pavements. The analyses in ME principles use primary pavement responses 

(stresses, strains, and deflections) and incremental damage over time to predict surface 
distress through transfer functions. The reliability of performance prediction models depends 

on the accuracy of the transfer functions, which is achieved through calibration and 

subsequent validation with observed pavement condition data. A satisfactory correlation 
between measured and predicted performance indicators increases the viability, acceptance, 

and usage of the MEPDG procedures of pavement analysis and design procedures. 
Calibration is a mathematical procedure to reduce the difference between predicted and 

measured distress values. Cross-validation refers to a process that evaluates the performance 

of mathematical models to independent or global datasets (i.e., data that are not used for 
model development). The default transfer functions in the MEPDG were calibrated nationally 

using the Long-Term Pavement Performance (LTPP) and other experimental test sections 
data such as MnRoad. However, roadway design, construction, maintenance, rehabilitation 

policies, and local weather vary across the US. Therefore, NCHRP 1-40B provides the 

guidelines for local calibration (within a state or region) for transfer functions in flexible and 
rigid pavements (3). The local calibration process adjusts the Pavement-ME transfer 

functions for construction practices, material, traffic, climate, and pavement performance 
within a state or region.  

State Highway Agencies (SHAs) have identified the practical challenges in implementing the 
Pavement-ME analysis and design process. These challenges include: 

(a) Identifying the most significant input variables,

(b) Establishing data requirements and developing historical roadway conditions and

management database for continuous calibration of the performance models and
(c) Calibrating the pavement performance prediction model considering the local traffic,

climate, and material properties.

This study recognizes significant inputs and their corresponding levels for Pavement-ME use. 
It also provides guidelines for missing/incomplete inputs and their best estimates. Moreover, 
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recalibration of Pavement-ME v2.6 performance models using additional data provides 
MDOT officials higher confidence in using the MEPDG design approach.  

 

1.3 RESEARCH OBJECTIVES 
 
The following are the specific objectives of the study: 

 
1. Identify significant Pavement-ME inputs from literature based on design sensitivity, 

availability, and testing costs,  

2. Develop a prioritized list (most to least critical) of in-situ (including FWD testing) 
and laboratory tests to be conducted during or after construction to obtain significant 

inputs,  
3. Develop a protocol for materials sampling for laboratory and in-situ testing during or 

after construction. The protocol would at least include project type, test locations, 

sampling frequency, and schedule/timing for samples. The scope and amount of in-
situ and laboratory testing should be practical and reasonable within the resources 

available to MDOT,  
4. Establish a test matrix and selection criterion for identifying projects to be 

investigated in this study. The criteria should meet the time and resource constraints 

for the study,  
5. Determine the applicability and feasibility of using in-situ FWD testing to estimate 

layer moduli instead of using modulus testing in the laboratory to improve efficiency 
and save resources,  

6. Determine if a tool/database exists for storing construction data (e.g., layer material 

properties relevant to the Pavement-ME software) and can be updated with the future 
acquisition of such data. The database tool should address the following needs: 

 
a. Ability to extract/export data for ME design purposes. Moreover, the storage 

of performance data from the Pavement Management System (PMS) is 

preferred. It would be beneficial if it could view individual project data or all 
data of one type (e.g., rutting, cracking, material input items), and  

b. Evaluate the ARA ME calibration and Prep-ME tools as a potential solution. 
Develop a customized database tool with RAP (Research Advisory Panel) 

approval if no tool/database currently exists that meets these requirements, if 

approved by the RAP.  
 

7. Add collected inputs (construction data and material test results) to the database, 
including data from previous calibration efforts,  

8. Evaluate the differences in performance predictions of version 2.3 and the latest 

version of the Pavement-ME software and  
9. Compare pavement designs and, if needed, perform local recalibration of the 

performance models in the version of AASHTOWare Pavement-ME with RAP 
approval.  
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1.4 RESEARCH PLAN 

The research was conducted in ten (10) tasks, briefly discussed below, to accomplish the 
above objectives.  

1.4.1 Task 1: Review of Literature 

The team reviewed several studies related to the local calibration of the Pavement-ME 

performance models. The review's objective was to identify any gaps in construction, 
materials, and performance data (and the sensitivity of the Pavement-ME to these data) for 

the previously selected projects. Moreover, the team also reviewed local calibration efforts 

by different states, which have been summarized in this report. 

1.4.2 Task 2: Develop a Prioritized Inputs List and Relevant Testing 

Protocols 

Based on the sensitivity of the materials input in affecting pavement performance, a 
prioritized list of inputs/information necessary for calibration of reconstruct and rehab 

designs was developed in this task. Also, the testing protocols for materials testing at Levels 
1 and 2, including lab and field testing along with appropriate sampling needs, were chosen.   

1.4.3 Task 3: Develop a Test Matrix and Set of Criteria for ME-based 

Testing 

Some of the inputs have already been obtained via laboratory testing in previous MDOT 

projects [e.g., HMA |E*| and D(t)] (4). However, the mixes tested were determined by the 

availability of construction projects during the research project. During this research project, 
in consultation with RAP, the construction projects were identified to add data from new 

mixes to the DynaMOD database. Also, some critical inputs, such as the AC Surface 
Shortwave Absorptivity (1-Albedo), have never been measured in Michigan, and constant 

value is always assumed. The ASTM E1918 was used, along with a dual-pyranometer, to 

measure AC Surface Shortwave Absorptivity. Furthermore, HMA air voids and effective 
binder volume are also quite sensitive inputs. Historical JMF data was analyzed to determine 

clusters (i.e., regional patterns if any) of these variables that can be used by MDOT. 
 

For the PCC materials, there are various material properties related to ME inputs, including 

E, 
'

cf , modulus of rupture (MOR), coefficient of thermal expansion (CTE), unit weight, and 

Poisson's ratio. The team measured all these properties for the selected projects. Since MOR 

and CTE inputs significantly impact the predicted JPCP performance, these were measured in 
the laboratory for the projects chosen for verification purposes.  

 

There is also a need to characterize sensitive inputs of unbound layer properties, such as base 
and subgrade resilient modulus (MR), which are both currently assumed to be within a 

specific limited range. A database of these parameters is also needed. Other relatively 
sensitive inputs such as HMA, base, and subgrade Poisson's ratio can also be included in the 

testing program to establish a limited database (instead of assuming constant values from the 
literature). All base/subbase and subgrade materials were also subjected to index tests, 
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including sieve and hydrometer tests, Atterberg limit tests, specific gravity (Gs), and 
absorption tests.  

 
Crushed waste concrete [recycled concrete aggregate (RCA)] and crushed asphalt concrete 

[reclaimed asphalt pavement (RAP)] are considered alternative materials to be used in 

roadway base layer construction (5). Variability in the characteristics of these materials is 
very high and highly source-dependent. If available, RCA and RAP used in the selected 

projects were characterized during this study.  
 

While laboratory characterization of these pavement foundation materials is crucial for the 

Pavement-ME analysis, the laboratory process may take a long time and require more 
resources. The correlation of lab properties to non-destructive field measurements/testing 

would reduce necessary resources and save time. The proposed field measurements include 
density and moisture (nuclear gauge density), lightweight deflectometer (LWD), dynamic 

cone penetrometer (DCP), and falling weight deflectometer (FWD) tests. Correlations were 

established between the laboratory measurements (MR in particular) and stiffness (elastic 
modulus) obtained from LWD and FWD and the California Bearing Ratio (CBR) collected 

from DCP for unbound materials. Environmental impacts (e.g., freeze-thaw and elevated 
temperature) were considered during site selection since soil temperature and moisture 

significantly impact the behavior of base/subbase materials and subgrade soils. 

Environmental impacts would be more critical for evaluating the performance of recycled 
aggregates (RCA and RAP).  

 
The test matrices for critical inputs were prepared to cover a wide range of materials used in 

local construction. The MDOT's DynaMOD database (i.e., HMA |E*|, asphalt binder |G*| 

and creep compliance D(t)) and other data collected in Michigan were thoroughly reviewed, 
gaps were identified, and recommendations for further testing were made. Construction 

projects in the Summers of 2020 and 2021 were evaluated for potential additional 
HMA/WMA, PCC, base, subbase, and subgrade material collection and testing.  

 

Based on Tasks 1 to 3, the team developed test matrices for different material types for 
project selection to obtain materials for laboratory and field testing. After this task, the team 

recommended the final number of projects and the quantity of testing to be conducted in this 
research study. In summary, by the end of tasks 1 to 3, the following information is available 

to MDOT: 

 
(1) Recommended new projects for characterizing ME inputs for this study (construction 

projects from the 5-year future program)  
(2) The ME inputs for material characterization at different levels were identified for new 

projects constructed between the years 2020 and 2021 (best input levels) 

(3) List of tests and sampling needs for destructive/non-destructive tests for new projects 
constructed between 2020 and 2021 and preliminary protocols for future projects 

(finalized in Task 10).  
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1.4.4 Task 4: Conduct Laboratory Testing and Collect/Analyze FWD Data 

This task involved laboratory testing on the (HMA, PCC, and unbound) materials collected 
from the construction sites. Also, the research team worked with MDOT while collecting 

FWD data to back-calculate the layer properties, such as MR for unbound layers and the 

equivalent elastic modulus of the HMA layer. It should be noted that the HMA |E*| master 
curve was also backcalculated. The analysis requires (i) the FWD equipment to be able to 

store the time history of the deflection data, (ii) temperature with depth is measured, and (iii) 
temperature differential from top to bottom is more than 5°C. The techniques presented in the 

literature can be used to back-calculate the HMA |E*| (6, 7). As part of this project, the 

feasibility of FWD testing to obtain |E*| master curve was also explored. 
 

The UM team has extensive experience evaluating frost durability resistance, a significant 
problem in recent JPCP projects. Therefore, the team tested the selected field samples for 

durability to establish a materials database explaining non-load-related long-term pavement 

performance. Such testing results were used to explain the poor and good performance of 
selected pavement sections. Also, available data for joint deflection and time history from 

MDOT's FWD (if available) was used to evaluate the impact of unbound and stabilized base 
types on pavement performance to establish threshold deflections for loss of load transfer and 

dowel-bar looseness and impact on pavement performance (i.e., development of joint 

faulting). Reduced joint deflections are crucial in delaying the onset of dowel-bar looseness 
and faulting in jointed concrete pavements constructed on a stabilized base (ATB/CTB) or 

unbound OGDC. 
 

LWD tests conducted on the newly constructed subgrade and base layers, along with the 

compaction data (dry unit weight and moisture content), were used to obtain moduli and their 
variability. Samples were also collected to determine the index properties of both subgrade 

and base layer aggregates. Besides, DCP tests conducted after each layer's compaction 
process was used to obtain field CBR. This study also proposed to conduct FWD on base 

layers right after compaction is completed.   

 
Finally, laboratory/field correction factors for different unbound materials were 

recommended based on the work performed in this task. Also, this task identifies inputs that 
can be efficiently and accurately obtained by conducting FWD testing. 

1.4.5 Task 5: Evaluate Databases for Storing Construction and 

Performance Data 

The team evaluated the calibration assistance tool (CAT), an existing Prep-ME tool, and 

other existing tool/database(s) as the storage location for calibration data. Potential platforms 

for the database include MS Excel, MS Access, and Power BI. The team also evaluated the 
existing DYNAMOD tool to include laboratory test data for the HMA mix and binder, 

unbound layer, and PCC properties.  

1.4.6 Task 6: Review of Project Data for Calibration 

The main objectives of this task include: 
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(a) review the list of projects included in the last full calibration,  
(b) add PMS data for the years that have passed since then,  

(c) review MDOT lists of projects built since the last full calibration,  
(d) suggest projects to be added to the calibration dataset,  

(e) review project records to obtain information for ME inputs and  

(f) add the data collected as part of this research to the appropriate database (including 
PMS data).  

 
In order to locally calibrate the performance prediction models, in-service pavement sections 

were selected, which represent Michigan pavement design, construction practices, and 

performance. These pavement sections represent all current pavement types and 
rehabilitation types that are constructed by MDOT. The process for identifying and selecting 

pavement sections includes:  
 

• Determine the minimum number of pavement sections based on the statistical 

requirements,  

• Identify all available in-service pavement projects constructed between 2007 and 

2019 (projects and performance data before 2007 have already been incorporated in 

the previous calibration effort and are being used in the current calibration),  

• Extract all pavement distresses from the MDOT databases for all identified projects,  

• Evaluate the measured performance for all the identified projects, and  

• Establish a refined list of the potential projects that exhibit multiple distresses with 

sufficient magnitude.  

 

The team identified additional candidate projects during this study and added those to the 
existing database. Moreover, the materials and traffic-related inputs were revised from the 

previous calibration effort (8, 9) based on material testing results and new traffic data used 
during this study.  

1.4.7 Task 7: Evaluate the Local Calibration of Performance Models 

In this task, the team evaluated changes (if any) in all the performance models in software 

Version 2.3 and Version 2.6 of the Pavement-ME. The impact of the modifications in the 
performance models on the performance predictions based on the local and global 

coefficients was identified. A representative sample of the pavement sections used in 

Michigan's last local calibration and identified in this study was re-analyzed using both 
software versions and performance predictions were compared.  

1.4.8 Task 8:  Recalibrate Performance Models 

In this task, the team conducted recalibration of the new rigid, new flexible, unbonded rigid, 

and rehabilitated flexible coefficients utilizing the methodologies from the previous 
recalibration efforts. The results from Task 7 warranted local recalibration of the 

performance models; therefore, the models were recalibrated using no sampling, split 
sampling, and bootstrapping approaches. Recommended changes to the Michigan calibration 

coefficients were provided to MDOT upon completing this task. Further, the research team 

developed simple Excel sheets (where possible) to recalibrate the rigid and flexible pavement 
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performance models. These Excel files will be given to MDOT for the future in-house 
recalibration of the models. The Excel files can be used to verify calibration results outside 

the Pavement-ME software. 

1.4.9 Task 9: Evaluate the Impact of Recalibration on Pavement Design 

The impact of the model recalibrations on pavement designs was quantified using 
recalibration results from Task 8. A set of pavement sections were analyzed with the 

previous and new calibration coefficients from Task 8, and comparisons were documented on 
the PCC slab and HMA layer thicknesses (i.e., AASHTO 93, versions 2.3 and 2.6). 

Recommendations are made to modify Michigan calibration coefficients based on such 

comparisons. 

1.4.10 Task 10: Final Report and Technology Transfer 

The final report contains all work performed during the study—test results of laboratory 

testing, database development for materials, traffic, performance data, design features, 

recommended sampling and testing protocols for future MDOT projects, the methodology for 
recalibration of performance models, and recommended new model coefficients. Also, a 

technology transfer workshop will be developed and presented to MDOT engineers. The 
workshop will include (a) an introduction to the Pavement-ME analysis and design for 

pavements, (b) material characterization of as-constructed materials using FWD deflections, 

DCP, and LWD testing, (c) the need and process of updating materials and performance data 
for calibration dataset, and (d) the orientation of the existing or developed database tool to 

update input variables. Additionally, quarterly reports and presentations have been submitted 
before the quarterly meetings with MDOT. 

1.5 OUTLINE OF REPORT 

This report contains seven (7) chapters. Chapter 1 outlines the problem statement, research 

objectives, and details of various tasks. Chapter 2 documents the literature review from 
previous studies on material characterization and local calibration efforts for the performance 

models in the Pavement-ME and implementation issues. Chapter 3 discusses the input and 

performance data used for calibration efforts. This includes data collection efforts, a 
summary of the performance, and input data for the selected pavement sections in Michigan 

for model calibrations. Chapter 4 details the local calibration methods and procedures used in 
this study. Chapter 5 presents the local calibration results for the various performance 

prediction models. Chapter 6 documents the material characterization, in-situ testing results, 

data collection, sampling protocols for new projects, and correlations between in-situ and lab 
properties. Chapter 7 includes the conclusions and detailed recommendations. Appendix A 

contains input data for all the pavement sections used in the local calibration of the 
performance models, while all the local calibration results are presented in Appendix B. 
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CHAPTER 2 - LITERATURE REVIEW 

2.1 INTRODUCTION 

The AASHTOWare design software is a tool for designing new and rehabilitated pavements 

with flexible, rigid, and composite structures. It is based on the mechanistic-empirical (ME) 

analysis approach, which is supported by the AASHTO’s Mechanistic-Empirical Pavement 

Design Guide (MEPDG). The MEPDG was developed under the National Cooperative 

Highway Research Program (NCHRP) 1-37A project in 2004 (1). The software predicts 

different types of pavement distress, including top-down and bottom-up fatigue cracking, 

rutting, thermal cracking, and the international roughness index (IRI) in flexible pavements. 

The mechanistic part of this approach calculates the cumulative damages over time based on 

the pavement responses to traffic and environmental loads. The estimated damage is 

transferred to pavement distresses through the existing empirical functions. These empirical 

functions were calibrated and validated using the data collected from the Long-Term 

Pavement Performance (LTPP) pavement sections across the nation, as reported by Li et al. 

(2011) (2).  

The use of Pavement-ME models in pavement engineering has increased over the past 

few years. However, accurate calibration of these models is critical for reliable pavement 

performance predictions. Several researchers have tried calibrating the Pavement-ME models 

since implementing MEPDG (3-5). These efforts have become more robust since the 

advancements of computational techniques. Haider et al. (2018) used resampling methods 

(bootstrapping and repeated sampling) to calibrate transverse cracking and the International 

Roughness Index (IRI) in Michigan (6). These techniques are beneficial in accommodating 

the variability caused by model predictions. Tabesh and Sakhaeifar (2021) calibrated the 

bottom-up, top-down, rutting, transverse cracking, and IRI models for Oklahoma, separately 

for the east and west regions (7). This study used a narrow-down iterative approach to 

minimize the standard error by changing the transfer function coefficient in Microsoft Excel 

Solver.  

The Pavement-ME has been implemented or is in the process of implementation by 

several agencies throughout the world. The performance models need calibration for their 

complete applicability to the local conditions. Dong et al. (2020) calibrated the joint faulting 

model for the pavements in Ontario using three different optimization approaches: (1) one at 

a time; (2) generalized reduced gradient (GRG) in MS Excel Solver; and (3) levenberg-

marquardt algorithm (LMA) fitting (8). Shakhan et al. (2021) conducted a study to develop a 

methodology for using the Pavement-ME for the local conditions in Turkey (9). Bustos et al. 

(2011) calibrated the transfer functions for pavements in Argentina using 9 JPCP sections, 

mainly from the central part of Argentina(10). All these studies significantly improved the 

performance predictions compared to the global model.  

2.2 LOCAL CALIBRATION PROCESS 

As mentioned, the Pavement-ME uses performance prediction models that are nationally 

calibrated based on pavement material properties, structure, climate, truck loading 

conditions, and data from the Long-term Pavement Performance (LTPP) program (11). 
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However, these models may not accurately predict pavement performance if the input 

properties and data used for calibration do not reflect the state's unique conditions. Therefore, 

it is recommended that each State Highway Agency (SHA) evaluates how well the nationally 

calibrated models predict field performance. If the predictions are unsatisfactory, local 

calibration of the Pavement-ME models is recommended to improve the pavement 

performance predictions that reflect the state's specific field conditions and design practices. 

The local calibration process confirms that the prediction models can accurately predict 

pavement distress and smoothness and determines the standard error associated with the 

prediction equations. This section summarizes the local calibration process per the local 

calibration guide, 2010 (12) and MEPDG, 2015 (13).  

 

Step 1: Selection of input levels 

 

The hierarchical input level must be selected before local calibration. This depends on the 

availability of inputs in the local database and the agency’s laboratory and field-testing 

capabilities. The selection of input levels is a critical step as it impacts the standard error of 

prediction.  

 

Step 2: Develop an experimental plan and sampling strategy 

 

The agency needs to develop a statistically sound and practical experimental plan and 

sampling template for this step. The sampling strategy should consider the local construction, 

design, and rehabilitation practices.  The design matrix should include a wide range of traffic, 

materials, and climatic inputs.  

 

Step 3: Assess the adequate sample size for each distress 

 

A reasonable number of sections should be selected for calibration. The minimum sample 

size for any distress can be estimated using Equation (2-1). 

 

𝑛 = (
𝑍𝛼/2 × 𝜎

𝑒𝑡
)
2

 (2-1) 

where, 

Zα/2 = z-value from a standard normal distribution 

n = Minimum number of pavement sections 

σ = Performance threshold 

et = Tolerable bias = Zα/2 × SEE 

SEE = Standard error of the estimate 

 

Step 4: Selection of pavement sections 

 

This step involves selecting the pavement sections to populate the experimental matrix 

developed in step 2. Selection should include local construction practices, sections with and 

without overlay, pavements with non-conventional materials, and replicates. A minimum of 

three measured distress data should be available over ten years to incorporate any time-

dependent effects. In case of inadequacy of sections, LTPP sections can be added to enhance 

the database. 
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Step 5: Get Pavement-ME inputs and measured distress data 

 

The Pavement-ME inputs and the measured distress data must be extracted from the local 

agency database based on the hierarchical input level determined in step 1. The performance 

data must be converted to the Pavement-ME compatible units if the agency measurements 

are different. The average maximum distress from the selected sections should exceed 50% 

of the threshold design criteria to incorporate considerable distress in the calibration process. 

Any outliers in the performance data should be reviewed, considering the maintenance 

activities or changes in agency policies. Further field investigation can be conducted to 

resolve any discrepancies.  

 

Step 6: Conduct field and forensic investigation 

 

This step aims to collect any missing data and investigate any discrepancies in the input data 

available in the local database. The testing protocol to be followed should be in accordance 

with the agency's practices. At the end of this step, the agency should ensure that a 

reasonable number of samples remain in the experimental matrix. 

 

Step 7: Validation of global model coefficients to local conditions 

 

For this step, the global coefficients are used to predict each performance measure for all 

sections included in the experimental matrix. A reliability of 50% should be used for this 

step. The predicted values are compared with the measured ones to calculate the bias and 

SEE. A plot of predicted versus measured values is created for each distress to visualize the 

accuracy of predictions to a line of equality (LOE). For a good fit, the points should lie along 

the LOE. The measured distress yMeasured and predicted distress xPredicted can be modeled in the 

form of a linear model as shown in Equation (2-2) where m is the slope, and bo is the 

intercept.  

 

𝑦Measured = 𝑏𝑜 +𝑚 × 𝑥Predicted  (2-2) 

 

Three hypothesis tests are conducted to evaluate the reasonableness of the global model. If 

any of these hypotheses fail, the models are recalibrated for local conditions: 

 

• There is no systematic bias between the measured and predicted distress (Equation 2-

3). This can be tested using a paired t-test. 

 

𝐻0: ∑(𝑦Measured − 𝑥Predicted ) = 0 (2-3) 

 

• The slope parameter m is 1, and the intercept parameter bo is zero (Equations 2-4 and 

2-5).  

𝐻0:𝑚 = 1.0 (2-4) 

𝐻𝑜: 𝑏𝑜 = 0 (2-5) 
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Step 8: Eliminate the local bias for Pavement-ME models 

 

This step should eliminate the local bias by systematically changing the model coefficients. 

The approach should be based on the overall bias, SEE between the predicted and measured 

values, and the causes associated with them. The calibration coefficients should be 

incorporated into the calibration process if they depend on material property, site factor, or 

design features. Table 2-1 summarizes the calibration coefficients affecting the bias and 

standard error. 

 

Table 2-1 Calibration coefficients eliminating standard error and bias (14) 

Pavement Type Distress Eliminate Bias Reduce Standard 

Error 

Asphalt 

Total rut depth 𝑘1𝑟 , 𝛽1𝑟 , 𝛽𝑠1 𝑘2𝑟 , 𝑘3𝑟 , 𝛽2𝑟 , 𝛽3𝑟  

Fatigue bottom-up 

cracking 
𝑘1, 𝐶2 𝑘2, 𝑘3, 𝐶1 

Fatigue top-down cracking 𝑘1, 𝐶2 𝑘2, 𝑘3, 𝐶1 

Thermal cracking 𝛽𝑓3, 𝑘𝑓3 𝛽𝑓3, 𝑘𝑓3 

IRI 𝐶4 𝐶2, 𝐶3, 𝐶4 

JPCP 

Faulting 𝐶1 𝐶1 

Transverse cracking 𝐶1, 𝐶4 𝐶2, 𝐶5 

IRI - JPCP 𝐽4 𝐽1 

 

Step 9: Estimate the standard error of the estimate 

 

After the bias has been eliminated, the SEE is computed between the measured and predicted 

distress. This SEE must be compared with the global SEE. Table 2-2 shows the standard 

value for global SEE for different models. 

 

Table 2-2 Recommended standard error values  

Pavement type Performance prediction model Se 

Flexible 

Fatigue cracking (%) 5 

Thermal cracking (ft/mile) 

Thermal reflection cracking 
650 

Rutting (inches) 0.2 

IRI (in/mile) 65 

Rigid 

Transverse cracking (%) 15 

Joint faulting (inches) 0.07 

IRI (in/mile) 65 

 

If the SEE is lower than recommended, the calibration coefficients can be accepted and used 

for design. The hypothesis tests given in step 7 must be validated before accepting the 

coefficients. If the SEE exceeds the global value, the agency can still accept the coefficients 

or move to step 10 to eliminate the standard error. 
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Step 10: Eliminate standard error of estimate 

 

If the standard error of the estimate calculated in step 9 is higher than the recommended 

global value, it should be eliminated in the local calibration process. The standard error 

should be estimated for each category of the experimental matrix to identify the effects of 

any input parameter on the overall standard error. The coefficients resulting in the minimum 

standard error can be used for design purposes. 

 

Step 11: Assessment of the calibration process 

 

After the above ten steps have been performed to establish the local calibration coefficients, 

they should be examined for reasonableness within each category of the experimental matrix 

and at different reliability levels.   

2.3 LOCAL CALIBRATION EFFORTS AND CHALLENGES 

Several SHAs have locally calibrated the Pavement-ME models to adopt ME design 

practices. As previously outlined, the process involves matching the predictions with the 

measured value by optimizing the transfer function coefficients. This process is very tedious 

and poses the following challenges: 

 

• Project selection: identify the available sections with performance data 

• Pavement-ME inputs: the data might not be available with the required information 

and assumptions.  

• Calculate performance data: measured data might not be available in the database for 

the Pavement-ME compatible units. Necessary assumptions must be made for 

conversion. 

• Local calibration techniques: identify mathematical tools/processes for local 

calibration 

 

The local calibration process and calibration coefficients for several states have been outlined 

in the previous calibration effort for Michigan (15). These states include:  

 

• Arkansas 

• Colorado 

• FHWA 

• Minnesota 

• Missouri 

• Montana 

• New Mexico 

• North Carolina 

• Ohio 

• Oklahoma 

• Oregon 

• South Carolina 

• Texas 

• Utah 

• Washington 

 

 

Some states have recalibrated their performance models, and some new states have been 

added. The following sections summarize the calibration efforts for flexible and rigid 

pavements. 
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2.3.1 Local Calibration Efforts for Flexible Pavements 

Oklahoma (7): Tabesh and Sakhaeifar (2021) conducted a study to calibrate the Pavement-

ME models in Oklahoma. A total of 65 flexible pavement sections (53 new LTPP sections 

and, 9 LTPP sections from the previous study in Oklahoma, and 3 LTPP sections from Texas 

and Kansas) were considered in this study. The inputs were obtained from the LTPP database 

and previous calibration studies. Moreover, for any missing information, typical level 3 

recommended values were used. The Pavement-ME V2.3 was used to predict pavement 

performance, where each section was considered a new construction project up to any 

significant rehabilitation/reconstruction. The calibration coefficients were divided based on 

whether they reduced bias or standard error. Coefficients corresponding to eliminate bias 

were optimized outside of the Pavement-ME using the Generalized Reduced Gradient (GRG) 

nonlinear method in Microsoft Excel Solver. For coefficients that reduce the standard error, 

an iterative approach was followed where the software was run each time to reduce the 

standard error systematically. Overall, local calibration resulted in lower standard error and 

bias than the global mode. IRI and rutting models correlated better with top-down, bottom-

up, and thermal cracking models. This study did not calibrate the standard deviation 

equations for different prediction models.  

 

Missouri (16): Glover et al. (2020) conducted a study funded by the Missouri Department of 

Transportation (MoDOT) to calibrate the Pavement-ME models in Missouri. This study 

included new and rehabilitated sections from MoDOT’s Pavement Management System 

(PMS) database and LTPP. AC over AC and JPCP sections were considered rehabilitated 

sections. Inputs to the Pavement-ME were collected from the LTPP database, MoDOT PMS 

database, laboratory and field tests, and previous studies (17). PMED V2.5.5 was used to 

calibrate the performance models. Local calibration significantly improved the prediction for 

all models, although the top-down cracking model was not calibrated in this effort, and 

global coefficients are recommended. Reliability prediction models were not calibrated, and 

the global models were accepted. 

 

Michigan (15): Calibration for new flexible and rehabilitated pavements for Michigan was 

conducted in a research study by Haider et al. (2014). A total of 129 reconstructed flexible 

sections and 40 rehabilitated sections were selected for this project. The Pavement-ME inputs 

were obtained from the Michigan Department of Transportation (MDOT) Pavement 

Management System (PMS) database, construction records, and previous studies conducted 

in Michigan. Models were calibrated outside the Pavement-ME using no sampling and 

bootstrapping resampling techniques. For validation of these models, traditional split 

sampling and repeated split sampling were used, with 70% of the sections used for 

calibration and the remaining 30% for validation. Bootstrapping and repeated split sampling 

provide a distribution of calibration coefficients and error terms instead of single-point 

estimates. Standard deviation equations for all performance models were calibrated to 

incorporate reliability using local performance and prediction data. 

 

Georgia (16): Quintus et al. (2015) conducted the calibration of the Pavement-ME models 

for Georgia. Forty flexible sections (22 LTPP + 18 non-LTPP) were selected for this study, 

including new flexible pavements and HMA overlays. Non-LTPP sections were added due to 

the insufficient number of LTPP sections, insufficient measured distress, and the inability of 
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LTPP sections to truly represent the construction practices in Georgia. PMED inputs were 

extracted from the LTPP database, as-built plans and construction records, and field and 

laboratory investigations. Measured distress data for the non-LTPP sections were collected 

from Georgia’s Department of Transportation (GDOT) PACES and CPACES database. Rut 

depth was found to be overpredicted using global calibration coefficients and was 

recalibrated to obtain local calibration coefficients. The coefficients K1 and K3 were 

calibrated separately for neat and polymer-modified binder, whereas K2 was kept at global 

value. Finally, a value of K1 = -2.45 (for neat), -2.55 (for polymer-modified), and K3=0.30 

(for neat and polymer-modified mixes) was adopted. Bottom-up fatigue cracking was found 

to be underpredicting using the global model. The top-down fatigue cracking model was not 

calibrated in this study because of the argument on the usability of the crack initiation 

mechanism, and no field investigations were conducted to confirm crack initiation at the 

surface. For IRI, global calibration coefficients were found applicable and were 

recommended for use.  

 

Tennessee (17): The Tennessee Department of Transportation (TDOT) conducted a study to 

calibrate the transfer functions in the Pavement-ME models for Tennessee. The performance 

and traffic data were obtained from the TDOT PMS database. Annual average daily truck 

traffic (AADTT) is not recorded in the PMS database, which is a required input to PMED. 

The Average Annual daily traffic (AADT) was multiplied by the percent truck traffic 

available in the PMS database to obtain AADTT. A total of 76 sections (PMS + LTPP) were 

used for calibrating models in the Pavement-ME version 2.1. Total rutting was overpredicted, 

and fatigue cracking was underpredicted using the national model coefficients. The models 

were calibrated outside the Pavement-ME software using Microsoft Excel Solver and 

MATLAB curve fitting functions. The jackknifing resampling method was used for the 

calibration and validation of models. This provides the standard deviation and confidence 

limits for calibration coefficients, leading to more reliable estimations. Rutting, bottom-up, 

and top-down cracking models were calibrated locally, whereas, for the IRI model, global 

model coefficients were recommended. A separate set of calibration coefficients was 

recommended for rutting based on terrain. Reliability equations for standard error were not 

calibrated in this study. Moreover, the authors find the reliability model in MEPDG 

questionable. Apart from the calibration effort, a questionnaire was also generated and sent to 

different DOTs in the US and Canadian transportation administration agencies to analyze the 

current design practices and feedback on the MEPDG design process. Results revealed that 

most of the states in the US and Canadian provinces use AASHTO 1993 to design both 

flexible and rigid pavements. Also, bottom-up cracking was the most challenging model for 

calibration, followed by longitudinal and thermal cracking. Moreover, most states were not 

completely satisfied with the Pavement-ME software due to the multiple inputs and 

interpretations required for design. 

 

Iowa (18): The Pavement-ME models in Iowa were calibrated using V1.1. The inputs were 

collected from the Iowa DOT Pavement Management Information System (PMIS), 

laboratory testing, and previous relevant studies in Iowa. Thirty-five (35) flexible sections 

were selected from the available database. Of these, 25 sections (237 data points) were used 

for calibration and 10 sections for validation (90 data points). The study used the default 

values for any missing inputs considering the sensitivity of the information. Before 
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calibrating the models, a sensitivity analysis was conducted to estimate the effect of each 

coefficient on the predicted performance. Rutting and fatigue cracking models were 

calibrated by trial runs in the Pavement-ME, whereas the IRI model was calibrated using 

optimization in MS Excel Solver. The normalized sensitivity index calculated was used as a 

reference to estimate the contribution of bias from each coefficient and the approximations to 

local coefficient values. Top-down cracking was underpredicted using national model 

coefficients. Rutting and top-down cracking models were calibrated, whereas, for bottom-up 

cracking and IRI, the nationally calibrated models performed well and were accepted. 

Reliability equations were not calibrated for this study. 

 

Wyoming (19): Bhattacharya et al. (2015) calibrated the Pavement-ME models in Wyoming 

using V2.2. Initially, the calibration effort was planned to include only LTPP sections in 

Wyoming. However, due to the limited number of such sections, the study also included 

LTPP sections from nearby states with similar design practices. A total of 86 new flexible 

pavements (77 LTPP + 9 non-LTPP) were selected. The Pavement-ME inputs were taken 

from the WYDOT’s construction files, LTPP database, and field investigation by the 

University of Wyoming. Any outlier in the measured data was removed. Since global models 

over-predicted Rut depth and bottom-up fatigue cracking, those were recalibrated. For both 

of these models, the global standard equation was recommended. For rutting model, 

coefficient K1 (WYDOT value = -2.45) and K3 (WYDOT value = 0.30) were calibrated 

while K2, β1r, β2r, β3r were kept to the global value. The top-down cracking model was not 

calibrated in this effort due to discrepancies in the model. For IRI, the global model was 

found reasonable and recommended for use.  

 

Kansas (20): Sun et al. (2015) conducted a research study to calibrate the Pavement-ME 

models in Kansas. A total of 28 new flexible sections were selected from the KDOT PMS 

database, and V1.3 was used. The material properties, traffic data, and climate data were 

obtained from the KDOT, and MEPDG recommended level 3 values were used if data were 

unavailable. The measured performance data was extracted from the KDOT PMS database. 

No field or forensic investigation was conducted for this study, as the available data was 

considered sufficient. The sections were divided into two parts based on the resilient modulus 

of the subgrade (equal to 2700 psi and greater than 4000 psi). The magnitude of measured 

bottom-up cracking was almost zero; hence, the global model was accepted. Top-down 

cracking was underpredicted, and the global model coefficients overpredicted rutting and 

IRI. This study did not calibrate the standard deviation used for reliability. 

 

The following section presents the formulation of transfer functions for flexible pavement 

models and the local calibration coefficients for different states.   

2.3.1.1. Fatigue cracking (bottom-up) 

Bottom-up cracking is a load-related distress caused by the repeated axle load. These cracks 

initiate at the bottom of the asphalt concrete (AC) layer and propagate to the surface. The 

total cumulative damage DI can be estimated by summing the cumulative damage that can be 

computed using Miner’s law (21), as shown in Equation (2-6). 
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𝐷𝐼 = ∑(Δ𝐷𝐼)𝑗,𝑚,𝑙,𝑝,𝑇 = ∑(
𝑛

𝑁𝑓−𝐻𝑀𝐴
)
𝑗,𝑚,𝑙,𝑝,𝑇

 (2-6) 

where, 
n = number of actual axle load applications within a specific time period 

j = axle load-interval 

m = axle type (single, tandem, tridem, quad) 

l = truck type classified in the MEPDG 

p = month 

T = median temperature for five temperature quintiles used in MEPDG 
Nf-HMA = the allowable number of axle load applications, which can be computed using Equation (2-7). 

 

𝑁𝑓−𝐻𝑀𝐴 = 𝐶 × 𝑘1 × 𝐶𝐻 × 𝛽𝑓1(𝜀𝑡)
−𝑘2𝛽𝑓2(𝐸𝐻𝑀𝐴)

−𝑘3𝛽𝑓3  (2-7) 

where, 
εt = tensile strain at critical AC locations 

EHMA = dynamic modulus (E*) of the Hot mix asphalt (HMA), psi 

k1, k2, k3 = laboratory regression coefficients, and βf1, βf2, βf3 = local or field calibration constants 
C = Adjustment factor (laboratory to the field) as shown in Equation (2-8) and Equation (2-9). 

 

𝐶 = 10𝑀 (2-8) 

𝑀 = 4.84(
𝑉𝑏𝑒

𝑉𝑎 + 𝑉𝑏𝑒
− 0.69) (2-9) 

where, 
Vbe = effective binder content by volume, percent 

Va = In-situ air voids in the HMA mixture (%) 

CH = thickness correction factor for bottom-up cracking as shown in Equation (2-10). 

 

𝐶𝐻 =
1

0.000398 +
0.003602

1 + 𝑒(11.02−3.49𝐻𝐻𝑀𝐴)

 (2-10) 

where, 
HHMA = AC layer thickness 

Once the cumulative damage is calculated, the bottom-up fatigue cracking (%) can be 

estimated using the transfer function given in Equation (2-11) 

 

𝐹𝐶Bottom = (
1

60
)(

𝐶4

1 + 𝑒𝐶1𝐶1
∗+𝐶2𝐶2

∗log⁡(𝐷𝐼Bottom ⋅100)
) (2-11) 

where, 
FCBottom = Bottom-up fatigue cracking (in the percentage of area) 

DIBottom = cumulative damage at the bottom of the AC layer 

C1, C2, C4 = Transfer function coefficients where C2 is a function of thickness for HMA thickness between 5 

and 12 inches 

C1* and C2* can be determined using Equation (2-12) and Equation (2-13). 

 

𝐶1
∗ = −2𝐶2

∗ (2-12) 

𝐶2
∗ = −2.40874 − 39.748(1 + 𝐻𝐻𝑀𝐴)

−2.856 (2-13) 

 

Table 2-3 summarizes the local calibration coefficients among several states. 
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Table 2-3 Local calibration coefficients for bottom-up cracking 

States C1 C2 C4 Standard deviation 

Oklahoma 

(East region) 
3.26 - 6000 - 

Oklahoma 
(West region) 

4.12 - 6000 - 

Missouri -0.31 

hac<5: 1.367 

5<hac<12: 0.867+0.1*hac 

Hac>12: 2.067 

6000 - 

Michigan 0.67 0.56 6000 0.01+
32.913

1 + 𝑒1.3972−0.5976×log⁡(𝐷)
 

Georgia 2.2 2.2 6000 1.0 +
10

(1 + Exp⁡(7.5 − 6.5 ∗ log⁡ 10(𝐷𝐼Bottom + 0.0001)
 

Tennessee 1.023 0.045 6000 - 

Iowa - - - - 

Wyoming 0.4951 1.469 6000 - 

Kansas - - - - 

Arkansas 0.688 0.294 6000 - 

New Mexico 0.625 0.25 6000 - 

Washington 1.071 1 6000 - 

Colorado 0.07 2.35 6000 - 

Pavement-ME 

v2.6 
1.31 

hac<5: 2.1585 

5<hac<12: 

(0.867+0.2583*hac )*1 

Hac>12: 3.9666 

6000 1.13 +
13

(1 + Exp⁡(7.57 − 15.5 ∗ log⁡ 10(𝐷𝐼Bottom + 0.0001)
 

2.3.1.2. Fatigue cracking (top-down) 

Top-down or longitudinal cracking is a load-related distress due to repeated axle load. It 

appears in the form of cracks parallel to the wheel path and starts at the surface of the AC 

layer.  

 

Old model: The damage calculation for top-down cracking is the same as bottom-up cracking 

for the old model except for the thickness correction factor and the transfer function, as 

shown in Equation (2-14) and Equation (2-15). 

𝐶𝐻 =
1

0.01 +
12.00

1 + 𝑒(15.676−2.8186𝐻HMA )

 
(2-14) 

𝐹𝐶Top = 10.56 (
𝐶3

1 + 𝑒𝐶1−𝐶2𝐿𝑜𝑔(𝐷𝐼Top )
) (2-15) 

where, 
FCTop = Top-down fatigue cracking (in ft/mile) 
DITop = cumulative damage at the top of the AC layer 

C1, C2, C3 = Transfer function coefficients  

 

New model: The new top-down cracking model is based on fracture mechanics concepts (22). 

It is expressed in percentage rather than ft./mile. The model involves crack initiation and 

propagation [based on Paris’ law (23)]. Crack initiation is defined as a crack length of 7.5mm 
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(0.3 inches). Equation (2-16) shows the time to crack initiation formulated using regression 

over longitudinal and alligator cracking data from the LTPP database. 

 

𝑡0 =
K𝐿1

1 + 𝑒K𝐿2×100×(a0/2A0)+K𝐿3×HT+K𝐿4×𝐿𝑇+𝐾𝐿5×log10 ⁡ AADTT
 (2-16) 

where, 
t0 = Time to crack initiation, days 

HT = Annual number of days above 32oC 

LT = Annual number of days below 0oC 

AADTT = Annual average daily truck traffic (initial year) 

a0/2A0 = Energy parameter 

KL1, KL2, KL3, KL4, KL5= Calibration coefficients for time to crack initiation 

 

The top-down cracking is expressed in percentage using the transfer function, as shown in 

Equation (2-17). 

𝐿(𝑡) = 𝐿𝑀𝐴𝑋𝑒
−(

𝐶1𝜌
𝑡−𝐶3𝑡0

)
𝐶2𝛽

 
(2-17) 

where, 
L(t) = Top-down cracking expressed as total lane area (%)  

LMAX = Maximum area of top-down cracking (%) – a value of 58% is assumed 

t = Analysis month in days 

ρ = Scale parameter for the top-down cracking curve as shown in Equation (2-18). 

 

𝜌 = 𝛼1 + 𝛼2 ×  Month (2-18) 

 

β = Shape parameter for the top-down cracking curve as shown in Equation (2-19). 

𝛽 = 0.7319 × (log10  Month )−1.2801 (2-19) 

where, 
α1⁡and α2 are functions of the climatic zone (wet freeze, wet non-freeze, dry freeze, dry non-freeze) 

 

Table 2-4 summarizes the local calibration coefficient of the top-down cracking model. 

These coefficients have been calibrated using the top-down cracking model. 

Table 2-4 Local calibration coefficients for top-down cracking 

States C1 C2 C3 Standard deviation 

Oklahoma (East region) 6.6 4.5 723 - 

Oklahoma (West region) 6.1 4.23 723 - 

Michigan 2.97 1.2 1000 300 +
3000

1 + 𝑒1.8−0.61×log⁡(𝐷𝑠𝑖+0.0001)
 

Tennessee 6.44 0.27 204.54 - 

Iowa 0.82 1.18 1000 - 

Kansas 4.5 - 36000 - 

Arkansas 3.016 0.216 1000 - 

New Mexico 3 0.3 1000 - 

Washington 6.42 3.596 1000 - 

Pavement-ME 7 3.5 1000 - 
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2.3.1.3. Transverse (thermal) cracking model 

Thermal cracking is associated with the contraction of the HMA material due to surface 

temperature fluctuations. The temperature variations affect the volume changes of the 

material. As a consequence, stresses develop due to the continual contraction of the materials 

and the restrained conditions, which causes thermal cracks. Typically, thermal cracking in 

flexible pavements occurs due to the temperature drop experienced by the pavement in cold 

conditions. A thermal crack will initiate when the tensile stresses in the HMA layers become 

equal to or greater than the material's tensile strength. The initial cracks propagate through 

the HMA layer with more thermal cycles. The amount of crack propagation induced by a 

given thermal cooling cycle is predicted using the Paris law of crack propagation. 

Experimental results indicate that reasonable estimates of A and n can be obtained from the 

indirect tensile creep-compliance and tensile strength of the HMA per Equations (2-20 and 2-

21).  

( ) = 
n

C A K  (2-20) 

where, 
C = Change in the crack depth due to a cooling cycle 

K = Change in the stress intensity factor due to a cooling cycle 

A, n = Fracture parameters for the HMA mixture 

 

𝐴 = 𝑘𝑡𝛽𝑡10
[4.389−2.52𝐿𝑜𝑔(𝐸𝐻𝑀𝐴𝜎𝑚𝜂)] (2-21) 

 

where, 

 

 
= 

1
0 8 1.

m


 
= + 

 
 

kt  = Regression coefficient determined through field calibration 

EHMA  = HMA indirect tensile modulus, psi 

m  = Mixture tensile strength, psi 

m  = The m-value derived from the indirect tensile creep compliance curve measured in the 

laboratory 

βt  = Local or mixture calibration factor 

 

The stress intensity factor, K, has been incorporated in the Pavement-ME through a 

simplified equation developed from theoretical finite element studies using the model shown 

in Equation (2-22). 

 

( )( )0 56
0 45 1 99= +

.

tip oK . . C  (2-22) 

where, 
tip = Far-field stress from pavement response model at a depth of crack tip, psi 

Co = Current crack length, feet 

 

Equation (2-23) shows the transfer function for transverse cracking in the Pavement-ME. 

 

( )1

1 d
t

d HMA

C
TC N z Log

H

  
=   

  



 (2-23) 
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where, 
TC = Observed amount of thermal cracking, ft/500ft 

βt1 = Regression coefficient determined through global calibration (400) 

N[z] = Standard normal distribution evaluated at [z] 

σd = Standard deviation of the log of the depth of cracks in the pavement (0.769), in 

Cd = Crack depth, in;  

HHMA = Thickness of HMA layers, in 

 

Table 2-5 summarizes the modified local calibration coefficients for the various States. 

Table 2-5 Local calibration coefficients for the thermal cracking model 

Calibration coefficient Level 1 K Level 2 K Level 3 K 

Missouri 0.61 - - 

Montana - - 0.25 

Colorado 6.3 0.5 6.3 

Michigan 0.75 - - 

Oklahoma 
East: 3 × 10−7 ×𝑀𝐴𝐴𝑇4.0319 − 54 

west: 3 × 10−7 ×𝑀𝐴𝐴𝑇4.0319− 23 
- - 

Pavement-ME 3 × 10−7 ×𝑀𝐴𝐴𝑇4.0319 3 × 10−7 ×𝑀𝐴𝐴𝑇4.0319 3 × 10−7 ×𝑀𝐴𝐴𝑇4.0319 

2.3.1.4. Rutting model 

Due to axle loads, rutting is the total accumulated plastic strain in different pavement layers 

(AC, base/sub-base, and subgrade). It is calculated by summing up the plastic strains at the 

mid-depth of individual layers accumulated for each time increment. Equation (2-24) shows 

the permanent plastic strain for the AC layer. 

 

Δ𝑝(𝐻𝑀𝐴) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 = 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10
𝑘1𝑟𝑇𝑘2𝑟𝛽2𝑟𝑁𝑘3𝑟𝛽3𝑟  (2-24) 

where,  
Δp(HMA) = permanent plastic deformation in the AC layer 

εp(HMA) = accumulated permanent or plastic axial strain in the AC layer/sublayer 

εr(HMA) = resilient or elastic strain calculated by the structural response model at the mid-depth of each AC 

sublayer 

h(HMA) = thickness of the AC layer/sublayer 

N = number of axle load repetitions 

T =Pavement temperature 

kz = depth confinement factor  
k1r, k2r, k3r = global field calibration parameters 

β1r, β2r, β3r, = local or mixture field calibration constants 

 

The permanent plastic strain can be expressed for the unbound layers, as shown in Equation 

(2-25). 

Δ𝑝(𝑠𝑜𝑖𝑙) = 𝛽𝑠1𝑘𝑠1𝜀𝑣ℎ𝑠𝑜𝑖𝑙 (
𝜀𝑜
𝜀𝑟
) 𝑒−(

𝜌
𝑛
)
𝛽

 (2-25) 

where, 
Δp(Soil) = permanent plastic deformation for the unbound layer/sublayer 

εo = intercept determined from laboratory repeated load permanent deformation tests 
n = number of axle load applications 

εr = resilient strain imposed in laboratory tests to obtain material properties εo, β, and ρ 

εv = average vertical resilient or elastic strain in the layer/sublayer and calculated by the structural response 

model 

hsoil = unbound layer thickness 
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ks1 = global calibration coefficients (different for granular and fine-grained material) 

βs1 = local calibration constant for rutting in the unbound layers (base or subgrade) 

 

The total rutting is calculated based on Equation (2-26) below: 

 

/
Rut depth  = +

Total HMA Base subbase Subgrade
  +   (2-26) 

Table 2-6 presents the local calibration coefficients for different states. 

 

Table 2-6 Local calibration coefficients for the rutting model 

States β1r β2r β3r βgb βsg Standard deviation 

Oklahoma 

(East region) 
0.79 0.53 1.48 0.15 1.29 - 

Oklahoma 

(West region) 
0.21 0.74 1.03 0.23 1.03 - 

Missouri 0.899 - - 1.0798 0.9779 - 

Michigan 0.9453 1.3 0.7 0.0985 0.0367 

HMA: 0.1126*RUT0.2352 

BASE: 

0.1145*RUT0.3907 

SG: 3.6118*RUT1.0951 

Georgia - - - 0.50 0.30 
HMA: 

0.20*RUT0.55+0.001 

Tennessee (Plain 

area) 
0.111 - - 0.196 0.722 - 

Tennessee 

(Mountain area) 
0.177 - - 1.034 0.159 - 

Iowa - 1.15 - 0.001 0.001 - 

Wyoming - - - 0.4 0.4 - 

Kansas 0.9 - - - 0.3251 - 

Arkansas 1.2 1 0.8 1 0.5 - 

New Mexico 1.1 1.1 0.8 0.8 1.2 - 

North Carolina 13.1 0.4 1.4 0.303 1.102 - 

Ohio 0.51 - - 0.32 0.33 - 

Texas 2.39 - 0.856 - 0.5 - 

Washington 1.05 1.109 1.1 - 0 - 

Colorado 1.34 1 1 0.4 0.84 - 

Pavement-ME 

v2.6 
0.4 0.52 1.36 1 1 

HMA: 

0.24*RUT0.8026+0.001 

BASE: 

0.1477*RUT0.6711+0.001 

SG: 

0.1235*RUT0.5012+0.001 

2.3.1.5. IRI model (flexible pavements) 

IRI is a measure of ride quality provided by a pavement surface and affects the vehicle 

operation cost, safety, and comfort of the driver. The IRI model is based on findings from 

multiple studies showing that IRI at any age is a function of the initial construction ride 

quality and the development of different distresses over time that impact the ride quality. IRI 

can be formulated using the initial IRI and distresses (fatigue cracking, transverse cracking, 

and rutting), as shown in Equation (2-27). 

 

𝐼𝑅𝐼 = 𝐼𝑅𝐼𝑜 + 𝐶1(𝑅𝐷) + 𝐶2(𝐹𝐶Total ) + 𝐶3(𝑇𝐶) + 𝐶4(𝑆𝐹) (2-27) 

where, 
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IRIo = initial IRI at construction  

FCTotal = percent area of fatigue cracking (bottom-up), fatigue cracking (top-down), and reflection cracking in 

the wheel path  

TC = length of transverse cracking (including the reflection of transverse cracks in existing AC pavements) 

RD = average rut depth 
C1, C2, C3, C4 = Calibration coefficients 

SF = site factor, which can be expressed as shown in Equation (2-28) to Equation (2-30). 

 

𝑆𝐹 = ( Frost +  Swell ) × 𝐴𝑔𝑒1.5 (2-28) 

Frost = Ln⁡[( Rain + 1) × (𝐹𝐼 + 1) × 𝑃4] (2-29) 

Swell = Ln⁡[( Rain + 1) × (𝑃𝐼 + 1) × 𝑃200] (2-30) 

where, 
SF = Site factor 

Age = Pavement age (years) 

FI = Freezing index 

PI = Subgrade soil plasticity index 

Rain = Mean annual rainfall  

P4 = Percent subgrade material passing No. 4 sieve 

P200 = Percent subgrade material passing No. 200 sieve. 

 

Table 2-7 presents the adjusted calibration coefficients in different states. Table 28 

summarizes the distress thresholds used in various states. 

 

Table 2-7 Local calibration coefficients for the IRI model 

States C1 C2 C3 C4 

Oklahoma (East region) 5.23 0.127 0.013 0.0128 

Oklahoma (West region) 6.46 0.187 0.0098 0.023 

Missouri 58.9 0.3 0.0072 0.0129 

Michigan 50.3720 0.4102 0.0066 0.0068 

Kansas 95 0.04 0.001 - 

New Mexico 0.015 - - - 

Ohio 0.066 1.37 0.01 17.6 

Colorado 0.019 0.3 0.02 35 

Pavement-ME v2.6 40 0.4 0.008 0.015 

Table 2-8 Summary of design thresholds for flexible pavements 

States 
Bottom-up 

cracking (%) 

Top-down cracking 

(ft/mile) 

Total 

rutting 

Thermal 

cracking 
IRI 

Oklahoma 20 - 0.4 630 169 

Missouri 10 - 0.5 2000 172 

Michigan 20 - 0.5 1000 172 

Colorado 10 2000 0.55 1500 160 

Arizona 20 - 0.4 630 169 

Kansas 20 - 0.4 630 169 
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2.3.2 Local Calibration Efforts for Rigid Pavements 

Idaho (24): Bayoumy et al. (2019) calibrated the performance models for JPCP sections in 

Idaho. Transverse cracking, joint faulting, and IRI models were calibrated using V2.5.3. 

Forty (40) JPCP pavement sections were selected across Idaho, and the performance data 

along with the Pavement-ME inputs were obtained from construction records, material 

testing records, and the Idaho Transportation Department (ITD) Transportation Asset 

Management System (TAMS) database. Missing data was taken from the Idaho PMED user 

guide (25). The models were calibrated by systematically changing the coefficients and 

running the Pavement-ME for each trial. A traditional split sampling approach was adopted 

for validation, with 80% of the sections for calibration and 20% for validation. Recalibration 

results show a good correlation between predicted and measured distress for faulting and IRI 

models. The transverse cracking model was recalibrated with additional data due to poor 

correlation. Standard deviation equations were not recalibrated in this calibration study.  

 

Missouri (26): Glover et al. calibrated the Pavement-ME models for new JPCP and unbonded 

overlay over JPCP for Missouri. A total of 44 sections (35 new JPCP and 9 unbonded 

overlays over JPCP) were used for this study. Due to insufficient performance data for these 

sections, a non-regression classification analysis approach was used to assess the need for 

local calibration. The authors recommend using the national calibration coefficients for new 

JPCP and unbonded overlay over JPCP sections until a local calibration is performed. 

Standard deviation equations were not recalibrated in this calibration study. 

 

Michigan (15): Haider et al. conducted a study to calibrate the Pavement-ME models for new 

JPCP and unbonded overlay over JPCP pavements in Michigan. A total of 29 reconstructed 

JPCP sections and 16 unbonded overlays over JPCP sections were selected for this project. 

The Pavement-ME inputs were taken from the Michigan Department of Transportation 

(MDOT) Pavement Management System (PMS) database, construction records, and previous 

studies conducted in Michigan. For transverse cracking and IRI models, the calibration was 

performed outside the Pavement ME using no sampling and bootstrapping resampling 

technique. For validation of these models, traditional split sampling and repeated split 

sampling were used, with 70% of the sections used for calibration and the remaining 30% for 

validation. For the joint faulting model, the Pavement-ME was run every time by changing 

the coefficient (Only C1 was optimized by keeping other coefficients fixed to the global 

value). This study gives a new approach to using resampling techniques to obtain 

distributions of model coefficients and error terms. Reliability equations for each 

performance model were calibrated using the MEPDG approach for the Michigan 

performance data. 

 

Georgia (16): Quintus et al. (2015) calibrated the Pavement-ME performance models for the 

state of Georgia. A total of 20 sections (8 LTPP+12 non-LTPP) were used for this 

calibration. Non-LTPP sections were added due to the insufficient number of LTPP sections, 

insufficient measured distress, and the inability of LTPP sections to represent the 

construction practices in Georgia truly. The PMED inputs were extracted from the LTPP 

database, as-built plans and construction records, and field and laboratory investigations. 

Measured distress data for the non-LTPP sections were collected from Georgia’s Department 

of Transportation (GDOT) PACES and CPACES database. Global coefficients were 
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finalized for the transverse cracking model after verification using LTPP and non-LTPP 

sections. Moreover, future calibration was recommended using more sections and 

performance data. The joint faulting and IRI models were recalibrated for the local 

conditions. The global standard deviation equation was accepted for transverse cracking to 

incorporate reliability in the design. In contrast, the standard deviation equation was modified 

for joint faulting to match the prediction data. 

 

Iowa (18): The local calibration effort for the Pavement-ME models in Iowa was conducted 

using V1.1. The inputs were collected from the Iowa DOT Pavement Management 

Information System (PMIS), material testing records, and previous relevant studies in Iowa. 

35 JPCP sections were selected from the available database. Of these, 25 sections (248 data 

points) were used for calibration and 10 sections for validation (101 data points). For any 

missing inputs, the default values were taken considering the sensitivity of the information. 

Faulting was underpredicted, and transverse cracking and IRI were overpredicted using the 

national coefficients. Before calibrating the models, a sensitivity analysis was conducted to 

estimate the effect of each coefficient on the predicted performance. The normalized 

sensitivity index calculated was used as a reference to assess the contribution of bias from 

each coefficient and the approximations to local coefficient values. Multiple runs calibrated 

faulting and fatigue cracking in Pavement ME, whereas transverse cracking and IRI were 

calibrated using MS Excel Solver. Predictions for all models were significantly improved 

after calibration. Standard error equations were not calibrated for this study. 

 

Wyoming (19): Bhattacharya et al. (2015) conducted a research study for the Wyoming 

Department of Transportation (WYDOT) to calibrate the Pavement-ME models for local 

conditions in Wyoming. V2.2 was used for this calibration effort. Initially, the calibration 

effort was planned to include only LTPP sections in Wyoming, but due to the limited number 

of such sections, LTPP sections from nearby states with similar design practices were added. 

A total of 26 LTPP JPCP sections (1 from Wyoming + 25 from adjacent states) were selected 

for this study. The Pavement-ME inputs were taken from the WYDOT’s construction files, 

LTPP database, and field investigation by the University of Wyoming. Any outliers in the 

measured data were removed. The verification using the global model coefficient showed 

that the transverse cracking model predictions were appropriate. Therefore, the global 

coefficient and standard deviation equation were recommended. The possible reason for this 

good fit can be the limited number of sections and most of the sections showing low values 

for transverse cracking. IRI predictions using the global model also showed no significant 

bias, and the global coefficients were accepted. Faulting was overpredicted using the global 

model, and the model coefficients and the standard deviation equation were calibrated for the 

local conditions. 

 

Kansas (20):  The Kansas Department of Transportation (KDOT) funded a research study to 

calibrate the Pavement-ME models for Kansas. A total of 32 new JPCP sections were 

selected from the KDOT PMS database, and V1.3 was used for this study. The material 

properties, traffic data, and climate data were taken from the KDOT and MEPDG 

recommended values and were considered level 3 inputs. No field or forensic investigation 

was conducted for this study, as the available data was considered sufficient. The measured 

performance data was taken from the KDOT PMS database. Faulting was overpredicted, and 



 

26 

 

IRI was slightly underpredicted using global coefficients. The transverse cracking model was 

not calibrated in this study. The calibration coefficients were also compared with other states 

(14) and were found within a reasonable range.  

 

Louisiana (27): Wu et al. (2014) calibrated the Pavement-ME models in Louisiana using 

V1.3. 19 JPCP projects selected for this study have two bases: PCC over HMA and PCC over 

the unbound base. The joint faulting was underpredicted, whereas transverse cracking was 

overpredicted using the global model coefficients. Based on the available literature at the 

time of the project, only the most sensitive coefficients were calibrated. C1 was calibrated for 

transverse cracking and C6 for the faulting model. After calibrating the transverse cracking 

and joint faulting model, the IRI model was found to be reasonable, and global coefficients 

were accepted. The effect on design thicknesses was also compared, and the results showed 

that the Pavement-ME designs had thinner PCC thicknesses ( about 2 cm or 7%) compared to 

the AASHTO 1993 method (28). 

 

The following is a summary of transfer functions for Pavement-ME models applicable to 

rigid pavements and a review of local calibration coefficients for various states. 

2.3.2.1. Transverse cracking model  

Transverse slab cracking in the Pavement-ME is calculated as the percentage of slabs 

cracked, including all severity levels. The mechanism involves independently predicting the 

bottom-up and top-down cracking and utilizing a probabilistic relationship to combine both, 

eliminating the possibility of both co-occurring. The fatigue damage for both bottom-up and 

top-down is defined using Miner’s law as given in Equation (2-31): 

 

𝐷𝐼𝐹 = ∑
𝑛𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜

𝑁𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜
 (2-31) 

where,  
DIF = total fatigue damage (bottom-up or top-down) 

ni,j,k,l,m,n,o = actual load applications applied at age i, month j, axle type k, load level l, the equivalent temperature 

difference between top and bottom PCC surfaces m, traffic offset path n, and hourly truck traffic fraction o 

Ni,j,k,l,m,n,o = allowable number of load applications applied at age i, month j, axle type k, load level l, the 

equivalent temperature difference between top and bottom PCC surfaces m, traffic offset path n, and hourly 

truck traffic fraction o 

The allowable number of load applications is a function of PCC strength and applied stress 

and is calculated based on Equation (2-32): 

log⁡(𝑁𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜) = 𝐶1 ⋅ (
𝑀𝑅𝑖

𝜎𝑖,𝑗,𝑘,𝑙,𝑚,𝑛,𝑜
)

𝐶2

 (2-32) 

where, 
 MRi = Modulus of rupture of the PCC slab at the age i 

σi,j,k,l,m,n = applied stress at the age i, month j, axle type k, load level l, the equivalent temperature difference 
between top and bottom PCC surface m, traffic offset path n, and hourly truck traffic fraction o 

C1, C2 = fatigue life calibration coefficients 

 

The fraction of slabs cracked is predicted using Equation (2-33) for both bottom-up and top-

down cracking: 
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𝐶𝑅𝐾 =
1

1 + 𝐶4(𝐷𝐼𝐹)𝐶5
 (2-33) 

 

where,  
CRK = predicted fraction of bottom-up or top-down cracking 

Once the bottom -up and top-down cracking is estimated, the percentage of slabs cracked is calculated using 

Equation (2-34). 

 

𝑇𝐶𝑅𝐴𝐶𝐾 = (𝐶𝑅𝐾Bottom-up + 𝐶𝑅𝐾Top-down − 𝐶𝑅𝐾Bottom-up ⋅ 𝐶𝑅𝐾Top-down ) ⋅ 100 (2-34) 

 

where,  
TCRACK = total transverse cracking (percentage of slabs cracked with all severities) 

CRKBottom-up = predicted fraction of bottom-up transverse cracking 

CRKTop-down = predicted fraction of top-down transverse cracking 

 

Table 2-9 summarizes the transverse cracking model local calibration coefficients in different 

states. 

 

Table 2-9 Local calibration coefficients for the rigid transverse cracking model 

States C1 C2 C4 C5 Standard deviation 

Idaho 2.366 1.22 0.52 -2.17 Global 

Michigan - - 0.23 -1.80 1.34*CRK0.6593 

Missouri - - - - - 

Georgia - - - - - 

Iowa 2.17 1.32 1.08 -1.81 - 

Wyoming - - - - - 

Kansas - - - - - 

Louisiana 2.6 - - - - 

Washington - - 0.139 -2.115 - 

Ohio - - 1 -1.98 - 

Colorado - - 1 -1.98 - 

Minnesota - - 0.9 -2.61 - 
Pavement-ME v2.6 2 1.22 0.52 -2.17 3.5522*CRK0.3415+0.75 

2.3.2.2. Joint faulting model 

The transverse joint faulting is calculated monthly in the Pavement-ME using the material 

properties, climatic conditions, present faulting level, pavement design properties, and axle 

loads applied. Total faulting is the sum of faulting increments from previous months and is 

predicted using Equations (2-35) to (2-38) below. 

 

 Fault𝑚 =∑  

𝑚

𝑖=1

ΔFault𝑖 (2-35) 

𝛥 Fault𝑖 = 𝐶34 × ( FAULTMAX𝑖−1 −  Fault𝑖−1)
2 ×  DE𝑖 (2-36) 
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𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋𝑖 = 𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 + 𝐶7 ×∑ 

𝑚

𝑗=1

𝐷𝐸𝑗 × log⁡(1 + 𝐶5 × 5.0𝐸𝑅𝑂𝐷)𝐶6  (2-37) 

FAULTMAX X0 = C12 × δcurling × [log⁡(1 + C5 × 5.0EROD) × log⁡ (
P200 ×  WetDays 

Ps
)]

C6

 (2-38) 

where,  
Faultm = mean joint faulting at the end of month m 

ΔFaulti = incremental change (monthly) in mean transverse joint faulting during month i 

FAULTMAXi = maximum mean transverse joint faulting for month i 

FAULTMAX0 = initial maximum mean transverse joint faulting 

EROD = erodibility factor for base/subbase 

DEi = differential deformation energy of subgrade deformation accumulated during month i.  

δcurling = maximum mean monthly slab corner upward deflection PCC due to temperature curling and moisture 
warping., PS = overburden pressure on subgrade, P200 = percent subgrade soil material passing No. 200 sieve 

WetDays = average annual number of wet days (greater than 0.1 in rainfall) 

C1,2,3,4,5,6,7,12,34 = calibration coefficients 

 

C12 and C34 are defined by Equation (2-39) and Equation (2-40): 

 

C12 = C1 + C2 × 𝐹𝑅0.25 (2-39) 

C34 = C3 + C4 × 𝐹𝑅0.25 (2-40) 

 
FR = base freezing index defined as the percentage of time (in hours) the top base temperature 

is below freezing (32 °F) temperature to the total number of hours in design life 

 

Damage in a doweled joint for the current month is estimated using Equation (2-41). 

Δ𝐷𝑂𝑊𝐷𝐴𝑀𝑡𝑜𝑡 =∑ 

𝑁

𝑗=1

𝐶8 × 𝐹𝑗
𝑛𝑗

106𝑑𝑓𝑐
∗
 (2-41) 

where,  
ΔDOWDAMtot = cumulative dowel damage for the current month 

nj = number of axle load applications for the current increment and load group j for the current month 
N = number of load categories 

fc* = estimated PCC compressive stress  

d = dowel diameter 

C8 = calibration constant 

Fj = effective dowel shear force induced by axle loading of load category j 

 

The faulting model local calibration results for several states are summarized in Table 2-10. 

Table 2-10 Local calibration coefficients for the faulting model 

States C1 C2 C3 C4 C5 C6 C7 C8 Standard deviation 

Idaho 0.516 - - - - - - - - 

Michigan 0.4 - - - - - - - 0.0442*FAULT0.2698 

Missouri - - - - - - - - - 

Georgia 0.595 1.636 0.00217 0.00444 - 0.47 7.3 - 0.07162*FAULT0.368+0.00806 

Iowa 2.0427 1.8384 0.00438 0.00177 - 0.8 - - - 

Wyoming 0.5104 0.00838 0.00147 0.08345 5999 0.504 5.9293 - 0.0831*FAULT0.3426+0.00521 

Kansas - - 0.00164 - - 0.15 0.01 - - 

Louisiana - - - - - 1.2 - - - 

Washington 0.934 0.6 0.001725 0.004 250 0.4 0.65 400 - 

Pavement-
ME v2.6 

0.595 1.636 0.00217 0.00444 250 0.47 7.3 400 0.07162*FAULT0.368+0.00806 
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2.3.2.3. IRI model (rigid pavements) 

IRI in the Pavement-ME is a linear relationship between the IRI at construction and change 

in other distresses (transverse cracking, joint faulting, and joint spalling) over time. IRI, as a 

linear relationship of these factors, can be expressed by Equation (2-42).  

 

𝐼𝑅𝐼 = 𝐼𝑅𝐼𝐼 + 𝐶1 × 𝐶𝑅𝐾 + 𝐶2 × 𝑆𝑃𝐴𝐿𝐿 + 𝐶3 × 𝑇𝐹𝐴𝑈𝐿𝑇 + 𝐶4 × 𝑆𝐹 (2-42) 

where,  
IRI = Predicted IRI 
IRII = Initial IRI at the time of construction 

CRK = Percent slabs with transverse cracking (all severities). 

SPALL = Percentage of joints with spalling (medium and high severities). 

TFAULT = Total joint faulting cumulated per mi 

C1, C2, C3, C4 = Calibration coefficients 

SF = Site factor, which can be calculated as shown in Equation (2-43) 

 

𝑆𝐹 = 𝐴𝐺𝐸(1 + 0.5556 × 𝐹𝐼)(1 + 𝑃200) × 10−6 (2-43) 

where,  
AGE = Pavement age  

FI = Freezing index, °F-days. 

P200 = Percent subgrade material passing No. 200 sieve. 

The joint faulting and transverse cracking for IRI calculation is obtained using the models described previously. 

The joint spalling is calculated as shown in Equation (2-44) 
 

𝑆𝑃𝐴𝐿𝐿 = [
𝐴𝐺𝐸

𝐴𝐺𝐸 + 0.01
] [

100

1 + 1.005(−12× 𝐴𝐺𝐸 + 𝑆𝐶𝐹)
] (2-44) 

where,  
SPALL = percentage joints spalled (medium- and high-severities)  

AGE = pavement age since construction  

SCF = scaling factor based on site-, design-, and climate-related variables, which is estimated as given in 

Equation (2-45) 

 

𝑆𝐶𝐹 = −1400 + 350 × 𝐴𝐶𝑃𝐶𝐶 × (0.5 + 𝑃𝑅𝐸𝐹𝑂𝑅𝑀) + 3.4𝑓𝑐
′0.4 − 0.2( FTcycles ×𝐴𝐺𝐸)

+43ℎ𝑃𝐶𝐶 − 536𝑊𝐶𝑃𝐶𝐶
 (2-45) 

where, 
ACPCC = PCC air content  
AGE = time since construction  

PREFORM = 1 if preformed sealant is present; 0 if not  

f'c = PCC compressive strength 

FTcycles = average annual number of freeze-thaw cycles  

hPCC = PCC slab thickness; WCPCC = PCC water/cement ratio 

 

The IRI local calibration coefficients for various states are summarized in Table 2-11. Table 

2-12 shows threshold values used for different distresses in various states.  
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Table 2-11 Local calibration coefficients for rigid IRI model 

States C1 C2 C3 C4 

Idaho 0.845 0.4417 1.4929 28.24 

Michigan 1.198 3.570 1.4929 25.24 

Missouri - - - - 

Georgia 1.05 0.5417 1.85 33.8 

Iowa 0.04 0.04 0.07 1.17 

Wyoming - - - - 

Kansas - - 9.38 70 

Louisiana - - - - 

Ohio 0.82 3.7 1.711 - 

Colorado 0.82 0.442 1.493 - 

Pavement-ME v2.6 0.8203 0.4417 1.4929 25.24 

 

Table 2-12 Summary of design thresholds for rigid pavements 

States Transverse cracking (%) Joint faulting (in) IRI (in/mile) 

Colorado 7 0.12 160 

Idaho 10 0.15 169 

Arizona 10 0.15 169 

Kansas 10 0.15 169 

Michigan 15 0.125 172 

 

2.3.3 Challenges and Lessons Learned  

A survey of SHAs was conducted recently to document the implementation status and 

challenges (14). The survey was sent to all the SHA’s to identify their current design 

practices and plan for implementing the ME-based design. The questionnaire focused on the 

practices, policies, and procedures successfully used by the various SHA’s. The challenges 

related to the implementation of the Pavement-ME are of particular interest. The challenges 

relate to the design software’s complexity, availability of the needed input data, defining the 

most appropriate hierarchical input levels, and local calibration. Most SHAs are concerned 

with the software complexity, the training necessary for the ME-based design practices, and 

the operation and functionality of the software. The availability of the required input data is a 

significant concern. Most SHAs indicated that pavement condition data, existing pavement 

structure information, and traffic data are readily available. Very few SHA’s indicated that 

material-related data were readily available. Collecting and testing the missing information 

requires a significant effort by the SHAs. Selecting Level 1 inputs also requires considerable 

effort by the agencies. The survey indicated that only site-specific vehicle classification and 

average annual daily truck traffic (AADTT) are likely available for most SHAs. Based on the 

lack of available data for Level 1 inputs, regional averages or the Pavement-ME default 

values are used for pavement designs. 

 The survey respondents provided several challenges and lessons learned during the 

implementation process. As expected, one of the most common challenges reported was the 

lack of readily available traffic and materials data and the considerable effort required to 

obtain the needed data. In addition, SHAs indicated that contacting the respective office or 

division in an agency (e.g., construction, materials, traffic, or planning) early on in the 
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implementation process is helpful. This proactive awareness and coordination among 

different offices will ensure everyone understands what data are needed and why. Further, 

this communication will help prepare the respective staff to conduct field sampling and 

testing if the required data are unavailable. The survey results describe the following 

challenges in implementing the ME-based designs:  

 

• District offices are resistant to change from empirical-based designs to ME-based 

designs. The main reason is a higher comfort level with the inputs and resulting 

outputs (i.e., layer thickness) with the AASHTO 1993 Guide. Therefore, shifting to 

using design inputs and predicting distresses in the Pavement-ME, contrary to 

obtaining layer thickness as the final result, has been challenging to accept. 

• Variations and changes in the pavement condition data collection in different 

highway agencies have resulted in inconsistency with condition measurement. These 

discrepancies among agencies have lowered their ability to obtain reliable pavement 

condition data for calibration. 

• Another hurdle identified is the lack of resources for in-house local calibration and 

staff training. 

• While the Pavement-ME is too complex for most practicing engineers, adopting the 

procedure may improve through training to increase the engineer’s confidence in the 

long-term benefits of the design procedure. 

• The procedure is evolving, and several variations and improvements have been made 

in the last couple of years (various software versions). Therefore, a potential for more 

work remains (i.e., recalibration of performance models) as a result of newer versions 

and modifications to the software.  

 

The survey results also presented the following lessons learned in the implementation 

process: 

 

• Establish realistic timelines for the calibration and validation process 

• Allow sufficient time for obtaining materials and traffic data. 

• Ensure the data related to the existing pavement layer, materials properties, and traffic 

is readily available. 

• If necessary, develop a plan for collecting the needed data; this can require an 

expensive field sampling and testing effort. 

• Develop agency-based design inputs to avoid default or other inputs to minimize 

design variability. 

• Provide training to agency staff in ME design fundamentals, MEPDG procedures, and 

the Pavement-ME software. 

2.4 IMPLEMENTATION EFFORTS IN MICHIGAN 

To support the Pavement-ME implementation process in Michigan, the pavement researchers 

at Michigan State University (MSU) and other institutions have been working with MDOT to 

explore the various attributes of the design and analysis software. As a result of these efforts 

over the last 15 years, the following reports have been published: 
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• Evaluation of the 1-37A Design Process for New and Rehabilitated JPCP and HMA 

Pavements (Report No. RC-1516) (29) 

• Quantifying Coefficient of Thermal Expansion Values of Typical Hydraulic Cement 

Concrete Paving Mixtures (Report No. RC-1503) (30)Pavement Subgrade MR 

Design Values for Michigan’s Seasonal Changes (Report No. RC-1531) (31) 

• Backcalculation of Unbound Granular Layer Moduli (Report No. RC-1548) (32)  

• Preparation for Implementation of the Mechanistic-Empirical Pavement Design 

Guide in Michigan - Part 1: HMA Mixture Characterization (Report No. RC-1593) 

(33)  

• Preparation for Implementation of the Mechanistic-Empirical Pavement Design 

Guide in Michigan - Part 2: Rehabilitation Evaluation (Report No. RC-1594) (34) 

• Preparation for implementation of the mechanistic-empirical pavement design guide 

in Michigan, part 3: local calibration and validation of the pavement-ME performance 

models (Report No.: RC-1595) (15) 

• Improvement of Michigan climatic files in Pavement-ME design (Report No.: RC-

1626) (35) 

• Characterization of Traffic for the New M-E Pavement Design Guide in Michigan 

(Report No. RC-1537) (36, 37) 

 

The results from these studies are considered throughout the local calibration process in this 

report. Brief findings from these works are summarized below. 

2.4.1 MDOT Sensitivity Study 

The MSU research team conducted a study entitled “Evaluation of the 1-37A Design Process 

for New and Rehabilitated JPCP and HMA pavements” (30). The main objectives of the 

study were to: 

 

a. Evaluate the Pavement-ME pavement design procedures for Michigan conditions. 

b. Verify the relationship between predicted and observed pavement performance for 

selected pavement sections in Michigan. and 

c. Determine if local calibration is necessary. 

 

The report outlined the performance models for JPCP and HMA pavements. Two types of 

sensitivity analyses were performed: a preliminary one-variable-at-a-time (OAT) and a 

detailed analysis consisting of a full factorial design.  Both analyses were conducted to 

reflect MDOT pavement construction, materials, and design practices. For both new rigid 

and flexible pavement designs, the methodology contained the following steps: 

 

1. Determine the input variables available in the Pavement-ME and the range of 

values that MDOT uses in pavement design. 

2. Determine the practical range for each input variable based on MDOT practice and 

Long Term Pavement Performance (LTPP) data. 

3. Select a base case and perform the OAT. 

4. Use OAT results to design the detailed sensitivity analysis. 

5. Determine statistically significant input variables and two-way interactions 

6. Determine the practical significance of statistically significant variables 
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7. Draw conclusions from the results 

 

Tables 2-13 and 2-14 show the impact of input variables on different pavement performance 

measures for rigid and flexible pavements, respectively.  

 

Table 2-13 Impact of input variables on rigid pavement performance 

Design/material variable 

Impact on distress/smoothness 

Transverse joint 

faulting 
Transverse cracking IRI 

PCC thickness High High High 

PCC modulus of rupture None High Low 

PCC coefficient of thermal expansion High High High 

Joint spacing Moderate High Moderate 

Joint load transfer efficiency High None High 

PCC slab width Low Moderate Low 

Shoulder type Low Moderate Low 

Permanent curl/warp High High High 

Base type Moderate Moderate Low 

Climate Moderate Moderate Moderate 

Subgrade type/modulus Low Low Low 

Truck composition Moderate Moderate Moderate 

Truck volume High High High 

Initial IRI NA NA High 

 

Table 2-14 Impact of input variables on flexible pavement performance 

Fatigue cracking 
Longitudinal 

cracking 
Transverse cracking Rutting IRI 

HMA thickness 

HMA effective 

binder content 

HMA air voids 
Base material 

type 

Subbase material 

type 

HMA thickness 

HMA air voids 

HMA effective 

binder content 
Base material 

Subbase material 

Subgrade material 

HMA binder grade 

HMA thickness 

HMA effective 

binder content 
HMA air voids 

HMA aggregate 

gradation 

HMA thickness 

Subgrade material 

Subgrade modulus 

HMA effective 
binder content 

HMA air voids 

Base material 

Subbase material 

Base thickness 

Subbase thickness 

HMA thickness 

HMA aggregate 

gradation 

HMA effective binder 
content 

HMA air voids 

Base material type 

Subbase thickness 

Subbase material type 

Subgrade material type 

Note: The input variables are listed in order of importance. 

2.4.2 Pavement Rehabilitation Evaluation in Michigan 

The study was performed to determine the sensitive inputs for the pavement rehabilitation 

options (34). Three different sensitivity analyses were completed for each rehabilitation 

option. The rankings of important inputs for each rehabilitation option are summarized below 

(Tables 2-15 to 2-18): 
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Table 2-15 List of significant inputs — HMA over HMA 

Input variables Ranking (NSI) 

Overlay air voids 1 (6) 

Existing thickness 2 (5) 

Overlay thickness 3 (4) 

Existing pavement condition rating  4 (4) 

Overlay effective binder 5 (2) 

Subgrade modulus 6 (2) 

Subbase modulus 7 (1)  

Note: NSI = Normalized sensitivity index 

Table 2-16 List of significant inputs — Composite pavement  

Inputs Ranking (NSI) 

Overlay air voids 1 (9) 

Overlay thickness 2 (2) 

Existing PCC thickness 3 (1) 

 

Table 2-17 List of significant inputs — Rubblized PCC pavement 

Inputs Ranking (NSI) 

Overlay air voids 1 (6) 

Overlay effective binder 2 (2) 

Overlay thickness 3 (1) 

 

Table 2-18 List of significant inputs — Unbonded PCC overlay 

Design inputs Ranking (NSI) 

Overlay PCC thickness 1 (23) 

Overlay PCC coefficient of thermal expansion (CTE)  2 (12) 

Overlay PCC modulus of rupture (MOR)  3 (8) 

Overlay joint spacing  4 (5) 

Existing PCC elastic modulus  6 (1) 

Climate 7 (1) 

2.4.3 HMA Mixture Characterization in Michigan 

As part of a more extensive MDOT study, “Preparation for Implementation of the 

Mechanistic-Empirical pavement Design Guide in Michigan” (33), laboratory testing was 

preformed to determine HMA mixture properties for typical mixtures used in Michigan. The 

Level 1 HMA inputs require laboratory tests to characterize a pavement in the Pavement-ME 

software. The most critical properties obtained from this study include the following: 

 

• Dynamic modulus (E*) 

• Binder G* 

• Creep compliance and, 

• Indirect tensile strength (IDT) 



 

35 

 

 

The study determined Level 1 HMA mixture and binder characterizations as inputs in the 

Pavement-ME. Additionally, the study used artificial neural networks (ANN) to better 

predict dynamic moduli from asphalt volumetrics. The research team also reviewed the 

current HMA test data as part of the MDOT testing program and compared it to the necessary 

data by the Pavement-ME. Standalone software, called DYNAMOD, was developed to serve 

as a database to obtain the required HMA properties in a form compatible with the 

Pavement-ME software. 

2.4.4 Local Calibration and Validation of Pavement-ME Models 

The primary aim of this study (15) was to calibrate and validate the mechanistic-empirical 

pavement design guide (Pavement-ME) performance models to Michigan's conditions and to 

evaluate the data needs for the implementation of Pavement-ME. Local calibration of the 

performance models in Pavement-ME was challenging due to the limited data available. A 

total of 108 and 20 reconstructed flexible and rigid pavement candidate projects, 

respectively, were selected. Also, 33 flexible and 8 rigid rehabilitated projects were selected 

for local calibration. The selection process was based on various factors, including pavement 

type, age, geographical location, and the number of data collection cycles. The selected 

pavement sections met specific requirements, such as adequate sections for each performance 

model, a wide range of traffic, climate, design, material characterization inputs, and 

reasonable observed condition data over time. 

Nationally calibrated performance models were evaluated using the data from the 

selected pavement sections, and it found that the global models in Pavement-ME were 

inadequate in predicting pavement performance for Michigan's conditions. Hence, local 

calibration of the models was crucial. Local calibrations were performed for all performance 

prediction models for flexible and rigid pavements using multiple datasets (reconstruct, 

rehabilitation, and a combination of both) and robust statistical techniques (such as repeated 

split sampling and bootstrapping). The results of local calibration and validation of various 

models indicated that locally calibrated models significantly improved the performance 

predictions for Michigan's conditions. The report documents the local calibration coefficients 

for all performance models and recommends the most appropriate calibration coefficients for 

each of the performance models in Michigan, along with future guidelines and data needs. 

2.4.5 Traffic Inputs in Michigan 

The research team has extensively worked on the traffic characterization for the Pavement-

ME in Michigan (36, 37). The following traffic characteristics were investigated: 

 

1. Monthly distribution factors 

2. Hourly distribution factors 

3. Truck traffic classifications 

4. Axle groups per vehicle 

5. Axle load distributions for different axle configurations 

 

The data were collected from 44 Weigh-in-motion (WIM) sites distributed throughout the 

entire state of Michigan. The data were used to develop Level 1 (site-specific) traffic inputs 

for the WIM locations. Cluster analysis was conducted to group sites with similar 

characteristics for developing Level 2 (regional) inputs. Statewide (Level 3) averages were 
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also determined. The inputs and their recommended input levels are summarized in Table 2-

19.  

Table 2-19 Conclusions and recommendations for traffic input levels 

Traffic 

Characteristic 

Impact on pavement performance 
Suggested input levels (when level I data 

not available) 

Rigid pavement 
Flexible 

pavement 
Rigid 

pavement 
Flexible pavement 

TTC Significant Moderate Level II 

HDF Significant Negligible Level II Level III1 

MDF Negligible Level III (State average) 

AGPV Negligible Level III (State average) 

Single ALS Negligible Level III (State average) 

Tandem ALS Significant Moderate Level II (State average) 

Tridem ALS Negligible Negligible Level III (State average) 

Quad ALS Negligible Moderate Level III (State average) 
1 Level III inputs were available for flexible pavements in the MEPDG version 1.1 and are no longer available as input in the 
Pavement-ME  

2.4.6 Unbound Material Inputs in Michigan 

Two studies to characterize unbound material in Michigan were carried out in the last few 

years (31, 32). The first study outlined the importance of the roadbed soil's resilient modulus 

(MR) and how it affects pavement systems. The study focused on developing reliable 

methods to determine the MR of the roadbed soil for inputs in the Pavement-ME. The study 

divided the state of Michigan into fifteen clusters based on similar soil characteristics.  

Laboratory tests were performed to determine moisture content, grain size distribution, and 

Atterberg limits. Furthermore, another aspect of the study was to determine the differences 

between lab-tested MR values and back-calculated MR. The analysis concluded that the 

values between laboratory MR and back-calculated MR are almost equal if the stress 

boundaries used in the laboratory matched those of the FWD tests. Table 2-20 summarizes 

the recommended MR values for design based on different roadbed types in Michigan. The 

study suggests that the design recommended value should be used for design. 

 

Table 2-20 Average roadbed soil MR values  

Roadbed Type Average MR 

USCS AASHTO 
Laboratory 
determined 

(psi) 

Back-
calculated 

(psi) 

Design 
value 

(psi) 

Recommended 
design MR 

value (psi) 

SM A-2-4, A-4 17,028 24,764 5,290 5,200 

SP1 A-1-a, A-3 28,942 27,739 7,100 7,000 

SP2 A-1-b, A-3 25,685 25,113 6,500 6,500 

SP-SM A-1-b,A-2-4, A-3 21,147 20,400 7,000 7,000 

SC-SM A-2-4, A-4 23,258 20,314 5,100 5,000 

SC A-2-6, A-6,A-7-6 18,756 21,647 4,430 4,400 

CL A-4, A-6, A-7-6 37,225 15,176 4,430 4,400 

ML A-4 24,578 15,976 4,430 4,400 

SC/CL/ML A-2-6, A-4, A-6, A-7-6 26,853 17,600 4,430 4,400 
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The second study focused on the backcalculation of MR for the unbound base and subbase 

materials and made the following recommendations (32): 

1. In the design of flexible pavement sections using design Levels 2 or 3 of the 

Pavement-ME, the materials beneath the HMA surface layer should consist of the 

following two layers: 

a. Layer 1 - An aggregate base whose modulus value is 33,000 psi 

b. Layer 2 - A sand subbase whose modulus is 20,000 psi 

2. In the design of rigid pavement sections using design Levels 2 or 3 of the Pavement-

ME, the materials beneath the PCC slab could be either: 

a. An aggregate base layer whose modulus value is 33,000 psi supported by a sand 

subbase with a modulus value of 20,000 psi 

b. A granular layer made up of aggregate and sand mix whose composite modulus 

value is 25,000 psi 

3. For the design of flexible or rigid pavement sections using design Level 1 of the 

Pavement-ME, it is recommended that: 

• For an existing pavement structure where the PCC slabs or the HMA surface will 

be replaced, FWD tests will be conducted every 500 feet along the project. The 

deflection data will be used to backcalculate the moduli of the aggregate base and 

sand subbase or the granular layer. The modulus values to be used in the design 

should correspond to the 33rd percentile of all values. The 33rd percentile value is 

the same as the average value minus half the standard deviation value.  

• For a total reconstruction or for a new pavement section, the modulus values of 

the aggregate base and the sand subbase or the granular layer could be estimated 

as twice the average laboratory-determined modulus value. 

4. Additional FWD tests and backcalculation analyses should be conducted when 

information regarding the types of aggregate bases under rigid and flexible pavements 

becomes known, and no previous FWD tests were conducted. 

5. MDOT should keep all information regarding the various pavement layers. The 

information should include the HMA and the PCC mix design parameters, the type, 

source, gradation, aggregate angularity, subbase material type, and source. The above 

information should be kept in easily searchable electronic files. 

2.4.7 Coefficient of Thermal Expansion 

The CTE input values were obtained from the MDOT study that determined the CTE for 

various aggregates available across Michigan (30). It was decided later that the CTE values 

for concrete in Michigan are either 4.5 or 5.8 in/in/°F×10-6, depending on the location of the 

pavement section. For University and Metro regions, a CTE value of 5.8 in/in/°F×10-6 while 

for other regions, a value of 4.5 in/in/°F×10-6 should be used. 

2.4.8 Improved Climatic Files for Michigan 

Climatic inputs are crucial in the Mechanistic-Empirical design of flexible and rigid 

pavements. This study aimed to improve the climatic files in Michigan for PMED by 

conducting quality and quantity checks of the existing files to identify potential missing and 

erroneous data (35). Michigan had 24 climatic files embedded in Pavement-ME, but several 

limitations had been identified. Firstly, five of the climatic files had a month of missing data, 

which needed to be appropriately filled. Secondly, the geographical distribution of the 24 

weather stations was not uniform, with some regions poorly represented, and it was desirable 
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to add new weather stations to fill the gap regions. Thirdly, the existing climatic files have 

not been updated since 2006, and there was a need for the data length to be extended to 

represent the long-term climatic conditions better. Procedures for filling in the missing and 

correcting the erroneous data have also been proposed. 

The sensitivity of the Pavement-ME design performance to weather station variation 

in Michigan, the five individual climatic variables, and the depth to the groundwater table 

were investigated for two traffic levels (heavy and medium) and two pavement types 

(flexible and rigid). Typical traffic load spectra, pavement structures, and materials in 

Michigan were incorporated into the sensitivity analysis. Additional weather data from 

Automated Surface Observation Systems (ASOS) and Michigan Road Weather Information 

System (RWIS) were investigated as potential sources to fill the gap regions and extend the 

existing climatic files. Quantity and quality checks on both data sources were conducted to 

evaluate their feasibility for use in PMED. It was found that the ASOS data and the existing 

climatic data are from the same historical data records, and 15 additional weather stations 

were added using the ASOS data to fill the gap regions. Additionally, all existing climatic 

files were extended from Feb. 2006 to Dec. 2014. 

Finally, preliminary investigations were carried out to establish climatic zones for 

Michigan based on pavement surface temperatures and distress predictions, resulting in the 

establishment of 15 climate zones. The improvements made to the climatic files in Michigan 

for Pavement-ME will lead to more accurate predictions and better pavement designs. 

2.5 SIGNIFICANT INPUT VARIABLES IN THE PAVEMENT-ME 

DESIGN 

The identification of significant inputs is crucial for local calibration efforts. Such 

information addresses feasible and economic concerns since data collection for calibration or 

design requires considerable laboratory and field testing for material characterization. Such 

actions are labor-intensive and require resources that may become economically challenging. 

An input variable is significant when its variation causes substantial variations in pavement 

performance prediction. Therefore, the identification of influential inputs can provide 

guidelines in terms of data collection needs. When an input variable is highly sensitive to 

pavement performance prediction, agencies will be more inclined to collect higher-quality 

data attributes (i.e., Level 1). On the other hand, if an input variable does not show much 

sensitivity in performance prediction, agencies can adopt estimated values (i.e., Level 3).  

2.5.1 Sensitivity Analysis Efforts  

State Highway Agencies often struggle to identify the Pavement-ME's most critical data 

collection needs. An implementation protocol was developed for the Pavement-ME by 

reviewing two decades of research on the Pavement-ME. Particular emphasis was given to 

Weigh-in-Motion (WIM) data collection efforts for traffic input parameters and HMA 

dynamic modulus parameter (E*), and coefficient of thermal expansion for Portland Concrete 

Cement (PCC) parameters for flexible and rigid pavement input parameters (38). 

2.5.1.1. Flexible Pavements 

The Idaho Transportation Department conducted an extensive sensitivity analysis of rigid 

and flexible pavement design inputs and ranked them based on the variations observed for 
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each accumulated pavement distress (25). Alligator fatigue cracking, rutting, transverse 

cracking, and IRI were considered performance measures.  

 

Alligator fatigue cracking—HMA thickness, in-situ air void, effective binder content, 

existing HMA condition, bonding with base, base modulus, and truck volume are very 

influential. Other inputs such as contact area, pressure, mixture gradation, HMA binder 

grade, subgrade modulus, climate, truck axle load distribution, truck speed, and wander have 

moderate effects. The base thickness and groundwater table have a small impact on fatigue 

cracking.  

 

Surface rutting—Tire pressure, HMA gradation, truck volume, and speed were found to have 

a significant effect. On the other hand, HMA thickness, in-situ air voids, binder grade, 

effective binder content, base and subgrade moduli, climate, axle load distribution, and 

wander moderately impact surface rutting. The bonding with the base and groundwater table 

was found to have small effects on surface rutting.  

 

Transverse cracking—HMA tensile strength, binder grade, and groundwater table have a 

significant impact. While HMA coefficients of thermal contraction, HMA air void in situ, 

and effective binder content have moderate effects, HMA thickness was found to have a 

small impact on transverse cracking.  

 

Surface roughness—HMA binder grade and initial IRI have a substantial effect. HMA 

thickness, tire load, contact area, and pressure, HMA air voids in situ have a moderate impact 

on surface roughness. The effective binder content and climate have minor effects on IRI. 

Table 2-21 summarizes the sensitive results for flexible pavements from the Idaho study.  

 

A detailed sensitivity for pavement performance predicted by the MEPDG was performed 

under the NCHRP 1-47 study (34, 39). A normalized sensitivity index (NSI) was used to 

estimate the percentage change in predicted performance from the design limit due to a 

specified percentage change in the design input. Based on the NSI values, four types of 

sensitive parameters were defined—hypersensitive (NSI > 5), very sensitive (1< NSI < 5), 

sensitive (0.1 < NSI < 1), and non-sensitive (NSI < 0.1). Longitudinal cracking, alligator 

cracking, thermal cracking, AC rut depth, total rut depth, and IRI were considered 

performance measures for flexible pavements. Table 2-22 summarizes sensitivity analysis 

results for flexible pavements. 
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Table 2-21 Summary of sensitive input parameters for flexible pavements - Idaho 

Distress type Impacts of input parameters on performance prediction 

Large Moderate Small 

Alligator fatigue cracking 

• HMA thickness 

• HMA air void in situ 

• Effective HMA binder 

content  

• Existing HMA 

condition 

• Bonding with base  

• Base modulus  

• Truck volume 

• Tire load 

• Contact area and 

pressure  

• Mixture gradation 

• HMA binder grade 

• Subgrade modulus 

• Climate 

• ALS 

• Truck speed  

• Wheel wander 

• Base thickness  

• Groundwater table 

Rutting 

• ALS  

• Contact area and 
pressure  

• Mixture gradation 

• Truck volume 

• Truck speed 

• HMA thickness 

• HMA air voids in situ 

• HMA binder grade,  

• Effective HMA binder 

content 

• base modulus 

• subgrade modulus 

• climate 

• ALS 

• Wheel wander 

• Bonding with base  

• Groundwater table 

Transverse cracking 

• HMA tensile strength, 

HMA binder grade  

• Groundwater table 

• HMA air void in situ  

• Effective HMA binder 

content 

• HMA thickness 

IRI 

• HMA binder grade and  

• Initial IRI 

• HMA thickness,  

• ALS  

• Contact area and 

pressure  

• HMA air voids in-situ 

• Effective HMA binder 
content 

• Climate 
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Table 2-22 Summary of sensitive input parameters for flexible pavements (39, 40) 

Distress 

type 

The sensitivity of input parameters on performance prediction 

Hypersensitive 

(NSI > 5) 

Very sensitive 

(1 < NSI < 5) 

Sensitive 

(0.1 < NSI <1) 

Longitudinal 

Cracking 

• HMA E* alpha, delta  

• HMA thickness 

• Base resilient modulus 

• Surface shortwave 

absorptivity 

• HMA air voids  

• HMA Poisson’s ratio  

• Truck volume 

• HMA effective binder 

content 

• Subgrade resilient modulus 

• Base thickness 

• Subgrade % passing #200 

• Truck speed 

• HMA unit weight 

• Base Poisson ratio  

• HMA heat capacity  

• Subgrade liquid limit  

• Binder low-temperature PG  

• HMA thermal conductivity  

• Binder high-temperature PG  

• Subgrade Poisson’s ratio 

• Groundwater depth 

• Subgrade plasticity index 

Alligator 

Cracking 

• HMA E* alpha, delta 

• HMA thickness 

• Base resilient modulus 

• Surface shortwave 
absorptivity 

• HMA air voids 

• HMA Poisson’s ratio 

• Truck volume 

• HMA effective binder 

content 

• Subgrade resilient modulus  

• Base thickness 

• Subgrade % passing #200 

• Truck speed 

• HMA unit weight 

• Base Poisson’s ratio 

• HMA heat capacity 

• Subgrade liquid limit 

• Binder low-temperature PG 

• HMA thermal conductivity 

• Binder high-temperature PG 

• Subgrade Poisson’s ratio 

• Groundwater depth 

• Subgrade plasticity index 

Thermal 

Cracking 
 

• HMA E* delta,  

• HMA air voids,  

• HMA creep compliance 

• HMA E*  

• HMA thickness 

• Base resilient modulus 

• HMA Poisson’s ratio 

• HMA air voids 

• Truck volume 

• HMA effective binder content 

• Subgrade resilient modulus 

• Base thickness  

• Surface shortwave absorptivity 

• Subgrade % passing #200  

• Truck speed 

• HMA unit weight 

• Base Poisson’s ratio 

• HMA heat capacity 

• Subgrade liquid limit 

• Binder low-temperature PG 

• HMA thermal conductivity 

• Binder high-temperature PG  

• Subgrade Poisson’s ratio  

• Groundwater depth 

• Subgrade plasticity index 
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Table 2-22 Summary of sensitive input parameters for flexible pavements (continued…) 

AC Rut 

Depth 
HMA E* alpha and delta 

• HMA thickness,  

• Surface shortwave 

absorptivity,  

• HMA Poisson’s ratio,  

• HMA air voids,  

• truck volume 

• HMA effective binder content 

• Subgrade resilient modulus  

• Base thickness and MR 

• HMA air voids 

• Subgrade percent passing #200 

• Truck speed 

• HMA unit weight 

• Base Poisson’s ratio 

• HMA heat capacity 

• Subgrade LL and PI 

• Binder low-temperature PG 

• HMA thermal conductivity 

• Binder high-temperature PG 

• Subgrade Poisson’s ratio 

• Groundwater depth  

Total Rut 

Depth 
HMA E* alpha and delta 

• HMA thickness,  

• surface shortwave 

absorptivity,  

• HMA Poisson’s ratio,  

• HMA air voids 

• HMA unit weight 

• Base Poisson’s ratio 

• HMA heat capacity 

• Subgrade LL, PI, and MR 

• Binder low-temperature PG 

• HMA thermal conductivity 

• Binder high-temperature PG 

• Subgrade Poisson’s ratio 

• Groundwater depth 

• HMA air voids 

• Truck volume 

• HMA effective binder content 

• Base thickness and MR  

• Subgrade percent passing #200 

• Operational speed  

IRI  
• HMA E* alpha, delta  

• HMA thickness 

• Base resilient modulus  

• Surface shortwave absorptivity  

• HMA air voids 

• HMA Poisson’s ratio 

• Truck volume 

• HMA effective binder content 

• Base thickness 

• Subgrade percent passing #200  

• Truck speed 

• HMA unit weight 

• base Poisson’s ratio 

• HMA heat capacity 

• subgrade LL, PL, and MR 

• binder low-temperature PG 

• HMA thermal conductivity 

• binder high-temperature PG 

• Subgrade Poisson’s ratio,  

• Groundwater depth  

 

A climatic inputs parameter sensitivity investigation was conducted in Michigan, considering 

traffic, pavement structural inputs, material properties, and six climatic locations (41). Each 

of the climatic inputs was evaluated to estimate its sensitivity for pavement performance 

prediction. The temperature was identified as the most sensitive climatic input parameter, 

followed by wind speed and percent sunshine. Precipitation and relative humidity did not 

cause significant variation in pavement performance predictions. Interactions among the 



 

43 

 

climatic input revealed that higher temperature and percent sunshine generated higher rutting 

and IRI predictions and lower fatigue cracking. Increased wind speed or precipitation 

generated lower rutting and IRI predictions and increased fatigue cracking predictions. 

The sensitivity of traffic levels and material-related inputs were evaluated through 

simulation techniques with Latin Hypercube Sampling (LHS) and the multiple regression 

analysis in Minnesota (42).  Two-way traffic volume level, dual tire spacing, and operational 

vehicle speed were identified as the most significant among other traffic parameters.  

 

Rutting—the most sensitive material properties were found to be HMA air void and HMA 

Poisson’s ratio. 

 

Cracking—the most sensitive input parameters were found to be HMA air void, HMA 

Poisson's ratio, and effective binder content. 

 

In West Virginia, Latin hypercube sampling, standardized regression coefficients, and 

Gaussian stochastic processes were employed to identify the relative importance of the 

Pavement-ME input parameters (43-45). Such computer experiments analyzed typical 

flexible pavement structures used in West Virginia, and sensitivity for material and traffic 

inputs were tested with a one-at-a-time approach. Standardized regression coefficients were 

used to identify the most sensitive inputs. Surface roughness, rutting, and cracking were 

considered performance measures. 

 

Surface roughness—the most sensitive traffic parameters were found to be two-way traffic, 

and dual tire spacing, and the most sensitive material parameter was found to be HMA air 

void. 

 

Rutting—the most sensitive traffic parameters were found to be two-way traffic and dual tire 

spacing, and the most sensitive material parameters were found to be subgrade modulus and 

HMA air voids. 

 

Cracking—the most sensitive traffic parameters were found to be two-way traffic, and dual 

tire spacing, and the most sensitive material parameters were found to be HMA air voids and 

effective binder content. 

 

Table 2-23 summarizes the results of the sensitivity analyses in Michigan, Minnesota, and 

West Virginia. 

Table 2-23 Summary of sensitivity analysis findings in different states 

Location Sensitive data inputs 

Michigan Climate — temperature, wind speed, and percent sunshine 

Minnesota 
Traffic — two-way traffic, dual tire spacing, operational speed 

Materials — HMA air void, Poisson’s ratio, effective binder content 

West Virginia 
Traffic — two-way traffic and dual tire spacing 

Materials — HMA air void, effective binder content, subgrade MR 
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In another simulation study, 100 pavement design sections were generated with Monte Carlo 

sampling and analyzed to identify the sensitive parameters in the MEPDG (46). The 

variations in the prediction of performance measures (i.e., longitudinal cracking, HMA and 

total rutting, and IRI) due to the changes in parameters— nominal maximum aggregate size, 

climatic location, HMA thickness, AADTT, subgrade strength, truck traffic category, 

construction season, and binder grade, were investigated with Pearson’s and Spearman’s 

correlation coefficients. A negative correlation coefficient means an increase in that input 

parameter decreases the output response and vice versa. A positive correlation coefficient 

means that an increase in that input parameter increases the output response and vice versa. 

The absolute values from these coefficients were used to develop a relative rank of 

importance of the individual parameters. AADTT, HMA thickness, and subgrade MR were 

identified as the significant input parameters, and the remainder of the parameters were 

shown to have a limited impact on performance predictions. 

2.5.1.2. Rigid Pavements 

Idaho Transportation Department conducted an extensive sensitivity analysis on rigid 

pavement design inputs and ranked them based on the variations observed for each pavement 

distress (25). Transverse joint faulting, transverse cracking, and IRI were considered 

performance measures. 

 

Transverse joint faulting—PCC CTE, joint LTE, edge support, permanent curl and warp, 

base type, and truck volume were found to be very significant inputs. On the other hand, 

PCC thickness, joint spacing, zero stress temperature, climate, and truck lateral offset were 

found to have moderate effects. PCC unit weight, subgrade modulus, groundwater table, and 

truck axle load distribution were found to have minor effects on transverse joint faulting. 

 

Transverse cracking—PCC thickness, MOR and Ec, CTE, existing PCC condition, joint 

spacing, edge support, permanent curl and warp, friction between base and slab, truck axle 

load distribution, truck volume, and truck lateral offset were found to have significant effects. 

On the other hand, PCC unit weight, base type, climate, subgrade modulus, and truck wander 

were found to have moderate effects. Groundwater table, truck speed, and tire pressure had a 

negligible impact on transverse cracking. 

 

Surface roughness—PCC thickness, CTE, joint LTE, permanent curl and warp, truck 

volume, and initial IRI were found to have significant effects. On the other hand, MOR, Ec, 

joint spacing, edge support, friction between base and slab, climate, and truck lateral offset 

were found to have moderate effects. Existing PCC conditions, unit weight, zero stress 

temperature, subgrade modulus, base type, groundwater table, truck axle load distribution, 

and truck wander had a negligible impact on surface roughness. Table 2-24 shows the 

summary of the results of the sensitivity study.  
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Table 2-24 Summary of sensitive input parameters for rigid pavements - Idaho 

Modes of Distress 
Impacts of Input Parameters in Performance Prediction 

Large Moderate Small 

Transverse Joint Faulting 

• PCC CTE  

• Joint LTE 

• Edge support 

• Permanent curl & warp  

• Base type  

• Truck volume 

• PCC thickness 

• Joint spacing 

• Zero stress temperature 

• Climate  

• Lateral offset 

• PCC unit weight 

• Subgrade modulus  

• Groundwater table  

• ALS 

Transverse Cracking 

• PCC thickness,  

• MOR, Ec  

• CTE 

• Existing PCC condition 

• Joint spacing 

• Edge support 

• Permanent curl  

• Friction between base 

and slab 

• ALS 

• Truck volume 

• Lateral offset 

• PCC unit weight 

• Base type 

• Climate 

• Subgrade MR 

• Truck wander 

• Groundwater table 

• Truck speed 

• Tire pressure 

IRI 

• PCC thickness,  

• CTE  

• Joint LTE,  

• Permanent curl 

• Truck volume 

• Initial IRI 

• MOR, Ec  

• Joint spacing 

• Edge support 

• Friction between base 

and slab,  

• Climate  

• Truck lateral offset 

• Existing PCC condition 

• PCC unit weight 

• Zero stress temperature 

• Subgrade MR 

• Base type 

• Groundwater table 

• ALS 

• Truck wander 

 

The NCHRP 1-47 project also conducted the sensitivity of inputs for rigid pavements. 

Faulting, transverse cracking, and IRI were considered performance measures. Table 2-25 

summarizes the sensitive inputs for different performance measures (47, 48). 

Table 2-25 Summary of sensitive input parameters for rigid pavements (47, 48) 

Distress type 

The sensitivity of input parameters on performance prediction 

Hypersensitive  

(NSI > 5) 

Very sensitive  

(1< NSI < 5) 

Sensitive  

(0.1 < NSI < 1) 

Faulting • Slab width 

• design lane width 

• PCC unit weight 

• PCC CTE 

• Subgrade MR, dowel diameter 

• PCC Poisson’s ratio, Traffic 
volume, PCC cement content 

• Base MR & thickness 

• Groundwater table depth, edge 

support 

• LTE, MOR, PCC thickness  

• Erodibility index 

• MOR, Ec 

• Surface shortwave absorptivity  

• Joint spacing, PCC water-to-

cement ratio, PCC thermal 

conductivity, construction month 
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Table 2-25 Summary of sensitive input parameters for rigid pavements  (continued…) 

Distress type 

The sensitivity of input parameters on performance prediction 

Hypersensitive  

(NSI > 5) 

Very sensitive  

(1< NSI < 5) 

Sensitive  

(0.1 < NSI < 1) 

Transverse 

Cracking 
• Slab width 

• MOR 

• PCC thickness 

• Design lane width 

• PCC unit weight 

• CTE, MOR, Ec 

• Surface shortwave 

absorptivity 

• Joint spacing 

• PCC water to cement 

ratio 

• PCC thermal 

conductivity 

• Subgrade resilient modulus 

• Dowel diameter 

• PCC Poisson’s ratio 

• Traffic volume 

• PCC cement content 

• Base MR 

• Groundwater depth 

• Base thickness 

• Edge support, LTE 

• Erodibility index 

• Construction month 

IRI • Slab width 
• PCC unit weight, PCC 

CTE 

• Subgrade MR,  

• Dowel diameter 

• PCC Poisson’s ratio 

• Traffic volume 

• PCC cement content 

• Base MR 

• Groundwater depth 

• Base thickness  

• MOR, Ec  

• Surface shortwave absorptivity  

• Joint spacing 

• PCC water-to-cement ratio 

• PCC thermal conductivity 

• Construction month 

 

A study in Arkansas considered 29 out of over 100 inputs in the MEPDG, and the 

significance of these parameters on faulting, cracking, and IRI predictions was evaluated 

(49). The results show that 17 of the 29 variables in the study were found insensitive.  

 

Faulting—curl warp effective temperature difference, joint spacing, dowel diameter, edge 

support, PCC thickness, unit weight, and CTE were found to be sensitive. 

 

Cracking—curl warp effective temperature difference, joint spacing, edge support, surface 

shortwave absorptivity, PCC layer thickness, unit weight, Poisson's ratio, CTE, thermal 

conductivity, MOR, and fc
’ were reported as sensitive inputs. 

 

Smoothness—curl warp effective temperature difference, joint spacing, dowel diameter, edge 

support, PCC layer thickness, unit weight, CTE, MOR, and fc
’ were reported as influential 

inputs. 

 

A sensitivity analysis was also conducted in Michigan (50). About 23 most significant inputs 

were identified for rigid pavements. The study used a one-at-a-time sensitive analysis 

approach for a range of parameters, and based on local experience and engineering 
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judgments, 6 out of these 23 parameters were investigated with a factorial design. PCC 

thickness, joint spacing, and edge support were found to have significant effects on JPCP-

predicted performance. The coefficient of thermal expansion, modulus of rupture, base type, 

and subgrade were found to impact considerably JPCP predicted performance among 

material-related parameters. 

2.6 RECOMMENDED PRACTICES IN DIFFERENT STATES 

SHAs typically generate Level 1 hierarchical inputs for the Pavement-ME based on local 

data availabilities, practical considerations, and testing capabilities. For Levels 2 and 3 

hierarchical inputs, SHAs follow 3-step procedures to develop a localized database with 

default values, as shown in Figure 2-1. Table 2-26 documents the recommended data 

collection practices of different SHAs for hierarchical input levels for the Pavement-ME (51-

56). 

 
Figure 2-1 Recommended practices for local default values in the Pavement-ME 

Table 2-26 Recommended data collection practices of different SHAs 

Input levels 
Recommended data sources 

Idaho Colorado Virginia Arizona South Carolina 

Level 1 
Lab tests & 

field 

experiments 

Lab tests & 

field 

experiments 

Lab tests & 

field 

experiments 

Lab tests & 

field 

experiments 

Lab tests & field 

experiments 

Level 2 Local defaults Local defaults Local defaults Local defaults 

Local 

defaults/Pavement-

ME defaults 

Level 3 
Pavement-ME 

default values 

Local and 

Pavement-ME 

defaults 

Pavement-ME 

defaults 

Local and 

Pavement-ME 

defaults 

Local and 

Pavement-ME 

defaults 

 

Similar practices are recommended by other SHAs listed below. 

 

• Iowa (57) 

• Mississippi (58) 

• Missouri (59) 

• Nevada (60) 

• North Carolina (5) 

• Ohio (61) 

• Oregon (62) 

• Tennessee (63) 

• Utah (64) 

• Washington (65) 

• Wyoming (19, 66) 

Step 1

Lab Tests & 

Field Experiments

Step 2

Database 
Development

Step 3

Local Default 
Values
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Table 2-27 shows the recommended data attributes of different SHAs for hierarchical input 

levels in the Pavement-ME. Table 2-28 presents typical data attributes of interest by different 

SHAs for localized database development for the Pavement-ME. 

 

Table 2-27 Recommended input levels of different SHAs in the Pavement-ME 

Agency 
Hierarchical input levels 

Level 1 Level 2 Level 3 

Idaho 

HMA materials: 
E*, G*, Job Mix Formula 

Unbound materials:  
MR (if possible) 

Traffic:  

WIM data 
PCC materials: 

Slump, air content, unit 
weight, concrete temperature, 
, , μ, splitting tensile strength, 
MOR, CTE, ultimate drying 
shrinkage 

Unbound material properties: 
Base, subbase, and subgrade  

 

Volumetric properties of HMA 
materials 

Virginia 

Traffic:  
AADTT, vehicle class 
distribution and growth rate  

Climate: 
Station and groundwater table 

depth 
HMA Material:  

Thickness 
PCC Materials:  

Thickness 
Design:  

Shoulder type, steel (%), bar 
diameter, steel depth, 

base/slab friction coefficient, 
joint spacing, sealant type, 
doweled joints, widened slab, 
tied shoulders, erodibility 
index (EI), PCC-base contact 
friction 

Stabilized base:  
Thickness 

Base:  
Thickness 

Subgrade Materials:  
Thickness, gradation and 
other engineering properties, 
resilient modulus 

Traffic:  
Vehicle class distribution and 
growth rate 

HMA Materials:  

Unit weight, effective binder 
content, air void, dynamic 
modulus, asphalt binder, 
creep compliance, indirect 
tensile 

PCC Materials:  
Unit weight, CTE, cement 
type, cementitious material 

content, water-cement ratio, 
aggregate type, strength, and 
modulus 

Stabilized base:  
Resilient modulus 

Base:  
Resilient modulus, gradation, 
and other engineering 

properties 
Subgrade materials:  

Resilient modulus, gradation, 
and other engineering 
properties 

Traffic:  
Traffic capacity, axle 
configuration, lateral wander, 
wheelbase, monthly and hourly 
factors, single, tandem, tridem, 
and quad-axle distribution 

HMA Materials:  
Poisson’s ratio, E*, reference 
temperature, thermal 

conductivity, thermal contraction, 
Surface shortwave absorptivity, 
endurance limit applied, 
endurance limit (micro strain), 
layer interface, Poisson’s ratio, 

PCC Materials:  
Poisson’s ratio, thermal 
conductivity, heat capacity, zero 

stress, ultimate shrinkage, 
reversible shrinkage, time to 
develop 50% ultimate shrinkage, 
curing method, surface shortwave 
absorptivity, permanent 
curl/warp, crack spacing 

Stabilized base:  
Unit weight, Poisson’s ratio, 

thermal conductivity, heat 
capacity 

Base:  
Poisson’s ratio, coefficient of 
lateral earth pressure 

Subgrade Materials:  
Poisson’s ratio, coefficient of 
lateral earth pressure, resilient 

modulus, gradation, and other 
engineering properties 
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Table 2-27 Recommended input levels of different SHAs in the Pavement-ME (continued…) 

Arizona 

PCC Material: 
PCC thickness, PCC CTE,  

Design: 
joint spacing, edge support,  

Unbound Materials: 
Base modulus and thickness, 
subgrade modulus, climate 

HMA Material: 
HMA thickness, creep 
compliance 

Traffic: 
Truck axle load distribution, 
Truck volume, 

PCC Material: 
PCC modulus of rupture and 
elasticity 

HMA material: 
HMA coefficient of thermal 

contraction, dynamic 
modulus,  

Base: 
Base modulus 

Traffic: 
Truck wander, lateral offset, tire 
pressure, Traffic speed, Tire load, 
the contact area 

Design: 
Lane to PCC shoulder long-term 
load transfer efficiency, 
permanent curl/warp 

HMA Materials: 
HMA air void in situ, effective 
binder content, tensile strength, 
GWT 

South 
Carolina 

Traffic: 
AADTT, vehicle class 
distribution, lane, and 
directional truck distribution,  

Climate: 
Climate stations 

PCC Material: 
PCC coefficient of thermal 
expansion, modulus of 
rupture, elastic modulus, 
compressive strength, unit 
weight 

Unbound Materials: 
Stabilized base resilient 
modulus, modulus of rupture, 
unit weight, Base and 
subgrade resilient modulus, 
gradation, liquid limit, 
plasticity index, dry unit 
weight 

HMA Material: 
HMA dynamic modulus, unit 
weight, binder grade, air void, 
effective binder content, 
Stabilized base resilient 
modulus, modulus of rupture, 
unit weight 

Traffic: 
Axle load distribution 

Unbound Materials: 
Base and subgrade hydraulic 
conductivity, specific gravity, 
optimum moisture content, 
soil water relation, 

Base: 

Stabilized base thermal 
conductivity, heat capacity 

PCC Material: 
PCC thermal conductivity, 
heat capacity 

HMA Material: 
HMA Creep compliance, 
indirect tensile strength, fatigue 

endurance limit, thermal 
conductivity, heat capacity, 
thermal contraction 

Traffic: 
Axle configuration, tire spacing, 
tire pressure, hourly and monthly 

traffic distribution, truck wander 
Unbound Materials: 

Base and subgrade Poisson’s 
ratio, coefficient of lateral earth 
pressure, 

Base: 
Stabilized base Poisson’s ratio 

PCC Material: 
PCC cement type, aggregate 

type, cementitious material 
content, water-cement ratio, 
ultimate shrinkage, reversible 
shrinkage 

HMA Material: 
HMA Poisson’s ratio 

 

Table 2-28 Recommended data attributes for database development for the Pavement-ME 

Agency Recommended data attributes for database development 

Colorado 

Base and subgrade resilient modulus, gradation, Atterberg limits, maximum dry 

density, optimum moisture content, specific gravity, saturated hydraulic conductivity 

HMA E*, asphalt binder properties, tensile strength at 14 F, creep compliance, G*, 

phase angle, penetration test, ring and ball softening point test, absolute viscosity, 

kinematic viscosity, specific gravity, Brookfield viscosity 

PCC elastic modulus, flexural strength, compressive strength, unit weight, Poisson’s 

ratio, coefficient of thermal expansion 

Mississippi 
PCC flexural strength, modulus of elasticity, Poisson's ratio, CTE, unit weight, 

cementitious materials content, w/c ratio, cement type, and curing type 

Nevada 
Subgrade soil classification, Atterberg limit, gradation, unconfined compression, 

resilient modulus testing, moisture density relationship, R test 
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2.6.1 Flexible Pavements 

Based on local experiences, data availability, and practical considerations, the Arizona 

Department of Transportation recommended hierarchical ranking for the input parameters 

(51). 

 

• Level 1 inputs—HMA thickness, creep compliance, base thickness, subgrade 

modulus, and climate were recommended as the most critical input parameters. 

• Level 2 inputs—HMA coefficient of thermal contraction, dynamic modulus, base 

modulus, truck volume, and axle load configuration were recommended as moderate 

important input parameters. 

• Level 3 inputs—HMA in situ air void, effective binder content, tensile strength, 

GWT, truck wander, speed, and tire pressure were recommended as less important 

input parameters. 

 

South Carolina Department of Transportation recommended a similar ranking of input 

parameters based on local factors (52). 

 

• Level 1 inputs—AADTT, vehicle class distribution, lane, and directional truck 

distribution; climate; base and subgrade resilient modulus, gradation, liquid limit, 

plasticity index, dry unit weight; HMA dynamic modulus, unit weight, binder grade, 

air void, effective binder content; stabilized base resilient modulus, modulus of 

rupture, unit weight were recommended as the most critical input parameters. 

• Level 2 inputs—Axle load distribution; base and subgrade hydraulic conductivity, 

specific gravity, optimum moisture content, soil water relation, stabilized base 

thermal conductivity, heat capacity; HMA creep compliance, indirect tensile strength, 

fatigue endurance limit, thermal conductivity, heat capacity, thermal contraction were 

recommended as moderate important input parameters. 

• Level 3 inputs—Axle configuration, tire spacing, tire pressure, hourly and monthly 

traffic distribution, truck wander; base and subgrade Poisson’s ratio, coefficient of 

lateral earth pressure; stabilized base Poisson’s ratio; HMA Poisson’s ratio were 

recommended as less essential input parameters. 

 

Idaho Transportation Department recommended a similar ranking based on local factors (56). 

 

• Level 1 inputs—HMA properties E*, G*, weigh-in-motion traffic data and base, 

subbase, and subgrade resilient modulus (if possible) values are recommended as 

level 1 inputs. 

• Level 2 inputs—in the absence of resilient modulus test results, Idaho Transportation 

Department prediction models are used for Level 2 inputs for resilient modulus 

properties. 

• Level 3 inputs—volumetric properties of HMA materials are considered as level 3 

inputs. 

 

Virginia Department of Transportation recommended a similar ranking based on local factors 

(54). 
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• Level 1 inputs—AADTT, Vehicle class distribution, growth rate, climate, 

groundwater table depth, HMA thickness, stabilized base thickness, base thickness, 

subgrade materials thickness, gradation, and other engineering properties, resilient 

modulus. 

• Level 2 inputs—Vehicle class distribution and growth rate; HMA unit weight, 

effective binder content, air void, dynamic modulus, asphalt binder, creep 

compliance, indirect tensile; Stabilized base resilient modulus; base resilient modulus, 

gradation, and other engineering properties; subgrade resilient modulus, gradation, 

and other engineering properties. 

• Level 3 inputs—Traffic capacity, axle configuration, lateral wander, wheelbase, 

monthly and hourly factors, single, tandem, tridem, and quad-axle distribution; HMA 

Poisson’s ratio, E*, reference temperature, thermal conductivity, thermal contraction, 

Surface shortwave absorptivity, Endurance limit applied, Endurance limit 

(microstrain), Layer Interface, Poisson’s ratio; stabilized base unit weight, Poisson’s 

ratio, thermal conductivity, heat capacity; base Poisson’s ratio, coefficient of lateral 

earth pressure; subgrade material Poisson’s ratio, coefficient of lateral earth pressure, 

resilient modulus, gradation, and other engineering properties. 

 

The Colorado Department of Transportation recommends that input variables are classified 

based on project importance level, where project priority is selected based on Table 2-29 

(53). Table 2-30 presents a summary of recommended practices from different states. 

 

Table 2-29 Pavement-ME input hierarchical levels in Colorado based on project importance 

Input hierarchical level Description 

Level 1 Very critical: high-volume interstates, urban freeways, and expressways  

Level 1 or 2 Critical: principal arterials, rural interstates, heavy haul (i.e., mining, 
logging routes) 

Level 2 or 3 Somewhat critical: minor arterial and collectors 

Level 3 Not critical: local roads 

Table 2-30 Recommended levels of inputs for flexible pavement design 

Input level Data attributes 

Level 1 

• HMA thickness, creep compliance, base thickness, subgrade modulus, climate, AADTT, 

vehicle class distribution, lane, and directional truck distribution, base and subgrade 

resilient modulus, gradation, liquid limit, plasticity index, dry unit weight, HMA dynamic 

modulus, unit weight, binder grade, air void, effective binder content, Stabilized base 

resilient modulus, modulus of rupture, unit weight. 

Level 2 

• HMA coefficient of thermal contraction, axle load configuration, axle load distribution, 

base and subgrade hydraulic conductivity, specific gravity, optimum moisture content, 

soil water relation, stabilized base thermal conductivity, heat capacity, HMA creep 

compliance, indirect tensile strength, fatigue endurance limit, thermal conductivity, heat 

capacity, thermal contraction. 

Level 3 

• GWT, Traffic speed, tire pressure, tire spacing, hourly and monthly traffic distribution, 

truck wander, Base and subgrade Poisson’s ratio, coefficient of lateral earth pressure, 

Stabilized base Poisson’s ratio, HMA Poisson’s ratio. 
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2.6.2 Rigid Pavements 

The Arizona Department of Transportation recommended hierarchical ranking for the input 

parameters based on local experiences, data availability, and practical considerations (51). 

 

• Level 1 inputs—PCC thickness, CTE, joint spacing, edge support, base modulus, 

subgrade modulus, and climate were recommended as the most critical input 

variables. 

• Level 2 inputs—Truck axle load distribution, truck volume, PCC modulus of rupture, 

and elasticity were recommended as moderate essential input variables. 

• Level 3 inputs—Truck wander, lateral offset, tire pressure, lane to PCC shoulder 

long-term load transfer efficiency, and permanent curl/warp were recommended as 

the least important input variables. 

 

South Carolina Department of Transportation recommended a similar ranking of input 

parameters based on local factors (52). 

 

• Level 1 inputs—AADTT, vehicle class distribution, lane, and directional truck 

distribution; climate; PCC coefficient of thermal expansion, modulus of rupture, 

elastic modulus, compressive strength, unit weight; stabilized base resilient modulus, 

modulus of rupture, unit weight; base and subgrade resilient modulus, gradation, 

liquid limit, plasticity index, dry unit weight were recommended as most important 

input variables. 

• Level 2 inputs—Axle load distribution; base and subgrade hydraulic conductivity, 

specific gravity, optimum moisture content, soil water relation; stabilized base 

thermal conductivity, heat capacity; PCC thermal conductivity, and heat capacity 

were recommended as moderate essential input variables. 

• Level 3 inputs—Axle configuration, tire spacing, tire pressure, hourly and monthly 

traffic distribution, truck wander; base and subgrade Poisson’s ratio, coefficient of 

lateral earth pressure; stabilized base Poisson’s ratio, PCC cement type, aggregate 

type, cementitious material content, water-cement ratio, ultimate shrinkage, reversible 

shrinkage were recommended as least essential input variables. 

 

Idaho Transportation Department recommended a similar ranking based on local factors (24). 

 

• Level 1 inputs—PCC tests such as slump, air content, unit weight, concrete 

temperature, f’c, Ec, poisson’s ratio, splitting tensile strength, MOR, CTE, ultimate 

drying shrinkage, weigh-in-motion traffic data and base, subbase, and subgrade 

resilient modulus (if possible) values are recommended as Level 1 inputs. 

• Level 2 inputs—Without resilient modulus test results, Idaho Transportation 

Department prediction models are used for Level 2 inputs for resilient modulus 

properties. 

 

Virginia Department of Transportation recommended a similar ranking based on local factors 

(54). 
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• Level 1 inputs—AADTT, vehicle class distribution, and growth rate; climate station 

and groundwater table depth; PCC thickness; shoulder type, steel (%), bar diameter, 

steel depth, base/slab friction coefficient, PCC joint spacing, sealant type, doweled 

joints, widened slab, tied shoulders, erodibility index (EI), PCC-base contact friction; 

stabilized base thickness; base thickness; subgrade thickness, gradation, and other 

engineering properties, and resilient modulus. 

• Level 2 inputs—Vehicle class distribution and growth rate; PCC unit weight, CTE, 

cement type, cementitious material content, water-cement ratio, aggregate type, 

strength, and modulus; stabilized base resilient modulus; base resilient modulus, 

gradation, and other engineering properties; subgrade materials resilient modulus, 

gradation, and other engineering properties. 

• Level 3 inputs—Traffic capacity, axle configuration, lateral wander, wheelbase, 

monthly and hourly factors, single, tandem, tridem, and quad-axle distribution; PCC 

Poisson’s ratio, thermal conductivity, heat capacity, zero stress, ultimate shrinkage, 

reversible shrinkage, time to develop 50% ultimate shrinkage, curing method, surface 

shortwave absorptivity, permanent curl/warp, crack spacing; stabilized base: unit 

weight, Poisson’s ratio, thermal conductivity, heat capacity; base Poisson’s ratio, 

coefficient of lateral earth pressure; subgrade materials Poisson’s ratio, coefficient of 

lateral earth pressure, resilient modulus, gradation, and other engineering properties. 

 

Table 2-31 presents a summary of recommended practices from different states.  

 

Table 2-31 Recommended levels of inputs for rigid pavement design in Pavement-ME 

Input level Data attributes 

Level 1 

• PCC thickness, PCC CTE, joint spacing, edge support, base modulus, subgrade 

modulus, climate, AADTT, vehicle class distribution, lane and directional truck 
distribution, climate, PCC coefficient of thermal expansion, modulus of rupture, 

elastic modulus, compressive strength, unit weight, Stabilized base resilient 

modulus, modulus of rupture, unit weight, Base and subgrade resilient modulus, 

gradation, liquid limit, plasticity index, dry unit weight 

Level 2 

• Truck axle load distribution, Truck volume, PCC modulus of rupture and 
elasticity, Axle load distribution, Base and subgrade hydraulic conductivity, 

specific gravity, optimum moisture content, soil water relation, Stabilized base 

thermal conductivity, heat capacity, PCC thermal conductivity, heat capacity 

Level 3 

• Truck wander, lateral offset, tire pressure, Lane to PCC shoulder long-term load 

transfer efficiency, permanent curl/warp, Axle configuration, tire spacing, tire 
pressure, hourly and monthly traffic distribution, truck wander, Base and 

subgrade Poisson’s ratio, coefficient of lateral earth pressure, Stabilized base 

Poisson’s ratio, PCC cement type, aggregate type, cementitious material 
content, water-cement ratio, ultimate shrinkage, reversible shrinkage 

 

2.6.3 Recommended Inputs for Materials  

Typical design values for subgrade MR, PCC, and HMA materials properties of different 

states are compared with Michigan design values in Tables 2-32 to 2-34 (15, 56, 57).  
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Table 2-32 Recommended design values for subgrade MR 

AASHTO Soil 

Classification 

Recommended Design Resilient Modulus (psi) 

Colorado Virginia Michigan 

Flexible Rigid 

A-1-a 19700 14900 - 7000 

A-1-b 16500 14900 - 6500 

A-2-4 15200 13800 - 5200-7000 

A-2-5 15200 13800 - - 

A-2-6 15200 13800 - 4400 

A-2-7 15200 13800 - - 

A-3 15000 13000 - 6500-7000 

A-4 14400 18200 8000 4400-5200 

A-5 14000 11000 8500 - 

A-6 17400 12900 13500 4400 

A-7-5 13000 10000 13000 - 

A-7-6 12800 12000 14000 4400 

Table 2-33 Recommended design values for PCC properties 

Concrete Properties Colorado Virginia Michigan 

CTE (in/in)/F*10-6 4.72-4.89 5.5 

5 for University and 

Metro regions; 4.4 

for all other regions 

w/c ratio 0.36-0.44 0.45 0.42 

Unit weight (pcf) 138.6-140.8 150 145 

 

Table 2-34 Recommended design values for HMA materials 

HMA Properties Colorado Virginia Michigan 

Air voids (%) 4.7-13 5.3-6.7 4.8-7.3 

Effective binder content (%) 0.3-14.4 9.8-12.1 9.7-14 

Unit weight (pcf) - 149.6-151.4 145.2-151.6 
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CHAPTER 3 - RECALIBRATION DATA 

3.1 INTRODUCTION 

This chapter discusses the inputs and performance data used for the local calibration process.  

A crucial step in local calibration involves choosing enough pavement sections that 

accurately represent the prevailing conditions in the area. The next step is to gather the 

necessary data for each of the selected pavement sections, including information on the 

pavement performance, maintenance history, and various Pavement-ME inputs (material, 

traffic, and climate) that directly influence performance predictions for each project. The 

predictions are then compared to the actual performance of the constructed pavement 

sections. A pavement section refers to a specific stretch of road corresponding to a 

construction project, which may include up to two sections (such as different directions on a 

divided highway) with similar data inputs but varying measured pavement performance, 

traffic, and initial IRI. The accuracy of the predicted pavement performance in the Pavement-

ME software depends on the information used to describe the in-service pavement. Thus, 

several inputs are essential for analyzing a particular pavement in the design software, 

particularly those with significant impacts on the expected performance. This chapter 

outlines the process for selecting pavement sections for local calibration and the steps in 

obtaining the required information for each pavement section. 

The previous local calibration effort used 108 flexible and 20 JPCP pavement projects 

and performance data from 1991 to 2011 (1). Therefore, the research team first focused on 

identifying and reviewing all these projects in the MDOT database to determine the 

additional distress data availability. In this process, the team evaluated time-series trends of 

all distress types. Also, these trends were explained, considering any significant maintenance 

activities over time. The information about maintenance activities over time will help to 

model a section in the Pavement-ME, i.e., whether an existing project should be considered a 

reconstruct or rehabilitated overlay project. The Pavement-ME inputs for these sections were 

also reviewed to obtain more current or higher input levels.  

Another objective was identifying and selecting new potential candidate projects to 

be added to the local calibration dataset. For this task, all available sections (flexible and 

rigid) after 2011 were reviewed from the MDOT databases for their performance and data 

availability. It's worth noting that a "project" refers to a specific job number in the 

construction records, while a "section" refers to multiple directions in a divided highway 

within a project. Hence, the number of sections is always greater than or equal to the number 

of projects. The project selection process, Pavement-ME inputs, and performance data have 

been summarized in this chapter. The following topics are discussed: 

 

1. Readily available observed condition data 

2. Project selection criteria 

3. Pavement cross-section information 

4. Traffic inputs 

5. Construction materials inputs 

6. Climate inputs 
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3.2 MDOT PMS DATA 

MDOT's Pavement Management System (PMS) and other available construction data 

sources were reviewed to identify the available input levels, units of measured performance 

data, and best possible estimates. The team evaluated the PMS and other sources to extract 

the following data:  

 

a. Performance data were evaluated for their measurement process and units and 

converted to the Pavement-ME compatible units (wherever required). Necessary 

assumptions were made for these conversions. 

b. The construction records, plans, job-mix formula (JMF), and other sources were used 

to identify the pavement cross-sections and material properties during construction. 

Any unavailable data was acquired from MDOT, or MDOT provided test results for 

the best possible estimates.  

c. Traffic data were collected from the construction records and MDOT Transportation 

Data Management System (TDMS). Level 2 data were used for traffic data based on 

road type, number of lanes, and percentage of vehicle class 9 traffic. 

d. For Asphalt concrete (AC) mix and binder properties, DYNAMOD software was 

used, which is based on laboratory tests for Michigan mixes. For base, subbase, and 

subgrade properties, the most common construction materials in Michigan were used. 

e. For climatic data, the updated NARR files for Michigan have been used (2).   

3.2.1 Pavement Condition Measures Compatibilities 

MDOT provided the PMS data from 1992 to 2019 (sensor data from 1998 to 2019). 

Biannually, MDOT obtains performance data on their pavement network by utilizing distress 

and laser-based measurements (sensors) for a 0.1-mile section. The information gathered on 

pavement distress in MDOT's PMS is categorized by distinct principle distress (PD) codes, 

where each PD code corresponds to a specific distress type. The research team extracted 

pavement performance data for the selected projects and converted them to Pavement-ME 

compatible units (where needed). In addition, the research team held several meetings with 

MDOT to discuss the concerns regarding the measured project length unit conversion. 

MDOT personnel explained the distress calls made for the 2012 – 2017 data were only at the 

sampled locations (about 29.41% of any 0.1-mile segment of each control section). 

Therefore, it was suggested to consider a 0.2941 division factor to expand distress quantities 

out to any total mileage of interest for those years of measured PMS data.  

3.2.1.1. Selected distresses 

The MDOT PMS and sensor database were carefully analyzed, and relevant data were 

extracted to obtain the required distress information. The current distress Manual of MDOT 

PMS was referred to determine all the principle distress (PD) codes corresponding to the 

predicted distresses in the Pavement-ME. The earlier versions of the PMS manual were also 

reviewed to ensure accurate data was extracted for all the years. The necessary steps for PMS 

data extraction include: 

1. Identify the PDs that correspond to the Pavement-ME predicted distresses 
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2. Extract PDs, and sensor data for each project 

3. Convert (if necessary) MDOT PDs to the units compatible with the Pavement-ME 

4. Summarize time-series data for each project and each distress type 

 

The identified and extracted pavement distresses, and conditions for flexible and rigid 

pavements are summarized in Tables 3-1 and 3-2. This section also presents a detailed 

discussion of the conversion process for both flexible and rigid pavements. 

 

Table 3-1 Flexible pavement distress measurement by MDOT  

Flexible pavement distress 
MDOT principle 

distresses (PDs) 
MDOT units 

Pavement-ME 

units 

Conversion 

needed? 

IRI Directly measured  in/mile in/mile No 

Top-down cracking 
204, 205, 724, 725, 

501  
miles % area Yes 

Bottom-up cracking 
234, 235, 220, 221, 

730, 731, 501  
miles % area Yes 

Thermal cracking 

101, 103, 104, 114, 

701, 703, 704, 110, 

501 

No. of 
occurrences 

ft/mile Yes 

Rutting Directly measured  in in No 

Reflective cracking No specific PD None % area N/A 
Note: Bold numbers represent older PDs that are not currently in use; PD code 501 = No distress 

 

Table 3-2 Rigid pavement distress measurement by MDOT  

Rigid pavement 

distresses 

MDOT principle 

distresses 
MDOT units 

Pavement-ME  

units 

Conversion 

needed? 

IRI Directly measured in/mile in/mile No 

Faulting Directly measured in in Yes 

Transverse 

cracking 
112, 113, 501 

No. of 

occurrences 
% slabs cracked Yes 

Note: PD code 501 = No distress 

3.2.1.2. Pavement distress unit conversion for HMA designs 

It should be noted that the team only considered the distress types predicted by the 

Pavement-ME for the local calibration. The corresponding MDOT PDs were determined and 

compared with distress types predicted by the Pavement-ME to verify if any conversions 

were necessary. MDOT measures pavement distresses related to HMA pavements are listed 

in Table 3-1. PD code 501 corresponds to no distress condition and has been used in all 

distresses except rutting and IRI. The conversion process (if necessary) for all distress types 

is as follows: 

 

IRI: The IRI measurements in the MDOT sensor database are compatible with those in the 

Pavement-ME. Therefore, no conversion or adjustments were needed, and data could be used 

directly. 
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Top-down cracking: Top-down cracking is load-related longitudinal cracking in the wheel 

path. The PDs 204, 205, 724, and 725 were assumed to correspond to the top-down cracking 

in the MDOT PMS database because those may not have developed an interconnected 

pattern that indicates alligator cracking. Those cracks may show an early stage of fatigue 

cracking, which could also be bottom-up. Since it is difficult to estimate such cracking based 

on the PMS data, these cracks were first converted to % area crack and then categorized into 

bottom-up or top-down cracking based on the thicknesses. The PDs are recorded in miles and 

need conversion to % area. Data from the wheel paths were summed into one value and 

divided by the total project length, as shown in Equation (3-1). The lane width was assumed 

to be 12 ft. The typical wheel path width of 3 feet was assumed as recommended by the 

LTPP distress identification manual (3). 

 

% 𝐴𝐶𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 =  
Length of cracking (miles) × width of wheelpaths (feet)

Length of section (miles) × Lane width (feet)
 × 100 (3-1) 

 

Literature shows that the AC thickness determines whether the crack initiates from the 

bottom or the top. Therefore, top-down cracking can be a primary distress based on  AC layer 

thickness. The calculated top-down cracking using Equation (3-1) is assigned as either 

bottom-up or top-down based on the total AC layer thickness. If the thickness is greater than 

a certain threshold, the cracking is considered top-down cracking; otherwise, it is categorized 

as bottom-up cracking. These thicknesses were obtained by a mechanistic approach using 

Mechanistic Empirical Asphalt Pavement Analysis (MEAPA) software. MEAPA was run for 

different surface types using typical MDOT design inputs, and damage was calculated for the 

first 12 months for a single axle load of 9000 lb. Threshold thicknesses were determined 

where the tensile strain at the top of the AC layer is higher than at the bottom. Table 3-3 

presents the minimum threshold thicknesses for top-down cracking for each fix type. 

Table 3-3 Minimum thicknesses for top-down cracking 

Fix type Threshold thickness (in) 

HMA overlay on rubblized concrete 6 

HMA overlay on existing composite or concrete 

pavement 

6 

HMA overlay on crushed and shaped HMA 4 

HMA overlay on existing HMA pavement 6 

New or reconstruct 5 

 

Bottom-up cracking: Bottom-up cracking is defined as alligator cracking in the wheel path. 

The PDs 234, 235, 220, 221, 730, and 731 match this requirement in the MDOT PMS 

database. The PDs have units of miles; however, to make those compatible with the 

Pavement-ME alligator cracking units, conversion to the percent of the total area is needed. 

This can be achieved by using the following Equation (3-2): 

 

 
Length of cracking (miles)  width of wheelpaths (feet)

% 100
Length of section (miles)  Lane width (feet)

bottom up
AC

−


= 


 (3-2) 
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The width of each wheel path and lane were assumed to be 3 feet and 12 feet, respectively. 

The typical wheel path width of 3 feet is recommended by the LTPP distress identification 

manual (3).   

    
Thermal cracking: Thermal cracking corresponds to transverse cracking in flexible 

pavements. The transverse cracking is recorded as the number of occurrences, but the 

Pavement-ME predicts thermal cracking in feet/mile. To convert transverse cracking into 

feet/mile, the number of occurrences was multiplied by 3 feet for PDs 114 and 701 because 

these PDs are defined as "tears" (short cracks) that are less than half the lane width. For all 

other PDs, the number of occurrences was multiplied by the lane width (12 ft). All transverse 

crack lengths were summed and divided by the project length to get feet/mile, as shown in 

Equation (3-3).     

 𝑇𝐶 =
∑ No.  of Occurrences ×Lane Width (ft )

Section Length  (miles )
  (3-3) 

 

Thermal cracking predictions in the Pavement-ME are restricted to a maximum value of 

2112 ft/mile due to a minimum crack spacing limit of 30 feet. This means Pavement-ME 

predictions at 50% reliability cannot exceed 2112 ft/mile. Due to this limitation and ARA 

recommendations, the research team decided to have a 2112 ft/mile cutoff where any 

measured data for a section above 2112 ft/mile was not used for calibration. 

 

Rutting: This is the total amount of surface rutting all the pavement layers and unbound sub-

layers contribute. The average rutting (left & right wheel paths) was determined for the entire 

project length. No conversion was necessary. It is assumed that the measured rutting 

corresponds to the total surface rutting predicted by the Pavement-ME. 

 

Reflective cracking: MDOT does not have any specific PDs for reflective cracking. 

Therefore, separating thermal and reflective cracks at the surface is challenging. Thus, the 

total measured transverse cracking was considered a combination of thermal and reflective 

cracking, and both models were calibrated.  

3.2.1.3. Pavement distress unit conversion for JPCP designs 

For JPCP sections, transverse cracking requires unit conversion. For all other distresses, 

MDOT records them in the Pavement-ME compatible units. Table 3-2 summarizes the 

distresses related to JPCP overlays, and the conversion process is discussed below: 

 

IRI: The IRI in the MDOT sensor database does not need any conversion; the values were 

used directly. 

 

Faulting: In the Pavement-ME, faulting is predicted as average per joint. MDOT's sensor 

data records the number of faults (FaultNum), average faulting (avgFault), and the maximum 

faulting (FaultMax) for every 0.1-mile segment. The faulting values had some 

inconsistencies. For the years between 2000 and 2011, faulting values are maximum 

fault callouts only (not average values). For 2012 and after, both average and maximum fault 
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values are available. A correlation was developed between the maximum and average 

faulting values using data from 2013 to 2017 to resolve this issue. After discussing with 

MDOT, the team used these correlations to estimate the average faulting from 2000 to 2011. 

Table 3-4 shows the regression equations between average and maximum faulting using the 

data from 2013 to 2017. These equations are based on the number of faults. It is important to 

note that ideally, the number of faults cannot be greater than the number of joints, but the 

number of faults in the database has records where they are more than the number of joints. 

These pseudo-fault values might come from cracking, spalling, bridge segments, etc. 

Therefore, the maximum number of fault counts was restricted to 36, and the average faulting 

to 0.4 inches to address this issue. Accordingly, any 0.1-mile section above these restricted 

faulting values was omitted from the calibration data.  

Table 3-4 Correlation equations based on the number of faults 

FaultNum 
Equation 

(y is avgFault, x is FaultMax) 

R-squared 

(2013-2017data) 

From To   

0 1 y=x 1 

2 4 y = 0.3438x + 0.03 0.7189 

5 40 y = 0.2132x + 0.0377 0.6074 

41 ALL y = 0.0936x + 0.0777 0.2476 

 

The average joint faulting is calculated based on the number of faulting in a 0.1-mile section. 

It is assumed that if the number of faults is less or equal to the number of joints, faulting 

occurs at the joints only. In that case, the faulting unit conversion equation is as shown in 

Equation (3-4). If, for any 0.1-mile section, the number of faults is greater than the number of 

joints, that section is removed (cut) from the calibration data, as previously mentioned.  

 

                                             𝐹𝑎𝑢𝑙𝑡 =
FAULnum ×FAULi

Njoints
                                               (3-4) 

where, 
FAULnum = number of faults in a 0.1 mile 

FAULi =(FAULT_(Avg_Right )  +  FAULT_(Avg_Left ))/2  = Average faulting in a 0.1 mile (inches) 

 Njoints is the number of joints in 0.1-mile (528 ft) segments, i.e., Njoints=528/Joint Spacing. 

 

Transverse cracking: The transverse cracking distress is predicted as % slabs cracked in the 

Pavement-ME. However, MDOT measures transverse cracking as the number of transverse 

cracks. PDs 112 and 113 correspond to transverse cracking. The estimated transverse 

cracking needs conversion to percent slabs cracked using Equation (3-5). 

  

 
112, 113

% Slabs Cracked     100
Section Length (miles) 5280

Joint Spacing (ft)

PD

ft
= 

 
 
 


 (3-5) 
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3.2.2 Condition Database for Local Calibration  

To efficiently analyze the condition of selected Pavement Distresses (PDs), customized 

databases were created, which included distress and sensor data for multiple years. These 

databases were compiled using Microsoft Access and allowed for easy extraction of relevant 

data for projects of any length. The PMS condition data from 1992 to 2019 and sensor data 

from 1998 to 2019 were included in these databases. MATLAB codes were used to extract 

performance data for a section of the given length. For divided highways, which can have an 

increasing and decreasing direction to indicate north/south or east/west bounds, both 

directions were included in the time-series data and considered separate sections. In contrast, 

distress data was collected in one direction for undivided highways. 

3.3 PROJECT SELECTION CRITERIA 

For local calibration, selecting in-service pavement sections that represent Michigan's 

pavement design, currently used materials, construction practices, and performance is 

essential. These selected pavement sections should encompass all the current pavement types 

and rehabilitation techniques employed by the MDOT. The research team established a set of 

project selection criteria to identify and choose these representative pavement sections. This 

approach ensured that the selected pavement sections met the required standards and could 

accurately represent Michigan's pavement network. The process for identifying and selecting 

pavement sections consists of the following steps: 

1. Determine the minimum number of pavement sections required for calibration based 

on the statistical requirements. 

2. Identify all available in-service pavement projects. 

3. Extract all pavement distresses (pavement condition data) from the customized 

database for all identified projects in Step 2. 

4. Evaluate the measured performance for all the identified projects. 

5. Identify projects with adequate data, age, trend, and the Pavement-ME inputs 

available to develop a refined list. 

3.3.1 Identify the Minimum Number of Required Pavement Sections 

The MEPDG local calibration guide provides a method to evaluate the minimum number of 

required sections for each distress type. The minimum number of sections was calculated 

using Equation (3-6), and the results are summarized in Table 3-5 for each condition 

measure. The total number of projects available in Table 3-5 are combined projects from the 

previous calibration study and newly selected projects from the current calibration effort.  

𝑛 = (
𝑍𝛼/2 × 𝜎

𝑒𝑡
)

2

 (3-6) 

where; 

/ 2
Z


 = The z-value from a standard normal distribution 

n = Minimum number of pavement sections 

 = Performance threshold 

et = Tolerable bias 2Z SEE   

SEE  = Standard error of the estimate 
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Table 3-5 Minimum number of sections for local calibration 

Performance Model 

Nationally 

calibrated 

SEE 

Z90 Threshold 

N (required 

number of 

sections) 

Number of  

sections 

used 

Total 

number of 

projects 

available  

Flexible Pavements 

Fatigue, bottom-up (%) 5.01 

1.64 

20% 16 184 

1632 

1213 

Fatigue, top-down (ft/mile 

or %) 
583 

2000 

or 20% 
12 275 

Thermal cracking 

(ft/mile)1  
- 1000 - 275 

Rutting (in) 0.107 0.5 22 360 

IRI (in/mile) 18.9 172 83 309 

Rigid Pavements 

Transverse cracking (%) 4.52 

1.64 

15 11 64 
462 

113 
Joint faulting (in) 0.033 0.125 14 107 

IRI (in/mile) 22 172 61 65 
Note: Fatigue top-down has been updated in the recent Pavement-ME V2.6. It is expressed in ft/mile for the old model and 
in % for the updated model. 

N= minimum number of samples required for a 90% confidence level 
1. No SEE, threshold, or N was reported for thermal cracking in the literature 
2. A total of 163 and 46 projects were identified for new reconstructed flexible and rigid pavements, respectively, based on 

the construction date and PMS data availability 
3. Rehabilitation projects selected  

3.3.2 Available In-Service Pavement Projects 

The team identified the common pavement types in Michigan. These include: 

 

1. HMA reconstruct 

2. HMA over crush & shaped existing HMA 

3. HMA over existing HMA 

4. HMA over rubblized PCC 

5. HMA over existing PCC (composite) 

6. JPCP reconstruct, and 

7. Unbonded concrete overlay 

 

It is important to note that HMA over crushed & shaped existing HMA and HMA over 

rubblized existing PCC projects were analyzed as a new reconstructed pavement. Sections 

were selected for the local calibration based on performance trends and to accommodate 

wide ranges of different inputs, including layer thicknesses, traffic, region, etc. The selection 

process has been outlined in the succeeding sections. 

3.3.3 Initial Projects Selection 

MDOT provided a comprehensive database consisting of all the projects constructed in 

Michigan. Initially, all existing projects (140 flexible and 28 JPCP) used in previous 

calibration efforts were reviewed, and additional performance data were extracted where 

possible. The team also identified additional projects that can be potential candidates for the 
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current local calibration effort. The PMS data extraction was completed for all required 

distress types in a compatible format with the Pavement-ME software. The team then looked 

at the time series for each pavement section's performance measures to finalize the 

preliminary list of new potential candidate projects.  

 

To ensure a robust and appropriate set of data, the criteria used to identify additional 

performance data and the selection of new potential pavement projects include: 

 

• The pavement section must have at least three measured data points over time. There 

are some exceptions to this criterion. Bottom-up cracking has relatively fewer data 

points; some sections with even two points have been included, considering further 

data points will be collected in the future. The same process was followed for 

transverse cracking in rigid sections. As previously noted and explained, joint faulting 

and thermal cracking have been cut at specific values, so these data points are omitted 

from the calibration database. 

• At least one of the distresses should have an increasing trend. Any section with 

decreasing and no or flat trends over time was excluded from the list. 

• The team also looked at previous maintenance history for all pavement sections to 

explain any decrease or flat trend observed in the time series plot. If there were any 

major rehabilitation or reconstruction activities, the measured data from the year 

traffic opened initially to the very last year until the major repair took place are 

considered. 

• The last recorded point should have a Distress Index (DI) of at least 5 for a section. 

DI is calculated by taking a weighted average of different distress types. DI was 

observed and limited to ensure sufficient distress for calibration and to capture 

adequate pavement performance trends.  

 

Figures 3-1 through 3-4 illustrate example distress progressions for the flexible pavement of 

different construction types. The top-down cracking for the initial project selection was 

evaluated in feet/mile and later converted to a percentage. Figure 3-5 shows an example of a 

flexible pavement section that was omitted in the new dataset. Similarly, Figures 3-6 and 3-7 

present a few examples of the selected and omitted rigid pavement sections. The vertical 

dashed red line is the last reported construction, whereas the dotted blue line in the DI plot 

indicates reported maintenance activities. For example, Figure 3-4 shows the vertical dotted 

blue line in the DI plot that shows a cold mill and resurface (CM&R) treatment was applied 

in 2012. In the same figure, the effect of this rehabilitation event can be noticed with a drop 

in measured distress in individual distress plots. Therefore, in this particular case, pavement 

section performance can be considered from 2001 to 2011. It should be noted that generally, 

minor maintenance [e.g., crack treatment (CT) or joint sealing (JS)] does not affect the time 

series trend since these minor maintenances represent non-structural fixes. It is also to be 

noted that time series plots for rutting show a consistent drop in the 2012-2013 collection 

years, regardless of whether any maintenance is reported or not. This is likely due to changes 

in the data collection process or vendor differences. 

 

Based on the criteria mentioned above, a total of 468 flexible sections and 114 rigid sections 

were initially selected. The performance of the selected pavement sections was compared 
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with all sections available in the MDOT database (2081 flexible sections and 442 rigid 

sections) to verify if the chosen sections represent the overall pavements in Michigan. 

Sections with at least three available data points are considered. Each section was categorized 

as good, fair, or poor performing based on the performance trend lines modified to reflect 

Michigan conditions (1). These trend lines are available only for bottom-up cracking, total 

rutting, and IRI for flexible sections, and transverse cracking and IRI for rigid sections. The 

performance categories depend on the measured performance trend relative to the reference 

lines. If the measured performance is below the good performance line, it is categorized as a 

good performing section, between the good and poor line, as fair, and above the poor 

performance line, as the poor performing section. The performance category was decided 

based on a previous calibration study (1). When the performance trend passes through more 

than one category zone, the zone with the maximum points is considered the performance 

category for that section. Also, the low-performance category is selected in case of an equal 

number of points for two different categories. Figures 3-8 and 3-9 show example sections for 

good, fair, and poor categories for IRI performance for flexible and rigid sections, 

respectively. A similar method was followed for categorizing sections based on all other 

distresses. Figures 3-10 and 3-11 show the distribution of good fair, and poor sections for 

flexible and rigid sections based on different distress criteria. Figures 3-10 and 3-11 show 

that the selected sections satisfactorily represent MDOT all sections for both flexible and 

rigid pavements. 

  
 

Figure 3-1 Example of selected section for crushed & shaped flexible pavement 
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Figure 3-2 Example of selected section for new/reconstructed flexible pavement  

 
Figure 3-3 Example of selected section for bituminous overlay on rubblized concrete 

pavement 
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Figure 3-4 Example of selected section for multicourse bituminous overlay flexible 

pavement 

 

Figure 3-5 Example of an omitted flexible section  
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Figure 3-6 Example of a selected rigid section  

  

Figure 3-7 Example of an omitted rigid section 
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(a) Good section 

 
(b) Fair section 

 
(c) Poor section 

Figure 3-8 Categorization of flexible sections based on performance trends  

 
(a) Good performing section 

 
(b) Fair performing section 

 
(c) Poor performing section 

Figure 3-9 Categorization of rigid sections based on performance trends 
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(a) Bottom-up cracking (selected sections) 

 
(b) Bottom-up cracking (All MDOT sections) 

 
(c) Total rutting (selected sections) 

 
(d) Total rutting (All MDOT sections) 

 
(e) IRI (selected sections) 

 
(f) IRI (All MDOT sections) 

Figure 3-10 Comparison of selected flexible sections with all MDOT sections 
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(a) Transverse cracking (selected sections) 

 
(b) Transverse cracking (MDOT all sections) 

 
(c) IRI (selected sections) 

 
(d) IRI (MDOT all sections) 

Figure 3-11 Comparison of selected rigid sections with all MDOT sections 

 

 

3.3.4 Summary of the Selected Projects 

The initially selected projects were further refined based on performance, availability of 

inputs, and initial IRI. The performance data for these initially selected sections is the 

average for the entire section length. This data is calculated by averaging the performance for 

every 0.1-mile segment in the project length. Data for every 0.1 mile has been reviewed to 

estimate performance data extent and reasonableness. Figures 3-12 to 3-16 show 

performance data for every 0.1-mile segment with age for all flexible sections. Figures 3-17 

to 3-19 show the same for all rigid sections.  

 

As previously noted, cutoff values of 2112 ft/mile and 0.4 inches were adopted for thermal 

cracking and joint faulting, respectively. These values were selected based on the raw (0.1-

mile segment) data, limitations of the Pavement-ME models, and consensus with MDOT. 

Moreover, sections with Superpave mixes are only used to calibrate the thermal cracking 

model to have consistent Level 1 input in the Pavement-ME. 
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Figure 3-12 Bottom-up cracking at every 0.1-mile segment for flexible sections 

 

 

Figure 3-13 Top-down cracking at every 0.1-mile segment for flexible sections 
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Figure 3-14 Thermal cracking at every 0.1-mile segment for flexible sections 

 

 

Figure 3-15 Rutting at every 0.1-mile segment for flexible sections 
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Figure 3-16 IRI at every 0.1-mile segment for flexible sections 

 

 

Figure 3-17 Transverse cracking at every 0.1-mile segment for rigid sections 
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Figure 3-18 Joint faulting at every 0.1-mile segment for rigid sections 

 

Figure 3-19 IRI at every 0.1-mile segment for rigid sections 

 

Figures 3-20 to 3-23 show the geographical location of the finally selected projects. Tables 3-

6 and 3-7 summarize the reconstruction and rehabilitation projects as per region. Tables 3-8 

and 3-9 outline the selected projects based on the design matrix (of traffic, thickness, and 

age) for reconstruction and rehabilitation projects.  
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(a) Crush and shape 

 
(b) Rubblized 

Figure 3-20 Geographical location of selected crush and shape and rubblize projects 

 

  

 
(a) Freeway 

 
(b) Non-freeway 

Figure 3-21 Geographical location of selected HMA reconstruct projects 
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(a) HMA over HMA 

 
(b) Composite 

 

Figure 3-22 Geographical location of selected HMA overlay projects  

 
(a) New JPCP 

 
(b) Unbonded overlay 

 

Figure 3-23 Geographical location of selected rigid pavement projects  
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Table 3-6 Number of new construction projects by pavement type & region 

Pavement type MDOT region Number of projects 

Crush and Shape 

Grand 6 

North 20 

Superior 15 

HMA over rubblized PCC 

Bay 3 

Grand 2 

North 11 

Southwest 1 

University 7 

HMA Reconstruct 

Freeway 

Bay 4 

Grand 5 

Metro 10 

North 4 

Southwest 3 

Superior 1 

University 4 

HMA Reconstruct 
Non-freeway 

Bay 7 

Grand 8 

Metro 8 

North 12 

Southwest 6 

Superior 17 

University 9 

JPCP Reconstruct 

Bay 1 

Grand 8 

Metro 20 

North 1 

Southwest 12 

University 4 

Total 209 

 

Table 3-7 Number of rehabilitation projects by MDOT region 

Pavement type MDOT region Number of projects 

Composite overlay 

Bay 18 

Grand 7 

Metro 27 

North 3 

Southwest 16 

Superior 3 

University 22 

HMA over HMA overlay 

Bay 4 

Grand 2 

North 2 

Southwest 12 

Superior 2 

University 3 

Unbonded overlay 

Bay 1 

Grand 2 

Metro 1 

North 1 

Southwest 4 

University 3 

Total 133 
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Table 3-8 Selection matrix displaying selected sections (rehabilitation) 

Rehabilitation type 
Traffic  

level* 

Overlay 

thickness 

level* 

Age (years) 

Total 
<10 10 to 20 >20 

Composite overlay 

1 
1   1  

140 
2 5 66 1 

2 2 2 18 7 

3 2  10  29 1 

HMA over HMA 

1 
1    3 

36 
2 3 16 7  

2 2   1 4 

3 2   2 

Unbonded overlay 
2 

2  1  

28 3  4  

3 3  21 2  

Total 20 157 27 204 
*Levels 1 2 3   
Traffic (AADTT) <1000 1000-3000 >3000   
Overlay thickness (in) <3 3-6 >6   

 

Table 3-9 Selection matrix displaying selected sections (reconstruct) 

Road type Traffic level* Thickness level* 
Age Level 

Total 
<10 10-15 >15 

Crush and Shape 

1 

1     3 3 

2  11 8 20 39 

3       

2 

1        

2   7 11 18 

3       

3 

1         

2         

3         

HMA over rubblized PCC 

1 

1     

2  4 16 20 

3  2 4 6 

2 

1     

2  9 3 12 

3     

3 

1     

2   7 7 

3   4 4 

HMA Reconstruct 
Freeway 

1 

1         

2 2 4 8 14 

3   2 8 10 

2 

1         

2    1 1 

3  1 3 11 15 

3 

1         

2    2 2 

3  5 8 13 
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Table 3-9 Selection matrix displaying selected sections (continued…) 

HMA Reconstruct 
Non-freeway 

1 

1     1 1 

2 3 25 12 40 

3    9 9 

2 

1         

2 1 22 43 66 

3 1 1   2 

3 

1         

2    2 2  4  

3    2   2 

JPCP Reconstruct 

1 

1         

2         

3   1  3 4 

2 

1         

2         

3   2 9  11 

3 

1         

2         

3  31 39 70 

Total 19 130 224 373 

*Levels 1 2 3  
 

 
Traffic (AADTT) <1000 1000-3000 >3000  

 
 

Thickness (in) <3 3-7 >7  
 

 
 

3.4 SELECTED SECTION PERFORMANCE DATA SUMMARY 

The team extracted the measured condition for each project and made the necessary 

conversions to ensure compatibility with the Pavement-ME predicted performance, as 

discussed in Section 3.2.  

 

The team conducted a detailed review to evaluate the level of distress in all pavement 

sections identified for local calibration. The calibration process entails comparing each 

chosen project's predicted and measured performance. To have a robust local calibration, the 

levels of distress must fall within a reasonable range (i.e., above and below threshold limits 

for each type of distress). Therefore, the distress levels for all projects were compiled and 

analyzed to determine their respective ranges. This section summarizes the observed 

performance for the selected rehabilitation and reconstruction pavement sections. Efforts 

were undertaken to gather sufficient information to achieve a precise and dependable local 

calibration of the performance models. Due to changes in construction practices and/or data 

availability, most sections are less than 20 years old, so it is expected that most sections do 

not have poor performance or exceed performance thresholds. Furthermore, these represent 

the average values of the Pavement-ME prediction using 50% reliability. When designing, a 

higher reliability factor is applied to account for project variability (including climate, traffic, 

material, and construction), which will increase the resulting distress values. Therefore, while 

designs will correlate with the calibration sections, it should not be anticipated that pavement 

designs will exactly match the sections used in calibration because of the increased reliability 

factor. 

 

a. A total of 132 rehabilitation projects were considered in the local calibration. Of these 

selected projects, 121 are flexible rehabilitation sections, while 11 are JPCP unbonded 



80 

 

overlays. The 121 HMA and 11 PCC unbonded overlay projects (which comprise 176 

HMA and 28 PCC unbonded overlay sections) were analyzed to test the calibration 

procedures for different distresses in flexible and rigid pavements, respectively.  

 

o HMA overlay performance data: The time series and age distribution for the HMA 

rehabilitation projects are shown in Figures 3-24 to 3-28. The following observations 

can be made from the results: 

 

▪ Bottom-up fatigue cracking: Most sections exhibit low bottom-up cracking, with 

only a few reaching the threshold of 20%, ranging between 5 to 20 years. It 

should be noted that the Pavement-ME does not predict bottom-up cracking for 

composite sections; therefore, only the top-down cracking model was calibrated 

for composite sections.  

▪ Longitudinal/top-down fatigue cracking: Top-down cracking is observed more 

frequently than bottom-up cracking. The age at maximum distress ranged from 5 

to 20 years.  

▪ Rutting: Most sections did not exhibit significant rutting, with no section reaching 

the threshold of 0.5 inches. The age distribution ranged from 3 to 19 years. Figure 

3-32 shows the distribution of categories (good, fair, and poor) for these sections. 

As shown, all of these sections fall under good and fair categories for rutting. 

▪ Transverse (thermal) cracking: The thermal cracking for the rehabilitation 

projects observed significant cracking with two sections nearing 5000 feet/mile. 

The age at which the maximum thermal cracking occurred ranged from 6 to 20 

years. Sections with Superpave (PG) binder have been used for thermal cracking 

calibration. It should be noted that some of the thermal cracks could be reflective 

cracks. MDOT PMS does not distinguish between reflective or transverse 

(thermal) cracks. 

▪ IRI: The IRI time series is usually flat, with only 2 sections exceeding the 172 

in/mile threshold. The age at maximum IRI ranged from 7 to 20 years. It is worth 

noting that only sections with an initial IRI less than or equal to 82 in/mile were 

selected for calibration of the IRI model. Almost all sections fall under good or 

fair categories, as shown in Figure 3-32. 

 

o Unbonded overlay performance data: Figures 3-29 to 3-31 show the magnitude and 

age distribution for the JPCP rehabilitation projects. The following observations can 

be made: 

 

▪ Transverse cracking: Fairly low values are observed for transverse cracking, with 

none of the projects exceeding the distress threshold of 15% of slabs cracked. The 

maximum transverse cracking observed is 4%. The age distribution ranges from 6 

to 19 years. All of these sections fall in the good category, as shown in Figure 3-

32. 

▪ Transverse joint faulting: One section exceeds the joint faulting threshold of 0.125 

inches with a maximum value of 0.14 inches. The age distribution ranges from 11 

to 19 years. These observed values for joint faulting have been cut off at 0.4 

inches. Any values (for a 0.1-mile segment) above 0.4 inches have been removed. 
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▪ IRI: A maximum IRI of 144 in/mile was observed for the unbonded overlay 

sections. None of the sections exceeded the IRI threshold of 172 in/mile. The age 

at maximum IRI ranges from 13 to 19 years. It is worth noting that the initial IRI 

was limited to 82 in/mile. Only sections with less than or equal to 82 in/mile were 

selected to calibrate the IRI model. Most of these sections are in the fair category, 

as shown in Figure 3-32 

 

 
(a) Time series 

 
(b) Age distribution 

Figure 3-24 Selected HMA rehabilitation sections — Bottom-up cracking 

 
(a) Time series 

 
(b) Age distribution 

Figure 3-25 Selected HMA rehabilitation sections — Top-down cracking 
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(a) Time series 

 
 (b) Age distribution 

Figure 3-26 Selected HMA rehabilitation sections — Transverse (thermal) cracking 

 
(a) Time series (b) Age distribution 

Figure 3-27 Selected HMA rehabilitation sections — Total rutting 

 
(a) Time series 

 
(b) Age distribution 

  Figure 3-28 Selected HMA rehabilitation sections — IRI 
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(a) Time series 

 
(b) Age distribution 

Figure 3-29 Selected JPCP rehabilitation sections — Transverse cracking 

 
(a) Time series 

 
(b) Age distribution 

Figure 3-30 Selected JPCP rehabilitation sections — Joint faulting 

 
(a) Time series 

 
(b) Age distribution 

Figure 3-31 Selected JPCP rehabilitation sections — IRI 
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(a) Total rutting (flexible sections) 

 
(b) IRI (flexible sections) 

 
(c) Transverse cracking (rigid sections) 

 
(d) IRI (rigid sections)  

Figure 3-32 Category distribution for rehabilitation sections 

 

b. The research team selected 163 HMA and 46 JPCP reconstruct pavement projects in 

Michigan.  

 

o Flexible reconstruct performance data: The magnitude and age distribution for the 

HMA reconstruct sections (also includes crush and shape and HMA over rubblized 

PCC) are shown in Figures 3-33 to 3-37. The following observations were made: 

 

▪ Bottom-up cracking: Bottom-up cracking magnitudes are usually low for most 

sections, with only a seven crossing the threshold of 20% with a maximum of 

almost 40%. The maximum age ranges from 4 to 20 years. Almost all of these 

sections fall in the good category, as shown in Figure 3-41. 

▪ Longitudinal/top-down cracking: Top-down cracking is observed more frequently 

than bottom-up cracking. More sections have observed top-down cracking 

compared to bottom-up cracking. The age at maximum distress ranged from 5 to 

20 years.  

▪ Thermal cracking: Higher thermal cracking values are observed, ranging up to 

4000 ft/mile. The design threshold used by MDOT is 1000 ft/mile. The age at 
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which the maximum thermal cracking is observed ranges from 5 to 19 years. 

Sections with performance grade (PG) binders have been used for thermal 

cracking calibration. 

▪ Rutting: Selected sections do not exhibit significant rutting. All sections were 

below the threshold of 0.5 inches. The age distribution ranged from 3 to 19 years. 

Two third of the sections are in the fair performance category, as shown in Figure 

3-41. 

▪ IRI: The IRI time series is usually flat, with no sections exceeding the 172 in/mile 

threshold. The maximum observed IRI is 168.5 in/mile. The age at maximum IRI 

ranged from 5 to 20 years. It is worth noting that a cutoff value of the initial IRI 

less than or equal to 77 in/mile is selected for calibration of the IRI model. 74% of 

sections are in good, followed by 25% of sections in fair category. Only 1% of 

sections showed poor performance.  

 

o Rigid reconstruct performance data: The magnitude and age distribution for the JPCP 

rehabilitation projects are shown in Figures 3-38 to 3-41. The following observations 

can be made from the figures: 

 

▪ Transverse cracking: A maximum transverse cracking value of 85% is observed, 

with 5 sections crossing the distress threshold of 15% slabs cracked. The age 

distribution ranges from 4 to 20 years. About 72% of these sections fall under the 

fair performance category.  

▪ Transverse joint faulting: A total of 10 sections exceeds the joint faulting 

threshold of 0.125 inches with a maximum value of 0.17 inches. The age 

distribution ranges from 8 to 20 years. These observed values for joint faulting 

have been cut off at 0.4 inches, where a 0.1-mile segment is above 0.4 inches. 

▪ IRI: A maximum IRI of 167 in/mile was observed. The age at maximum IRI 

ranges from 5 to 20 years. It is worth noting that a cutoff value for the initial IRI 

less than or equal to 82 in/mile is used to calibrate the IRI model. All sections fall 

under good and fair categories, with none exhibiting poor performance. 

 
(a) Time series 

 
(b) Age distribution 

Figure 3-33 Selected HMA reconstruct sections — Bottom-up cracking 
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(a) Time series 

 
(b) Age distribution 

Figure 3-34 Selected HMA reconstruct sections — Top-down cracking 

 
(a) Time series 

 
 (b) Age distribution 

Figure 3-35 Selected HMA reconstruct sections — Transverse (thermal) cracking 

 
(a) Time series 

 
 (b) Age distribution 

Figure 3-36 Selected HMA reconstruct sections — Total rutting 
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(a) Time series 

 
 (b) Age distribution 

  Figure 3-37 Selected HMA reconstruct sections — IRI 

 

 
(a) Time series 

 
(b) Age distribution 

Figure 3-38 Selected JPCP reconstruct sections — Transverse cracking 

 

 
(a) Time series 

 
(b) Age distribution 

Figure 3-39 Selected JPCP reconstruct sections — Joint faulting 
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(a) Time series 

 
(b) Age distribution 

Figure 3-40 Selected JPCP rehabilitation sections — IRI 

 

 
(a) Bottom-up cracking (flexible sections) 

 
(b) Total rutting (flexible sections) 
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(c) IRI (flexible sections) 

 
(d) Transverse cracking (rigid sections) 

 
(e) IRI (rigid sections)  

Figure 3-41 Category distribution for reconstruct sections 

3.5 INPUT DATA EXTENT 

Accurate pavement cross-sectional, traffic, climate, and material input data are essential for 

adequately characterizing as-constructed pavements since the information directly affects 

performance prediction accuracy in the Pavement-ME software. Due to the large number of 

inputs required to properly characterize a pavement in the Pavement-ME, input data 

collection can be time-consuming. Moreover, many of the critical input parameters have 

three levels of inputs within the hierarchical structure of the Pavement-ME. The process of 

collecting as-constructed input data, including the source of the data, how to address missing 

data, and the selection of input values, is thoroughly discussed in this section. The team used 

the best available input level for the selected pavement sections. 

3.5.1 Pavement Cross-Section and Layer Inputs 

The pavement cross-sectional information is necessary to characterize the layer thicknesses 

of the various layers. The cross-sectional information is obtained from the construction 

records. Typically, in the case of HMA pavements, the drawings provided the asphalt 

application rate of the HMA layers (dividing the application rate by 110), which was used to 

determine the HMA lift thicknesses in inches. For the sections used in the previous 
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calibration effort (1), the team used the Pavement-ME inputs data sheet to extract design 

inputs. For the newly selected sections, the drawings (construction plans) were provided by 

MDOT. The thickness, mix type, traffic, and unbound layer information were included in 

these drawings. For HMA over HMA overlays and composite overlays, the thickness 

information related to the existing (underlying) pavement layer was not available for all 

sections. In that case, the most commonly used thicknesses were used as inputs to Pavement-

ME. A summary of the design thicknesses for flexible and rigid reconstruct and rehabilitation 

selected pavement projects is shown in Tables 3-10 through 3-13. 

 

Table 3-10 Average HMA reconstruct thicknesses  

Pavement types 

HMA top 

course 

thickness 

(in.) 

HMA 

leveling 

course 

thickness 

(in.) 

HMA base 

course 

thickness 

(in.) 

Base 

thickness 

(in.) 

Subbase 

thickness 

(in.) 

Crush and Shape 1.6 1.9 2.0 7.5 20.5 

Freeway 1.6 2.1 4.5 7.1 16.8 

Non-freeway 1.5 2.1 3.2 6.6 16.4 

Rubblized 1.6 2.0 3.0 3.8 11.1 

Statewide Average 1.6 2.0 3.1 5.7 15.0 

Table 3-11 Average HMA rehabilitation project thicknesses 

Pavement types 
Overlay  

thickness (in.) 

Existing pavement  

thickness (in.) 

Base  

thickness (in.) 

Subbase  

thickness (in.) 
Composite 3.6 8.9 5.0 12.4 

HMA over HMA 3.5 4.3 6.9 16.0 
Statewide Average 3.5 5.2 6.5 15.3 

Table 3-12 JPCP reconstruct thickness ranges 

Pavement type 
Average PCC 

thickness (in.) 

Average base 

thickness (in.) 

Average subbase 

thickness (in.) 

JPCP 11.4 6.9 12.1 

Table 3-13 Unbonded PCC overlay thickness ranges 

Pavement type  
Average PCC 

thickness (in.) 

Average 

existing PCC 

thickness (in.) 

Average base 

thickness (in.) 

Average 

subbase 

thickness (in.) 

Average asphalt 

interlayer 

thickness (in.) 

Unbonded 

overlay  
6.9 9.1 3.7 12.2 1.0 

3.5.2 Traffic Inputs 

The traffic data is a critical input to the Pavement-ME. Level 2 traffic data was used for all 

sections. MDOT provided a spreadsheet with traffic distribution tables which was used to 

extract Pavement-ME inputs for traffic. These tables include: 

 

• Vehicle class distribution 

• Hourly distribution (only for rigid sections) 

• Monthly adjustment factor 
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• Number of axles per truck 

• Single axle load spectra 

• Tandem axle load spectra 

• Tridem axle load spectra 

• Quad axle load spectra 

 

The inputs (with input categories) required to obtain these tables are summarized in Table 3-

14. 

Table 3-14 Traffic inputs  

Inputs Categories 

Percentage of vehicle class 9  

• Less than 45 

• 45 to 70 

• Above 70 

Region type 
• Rural 

• Urban 

COHS type 

• National  

• Regional 

• Statewide 

Number of lanes 

• 2 

• 3 

• 4+ 

 

The number of lanes was identified from the plans. Wherever the number of lanes was 

unavailable, they were visually estimated utilizing Google Maps coordinates. The COHS 

(Corridors of Highest Significance) type was estimated using each project's PR number and 

beginning and ending milepost. The percentage of class 9 vehicles was estimated for each 

section using the MDOT Transportation Data Management System (TDMS) website from 

the following URL: https://mdot.public.ms2soft.com/tcds/tsearch.asp?loc=mdot. For sections 

where the traffic data was unavailable at the exact location, nearby locations in the same 

section were used. The range and average two-way AADTT values for all reconstruct and 

rehabilitation projects are summarized in Table 3-15 and 3-16, respectively. 

Table 3-15 Ranges of AADTT for all reconstruct projects 

Road Type Min AADTT Max AADTT Average AADTT 

Crush and Shape 60 1986 669 

Rubblized 173 3707 1502 

HMA Reconstruct  

Freeway 
313 6745 2076 

HMA Reconstruct  

Non-freeway 
63 1600 431 

JPCP Reconstruct 150 18297 7141 

Statewide Average 134 6502 2381 

 

  

https://mdot.public.ms2soft.com/tcds/tsearch.asp?loc=mdot
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Table 3-16 Ranges of AADTT for all rehabilitation projects 

Pavement Type Minimum AADTT Maximum AADTT Average AADTT 

Composite 113 20876 2715 

HMA over HMA 61 3780 722 

Unbonded overlay 1458 6100 4473 

Statewide average 262 7115 1588 

3.5.3 As-constructed Material Inputs 

The as-constructed material inputs were obtained from the construction records, JMFs, and 

other test records. Ideally, these inputs are to be recorded at the time of construction. These 

inputs range between project-specific and statewide average values. The details of material 

properties for each pavement structural layer are discussed in this section. 

3.5.3.1. HMA layer inputs 

All inputs were collected at the highest available hierarchy level; however, the needed data 

were not available for all pavement sections. In that case, the data was collected using other 

correlations/sources. Data collection for each HMA layer input is as follows: 

 

• Dynamic modulus (E*): E* was obtained from the DYNAMOD software developed 

in a previous study (4). E* for the Superpave mixes was directly obtained from the 

database. For older mixes (marshal mixes), the volumetric, binder, and gradation 

information was used to predict the E* using DYNAMOD's Artificial Neural 

Networks (ANNs). E* was obtained at Level 1. 

• Binder (G*): G* was also obtained from the DYNAMOD database using the region 

and binder information. G* was obtained at Level 1. 

• Creep compliance (D(t)): D(t) was obtained from the DYNAMOD database. D(t) was 

obtained at Level 1 for Performance grade (PG) sections and Level 3 for other 

sections. 

• Indirect tensile strength (IDT): IDT was obtained from the DYNAMOD database at 

Level 2 for Performance grade (PG) sections and Level 3 for other sections. 

• AC layer thickness: These were obtained from construction records. Usually, the 

application rate in lbs/yards2 is available, which can be utilized to obtain the layer 

thickness, as previously mentioned. 

• Air voids and binder content: As constructed, air voids and binder content were 

obtained from construction records. Table 3-17 summarizes the average as-

constructed air voids for different pavement types. Historical test records were 

utilized for unavailable data to obtain an average value based on mix type, as shown 

in Table 3-19. 

• Aggregate gradation: Gradation was obtained from JMFs. Tables 3-18 summarize the 

average gradation for the top, leveling, and base layers, respectively, for different 

pavement types. For unavailable data, historical test records were utilized to obtain an 

average value based on mix type, as shown in Table 3-19. 

 

It is important to note that Level 1 G* and Level 2 IDT data were used for the calibration of 

the thermal cracking model.  
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Table 3-17 As-constructed percent air voids for HMA layers 

HMA layer Road Type Average as-constructed air voids 

Top course 

Crush and Shape 6.1 

Rubblized 6.8 

HMA Reconstruct Freeway 6.6 

HMA Reconstruct Non-freeway 6.8 

HMA over HMA 6.2 

Composite 6.1 

Leveling course 

Crush and Shape 6.2 

Rubblized 6.4 

HMA Reconstruct Freeway 6.7 

HMA Reconstruct Non-freeway 6.7 

HMA over HMA 6.2 

Base course 

Crush and Shape 5.8 

Rubblized 5.8 

HMA Reconstruct Freeway 6.4 

HMA Reconstruct Non-freeway 6.8 

Table 3-18 HMA layer average aggregate gradation 

 
Road type 

Effective AC binder 

content 

Percent passing sieve size 

HMA layer 3/4 3/8 #4 #200 

Top course 

Crush and Shape 11.5 100.0 89.7 68.4 5.2 

Rubblized 11.9 99.4 89.8 67.3 5.9 

HMA Reconstruct 

Freeway 
11.2 100.0 92.4 67.4 5.2 

HMA Reconstruct Non-
freeway 

11.1 
100.0 94.6 71.4 5.3 

HMA over HMA 12.3 100.0 93.4 72.2 5.6 

Composite 12.5 100.0 94.4 72.1 5.6 

Leveling 
course 

Crush and Shape 10.6 100.0 81.8 61.1 5.0 

Rubblized 11.2 100.0 87.0 67.8 5.2 

HMA Reconstruct 

Freeway 
10.1 

99.8 81.3 63.3 4.8 

HMA Reconstruct Non-
freeway 

10.2 
100.0 82.6 73.4 4.8 

HMA over HMA 11.3 100.0 84.9 64.0 5.2 

Base course 

Crush and Shape 10.8 99.6 77.9 60.3 4.6 

Rubblized 10.6 99.3 78.9 59.9 4.8 

HMA Reconstruct 
Freeway 

9.4 
95.8 72.9 51.6 4.9 

HMA Reconstruct Non-

freeway 
9.6 

98.9 76.6 57.5 4.9 
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Table 3-19 MDOT recommended values volumetrics and gradation 

Mix type 
Air voids 

(%) 

Effective 

binder 

content (%) 

% Passing 

3/4" Sieve 

 

% Passing 

3/8" Sieve 

 

% Passing 

# 4Sieve 

 

% Passing 

#200 Sieve 

 

3E1 5.8 10.8 99.85 80.44 62.94 4.40 

4E1 6.1 11.5 100.00 87.24 70.43 5.11 

5E1 6 12.6 100.00 97.14 78.23 5.63 

2E3 4.8 9.7 92.65 68.70 53.95 4.40 

3E3 5.8 10.8 99.63 77.88 60.33 4.56 

4E3 6.1 11.5 100.00 86.91 68.66 4.92 

5E3 6 12.6 100.00 97.86 79.81 5.49 

2E10 4.8 9.7 94.55 73.50 59.70 4.50 

3E10 5.8 10.8 99.78 80.27 62.78 4.84 

4E10 6.1 11.5 100.00 87.65 70.06 5.26 

5E10 6 12.6 100.00 98.30 81.27 5.67 

2E30 4.8 9.7 99.00 71.80 60.60 4.20 

3E30 5.8 10.8 99.95 79.20 59.82 4.40 

4E30 6.1 11.5 100.00 88.63 66.90 4.33 

5E30 6 12.6 100.00 99.00 81.24 5.68 

3.5.3.2. PCC material inputs 

The Pavement-ME transverse cracking prediction model is very sensitive to concrete strength 

(compressive or flexural). The team obtained the PCC material-related inputs from material 

testing results. If these results were unavailable, typical MDOT values were used.   

 

PCC strength: 

MDOT collected the concrete core compressive strength (f'c) test data. These tests represent 

the concrete compressive strength close to the construction time for the selected pavement 

sections. These test values were used directly for each corresponding project. If compressive 

strength is unavailable, an average value of 5239 psi was used. This value was obtained from 

the sections with available values. The transverse cracking model in the Pavement-ME 

directly uses the modulus of rupture (MOR) to estimate the damage. The MOR values were 

estimated based on the ACI correlation between MOR and f'c (used in the Pavement-ME), as 

shown by Equation (3-7). Figure 3-42 shows the f'c and estimated MOR distributions. It 

should be noted that these cores' specific testing age was unavailable; however, all cores 

were tested after or at least 28 days. The Pavement-ME internally calculates the relationship 

between f'c and MOR.  

  

 𝑀𝑂𝑅 = 9.5 × √𝑓𝑐
′  (3-7) 
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(a) Compressive strength (f'c) 

 
(b) Modulus of rupture (MOR) 

Figure 3-42 Distribution of concrete strength properties 

Coefficient of thermal expansion: 

The CTE input values were obtained from the MDOT recommended values (5). A value of 

4.4 in/in/°F×10-6  was used for Bay, Grand, North, Southwest, and Superior regions, whereas 

5.0 in/in/°F×10-6 was used for Metro and University regions. 

3.5.3.3. Aggregate base/subbase and subgrade input values 

The aggregate base/subbase and subgrade input values were obtained from the following 

sources: 

• Backcalculation of unbound granular layer moduli (6) 

• Pavement subgrade MR design values for Michigan's seasonal changes (7) 

 

The resilient modulus (MR) values for the base and subbase material were selected based on 

the results from previous MDOT studies(6, 7). The typical backcalculated values for base 

and subbase MR is 33,000 psi and 20,000 psi, respectively. It is worth noting that crushed 

and shaped and rubblized sections have been modeled as new flexible pavements. The 

existing layer has been modeled as a dense aggregate base with an MR of 125,000 psi for 

crush and shape and 70,000 for rubblized sections. These values were assumed for all 

projects since in-situ MR values were not available. For base/subbase layers, the software 

default to "Modify input values by temperature/moisture" was selected. The subgrade 

material type and resilient modulus were selected based on the Subgrade MR study (6, 7). 

The study outlined the location of specific soil types and their MR values across the entire 

State. Annual representative values for subgrade MR were used in Pavement-ME. The 

recommended design MR value corresponding to the soil type is shown in Table 3-20.  
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Table 3-20 Average roadbed soil MR values 

Roadbed Type Average MR 

USCS AASHTO 

Laboratory-

determined 

(psi) 

Back-

calculated 

(psi) 

 

Recommended design MR 

value (psi) 

SM A-2-4, A-4 17,028 24,764 5,200 

SP1 A-1-a, A-3 28,942 27,739 7,000 

SP2 A-1-b, A-3 25,685 25,113 6,500 

SP-SM A-1-b,A-2-4, A-3 21,147 20,400 7,000 

SC-SM A-2-4, A-4 23,258 20,314 5,000 

SC A-2-6, A-6,A-7-6 18,756 21,647 4,400 

CL A-4, A-6, A-7-6 37,225 15,176 4,400 

ML A-4 24,578 15,976 4,400 

SC/CL/ML A-2-6, A-4, A-6, A-7-6 26,853 17,600 4,400 

 

3.5.4 Climatic Inputs 

The Enhanced Integrated Climatic Model (EICM) in Pavement-ME requires hourly climatic 

data. This data includes air temperature, precipitation, relative humidity, percent sunshine, 

and wind speed. A statistical comparison between Modern-Era Retrospective Analysis for 

Research and Applications (MERRA) and North American Regional Reanalysis (NARR) 

data was performed to identify the most suitable climatic data for calibration. Both MERRA 

and NARR data files used include climatic information for different periods. For that 

purpose, a common temporal overlap of 13 years was identified for which continuous hourly 

data is available for all climatic files from September 2000 to September 2013. The MERRA 

stations falling in the lake region were removed from the database. Moreover, for each 

NARR station, the four closest MERRA stations were identified, and the weighted average 

(proportional to the distance) for all four stations based on their distances was used for 

comparison. A total of 29 NARR stations and the four closest corresponding MERRA 

stations to each have been compared. Table 3-21 shows the SEE, bias, and correlation 

coefficient (R) between MERRA and NARR for hourly, daily, and monthly data (8). 

 

MDOT has been using default Pavement-ME climate data along with ground-based climate 

automated surface observation systems (ASOS) data. This data was reviewed for 

errors/anomalies and was improved in MDOT’s previous study (2).  The following 

observations were made based on the comparison and previous study (2, 8): 

 

• MERRA and NARR climatic data are comparable for air temperature followed by 

humidity and wind speed. Percent sunshine showed a low correlation, and 

precipitation data is significantly different (i.e., a very low correlation) among all 

climatic inputs.  

• The predicted pavement performance using MERRA-2 and NARR climatic data 

showed good agreement except for thermal cracking in flexible pavement and 

transverse cracking in rigid pavements. These differences are expected mainly 

because of sunshine data. 
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• MERRA has anomalies in humidity data. Several humidity values were erroneously 

higher than 100. 

• MERRA appeared to be incorrectly estimating precipitation. Specifically, the number 

of wet days was extremely high such that the data review showed wet event days in 

the data on actual dry days. The ground-based stations are more closely aligned with 

actual wet event days.  Furthermore, it was unclear why the percent sunshine was 

significantly different. 

 

Table 3-21 Descriptive statistics for MERRA and NARR data comparison 

Climatic input 
Descriptive 

statistics 

Hourly Daily Monthly 

SEE Bias R SEE Bias R SEE Bias R 

Humidity 

Mean 12.784 4.437 0.764 9.582 4.437 0.705 7.387 4.437 0.538 

Std. Dev. 0.726 2.230 0.035 1.014 2.230 0.055 1.283 2.230 0.145 

COV 5.68% 50.27% 4.60% 10.58% 50.27% 7.86% 17.37% 50.27% 26.96% 

Precipitation 

Mean 0.049 0.002 0.062 0.009 0.002 0.610 0.002 0.002 0.678 

Std. Dev. 0.005 0.000 0.022 0.001 0.000 0.045 0.000 0.000 0.059 

COV 10.85% 15.22% 34.59% 7.90% 15.22% 7.33% 11.21% 15.22% 8.73% 

Sunshine 

Mean 44.614 -1.457 0.411 29.317 -1.457 0.570 11.847 -1.457 0.821 

Std. Dev. 3.908 6.809 0.071 2.777 6.809 0.079 1.788 6.809 0.033 

COV 8.76% -467.39% 17.27% 9.47% -467.39% 13.84% 15.09% -467.39% 4.04% 

Temperature 

Mean 3.924 -0.771 0.982 2.710 -0.771 0.992 1.837 -0.771 0.997 

Std. Dev. 0.548 0.766 0.006 0.436 0.766 0.003 0.428 0.766 0.002 

COV 13.98% -99.43% 0.58% 16.08% -99.43% 0.31% 23.32% -99.43% 0.20% 

Wind speed 

Mean 3.318 -0.165 0.752 2.031 -0.165 0.863 1.470 -0.165 0.848 

Std. Dev. 0.946 1.700 0.100 1.097 1.700 0.105 1.145 1.700 0.145 

COV 28.52% -1029.25% 13.25% 54.00% -1029.25% 12.16% 77.92% -1029.25% 17.10% 

Note: 
( )

2

2

MERRA NARR
SSE

n

−
=

−


; 

( )
Bias

MERRA NARR

n
=

−
 

 

In the previous study, additional weather stations were added to improve the climate 

coverage using ASOS and the Michigan Road Weather Information System (RWIS) as 

potential data sources (2). Moreover, additional years of climatic data were added from 

February 2006 to December 2014 to enhance the data. Since the predicted performance did 

not show significant differences and the NARR data was improved for Michigan climate, the 

improved MDOT NARR climatic files were used for climatic inputs for both flexible and 

rigid pavements. The files were downloaded as *.hcd files, which can be read directly in 

Pavement-ME. The closest weather station to each selected project was used. For rigid 

sections, these files were directly used (since these are default files in the Pavement-ME), 

and for flexible sections, custom stations were formed using these files. Table 3-22 

summarizes the climatic files used for calibration.  
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Table 3-22 Michigan climate station information 

HCD filename City/Location Climate identifier Latitude Longitude 

4847 Adrian Adrian Lenawee County Arpt 41.868 -84.079 

94849 Alpena Alpena Co Rgnl Airport 45.072 -83.581 

94889 Ann Arbor Ann Arbor Municipal Arpt 42.224 -83.74 

14815 Battle Creek W K Kellogg Airport 42.308 -85.251 

94871 Benton Harbor Sw Michigan Regional Arpt 42.129 -86.422 

14822 Detroit Detroit City Airport 42.409 -83.01 

94847 Detroit Detroit Metro Wayne Co Apt 42.215 -83.349 

14853 Detroit Willow Run Airport 42.237 -83.526 

14826 Flint Bishop International Arpt 42.967 -83.749 

4854 Gaylord Otsego County Airport 45.013 -84.701 

94860 Grand Rapids Gerald R Ford Intl Airport 42.882 -85.523 

14858 Hancock Houghton County Memo Arpt 47.169 -88.506 

4839 Holland Tulip City Airport 42.746 -86.097 

94814 Houghton Lake Roscommon County Airport 44.368 -84.691 

94893 Iron Mountain/Kingsford Ford Airport 45.818 -88.114 

14833 Jackson Jakson Co-Rynolds Fld Arpt 42.26 -84.459 

94815 Kalamazoo Klmazo/Btl Creek Intl Arpt 42.235 -85.552 

14836 Lansing Capital City Airport 42.78 -84.579 

14840 Muskegon Muskegon County Airport 43.171 -86.237 

14841 Pellston Pton Rgl Ap Of Emmet Co Ap 45.571 -84.796 

94817 Pontiac Oakland Co. Intnl Airport 42.665 -83.418 

14845 Saginaw Mbs International Airport 43.533 -84.08 

14847 Sault Ste Marie Su Ste Mre Muni/Sasn Fl Ap 46.467 -84.367 

14850 Traverse City Cherry Capital Airport 44.741 -85.583 

AMN Alma Gratiot Community Airport 43.322 -84.688 

BAX Bad Axe Huron County Memorial Airport 43.78 -82.985 

CFS Caro Tuscola Area Airport 43.459 -83.445 

ERY Newberry Luce County Airport 46.311 -85.4572 

ESC Escanaba Delta County Airport 45.723 -87.094 

FKS Frankfort Frankfort Dow Memorial Field Airport 44.625 -86.201 

IRS Sturgis Kirsch Municipal Airport 41.813 -85.439 

ISQ Manistique Schoolcraft County Airport 45.975 -86.172 

IWD Ironwood Gogebic Iron County Airport 46.527 -90.131 

LDM Ludington Mason County Airport 43.962 -86.408 

MOP Mount Pleasant Mount Pleasant Municipal Airport 43.622 -84.737 

OSC Oscoda Oscoda Wurtsmith Airport 44.452 -83.394 

PHN Port Huron Saint Clair County Intnl Airport 42.911 -82.529 

RQB Big Rapids Roben Hood Airport 43.723 -85.504 

SAW Gwinn Sawyer International Airport 46.354 -87.39 

3.6 ESTIMATION OF INITIAL IRI 

Initial IRI is an essential input for IRI prediction and pavement design. Initial IRI is the IRI 

value just after construction. Measured IRI at zero year can be used as initial IRI, but it poses 

the following challenges: 

 

• The exact date of construction and IRI measurement at zero year is unknown (the 

exact year is known, but not the day and month). Therefore, the recorded IRI for the 

same year may be before or after construction.  

• The IRI for the construction year is not available for all sections.  

 

The following five approaches were used to estimate initial IRI: 
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• Selecting the IRI at year zero (if available) 

• Linear backcasting IRI based on the measured data for the first ten years 

• Linear backcasting IRI based on the measured information for all available years 

• Reducing the first measured IRI (after construction) by 5 inches per mile/year up to a 

zero year 

• Reducing the first measured IRI (after construction) by 5 inches per mile /year if 

greater than 100; by 4 inches per mile /year if between 70 and 100; by 3 inches per 

mile /year if less than 70 up to a zero year 

 

Based on the above five approaches, the number of sections available and initial IRI caps 

were selected for the initial IRI for each pavement type. A cap on the initial IRI means that 

sections with an initial IRI greater than the cap were not included for IRI calibration. The 

initial IRI cap values were selected as per MDOT construction standards and potential tenth 

mile variability. A cap of 82 in/mile was selected for rigid sections. A cap of 77 in/mile was 

selected for new or reconstruct, crush and shape, and bituminous overlay on rubblized 

concrete for flexible sections, whereas a cap of 82 in/mile was selected for multicourse 

bituminous and composite overlays. The details of the initial IRI estimation can be found in 

Appendix-A. 

3.7 JOINT SPALLING IN RIGID PAVEMENTS 

Joint spalling is the rupture of concrete slabs near the edge of joints. It may result from 

excessive compressive stresses due to high traffic, infiltration of incompressible materials, 

infiltrated water under freezing and thawing cycles, etc. Spalling is used in Pavement-ME for 

the calculation of IRI. The Pavement-ME uses an empirical model to calculate spalling for 

joints with medium and high severities. According to the MDOT PMS-associated distress 

(AD) matrix, four possible options were identified to quantify medium and high severity 

levels for measured joint spalling. The team analyzed joint spalling data with the following 

goals: 

 

• To estimate the most suitable AD matrix to categorize measured spalling. 

• To analyze the applicability of measured spalling (using the most suitable AD matrix) 

for IRI model calibration. 

 

The most suitable AD matrix was selected based on the contribution of each AD matrix cell 

on the spalling and the callouts of each cell in the PMS database. Table 3-23 shows the 

recommended AD matrix for spalling calculation per those highlighted in yellow or orange. 

The yellow cells are the medium severity, and the orange cells are high severity spalling. 
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Table 3-23 Recommended matrix for spalling calculation 

ASSOCIATED DISTRESS MATRIX (AD1,AD2): AD12 0001 x 0011 

TRANSVERSE LENGTH 

Across Lane (AD1) 

MAX WIDTH (Perpendicular to Transverse Joint) (AD2) 

No Distress >0 - 1 ft. >1 - 3 ft. >3 - 6 ft. >6 - 8 ft. 

No Distress (1,1) xxxxx xxxxx xxxxx xxxxx 

>0 - 1 ft. xxxxx (2,2) (2,3) (2,4) (2,5) 

>1 - 3 ft. xxxxx (3,2) (3,3) (3,4) (3,5) 

>3 - 6 ft. xxxxx (4,2) (4,3) (4,4) (4,5) 

>6 - 12 ft. xxxxx (5,2) (5,3) (5,4) (5,5) 

Note that cells marked with xxxxx are not applicable. 

  

Measured and predicted spalling (from Pavement-ME) were used to calibrate the IRI model. 

However, no significant differences were found in the model coefficients. Moreover, 

measured spalling cannot be incorporated into the IRI model within Pavement-ME. 

Therefore, the calibration based on measured spalling was not used for local calibration. The 

detailed analysis results for spalling are shown in Appendix-A.  

3.8 SUMMARY 

The steps to data collection, project selection, and obtaining the Pavement-ME inputs have 

been outlined in this chapter. Details about each input, source, and possible estimates in case 

of unavailable data have also been discussed. The number of projects for each performance 

type and pavement type has also been summarized. Table 3-24 summarizes the inputs and 

corresponding levels for traffic, climate, and material characterization data used for the local 

calibration.  
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Table 3-24 Summary of input levels and data source 

Input 

Pavement-

ME input 

level 

Data source 

level Input source 

Traffic 

Vehicle class distribution 1 2 

MDOT specified traffic per cluster data 

Hourly distribution 1 2 

Monthly adjustment 

factor 
1 2 

Number of axles per 

truck 
1 2 

Single, tandem, tridem, 

and quad axle load 

distribution 

1 2 

AADTT 1 1 From design drawings  

Vehicle class 9 

percentage 
1 1 MDOT TDMS website 

Cross-

section 
layers 

(new and 

existing) 

HMA thickness 1 1 
Project-specific HMA thicknesses 

based on design drawings 

PCC thickness 1 1 
Project-specific PCC thicknesses based 
on design drawings 

Base thickness 1 1 
Project specific base thicknesses based 

on design drawings 

Subbase thickness 1 1 
Project-specific subbase thicknesses 

based on design drawings 

Layer 

materials 

HMA 

Mix 

properties 
1 

Mix of 2 

and 3 

MDOT HMA mixture characterization 

study (DYNAMOD database) 

HMA 

mixture 

aggregate 

gradation 

1 1 or 3 

Project-specific mixture gradation data 

obtained from data collection or 

average statewide values 

Binder 

properties 
1 3 

MDOT HMA mixture characterization 

study (DYNAMOD database) 

PCC 

Strength (f'c, 

MOR) 
3 1 or 3 

Project specific testing values or 

average statewide value 

CTE 1 2 MDOT recommended values 

Base/ 

subbase 
MR 3 3 

Recommendations from MDOT 

unbound material study 

Subgrade 

MR 3 3 
Soil-specific MR values per MDOT 

subgrade soil study 

Soil 

properties 

Mix of all 

levels 
3 

Location-based soil type per MDOT 

subgrade soil study 

Climate  1 1 Closest available climate station 

Note:  

Data source Level 1 is project-specific data 
Data source Level 2 inputs are based on regional averages in Michigan 

Data source Level 3 inputs are based on statewide averages in Michigan 
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CHAPTER 4 - LOCAL CALIBRATION PROCEDURES 

4.1 INTRODUCTION 

The MEPDG was developed under the NCHRP project 1-37A (1) to overcome the 

limitations of the AASHTO 1993 method (2). It is an advanced pavement design tool for new 

and rehabilitated pavements. MEPDG incorporates material properties, traffic, and climate to 

estimate the incremental damage using mechanical responses of the pavement. The 

cumulative damage is empirically used to predict the field distresses using transfer functions. 

The transfer functions used in Pavement-ME have been calibrated using the Long-term 

Pavement Performance (LTPP) pavement sections at the national level (3). Although the 

nationally calibrated models provide a fair performance prediction for the entire US road 

network, these may not represent the construction practices, materials, and climatic 

conditions of a particular state/region. Therefore, nationally calibrated models may 

underpredict or overpredict the pavement performance in specific state/region. Recalibration 

of these models has been recommended for local conditions in the local calibration guide (4). 

Several studies have been conducted to locally recalibrate the transfer function coefficients 

for new and reconstructed rigid pavement sections. The critical performance distress in the 

Pavement-ME includes transverse cracking (percentage of slabs cracked), transverse joint 

faulting (inches), and international roughness index (IRI in inches/mile) for rigid pavements. 

For flexible pavements, the critical distress include bottom-up cracking (percentage), top-

down cracking (percentage), rutting (inches), thermal (transverse) cracking (feet/mile), 

reflective cracking (feet/mile), and IRI (inches/mile). This chapter briefly highlights the 

calibration methods, approaches for each model, and the concept of reliability. 

4.2 CALIBRATION APPROACHES 

Local calibration of the Pavement-ME models aims to optimize the model coefficients to 

minimize bias and standard error. The aim is achieved by matching the predicted and 

measured distress. Bias in the predictions signifies if there is a systematic over- or under-

prediction, whereas standard error shows the scatter and variability. Figure 4-1 shows a 

representation of bias and standard error. Genetic Algorithm (GA) has been used to optimize 

transfer function coefficients using MATLAB program. GA is an evolutionary optimization 

technique that can converge towards a global minimum solution even with local minima. GA 

involves the following operations: 

 

• Initialization: GA generates solutions by randomly selecting a subset inside the 

allowed search space called the population.  

• Selection: The generated solutions are selected based on the value of the objective 

function. 

• Generation of offspring: New solutions are created using the selected solutions or 

populations (offspring) based on mainly two processes: mutation and crossover. 

• Termination: This process continues till the termination criteria for the given 

population or the number of generations is reached. 
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The empirical transfer functions can be of two types: (a) model that directly calculates the 

magnitude of surface distress, and (b) model that calculates the cumulative damage index 

rather than actual distress magnitude. Based on the model, two different calibration 

approaches have been followed (as shown in Table 4-1): 

 

Approach 1: For specific models (e.g., fatigue cracking, rutting, transverse cracking, and 

IRI), damage is directly obtained from Pavement-ME outputs. The transfer functions predict 

distress from the damage and have been calibrated using the MATLAB program outside the 

Pavement-ME. Different resampling techniques have been used to calibrate these functions. 

 

Approach 2: The Calibration Assistance Tool (CAT) is used to calibrate the models (e.g., 

thermal cracking and joint faulting) where the damage is not obtained from Pavement-ME 

outputs. These models predict distress by calculating cumulative damage over time. 

 

Table 4-1 summarizes the transfer functions and the approaches used to calibrate flexible and 

rigid pavements. 

 

 
(a) High bias, high standard error 

 
(b) Low bias, high standard error 

 
(c) High bias, low standard error 

 
(d) Low bias, low standard error 

Figure 4-1 Schematic representation of bias and standard error (5)
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Table 4-1 Model transfer functions and calibration approaches  

Pavement type Performance prediction model 
Approach 

Model transfer functions 
I  II  
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4.3 CALIBRATION TECHNIQUES 

This section discusses the various resampling techniques, optimization methods, and their 

advantages and limitations. Resampling techniques include (a) repeated split sampling, (b) 

bootstrapping, and (c) jackknifing. The optimization methods include (a) least squares and 

(b) maximum likelihood estimate (MLE). Both these methods have been used with 

resampling techniques to improve calibration results. These techniques and methods have 

been used within the approaches mentioned previously (Approach I and II) and are briefly 

discussed below. 

4.3.1 Traditional Technique 

The NCHRP Project 1-40B and local calibration guide provide recommended practices for 

local calibration of the Pavement-ME performance models. The traditional approach includes 

no resampling and is based on a random split into the calibration and validation subsets. The 

calibration-validation process depends on the number of selected sections, and as previously 

noted, two different calibration approaches (Approach I and II) may be needed depending on 

the distress predicted through the transfer function. Data collected from in-service pavements 

are used to establish calibration coefficients that minimize the overall standard error of the 

estimate between the predicted and measured distress. The validation process demonstrates 

that the calibrated model can produce accurate predictions for independent sections not used 

in the calibration. An efficient validation is determined by the bias in the predicted values 

and standard error of the estimate. Statistical hypothesis tests are used to determine if a 

significant difference exists between the calibrated model and the model validation. 

4.3.2 Bootstrapping  

Bootstrap resampling is a statistical technique widely used in many research fields, including 

statistics, economics, finance, and computer science. This method allows researchers to 

estimate a statistic's sampling distribution and construct confidence intervals for a population 

parameter, even when the underlying population distribution is unknown. The basic idea of 

bootstrap resampling is to draw many bootstrap samples from the original sample with 

replacement. Each bootstrap sample is a resampling of the original data with the same sample 

size but may contain some duplicate observations. The bootstrapped resampling can be 

performed using different methods: (a) resampling randomly or (b) resampling based on the 

residuals. The type of resampling approach for bootstrapping depends on the amount and 

type of data. The statistic of interest is calculated for each bootstrap sample, and the statistic 

distribution is estimated using the bootstrap sample statistics. The general steps involved in 

the bootstrap resampling method are as follows: 

 

1. Draw a random sample of size n with a replacement from the original data set. 

2. Calculate the statistic of interest for the sample. For calibration, this can be the 

estimation of calibration coefficients. 

3. Repeat steps 1 and 2 for a number (B) of times to obtain B bootstrap samples.  The 

team used 1000 bootstrap resamples for calibration. 

4. Calculate the statistic's standard error and confidence interval using the bootstrap 

samples. 
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In practice, the number of bootstrap samples B is often large, such as 1,000 or 10,000, to 

ensure accurate estimates of the standard error and confidence interval. The standard error of 

a statistic estimated using bootstrap resampling can be calculated using Equation (4-1): 

 

SE = √
1

𝐵 − 1
∑(𝜃𝑏 − 𝜃∗)2⁡ (4-1) 

where; 

SE = estimated standard error of the statistic 
B = number of bootstrap samples 

𝜃𝑏 = value of the statistic for the bth bootstrap sample 

𝜃∗ = mean of the B bootstrap sample values. 

 

The confidence interval for the statistic can be calculated using the percentile method, which 

involves ranking the B bootstrap sample values and taking the 2.5th and 97.5th percentiles as 

the lower and upper bounds of the confidence interval, as shown in Equation (4-2). 

  

CI = (𝜃∗ − 𝜃𝛼
2
⁡⁡
, 𝜃∗ + 𝜃𝛼

2
⁡⁡
) (4-2) 

where; 
CI = bootstrap confidence interval 

𝜃∗ = mean of the B bootstrap sample values 

𝜃𝛼
2
⁡⁡ = 

𝛼

2
th percentile of the bootstrap sample values 

 

Bootstrap resampling has several advantages over other statistical methods. First, it does not 

require population distribution or sample size assumptions. This is particularly useful when 

the sample size is small or the population distribution is unknown or  not normally 

distributed. Second, it allows researchers to estimate the variability of a statistic and 

construct confidence intervals without resorting to complex mathematical formulas or 

asymptotic approximations. Third, it can be easily implemented using standard statistical 

software packages like R, Python, or SAS. 

 

However, bootstrap resampling also has some limitations and potential pitfalls. First, it can 

be computationally intensive, especially when the number of bootstrap samples or the 

original sample size is large. Second, the bootstrap samples may not accurately reflect the 

true population distribution, especially if the original sample is biased or contains outliers. 

Third, the results may be sensitive to the choice of the statistic and the resampling method. 

4.3.3 Jackknifing 

Jackknifing is a statistical method used to estimate a statistic's bias and variance and make 

inferences about population parameters based on a sample of data. This method is similar to 

bootstrap resampling. Instead of creating multiple bootstrap samples, jackknifing involves 

leaving out one observation at a time from the original data set and calculating the statistic 

for each subsample. The basic idea of jackknifing is to divide the original data set into n 

subsamples, each of size n-1, by systematically leaving out one observation at a time. The 

general steps involved in the jackknife method are as follows: 
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• Divide the original data set into n subsamples, each of size n-1, by systematically 

leaving out one observation at a time. 

• Calculate the statistic of interest for each subsample. 

• Calculate the bias of the statistic as the average difference between the statistic 

calculated on the full data set and the statistic calculated on each subsample. 

• Calculate the variance of the statistic as the sum of the squared differences between 

the statistic calculated on each subsample and the mean of the subsample statistics, 

divided by n-1. 

• Calculate the statistic's standard error and confidence interval using the bias and 

variance estimates. 

 

In practice, jackknifing is often used to estimate the standard error of a statistic, which can be 

used to construct confidence intervals or to test hypotheses about population parameters. 

Jackknifing has several advantages over other statistical methods. First, it is simple to 

understand and implement, requiring only basic statistical software. Second, it is generally 

less computationally intensive than bootstrap resampling, as it involves only n calculations 

instead of B calculations. Third, it can be used to estimate the bias and variance of a statistic 

separately, providing valuable information about the accuracy and precision of the estimate. 

 

However, jackknifing also has some limitations and potential pitfalls. It assumes that each 

observation in the sample is independent and identically distributed, which may not be true in 

practice. Also, it may be less robust than bootstrap resampling to outliers or non-normal 

distributions. Moreover, it may be less accurate than bootstrap resampling when the sample 

size is small or the population distribution is unknown. 

4.3.4 Maximum Likelihood Estimation (MLE) 

MLE is a powerful statistical technique used for parameter estimation in various fields, 

including biology, physics, economics, and engineering. MLE is an optimization method that 

has been combined with resampling techniques for improved results. In the traditional 

calibration approach, the error term is assumed to be normally distributed. This might not be 

the case for all distress types. MLE seeks to estimate the parameters of a probability 

distribution that best describes the observed data based on the likelihood function. The 

likelihood function measures the probability of observing the data given a particular set of 

model parameters. MLE finds the set of model parameters that maximize the likelihood 

function, resulting in the most likely estimates of the parameters. Consider a dataset X = {x1, 

x2, ..., xn} that is assumed to be generated by a probability distribution with parameters θ. 

The likelihood function L(θ|X) is defined as the joint probability density function of the 

observed data, given the model parameters as shown in Equation (4-3). 

 

L(θ|X) = P(X|θ) = P(x1, x2, … . , xn|θ) (4-3) 

 

where; P denotes the probability density function, and the likelihood function measures the 

probability of observing the data X given the model parameters 𝜃. The goal of MLE is to find 

the set of model parameters 𝜃 that maximize the likelihood function. In practice, it is often 
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easier to work with the log-likelihood function, which is the natural logarithm of the 

likelihood function. The log-likelihood function is given by Equation (4-4): 

 

𝑙(θ|X) = logL(θ|X) = logP(X|θ) = log∏P(𝑥𝑖|θ) = ∑logP(𝑥𝑖|θ) (4-4) 

where;  

П = product operator 

Σ = summation operator 

 

Taking the logarithm of the likelihood function simplifies the computation of the derivative, 

which is required for optimization. The optimization problem can be solved by finding the 

values of 𝜃 that maximize the log-likelihood function. This can be done using numerical 

optimization algorithms, such as gradient descent, Newton's method, or quasi-Newton 

methods. These algorithms require the derivative of the log-likelihood function for the model 

parameters. 

 

Numerical optimization algorithms iteratively update the values of the model parameters 

based on the score function to maximize the log-likelihood function. The optimization 

process continues until the algorithm converges to a maximum of the log-likelihood function. 

The MLEs obtained from the optimization process represent the most likely estimates of the 

model parameters that can explain the observed data. These estimates can be used for 

parameter inference, hypothesis testing, and model selection. 

 

One of the main advantages of MLE is that it provides a robust and rigorous approach to 

parameter estimation. The MLEs are derived from a well-defined likelihood function based 

on the data's underlying probability distribution. This ensures that the estimates are 

statistically valid and can be interpreted meaningfully.  Another advantage of MLE is that it 

is a computationally efficient optimization method. The likelihood function can often be 

evaluated using standard probability distributions, and the optimization problem can be 

solved using numerical optimization algorithms that are widely available. This makes MLE a 

practical and scalable method for parameter estimation, even in high-dimensional and 

complex models. MLE is particularly useful when the model is complex and contains 

multiple parameters that are difficult to estimate using other methods. For example, in 

machine learning, MLE is used to estimate the parameters of probabilistic models, such as 

hidden Markov models and Bayesian networks. MLE was used for calibration, and the 

results have been summarized in Appendix A. 

4.3.5 Summary of Resampling Techniques 

Traditional no-sampling or split sampling technique provides a convenient approach to 

selecting pavement sections from the calibration database. Though these techniques are easy 

to implement and can be used for any Pavement-ME model, they might impose some 

limitations. Resampling techniques have several advantages over traditional approaches. 

Since these are non-parametric techniques, the model parameters can be estimated without 

making assumptions about the data distribution. The distribution of the model coefficients 

and error parameters can be estimated instead of the point estimate. This can give a better 

estimation of parameters within desired confidence intervals. Since a new sample is created 
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every time, the outliers or sections controlling the calibration process can be identified. 

Though these resampling techniques have several advantages over traditional approaches, 

there are also certain limitations. Bootstrapping cannot be used for small datasets or when the 

independence assumption is unmet. Jackknifing cannot be used for skewed data and is more 

conservative, i.e., it provides slightly higher estimated standard errors. Resampling 

techniques also require higher computing power and time and can be used only for those 

performance models where the damage and other inputs are available from Pavement-ME. 

Table 4-2 summarizes the advantages and limitations of all calibration techniques. 

 

Table 4-2 Summary of calibration techniques 

Technique Advantages Limitations 

No sampling • Computationally efficient 

• Applicable even for small 

sample size 

• Provides point estimates 

• It may not be suitable for non-

normally distributed data 

Split sampling • Computationally efficient 

• Provides validation 

• Provides point estimates 

• It may not be suitable for non-

normally distributed data 

Bootstrapping • Provides confidence intervals 

• Identifies outliers 

• Distribution assumption is not 

required 

• Computationally time-consuming 

• It cannot be used for smaller sample 

size 

• It may not be suitable for non-

normally distributed data 

Repeated split 

sampling 
• Provides confidence intervals 

• Provides validation 

• Identifies outliers 

• Distribution assumption is not 

required 

• Computationally time-consuming 

• It cannot be used for smaller sample 

size 

• It may not be suitable for non-

normally distributed data 

Jackknifing • Identifies outliers 

• Distribution assumption is not 

required 

• Computationally time-consuming 

• It cannot be used for skewed data 

MLE • Suitable for non-normally 

distributed data 

• Identifies outliers 

• Can be used with resampling 

techniques and for validation 

• Distribution assumption is required 

• Computationally time-consuming 

and requires prior knowledge of the 

concept of maximum likelihood  

 

4.4 PROCEDURE FOR CALIBRATION OF PERFORMANCE MODELS 

The details for input data, performance data, and project selection have already been 

discussed in Chapter 3. Once the data is extracted, it can be used to run the Pavement-ME 

files (.dgpx files) and generate outputs (structural responses). The process for local 

calibration is summarized below: 
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1. Run Pavement-ME (using global model coefficients)and extract critical responses and 

predicted distresses. 

2. Compare the predicted distress with measured distress.  

3. Based on the results from step 2, test the accuracy of the global models and the need 

for local calibration. 

4. If predictions using global models are satisfactory, local calibration is not required, 

and global models can be accepted. If the global model has significant bias and 

standard error, local calibration is required.  

5. Check your calibration results by validating them on an independent set of sections 

not used for calibration. 

6. Estimate the reliability equations based on the calibrated model predictions and 

measured distress.  

4.4.1 Testing the Accuracy of the Global Calibration Coefficients 

Before locally calibrating the Pavement-ME models, it is vital to determine the need for 

calibration. This includes testing the accuracy of the global model predictions at a reliability 

of 50%, which is the mean expected prediction. Once the predictions from the global model 

are obtained, they are compared with measured values for calculating bias and standard error. 

A plot of predicted versus measured values is created for each distress to visualize the 

accuracy of predictions to a line of equality (LOE). Testing the global model also includes 

hypothesis testing. For a good fit, the points should lie along the LOE. The measured distress 

yMeasured and predicted distress xPredicted can be modeled in the form of a linear model as 

shown in Equation (4-5), where m is the slope, and bo is the intercept.  

 

𝑦Measured = 𝑏𝑜 +𝑚 × 𝑥Predicted  (4-5) 

 

Three hypothesis tests are conducted to evaluate the reasonableness of the global model. If 

any of these hypotheses fail, the models are recalibrated for local conditions: 

 

• There is no systematic bias between the measured and predicted distress (Equation (4-

6)). This can be tested using a paired t-test. 

𝐻0: ∑(𝑦Measured − 𝑥Predicted ) = 0 (4-6) 

• The slope parameter m is 1 (Equation (4-7)).  

𝐻0:𝑚 = 1.0 (4-7) 

• The intercept parameter bo is zero (Equation (4-8)).  

𝐻𝑜: 𝑏𝑜 = 0 (4-8) 

4.4.2 Local Calibration Coefficient Refinements 

This section outlines the calibration approach used for each Pavement-ME model. Moreover, 

different calibration techniques used and subsets of selected sections have also been 

discussed. 
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4.4.2.1. Data subpopulations  

The Pavement-ME models have been calibrated using different subsets of sections for both 

rigid and flexible pavements. The goal was to verify if a single set of coefficients for all 

pavement types would suffice or if an individual calibration is required for different 

pavement types. Three different options have been considered: 

 

Option 1: Reconstruct sections only 

Option 2: Reconstruct and rehabilitation sections 

Option 3: Rehabilitation sections only 

4.4.2.2. Sampling techniques 

The following techniques have been used to calibrate the Pavement-ME models for the above 

subsets. All these methods have been used for models calibrated and validated using 

Approach I. Approach II was used for models which cannot be calibrated outside of 

Pavement-ME using MATLAB codes. Therefore, for models calibrated using Approach II, 

only no sampling and traditional split sampling have been used in the CAT tool.  

 

• No sampling (include all data) 

• Traditional split and repeated split sampling 

• Bootstrapping 

 

The entire dataset (all available data points) is considered in no sampling. Bootstrapping has 

been used by considering 1,000 bootstrap resamples with replacement. For calibration-

validation, a split of 70%-30% has been used where 70% of the data goes to the calibration 

set, whereas 30% goes to the validation set. In traditional split sampling, calibration-

validation is performed once, whereas repeated split sampling has been repeated 1000 times 

by randomly picking different data sets each time.  

4.5 FLEXIBLE PAVEMENT MODEL COEFFICIENTS 

The design distress in the Pavement-ME includes bottom-up cracking, top-down cracking, 

rutting, thermal (transverse) cracking, reflective cracking, and IRI. The calibration of each 

model and the specific coefficients calibrated has been discussed in the next section. 

4.5.1 Fatigue Cracking Model (bottom-up) 

The fatigue cracking (bottom-up) model was calibrated by optimizing the C1 and C2 

coefficients (see Table 4-1). In Pavement-ME v2.6, coefficient C1 is a single value, whereas 

coefficient C2 has three different values depending on the total HMA thickness. Table 4-3 

shows the global values for C1 and C2.  
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Table 4-3 Global values for bottom-up cracking model coefficients 

Calibration coefficient Global values 
C1 1.31 

C2 

Hac < 5 in. : 2.1585 

5 in. <= Hac <=12 in.: (0.867 + 0.2583 × Hac) ×1 

Hac > 12 in.: 3.9666 
Hac : Total HMA thickness in inches 

 

Notably, no sections were selected for the bottom-up calibration with a total HMA thickness 

of more than 12 inches. The coefficient C2 was calibrated separately for the thickness ranges 

less than 5 inches and 5 to 12 inches, respectively. For a thickness range of 5 to 12 inches, 

only the multiplying factor 1 (marked in bold here: (0.867 + 0.2583 × Hac) ×1) was calibrated 

while other values (0.867 and 0.2583) were kept at global values. For a thickness range of more than 

12 inches, the same function ((0.867 + 0.2583 × Hac) ×1) was used with a single value. The Hac was 

kept at 12 inches, and the multiplying factor 1 was kept at the same value for the 5 to 12-inch 

thickness range. The crack initiation time is affected by C1, whereas the slope of the bottom-up 

cracking curve is affected by C2. The effects of C1 and C2 on the predicted bottom-up 

cracking are shown in Figure 4-2. It is difficult to determine whether a crack has initiated 

from the top or bottom of the pavement. Consequently, the calibration was performed using 

two different approaches (a) combined measured bottom-up and top-down cracking and (b) 

bottom-up cracking only.  

 
(a) Effect of C1 

 
(b) Effect of C2 

Figure 4-2 Effect of calibration coefficients on fatigue cracking (bottom-up) cracking  

4.5.2 Fatigue Cracking Model (top-down) 

The top-down cracking model has been modified in the Pavement-ME v2.6. The model 

consists of a crack initiation function that calculates the time to crack initiation and a crack 

propagation function that calculates the percent lane area cracked. This makes it a total of 8 

coefficients combined from both functions. Since the actual crack initiation time is not 

known, it was not possible to calibrate the crack initiation model separately. So, a single 

function was used by substituting the crack initiation function with the crack propagation 

function. Initially, an attempt was made to change all 8 coefficients simultaneously. This 

approach had some challenges: 
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• The model has some mathematical limitations. High values for C3 gives mathematical 

error while using it in Pavement-ME.  

• There is no current literature available for the top-down cracking model calibration. 

Therefore, estimating the range for each coefficient to be used in optimization was 

difficult. 

• The model has many coefficients with coefficient values ranging from 0.011 to 

64271618. This makes the optimization challenging to converge. 

 

 Four coefficients from the crack initiation function (kL2, kL3, kL4, kL5) and two coefficients 

from the crack propagation function (C1, C2) have been calibrated, based on the 

understanding and limitations of the model as mentioned above. 

4.5.3 Rutting Model 

Due to axle loads, rutting is the total accumulated plastic strain in different pavement layers 

(HMA, base/sub-base, and subgrade). It is calculated by summing up the plastic strains at the 

mid-depth of individual layers accumulated for each time increment. In the Pavement-ME, 

rutting is predicted separately for the different layers (HMA, base, and subgrade). The total 

rutting is the sum of rutting from all layers. The AC rutting model has three coefficients (β1r, 

β2r, β3r). β 1r is a direct multiplier and can be calibrated using optimization outside the 

Pavement-ME. In this model, β2r and β3r are power to the pavement temperature and the 

number of axle load repetitions. Calibration of β2r and β3r cannot be done outside of the 

Pavement-ME and requires running the Pavemet-ME multiple times or optimizing these in 

the CAT tool. Initially, β2r and β3r values from the previous calibration effort were used, and 

β1r was calibrated (5). This calibration approach provided reasonable results; therefore, β2r 

and β3r from the previous calibration were accepted, and only β1r was calibrated. Figure 4-3 

shows the impact of the β2r and β3r calibration coefficients on the predicted HMA rutting. 

Legends in Figure 4-3 indicate β2r  and β3r combination such that only one is changed at a 

time.  

 

 
(a) β2r 

 
(b) β3r 

Figure 4-3 Effect of β2r and β2r on HMA rutting 

The unbound layers (base and subgrade) rutting model have one calibration coefficient each 

(βs1). Since βs1 is a direct multiplier, it can be calibrated using optimization outside the 

Pavement-ME without running the software or CAT tool. Since both base and subgrade have 

the same model and calibration coefficient, the base calibration coefficient is referred to as 
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βs1, and the subgrade coefficient is referred to as βsg1  to avoid confusion. The rutting model in 

the Pavement-ME was calibrated using the following two methods: 

1. Method 1: Individual layer rutting calibrations — For this approach, the measured 

rutting from individual layers was matched against the predictions from the 

Pavement-ME (β1r, βs1, and βsg1  were calibrated separately). The total measured 

rutting was multiplied by the percent contribution from each layer to obtain measured 

rutting for the individual layer. The percentage contribution was estimated using 

transverse pavement profile analysis, as shown in Figure 4-4.  The width and depth of 

the measured rut channel were used to determine the seat of rutting and rutting in 

individual layers. AC layer rutting contributes more than 70% to all pavement types 

[based on transverse profile analysis (6)]. The standard error equations for rutting in 

the Pavement-ME are separate for individual layers. This method evaluated the 

standard error equations for rutting in each layer.  

2. Method 2: Total surface rutting calibration — The total measured rutting was 

calibrated against the sum of individual predicted rutting (i.e., β1r, βs1, and βsg1  were 

calibrated simultaneously).  

 

    
(a) Overall 

 
(b) HMA reconstruct freeway sections 

 
(c) HMA reconstruct non-freeway sections 

 
(d) HMA over HMA sections 

 
(e) HMA over rubblized PCC 

 
(f) Composite sections 

Figure 4-4 Transverse profile analysis results 
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4.5.4 Thermal Cracking Model 

The thermal cracking model in the Pavement-ME has three different levels for the calibration 

coefficient. These levels are based on the level of HMA input. Level 1 G* and Level 2 IDT 

have been used to calibrate the thermal cracking model. This corresponds to Level 1 thermal 

cracking calibration coefficients. Both G* and IDT values were obtained from the 

DYNAMOD software database. In the DYNAMOD database, G* and IDT values are 

available only for sections with Performance grade (PG) binder type. Therefore, sections 

with PG binder type (Superpave mixes) have been used to calibrate the thermal cracking 

model. In the Pavement-ME v2.6, the calibration coefficient kt is originally a mean annual air 

temperature (MAAT) function, whereas, in v2.3, it was a single representative value. For the 

reconstruction sections, two different approaches were used: 

 

• Using the CAT tool, an initial attempt was made to calibrate kt (using the original 

equation as a function of MATT).  

• A second attempt was made to calibrate kt by running the Pavement-ME multiple 

times with different kt values. This time, single values for kt were used, which were 

not a function of MAAT.  

 

kt as a function of MAAT resulted in contradictory results when comparing Michigan 

temperature extremes, where thermal cracking at cold temperatures was either reduced or 

equal to thermal cracking at warm temperatures. Moreover, ARA recommends the use of a 

single kt value if this is more suitable for the agency and its local conditions. Based on these 

results, finally, kt value based on the second approach was recommended. It is important to 

note that for this calibration, the average thermal cracking for a section was cut at 2112 

ft/mile. For overlays, MDOT does not differentiate between thermal cracking and reflective 

cracking. Hence, thermal and reflective cracking coefficients were calibrated for overlays 

using the CAT tool. The CAT tool has a limitation on the run time and the total combinations 

of coefficients that can be calibrated simultaneously. Therefore, the thermal cracking 

coefficient kt was set to the calibrated value obtained from the reconstruct sections. Keeping 

kt  constant, the other four coefficients for reflective cracking were calibrated. This approach 

was followed for HMA over HMA and composite overlays. 

4.5.5 IRI Model for Flexible Pavements 

IRI is a linear function of initial IRI, rut depth, total fatigue cracking, transverse cracking, 

and site factor, as shown in Equation (4-9). The initial IRI was obtained from linear 

backcasting based on the time series trend for each section. The fatigue cracking, rutting, and 

transverse cracking models were calibrated before calibrating the IRI model. Since all inputs 

to the IRI model could be obtained, it was calibrated outside of Pavement-ME without 

directly using it or using the CAT tool. IRI has a closed-form solution and does not require a 

standard error equation in the Pavement-ME. The standard error for IRI is calculated using 

the standard error of its components. 

 

IRI = IRIo + C1(RD) + C2(FCTotal) + C3(TC) + C4(SF) (4-9) 

Where;  

IRIo = Initial IRI after construction, in/mi. 
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SF = Site factor 

FCTotal = Area of fatigue cracking (combined bottom-up, top-down, and reflection cracking in the wheel 

path), percent of total lane area.  

TC = Length of transverse cracking (including the reflection of transverse cracks in existing HMA 

pavements), ft/mi. 
RD = Average rut depth, in. 

4.6 RIGID PAVEMENT MODEL COEFFICIENTS 

The design distresses in the Pavement-ME include transverse cracking (percentage of slabs 

cracked), transverse joint faulting (inches), and international roughness index (IRI) for rigid 

pavements. The impact of calibration coefficients on the predicted performance specific to 

each model is discussed in this section. 

4.6.1 Transverse Cracking Model 

The coefficients C4 and C5 (shown in Table 4-1) were optimized to calibrate the transverse 

cracking model. These coefficients were calibrated outside the Pavement-ME and without the 

CAT tool. C4 affects the crack initiation time, and C5 affects the slope of the transverse 

cracking curve. The effect of C4 and C5 on the slope and magnitude of the transverse 

cracking predictions is shown in Figure 4-5. 

 

 
(a) C4 

 
(b) C5 

Figure 4-5 Effect of transverse cracking model calibration coefficients 

4.6.2 Transverse Joint Faulting Model 

The joint faulting model in the Pavement-ME consists of a total of eight coefficients. Joint 

faulting could not be predicted using the available inputs outside the Pavement-ME; 

therefore, it was calibrated using the CAT tool. CAT tool has a limitation on the run time and 

the total combinations of coefficients that can be calibrated simultaneously. Therefore, it was 

essential to identify the most sensitive coefficients. Several research studies (7, 8) show that 

out of the seven calibration coefficients for the faulting model, C6 is the most sensitive. C1 is 

the next sensitive coefficient, followed by C2. Using this sequence of sensitivity of the 

different coefficients, C1 and C6 were calibrated together. The calibrated coefficients from C1 

and C6 were then kept fixed, and C2 was calibrated. In this sequence, the three most sensitive 

coefficients were calibrated. As previously noted and explained in Chapter 3, the joint 

faulting (for every 0.1-mile segment) was cut at 0.4 inches for calibration. 
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4.6.3 IRI Model for Rigid Pavements 

IRI in rigid pavements is a linear function of initial IRI, transverse cracking, joint spalling, 

joint faulting, and site factor, as shown in Equation (4-10). The initial IRI was obtained from 

linear backcalculation based on the time series trend for each section. The transverse 

cracking, and joint faulting models were calibrated before calibrating the IRI model. Since all 

inputs to the IRI model could be obtained, it was calibrated outside Pavement-ME without 

directly using it or using the CAT tool. IRI has a closed-form solution and does not require a 

standard error equation in Pavement-ME. The standard error for IRI is calculated using the 

standard error of its components. 

 

IRI = IRII + C1 × CRK + C2 × SPALL + C3 × TFAULT + C4 × SF (4-10) 

where,  

IRI = Predicted IRI 

IRII = Initial IRI at the time of construction 

CRK = Percent slabs with transverse cracking (all severities). 

SPALL = Percentage of joints with spalling (medium and high severities). 

TFAULT = Total joint faulting cumulated per mi 

C1, C2, C3, C4 = Calibration coefficients 

SF = Site factor 

4.7 DESIGN RELIABILITY 

The Pavement-ME estimates the performance of a pavement using mechanistic models and 

transfer functions. Although these estimates are rational for pavement design purposes, the 

actual field measurements may show variability. This variability may come from the 

uncertainties in estimating the future traffic, material, and construction variability, 

measurement error, uncertainties due to the use of level 2 and 3 inputs, and errors associated 

with the model predictions. To incorporate all these variabilities, Pavement-ME uses a 

reliability-based design. Reliability for any prediction can be defined as the probability of 

getting a prediction lower than the threshold prediction over the design life, as shown in 

Equation (4-11). 

 

Reliability = P[distress⁡at⁡the⁡end⁡of⁡design⁡life < Critical⁡distress] (4-11) 

 

If 100 sections have been designed at 90% reliability, on average, ten of them may fail before 

the end of design life. Design reliability levels may vary by distress type and IRI or may 

remain constant for each. It is recommended, however, that the same reliability be used for 

all performance indicators (9). Except for IRI, reliability for all other models is estimated 

using a relationship between the standard deviation of measured distress as the dependent 

variable and mean predicted distress as the independent variable. The basic assumption 

implies that the error in predicting the distress is normally distributed on the upper side of the 

prediction (not on the lower side or near zero values). Figure 4-6 shows an example of IRI 

prediction at 50% reliability (mean prediction), prediction at any desired reliability R, and are 

associated with the probability of failure. For 90 percent design reliability, the dashed curve 

at reliability R should not cross the IRI at the threshold criteria throughout the design analysis 
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period. Failing to do so may lead to a failure at the required reliability and indicates that a 

design modification (such as a pavement thickness increase) should be applied.  

   

 

 

Figure 4-6 Design Reliability Concept for Smoothness (IRI)  

 

Reliability is added to the mean prediction to incorporate any input or performance data 

variability. It is expressed as a function of the predicted performance and derived using the 

predicted and measured performance data. A step-by-step approach to estimating the 

reliability of transverse cracking for rigid pavements is shown below as an example. A 

similar approach is used for the reliability of all other models except IRI in the Pavement-

ME. 

 

Step 1: All predicted and measured data points are grouped by creating bins on the predicted 

cracking. The number of data points in each group should be equivalent to reduce bias in the 

results. 

 

Step 2: The average and standard deviation of measured and predicted cracking are computed 

for each group. The grouping is performed after finalizing the calibration coefficients (global 

or local) to obtain the predicted performance. Table 4-4 shows the number of data points, bin 

ranges, and descriptive statistics. 

Table 4-4 Summary statistics for reliability analysis for transverse cracking in rigid 

pavements (example) 

Cracking 

range (%) 

No. of 

data 

points 

Average 

Measured 

Cracking 

Average 

Predicted 

Cracking 

Standard dev. of 

Measured 

Cracking 

Standard dev. of 

Predicted Cracking 

0-0.5 46 0.84 0.54 0.86 0.29 

0.5-2 31 1.41 1.35 1.51 0.25 

2-5 44 3.53 3.13 3.76 0.72 

5-10 29 1.45 12.18 8.93 1.58 

10-50 12 15.06 26.52 14.96 1.22 

 

probability of 

failure ()
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Step 3: A relationship is determined between the standard deviation of the measured cracking 

on the y-axis and the average predicted cracking on the x-axis. Figure 4-7 shows the fit 

model to the grouped data in steps 1 and 2. Equation (4-12) shows the relationship between 

the standard deviation of the measured cracking and the average predicted cracking (when 

using the no sampling technique). 

 
𝑠𝑒(𝐶𝑅𝐾) = 1.3627(𝐶𝑅𝐾)0.7473 (4-12) 

 

 

Figure 4-7 Fitting curve for the reliability of transverse cracking in rigid pavements 

(example) 

 

Step 4: Since the error term is assumed to be normally distributed, the predicted cracking can 

be adjusted to the desired reliability level using Equation (4-13) 

 

𝐶𝑟 = C50 + 𝑆𝑒 × 𝑍𝑎/2 (4-13) 
where, 

Cr= Predicted cracking at reliability r (%) 

C50 = Predicted cracking at 50% reliability 

Se = Standard deviation of cracking which can be estimated using Equation (4-12) 

𝑍𝑎/2⁡= Standardized normal deviate (mean = 0; standard deviation = 1) at reliability r 

 

Step 5: For the final step, the reasonableness of the model should be verified based on the 

actual measured data before using the reliability equation for design. 

 

The reliability model for IRI is different from that of other models. Since a closed-form 

solution and the variances of different components of IRI are known, the reliability model for 

IRI is based on the variance analysis of its components. The basic assumption implies that 

the error in predicting IRI is roughly normally distributed. The total error includes input, 

repeatability, pure, and model errors. Overall, the IRI prediction error can be estimated by 

Equation (4-14) and Equation (4-15). 
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IRIpe = IRImeas − IRIpred (4-14) 

Var(IRIpe) = Var(IRImeas) + Var(IRIpred) − 2R × √Var(IRImeas) × Var(IRIpred) (4-15) 

 
where, 

Var(IRIpe) = Variance in prediction error for IRI (estimated from calibration results) 

Var(IRImeas) = Variance in measured IRI (estimated from field measurement) 

Var(IRIpred) = Variance in predicted IRI  
R = Correlation coefficient between predicted and actual IRI 

 

The variance in predicted IRI is the sum of the variance in inputs (cracking, spalling, 

faulting, and initial IRI) and the variance in model + pure error, as shown in Equation (4-16). 

 

Var(IRIpred) = Var(IRIINPUTS) + Var(model + pure⁡error) (4-16) 

 

The variance in inputs for the IRI model is shown in Equation (4-17). 

 

Var(IRIINPUTS) = VarIRIi + C12 × VarCRK + C22 × VarSpall + C32 × VarFault  (4-17) 
 

where, 

Var(IRIINPUTS)= Variance in IRI due to measurement errors for each distresses and initial IRI (estimated from 

field measurements)  

VarIRIi = Variance in initial IRI 
VarCRK = Variance in transverse cracking 

VarSpall = Variance in joint spalling  

VarFault = Variance in joint faulting  

C1, C2, C3 = IRI model coefficients 

Using Equations (4-15 to 4-17), 𝑉𝑎𝑟(𝑚𝑜𝑑𝑒𝑙 + 𝑝𝑢𝑟𝑒⁡𝑒𝑟𝑟𝑜𝑟) can be determined, which is 

used to predict the standard deviation in IRI at any predicted value. The global standard error 

equations for each model are summarized in Table 4-5. 

Table 4-5 Global calibration reliability equations for each distress and smoothness 

model 

Pavement Type 
Pavement performance prediction 

model 
Standard error equation 

Flexible 

pavements 

Fatigue cracking (bottom-up) ( )7 57 15 5 0 0001

13
1 13

1 Bottom
e( bottom up ) . . Log FC .

s .
e

− −  +
= +

+
 

Fatigue cracking (top-down) 𝑠𝑒(𝑡𝑜𝑝−𝑑𝑜𝑤𝑛) = 0.3657 × 𝐹𝐶𝑡𝑜𝑝 + 3.6563 

Rutting 

( )
0 8026

0 24 0 001
.

e( HMA ) HMA
s . .=  +  

( )
0 6711

0 1477 0 001
.

e( Base ) Base
s . .=  +  

( )
0 5012

0 1235 0 001
.

e( SG ) SG
s . .=  +  

Transverse cracking 𝑠𝑒 = 0.14 × 𝑇𝐶 + 168 

IRI Estimated internally by the software 

Rigid pavements 

Transverse cracking 𝑠𝑒(𝐶𝑅𝐾) = 3.5522(𝐶𝑅𝐾)0.3415 + 0.75 

Faulting 𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.07162(𝐹𝑎𝑢𝑙𝑡)0.368 + 0.00806 

IRI 
Initial IRI Se = 5.4 

Estimated internally by the software 
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4.8 SUMMARY 

This chapter detailed the calibration approach used for each Pavement-ME prediction model. 

Transfer functions have been calibrated based on whether they calculate the distresses 

directly or calculate them based on cumulative damage. It also discusses the different 

calibration resampling techniques and optimization methods. No sampling, bootstrapping, 

traditional split sampling, and repeated split sampling techniques have been used for 

calibration. For calibration validation, traditional and repeated split sampling are used. The 

chapter also outlined the process of local calibration.  
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CHAPTER 5 - LOCAL CALIBRATION 

5.1 INTRODUCTION 

The calibration process adjusts the Pavement-ME model parameters to match observed data 

better to ensure that the model outputs are reliable and useful for decision-making. The 

Pavement-ME models' calibration process can be challenging because of their complexity 

and the large number of parameters involved. However, technological advancements and 

data collection methods have made the calibration process more efficient and effective. For 

instance, pavement data can now be collected using automated methods such as laser-based 

measurements (sensors), which provide high-resolution data that can calibrate the Pavement-

ME models accurately. 

 

This chapter discusses the different options and the calibration results of each model. These 

data sets are formed using combinations of different MDOT pavements, i.e., reconstruct and 

rehabilitation sections. The options with varying combinations of the dataset are: 

 

Option 1: Reconstruct sections only 

Option 2: Reconstruct and rehabilitation sections combined 

Option 3: Rehabilitation sections only 

 

The different statistical techniques used for calibration are: 

 

a. No sampling (include all data) – calibration 

b. Traditional and repeated split sampling – calibration-validation 

c. Bootstrapping – calibration 

 

No sampling and bootstrapping approaches were used for calibration only, whereas 

traditional split and repeated split sampling were used for calibration and validation. The 

team recalibrated the following performance models in the Pavement-ME for Michigan 

conditions. 

 

• Flexible pavements 

o Fatigue cracking (bottom-up) 

o Fatigue cracking (top-down) 

o Rutting 

o Transverse (thermal) cracking 

o IRI 

• Rigid pavements 

o Transverse cracking 

o Faulting 

o IRI  

 

It is important to note that the thermal cracking model for flexible sections and the joint 

faulting model for rigid sections were calibrated in the Calibration Assistance Tool (CAT). 
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For other performance models, the Pavement-ME was initially used to determine the damage 

with all available inputs (material, traffic, and climate). Then, the calibration approaches 

mentioned above were implemented using the outputs from the Pavement-ME program. A 

predicted vs. measured distress plot was generated for each model with a line of equality at 

45 degrees. These plots can be used to visually inspect a model's SEE and bias. For an ideal 

model, all the points should lie on the line of equality. The calibration approach used the 

hypothesis tests outlined in the local calibration guide.  

 

The local calibration results are presented for both flexible and rigid pavement performance 

prediction models and are compared among the different statistical techniques and the data 

set options mentioned above.  

5.2 LOCAL CALIBRATION OF FLEXIBLE PAVEMENT MODELS  

The detailed results for the local calibration of the fatigue cracking, rutting, transverse 

(thermal) cracking, and IRI models are presented in this section. 

5.2.1 Fatigue Cracking Model – Bottom-up 

The bottom-up cracking model was calibrated for reconstruct sections only (Option 1). This 

is because the Pavement-ME did not predict any damage and, therefore, any bottom-up 

cracking for rehabilitated sections. The number of reconstruct sections showing bottom-up 

cracking is relatively lower. Therefore, sections with even two measured points have been 

included in the calibration. More points can be added as more measured data becomes 

available in the future. Two different approaches were used for the calibration of the bottom-

up cracking model:  

 

a) Combining measured bottom-up and top-down fatigue cracking in the wheel path. 

This option reduces the assumption of crack type and the potential for incorrect type 

assignment. It is difficult to determine visually if a crack has initiated from the top or 

bottom of the pavement surface. This option is also helpful, as there are more 

measured points for longitudinal compared to alligator cracking. 

b) Using measured bottom-up fatigue cracking only.  

5.2.1.1. Option 1a: Reconstruct only  

The team evaluated global calibration coefficients for SEE, bias, and hypothesis tests for 

each calibration technique. This was accomplished by comparing the measured bottom-up 

cracking (combined bottom-up cracking and top-down cracking considered bottom-up 

cracking) with predicted bottom-up cracking using global calibration coefficients. This 

comparison shows the efficiency of the global model and the need for local calibration.  

No Sampling 

In no sampling, the entire dataset was used for calibration. The error was minimized between 

the predicted and measured fatigue cracking. Figure 5-1 shows the predicted versus measured 

bottom-up for the global and locally calibrated models. The global model under predicts 

bottom-up cracking. Table 5-1 shows the local calibration results. The SEE is reduced from 
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8.28 to 8.08, whereas the bias is reduced from -4.90 to 0.17. Table 5-2 shows the results of 

the hypothesis tests. Although two out of three hypothesis tests are rejected, the SEE and bias 

values significantly improve. Figure 5-2 shows the fatigue damage curve and the measured 

and locally predicted bottom-up cracking with time. These measured and predicted cracking 

values are for the same sections and at the same ages. Figure 5-2 shows that local predictions 

are close to the measured values. 

 

 
(a) Global model 

 
(b) Local model 

Figure 5-1 Predicted vs measured bottom-up cracking (No sampling) 

 

 
(a) Fatigue damage 

 
(b) Measured and predicted time series 

Figure 5-2 Local calibration results for bottom-up cracking (No sampling) 
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Table 5-1 Local calibration summary for bottom-up cracking (No sampling) 

Parameter Global model Local model 

SEE (% total lane area) 8.28 8.08 

Bias (% total lane area) -4.90 0.17 

C1 1.31 0.22 

C2 (hac < 5 in.) 2.1585 0.66 

C2 (5 in. <= hac <=12 in.) (0.867+0.2583* hac)*1 (0.867+0.2583* hac)*0.22 

 

Table 5-2 Hypothesis testing results for bottom-up cracking (No sampling) 

Hypothesis test Global model Local model 

Mean difference = 0 0.00 0.55 

Intercept = 0 0.02 0.00 

Slope = 1 0.00 0.00 

Split Sampling 

Split sampling was used with a random split of 70% sections for the calibration set and the 

rest 30% for the validation set. Figure 5-3 shows the predicted vs. measured bottom-up 

cracking for the calibration and validation set. The validation set shows a similar trend as the 

calibration set. Table 5-3 summarizes the local calibration results. Though SEE is higher than 

the global model, bias is significantly improved from -4.54 to 0.7018 in the validation set. 

Overall, the validation results are satisfactory.  

 

Table 5-3 Local calibration summary for bottom-up cracking (split sampling) 

Parameter Global model Local model Validation 

SEE (% total lane area) 7.76 7.11 11.2955 

Bias (% total lane area) -4.54 -0.47 0.7018 

C1 1.31 0.19 0.19 

C2 (hac < 5 in.) 2.1585 0.78 0.78 

C2 (5 in. <= hac <=12 in.) (0.867+0.2583*hac)*1 (0.867+0.2583*hac)*0.26 (0.867+0.2583*hac)*0.26 
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(a) Calibration set 

 
(b) Validation set 

Figure 5-3 Local calibration results for bottom-up cracking (split sampling) 

Repeated Split Sampling 

Like split sampling, repeated split sampling was used with a random split of 70% sections for 

the calibration set and the remaining 30% for the validation set. This process was repeated 

1000 times, where a new random set of calibration and validation sets was picked each time. 

Repeated split sampling is used to estimate the distribution of different parameters instead of 

optimizing for a point estimate. Confidence intervals (CI) for each parameter can also be 

obtained. Tables 5-4 to 5-6 show the summary for the global model, calibration, and 

validation sets, respectively. It is important to note that coefficient C2 is a function of total 

HMA thickness (hac). For estimating the confidence intervals and distribution of C2, it was 

converted to a single value for all HMA thicknesses. Figures 5-4 and 5-5 present the 

distribution of model parameters for calibration and validation sets. In Figures 5-4 and 5-5, 

the solid blue line shows the median, the dashed red line shows the mean, the solid black line 

shows the cumulative distribution and the dashed red lines on both sides show the 2.5th and 

97.5th percentiles. The mean SEE is reduced from 8.29 to 7.90 for the calibration and 7.93 for 

the validation set. Similarly, bias was improved from -4.91 to -0.02 for the calibration and 

0.03 for the validation set.  

Table 5-4 Global model summary (Repeated split sampling) 

Parameter 
Global model 

mean 

Global model 

median 

Global model 

lower CI 

Global model upper 

CI 

SEE (% total lane area) 8.29 8.29 7.63 8.84 

Bias (% total lane area) -4.91 -4.91 -5.35 -4.47 

C1 1.31 1.31 - - 

C2 (hac < 5 in.) 2.1585 2.1585 - - 

C2 (5 in. <= hac <=12 

in.) 

(0.867+0.2583* 

hac)*1 

(0.867+0.2583* 

hac)*1 

- - 
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Table 5-5 Calibration set summary (Repeated split sampling) 

Parameter Local model mean Local model median 
Local model 

lower CI 

Local model 

upper CI 

SEE (% total lane area) 7.90 7.73 6.49 9.93 

Bias (% total lane area) -0.02 0.00 -0.51 0.42 

C1 0.26 0.25 0.13 0.42 

C2 (hac < 5 in.) 0.60 0.60 

0.29 0.89 
C2 (5 in. <= hac <=12 in.) 

(0.867+0.2583* hac)* 

0.19 

(0.867+0.2583* hac)* 

0.19 

Table 5-6 Validation set summary (Repeated split sampling) 

Parameter Local model mean Local model median 
Local model 

lower CI 

Local model 

upper CI 

SEE (% total lane area) 7.93 7.68 6.01 10.88 

Bias (% total lane area) 0.03 0.02 -2.04 2.27 

C1 0.26 0.25 0.13 0.42 

C2 (hac < 5 in.) 0.60 0.60 

0.29 0.89 
C2 (5 in. <= hac <=12 in.) 

(0.867+0.2583* hac)* 

0.19 

(0.867+0.2583* hac)* 

0.19 

 

 

Figure 5-4 Distribution of local calibration parameters – calibration dataset (repeated 

split sampling) 



 

128 

 

 

Figure 5-5 Distribution of local calibration parameters – validation dataset (repeated 

split sampling) 

Bootstrapping 

Bootstrapping was used as a resampling technique to calibrate the bottom-up cracking model. 

One thousand bootstrap samples were created, randomly sampling with replacement. Unlike 

repeated split sampling, in bootstrap, the samples were not split; instead, the entire dataset 

was used. Bootstrapping also generated CI and distribution of model parameters. Tables 5-7 

and 5-8 summarize the model parameters for global and local models, respectively. SEE is 

slightly increased, whereas bias is significantly improved after local calibration. Figure 5-6 

shows the distribution of parameters for the 1000 bootstrap samples. 

Table 5-7 Bootstrapping global model summary 

Parameter Global model mean Global model median 
Global model 

lower CI 

Global model 

upper CI 

SEE (% total lane area) 8.30 8.30 7.38 9.20 

Bias (% total lane area) -4.91 -4.91 -5.53 -4.33 

C1 1.31 1.31 - - 

C2 (hac < 5 in.) 2.1585 2.1585 - - 

C2 (5 in. <= hac <=12 in.) (0.867+0.2583*hac)*1 (0.867+0.2583* hac)*1 - - 

Table 5-8 Bootstrapping local calibration results summary 

Parameter Local model mean Local model median 
Local model 

lower CI 

Local model 

upper CI 

SEE (% total lane area) 8.73 8.30 6.21 12.83 

Bias (% total lane area) 0.00 -0.03 -0.80 0.68 

C1 0.23 0.20 0.01 0.54 

C2 (hac < 5 in.) 0.70 0.73 

0.04 1.29 
C2 (5 in. <= hac <=12 in.) 

(0.867+0.2583* hac)* 

0.22 

(0.867+0.2583* hac)* 

0.23 
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Figure 5-6 Distribution of local calibration parameters (bootstrapping) 

Summary 

All calibration approaches have significantly improved the bottom-up cracking model. Table 

5-9 shows the summary of all sampling techniques. It should be noted that these calibrations 

were performed with specific limits on the calibration coefficients taken from the literature, 

as mentioned in Chapter 2. These limits ensure that we get reasonable and practical 

calibration results.  

 

Table 5-9 Summary of results for all sampling techniques (Option 1a) 

Sampling technique SEE Bias C1 C2 (hac < 5 in.) C2 (5 in. <= hac <=12 in.) 

No sampling 8.08 0.17 0.22 0.66 (0.867+0.2583* hac)*0.21 

Split sampling 7.11 -0.47 0.19 0.78 (0.867+0.2583* hac)*0.26 

Repeated split sampling 7.90 -0.02 0.26 0.60 (0.867+0.2583* hac)*0.20 

Bootstrapping 8.73 0.00 0.23 0.70 (0.867+0.2583* hac)*0.22 

5.2.1.2. Option 1b: Reconstruct only (measured bottom-up cracking only) 

In this option, the bottom-up cracking model was calibrated using only bottom-up alligator 

cracking. This option has fewer measured data points available compared to Option 1a. 

Figure 5-7 shows global and local models' measured vs. predicted bottom-up cracking. Table 

5-10 summarizes all calibration approaches and the model parameters. All approaches have 

improved the bottom-up cracking model. Bootstrap has the minimum bias followed by 

repeated split sampling.  
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(a) Global model 

 
(b) Local model 

Figure 5-7 Predicted vs measured bottom-up cracking (No sampling) 

Table 5-10 Summary of results for all sampling techniques (Option 1b) 

Sampling Technique SEE Bias C1 C2 (hac < 5 in.) 
C2 (5 in. <= hac <=12 

in.) 

No sampling 5.81 -0.82 0.23 0.78 0.28 

Split sampling 5.87 -0.75 0.20 0.83 0.31 

Repeated split sampling 5.78 -0.71 0.26 0.70 0.25 

Bootstrapping 5.92 -0.60 0.25 0.73 0.27 

 

It is difficult to identify the initiation of a crack (bottom-up vs. top-down). Also, considering 

the limited data available for Option 1b, Option 1a should be preferred when bottom-up and 

top-down cracking data are not differentiated.  

5.2.1.3. Reliability for the bottom-up cracking models 

The calibration process and the Pavement-ME predictions are obtained at a reliability of 

50%. The concept of reliability and method are discussed in detail in Chapter 4. The 

measured and predicted cracking were sorted in bins based on the expected cracking. The 

next step was to develop a relationship between the standard deviation of the measured 

cracking and the mean predicted cracking. Tables 5-11 and 5-12 summarize the standard 

error equations for Options 1a and 1b.  

Table 5-11 Reliability summary for Option 1a 

Sampling 

technique 
Global model equation Local model equation 

No Sampling 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 1.13 +
13

1 + 𝑒7.57−15.5×𝑙𝑜𝑔(𝐷+0.0001)
 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 0.2166 +
6.5879

1 + 𝑒0.5604−6.3472×𝑙𝑜𝑔(𝐷)
 

Split Sampling 𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 0.2696 +
8.4309

1 + 𝑒0.0837−1.4108×𝑙𝑜𝑔(𝐷)
 

Repeated split 

sampling 
𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 0.0995 +

13.7673

1 + 𝑒0.3303−0.3123×𝑙𝑜𝑔(𝐷)
 

Bootstrapping 𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 0.2262 +
14.2350

1 + 𝑒0.2958−0.1441×𝑙𝑜𝑔(𝐷)
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Table 5-12 Reliability summary for Option 1b 

Sampling 

technique 
Global model equation Local model equation 

No Sampling 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 1.13 +
13

1 + 𝑒7.57−15.5×𝑙𝑜𝑔(𝐷+0.0001)
 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 4.6633 +
10.8653

1 + 𝑒3.2725−2.0882×𝑙𝑜𝑔(𝐷)
 

Split Sampling 𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 5.0476 +
18.6624

1 + 𝑒12.1108−9.4293×𝑙𝑜𝑔(𝐷)
 

Repeated split 

sampling 
𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 4.7465 +

20.5426

1 + 𝑒4.9276−2.6720×𝑙𝑜𝑔(𝐷)
 

Bootstrapping 𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 4.4396 +
25.4391

1 + 𝑒4.3119−2.2778×𝑙𝑜𝑔(𝐷)
 

5.2.2 Fatigue Cracking Model – Top-down 

The following section shows the calibration of the top-down cracking model. The model 

contains crack initiation and crack propagation models. Since the actual crack initiation time 

is not known, it was not possible to calibrate the crack initiation model separately. So, a 

single function was used by substituting the crack initiation function with the crack 

propagation function. Initially, an attempt was made to change all eight coefficients 

simultaneously. This approach had some challenges: 

 

• The model has some mathematical limitations. High values for C3 give mathematical 

errors in the Pavement-ME output.  

• There is no current literature available for the top-down cracking model. Therefore, 

estimating the range for each coefficient to be used in optimization was difficult. 

• The model has numerous coefficients with coefficient values ranging from 0.011 to 

64271618. This makes the optimization challenging to converge. 

 

The top-down cracking model was calibrated in Microsoft excel by combining engineering 

judgment and the solver function. Four coefficients from the crack initiation function (kL2, 

kL3, kL4, kL5) and two from the crack propagation function (C1, C2) have been calibrated. 

Only no sampling method was used for this calibration.  

 

 
(a) Global model 

 
(b) Local model 

Figure 5-8 Predicted vs. measured top-down cracking (No sampling) 
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Figure 5-8 shows only the predicted vs. measured top-down cracking for reconstruction 

sections (Option 1). Figure 5-9 shows the predicted and measured top-down cracking with 

time. The predicted and measured top-down cracking does not follow similar trends. Most 

top-down cracking predictions are limited to a specific time series curve. Table 5-13 

summarizes model parameters for Option 1. The SEE and bias are improved. Table 5-14 

shows the summary of calibrations for all options. The reliability of the top-down cracking 

model is estimated by developing a relationship between the standard deviation of the 

measured cracking, and the mean predicted cracking. Table 5-15 outlines the standard error 

equations for all options.  

 

 

Figure 5-9 Measured and predicted top-down-cracking (time series) 

 

Table 5-13 Calibration results for top-down cracking (Option 1) 

Parameters Global model Local model 

SEE 6.37 5.59 

Bias -2.36 1.60 

KL2 0.2855 0.90 

KL3 0.011 0.09 

KL4 0.01488 0.101 

KL5 3.266 3.260 

C1 2.5219 0.30 

C2 0.8069 1.155 
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Table 5-14 Summary of calibration results for top-down cracking 

Parameters Option 1 Option 2 
Option 3 (HMA over 

HMA) 

Option 3 

(Composite) 

SEE 5.59 7.51 4.10 5.32 

Bias 1.60 0.25 0.00 0.16 

KL2 0.90 0.4887 0.714 0.475 

KL3 0.09 0.0956 0.093 0.097 

KL4 0.101 0.101 0.102 0.104 

KL5 3.260 0.1895 0.191 0.206 

C1 0.30 0.0855 0.084 0.104 

C2 1.155 1.9583 2.007 1.635 

 

Table 5-15 Reliability summary for top-down cracking 

MDOT Pavement 

options 
Global model equation Local model equation 

Option 1 

𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.3657 × 𝑇𝑂𝑃

+ 3.6563 

𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.6417 × 𝑇𝑂𝑃 + 0.5014 

Option 2 𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.1467 × 𝑇𝑂𝑃 + 1.6998 

Option 3 (HMA 

over HMA) 
𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.838 × 𝑇𝑂𝑃 + 0.0269 

Option 3 

(Composite) 
𝑠𝑒(𝑇𝑜𝑝−𝑑𝑜𝑤𝑛) =  0.9236 × 𝑇𝑂𝑃 + 0.6452 

5.2.3 Rutting Model 

Rutting in the Pavement-ME is a sum of permanent deformations from individual layers. The 

research team adopted the following two different approaches: 

 

1. Method 1: Individual layer rutting calibrations — For this approach, the measured 

rutting from individual layers was matched against the predictions from Pavement-

ME (β1r, βs1, and βsg1  were calibrated separately). The total measured rutting was 

multiplied by the percent contribution from each layer to get measured rutting for the 

individual layer. The percentage contribution was estimated using transverse 

pavement profile analysis, as shown in Figure 4-4. The contribution of AC layer 

rutting is over 70% for all pavement types. The standard error equations for rutting in 

the Pavement-ME are separate for individual layers. This method was used to 

evaluate the standard error equations for rutting in each layer.  

2. Method 2: Total surface rutting calibration — The total measured rutting was 

calibrated against the sum of individual predicted rutting (β1r, βs1, and βsg1  were 

calibrated simultaneously).  

 

It is worth noting that composite sections do not show any rutting predictions for the base 

and subgrade layers. Therefore, composite sections were only calibrated for AC rutting. 

Similarly, for Option 2, AC rutting was only calibrated. The individual layer contribution to 

total rutting was estimated using the transverse profiles for each pavement section based on 

the transverse profile analysis presented in Chapter 4.  
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5.2.3.1. Option 1: Reconstruct pavements only – Method 1 

This section outlines the calibration of individual layer rutting using reconstruct sections 

only.  

No Sampling 

Pavement-ME predictions for individual layer rutting were matched against measured rutting 

determined by using the transverse profile analysis results, as discussed in Chapter 4. Figures 

5-10 to 5-12 show the predicted vs. measured rutting for AC, base, and subgrade layers, 

respectively. The Pavement-ME under-predicts AC rutting and over-predicts base and 

subgrade rutting. Table 5-16 shows the hypothesis results for each layer. None of the 

hypotheses met for both global or local models. Table 5-17 shows the SEE and bias, whereas 

Table 5-18 shows the calibrated coefficients. Both SEE and bias significantly improved for 

all layers. 

 

 
(a) Global model 

 
(b) Local model 

Figure 5-10 Predicted vs. measured AC rutting (No sampling) 

 
(a) Global model 

 
(b) Local model 

Figure 5-11 Predicted vs. measured base rutting (No sampling) 
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(a) Global model 

 
(b) Local model 

Figure 5-12 Predicted vs. measured subgrade rutting (No sampling) 

 

Table 5-16 Rutting models hypothesis testing results 

Layer 

Global model Local model 

t-test  

p-value 

Intercept 

 p-value 

Slope = 1  

p-value 

t-test 

 p-value 

Intercept 

p-value 

Slope = 1 

p-value 

HMA rut 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Base rut 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 

Subgrade 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5-17 Rutting models SEE and bias 

Layer 
Global model Local model 

SEE (in.) Bias (in.) SEE (in.) Bias (in.) 

HMA rut 0.2579 0.2015 0.0812 -0.0138 

Base rut 0.0426 0.0380 0.0099 -0.0011 

Subgrade 0.1184 0.1095 0.0062 -0.0009 

 

Table 5-18 Rutting model calibration coefficients 

Calibration coefficient Global model Local model 

HMA rutting (br1) 0.4 0.1466 

Base rutting (bs1) 1.0000 0.3003 

Subgrade rutting (bsg1) 1.0000 0.0691 

Split Sampling 

Split sampling was performed on 70% of the sections for the calibration set and 30% for the 

validation set. Figures 5-13 to 5-15 show the predicted vs. measured for calibration and 

validation set for different layers. All layers show reasonable validation results. Table 5-19 

shows the SEE, bias, and model parameters for the global model, and Table 5-20 shows the 

same for the calibration-validation set. Both SEE and bias significantly improved for all 

layers.  
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(a) Calibration set 

 
(b) Validation set 

Figure 5-13 Predicted vs measured AC rutting (Split sampling) 

 
(a) Calibration set 

 
(b) Validation set 

Figure 5-14 Predicted vs measured Base rutting (Split sampling) 

 
(a) Calibration set 

 
(b) Validation set 

Figure 5-15 Predicted vs measured Subgrade rutting (Split sampling) 
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Table 5-19 Rutting global model results 

Layer SEE Bias Coefficient 

HMA rut 0.2454 0.1759 0.4 

Base rut 0.0872 -0.0138 1.0000 

Subgrade 0.1153 0.1071 1.0000 

Table 5-20 Rutting local model results 

Layer 
Calibration set Validation set 

SEE Bias Coefficient SEE Bias Coefficient 

HMA rut 0.0962 -0.0165 0.0705 0.1008 -0.0117 0.0705 

Base rut 0.0102 -0.0012 0.2955 0.0092 -0.0018 0.2955 

Subgrade 0.0061 -0.0008 0.0705 0.0064 -0.0007 0.0705 

Repeated Split Sampling 

Repeated split sampling was performed for 1000 split samples with new calibration and 

validation sets. Figures 5-16 to 5-18 show the distribution of model parameters for 

calibration and validation set for different layers. Tables 5-21 to 5-23 show the SEE, bias, 

model parameters, CI for the global model, and the calibration and validation sets, 

respectively. The rutting model significantly improved after local calibration.  
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(a) Calibration set 

 
(b) Validation set 

Figure 5-16 Distribution of calibration parameters - AC rutting (Repeated split 

sampling) 
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(a) Calibration set 

 
(b) Validation set 

Figure 5-17 Distribution of calibration parameters - Base rutting (Repeated split 

sampling) 
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(a) Calibration set 

 
(b) Validation set 

Figure 5-18 Distribution of calibration parameters - Subgrade rutting (Repeated split 

sampling) 

 

Table 5-21 Global model results (repeated split sampling) 

Layer Average SEE 
SEE  

Lower CI 
SEE Upper CI Average bias (in.) Bias Lower CI Bias Upper CI 

HMA 0.2387 0.2097 0.2540 0.1743 0.1617 0.1853 

Base 0.0426 0.0409 0.0440 0.0380 0.0367 0.0394 

Subgrade  0.1185 0.1150 0.1216 0.1095 0.1064 0.1126 
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Table 5-22 Local model calibration results (repeated split sampling) 

Statistics HMA rutting Base rutting Subgrade rutting 

Average SEE 0.0966 0.0099 0.0062 

SEE Lower CI 0.0856 0.0094 0.0059 

SEE Upper CI 0.1021 0.0103 0.0064 

Average bias (in.) -0.0162 -0.0011 -0.0009 

Bias Lower CI -0.0169 -0.0013 -0.0009 

Bias Upper CI -0.0135 -0.0009 -0.0008 

Average calibration coefficient 0.1757 0.3003 0.0693 

Calibration coefficient Lower CI 0.1689 0.2897 0.0663 

Calibration coefficient Upper CI 0.1852 0.3115 0.0723 

 

Table 5-23 Local model validation results (repeated split sampling) 

Statistics HMA rutting Base rutting Subgrade rutting 

Average SEE 0.0971 0.0100 0.0062 

SEE Lower CI 0.0725 0.0084 0.0053 

SEE Upper CI 0.1358 0.0119 0.0071 

Average bias (in.) -0.0153 -0.0011 -0.0009 

Bias Lower CI -0.0434 -0.0041 -0.0027 

Bias Upper CI 0.0174 0.0017 0.0009 

Average calibration coefficient 0.1757 0.3003 0.0693 

Calibration coefficient Lower CI 0.1689 0.2897 0.0663 

Calibration coefficient Upper CI 0.1852 0.3115 0.0723 

 

Bootstrapping 

Bootstrapping was performed with 1000 bootstrap samples with replacement. Figures 5-19 to 

5-21 show the distribution of model parameters for AC, base, and subgrade rutting. Tables 5-

24 and 5-25 summarize the calibration results for the global and local models. Model 

parameter distribution and CI provide a more reliable estimate of model coefficients. 

Moreover, SEE and bias significantly improved for all layers.  
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Figure 5-19 Distribution of calibration parameters - AC rutting (Bootstrapping) 

 

 

Figure 5-20 Distribution of calibration parameters - Base rutting (Bootstrapping) 
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Figure 5-21 Distribution of calibration parameters-Subgrade rutting (Bootstrapping) 

 

Table 5-24 Global rutting model 

Layer type Average SEE 
SEE  

Lower CI 

SEE  

Upper CI 
Average bias (in.) 

Bias  

Lower CI 

Bias  

Upper CI 

HMA 0.2565 0.2174 0.3047 0.2010 0.1796 0.2238 

Base 0.0425 0.0396 0.0456 0.0380 0.0355 0.0408 

Subgrade  0.1183 0.1117 0.1251 0.1094 0.1032 0.1159 

 

Table 5-25 Local rutting model 

Statistics HMA rutting Base rutting Subgrade rutting 

Average SEE 0.0805 0.0099 0.0061 

SEE Lower CI 0.0677 0.0091 0.0057 

SEE Upper CI 0.0953 0.0108 0.0066 

Average bias (in.) -0.0131 -0.0011 -0.0009 

Bias Lower CI -0.0145 -0.0015 -0.0010 

Bias Upper CI -0.0087 -0.0007 -0.0007 

Average calibration coefficient 0.1476 0.3009 0.0696 

Calibration coefficient Lower CI 0.1363 0.2803 0.0639 

Calibration coefficient Upper CI 0.1616 0.3228 0.0760 
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Summary 

Results for method 1 are summarized in Table 5-26. All calibration approaches have 

improved the SEE and bias. Bootstrap shows the lowest SEE and bias for all layers.  

Table 5-26 Rutting model calibration results summary – Option 1 Method 1 

Sampling Technique Pavement layer rutting SEE Bias Calibration coefficient 

No sampling 

HMA 0.0812 -0.0138 0.1466 

Base 0.0099 -0.0011 0.3003 

Subgrade  0.0062 -0.0009 0.0691 

Split sampling 

HMA  0.0962 -0.0165 0.0705 

Base  0.0102 -0.0012 0.2955 

Subgrade  0.0061 -0.0008 0.0705 

Repeated split sampling 

HMA  0.0971 -0.0153 0.1757 

Base  0.0099 -0.0011 0.3003 

Subgrade  0.0062 -0.0009 0.0693 

Bootstrapping 

HMA  0.080 -0.013 0.148 

Base  0.010 -0.001 0.301 

Subgrade  0.006 -0.001 0.070 

 

5.2.3.2. Option 1: Reconstruct pavements only – Method 2 

In this method, the measured total rutting was calibrated against predicted total rutting. Total 

predicted rutting is simply the sum of rutting predictions for individual layers. Calibration 

coefficients of all layers were simultaneously changed to match the total predicted rutting 

with measured rutting. Table 5-27 shows the results of the hypothesis tests. Two out of three 

tests fail for the local model. Figure 5-22 shows the predicted vs. measured total rutting for 

the global and local models. Table 5-28 shows the calibration results for the global and local 

models. The SEE is reduced from 0.3935 to 0.0782, whereas the bias is reduced from 0.3491 

to -0.0035.  

 

 
(a) Global model 

 
(b) Local model 

Figure 5-22 Predicted vs measured Total rutting (No sampling)   
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Table 5-27 Hypothesis testing results for total rutting 

Layer Global model Local model 

t-test p-value 0.0000 0.1859 

Intercept p-value 0.0000 0.0000 

Slope = 1 p-value 0.0000 0.0000 

 

Table 5-28 total rutting model calibration results  

Layer Global model Local model 

SEE 0.3935 0.0782 

Bias 0.3491 -0.0035 

HMA rutting (br1) 0.4000 0.0372 

Base rutting (bs1) 1.0000 0.9910 

Subgrade rutting (bsg1) 1.0000 0.6308 

 

Figure 5-23 shows the measured and predicted total rutting with time. The predictions are 

close to the measured values for most of the rutting range.  

 

 

Figure 5-23 Measured and predicted total rutting-Time series 

Summary 

Like method 1, all four calibration approaches were applied to method 2. Table 5-29 

summarizes the SEE, bias, and calibration coefficients for all sampling techniques. The SEE 

and bias improved for all calibration approaches. 

Table 5-29 Summary results for all sampling techniques 

Sampling Technique SEE Bias β1r  βs1 βsg1 

No sampling 0.0782 -0.0035 0.0372 0.9910 0.6308 

Split sampling 0.0851 -0.0094 0.0470 1.0002 1.0287 

Repeated split sampling 0.0858 -0.0071 0.0962 0.6907 0.6768 

Bootstrapping 0.085 -0.008 0.061 0.921 0.963 
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5.2.3.3. Option 2: Reconstruct and rehabilitated pavements – Method 1 

As explained before, only AC rutting was calibrated under this option. Table 5-30 

summarizes the SEE, bias, and calibration coefficients. 

Table 5-30 Summary of AC rutting for all sampling techniques 

Sampling technique SEE Bias Calibration coefficient 

No sampling 0.0742 -0.0185 1.3200 

Split sampling 0.0752 -0.0127 1.3651 

Repeated split sampling 0.0742 -0.0127 1.3884 

Bootstrapping 0.0738 -0.0204 1.2978 

5.2.3.4. Option 3: HMA over HMA pavements only – Method 1 

Table 5-31 shows all calibration approaches' SEE, bias, and calibration coefficients.  

Table 5-31 Summary of calibration results (Option 3 – Method 1) 

Sampling Technique Pavement layer rutting SEE Bias Calibration coefficient 

No sampling 

HMA 0.0555 -0.0076 1.0295 

Base 0.0138 -0.0022 0.3760 

Subgrade  0.0061 -0.0003 0.1208 

Split sampling 

HMA  0.0592 -0.0098 1.1278 

Base  0.0133 -0.0022 0.3898 

Subgrade  0.0067 -0.0004 0.1236 

Repeated split sampling 

HMA  0.0553 -0.0074 1.0336 

Base  0.0137 -0.0020 0.3795 

Subgrade  0.0060 -0.0003 0.1208 

Bootstrapping 

HMA  0.0548 -0.0074 1.0423 

Base  0.0135 -0.0020 0.3824 

Subgrade  0.0059 -0.0003 0.1213 

5.2.3.5. Option 3: HMA over HMA pavements only – Method 2 

The results for this option are presented in Table 5-32.  

Table 5-32 Summary of calibration results (Option 3 – Method 2) 

Sampling technique SEE Bias br1 bs1 bsg1 

No sampling 0.0693 -0.0041 0.6145 0.4547 0.5353 

Split sampling 0.0815 -0.0116 0.6862 0.8814 1.1995 

Repeated split sampling 0.0781 -0.0075 0.4405 0.7913 0.8325 

Bootstrapping 0.077 -0.009 0.510 0.752 0.738 

5.2.3.6. Option 3: Composite pavements only – Method 1 

The results for Option 3 – Method 2 are presented in Table 5-33. As mentioned before, 

composite pavements were calibrated for AC rutting only.  
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Table 5-33 Calibration results for composite pavements – Method 1 

Sampling technique SEE Bias Calibration coefficient 

No sampling 0.0622 -0.0170 1.1400 

Split sampling 0.0629 -0.0107 1.4742 

Repeated split sampling 0.0618 -0.0106 1.5295 

Bootstrapping 0.0614 -0.0102 1.5351 

5.2.3.7. Reliability for the rutting model 

The rutting predictions using the calibrated model are at 50% reliability. The standard error 

equations were formulated using the standard deviation of the measured cracking and mean 

predicted cracking to incorporate reliability in the model. Tables 5-34 to 5-37 show the 

standard error equation for Option 1 using different calibration approaches. 

 

Table 5-34 Rutting model reliability for Option 1 – Method 1 – No sampling 

Pavement layer Global model equation Local model equation 

HMA rutting 𝑠𝑒(𝐻𝑀𝐴) = 0.24(𝑅𝑢𝑡𝐻𝑀𝐴)0.8026 + 0.001  𝑠𝑒(𝐻𝑀𝐴) = 0.137(𝑅𝑢𝑡𝐻𝑀𝐴)0.3728 

Base rutting 𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.1477(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.6711 + 0.001 𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.0597(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.4484 

Subgrade 
𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.1235(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

0.5012

+ 0.001 
𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.0815(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒 )

0.5662
 

 

Table 5-35 Rutting model reliability for Option 1 – Method 1 – Split sampling 

Pavement layer Global model equation Local model equation 

HMA rutting 𝑠𝑒(𝐻𝑀𝐴) = 0.24(𝑅𝑢𝑡𝐻𝑀𝐴)0.8026 + 0.001  𝑠𝑒(𝐻𝑀𝐴) = 0.1315(𝑅𝑢𝑡𝐻𝑀𝐴)0.2833 

Base rutting 𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.1477(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.6711 + 0.001 𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.0318(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.2877 

Subgrade 
𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.1235(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

0.5012

+ 0.001 
𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.149(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

0.688
 

 

Table 5-36 Rutting model reliability for Option 1 – Method 1 – Repeated split sampling 

Pavement layer Global model equation Local model equation 

HMA rutting 𝑠𝑒(𝐻𝑀𝐴) = 0.24(𝑅𝑢𝑡𝐻𝑀𝐴)0.8026 + 0.001  𝑠𝑒(𝐻𝑀𝐴) = 0.1324(𝑅𝑢𝑡𝐻𝑀𝐴)0.3184 

Base rutting 𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.1477(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.6711 + 0.001 𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.0582(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.4427 

Subgrade 
𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.1235(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

0.5012

+ 0.001 
𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.0341(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

0.3988
 

 

Table 5-37 Rutting model reliability for Option 1 – Method 1 - Bootstrap 

Pavement layer Global model equation Local model equation 

HMA rutting 𝑠𝑒(𝐻𝑀𝐴) = 0.24(𝑅𝑢𝑡𝐻𝑀𝐴)0.8026 + 0.001  𝑠𝑒(𝐻𝑀𝐴) = 0.1481(𝑅𝑢𝑡𝐻𝑀𝐴)0.4175 

Base rutting 𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.1477(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.6711 + 0.001 𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.0411(𝑅𝑢𝑡𝑏𝑎𝑠𝑒)0.3656 

Subgrade 
𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.1235(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

0.5012

+ 0.001 
𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0.0728(𝑅𝑢𝑡𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)

0.5456
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5.2.4 Transverse (thermal) Cracking Model 

The thermal cracking model was calibrated for Level 1 inputs in the Pavement-ME. The 

model calibration only considered sections with Performance Grade (PG) binder type. 

Calibration approaches for different options are discussed in the following sections. The 

thermal cracking model for Option 1 was calibrated as a single K-value by running 

Pavement-ME multiple times. Thermal cracking and Reflective cracking models for Option 3 

were calibrated using CAT. Since rehabilitation sections have combined thermal cracking 

and reflective cracking, which cannot be separated, the thermal cracking model was not 

calibrated for Option 2. 

5.2.4.1. Option 1: Reconstruct pavements only 

Although calibration coefficient K is a function of mean annual air temperature (MAAT), it 

was calibrated as a single value similar to the previous version of Pavement-ME (version 

2.3). For this purpose, the Pavement-ME was run at different K values (0.25,0.65,0.75,0.85, 

0.95 and 1.35). SEE and bias were determined for each value of K. Table 5-38 summarizes 

the SEE and bias for the global model and for different K values. Based on the SEE and bias, 

a value of 0.85 is recommended. Recalibration improved the SEE and bias, but thermal 

cracking predictions still show high variability. Figure 5-24 shows the predicted vs. measured 

thermal cracking for the global and local models at K=0.85. As previously explained in 

Chapter 3, measured thermal cracking values have been capped at 2112 feet/mile. This 

means any measured value of more than 2112 feet/mile for sections has been removed from 

the calibration data. 

 

 
(a) Global model 

 
(b) Local model 

Figure 5-24 Option 1 measured versus predicted transverse (thermal) cracking, (local at 

K=0.85) 
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Table 5-38 Transverse thermal cracking results – Option 1 

Parameter SEE Bias 

Global model 1225 -812 

K = 0.25 650 272 

K = 0.65 760 172 

K = 0.75 813 106 

K = 0.85 851 20 

K = 0.95 893 -71 

K = 1.35 1077 -471 

5.2.4.2. Option 3: HMA over HMA pavements only 

Both thermal cracking and reflective cracking coefficients were calibrated for HMA over 

HMA sections. Figure 5-25 shows the predicted vs. measured thermal with reflective 

cracking for the global and local models. Table 5-39 summarizes global and local mode's 

SEE, bias, and calibration coefficients. The local model has improved the SEE and bias. 

 
(a) Global model 

 
(b) Local model 

Figure 5-25 Option 3 measured versus predicted thermal cracking-HMA over HMA 

Table 5-39 Transverse (thermal) cracking results – Option 3 (HMA over HMA) 

Parameter Global model Local model 

SEE 1856 1720 

Bias 504 -28 

K 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 1 + 0 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 0.55 + 0 

C1 3.22 3.25 

C2 25.7 25 

C3 0.1 0.14 

C4 133.4 180 

5.2.4.3. Option 3: Composite pavements only 

Like HMA over HMA sections, both thermal and reflective cracking coefficients were 

calibrated for composite sections. The entire dataset (no sampling) was used for model 

calibration. Figure 5-26 shows the predicted vs. measured thermal +reflective cracking for 

the global and local models. Table 5-40 summarizes global and local mode’s SEE, bias, and 

calibration coefficients. The local calibration has improved the SEE and bias. 
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(a) Global model 

 
(b) Local model 

Figure 5-26 Measured versus predicted transverse (thermal) cracking-Composite 

Table 5-40 Transverse (thermal) cracking results – Option 3 – Composite 

Parameter Global model Local model 

SEE 1426 1357 

Bias 265 -220 

K 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 1 + 0 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 0.55 + 0 

C1 0.1 0.2833 

C2 0.52 0.7333 

C3 3.1 2.5 

C4 79.5 70 

5.2.4.4. Reliability for thermal cracking model 

The standard error equations were developed using the standard deviation of the measured 

cracking and mean predicted cracking, as explained in Chapter 4. Table 5-41 summarizes the 

standard error equations for all dataset options.  

Table 5-41 Reliability summary for thermal cracking 

Data set option Global model equation Local model equation 

Option 1 𝑠𝑒 = 0.14(𝑇𝐶) + 168 𝑠𝑒 = 0.1223(𝑇𝐶) + 400.9 

Option 3 – HMA over HMA 𝑠𝑒(𝑇𝐶) = 70.98(𝑇𝐶)0.2998 + 30.12 𝑠𝑒(𝑇𝐶) = 338.59(𝑇𝐶)0.0849 

Option 3 – Composite 𝑠𝑒(𝑇𝐶) = 5.1025(𝑇𝐶)0.6513 + 30.12 𝑠𝑒(𝑇𝐶) = 308.74(𝑇𝐶)0.1063 

5.2.5 Flexible Pavement Roughness (IRI) Model 

IRI is a linear function of initial IRI, rut depth, total fatigue cracking, transverse cracking, 

and site factor. The IRI model was calibrated after the local calibration of the fatigue and, 

transverse cracking, and rutting models. Table 5-42 shows the hypothesis results for the 

global and local models for Option 1. None of the tests passed for the global model, whereas 

the local model passed one test. Figure 5-27 shows the predicted vs. measured IRI for the 

global and local models for Option 1. Table 5-43 shows the summary of model parameters 

using no sampling technique for Option 1. SEE is slightly improved, whereas bias is 

significantly enhanced from local calibration. Figure 5-28 shows the measured and predicted 

IRI with time for Option 1. 
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(a) Global model 

 

(b) Local model 

Figure 5-27 Measured vs predicted IRI (No sampling) 

Table 5-42 IRI model hypothesis testing results 

Layer Global model Local model 

t-test p-value 0.0000 1.0000 

Intercept p-value 0.0000 0.0000 

Slope = 1 p-value 0.0000 0.0000 

Table 5-43 IRI model calibration results (No sampling) 

Model coefficient Global model Local model 

SEE 20.4152 18.8897 

Bias 5.1769 0.0000 

C1 40.0000 42.5829 

C2 0.4000 0.0989 

C3 0.0080 0.0078 

C4 0.0150 0.0030 
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Figure 5-28 Measured and predicted IRI-Time series 

The entire dataset was split into two parts, with 70% of the sections used for calibration and 

30% for validation using a split sampling approach. Figure 5-29 shows the predicted vs. 

measured IRI for calibration and validation. Table 5-44 summarizes the model parameters for 

the global model, calibration, and validation set. A calibration summary for all other options 

with different calibration approaches is given in Tables 5-45 to 5-48. 

 

 
(a) Calibration set 

 
(b) Validation set 

Figure 5-29 Measured vs predicted IRI (Split sampling) 

Table 5-44 IRI model validation results (Split sampling) 

Model coefficient Global model Calibration set Validation set 

SEE 22.2411 16.0074 15.7971 

Bias 14.1373 0.4807 0.6950 

C1 40.0000 40.0000 40.0000 

C2 0.4000 0.0928 0.0928 

C3 0.0080 0.0046 0.0046 

C4 0.0150 0.0001 0.0001 
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Table 5-45 Flexible IRI local calibration – Option 1 

Sampling Technique Parameter SEE Bias C1 C2 C3 C4 

No Sampling 
Global model 20.4152 5.1769 40.0000 0.4000 0.0080 0.0150 

Local model 18.8897 0.0000 42.5829 0.0989 0.0078 0.0030 

Split sampling 

Global model 22.2411 14.1373 40.0000 0.4000 0.0080 0.0150 

Local model calibration 16.0074 0.4807 40.0000 0.0928 0.0046 0.0001 

Local model validation 15.7971 0.6950 40.0000 0.0928 0.0046 0.0001 

Repeated split sampling 

Global Model Mean 22.2317 14.3096 40.0000 0.4000 0.0080 0.0150 

Global Model Median 22.3077 14.3351 40.0000 0.4000 0.0080 0.0150 

Global model lower CI 21.1240 13.2566 - - - - 

Global model upper CI 23.0352 15.2865 - - - - 

Local Model Mean 15.9637 0.8438 40.0068 0.0912 0.0046 0.0007 

Local Model Median 15.9671 0.6881 40.0000 0.0901 0.0046 0.0002 

Local model lower CI 14.9453 0.1598 40.0000 0.0900 0.0026 0.0000 

Local model upper CI 16.8554 2.7574 40.0009 0.1002 0.0063 0.0042 

Local Model Mean – validation 16.0524 0.8401 40.0068 0.0912 0.0046 0.0007 

Local Model Median – validation 16.0454 0.7630 40.0000 0.0901 0.0046 0.0002 

Local model lower CI 12.4582 -3.2269 40.0000 0.0900 0.0026 0.0000 

Local model upper CI 19.8453 5.3700 40.0009 0.1002 0.0063 0.0042 

Bootstrapping 

Global Model Mean 20.3790 5.0900 40.0000 0.4000 0.0080 0.0150 

Global Model Median 20.3518 5.0744 40.0000 0.4000 0.0080 0.0150 

Global model lower CI 17.6560 1.6677 - - - - 

Global model upper CI 23.2553 8.5022 - - - - 

Local Model Mean 18.7441 0.0718 42.8739 0.1025 0.0081 0.0030 

Local Model Median 18.7652 0.0000 41.8644 0.1005 0.0080 0.0028 

Local model lower CI 15.6545 0.0000 40.0000 0.0900 0.0005 0.0000 

Local model upper CI 22.0126 0.7193 51.9628 0.1362 0.0161 0.0082 
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Table 5-46 Flexible IRI local calibration – Option 2 

Sampling Technique Parameter SEE Bias C1 C2 C3 C4 

No Sampling 
Global model 20.5763 9.2791 40.0000 0.4000 0.0080 0.0150 

Local model 17.4521 -0.2463 38.3082 0.1891 0.0085 0.0132 

Split sampling 

Global model 21.1270 9.8825 40.0000 0.4000 0.0080 0.0150 

Local model calibration 17.4968 0.0000 8.3289 0.2632 0.0043 0.0167 

Local model validation 16.9318 1.3313 8.3289 0.2632 0.0043 0.0167 

Repeated split sampling 

Global Model Mean 21.2009 10.1284 40.0000 0.4000 0.0080 0.0150 

Global Model Median 21.2416 10.1364 40.0000 0.4000 0.0080 0.0150 

Global model lower CI 20.3079 9.1769 - - - - 

Global model upper CI 21.8170 11.0794 - - - - 

Local Model Mean 17.6014 -0.0058 12.5117 0.2571 0.0049 0.0147 

Local Model Median 17.5504 0.0000 11.8115 0.2499 0.0042 0.0155 

Local model lower CI 16.5606 0.0000 2.6969 0.0542 0.0000 0.0042 

Local model upper CI 19.2750 0.0000 29.9810 0.5538 0.0149 0.0188 

Local Model Mean – validation 17.6260 -0.0178 12.5117 0.2571 0.0049 0.0147 

Local Model Median – validation 17.5344 -0.1271 11.8115 0.2499 0.0042 0.0155 

Local model lower CI 14.9296 -4.3172 2.6969 0.0542 0.0000 0.0042 

Local model upper CI 20.9412 4.3502 29.9810 0.5538 0.0149 0.0188 

Bootstrapping 

Global Model Mean 20.7289 9.2211 40.0000 0.4000 0.0080 0.0150 

Global Model Median 20.7020 9.2194 40.0000 0.4000 0.0080 0.0150 

Global model lower CI 19.3371 7.3110 - - - - 

Global model upper CI 22.2711 11.1433 - - - - 

Local Model Mean 17.4568 -0.0779 23.9779 0.2695 0.0051 0.0153 

Local Model Median 17.3895 0.0000 20.9565 0.2584 0.0043 0.0163 

Local model lower CI 15.8643 -1.4507 10.3702 0.0485 0.0000 0.0043 

Local model upper CI 19.4972 0.0000 46.4457 0.5787 0.0180 0.0203 
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Table 5-47 Flexible IRI local calibration results – Option 3 (HMA over HMA) 

Sampling Technique Parameter SEE Bias C1 C2 C3 C4 

No Sampling 
Global model 20.1973 14.0240 40.0000 0.4000 0.0080 0.0150 

Local model 16.1774 0.0000 13.8154 0.1420 0.0188 0.0153 

Split sampling 

Global model 16.0194 10.1876 40.0000 0.4000 0.0080 0.0150 

Local model calibration 12.6546 0.0000 23.7284 0.3814 0.0000 0.0126 

Local model validation 17.0559 -10.7765 23.7284 0.3814 0.0000 0.0126 

Repeated split sampling 

Global Model Mean 15.2512 7.4582 40.0000 0.4000 0.0080 0.0150 

Global Model Median 15.3534 7.4361 40.0000 0.4000 0.0080 0.0150 

Global model lower CI 13.5598 5.3490 - - - - 

Global model upper CI 16.3405 9.8181 - - - - 

Local Model Mean 14.0406 0.0038 15.5939 0.3044 0.0058 0.0187 

Local Model Median 13.3539 0.0000 14.8974 0.0257 0.0001 0.0193 

Local model lower CI 11.0362 0.0000 0.6498 0.0000 0.0000 0.0031 

Local model upper CI 21.4628 0.0000 34.1755 1.9447 0.0394 0.0291 

Local Model Mean – validation 14.9061 0.2665 15.5939 0.3044 0.0058 0.0187 

Local Model Median – validation 13.6036 -0.3974 14.8974 0.0257 0.0001 0.0193 

Local model lower CI 7.3846 -11.4536 0.6498 0.0000 0.0000 0.0031 

Local model upper CI 30.9044 14.2806 34.1755 1.9447 0.0394 0.0291 

Bootstrapping 

Global Model Mean 20.1818 14.1091 40.0000 0.4000 0.0080 0.0150 

Global Model Median 20.2509 14.2055 40.0000 0.4000 0.0080 0.0150 

Global model lower CI 17.0255 9.2613 - - - - 

Global model upper CI 22.8855 18.7346 - - - - 

Local Model Mean 12.5726 -0.0187 15.0723 0.1404 0.0035 0.0192 

Local Model Median 12.5141 0.0000 14.5163 0.1317 0.0003 0.0188 

Local model lower CI 9.3166 -0.1178 0.9376 0.0000 0.0000 0.0045 

Local model upper CI 16.5425 0.0000 43.4113 0.3858 0.0267 0.0318 
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Table 5-48 Flexible IRI local calibration results – Option 3 (Composite) 

Sampling Technique Parameter SEE Bias C1 C2 C3 C4 

No Sampling 
Global model 17.2970 -1.2161 40.0000 0.4000 0.0080 0.0150 

Local model 17.1593 0.0000 11.3635 1.1727 0.0082 0.0299 

Split sampling 

Global model 18.0032 -1.7024 40.000 0.400 0.008 0.0150 

Local model calibration 17.2114 0.0000 6.8318 0.0004 0.0044 0.0348 

Local model validation 15.2017 0.0870 6.8318 0.0004 0.0044 0.0348 

Repeated split sampling 

Global Model Mean 17.7332 -1.2839 40.0000 0.4000 0.0080 0.0150 

Global Model Median 17.8173 -1.2738 40.0000 0.4000 0.0080 0.0150 

Global model lower CI 16.2719 -2.7816 - - - - 

Global model upper CI 18.8935 0.2160 - - - - 

Local Model Mean 18.4618 -1.0226 22.6459 0.3105 0.0138 0.0282 

Local Model Median 17.3958 0.0000 16.9068 0.0137 0.0056 0.0323 

Local model lower CI 15.5516 -5.9992 0.2381 0.0000 0.0000 0.0035 

Local model upper CI 28.9063 0.0001 47.6492 2.1974 0.0682 0.0377 

Local Model Mean – validation 18.9384 -0.8073 22.6459 0.3105 0.0138 0.0282 

Local Model Median – validation 18.4499 -0.7487 16.9068 0.0137 0.0056 0.0323 

Local model lower CI 11.9388 -10.0187 0.2381 0.0000 0.0000 0.0035 

Local model upper CI 30.5810 8.2058 47.6492 2.1974 0.0682 0.0377 

Bootstrapping 

Global Model Mean 17.7369 -1.4326 40.0000 0.4000 0.0080 0.0150 

Global Model Median 17.6578 -1.4073 40.0000 0.4000 0.0080 0.0150 

Global model lower CI 15.2874 -4.5392 - - - - 

Global model upper CI 20.6130 1.6390 - - - - 

Local Model Mean 16.3822 -0.0983 14.9112 2.4596 0.0112 0.0212 

Local Model Median 16.0084 0.0000 11.9195 2.4095 0.0078 0.0218 

Local model lower CI 13.4634 -1.6002 0.1771 0.7930 0.0000 0.0031 

Local model upper CI 22.0754 0.0011 45.8747 4.5607 0.0489 0.0313 
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5.3 LOCAL CALIBRATION OF RIGID PAVEMENT MODELS  

The local calibration results for the transverse cracking model, joint faulting model, and IRI 

in rigid pavements are presented in this section. Chapter 4 includes the details of the 

calibration approach for each model. The local calibration was performed using different sets 

of data. These sets include reconstruct and rehabilitation sections in various combinations, as 

given below: 

 

1. Option 1: JPCP reconstruct sections only 

2. Option 2: JPCP reconstruct and unbonded overlay pavement sections 

3. Option 3: Unbonded overlay pavement sections 

5.3.1 Transverse Cracking Model 

The transverse cracking model was calibrated by minimizing the error between measured and 

predicted cracking. The number of available unbonded overlay sections is small and lower 

than the number of reconstructed JPCP sections. Therefore, Option 2 calibration results are 

recommended and will be discussed in detail in the following sections.  

5.3.1.1. Option 2: JPCP reconstruct and unbonded overlay sections 

No Sampling 

All available sections were considered in the no-sampling approach. Figure 5-30 shows the 

predicted versus measured transverse cracking for the global and locally calibrated models. 

The global model underpredicts transverse cracking. Table 5-49 shows the hypothesis test 

results. The global model passes none of the tests, whereas one of the tests passed in the case 

of the local model. Table 5-50 shows the local calibration results. The SEE is reduced from 

5.99 to 3.95, whereas the bias is reduced from -2.39 to -0.4. Although two out of three 

hypothesis tests were rejected, the SEE and bias values significantly improved. Figure 5-31 

shows the fatigue damage curve and the measured and locally predicted transverse cracking 

with time. Figure 5-31 shows that local predicted and measured cracking follows a similar 

trend with time. 

 

 
(a) Global model 

 
(b) Local model 

Figure 5-30 Local calibration results using the entire dataset 
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(a) Fatigue damage 

 
(b) Measured and predicted time series 

Figure 5-31 Local calibration results for transverse cracking (No sampling) 

Table 5-49 Global model hypothesis testing results 

Hypothesis test Global model Local model 

t-test p-value 0.0000 0.1055 

Intercept p-value 0.0125 0.0004 

Slope = 1 p-value 0.0000 0.0000 

 

Table 5-50 Local calibration results using the entire dataset (No sampling) 

Parameter Global model Local model 

SEE (% slabs cracked) 5.99 3.95 

Bias (% slabs cracked) -2.39 -0.40 

C4 0.52 0.39 

C5 -2.17 -0.93 

Split sampling 

The split sampling technique was utilized to calibrate and validate the transverse cracking 

model, with 70% of the sections used for calibration and 30% for validation. Figure 5-32 

shows the predicted vs. measured transverse cracking for the calibration and validation sets. 

Table 5-51 shows the calibration results using split sampling. The SEE and bias are improved 

with local calibration. Also, validation results show good agreement with the calibration 

results.  
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(a) Calibration set 

 
(b) Validation set 

Figure 5-32 Split sampling local calibration results 

Table 5-51 Split sample calibration results 

Hypothesis test Global model Local model Validation 

SEE (percent slabs cracked) 4.99 3.86 4.68 

Bias (percent slabs cracked) -1.86 -0.19 -1.08 

C4 0.52 0.60 0.60 

C5 -2.17 -0.82 -0.82 

Repeated split sampling 

In repeated split sampling, multiple split samples are created where the sections in the 

calibration and validation sets can change each time. Split sampling is repeated 1000 times. 

This generates a distribution of model parameters, which are more robust than split sampling. 

Tables 5-52 and 5-53 show the calibration summary for the calibration and validation sets. 

Figures 5-33 and 5-34 show the distribution of model parameters. The validation results are 

satisfactory compared to the calibration set. The validation results showed a slightly higher 

SEE and less bias than the calibration dataset; however, these values are lower than for the 

case of a single split sample, especially for the bias.  

Table 5-52 Repeated split sampling results for the calibration set 

Parameter 
Local model 

 mean 

Local model 

 median 

Local model 

 lower CI 

Local model 

 upper CI 

SEE (percent slabs cracked) 3.95 4.08 2.77 4.65 

Bias (percent slabs cracked) -0.41 -0.37 -0.91 -0.09 

C4 0.40 0.41 0.06 0.70 

C5 -0.97 -0.92 -1.48 -0.75 

Table 5-53 Repeated split sampling results for the validation set 

Parameter Local model mean 
Local model 

 median 

Local model 

 lower CI 

Local model 

 upper CI 

SEE (percent slabs cracked) 4.12 3.90 1.56 7.78 

Bias (percent slabs cracked) -0.38 -0.39 -2.71 2.27 

C4 0.40 0.41 0.06 0.70 

C5 -0.97 -0.92 -1.48 -0.75 
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Figure 5-33 Repeated split sampling frequency distributions – calibration set 

 

Figure 5-34 Repeated split sampling frequency distributions – validation set 

Bootstrapping  

Bootstrapping was used to calibrate the transverse cracking model, with 1000 bootstrap 

samples with replacement. Unlike repeated split sampling, in bootstrap, the samples were not 

split; instead, the entire dataset was used for calibration. Bootstrapping also generated CI and 

distribution of model parameters. Figure 5-35 shows the predicted vs. measured transverse 

(d) 
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cracking for the local model. Table 5-54 summarizes the model parameters for local 

calibration. Figure 5-36 shows the distribution of SEE, bias, and model coefficients. 

Bootstrap provides mean, median, and CI for the model parameters.  

 

 

Figure 5-35 Bootstrap sampling predicted vs. measured results (1000 bootstraps) 

Table 5-54 Bootstrap sampling calibration results summary (1000 bootstraps)  

Parameter 
Local Model 

Mean 

Local Model 

Median 

Local model 

lower CI 

Local model 

upper CI 

SEE (percent slabs cracked) 3.85 3.84 2.21 5.29 

Bias (percent slabs cracked) -0.36 -0.36 -0.92 0.11 

C4 0.426 0.433 0.074 0.718 

C5 -0.953 -0.911 -1.455 -0.716 

 

 

Figure 5-36: Bootstrap sampling calibration results (1000 bootstraps) 
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Summary 

The global model alone underpredicts concrete transverse cracking for the MDOT sections. 

Conversely, the SEE and bias improved in all calibration approaches. Also, split sampling 

and repeated split sampling validate the calibrated model. The calibration results for all 

options are summarized in Tables 5-55 to 5-58. Table 5-58 shows the results for a special 

case of Option 2. In this case, all widened lane sections (lane width = 14 feet) were assigned 

a lane width of 12.5 feet while designing using the Pavement-ME. This calibration 

alternative was provided for MDOT’s consideration as they have found that the widened slab 

input is extremely sensitive and not practical for their designs. Due to this sensitivity, MDOT 

currently uses a thickness adjustment to the standard width (12 feet) designs when a widened 

slab is planned. This calibration alternative would allow MDOT to input 12.5 feet for 

widened slab width to represent 14 feet widened slab configurations, therefore allowing 

direct use of the widened slab input and providing more practical results. 

Table 5-55 Summary of Option 1 local calibration – Transverse cracking model 

Sampling technique Parameter SEE Bias C4 C5 

No Sampling 
Global model 6.97 -2.96 0.52 -2.17 

Local model 3.77 -0.02 0.59 -0.66 

Split sampling 

Global model 7.38 -2.84 0.52 -2.17 

Local model calibration 4.02 -0.38 0.41 -0.76 

Local model validation 3.25 -0.52 0.41 -0.76 

Repeated split sampling 

Global Model Mean 6.95 -2.97 0.52 -2.17 

Global Model Median 6.95 -2.97 0.52 -2.17 

Global model lower CI 5.05 -3.55 - - 

Global model upper CI 7.90 -2.11 - - 

Local Model Mean 3.98 -0.35 0.40 -0.84 

Local Model Median 4.06 -0.33 0.42 -0.76 

Local model lower CI 2.55 -1.00 0.05 -1.44 

Local model upper CI 5.81 0.36 0.72 -0.59 

Local Model Mean - validation 4.03 -0.29 0.40 -0.84 

Local Model Median - validation 3.44 -0.55 0.42 -0.76 

Local model lower CI 1.00 -2.76 0.05 -1.44 

Local model upper CI 10.84 3.42 0.72 -0.59 

Bootstrapping Global Model Mean 6.86 -2.99 0.52 -2.17 

 
Global Model Median 6.97 -2.96 0.52 -2.17 

Global model lower CI 3.22 -4.70 - - 

Global model upper CI 9.72 -1.60 - - 
 Local Model Mean 3.80 -0.28 0.40 -0.83 

 
Local Model Median 3.80 -0.30 0.41 -0.75 

Local model lower CI 2.07 -1.04 0.04 -1.48 

Local model upper CI 6.03 0.57 0.75 -0.57 
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Table 5-56 Summary of Option 2 local calibration – Transverse cracking model 

Sampling technique Parameter SEE Bias C4 C5 

No Sampling 
Global model 5.99 -2.39 0.52 -2.17 

Local model 3.95 -0.40 0.39 -0.93 

Split sampling 

Global model 4.99 -1.86 0.52 -2.17 

Local model calibration 3.86 -0.19 0.60 -0.82 

Local model validation 4.68 -1.08 0.60 -0.82 

Repeated split sampling 

Global model mean 5.93 -2.38 0.52 -2.17 

Global model median 5.93 -2.38 0.52 -2.17 

Global model lower CI 4.08 -2.83 - - 

Global model upper CI 6.77 -1.64 - - 

Local model mean 3.95 -0.41 0.40 -0.97 

Local model median 4.08 -0.37 0.41 -0.92 

Local model lower CI 2.77 -0.91 0.06 -1.48 

Local model upper CI 4.65 -0.09 0.70 -0.75 

Local model mean - validation 4.12 -0.38 0.40 -0.97 

Local model median - validation 3.90 -0.39 0.41 -0.92 

Local model lower CI - validation 1.56 -2.71 0.06 -1.48 

Local model upper CI - validation 7.78 2.27 0.70 -0.75 

Bootstrapping 

Global Model mean 5.83 -2.39 0.52 -2.17 

Global Model median 5.82 -2.32 0.52 -2.17 

Global model lower CI 2.82 -3.72 - - 

Global model upper CI 8.55 -1.32 - - 

Local Model mean 3.85 -0.36 0.43 -0.95 

Local Model median 3.84 -0.36 0.43 -0.91 

Local model lower CI 2.21 -0.92 0.07 -1.45 

Local model upper CI 5.29 0.11 0.72 -0.72 

Table 5-57 Summary of Option 3 local calibration – Transverse cracking model 

Sampling technique Parameter SEE Bias C4 C5 

No Sampling 
Global model 1.15 -0.81 0.52 -2.17 

Local model 0.73 -0.07 0.91 -1.09 

Split sampling 

Global model 1.19 -0.84 0.52 -2.17 

Local model calibration 0.84 -0.14 0.41 -1.27 

Local model validation 0.39 0.14 0.41 -1.27 

Repeated split sampling 

Global Model Mean 1.15 -0.81 0.52 -2.17 

Global Model Median 1.15 -0.81 0.52 -2.17 

Global model lower CI 0.87 -1.02 - - 

Global model upper CI 1.37 -0.59 - - 

Local Model Mean 0.74 -0.11 0.55 -1.24 

Local Model Median 0.78 -0.11 0.57 -1.21 

Local model lower CI 0.50 -0.24 0.18 -1.50 

Local model upper CI 0.89 -0.03 0.86 -1.08 

Local Model Mean - validation 0.82 -0.09 0.55 -1.24 

Local Model Median - validation 0.76 -0.11 0.57 -1.21 

Local model lower CI - validation 0.42 -0.70 0.18 -1.50 

Local model upper CI - validation 1.27 0.55 0.86 -1.08 

Bootstrapping 

Global Model Mean 1.14 -0.81 0.52 -2.17 

Global Model Median 1.14 -0.80 0.52 -2.17 

Global model lower CI 0.80 -1.13 - - 

Global model upper CI 1.47 -0.51 - - 

Local Model Mean 0.72 -0.11 0.56 -1.23 

Local Model Median 0.71 -0.10 0.57 -1.21 

Local model lower CI 0.46 -0.25 0.19 -1.49 

Local model upper CI 1.03 -0.01 0.87 -1.06 
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Table 5-58 Summary of Option 2 local calibration – Transverse cracking model 

(Widened Lane = 12.5 feet) 

Sampling technique Parameter SEE Bias C4 C5 

No Sampling 
Global model 5.99 -2.39 0.52 -2.17 

Local model 3.96 -0.38 0.42 -0.91 

Split sampling 

Global model 5.63 -2.33 0.52 -2.17 

Local model calibration 4.12 -0.23 0.58 -0.77 

Local model validation 3.99 1.57 0.58 -0.77 

Repeated split sampling 

Global Model Mean 5.96 -2.40 0.52 -2.17 

Global Model Median 5.96 -2.40 0.52 -2.17 

Global model lower CI 4.20 -2.83 - - 

Global model upper CI 6.76 -1.69 - - 

Local Model Mean 3.97 -0.42 0.41 -0.97 

Local Model Median 4.08 -0.38 0.40 -0.92 

Local model lower CI 2.87 -0.95 0.07 -1.47 

Local model upper CI 4.64 -0.09 0.71 -0.75 

Local Model Mean - validation 4.04 -0.35 0.41 -0.97 

Local Model Median - validation 3.84 -0.35 0.40 -0.92 

Local model lower CI - validation 1.45 -2.81 0.07 -1.47 

Local model upper CI - validation 7.72 2.08 0.71 -0.75 

Bootstrapping 

Global Model Mean 5.78 -2.37 0.52 -2.17 

Global Model Median 5.81 -2.32 0.52 -2.17 

Global model lower CI 2.85 -3.69 - - 

Global model upper CI 8.46 -1.33 - - 

Local Model Mean 3.82 -0.38 0.42 -0.97 

Local Model Median 3.85 -0.37 0.42 -0.91 

Local model lower CI 2.14 -0.93 0.07 -1.48 

Local model upper CI 5.29 0.11 0.71 -0.73 

 

5.3.1.2. Reliability for the transverse cracking model 

The standard error of the calibrated cracking models was used to establish the relationship 

between the standard deviation of the measured cracking and mean predicted cracking, as 

explained in Chapter 4. These relationships are used to calculate the cracking for specific 

reliability. Tables 5-59 to 5-62 summarize the standard error equations for different options.  

Table 5-59 Transverse cracking reliability – Option 1 

Sampling technique Global model equation Local model equation 

No Sampling 

𝑠𝑒(𝐶𝑅𝐾) = 3.5522(𝐶𝑅𝐾)0.3415 + 0.75 

𝑠𝑒(𝐶𝑅𝐾) = 1.3627(𝐶𝑅𝐾)0.7473 

Split Sampling 𝑠𝑒(𝐶𝑅𝐾) = 1.9369(𝐶𝑅𝐾)0.6374 

Repeated split sampling 𝑠𝑒(𝐶𝑅𝐾) = 1.9545(𝐶𝑅𝐾)0.5617 

Bootstrapping 𝑠𝑒(𝐶𝑅𝐾) = 1.9194(𝐶𝑅𝐾)0.572 

 

Table 5-60 Transverse cracking reliability – Option 2 

Sampling technique Global model equation Local model equation 

No Sampling 

𝑠𝑒(𝐶𝑅𝐾) = 3.5522(𝐶𝑅𝐾)0.3415 + 0.75 

𝑠𝑒(𝐶𝑅𝐾) = 1.9455(𝐶𝑅𝐾)0.5842 

Split Sampling 𝑠𝑒(𝐶𝑅𝐾) = 1.3362(𝐶𝑅𝐾)0.4923 

Repeated split sampling 𝑠𝑒(𝐶𝑅𝐾) = 2.4683(𝐶𝑅𝐾)0.5266 

Bootstrapping 𝑠𝑒(𝐶𝑅𝐾) = 2.8285(𝐶𝑅𝐾)0.5205 

Table 5-61 Transverse cracking reliability – Option 3 

Sampling technique Global model equation Local model equation 

No Sampling 

𝑠𝑒(𝐶𝑅𝐾) = 3.5522(𝐶𝑅𝐾)0.3415 + 0.75 

𝑠𝑒(𝐶𝑅𝐾) = 0.6855(𝐶𝑅𝐾)0.2987 

Split Sampling 𝑠𝑒(𝐶𝑅𝐾) = 0.7295(𝐶𝑅𝐾)0.2664 

Repeated split sampling 𝑠𝑒(𝐶𝑅𝐾) = 0.6259(𝐶𝑅𝐾)0.1831 

Bootstrapping 𝑠𝑒(𝐶𝑅𝐾) = 0.642(𝐶𝑅𝐾)0.1269 



 

165 

 

Table 5-62 Transverse cracking reliability – Option 2 (Widened Lane = 12.5 ft) 

Sampling technique Global model equation Local model equation 

No Sampling 

𝑠𝑒(𝐶𝑅𝐾) = 3.5522(𝐶𝑅𝐾)0.3415 + 0.75 

𝑠𝑒(𝐶𝑅𝐾) = 1.7334(𝐶𝑅𝐾)0.6185 

Split Sampling 𝑠𝑒(𝐶𝑅𝐾) = 2.9024(𝐶𝑅𝐾)0.6226 

Repeated split sampling 𝑠𝑒(𝐶𝑅𝐾) = 2.9801(𝐶𝑅𝐾)0.5147 

Bootstrapping 𝑠𝑒(𝐶𝑅𝐾) = 2.9004(𝐶𝑅𝐾)0.5074 

5.3.2 Faulting Model 

The research team performed calibration of the faulting model using the CAT tool. No 

sampling technique was used for the calibration. In the first step, the most sensitive 

coefficients, C1 and C6 were simultaneously calibrated. In the next step, C1 and C6 were kept 

at the calibrated value, and C2 was calibrated. All other coefficients (C3, C4, C5, C7 and C8) 

were not calibrated and kept at the global values. All coefficients could not be 

simultaneously calibrated because of the limited run time and the total combinations of 

coefficients that can be calibrated simultaneously. It should be noted that the measured 

faulting was cut to 0.4 inches, as mentioned in Chapter 3. This means that any 0.1-mile 

section with mean faulting above 0.4 inches was removed from calibration. CAT cannot be 

used to calibrate models for different pavement types. Therefore, the faulting model was not 

calibrated for Option 2 since the JPCP and unbonded overlays cannot be calibrated together 

in CAT. Figure 5-37 shows the predicted vs. measured joint faulting for Option 1. Figure 5-

38 shows the measured and predicted joint faulting with time for Option 1. In Figure 5-38, 

the predicted faulting is in the same range as measured faulting except for high values for 

measured faulting. Table 5-63 summarizes local calibration and the corresponding model 

parameters. SEE and bias are significantly improved for both options. The calibration results 

for widened slabs can be found in Appendix-A.  

 

 

 
(a) Global model 

 
(b) Local model 

Figure 5-37 Calibration results for joint faulting – Option 1 
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Figure 5-38 Measured and predicted joint faulting-Time series 

Table 5-63 Summary of faulting model calibration 

Parameter 
Option 1 Option 3 

Global Local Global Local 

SEE 0.06 0.03 0.02 -0.003 

Bias 0.01 0.00 0.02 0.000 

C1 0.595 0.8 0.595 0.667 

C2 1.636 1.3889 1.636 1.5789 

C3 0.00217 0.00217 0.00217 0.00217 

C4 0.00444 0.00444 0.00444 0.00444 

C5 250 250 250 250 

C6 0.47 0.2 0.47 0.5 

C7 7.3 7.3 7.3 7.3 

C8 400 400 400 400 

5.3.2.1. Reliability for faulting model 

The standard errors of the calibrated faulting models were used to establish the relationship 

between the standard deviation of the measured faulting and mean predicted faulting, as 

explained in Chapter 4. Table 5-89 summarizes standard error equations for the faulting 

model.  

Table 5-64 Faulting model reliability 

Data option Global model equation Local model equation 

Option 1 
𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.07162(𝐹𝑎𝑢𝑙𝑡)0.368 + 0.00806 

𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.0902(𝐹𝑎𝑢𝑙𝑡)0.2038 

Option 3 𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.2457(𝐹𝑎𝑢𝑙𝑡)0.6267 

5.3.3 Rigid Pavement Roughness (IRI) Model 

IRI in rigid pavements is a linear function of initial IRI, transverse cracking, joint spalling, 

joint faulting, and site factor. Transverse cracking and faulting models were calibrated before 

calibrating the IRI model. All options and calibration approaches were considered. Figure 5-

39 shows the predicted vs. measured IRI for Option 2 using no sampling approach. Figure 5-
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40 shows the measured and predicted IRI with time using no sampling approach. The local 

model predictions are well within the range of measured values. Table 5-65 shows the 

calibration results for Option 2 using no sampling. The SEE reduced from 19.72 to 10.31, 

and the bias reduced from 11.70 to 0.00.  

 

A split sampling approach has been used for model validation, with 70% of the sections used 

for calibration and the rest 30% for validation. Figure 5-47 shows the predicted vs. measured 

IRI using the calibration and validation sets. Table 5-66 summarizes the validation results for 

Option-2 using split sampling. The bias is significantly reduced for the validation set.  

 

 
(a) Global model 

 
(b) Local model 

Figure 5-39 IRI calibration results using no sampling (Option-2) 

 

 

Figure 5-40 Measured and predicted IRI-Time series (Option-2) 
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Table 5-65 Calibration results for IRI (No sampling) 

Parameters Global model Local model 

SEE 19.72 10.31 

Bias 11.70 0.00 

C1 0.8203 0.0943 

C2 0.4417 1.9384 

C3 1.4929 1.5660 

C4 25.2400 25.8398 

 

 
(a) Calibration set 

 
(b) Validation set 

Figure 5-41 IRI calibration results (Split sampling) 

 

Table 5-66 Validation results for IRI (Split sampling) 

Parameters Calibration set Validation set 

SEE 11.18 6.61 

Bias 0.00 -0.34 

C1 0.0547 0.0547 

C2 1.9405 1.9405 

C3 1.4654 1.4654 

C4 29.4003 29.4003 

 

The calibration results for all options are summarized in Tables 5-67 to 5-70. Table 5-70 

shows the results for a special case of Option 2. In this case, all widened lane sections (lane 

width = 14 feet) were assigned a lane width of 12.5 feet while designing in the Pavement-

ME. 
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Table 5-67 Summary of Option 1 local calibration – Rigid IRI model 

Sampling technique Parameter SEE Bias C1 C2 C3 C4 

No sampling 
Global model 21.19 14.47 0.8203 0.4417 1.4929 25.2400 

Local model 9.28 0.00 0.3330 1.3057 1.5239 27.5491 

Split sampling 

Global model 21.40 13.65 0.8203 0.4417 1.4920 25.2400 

Local model 9.91 0.00 0.3105 2.1219 1.4660 27.9766 

Validation 6.50 2.07 0.3105 2.1219 1.4660 27.9766 

Repeated split sampling 

Global model 21.15 14.44 0.8203 0.4417 1.4920 25.2400 

Local model mean 9.21 0.00 0.2801 1.3888 1.5076 28.1599 

Local model median 9.26 0.00 0.2790 1.1173 1.5040 28.2544 

Local model lower CI 8.15 0.00 0.0521 0.0154 1.1818 21.9759 

Local model upper CI 10.01 0.00 0.5907 4.1613 1.8325 33.8194 

Bootstrapping 

Global model 21.06 14.48 0.8203 0.4417 1.4920 25.2400 

Local model mean 8.98 -0.02 0.3951 1.9102 1.4585 26.9081 

Local model median 9.00 0.00 0.2615 1.4629 1.4750 27.4054 

Local model lower CI 7.24 -0.32 0.0488 0.0000 0.8806 16.4521 

Local model upper CI 10.70 0.00 2.3081 6.9607 1.9434 34.6775 

Table 5-68 Summary of Option 2 local calibration – Rigid IRI model 

Sampling technique Parameter SEE Bias C1 C2 C3 C4 

No sampling 
Global model 19.722 11.698 0.820 0.442 1.493 25.240 

Local model 10.310 0.000 0.094 1.938 1.566 25.840 

Split sampling 

Global model 19.585 11.328 0.820 0.442 1.492 25.240 

Local model 11.180 0.000 0.055 1.941 1.465 29.400 

Validation 6.605 -0.341 0.055 1.941 1.465 29.400 

Repeated split sampling 

Global model 19.720 11.696 0.820 0.442 1.492 25.240 

Local model mean 10.284 -0.001 0.075 1.986 1.625 24.147 

Local model median 10.349 0.000 0.055 2.017 1.609 24.261 

Local model lower CI 9.075 0.000 0.046 0.603 1.396 17.324 

Local model upper CI 11.149 0.000 0.177 3.261 1.908 30.354 

Bootstrapping 

Global model 19.664 11.730 0.820 0.442 1.492 25.240 

Local model mean 10.103 -0.007 0.100 2.061 1.634 22.998 

Local model median 10.131 0.000 0.057 1.968 1.642 23.733 

Local model lower CI 8.318 -0.065 0.046 0.017 1.153 11.046 

Local model upper CI 11.915 0.000 0.432 4.604 2.133 31.378 

Table 5-69 Summary of Option 3 local calibration – Rigid IRI model 

Sampling technique Parameter SEE Bias C1 C2 C3 C4 

No sampling 
Global model 15.92 5.23 0.8203 0.4417 1.4929 25.2400 

Local model 11.53 0.00 0.0220 1.2694 2.6059 0.1009 

Split sampling 

Global model 16.20 4.86 0.8203 0.4417 1.492 25.24 

Local model 12.07 0.00 0.0565 1.0031 2.7863 1.4285 

Validation 9.95 3.94 0.0565 1.0031 2.7863 1.4285 

Repeated split sampling 

Global model 15.92 5.19 0.8203 0.4417 1.4920 25.2400 

Local model mean 11.55 0.00 0.0561 1.0031 2.6455 1.8916 

Local model median 11.86 0.00 0.0525 0.8717 2.7175 0.0201 

Local model lower CI 9.06 0.00 0.0456 0.0164 1.8600 0.0000 

Local model upper CI 12.91 0.00 0.0953 2.7470 3.2280 13.1302 

Bootstrapping 

Global model 15.76 5.15 0.8203 0.4417 1.4920 25.2400 

Local model mean 11.00 -0.01 0.0758 1.1684 2.5115 3.9195 

Local model median 11.11 0.00 0.0533 0.8624 2.5489 0.0123 

Local model lower CI 6.94 -0.22 0.0455 0.0000 0.8600 0.0000 

Local model upper CI 14.57 0.00 0.1896 3.7691 3.8412 21.5708 
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Table 5-70 Summary of Option 2 local calibration – Rigid IRI model (widened lane = 

12.5 feet) 

Sampling technique Parameter SEE Bias C1 C2 C3 C4 

No sampling 
Global model 19.82 10.80 0.8203 0.4417 1.4929 25.2400 

Local model 12.00 0.00 0.0852 1.2782 1.6878 29.2462 

Split sampling 

Global model 18.30 10.04 0.8203 0.4417 1.4920 25.2400 

Local model 11.93 0.00 0.0583 0.1857 2.0373 28.8017 

Validation 13.45 2.87 0.0583 0.1857 2.0373 28.8017 

Repeated split sampling 

Global model 19.84 10.91 0.8203 0.4417 1.4920 25.2400 

Local model mean 11.74 0.00 0.0942 1.5471 1.7970 23.7529 

Local model median 11.71 0.00 0.0549 1.4435 1.7991 24.3162 

Local model lower CI 8.94 0.00 0.0455 0.0000 1.2894 12.0122 

Local model upper CI 14.64 0.00 0.3433 4.1531 2.3469 31.6348 

Bootstrapping 

Global model 19.84 10.91 0.8203 0.4417 1.4920 25.2400 

Local model mean 11.74 0.00 0.0942 1.5471 1.7970 23.7529 

Local model median 11.71 0.00 0.0549 1.4435 1.7991 24.3162 

Local model lower CI 8.94 0.00 0.0455 0.0000 1.2894 12.0122 

Local model upper CI 14.64 0.00 0.3433 4.1531 2.3469 31.6348 

5.4 SUMMARY OF FINDINGS 

This chapter outlines the calibration results for different dataset options and uses different 

calibration approaches. Once all the models are locally calibrated and validated, the final 

model statistics and coefficients are summarized for each model within the various data 

subsets and by each pavement type considered in the study. The following are the 

recommended final results for the locally calibrated models for Michigan conditions. It was 

found that the bootstrapping technique leads to the most robust calibration with minimum 

standard error and bias for most cases. Therefore, results from bootstrapping have been 

recommended. The calibration results for widened sections in rigid pavements are 

summarized in Appendix A. 

5.4.1 Flexible Pavements 

Tables 5-71 to 5-75 summarize the global and locally calibrated model coefficients for each 

flexible pavement performance model considered in this study within each data subset (or 

option). The local models SEE, bias, and coefficients are highlighted in grey.  

Table 5-71 Locally calibrated model coefficients — Bottom-up cracking (Flexible) 

Option Model type SEE Bias C1 C2 (hac < 5 in.) C2 (5 in. <= hac <=12 in.) 

Option 1a 
Global model 8.30 -4.91 1.31 2.1585 (0.867+0.2583* hac)*1 

Local model 8.73 0.00 0.2320 0.6998 (0.867+0.2583* hac)*0.2204 

Table 5-72 Locally calibrated model coefficients — Top-down cracking (Flexible) 

Option Model type SEE Bias KL2 KL3 KL4 KL5 C1 C2 

Option 1 
Global model -2.36 0.2855 0.011 0.01488 3.266 2.5219 0.8069 -2.36 

Local model 1.6 0.9 0.09 0.101 3.26 0.3 1.155 1.6 
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Table 5-73 Locally calibrated model coefficients — Rutting (Flexible) 

Option Model type SEE Bias Br1 Bs1 Bsg1 

Option 1 
Global model 0.3935 0.3491 0.4 1 1 

Local model 0.085 -0.008 0.1476 0.3009 0.0696 

Option 3-HMA  
over HMA 

Global model 0.081 0.009 0.4 1 1 

Local model 0.077 -0.009 1.0423 0.3824 0.1213 

Option 3-Composite 
Global model 0.107 -0.092 0.4 1 1 

Local model 0.061 -0.010 1.5351 - - 

Table 5-74 Locally calibrated model coefficients — Thermal cracking (Flexible) 

Option Model type SEE Bias K 

Option 1 
Global model 1225 -812 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 1 + 0 

Local Model 851 20 0.85 
Option 3-HMA  

Over HMA 

Global model 1856 1720 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 0.55 + 0 

Local Model 504 -28 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 1 + 0 

Option 3- 

Composite 

Global model 1426 1357 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 1 + 0 

Local Model 265 -220 𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗ 𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 0.55 + 0 

 

Table 5-75 Locally calibrated model coefficients — IRI (Flexible) 

Options Model type SEE Bias C1 C2 C3 C4 

Option 1 
Global model 20.3790 5.0900 40.0000 0.4000 0.0080 0.0150 

Local model 18.7441 0.0718 42.8739 0.1025 0.0081 0.0030 

Option 2 
Global model 20.7289 9.2211 40.0000 0.4000 0.0080 0.0150 

Local model 17.4568 -0.0779 23.9779 0.2695 0.0051 0.0153 

Option 3-HMA  

Over HMA 

Global model 20.1818 14.1091 40.0000 0.4000 0.0080 0.0150 

Local model 12.5726 -0.0187 15.0723 0.1404 0.0035 0.0192 

Option 3- 

Composite 

Global model 17.7369 -1.4326 40.0000 0.4000 0.0080 0.0150 

Local model 16.3822 -0.0983 14.9112 2.4596 0.0112 0.0212 

5.4.2 Rigid Pavements 

Tables 5-76 to 5-78 summarize the global and locally calibrated model coefficients for each 

rigid pavement performance model considered in this study within each data subset (or 

option). The local models SEE, bias, and coefficients are highlighted in grey.  

Table 5-76 Locally calibrated model coefficients — Transverse cracking (Rigid) 

Options Model type SEE Bias C4 C5 

Option 1 
Global model 6.86 -2.99 0.52 -2.17 

Local model 3.80 -0.28 0.40 -0.83 

Option 2 
Global model 5.83 -2.39 0.52 -2.17 

Local model 3.85 -0.36 0.43 -0.95 

Option 3 
Global model 1.14 -0.81 0.52 -2.17 

Local model 0.72 -0.11 0.56 -1.23 

Table 5-77 Locally calibrated model coefficients — Faulting (Rigid) 

Option Model type SEE Bias C1 C2 C6 

Option 1 
Global model 0.06 0.01 0.595 1.636 0.47 

Local model 0.03 0.00 0.8 1.3889 0.2 

Option 3 
Global model 0.02 0.02 0.595 1.636 0.47 

Local model -0.003 0.00 0.667 1.5789 0.5 
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Table 5-78 Locally calibrated model coefficients — IRI (Rigid) 

Option Model type SEE Bias C1 C2 C3 C4 

Option 1 
Global model 21.06 14.48 0.8203 0.4417 1.4920 25.2400 

Local model 8.98 -0.02 0.3951 1.9102 1.4585 26.9081 

Option 2 
Global model 19.664 11.730 0.820 0.442 1.492 25.240 

Local model 10.103 -0.007 0.100 2.061 1.634 22.998 

Option 3 
Global model 15.76 5.15 0.8203 0.4417 1.4920 25.2400 

Local model 11.00 -0.01 0.0758 1.1684 2.5115 3.9195 

5.5 IMPACT OF CALIBRATION ON PAVEMENT DESIGN 

Local calibration aims to optimize the transfer function coefficients and minimize the error 

between measured and predicted performance. The calibrated model will impact the local 

design practices. In this section, supplementary flexible and rigid pavements (not part of the 

calibration) with various Michigan traffic and climate types are designed to evaluate the 

impact of the locally calibrated models. The designs are based on calibrated model 

coefficients and standard error equations. It is important to note that the subsequent design 

thicknesses are based on the current MDOT criteria for final designs, which include the 

following: 

 

• The minimum thicknesses are 6.5" for flexible, 9" for JPCP freeway, and 8" for JPCP 

non-freeway sections. 

• A maximum difference of ± 1 inch from the AASHTO 93 minimum thickness limits. 

• JPCP widened slab sections were designed as standard width (12 feet), and design 

thicknesses were reduced by a maximum of 1 inch depending on whether the 

previous conditions were met. This practice is followed because the slab width is a 

sensitive parameter in the Pavement-ME, giving impractical (very thin) designs. 

• The design trials were stopped when a pavement reached a maximum thickness of 

16". Few designs fail at even 16", but further increasing the thicknesses leads to 

impractical designs. This occurs because a particular design may have inputs 

(material, traffic, climate) that aren't well represented in the global (or local) dataset. 

Therefore, the Pavement-ME has difficulty providing a practical design outcome. 

These designs may require changes in the Pavement-ME inputs, and simply changing 

the thickness cannot achieve a passing design. Furthermore, MDOT is limited by 

design changes (construction, materials, budget, and design procedures). Therefore, 

changing the inputs may not be practical. 

 

Forty-four (44) flexible sections were designed in the Pavement-ME using the new calibrated 

models in v2.6 and the coefficients from the previous calibration effort in v2.3. Table 5-79 

shows the average final design thickness for the 44 flexible sections using AASHTO 93, 

previous, and new local calibration model coefficients. For the new local calibration 

coefficients, these results are based on Option 1a for fatigue cracking (combining bottom-up 

and top-down cracking). Option 1 was used for other performance models. The average 

design thickness using the newly calibrated models is closer to the AASHTO 93 design, 

compared to the previous model calibration, with an average thickness reduction of 0.22 

inches. Table 5-80 shows the summary of distress predictions using previous calibration 

coefficients and new calibration coefficients. The percentage change in Table 5-80 was 
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calculated as the change in predicted distress (new model – previous model) as a percentage 

of the previous calibrated model. Fatigue cracking controlled 25%, and thermal cracking was 

the dominant distress for 59% of designs. None of the sections failed in IRI, and total rutting 

controlled only one section.  

Table 5-79 Summary of flexible pavement design 

Design method 
Design thickness (in) 

Average Standard deviation 

AASHTO 93 9.17 2.20 

Pavement-ME v2.3 previous local 

calibration model 
8.86 1.78 

Pavement-ME v2.6 new local calibration 

model 
8.95 2.27 

Note: The design ESALs range is between 1 and 41 million, and MR ranges from 3.7 to 6.5 ksi. Design 

reliability = 95%  

 

Table 5-80 Summary of flexible pavement design distresses 

Predicted distress 
Previous, v2.3 local 

calibration model 

New, v2.6 local 

calibration model 

Percentage 

change 

Fatigue 

cracking 

Average 18.2 18.4 1.1% 

SD 2.3 2.8 21.7% 

Total rutting 
Average 0.4 0.3 -25% 

SD 0.07 0.07 0% 

Thermal 

cracking 

Average 1587 1792 12.9% 

SD 1498 1058 -29.4% 

IRI 
Average 149 133 -10.7% 

SD 7.8 9.6 23.1% 
SD = standard deviation 

 

Forty-four (44) rigid sections were designed using AASHTO 93, global, and new calibrated 

model coefficients. It is important to note that MDOT found the v2.3 global coefficients 

more suitable than the previous v2.3 local coefficients for their designs. Therefore, the v2.3 

global coefficients were used for comparison in the case of rigid sections. Table 5-81 

summarizes PCC pavement design thicknesses using the AASHTO 93, the 2.3 global, and 

the v2.6 locally calibrated models. Interestingly, for unrestricted designs using the global 

model, five sections reached the design thickness of 16 inches, and another five sections 

reached the design thickness of 6 inches. However, for the unrestricted design using the 

locally calibrated model, only one section has a design thickness of 16 inches. IRI and joint 

faulting are critical distress types. Overall, the average design thickness using the locally 

calibrated models is slightly lower than those using the v2.3 global model or AASHTO 93. 

Moreover, it eliminates the extreme design thicknesses.  
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Table 5-81 Summary of rigid pavement design 

Design method 

Design thickness (in) 

Average 
Standard 

deviation 

AASHTO 93 10.07 1.67 

Pavement-ME v2.3 global model 9.83 1.63 

Pavement-ME v2.6 new local calibration model (14 ft) 

Pavement-ME v2.6 new local calibration model (12.5 ft) 

9.64 

 

9.63 

 

1.45 

 

1.44 

 
Note: The design ESALs range is between 1 and 64 million, and MR ranges from 3.7 to 6.5 ksi. Design 

reliability = 95%  
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CHAPTER 6 - MATERIAL TESTING AND TESTING 

PROTOCOLS 

6.1 INTRODUCTION 

Task 4 of this project was to conduct laboratory characterization of pavement materials 

collected from different projects for the development/updation of the material property 

database. The material properties would be inputs in pavement designs and future Pavement-

ME model calibration efforts. In addition, several field tests were suggested as part of this 

project to develop testing protocols for future projects. This chapter also documents the 

sample collection and field testing efforts conducted under this project, along with the results 

of material characterization and field test data analyses. As part of this project, eight projects, 

four each year from the 2020 and 2021 construction seasons, were selected. The team 

performed laboratory testing on the HMA, PCC, and unbound materials collected from the 

construction sites. In addition, several field tests such as Falling Weight Deflectometer 

(FWD), Light Weight Deflectometer (LWD), and Dynamic Cone Penetrometer (DCP) were 

conducted on different pavement layers during construction. The criteria selected for new 

projects selection included: 

• Pavement surface type (flexible vs. rigid)

• Project length (adequate for developing testing protocols, including the in-situ and

laboratory testing)

• Pavement type (reconstruct, overlay, or crush and shape)

• Road class (Interstate vs. state routes or freeway vs. nonfreeway)

• Traffic volumes (low, medium, and high)

Based on the construction schedule and the willingness of regions for data collection and 

sampling, eight projects were selected (see Figure 6-1). Table 6-1 presents the details of the 

projects chosen for 2020. Similarly, Table 6-2 shows the selected projects for the year 2021. 
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Figure 6-1 Location of the selected projects in 2020 and 2021
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Table 6-1 Selected projects for the year 2020 construction season 

Project 

No. 

Surface 

type 
Region 

Job 

number 
Route Pavement type description Road class 

Project 

length 

Total lane 

miles 

Two-way 

AADT 

Two-way 

AADTT 

1 Rigid University 119803 I-75 SB JPCP Reconstruction Freeway 5.06 15.731 28,414 9,645 

2 Rigid Grand 118616 I-196 EB JPCP Reconstruction Freeway 4.950 11.800 29,757 2,007 

3 Flexible Superior 126827 US-41 
HMA Reconstruction and 
HMA Overlay of existing 
HMA 

Non-freeway 5.250 10.621 2,561 310 

4 Flexible Southwest 204743 I-94BL 
Milling and Two-Course 
HMA Overlay of existing 
PCC 

Non-freeway 2.916 8.789 8,801 434 

 

Table 6-2 Selected projects for the year 2021 construction season 

Project 

No. 

Surface 

type 
Region 

Job 

number 
Route 

Pavement type  

description 
Road class 

Project 

length 

Total lane 

miles 

 Two-way 

AADT  

Two-way 

AADTT  

1 Flexible University 125869 I-69 WB HMA Reconstruction Freeway 5.00 10.25 16,181 2,091 

2 Flexible Superior 204311 US-41 

HMA Reconstruction and 

Aggregate Grade Lift with 
Asphalt Resurfacing 

Non-freeway 4.39 8.78 2,561 310 

3 Flexible Metro 85541 M-3 NB HMA Reconstruction Non-freeway 3.44 14.17 65,122 1,113 

4 Flexible Bay 128585 I-75 NB HMA over Rubblized PCC Freeway 4.53 9.30 8,497 783 
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6.2 FIELD CHARACTERIZATION OF MATERIALS 

Material testing in the field involved conducting in-situ tests like FWD, LWD, and DCP on 

different pavement layers of the 2020 and 2021 projects. In addition, Albedo measurements 

were performed to estimate the asphalt and concrete pavement’s shortwave absorptivity. This 

section summarizes the field testing data analysis for all the projects tested under this project. 

The details for each test type are included in Appendix B. 

6.2.1 Falling Weight Deflectometer Testing 

MDOT provided FWD deflection data from the selected 2020 and 2021 projects. This section 

presents the summary of the backcalculation results for each project. 

6.2.1.1.  I-75 Southbound (SB) JPCP (2020) Project 

FWD deflection data for the mainline I-75 SB JPCP (from stations 119+67 to 396+03) 

project were analyzed to determine the PCC layer modulus (E) and the modulus of subgrade 

reaction (k-value) using the AREA method. The joints' load transfer efficiency (LTE) was 

also estimated using the FWD deflections measured at joints in the outer wheel path (OWP). 

The FWD deflection data were received from three locations, i.e., 500 feet sections at the 

start, middle, and end of the total project length. FWD deflections are available at three 

locations along SB I-75 on three different days with a pass, each in the morning (am) and the 

afternoon (pm). Table 6-3 summarizes the backcalculation results.  

Table 6-3 FWD backcalculation results – SB I-75 JPCP project 

Parameter Section 
Station 
from 

Station 
to 

FWD 
date 

Testing 
time 

No. of 

FWD 
points 

Mean Std. Min. Max. 

E (ksi) 

1 372+00 367+00 10/27/20 am 7 11,582 1,219 9,669 13,158 

1 372+00 367+00 10/27/20 pm 7 10,589 1,609 8,420 13,268 

2 293+00 297+00 10/5/20 am 5 8,642 504 8,113 9,496 

2 293+00 288+00 10/5/20 pm 5 7,666 311 7,121 8,046 

3 176+00 171+00 10/7/20 am 7 12,395 1076 10,146 13,214 

3 176+00 171+00 10/7/20 pm 7 10,418 737 8,161 10,269 

Dynamic 
k-value

(pci)

1 372+00 367+00 10/27/20 am 7 244 16 211 260 

1 372+00 367+00 10/27/20 pm 7 265 11 231 263 

2 293+00 297+00 10/5/20 am 5 370 49 329 465 

2 293+00 288+00 10/5/20 pm 5 349 50 290 422 

3 176+00 171+00 10/7/20 am 7 270 24 255 318 

3 176+00 171+00 10/7/20 pm 7 284 20 278 337 

LTE (%) 

1 372+00 367+00 10/27/20 am 7 85 4 78 91 

1 372+00 367+00 10/27/20 pm 7 84 5 78 92 

2 293+00 288+00 10/5/20 am 5 92 2 88 94 

2 293+00 288+00 10/5/20 pm 5 89 3 85 92 

3 176+00 171+00 10/7/20 am 7 88 4 81 95 

3 176+00 171+00 10/7/20 pm 7 88 5 79 95 

Note: Std. = Standard deviation, Min. = Minimum, Max. = Maximum. 

Figure 6-2 displays the backcalculation results from the three sections. The results in Figure 

6-2(a) show higher E values with higher spatial variability (indicated by error bars) for 
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sections 1 and 3, irrespective of the time of the day compared to section 2. Figure 6-2(b) 

displays the modulus of the subgrade reaction values backcalculated for each section. 

Sections 1 and 3 have lower k-value values than Section 2; however, Section 2 also displays 

a higher variability in the k-values. The LTE values for all three sections are similar, with 

very low spatial variability. Appendix B includes the plots for E, k, and LTE values with 

stationing for each section. 

 

 
(a) Concrete elastic modulus 

 
(b) k-value 

 
(c) LTE 

Figure 6-2 Backcalculation results – I-75 SB JPCP project 
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6.2.1.2. I-196 Eastbound (EB) JPCP (2020) Project 

Table 6-4 displays the backcalculated E, k, and LTE values using FWD deflections data for 

the mainline I-196 EB JPCP (from stations 952+52 to 1217+45). Like the I-75 project, the 

FWD deflection data were collected on three locations, i.e., 500 feet sections at the start, 

middle, and end of the total project length, a pass each morning (am), and the afternoon (pm). 

Figure 6-3 compares the concrete’s modulus, k-value, and LTE of the three sections at 

different times of the day. The concrete’s modulus values for this project are much lower 

than the I-75 SB project. Section 1 has the highest E values compared to the other two 

sections, with no considerable variations between the morning and evening values [see 

Figure 6-3(a)]. No significant variability is observed in the elastic modulus values of the 

concrete from all three sections. Figure 6-3(b) shows that the k-values for section 3 are the 

highest of all sections. Also, the k-values display considerable variability for all three 

sections. Figure 6-3(c) shows the LTE values for the project. Section 1 has the highest LTE 

values compared to the other sections; however, the project has low LTE values for a newly 

constructed pavement.  

Table 6-4 FWD backcalculation results – EB I-196 JPCP project 

Parameter Section 
Station 

from 

Station 

to 

FWD 

date 

Testing 

time 

No. of 
FWD 

points 

Mean Std. Min. Max. 

E (ksi) 

1 988+00 992+74 10/12/20 am 7 4,421 277 4,081 4,911 

1 988+00 992+74 10/12/20 pm 7 4,422 276 4,141 5,045 

2 1073+00 1077+11 10/15/20 am 8 3,371 359 2,815 3,885 

2 1073+00 1077+11 10/15/20 pm 4 3,103 231 2,724 3,346 

3 1204+00 1210+27 10/12/20 am 10 2,982 197 2,603 3,258 

3 1204+00 1210+27 10/12/20 pm 10 3,682 101 3,466 3,810 

Dynamic  

k-value 
(pci) 

1 988+00 992+74 10/12/20 am 7 279 69 173 391 

1 988+00 992+74 10/12/20 pm 7 266 67 165 375 

2 1073+00 1077+11 10/15/20 am 8 346 45 286 421 

2 1073+00 1077+11 10/15/20 pm 4 372 16 363 399 

3 1204+00 1210+27 10/12/20 am 10 435 58 347 521 

3 1204+00 1210+27 10/12/20 pm 10 385 46 303 449 

LTE (%) 

1 988+00 992+74 10/12/20 am 6 85 9 75 95.5 

1 988+00 992+74 10/12/20 pm 6 86 7.5 76 95 

2 1073+00 1077+11 10/15/20 am 5 77 5 71.5 83 

2 1073+00 1077+11 10/15/20 pm 5 73.5 5 67 81 

3 1204+00 1210+27 10/12/20 am 10 72 7 63 83 

3 1204+00 1210+27 10/12/20 pm 10 71 6 60.5 77.5 

Note: Std. = Standard deviation, Min. = Minimum, Max. = Maximum. 
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(a) Concrete elastic modulus 

 
(b) k-value 

 
(c) LTE 

Figure 6-3 Backcalculation results – I-196 EB JPCP project 
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7 inches. Considering a mean AC thickness of 5 inches with 2 inches milled off, the 

backcalculation was performed with a 3-inch AC layer. For the analysis of FWD data 

collected over the leveling course, the structure used in the backcalculation process included 

an AC layer of 5 inches after laying a 2-inch leveling course. It is noted that the FWD 

measurements taken over the leveling course were within the project bounds but outside the 

stations mentioned earlier for the milled surface. The 7-inch base and 4-inch subbase layers 

were combined into one composite base/subbase layer. The existing granular material layer 

(24 inches & varying) and the underlying reinforced concrete (about 9 inches thick) below 

the subbase layer was considered part of the subgrade layer in the backcalculation process.  

 

Table 6-6 displays the descriptive statistics for the backcalculation results from the 

deflections measured on the milled surface of the project. The obtained AC layer moduli are 

high because, with a thin AC layer (i.e., 3-inch), the backcalculation process generally results 

in higher values. The combined base/subbase layer moduli are also high. Higher subgrade 

layer moduli can be due to 24-inch granular material and the underlying concrete layers 

beneath the subbase. The AC and the base/subbase layer moduli exhibit higher variability 

than the subgrade layer. Table 6-7 shows the layer moduli values obtained from FWD 

deflection measured on the leveling course. The obtained AC modulus values are reasonable; 

however, the base/subbase layer has some high values. Looking at the peak deflection under 

the load (D0), the locations resulting in higher base/subbase moduli had significantly lower 

deflections under the load than others.  

Table 6-5 Structure used for backcalculation of layer moduli– US-41 project 

Layer 
Layer thicknesses used for 
backcalculation for FWD testing 

on the milled surface 

Layer thicknesses used for 
backcalculation for FWD testing on 

the leveling course 

AC layer 3 in 5 in 

Base/subbase layer 11 in 11 in 

Subgrade Semi-infinite Semi-infinite 

Bedrock Incorporated Incorporated 

Table 6-6 Backcalculation results for FWD over  the milled surface – US-41 project 

Layer No. of points Average 
Standard 
deviation 

Minimum Maximum 

AC layer, psi 10 4,109,430 147,7341 245,2480 6,427,234 

Base/subbase 

layer, psi 
10 63,476 17,727 24,216 84,192 

Subgrade, psi 11 31,909 5,249 22,495 37,751 

 

Table 6-7 Backcalculation results for FWD over leveling course – US-41 project 

Layer 
No. of 

points 
Average 

Standard 

deviation 
Minimum Maximum 

AC layer, psi 19 475,574 79,732 354,472 608,842 

Base/subbase 

layer, psi 
19 72,563 93,200 11,419 278,480 

Subgrade, psi 19 28,716 6,788 16,372 38,728 
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6.2.1.4. I-94BL Milling and Two-Course HMA Overlay of existing PCC(2020) Project 

The FWD deflections data for the I-94 BL flexible pavement project included deflections 

measured on the pavement’s surface before and after the milling and resurfacing operations 

in the Westbound (WB) and Eastbound (EB) directions. The deflection measurements after 

resurfacing involved FWD passes in the morning and the afternoon in either direction. The 

FWD data analyses considered a four-layered structure, as shown in Table 6-8, to estimate 

the modulus of the AC, existing PCC, subbase, and subgrade layers using MODULUS 

software. Table 6-9 displays the descriptive statistics of the backcalculation results from the 

deflections measured before milling in either direction. The obtained layer moduli values are 

within reasonable ranges. The backcalculated AC layer moduli and the corresponding 

variability are higher for the EB than the WB pavement, while the subgrade moduli do not 

vary much, which is expected. The subbase layer moduli also exhibit higher variability 

spatially.  

Table 6-8 Structure used for backcalculation of layer moduli – I-94 BL project 

Layer Layer thicknesses used for backcalculation 

AC layer 4 in 

Existing PCC layer 9 in 

Subbase layer 8 in 

Subgrade Semi-infinite 

Bedrock Incorporated 

Table 6-9 Backcalculated layer moduli before milling – I-94 BL project 

Layer No. of points Average 
Standard 

deviation 
Minimum Maximum 

Eastbound (EB) 

AC, ksi 

50 

706 314 200 1040 

PCC, ksi 6032 5363 100 15000 

Subbase, ksi 56 43 10 150 

Subgrade, ksi 13 4 6 23 

Westbound (WB) 

AC, ksi 

36 

520 254 340 1040 

PCC, ksi 5898 4719 100 15000 

Subbase, ksi 72 52 10 150 

Subgrade, ksi 14 4 8 29 

 

FWD testing was also conducted in both directions of the I-94 BL project after resurfacing 

the pavement. These tests included two FWD rounds, one in the morning and the other in the 

afternoon, in either direction of the pavement. Table 6-10 displays the backcalculated moduli 

values for the different pavement layers using the deflections measured after resurfacing. It is 

observed that the values obtained from the analyses are in reasonable ranges. The estimated 

AC moduli values for the new AC layer (shown in Table 6-10) are lower than the ones 

estimated for the existing AC layer (see Table 6-9) using FWD measurements taken before 

milling. This can be attributed to the increased stiffness of the existing AC layer due to aging. 

The mean AC moduli values are lower for the afternoon FWD round than the morning 

because of higher pavement surface temperatures (around 83℉ in the morning versus 96℉ in 

the afternoon).  
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Table 6-10 Backcalculated layer moduli after resurfacing – I-94 BL project 

Layer No. of points Average 
Standard 

deviation 
Minimum Maximum 

Eastbound (EB) – morning (am) round 

AC, ksi 

52 

561 320 106 1040 

PCC, ksi 6710 5692 100 15000 

Subbase, ksi 44 41 10 150 

Subgrade, ksi 14 4 5 22 

Eastbound (EB) – afternoon (pm) round 

AC, ksi 

42 

329 242 66 1040 

PCC, ksi 5930 6069 100 15000 

Subbase, ksi 50 49 10 150 

Subgrade, ksi 14 4 6 23 

Westbound (WB) – morning (am) round 

AC, ksi 

48 

383 214 200 1040 

PCC, ksi 4332 4935 100 15000 

Subbase, ksi 65 54 10 150 

Subgrade, ksi 14 4 3 26 

Westbound (WB) – afternoon (pm) round 

AC, ksi 

38 

309 287 50 1040 

PCC, ksi 3455 4139 50 14837 

Subbase, ksi 70 55 10 150 

Subgrade, ksi 14 5 5 28 

6.2.1.5. I-69 HMA Reconstruction (2021) Project 

The FWD deflections data for the I-69 WB flexible pavement project included deflections 

measured on the pavement’s leveling and top surface. The analyses of the FWD deflection 

data conducted over the top surface for morning and afternoon runs are presented in this 

section. The FWD data analyses considered a four-layered structure, as shown in Table 6-11, 

to estimate the modulus of the AC, base, subbase, and subgrade layers using MODULUS 

software. Table 6-12 displays the descriptive statistics of the backcalculation results. The 

backcalculated AC layer moduli are high, as the FWD was conducted in December 2021 

when the temperatures were low. Overall, the FWD results are consistent with similar 

variations among the AC moduli between the different stations. 

 

Table 6-11 Structure used for backcalculation of layer moduli – I-69 WB project 

Layer Layer thicknesses used for backcalculation 

AC 8.75 in 

Base 6 in 

Subbase 18 in 

Subgrade Semi-infinite 
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Table 6-12 Backcalculation results – I-69 WB project 

Layer No. of points Average 
Standard 

deviation 
Minimum Maximum 

Morning (am) round 

AC, ksi 

23 

2476.4 376.8 1946.7 3341.4 

Base, ksi 46.6 21.9 26.1 89.2 

Subbase, ksi 20.6 7.8 11.0 46.3 

Subgrade, ksi 24.1 4.7 12.2 32.1 

Afternoon (pm) round 

AC, ksi 

23 

2161.8 400.7 1725.2 3326.4 

Base, ksi 40.3 15.2 25.0 68.2 

Subbase, ksi 19.5 6.5 10.0 31.9 

Subgrade, ksi 22.4 4.3 15.7 28.1 

6.2.1.6. US-41 HMA Reconstruction and Aggregate Grade Lift with Asphalt 
Resurfacing(2021) Project 

Some sections of this project were full-depth HMA reconstruction and others were HMA 

with an aggregate base fill over existing composite pavement. The FWD deflections data for 

the US-41 flexible pavement project included deflections measured on the pavement’s top 

surface in either direction, i.e., EB and WB. The backcalculation results presented in this 

section are from the EB direction, which had reconstruction along the entire length. Table 

6-13 displays the structure used in the analyses, while Table 6-14 shows the backcalculation 

results. It is observed that the estimated layer moduli are in reasonable ranges; however, the 

base layer modulus is slightly high. Also, the base layer moduli are highly variable spatially 

compared to the subbase and subgrade moduli, which displayed low variability.  

Table 6-13 Structure used for backcalculation of layer moduli – US-41 EB project 

Layer Layer thicknesses used for backcalculation 

AC 6.5 in 

Base 6 in 

Subbase 18 in 

Subgrade Semi-infinite 

Table 6-14 Backcalculation results – US-41 EB morning FWD round 

Layer No. of points Average 
Standard 

deviation 
Minimum Maximum 

AC, ksi 

7 

564.4 141.5 363.6 674.7 

Base, ksi 65.7 31.9 31.5 127.9 

Subbase, ksi 26.7 7.4 19.1 39.4 

Subgrade, ksi 28.9 5.0 23.1 36.4 

6.2.1.7. M-3 HMA Reconstruction (2021) Project 

The FWD deflections data for the M-3 flexible pavement project included deflections 

measured on the pavement’s base course, leveling course, and top surface in the NB and SB 

directions. The analyses of the FWD deflection data conducted over the top surface are 

presented for morning and afternoon rounds. The FWD data analyses considered a four-
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layered structure, as shown in Table 6-15, to estimate the modulus of the AC, base, subbase, 

and subgrade layers using MODULUS software. Table 6-16 displays the descriptive statistics 

of the backcalculation results. As the FWD measurements were taken in November 2021, the 

backcalculated AC layer moduli are slightly high with considerable variability. 

Table 6-15 Structure used for backcalculation of layer moduli – M-3 project 

Layer Layer thicknesses used for backcalculation 

AC 7 in 

Base 16 in 

Subbase 8 in 

Subgrade Semi-infinite 

Table 6-16 Backcalculation results – M-3 project  

Layer No. of points Average 
Standard 
deviation 

Minimum Maximum 

Northbound (NB) morning (am) round 

AC, ksi 

21 

3,038 778 1,174 4,000 

Base, ksi 46.2 27.9 25.0 116.9 

Subbase, ksi 39.3 20.4 10.7 82.9 

Subgrade, ksi 17.5 3.6 11.0 23.8 

Northbound (NB) afternoon (pm) round 

AC, ksi 

21 

2,552 639.4 1,297 3,500 

Base, ksi 44.9 24.4 25.0 107.1 

Subbase, ksi 38.4 16.8 12.8 71.8 

Subgrade, ksi 16.4 3.1 10.9 22.3 

Southbound (SB) morning (am) round 

AC, ksi 

21 

2,910 771.4 1,468 4,000 

Base, ksi 44.9 22.8 30.0 115.3 

Subbase, ksi 37.5 19.6 16.5 85.8 

Subgrade, ksi 17.6 4.5 11.1 29.2 

Southbound (SB) afternoon (pm) round 

AC, ksi 

21 

2,426 716.4 1,048 3,874 

Base, ksi 45.7 16.6 30.0 92.4 

Subbase, ksi 37.3 18.3 11.3 84.8 

Subgrade, ksi 16.6 3.9 10.1 27.3 

6.2.1.8. I-75 HMA over Rubblized PCC (2021) Project 

The FWD data for the I-75 flexible pavement project included deflections measured on the 

pavement’s rubblized PCC base, base course, leveling course, and top surface in the NB and 

SB directions. The analyses of the FWD deflection data conducted over the top surface are 

presented. The FWD data analyses considered a four-layered structure, as shown in Table 

6-17, to estimate the modulus of the AC, base, subbase, and subgrade layers. Since the 

existing 9-inch PCC layer was rubblized and left over the existing 4-inch aggregate base 

layer, these were combined into a single base layer for backcalculation. Table 6-18 displays 

the descriptive statistics of the backcalculation results. The backcalculated AC layer moduli 

estimated from the morning round are higher than values in the afternoon round. The 
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difference in temperatures recorded due to FWD testing (68℉ in the morning while 76℉ in 

the afternoon) can explain this during morning and afternoon rounds. 

Table 6-17 Structure used for backcalculation of layer moduli – I-75 project 

Layer Layer thicknesses used for backcalculation 

AC 7 in 

Rubblized PCC over an aggregate base 9 + 4 = 13 in 

Subbase 10 in 

Subgrade Semi-infinite 

Table 6-18 Backcalculation results – I-75 project  

Layer No. of points Average 
Standard 
deviation 

Minimum Maximum 

Northbound (NB) morning (am) round 

AC, ksi 

48 

963.1 181.5 260.2 1,227 

Base, ksi 62.7 25.0 35.0 161.5 

Subbase, ksi 35.2 19.4 10.3 80.5 

Subgrade, ksi 12.1 2.6 4.6 22.4 

Northbound (NB) afternoon (pm) round 

AC, ksi 

28 

698.3 155.9 160.1 925.4 

Base, ksi 48.3 9.9 35.0 67.7 

Subbase, ksi 32.0 16.9 10.0 68.7 

Subgrade, ksi 11.3 2.9 4.6 16.9 

Southbound (SB) – afternoon (pm) round 1 

AC, ksi 

43 

1,872 479.8 933.5 3,000 

Base, ksi 67.7 33.4 30.0 181.0 

Subbase, ksi 28.1 15.0 12.0 74.9 

Subgrade, ksi 12.7 2.7 7.8 17.8 

Southbound (SB) afternoon (pm) round 2 

AC, ksi 

42 

1,415 298.4 732.6 2,000 

Base, ksi 72.5 34.3 30.1 193.8 

Subbase, ksi 27.2 22.0 10.3 101.1 

Subgrade, ksi 12.5 2.2 8.7 18.0 

6.2.2 Light Weight Deflectometer Testing 

Light Weight Deflectometer (LWD) data were collected at several different layers of the 

2020 and 2021 selected projects. Table 6-19 summarizes the available LWD data from all the 

selected projects. The force applied at each drop by the LWD was obtained using Equation 

(6-1). Boussinesq’s elastic half-space equation was used to determine each test's LWD elastic 

modulus values using Equation (6-2) (1). Table 6-20 presents the descriptive statistics of the 

LWD-based layer moduli for all the projects, while Figure 6-4 compares them. 

 

 FLWD = √2mghC (6-1) 
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where; 
FLWD = force applied by the LWD equipment (N) 

m = dropped mass (kg) 

g = acceleration due to gravity (9.81 m/s2) 

h = drop height (m) 
C = spring constant (362396.2 N/m) 

  

 ELWD  = 

(1 – v2)σ0r

d0
f (6-2) 

 

where; 

ELWD = LWD elastic modulus (MPa) 

v = Poisson's ratio [0.35 and 0.40 for tests performed on base and subgrade layers, respectively]; σ0 = 

applied stress (Mpa) 

r = radius of the plate (mm) 
d0 = average deflection (mm) 

 f = shape factor [8/3 (rigid plate on granular material) and π/2 (rigid plate on material with 

intermediate characteristics) for tests performed on base and subgrade layers, respectively].  

Table 6-19 Summary of the available LWD data  

Project          
Layer

 DGAB Subbase OGDC Subgrade Rubb. PCC base 

I-75 SB (2020) ✓ ✓ ✓ ✓  

I-196 (2020)   ✓   

US-41 (2020) ✓ ✓  ✓  

I-69 (2021) ✓ ✓  ✓  

US-41 (2021) ✓ ✓  ✓  

M-3 (2021)  ✓ ✓ ✓  

I-75 NB (2021)     ✓ 
Note: ✓ data available,  data not available or layer not part of the structure, DGAB = Dense-graded aggregate 

base, OGDC = Open-graded drainage course, Rubb. = Rubblized. 
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Table 6-20 LWD-based layer moduli 

Layer 
No. of test 

locations 

Average 

(psi) 

Standard 

deviation (psi) 

Minimum 

(psi) 

Maximum 

(psi) 

I-196 EB (2020 selected project) 

OGDC 19 9,287 2,562 4,303 14,606 

DGAB 17 8,853 2,994 2,962 14,410 

Subbase 23 4,230 2,269 1,334 9,963 

I-75 SB (2020 selected project) 

OGDC 23 9,398 2,109 4,908 11,995 

Subgrade 27 2,713 1,411 670 7,066 

US-41 (2020 selected project) 

DGAB 18 9,090 1,270 7,017 12,062 

Subbase 9 4,712 609 3,633 5,415 

Subgrade 6 2,415 949 912 3,401 

US-41 (2021 selected project) 

DGAB 23 5,727 1,349 3,176 8,782 

Subbase 14 4,913 1,245 3,256 7,696 

Subgrade 13 3,856 736 2,764 5,055 

I-69 WB (2021 selected project) 

DGAB 11 9,521 2,421 6,516 14,859 

Subbase 11 3,565 641 2,659 4,506 

Subgrade 12 2,743 1,188 1,046 4,952 

M-3 NB (2021 selected project) 

OGDC, psi 21 7,504 1,749 4,450 10,224 

Subbase, psi 18 3,203 1,534 1,116 6,126 

Subgrade, psi 20 1,725 1,059 363 3,798 

I-75 NB (2021 selected project) 

Rubb. PCC 
base, psi 

32 8,322 1,892 5,368 13,419 

Note: DGAB = Dense-graded aggregate base, OGDC = Open-graded drainage course, Rubb. = Rubblized. 

 

 

Figure 6-4 Comparison of LWD-based resilient moduli 
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Figure 6-4 shows that the dense-graded aggregate base (DGAB), open-graded drainage 

course (OGDC), and rubblized PCC base layers have similar resilient moduli from the 

different pavement projects. Similarly, the subbase layer moduli are close to 4,000 psi while 

the subgrade layers moduli range between 2,000 to 4,000 psi. All the layer moduli display 

considerable variability, with the highest in the DGAB, OGDC, and rubblized PCC base 

layers. 

6.2.3 Dynamic Cone Penetrometer Testing 

Table 6-21 summarizes the DCP data for the selected 2020 and 2021 projects. The 

following equations were used to analyze the data and determine the resilient moduli of the 

different layers. For using Equation (6-3), the California bearing ratio (CBR) is computed 

using one of Equation (6-5) through Equation (6-7). Table 6-22 through Table 6-27 display 

the DCP-based resilient moduli for each project, while Figure 6-5 compares them. 

𝑀𝑟 (𝑝𝑠𝑖) = 2555 ∗ 𝐶𝐵𝑅0.64  (NCHRP 1-37A) (6-3) 

𝑀𝑟 (𝑝𝑠𝑖) =
151.8

𝐷𝐶𝑃(
𝑚𝑚

𝑏𝑙𝑜𝑤
)

1.096 ∗ 1000    (DCP direct model) (6-4) 

where;  

Mr = resilient modulus 

CBR = California bearing ratio 
DCP = dynamic cone penetrometer index in mm/blow 

For all soils except for CL soils with CBR<10 and CH soils: 

CBR = 292/DCP1.12 (6-5) 

For CL soils with CBR<10: 

𝐶𝐵𝑅 =
1

(0.017019∗𝐷𝐶𝑃)2 (6-6) 

For CH soils: 

𝐶𝐵𝑅 =
1

0.002871∗𝐷𝐶𝑃
(6-7) 

where; 

DCP = dynamic cone penetrometer index in mm/blow. 
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Table 6-21 Summary of the available DCP data 

Project      
Layer Subbase Subgrade 

I-75 (2020)  ✓

I-196 (2020) ✓ 

US-41 (2020) ✓ ✓

I-69 (2021) ✓ ✓

US-41 (2021) ✓ ✓

M-3 (2021) ✓ ✓

I-75 (2021)  

Note: ✓ data available,  data not available. 

Table 6-22 DCP-based subgrade moduli, I-75 SB (2020) project 

Statistics DCP direct model, psi NCHRP 1-37A, psi DCP index, in/blow 

Average 12,627 17,506 0.69 

Standard deviation 10,118 8,623 0.38 

Minimum 3,092 7,513 0.12 

Maximum 51,814 43,376 1.51 

Table 6-23 DCP-based subbase moduli, I-196 EB (2020) project 

Statistics DCP direct model, psi NCHRP 1-37A, psi DCP index, in/blow 

Average 6,842 11,942 1.07 

Standard deviation 5,337 5,194 0.53 

Minimum 2,175 5,981 0.22 

Maximum 28,745 31,446 2.56 

Figure 6-5 shows the subbase layer on all projects except US-41 had a resilient modulus of 

about 5,000 psi, much lower than the subgrade moduli that range between 11,000 to 20,000 

psi. However, the DCP-based subbase and subgrade layer moduli exhibit considerable 

variability for all the projects. A comparison between the different unbound layers moduli 

from all the field tests and laboratory-determined values will be presented later in the 

chapter.  
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Table 6-24 DCP-based estimated resilient moduli – US-41 (2020) project 

 DCP direct model, psi NCHRP 1-37A, psi DCP index, in/blow 

Subbase layer 

Average 16,090 20,664 0.47 

Standard deviation 7,137 4,444 0.13 

Minimum 7,589 13,036 0.32 

Maximum 32,526 26,897 0.75 

Subgrade layer 

Average 16,127 18,636 0.73 

Standard deviation 12,587 8,427 0.64 

Minimum 3,998 7,999 0.24 

Maximum 33,629 30,830 1.98 

Table 6-25 DCP-based resilient moduli, US-41 (2021) project 

Statistics DCP direct model, psi NCHRP 1-37A, psi DCP index, in/blow 

Subbase layer 

Average 16,209 18,212 0.67 

Standard deviation 14,382 7,543 0.28 

Minimum 5,328 10,423 0.27 

Maximum 55,260 29,551 1.05 

Subgrade layer 

Average 20,706 24,942 0.34 

Standard deviation 6,121 5,114 0.11 

Minimum 8,381 14,243 0.19 

Maximum 31,045 34,031 0.59 

Table 6-26 DCP-based resilient moduli, I-69 WB (2021) project 

Statistics DCP direct model, psi NCHRP 1-37A, psi DCP index, in/blow 

Subbase layer  

Average 4,582 9,066 1.58 

Standard deviation 2,350 2,934 0.45 

Minimum 1,739 5,220 1.17 

Maximum 8,152 13,350 2.40 

Subgrade layer  

Average 21,071 24,463 0.41 

Standard deviation 9,152 7,018 0.21 

Minimum 5,486 10,482 0.25 

Maximum 34,766 31,788 0.96 
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Table 6-27 DCP-based resilient moduli, M-3 flexible pavement project 

Statistics DCP direct model, psi NCHRP 1-37A, psi DCP index, in/blow 

Subbase layer   

Average 2,787 6,769 1.93 

Standard deviation 1,349 1,899 0.70 

Minimum 1,057 3,722 0.94 

Maximum 7,272 12,495 3.91 

Subgrade layer  

Average 11,427 16,324 0.81 

Standard deviation 9,157 8,508 0.50 

Minimum 3,034 7,198 0.26 

Maximum 32,011 31,207 1.71 

 

 

Figure 6-5 Comparison of DCP-based (using DCP direct model) resilient moduli 

6.2.4 Albedo Measurements 

The albedo measures how much light that hits a surface is reflected without being absorbed. 

It is a dimensionless value ranging between 0 and 1, where 0 represents the total absorbency 

(darker surfaces) and 1 the total reflectance (clearer surfaces). The albedometer or 

pyranometer is the apparatus recommended by the ASTM E1918-16 for measuring the solar 

reflectance of horizontal and low-sloped surfaces in the field (2). 

 

Figure 6-6 shows the dual-pyranometer used for the tests conducted on I-69 and I-496 in 

August and October 2020, respectively. This instrument, produced by Novalynx (3), has a 

sensitivity to radiant energy in the 0.28-2.8 μm band and the advantage of having two domes. 

The dome on the top face measures the global (or incoming) radiation G [W/m2], while the 

dome on the bottom face measures the reflected radiation R [W/m2]. Both measurements are 

performed simultaneously, reducing the error that could result from flipping the pyranometer 

to take the second measurement. The dual-pyranometer is mounted on the arm connected to a 

tripod at 0.5 m (19.7 in) above the pavement surface to minimize the shadow's effect on the 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

I-196
(2020)

I-75 (2020) US-41
(2020)

US-41
(2021)

I-69 (2021) M-3 (2021)

R
e

s
ili

e
n

t 
m

o
d

u
lu

s
, 
p

s
i

Subbase Subgrade



 

194 

 

measured reflected radiation (2). Following the standard, tests must be performed on clear 

sunny days (no clouds) between 9 am and 3 pm in summer and 10 am to 2 pm in winter. This 

ensures that the sun's angle to the normal from the surface is less than 45°. A minimum of 

three measurements were taken for each section. Data were recorded on a data logger 

connected to a computer, where the instrument's software was installed. During the 

measurements, pavement temperature was recorded using a digital infrared thermometer, 

while the air temperature and wind speed were taken with an anemometer. The albedo A is 

calculated as the ratio between the reflected radiation and the global radiation, as shown in 

Equation (6-8). The absorptivity S was calculated based on Equation (6-9). 

 

𝐴𝑙𝑏𝑒𝑑𝑜 𝐴 =
𝑅 [𝑊

𝑚2⁄ ]

𝐺 [𝑊
𝑚2⁄ ]

 
(6-8) 

𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑣𝑖𝑡𝑦 𝑆 = 1 − 𝐴 (6-9) 

 

 

 
a)                                                                             b)  

Figure 6-6 The dual-pyranometer used to conduct the tests on the field. Part a) shows 

the instrument and the data logger; part b) shows a trial test on a concrete pavement of 

a parking lot at the MSU facility on Jolly Road. 

 

On August 27, 2020, tests were conducted on I-69 EB, close to exit 123 (Segment 2) and on 

August 31, 2020, on the portion of I-69 EB, close to exit 113 (Segment 1), as indicated in 

Figure 6-7. Segment 1 included HMA cold milling (1.5”) and single course resurfacing 

(1.5”). Segment 2 included paver placed surface seal and overband crack fill. Figure 6-9 

shows the old and new surfaces where the tests were carried out. Figure 6-9(a) and (b) are 

related to segment 2, while c) and d) refer to segment 1. On October 13, 2020, tests were 

carried out on two sections of the I-496 (Figure 6-8). On the exit 97 ramp, measurements 

were taken on a new cement concrete surface and on the existing surface constructed in 1990. 

Close to exit 4 of the same Interstate, measurements were performed on two existing 

surfaces. This lane was constructed in cement concrete in 1960, while the shoulder was built 

in HMA (Figure 6-10). Table 6-28 presents the summarized climate, field conditions, and 

albedo measurements. 
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Figure 6-7 Location of the two tested sections of the I-69 east 

 

Figure 6-8 Location of the two tested sections of the I-496 
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a)                                                                          b) 

 
c)                                                                          d)  

Figure 6-9 Test section on the I-69 segment 2 (exit 123): a) old surface in HMA, b) 

new reconstruction in HMA; test section on the I-69 segment 1 (exit 113): c) old 

surface in HMA, d) new reconstruction in HMA. 

 
a)                                                            b) 

Figure 6-10 a) Test section on the ramp of the I-496 (exit 97), new and old cement 

concrete surfaces; b) test section on the I-496 (exit 4), old cement concrete and old 

HMA surfaces. 
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Table 6-28 Summary data on climate, field conditions, and measurements 

Note: HMA= Hot Mix Asphalt; PCC= Portland Cement Concrete. 

6.3 LABORATORY CHARACTERIZATION OF MATERIALS 

Several material samples, including loose HMA mixtures, asphalt binders, asphalt pavement 

cores, concrete pavement cylinders, beams, and cores, were collected from the selected 2020 

and 2021 projects. In addition, loose asphalt mixtures and pavement cores from projects 

constructed in 2013 and 2014 were also provided by the MDOT. This section summarizes the 

laboratory characterization of all the provided materials. 

6.3.1 HMA Material Testing 

The MDOT provided HMA samples for 11 mix types and cores from 9 projects constructed 

between 2013-2014, in addition to those from 2020 and 2021 selected projects. Table 6-29 

presents the details of the loose HMA mixes. Also, cores were provided for various projects, 

as shown in Table 6-30. This section summarizes the results of the HMA material testing. 

Laboratory characterization of HMA material considered the following tests on the loose mix 

samples and HMA cores received from the MDOT: 

 

• Dynamic Modulus |E*| Test (AASHTO PP60, AASHTO T342, AASHTO R84) 

• Complex Shear Modulus of Binder (G*) Test (AASHTO T315) 

• Creep compliance D(t) and Indirect Tensile Strength (IDT) at low temperatures 

(AASHTO T322) 

• Creep Compliance (Park, 1999) 

 

  

Location I-69 Exit 123 I-69 Exit 113 I-496 Exit 97 I-496 Exit 4 

Surface 

condition 

Old  

HMA 

New 

HMA 

Old  

HMA 

New 

HMA 

Old  

PCC 

New  

PCC 

Old  

PCC 

Old  

HMA 

Date Time 
8/27/2020 

11:47 
8/27/2020 

12:28 
8/31/2020 

13:40 
8/31/2020 

14:31 
10/13/2020 

10:17 
10/13/2020 

10:30 
10/13/2020 

10:58 
10/13/2020 

11:07 

Weather Sunny with no cloud 

Air 

temperature 

[°C] 

28.0 30.4 26.8 32.2 11.5 11.5 11.5 11.5 

Wind speed 

[m/s] 
2.00 1.80 1.16 0.70 0.05 0.05 0.50 0.50 

Pavement 

temperature 

[°C] 

37.0 49.0 38.0 48.6 11.6 12.0 10.4 11.4 

SR Direct G 

[W/m²] 
690.99 766.32 871.04 833.42 409.73 476.16 514.99 539.20 

SR 

Reflected R 

[W/m²] 

139.42 39.65 97.39 56.33 153.40 206.30 133.90 122.52 

Albedo A 0.20 0.05 0.11 0.07 0.37 0.43 0.26 0.23 

Absorptivity 
S 

0.80 0.95 0.89 0.93 0.63 0.57 0.74 0.77 
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Table 6-29 Summary of Loose Mix from MDOT 

Mix type Route Sampling date 

2E3 M-50 2013/8/13 

3E30 I-94 2013/9/13 

4E03 US-2 2014/9/16 

4E1 M-26 2014/9/16 

4E10HS M-37 2013/9/18 

5E3 US-12 2014/9/23 

5E3 M-57 2013/2/26 

5E3CR M-57 2013/7/10 

5E3PHS M-57 2013/7/26 

5E30 I-96 2014/10/2 

HMASL US-10 2013/7/19 

4E3, 5E3 I-94 2020 selected project 

3E30-B, 3E30-L, 5E30-T I-69 WB 2021 selected project 

3E3, 4E3, 5E3HS M-3 2021 selected project 

2E10, 3E10, 4E10, 5E10 I-75 2021 selected project 

3E3, 4E3, 5E3 US-41 2020 and 2021 selected project 

Table 6-30 Summary of field cores from MDOT 

Mix type Route 

3E30 I-94 (2013) 

4E03 US-2 (2014) 

4E10HS M-26 (2014) 

4E10HS M-37 (2013) 

5E3 M-57 (2013) 

5E3 US-12 (2014) 

5E3 US-41 (2021 selected project) 

5E3HS M-3 (2021 selected project) 

5E3P M-57 (2013) 

5E3CR M-57 (2013) 

5E3, 4E3 I-94 (2020 selected project) 

5E10 I-75 (2021 selected project) 

5E30 I-96 (2014) 

5E30-T I-69 (2021 selected project) 
Note: At least 3 replicates for each project 

6.3.1.1. Dynamic Modulus |E*| Testing 

The |E*| tests were conducted to characterize the stiffness of the asphalt mixtures at different 

temperatures and loading frequencies following AASHTO T342. The average of three 

replicates was used to generate |E*| master curves, per AASHTO R84. Each replicate was 

tested in uniaxial compression mode at temperatures of -10, 10, 21, 37, and 54°C and loading 

frequencies of 25, 10, 5, 1.0, 0.5, and 0.1 Hz. Figure 6-11 through Figure 6-14 display the 

dynamic modulus master curves for HMA mixes from I-69, M-3, I-75, and US-41 (2021 

selected) projects. Figure 6-11 shows that the 3E30-B mix is slightly stiffer, followed by the 

3E30-L, and the 5E30 mix is the least stiff at all temperatures and frequencies. The 3E30-B 

mix used a softer PG 64-22 binder with 13% RAP content, while the 3E30-L and 5E30 mixes 
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included a polymer-modified PG 70-28 binder with 13% and 20% RAP contents, 

respectively. Although with a softer binder and lower RAP content, the higher stiffness of the 

3E30-B mix can be attributed to the gradation of the mixes; 3E30-B was the coarser mix of 

the three, while 5E30 used a fine gradation. 

 

 
Figure 6-11 |E*| master curves for mixes from I-69 (2021) project 

Figure 6-12 compares the |E*| master curves of the 3E3, 4E3, and 5E3 mixes of the M-3 

(2021) project. The results show that the 4E3 mix is stiffer at high temperatures and low 

frequencies than the 3E3 and 5E3 mixes. However, at low temperatures and higher 

frequencies, the 4E3 mix performed similarly to the 3E3 mix. The |E*| master curve for the 

5E3 mix indicates its lowest stiffness for all temperatures and frequencies owing to a finer 

aggregate structure. Figure 6-13 displays the dynamic modulus master curves for the 2E10, 

3E10, 4E10, and 5E10 mixes of the I-75 (2021) project. The 2E10 and 3E10 mixes included 

a PG 58-22 binder with 10% and 16% RAP contents, respectively. The 4E10 and 5E10 were  

PG 64-28 mixes with 18% and 20% RAP contents, respectively. However, the master curves 

indicate that all four mixes from the project are similar at all temperatures and frequencies. 

Figure 6-14 shows the |E*| master curves for the HMA mixes from the US-41 (2020 & 2021) 

project. The figure shows that the 3E3 and 5E3 mixes have similar stiffnesses irrespective of 

the temperatures and frequencies. The 4E3 mix is similar in stiffness to the other two mixes 

at low temperatures and higher frequencies but is softer than them at the lower frequencies 

(and higher temperatures). 
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Figure 6-12 |E*| master curves for mixes from M-3 (2021 project) 

 

Figure 6-13 |E*| master curves for mixes from I-75 (2021) project 

 

Figure 6-14 |E*| master curves for mixes from US-41 (2020 & 2021) project 
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Figure 6-13 through Figure 6-15 display the |E*| master curves for the HMA mixes from 

selected 2020 and earlier projects. Figure 6-13 shows the |E*| master curves for the 3E30-B, 

4E3, and 5E3 mixes from I-94 while the 5E30 mix from the I-96 project. The master curves 

show that the 3E30-B and 5E30 mixes are similar in performance and are stiffer than the 4E3 

and 5E3 mixes for all frequencies and temperatures. All the mixes from I-94 have similar 

stiffness at high frequencies (and low temperatures); however, the 4E3 and 5E3 mixes have 

similar stiffness at low frequencies and are softer than the 5E30 mix. Figure 6-14 shows |E*| 

master curves for the different HMA mixtures from the M-26, M-37, M-50, and M-57 

projects. The 5E3 and 2E3 mixtures have similar |E*| master curves and are stiffer than the 

4E1 and 4E10HS mixtures at low frequencies. Figure 6-15 shows that the US-2, US-10, and 

US-12 project mixes have similar stiffness for all frequencies (and temperatures). 

  

 
Figure 6-15 |E*| master curves for mixes, I-94 (2013 & 2020) and I-96 (2014) projects 

 
Figure 6-16 |E*| master curves for mixes, M-26 (2014), M-37, M-50, and M-57 (2013)  
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Figure 6-17 |E*| master curves for mixes, US-10 (2013), US-2, and US-12 (2014) projects 

6.3.1.2. Indirect Tensile Strength Testing 

The indirect tensile test (IDT) evaluates the strength of asphalt mixtures and is associated 

with other performance tests to estimate its resistance to rutting deformation and cracking 

damage. Figure 6-18 displays the results of the IDT tests for all the projects whose cores 

were provided by the MDOT. Among the 2021 projects, the 5E30 mix from I-69 has the 

highest IDT strength, followed by M-3 and I-75, and US-41 has the lowest strength. The 

results for I-69 are reasonable since the mix is designed for a higher traffic volume than those 

from other projects. The I-75 was expected to have higher IDT strength than M3 and US41; 

however, many cores for I-75 were collected from the shoulder, resulting in lower IDT 

strength for the 5E10 mix from I-75. The 5E3 mix from the I-94 project showed the highest 

IDT strength, while the same mix from M-57 displayed the lowest strength. Overall, the 

average IDT strength for all mixtures ranges between 200 psi to 500 psi. 

 

 

Figure 6-18 IDT strength results 
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6.3.1.3. Creep Compliance 

The creep compliance results can represent the trend of asphalt mixtures from deformation to 

fracture. The creep compliance was determined at three temperatures, i.e., -4, 14, and 32°F, 

and the time nodes of 1, 2, 5, 10, 20, 50, and 100s. The values from three replicates of each 

mix were summarized and drawn into curves. Generally, the creep compliance value at high 

temperatures is higher than at low temperatures because the materials become soft when the 

temperature increases and reduces the stiffness. In addition, as time goes by, creep 

compliance will gradually increase. The trend is true for all four roadway materials. Figure 

6-19 displays the creep compliance results for the 3E30-B, 3E30-L, and 5E30 mixes of the I-

69 (2021) project. The 3E30-B mix displayed the least D(t) values. At the same time, 5E30 

showed the highest creep compliance results indicating that the 3E30-B mix will accumulate 

permanent deformation slowly and perform better than the other mixes. Figure 6-20 shows 

the creep compliance results for the HMA mixes from the M-3 (2021) project. The creep 

compliance results indicate that the 5E3 mix performed inferior to the 3E3 and 4E3 mixes.  

 

Figure 6-21 shows the results for the HMA mixes from the I-75 (2021) project. It is observed 

that the results can be divided into three parts: the top part of the figure shows the creep 

compliance at high temperatures, creep compliance at low temperatures is located at the 

bottom of the figure, and creep compliance values for the intermediate temperature are seen 

in the middle of the figure. The 4E10 has the lowest potential to accumulate permanent 

deformation at low temperatures. The 2E10, 3E10, and 4E10 mixes have similar performance 

at the intermediate temperature, while at high temperatures, the 3E10 and 5E10 have similar 

lowest creep compliance values. 

 

 

Figure 6-19 Creep compliance results – I-69 (2021) project 
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Figure 6-20 Creep compliance results – M-3 (2021) project 

Figure 6-22 shows the creep compliance values for the US-41 project’s 3E3, 4E3, and 5E3 

HMA mixtures. The creep compliance values for all the mixes are smallest at low 

temperatures; however, at high temperatures, all mixtures, especially the 5E3, have a higher 

potential to deform permanently. Figure 6-23 through Figure 6-26 shows the creep 

compliance results of the HMA mixtures from projects from 2020 and earlier years.  

 

 

Figure 6-21 Creep compliance results – I-75 (2021) project 
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Figure 6-22 Creep compliance results – US-41 (2020 & 2021) project 

 

Figure 6-23 Creep compliance results – I-94 & I-96 projects 

 

Figure 6-24 Creep compliance results of mixes from M-26, M-37, and M-50 projects 
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Figure 6-25 Creep compliance results of mixes from the M-57 project 

 

Figure 6-26 Creep compliance results of mixes from US-2, US-10, and US-12 projects 

6.3.1.4. Asphalt Binder Complex Shear Modulus (|G*|) 

Table 6-31 lists the different asphalt binders provided by the MDOT. The |G*| testing was 

conducted per AASHTO T 315. The |G*| master curves and phase angles were summarized. 

Just as dynamic modulus results discussed earlier, a higher |G*| represents stiffer asphalt 

binder, and low frequency corresponds to higher temperatures and vice versa. A higher phase 

angle indicates a more viscous asphalt binder; a lower phase angle indicates a more elastic 

one. 
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Table 6-31 Summary of asphalt binders received from the MDOT 

Project Binder Type 

I69  PG 64-22, PG 70-22P leveling, PG 70-22P top 

M3  PG 58-28, PG 70-22P 

I75  PG 58-22, PG64-28 

Dickman road  PG 64-28 

M37 PG 70-28P 

I75  PG 58-22, PG 64-28 

I94  PG 64-22 

I96  PG 70-28P 

M3  PG 58-28, PG 70-22P 

M26  PG 58-28 

US2  PG 58-28 

US12  PG 58-34 

US41  PG 58-28, PG 58-34 

 

Figure 6-27 shows the |G*| master curves for the three binders tested from the I-69 (2021) 

project. The |G*| values of the PG70-22P binders are larger than PG64-22 at low frequency, 

indicating better performance in rutting. The PG70-22P binder also displayed smaller |G*| 

values compared to PG 64-22 at high frequency, indicating a better performance potential in 

fatigue. Such behavior can be expected owing to the polymer modification of the PG70-22P 

binder. Figure 6-28 displays the phase angle of the binders from the I-69 project. The PG70-

22P top and leveling binders had the same phase angle but were smaller than the PG64-22 for 

all frequencies, illustrating that the PG70-22P binders were more elastic than PG 64-22. The 

|G*| master curves and the phase angle plots for the remaining binders can be found in 

Appendix B. 

 

 

Figure 6-27 |G*| master curve of I-69 binders 
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Figure 6-28 Phase angle for I-69 binders 

6.3.1.5. IDEAL-CT Testing 

As part of the NCHRP Innovations Deserving Exploratory Analysis (IDEA) Project No.195, 

a new test method known as the Indirect Tensile Asphalt Cracking Test (IDEAL-CT) was 

developed for asphalt mix design, quality control (QC), quality assurance (QA) purposes. 

The IDEAL-CT is very similar to the traditional IDT strength test. It is performed using the 

IDT strength test equipment at room temperature on laboratory-prepared cylindrical samples 

with various diameters (100 or 150 mm) and thicknesses (38, 50, 62, 75 mm, etc.). It can also 

be performed on field cores that can be directly tested without cutting, notching, coring, 

gluing, instrumentation, or any other sample preparation. IDEAL-CT is relatively simple, 

practical, quick, and completed within a minute, using a loading rate of 50 mm/min (4, 5) 

 

The key performance-related cracking parameter derived from the measured load versus 

displacement curve using the IDEAL-CT is named the cracking test index (CTIndex). The 

index form is inspired by the well-known Paris’ law and Bazant and Prat’s work on crack 

propagation (6, 7). The CTIndex is calculated using Equation (6-10): 

 

 
𝐶𝑇𝐼𝑛𝑑𝑒𝑥 =

𝑡

62
×

𝐺𝑓

𝑃
𝑙

× (
𝑙

𝐷
) (6-10) 

 

where fracture energy Gf is calculated by dividing the work of fracture (the area under the 

curve of the load versus vertical displacement plot) by the area of the cracking face (diameter 

times the thickness); the term P/l is a modulus parameter (i.e., the slope of the load-

displacement curve) and the term l/D is a strain tolerance parameter. For any load versus 

displacement curve, the Gf is constant; however, the parameters P/l and l/D change between 

different points; the asphalt mixtures are visco-elastic-plastic, where damage can occur 

because of micro- or macro cracking.  

 

The macro-crack occurs in the post-peak load segment, which is accompanied by crack 

propagation and, thus, a reduction in the load-bearing capacity of the mixture. Hence, the 
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CTIndex calculations focus on the post-peak segment of the load versus displacement curve. 

For the determination of the P/l parameter, an analysis of more than 200 IDEAL-CT load-

displacement curves was generated from a variety of asphalt mixes with varying gradation, 

binders, and RAP/RAS contents was undertaken. The results revealed that the post-peak load 

at the inflection points is 75 percent of the average value of the peak loads of those curves 

with a standard deviation of five (σ = 5). Hence, the use of post-peak point (PPP75), i.e., 

where the load is reduced to 75 percent of the peak load, for the determination of parameters 

P/l and l/D were found to be stable and consistent, recommended for use in the CTIndex 

calculations. Since the P/l parameter in the post-peak segment of the load versus 

displacement curve is not a true asphalt mix modulus parameter but an overall representative 

of the cracked asphalt mix’s modulus, developers suggested using the absolute value of the 

slope between the post-peak point (PPP85). That is where the load is reduced to 85 percent of 

the peak load and post-peak point (PPP65) (i.e., where the load is reduced to 65 percent of the 

peak load). A detailed discussion on the selection and use of the parameters shown in the 

final calculations of the CTIndex as shown in Equation (6-11) can be found in the NCHRP 

IDEA-195 project report and excluded here for brevity (4). 

 

 
𝐶𝑇𝐼𝑛𝑑𝑒𝑥 =

𝑡

62
×

𝐺𝑓

|𝑚75|
× (

𝑙75

𝐷
) (6-11) 

 

where t is the specimen thickness (mm), Gf is fracture energy (Joules/m2), |m75| is the 

absolute value of the slope between PPP85 and PPP65 (N/m), l75 is the displacement 

corresponding to the 75 percent of the peak load at the post-peak stage (mm), and D is the 

specimen diameter (mm).  

 

The IDEAL-CT setup incorporated the use of a 6-inch diameter specimen IDT strength test 

fixture with the load applied such that a constant load-line displacement (LLD) rate of 50 ± 2 

mm/min was obtained and maintained during the test’s duration using a Material Testing 

System (MTS) (see Figure 6-29). As recommended, test specimens were conditioned in an 

environmental chamber for 2 hours at 25℃ and tested within 4 minutes after removal from 

the chamber to maintain a uniform specimen temperature (4). The applied load and the 

sample displacement with time were recorded during the test until the load dropped below 

100 N. Figure 6-29 displays the load versus displacement curves for all 43 cores obtained 

from the I-69, I-75, and M-3 projects (2021 construction) and tested. The mix volumetrics, 

aggregate gradations, and the measured air voids and thicknesses of the cores are given in 

Table 6-32. As recommended, a minimum of three cores were tested per asphalt mixture. 

One of the objectives of this work is to compare and assess the relative performance of the 

different mix types. This comparison was accomplished by considering the area under the 

load-displacement curve until the 10 mm displacement. Because beyond 10 mm, the curve 

showed a slight load increase. The broken sample was prevented from falling out of the IDT 

fixture until the MTS actuator was raised due to the fixture’s vertical support. The resistance 

posed by the broken sample caused a slight jump in the load.   
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Figure 6-29 IDEAL-CT setup and load versus displacement curves for all samples  

Using the load-displacement data obtained from the test, the CTIndex was determined for each 

mix along with other indexes such as flexibility index (FI), cracking resistance index (CRI), 

toughness index (TI), and the Nflex factor.  

 

The FI was developed under the FHWA study that investigated testing protocols for testing 

engineering properties of AC mixtures with varying amounts of RAP and RAS. The 

developed FI was shown to differentiate well among the mixes concerning their fatigue 

cracking resistance (8). The FI describes the material’s cracking behavior following the 

AASHTO TP124-16 specification. Mathematically, FI is defined as the ratio of the fracture 

energy (Gf) to the slope of the post-peak load-displacement curve at the inflection point, as 

shown by Equation (6-12): 

 

 
𝐹𝐼 = 𝑘 ×

𝐺𝑓

| 𝑚 |
 (6-12) 

 

where k is a scaling coefficient (k = 0.01) while |m| is the absolute value of the post-peak 

slope at the inflection point of the load-displacement curve. 
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Table 6-32 Mix volumetrics, aggregate gradations, and measured thicknesses and air 

voids for the nine asphalt mix cores 

Mix ID 2E10 3E3 3E10 3E30-B 4E3HS 4E10 5E3HS 5E10 5E30 

Binder PG grade 58-22 58-22 58-22 64-22 70-22P 64-28 70-22P 64-28 70-28P 

Binder content (%) 4.48 4.97 5.08 4.92 5.54 5.49 5.99 6.10 6.64 

Design air voids (%) 3 3 3 3 3 3 3 3 3 

VMA (%) 12.99 13.52 13.88 14.05 14.51 14.86 15.80 16.04 16.25 

VFA (%) 76.90 77.80 78.38 78.69 79.33 79.82 81.01 81.29 81.50 

RAP content (%) 10 24 16 13 27 18 24 20 15 

NMAS (mm) 19 12.5 19 12.5 12.5 12.5 9.5 9.5 9.5 

Aggregate gradation (% passing) 

P 1-1/2” (37.5mm) 100 100 100 100 100 100 100 100 100 

P 1” (25.0 mm) 100 100 100 100 100 100 100 100 100 

P 3/4” (19.0 mm) 89.2 100 94.1 100 100 100 100 100 100 

P 1/2” (12.5 mm) 74.9 87.9 87.1 87.6 93.9 91.3 99.8 99.6 100 

P 3/8” (9.5mm) 71.0 77.7 84.9 77.7 86.5 85.0 97.6 97.6 99.5 

P No.4 (4.75mm) 62.8 58.4 71.2 61.8 76.5 74.2 77.2 84.4 79.4 

P No.8 (2.36mm) 37.5 44.1 44.8 48.0 51.3 50.8 55.1 56.1 60.8 

P No.16 (1.18mm) 23.4 33.4 30.3 34.8 39.0 34.8 39.5 38.5 41.6 

P No.30 (600µm) 15.5 24.8 21.0 22.8 28.9 24.3 28.2 26.8 27.6 

P No.50 (300µm) 10.3 14.6 12.6 12.3 16.8 14.6 16.9 15.8 16.8 

P No.100 (150µm) 6.6 7.1 7.0 6.7 7.9 7.8 8.3 8.2 9.6 

P No.200 (75µm) 4.5 4.5 4.9 4.5 4.9 5.4 5.1 5.6 5.7 

Measured parameters 

Avg. air voids (%) 6.0 5.6 6.5 5.7 5.8 7.2 4.5 7.2 7.0 

StDev. air voids (%) 1.1 0.9 1.4 0.4 0.5 1.6 2.2 1.3 1.5 

Avg. thickness (mm) 55.0 55.0 59.0 57.8 54.1 53.3 33.9 43.6 41.5 

StDev. thickness (mm) 22.7 14.3 7.3 7.7 8.2 6.8 4.4 10.4 8.2 

Note: 3E30-B = 3E30 mix used as a base course, HS = High-stress mix, StDev. = Standard deviation.  

 

The CRI is a cracking parameter derived from the load-displacement curve of an asphalt 

mixture aimed at discriminating between the mixes with different peak loads but similar 

fracture energies relative to their maximum strengths (9). Equation (6-13) shows the 

mathematical form of the CRI, which is a ratio between the Gf and the peak load (Pmax). 

 

 
𝐶𝑅𝐼 =

𝐺𝑓

| 𝑃𝑚𝑎𝑥 |
 (6-13) 

 

The TI aims to capture the asphalt mixture’s response during the crack propagation, i.e., 

within the post-peak segment of the load-displacement curve. Developed by Parez-Jimenez et 

al., the mathematical form of the TI is given by Equation (6-14) (10):   

 

 𝑇𝐼 = (𝐺𝑓 − 𝐺𝑓𝑃𝑚𝑎𝑥
) − (𝛿50𝑃𝑚𝑎𝑥

−  𝛿𝑃𝑚𝑎𝑥
) × 10−3 (6-14) 

 

where GfPmax is the fracture energy calculated until the peak load (Pmax), δ50Pmax is the post-

peak displacement at a 50% reduction of the load, while δPmax is the displacement at the peak 

load (Pmax). 
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The Nflex is calculated by determining the toughness (Tinf) from the load-displacement curve 

up to the inflection point in the post-peak segment and dividing it by the absolute value of the 

slope of the curve at the inflection point as shown in Equation (6-15). The Nflex factor was 

introduced for the IDT strength test and has also been used for the SCB tests (11). 

 

 
𝑁𝑓𝑙𝑒𝑥 =

𝑇𝑖𝑛𝑓

| 𝑚 |
 (6-15) 

 

After obtaining the load-displacement curves for each specimen, the CTIndex was calculated. 

This study also used the same data to calculate each mix type's FI, CRI, TI, and Nflex factor 

for comparison purposes only. Figure 6-30 displays the bar charts for each of the determined 

cracking indexes. Figure 6-30(a) shows that the CTIndex values for the base course (2E & 3E) 

mixes are generally lower as compared to the leveling and surface course (4E & 5E) mixes, 

as expected. However, the coefficient of variation (CoV) for the 2E10, 3E3, and 5E30 mixes 

(see Table 2) is slightly higher than the maximum CoV of 23.5% reported for the laboratory-

prepared samples in the NCHRP IDEA-195 report. Such variability can be attributed to 

testing field-extracted cores rather than laboratory-prepared samples that are more uniform in 

their composition. The 5E mixes show the highest crack resistance (i.e., higher CTIndex), 

which is expected as these mixes are binder-rich with more than 6% binder content. Among 

the base course mixes, the 3E30 has the lowest CTIndex, which can be explained by the stiffer 

binder and its lower content within this mix compared to the others. The 4E3HS mix with 

higher binder content shows lower CTIndex than the 4E10 mix because of higher RAP content. 

 

The FI plot in Figure 6-30(b) shows similar trends to the CTIndex; however, with larger CoV, 

especially for the 2E10 mix. The CRI displayed lower variability than the CTIndex and the FI, 

as shown in Figure 6-30(c). The 5E3HS mix has a higher CRI than the other “5E” mixes. The 

Gf value for the 5E3HS mix was the highest among the surface course (5E) mixes, a possible 

reason for its highest CRI value, which is simply the ratio between the Gf and the peak load. 

It is worth mentioning that the 5E3HS mix specimens have the lowest air voids among the 

“5E” mixes. The TI has the lowest CoV among all the indexes (see Table 6-33), while the 

trends observed in Figure 6-30(d) are similar to the CTIndex ones for all mixes except the “5E” 

mixes that resemble the trends observed for TI. The highest variability (i.e., highest CoV) is 

observed in the Nflex values with mixed trends among all the mixes, as displayed in Figure 

6-30(e). Overall, the CTIndex can differentiate between different mix types (4). The CTIndex 

displayed similar trends (and similar CoV) as the FI, which is the same observation made in 

the NCHRP IDEA-195 report about the two indexes. Among the indexes, the highest 

variability is observed in the Nflex values, followed by CRI, while TI had the lowest 

variability. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 6-30 Load-displacement curve-based parameters for all mixes: (a) Cracking test 

index (CTIndex), (b) Flexibility index (FI), (c) Cracking resistance index (CRI), (d) 

Toughness index (TI), (e) Nflex factor 
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Table 6-33 Statistical details of the computed indexes for every mix 

Mix ID 2E10 3E3 3E10 3E30-B 4E3HS 4E10 5E3HS 5E10 5E30 

CTIndex 

Average 119.4 103.8 134.5 84.5 75.7 188.3 184.0 243.4 272.1 

StDev. 46.3 50.7 38.6 6.2 16.5 33.2 32.6 54.4 85.9 

CoV (%) 39 49 29 7 22 18 18 22 32 

FI 

Average 44.2 30.2 33.1 25.6 24.6 49.9 70.3 71.2 78.6 

StDev. 26.5 10.8 5.1 5.6 4.7 9.7 14.9 24.9 24.9 

CoV (%) 60 36 15 22 19 19 21 35 32 

CRI 

Average 825.1 715.7 702.6 652.4 671.5 846.7 1354.5 1127.0 1189.2 

StDev. 407.1 148.9 87.7 114.7 103.5 125.1 224.1 281.0 275.7 

CoV (%) 49 21 12 18 15 15 17 25 23 

TI 
(J/m) 

Average 15.1 10.5 14.1 15.5 11.7 12.6 18.1 14.1 18.5 

StDev. 2.8 3.3 1.8 0.5 1.9 1.0 2.1 1.9 1.6 

CoV (%) 19 32 13 3 16 8 12 13 9 

Nflex 
factor 

(J/m2) 

Average 10.2 16.0 13.3 3.0 8.5 30.3 28.8 19.5 26.2 

StDev. 6.8 10.1 9.6 0.3 7.4 4.4 5.4 13.3 25.1 

CoV (%) 67 63 72 8 87 14 19 68 96 
Note: StDev. = Standard deviation, CoV = Coefficient of variation. 

6.3.1.6. DynaMOD Predictions Evaluation 

DynaMOD is a standalone software that serves as a database for HMA test results conducted 

under MDOT research projects. It is a convenient tool that can be used to quickly assess the 

material testing data and generate material inputs that can be directly used in the Pavement-

ME design software. The test data from the material characterization conducted under this 

project was used to compare the |E*| predictions obtained from DynaMOD for the different 

HMA mixes of the 2020 and 2021 projects. Figure 6-31 compares the |E*| master curves 

obtained using the laboratory measured |E*| data and DynaMOD predicted |E*| values. It is 

observed that the DynaMOD predicted master curve is in close agreement with the one 

determined from laboratory test data, as shown by the bias and SE values reported in the 

figure.  
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(a) I-69 3E30-L mix 

 

(b) I-75 3E10 mix 

Figure 6-31 Measured vs. DynaMOD predicted |E*| comparison 

6.3.2 PCC Material Testing 

For the PCC materials, various material properties related to ME inputs include E,
'

cf , 

modulus of rupture (MOR), coefficient of thermal expansion (CTE), unit weight, and 

Poisson’s ratio. Since MOR and CTE inputs significantly impact the predicted JPCP 

performance, these were measured in the laboratory for the PCC projects selected from the 

2020 projects. Table 6-34 summarizes the total number of concrete samples received from 

the MDOT and those tested for the I-196 Eastbound (EB) and I-75 Southbound (SB) JPCP 

projects.  
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Table 6-34 Summary of concrete samples testing 

Project 
Beams Cylinders Cores 

Received Tested Received Tested Received Tested 

I-196 EB 2 2 9 9 27 9 

I-75 SB 2 2 9 9 24 12 

6.3.2.1. Concrete Mechanical Properties 

For the I-196 EB JPCP project, two concrete beams were tested for MOR. Both beams were 

subjected to 4-point loading using MDOT’s portable beam tester, and failure occurred near 

the mid-point as expected (see Figure 6-32). Table 6-35 shows the MOR test results; a mean 

MOR of 683 psi was obtained from beam tests. Table 6-36 presents the estimated concrete’s 

elastic modulus and compressive strengths from testing all nine cylinders. The average 

cylinder modulus is 4.33 x 106 psi, and the average compressive strength is 6,455 psi. The 

ratio between the mean MOR and the square root of the average compressive strength is 8.5, 

slightly lower than 9.5, which ACI suggests. The resultant coefficient for the modulus ratio 

to square root compressive strength is ~54,000, while it is 57,000 for the PMED equation 

based on a concrete unit weight of 144 lb/cft.  

 

 

Figure 6-32 Typical beam break – I-196 EB JPCP project 

Table 6-35 Flexural strength test results, I-196 EB JPCP project 

Specimen 

number 
Sampling date Station Test date failure load (lbs) MOR (psi) 

1 7/1/2020 1121+75 8/28/2020 8,600 717 

2 9/19/2020 1005+00 12/18/2020 7,800 650 
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Table 6-36 Cylinder compressive strength test results, I-196 EB JPCP project 

Specimen 

number 
Sampling date Station Test date Modulus (psi) Strength (psi) 

1 7/1/2020 1111+00 8/21/2020 5,469,500 6,106 

2 7/9/2020 1135+75 8/21/2020 4,388,967 5,766 

3 7/12/2020 1151+00 6/21/2021 5,022,167 6,820 

4 7/13/2020 1180+00 6/21/2021 4,106,400 6,358 

5 7/15/2020 1204+44 6/21/2021 3,561,400 3,071 

6 8/30/2020 955+00 6/21/2021 4,307,233 7,624 

7 9/19/2020 989+00 12/17/2020 4,361,667 7,080 

8 9/21/2020 1010+50 12/17/2020 3,729,367 6,066 

9 9/23/2020 1032+00 12/17/2020 4,065,500 5,823 

Average 4,334,689 6,455 

Standard deviation 563,108 617 

Coefficient of variation, % 13.0 9.6 
Note: Bold-faced strength value is not included in the average calculation as the sample broke during modulus 

testing. The strength was determined using the stress-strain curve and is an outlier. 

 

Table 6-37 summarizes the compressive strength testing results of the nine concrete cores for 

the I-196 EB JPCP project. The remaining concrete cores were used for durability-related 

testing of the concrete. The stationing on the cores roughly corresponds to locations from the 

start (stations 900+00 to 1000+00), middle (stations 1000+00 to 1100+00), and end (stations 

1100+00 to 1200+00) stations of the project. The table displays the average value for E and 

the '
cf for each of the three locations on the project. The results do not display much variation 

within the different locations. 

Table 6-37 Compressive strength test results from cores, I-196 EB JPCP project 

Specimen 

number 
Station Test date 

Avg. 

dia. 

(in) 

Avg. 

height 

(in) 

Modulus 

(psi) 

Strength 

(psi) 

Correction 

factor 

Corrected 

strength 

(psi) 

280 967+36 6/21/2021 6 11.3 3,292,600 4,724 0.9768 4,614 

284 959+01 6/21/2021 6 11.8 3,166,100 5,132 0.976 5,009 

398 999+21 6/18/2021 6 11.7 3,512,333 4,752 0.9752 4,635 

Average 3,323,678   4,753 

Standard deviation 143,047   181 

Coefficient of variation, % 4.3   3.8 

90 1100+34 12/22/2020 6 10.4 3,660,300 4,372 0.9832 4,298 

413 1029+00 6/18/2021 6 11.7 4,041,300 4,752 0.996 4,733 

436 1082+18 6/18/2021 6 11.7 3,295,000 4,774 0.996 4,755 

Average 3,665,533   4,595 

Standard deviation 304,698   210 

Coefficient of variation, % 8.3   4.6 

63 1179+79 6/18/2021 6 10.4 2,740,400 4948 0.9784 4,841 

78 1132+02 6/18/2021 6 10.4 3,824,300 5522 0.9784 5,403 

83 1120+33 6/18/2021 6 10.6 3,280,533 5313 0.9776 5,194 

Average 3,281,744   5,146 

Standard deviation 442,501   232 

Coefficient of variation, % 13.5   4.5 
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For the I-75 SB JPCP project, two concrete beams were tested for MOR (from station 

119+67 to station 396+03). The beams failed near the mid-point, as shown in Figure 6-33, 

once subjected to 4-point loading. Table 6-44 shows the MOR test results. The mean MOR 

recorded for the project was 758 psi. Table 6-45 presents the compressive strength test results 

using concrete cylinders. The average cylinder modulus is 4.76 x 106 psi, and the average 

compressive strength is 7,027 psi. The ratio between mean MOR and the square root of 

average compressive strength is 9, close to the ACI suggested value of 9.5. The resultant 

coefficient for the modulus ratio to square root compressive strength is 56,860, which is in 

excellent agreement with the PMED equation of 57,000 based on a concrete unit weight of 

144 lb/cft.  

 

Table 6-39 summarizes the compressive strength testing results of the twelve concrete cores 

for the I-75 SB JPCP project. The stationing on the cores roughly corresponds to locations 

from the project's start, middle, and end stations. The table displays the average modulus and 

compressive strengths for each of the three locations on the project. The obtained results for 

modulus and compressive strength from core testing between stations 100+00 to 200+00 are 

higher (average elastic modulus of 4.67 x 106 psi and average compressive strength of 6,208 

psi) as compared to those obtained from stations 200+00 to 300+00 (average elastic modulus 

of 2.87 x 106 psi and average compressive strength of 5,550 psi) and 300+00 to 400+00 

(average elastic modulus of 3.26 x 106 psi and average compressive strength of 5,011 psi). 

 

 

Figure 6-33 Typical beam break – I-75 SB JPCP project 

Table 6-38 Flexural strength test results, I-75 SB JPCP project 

Specimen 

number 
Specimen ID Cast date Test date Failure load (lbs) MOR (psi) 

1 7011-1C 9/10/2020 3/26/2021 9,300 775 

2 7011-1D 9/10/2020 3/26/2021 8,900 742 
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Table 6-39 Compressive strength test results from cylinders, I-75 SB JPCP project 

Specimen ID Cast date Test date Modulus (psi) 
Corrected strength 

(psi) 

3630 10/15/2020 5/4/2021 4,726,267 6,154 

3981 10/27/2020 5/4/2021 4,590,133 7,000 

4063 10/30/2020 5/4/2021 4,913,633 7,069 

4156 11/3/2020 5/11/2021 5,153,400 7,579 

4335 11/9/2020 5/11/2021 4,248,633 6,329 

4263 11/6/2020 5/12/2021 4,312,367 6,587 

4440 11/11/2020 5/11/2021 5,035,367 7,518 

4531 11/13/2020 5/12/2021 4,773,400 7,302 

4610 11/17/2020 5/12/2021 5,144,467 7,704 

Average 4,766,407 7,027 

Standard deviation 334,231 562 

Coefficient of variation, % 7.0 8.0 

Table 6-40 Compressive strength test results from cores, I-75 SB JPCP project 

Specimen 

number 
Station Test date 

Avg. 

dia. 
(in) 

Avg. 

height 
(in) 

Modulus 

(psi) 

Strength 

(psi) 

Correction 

factor 

Corrected 

strength 
(psi) 

96 387+82 12/22/2020 5.8 11.5 3,584,567 5,262 0.9984 5,253 

111 362+04 4/13/2021 6 12 3,055,933 4,825 1.0000 4,825 

121 344+64 4/13/2021 6 11.9 3,158,800 4,964 0.9984 4,956 

Average 3,266,433   5,011 

Standard deviation 28,0271   219 

Coefficient of variation, % 8.6   4.4 

364 273+11 12/22/2020 5.8 11.8 5,028,800 7,473 1.0024 7,491 

367 282+99 4/13/2021 6 11.4 2,579,533 5,770 0.9920 5,724 

314 225+00 5/4/2021 6 12 2,670,367 5,843 1.0000 5,843 

310 229+10 5/6/2021 6 12.1 3,244,833 5,430 1.0016 5,439 

370 293+70 5/6/2021 6 11.8 3,004,767 5,208 0.9976 5,196 

Average 2,874,875   5,550 

Standard deviation 30,7024   291 

Coefficient of variation, % 10.7   5.2 

332 197+05 12/22/2020 5.9 11.3 4,567,367 6022 0.9936 5,983 

327 205+01 5/4/2021 6 11.5 4,624,933 6426 0.9936 6,385 

383 131+74 5/4/2021 6 11.8 2,846,300 6150 0.9976 6,135 

337 187+17 5/6/2021 6 12.1 4,822,933 6317 1.0016 6,327 

Average 4,671,744   6,208 

Standard deviation 134,060   184 

Coefficient of variation, % 2.9   3.0 
Note: Bold-faced modulus values are not included in the average calculation for the corresponding sections. 

6.3.2.2. Concrete Coefficient of Thermal Expansion (CTE) 

The CTE measures the concrete’s contraction or expansion caused due to temperature 

changes. As the length change associated with the thermal expansion is small, it is usually 

expressed in microstrain (10-6) per degree Celsius (με/ °C) or microstrain per degree 
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Fahrenheit (με/ °F) units. The typical range of CTE for a PCC is about 7.2 to 13 με/ °C (4 to 

7.2 με/ °F). However, the value may vary depending on the concrete’s components, 

aggregate types, w/c ratio, cement fineness, etc. The CTE is an important parameter in the 

design of concrete pavements. Characterizing the effects of thermal properties on a concrete 

pavement’s structure is to account for its thermal movements. CTE is represented as an 

average value rather than a mix-specific input in pavement design. This may lead to 

erroneous assumptions about the pavement's thermal response and possible distresses. 

Therefore, conducting CTE tests can help pavement design engineers better predict the 

impact of mix-specific thermal expansion on pavement behavior. 

 

The American Association of State Highway and Transportation Officials (AASHTO) 

standard test T 336-15 was adopted to measure the concrete’s CTE. The specimen is heated 

in a water bath from 10 to 50°C and then cooled down to 10 °C. The length and temperature 

of the specimen at 10°C and 50°C are recorded for CTE calculation for each heating and 

cooling segment. The CTE value of the test specimen is taken as the average of the heating 

and cooling segments, provided the two values are within 0.3 με/oC. The standard method 

has a couple of limitations as follows: 

 

• The actual curve of temperature versus length change is unknown within each 

segment. 

• Only the water bath temperature is measured, which may not represent the concrete 

specimen’s temperature. 

 

Therefore, a few modifications were made at the U of M based on AASHTO T336-15 to 

achieve better accuracy. Summarized modifications are as follows: 

 

• The length change of the specimen vs. temperature is monitored for the entire 

process.  

• Two companion concrete specimens that have a thermal couple embedded at the 

center are introduced to simulate the real temperature change in the test specimens. 

The average temperature of the two companion concrete specimens was used as the 

temperature of the test specimen.  

 

Two cores from the I-75 and I-196 concrete pavement (2020) projects were tested to estimate 

the concrete’s CTE. The prepared specimens from both projects were conditioned by 

submersion in a limewater bucket for at least 48 hours. Table 6-41 summarizes the 

dimensions and CTE test results for both concrete pavement projects. The estimated CTE 

from cores from the I-75 project has an average of 9.35 με/°C (5.19 με/°F) after calibration. 

The average CTE estimated using cores from the I-196 project is 7.22 με/°C (4.01 με/°F). 

The test results showed that the concrete’s length changed almost linearly with temperature 

changes, as shown in Figure 6-34 and Figure 6-35.  
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Table 6-41 Dimensions and CTE results of test specimens 

Project Core number Length (in) Diameter (in) 
CTE test (AASHTO T336-15)  

(x 10-6 in/in/°C) (x 10-6 in/in/°F) 

I-75 
#99 11.811 5.920 9.378 5.210 

#106 12.405 5.934 9.321 5.178 

I-196 
#394 12.062 5.914 7.390 4.106 

#408 12.362 5.858 7.055 3.919 

 

 

Figure 6-34 Length change vs. temperature for I-196 core #394 

 

Figure 6-35 Length change vs. temperature for I-196 core #408 
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6.3.2.3. Concrete Surface Resistivity Testing 

One of the key distresses in concrete pavements is joint spalling from deicer frost 

deterioration of the cement matrix combined with internal cracking in saturated concrete 

from insufficient air-void parameters (i.e., total air content in fresh concrete, spacing factor, 

and specific surface area in the hardened concrete). However, permeability requirements are 

also essential for concrete durability in addition to air content and hardened air-void 

properties. The concrete’s durability can be measured in its ability to resist chloride ion 

penetration (AASHTO T 277 and ASTM C1202), commonly known as the rapid chloride 

permeability test (RCPT). However, research has shown that the surface resistivity (SR) test 

(AASHTO TP 95) is a promising alternative to the RCPT (12). Table 6-42 shows the 

relationship between the chloride ion penetrability and the SR test (AASHTO TP 95) that 

measures the electric resistivity of the concrete from concrete cylinders/cores. Table 6-43 

summarizes the SR test results conducted on cores from the I-75 and I-196 JPCP (2020) 

projects. The concrete of the I-75 JPCP project falls under moderate to low, while that of the 

I-196 project falls under very low chloride ion penetrability. 

Table 6-42 Comparison of chloride penetrability levels established for standards based 

on electric resistivity (AASHTO TP 95) and charge passed (ASTM C1202) (12) 

Chloride ion penetrability Electric resistivity, kΩ.cm Electric charge passed, coulombs 

High <12 >4000 

Moderate 12 to 21 2000 to 4000 

Low 21 to 37 1000 to 2000 

Very low 37 to 254 100 to 1000 

Negligible >254 <100 

Table 6-43 Resistivity test results – 2020 concrete projects 

Project Core number Resistivity (kΩ⋅cm) 

I-75 
#99 33.9 

Mean = 26.85 
#106 19.8 

I-196 
#394 42.4 

Mean = 41.25 
#408 40.1 

6.3.2.4. Concrete Water Sorption and Freeze-Thaw (F-T) Testing 

This section presents the water sorption and freeze-thaw (F-T), durability testing on (100mm 

by 100mm, 70 mm thick) samples cut from cylinders/cores of the I-196 and I-75 concrete 

projects. The samples were dried for two weeks at 50°C before undergoing a 1-D sorption 

test for a week according to ASTM C 1585. The sorption test provided a near-full water 

saturation state before the start of F-T testing with the bottom surface continuously in contact 

with a 3% Sodium Chloride (NaCl) solution.  

 

The theory according to ASTM C1585 is illustrated in Figure 6-36. The 1-D moisture uptake 

is plotted versus the square root of time in hours. The process consists of two near-linear 

portions starting with capillary suction followed by a slower diffusion process, which 

consists of partial moisture uptake of concrete air voids. The amount of moisture uptake 

corresponding to capillary suction is a measure of the capillary porosity of the cementitious 

binder. Moisture absorption by capillary forces is considered a major mode of transport in 
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unsaturated concrete. It is an important property for the F-T durability of concrete structures 

which largely depends on its resistance to the ingress of aggressive agents from the 

environment. 

 

 

Figure 6-36 Idealized moisture uptake curve for concrete 

 

Following the sorption test, the specimens were transferred to an F-T chamber [Figure 

6-37(a)] with the bottom surface exposed to a 3% NaCl solution during the F-T cycle [Figure 

6-37(b) and (c)]. A linear F-T temperature profile between 20°C and -20°C with a cycle of 12 

hours is shown in Figure 6-37(d). This time-temperature profile allowed for a one-hour 

constant temperature period at 20°C for collection and weight measurement of the surface 

scaled material [see Figure 6-37(e)] along with the determination of the relative modulus 

[Figure 6-37(f)] for internal crack resistance. Typically, 28 F-T cycles are sufficient for 

determining deicer scaling resistance. In this study, 56 cycles were used to assess regular F-T 

resistance from relative dynamic modulus measurement (RDM) and deicer scaling resistance 

in terms of mass loss in g/m2 units.   

 

Duplicate samples from both the concrete projects (I-196 and I-75) were moisture 

conditioned according to the ASTM C 1585 procedure, whose results (i.e., the average mass 

gain of the replicate samples, in percentage) are plotted in Figure 6-38. Specimens #394 and 

#408 from the I-196 project were found to have a 2.41% and 2.46% total mass gain after 

about 7 days, respectively. These were slightly lower than the 2.75% and 3.12% for 

specimens #99 and #106, respectively from I-75. This suggests that I-196 concrete is slightly 

less porous than I-75 concrete. This finding is in line with the results of the SR tests on the I-

196 concrete samples. 

 



 

224 

 

 

Figure 6-37 F-T test procedure 

 

Figure 6-38 Moisture uptake results according to ASTM C1585 
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Deicer scaling results from samples from I-75 and I-196 had a similar trend of scaling 

development, as shown in Figure 6-39. All samples developed scaling linearly relating to F-T 

cycles, and the RILEM limit (1500 g/m2 scaling limit at 28 cycles) was met. The scaling at 

the end of the test period (78 cycles) was about 1500 g/m2, suggesting that they had good F-T 

scaling resistance. The surface exposure also demonstrates insignificant mass loss (see Figure 

6-40) due to deicer scaling. Consistent with the low scaling results, the I-196 and I-75 

concrete have an excellent regular F-T by RDM. All the samples have an RDM above 90%, 

suggesting that there is no internal cracking developed inside the concrete (see Figure 6-41). 

 

 

Figure 6-39 Deicer scaling results 

 

 
(a) I-75 #106 

 
(b) I-196 #394 

Figure 6-40 Samples after the F-T test 
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Figure 6-41  Relative Dynamic Modulus (RDM) results 

6.3.2.5. Concrete Air Void Analysis 

Based on ASTM C457, an air void analyzer is used to assess the air-void system in hardened 

concrete using point count procedures and the linear traverse method. 20mm thick square 

specimens with 100mm width and length are cut from the same beam specimens used for the 

F-T test. The specimens are first polished using silicon carbide abrasives to obtain a smooth 

surface. The point count procedure determines the volume fractions of air voids, paste, and 

aggregate on the polished surface by recording the number of stops over each phase under 

the crosshair of a microscope. The same scanned surface is used for the linear traverse test. 

Before starting the linear test, the surface was treated by coating it with barium sulfate to fill 

all the air voids, and the rest of the surface was painted black with caution so that the air 

voids could form a sharp contrast to the concrete matrix. The RapidAir 457 automatic image 

analyzer was used to scan the prepared surface for which the air void characteristics report 

was obtained. Table 6-44 shows the air void analysis results. The average hardened air 

content of samples from I-75 is 5.6% based on the point count results, which falls within the 

range of specified air (5.0% - 8.0%). The average spacing factor is 135 microns, which is 

way below the 200 microns limit recommended by ACI. The average hardened air content of 

samples from I-196 is 4.8%, with an average of 166.5 microns in the spacing factor. 

Table 6-44 Air void analysis based on ASTM C 457 

Project Sample Station 

Point count 
Linear traverse test 

Air content, % 

Spacing 

factor, 

µm 

Specific 

surface, 

1/mm 
Air Paste Aggregate 

Entrained 

air <500 

µm 

Total 

air 

<4000 
µm 

I-75 
#99 382+70 5.4 22.2 72.4 4.2 5.4 133 31 

#106 368+18 5.8 23.9 70.4 3.6 5.4 137 32 

I-196 
#394 986+73 4.8 26.5 68.7 3.9 5.7 178 25 

#408 1018+04 5.8 28.9 65.3 5.1 6.8 155 27 
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6.3.3 Unbound Material Testing 

Laboratory testing of unbound material samples included 67 geomaterials collected from I-

69, I-196, I-75, M-3, and US-41. Overall, 46 geomaterials, including 16 base, 16 sub-base, 

and 25 subgrade materials, were tested for sieve analysis, compaction, resilient modulus, and 

Atterberg limits. Among the materials collected, 31 presented the same soil classification and 

index properties and belonged to the same gradation precision range. Those were merged 

according to AASHTO T 27-14 and ASTM  C136-06. Summarized results are presented in 

this section, while detailed test results are included in Appendix B. Table 6-45 shows the 

summary resilient moduli (SMR) values for the different pavement layers of all the 2020 and 

2021 projects. Figure 6-42, Figure 6-43, and Figure 6-44 display the resilient moduli values 

for all the replicates of the base, subbase, and subgrade materials for all the projects. While 

Figure 6-45 shows the summary of the MR results for the different layers of each project. 

Table 6-45 Summary of the resilient moduli (SMR) for each project 

Layer 

I-196 I-69 I-75 M-3 US-41 

SMR 
(ksi) 

SD 
(ksi) 

SMR 
(ksi) 

SD 
(ksi) 

SMR 
(ksi) 

SD 
(ksi) 

SMR 
(ksi) 

SD 
(ksi) 

SMR 
(ksi) 

SD 
(ksi) 

Base 36.04 NA 41.59 NA 30.58 NA 40.71 2.01 27.39 0.73 

Subbase  21.71 NA 23.83 3.10 NA NA 22.10 1.40 24.64 NA 

Subgrade NA NA 12.87 2.19 14.67 4.30 11.98 1.52 13.10 0.94 
SD = standard deviation. 

 

 

Figure 6-42 Summary resilient moduli (SMR) values for base materials 
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Figure 6-43 Summary resilient moduli (SMR) values for sub-base materials 

 

Figure 6-44 Summary resilient moduli (SMR) values for subgrade materials 
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Figure 6-45 Summary resilient moduli (SMR) values for different pavement layers 

6.4 COMPARISON BETWEEN FIELD AND LAB MATERIAL 

PROPERTIES 

The in-situ resilient or elastic moduli of pavement layers were estimated using various field 

tests―FWD, LWD, and DCP, conducted over different layers of the 2020 and 2021 selected 

projects. In addition, data from the "Evaluation of MDOT's Long-life Pilot Projects" project 

is also included in this section for comparison between the field and lab-measured moduli 

values for different pavement unbound layers. Figure 6-46 through Figure 6-48 show 

comparisons between the estimated moduli values for the different layers and the laboratory-

measured summary resilient moduli (SMR) values. The figures display the complete range of 

the moduli values for the different pavement unbound layers of each of the projects, 

irrespective of the testing/sampling locations. It is noted that the DCP direct model was 

utilized for calculating the resilient moduli of the materials in pavement layers.  

 

Figure 6-46 shows boxplots comparing the subgrade moduli values of the different projects. 

The figure shows very few outlier values (represented by an asterisk symbol) within the data. 

The results show that the LWD resulted in the lowest subgrade moduli values. However, due 

to different stress levels, the general trends of the moduli values estimated from various field 

tests are expected to be similar. For example, the median subgrade modulus for the US-131 

project is the highest among all projects from LWD and DCP data analyses. However, FWD 

data analyses show the highest subgrade moduli values for the US-41 project. The laboratory 

data show that the median subgrade moduli for all projects are between 12 to 17 ksi, with the 

values indicating the least variability. The LWD results also display minimal variability; 

however, the median moduli values from the LWD analysis are less than 5 ksi. The FWD and 

the DCP data estimated higher moduli for the subgrade layer for all projects with 

considerable variability.  
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Figure 6-46 Comparison of subgrade resilient moduli determined from different field 

tests and laboratory-measured values 

The median subbase moduli values determined in the laboratory range between 15 to 25 ksi 

for all projects, excluding the I-75 project with no subbase sample (see Figure 6-47). The 

LWD and DCP data display similar trends with median subbase moduli determined from 

field tests below 10 ksi for the I-475, I-69, M-3, and US-41 projects. The US-131 project has 

the highest median subbase modulus of 30 ksi estimated using DCP data. However, no LWD 

data was available for this project. FWD data analyses resulted in the highest subbase moduli 

values, slightly higher than the laboratory-determined subbase moduli values for the I-69, M-

3, and US-41 projects. The FWD backcalculated subbase moduli for the I-475 and US-131 

are not shown in the figure, as the subbase and base layers were combined for the analysis.  

 

Figure 6-48 shows the boxplots for the estimated base moduli and the laboratory-measured 

values for the different projects. The LWD results show that the median base moduli range 

between 7 to 12 ksi, the lowest of the three test categories. The FWD-based results show that 

the median base moduli values range between 33 to 65 ksi while the lab-determined base 

moduli range between 30 to 40 ksi. Although the FWD data analyses resulted in the highest 

median moduli values, the laboratory-determined moduli are very close to them for all the 

projects (except I-75, for which no lab data was available). In addition, the moduli values 

from the FWD data analyses display a higher spatial variability, especially for the I-69, I-75, 

and US-41 projects.  
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Figure 6-47 Comparison of subbase resilient moduli determined from different field 

tests and laboratory-measured values 

 

Figure 6-48 Comparison of base resilient moduli determined from different field tests 

and laboratory-measured values 

Figure 6-49(a) displays that the subgrade SMR ranges between 9 to 17 ksi while the LWD-

based values range between 0.5 to 7 ksi. The plot displays that the LWD underestimates the 

subgrade moduli. Additionally, the data does not indicate any meaningful trend. Figure 

6-49(b) shows a similar plot of the matched data between the SMR values and FWD-based 
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moduli. While the lab SMR values range between 5 to 17 ksi, FWD-based values have a 

range from 14 to 20 ksi. The figure displays that the FWD overestimates the subgrade moduli 

compared to the lab-determined SMR values; however, it does not show any definite pattern. 

The matched lab and DCP-based data show that the laboratory-determined moduli range 

between 5 to 20 ksi; however, the DCP-based moduli display a wider range with values 

between 3 to 58 ksi [see Figure 6-49 (c)]. In addition, the data does not show any pattern. 

Figure 6-49(d) shows the range of the DCP penetration index for the subgrade layer. The 

DCP index values range between 0.1 to 1.1 inches/blow. The data from the plot can be used 

to roughly estimate the layer's modulus in the field while conducting the DCP test. 

 

 
(a) LWD vs. lab subgrade MR 

 
(b) FWD vs. lab subgrade MR 

 
(c) DCP vs. lab subgrade MR 

 
(d) DCP index vs. lab subgrade MR 

Figure 6-49 Comparison of subgrade moduli determined from different field tests and 

laboratory SMR values 

Observing Figure 6-49, it is evident that a real correlation does not exist. Reasons for such 

behavior and differences between the moduli values estimated using the field tests and 

laboratory can be attributed to the difference in the testing conditions and analysis methods. 

The differences in the pavement layers' field moisture content (and density) at the time of 

testing and those used during the laboratory tests (i.e., optimum moisture content) are 

significant sources of variability in the results. In addition, the field gradation might not be 

like the laboratory-prepared samples even if the samples are prepared within the specification 

limits. As for the analysis method, the LWD estimates the elastic modulus of the different 
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pavement layers using the well-known Bousinnesq solution using the elastic half-space 

theory while assuming a specific stress distribution. 

 

Similarly, FWD backcalculation also estimates the pavement layers' elastic moduli, 

considering them linearly elastic. The DCP data analyses, on the other hand, involved 

evaluating the different layer resilient moduli using an empirically derived (DCP direct) 

model. The laboratory-based resilient moduli of the various layers were determined using a 

repeated load triaxial test at a series of different combinations of deviatoric and confining 

stresses. Therefore, differences in the moduli values are expected. Since a real correlation is 

absent, correction factors can be used to estimate field moduli equivalent to lab-measured 

values. 

 

Figure 6-50 displays similar correlation analyses for the subbase layer. Figure 6-50(a) shows 

that the laboratory-determined subbase resilient moduli values range between 11 to 30 ksi 

while they range between 1 to 10 ksi from the LWD data analysis. The LWD underestimates 

the subbase layer moduli as observed with the subgrade data. The FWD-based subbase 

moduli range between 11 and 50 ksi; corresponding laboratory SMR values range between 20 

and 28 ksi [see Figure 6-50(b)]. The moduli range between 1 to 10 ksi using DCP data, while 

the corresponding laboratory SMR values range between 11 to 30 ksi [see Figure 6-50(c)]. 

Figure 6-50(d) shows that the DCP index values range between 0.1 to 2 inches/blow. As 

observed for the subgrade, Figure 6-50(a) through (c) does not display any meaningful trend 

for the same reason mentioned earlier. 

 

Figure 6-51 shows similar one-to-one correlation plots for the laboratory-determined and 

field test-based estimated base layer resilient moduli. The LWD-based moduli range between 

3 to 14 ksi; 31 to 50 ksi using FWD data [see Figures 6-51(a) and (b)]. The figures show that 

the laboratory-determined base resilient moduli range between 22 to 47 ksi for the data with 

matched stations. While the LWD underestimates the base moduli and does not display any 

useful correlation/trend, the FWD estimates base moduli very similar to the lab values. Table 

6-46 summarizes the bias and the standard error of estimate (SEE) values between the lab- 

and the different field test-determined moduli values for different pavement unbound layers 

without correction. Among the three field tests, it can be observed that the FWD generally 

shows the lowest bias and SEE in estimating the layer moduli in comparison with the lab-

determined values.  

Table 6-46 Bias and SEE between lab- and field-measured moduli values 

Layer 
LWD FWD DCP 

Bias SEE Bias SEE Bias SEE 

Subgrade 9.95 10.41 -8.77 9.82 -6.65 15.66 

Subbase 17.10 18.21 -5.75 13.70 16.90 17.81 

Base 26.99 27.94 -2.40 3.13 No data 
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(a) LWD vs. lab subbase MR 

 
(b) FWD vs. lab subbase MR 

 
(c) DCP vs. lab subbase MR 

 
(d) DCP index vs. lab subbase MR 

Figure 6-50 Comparison of subbase resilient moduli determined from different field 

tests and laboratory-measured values 

Table 6-47 summarizes the correction factors for each field test to estimate the lab subgrade 

moduli. Two different approaches were used to estimate the correction factors using the 

matched data presented earlier. Microsoft Excel® Solver was employed to estimate the best 

correction factor for each approach minimizing the SEE. Each method significantly reduced 

the bias and the SEE compared to the values shown in Table 6-46. The shaded rows in the 

table indicate the correction factors with the most negligible bias and SEE. Figures 6-52 

through 6-54 visually display the performance of each approach in correcting the field test-

determined moduli values and their comparison with the lab-determined ones. The figures 

reveal that the third correction approach (i.e., SG-L3, SG-F3, and SG-D3) best corrected the 

subgrade moduli to match the lab-determined SMR values, irrespective of the field test.   
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(a) LWD vs. lab base MR 

 
(b) FWD vs. lab base MR 

Figure 6-51 Comparison of base resilient moduli determined from different field tests 

and laboratory-measured values 

Table 6-47 Correction factors for estimating lab-measured subgrade moduli 

Field test Approach ID Correction approach Bias SEE 

LWD 

SG-L1 𝑆𝐺𝐿𝐴𝐵 =  3.54 × 𝐸𝐿𝑊𝐷  2.73 6.51 

SG-L2 𝑆𝐺𝐿𝐴𝐵 =  7.30 × √𝐸𝐿𝑊𝐷  0.95 4.34 

SG-L3 𝑆𝐺𝐿𝐴𝐵 =  2.82 × 𝐸𝐿𝑊𝐷 +  
7.41

𝐸𝐿𝑊𝐷

 0.82 4.41 

FWD 

SG-F1 𝑆𝐺𝐿𝐴𝐵 =  0.57 × 𝐸𝐹𝑊𝐷  0.33 3.24 

SG-F2 𝑆𝐺𝐿𝐴𝐵 =  2.66 × √𝐸𝐹𝑊𝐷  0.05 2.83 

SG-F3 𝑆𝐺𝐿𝐴𝐵 =  0.36 × 𝐸𝐹𝑊𝐷 +  
91.34

𝐸𝐹𝑊𝐷

 -0.01 2.74 

DCP 

SG-D1 𝑆𝐺𝐿𝐴𝐵 =  0.67 × 𝐸𝐷𝐶𝑃 -0.26 9.80 

SG-D2 𝑆𝐺𝐿𝐴𝐵 =  2.71 × √𝐸𝐷𝐶𝑃 1.45 5.38 

SG-D3 𝑆𝐺𝐿𝐴𝐵 =  0.30 × 𝐸𝐷𝐶𝑃 +  
74.03

𝐸𝐷𝐶𝑃

 0.74 4.12 

 

Also, correction factors are estimated for the subbase and base layers. Table 6-48 displays the 

bias and the SEE for each approach to correct subbase moduli values. The SEE has 

significantly reduced compared to Table 6-46 values after applying the correction to the field 

test-based subbase moduli. The bias, on the other hand, has decreased considerably as 

compared to the uncorrected subbase modulus values. Again, the third approach (i.e., SB-L3, 

SB-F3, and SB-D3) shows the lowest bias and SEE for correcting the values in the lab. 

Figures 6-55 through 6-57 display the performance of each approach in correcting the LWD, 

FWD, and DCP subbase moduli to the lab-determined SMR values, and the third correction 

approach is the best. Table 6-49 summarizes each method's bias and SEE to correct the base 

layer moduli estimated from the LWD and FWD tests. For the FWD data, only two 

correction approaches were used as the third approach produced similar results as the first 

one (i.e., B-F1). While applying all the correction approaches reduced the bias and SEE for 

correcting the LWD base modulus to the laboratory SMR values, these helped reduce the bias 
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with somewhat similar SEE for the FWD modulus data. The third approach (i.e., B-L3) 

proved to correct the LWD moduli values better; using a simple multiplier (i.e., B-F1) was 

able to reduce the bias in the FWD-based moduli values (see Figure 6-58 and Figure 6-59).  

 

 
(a) Using SG-L1 model 

 
(b) Using SG-L2 model 

 
(c) Using SG-L3 model 

Figure 6-52 Comparison of the measured and predicted subgrade moduli values using 

LWD tests 
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(a) Using SG-F1 model 

 
(b) Using SG-F2 model 

 
(c) Using SG-F3 model 

Figure 6-53 Comparison of the measured and predicted subgrade moduli values using 

FWD tests 
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(a) Using SG-D1 model 

 

(b) Using SG-D2 model 

 

(c) Using SG-D3 model 

Figure 6-54 Comparison of the measured and predicted subgrade moduli values using 

DCP tests 

Table 6-48 Corrections for estimating lab-measured subbase moduli 

Field test Approach ID Correction approach Bias SEE 

LWD 

SB-L1 𝑆𝐵𝐿𝐴𝐵 =  5.0 × 𝐸𝐿𝑊𝐷 0.90 13.56 

SB-L2 𝑆𝐵𝐿𝐴𝐵 =  9.97 × √𝐸𝐿𝑊𝐷 1.76 8.49 

SB-L3 𝑆𝐵𝐿𝐴𝐵 =  2.29 × 𝐸𝐿𝑊𝐷 + 
33.50

𝐸𝐿𝑊𝐷

 0.88 6.93 

FWD 

SB-F1 𝑆𝐵𝐿𝐴𝐵 =  0.75 × 𝐸𝐹𝑊𝐷  1.43 9.69 

SB-F2 𝑆𝐵𝐿𝐴𝐵 =  4.17 × √𝐸𝐹𝑊𝐷  1.10 5.80 

SB-F3 𝑆𝐵𝐿𝐴𝐵 =  0.39 × 𝐸𝐹𝑊𝐷 +  
279.26

𝐸𝐹𝑊𝐷

 0.09 2.57 

DCP 

SB-D1 𝑆𝐵𝐿𝐴𝐵 =  3.53 × 𝐸𝐷𝐶𝑃 5.50 12.56 

SB-D2 𝑆𝐵𝐿𝐴𝐵 =  9.59 × √𝐸𝐷𝐶𝑃 2.08 8.70 

SB-D3 𝑆𝐵𝐿𝐴𝐵 =  2.36 × 𝐸𝐷𝐶𝑃 +  
32.88

𝐸𝐷𝐶𝑃

 0.98 6.59 
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(a) Using SB-L1 model 

 
(b) Using SB-L2 model 

 
(c) Using SB-L3 model 

Figure 6-55 Comparison of the measured and predicted subbase moduli values using 

LWD tests 
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(a) Using SB-F1 model 

 
(b) Using SB-F2 model 

 
(c) Using SB-F3 model 

 

Figure 6-56 Comparison of the measured and predicted subbase moduli values using 

FWD tests 
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(a) Using SB-D1 model 

 
(b) Using SB-D2 model 

 
(c) Using SB-D3 model 

Figure 6-57 Comparison of the measured and predicted subbase moduli values using 

DCP tests 

 

The analysis presented in this section shows that the FWD backcalculation results in the 

lowest overall bias and SEE for different unbound layer moduli, especially for the base layer. 

This finding suggests FWD testing over the finished pavement surface reasonably estimates 

the unbound layer moduli for use in design. Additionally, the correction factors approach 

presented to obtain the actual layer's moduli should be used cautiously due to the factors that 

affect each test (field and laboratory). While laboratory material characterization is 

considered more accurate for pavement analysis & design, its replacement with field tests 

would require a large-scale experiment for better correlating lab versus field test results. The 

investigation would involve compacting different soils at varying moisture levels, conducting 

various field tests, and sampling immediately after testing to determine the resilient moduli in 

the lab without disturbing the sample's gradations and moisture content.    
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Table 6-49 Corrections for estimating lab-measured base moduli 

Field test Approach ID Correction approach Bias SE 

LWD 

B-L1 𝐵𝐿𝐴𝐵 =  3.80 × 𝐸𝐿𝑊𝐷 -0.35 11.23 

B-L2 𝐵𝐿𝐴𝐵 =  11.72 × √𝐸𝐿𝑊𝐷 0.59 8.14 

B-L3 𝐵𝐿𝐴𝐵 =  2.51 × 𝐸𝐿𝑊𝐷 +  
105.78

𝐸𝐿𝑊𝐷

 0.01 6.96 

FWD 
B-F1 𝐵𝐿𝐴𝐵 =  0.94 × 𝐸𝐹𝑊𝐷  -0.06 2.05 

B-F2 𝐵𝐿𝐴𝐵 =  6.02 × √𝐸𝐹𝑊𝐷 -0.23 3.71 

 

 

 
(a) Using B-L1 model 

 
(b) Using B-L2 model 

 
(c) Using B-L3 model 

Figure 6-58 Comparison of the measured and predicted base moduli values using LWD 

tests 
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(a) Using B-F1 model 

 

(b) Using B-F2 model 

Figure 6-59 Comparison of the measured and predicted base moduli using FWD tests 

6.5 PROTOCOLS FOR MATERIAL SAMPLING AND TESTING 

Since the as-constructed material properties are critical inputs in the Pavement-ME analysis 

and design, it is crucial to obtain such inputs during and after the construction of pavement 

sections. These properties can be a part of the database for future calibration of the 

performance models once sufficient performance data are available for the selected projects. 

Table 6-50 shows the general in-situ testing protocols for rigid and composite pavement 

sections. 
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Table 6-50 FWD testing protocols for the PCC layer 

Field tests/material 

sampling 

Sampling frequency Layer/materials 

FWD (Rigid 

Reconstruction) 

Three subsections of 500 ft (project beginning, 

middle, and end, see Figure 6-60), 

FWD test at every 5th slab of each subsection at 

locations shown in Figure 6-61. 

• J1 (center of the slab) for uncracked slab 

• J4/J5 (LTE) with deflection time history (see 

Figure 6-62) 

• J2 (Void potential — a minimum of three 

load levels) 

• J3 (Edge support) 
Each of the above tests should be conducted in 

the morning on clear sunny days (8 to 10 am) 

and afternoon (1 to 3 pm) at the same slabs. 

Top of PCC slab 

Tests = 14 per subsection per day 

(5 to 7 morning and 5 to 7 

afternoon)  

Total = 42 per project 

FWD temperature 

measurements for JPCP 

(temperature gradient) 

Measure the temperature gradient in each 

subsection in the morning (8 to 10 am) and 

afternoon (1 to 3 pm). At the same location 

with three depths (top 1 to 2 inches, mid-depth, 

and 1 to 2 inches from the bottom), as shown in 

Figure 6-60. 

PCC layer 

Three (3) temperature 

measurements each in the morning 

and afternoon at the same location 

(center of each subsection) 

FWD (HMA overlay 

over JPCP) 

Three subsections of 500 ft (project beginning, 

middle, and end, see Figure 6-60), 

FWD test at every 5th uncracked slab of each 

subsection at locations shown in Figure 6-61. 

• J1 (center of the slab) 

• J4/J5 (LTE) with deflection time history (see 

Figure 6-62) 

• J2 (Void potential — a minimum of three 

load levels) 

• J3 (Edge support) 

Top of existing JPCP surface 
Total tests = 21 per project 

Every 1000 ft 
Top of new HMA surface 

Total tests = 5 tests/mile/layer 

Notes:  

1. Testing should occur no earlier than 28 days after placement or a few days before opening to traffic. 

2. J4/J5 (LTE) measurement with deflection time histories. Same for after the joint at OWP and EOM 

(i.e., beyond the dowel bar). 

3. All testing is in the mainline outer lane wheel path.  

 

Table 6-51 presents the in-situ testing protocols for flexible pavement sections. Table 6-52 

illustrates the sampling protocols for material characterization and data collection frequencies 

for other standard destructive and non-destructive tests. Figure 6-60 through Figure 6-63 

show the locations of temperature measurements (gradients), testing locations for JPCP, and 

testing and sampling locations for flexible pavements, respectively. Table 6-53 through Table 

6-55 summarize different test methods used to characterize HMA, PCC, and unbound layer 

properties. 
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Table 6-51 FWD testing protocols for HMA layers 

Field tests/material 

sampling 
Sampling frequency Layer/materials 

Existing surface 

conditions (HMA 

overlay) 

Fatigue and transverse cracking, rut depth, 

and IRI 

Existing HMA and PCC surface 
obtained from the recent 

surface condition survey (PMS 

data) 

FWD (HMA overlay 

over HMA) 
Every 1000 ft (see Figure 6-63)  

Top of existing HMA surface 
Top of base* & new HMA 

surface 

Total tests = 5 test/mile/layer 

FWD (HMA 
Reconstruction) 

Every 1000 ft (see Figure 6-63) 
Top of base & HMA  
Total tests = 5 test/mile/layer 

FWD temperature 

measurements for 

HMA  

Obtain the temperature at the mid-depth of 

each HMA layer. Measure once during the 
morning (8 to 10 m) and once during the 

afternoon (1 to 3 pm) at the beginning, 

middle, and end of the project with FWD 

deflection time histories) 

HMA layer 

Note: All testing is in the mainline outer lane wheel path.  *If all HMA layers are milled, and the base is 
exposed. 

  



 

246 

 

Table 6-52 In situ testing and the sampling frequency for unbound and bound layer 

materials 

Field tests/ 

material 

sampling 

Sampling frequency Layer/materials 
Estimated material 

property 

LWD Every 1000 ft 

Top of the base, subbase, and 

subgrade 

Total tests = 5 test/layer 

If the project is more than a 

mile, one-mile section can be 

randomly selected for testing. 

Base, subbase, and 

subgrade modulus 

DCP  Every 1000 ft 

Top of subbase, and subgrade 

Total tests = 5 tests/layer. 

If the project is more than a 

mile, one-mile section can be 
randomly selected for testing. 

Base, subbase, and 

subgrade modulus and 

DCPI 

Unbound 

material 

sampling 

(disturbed 

sample) 

For the selected 1-mile section, 

collect 3 material samples, 2 bags 

(25 to 30 lb per bag) per sample. 

For the selected 1 mile collect 

sample every 1000 ft, 1 to 2 bags 

(25 to 30 lb per bag) per location. 

Base and subbase 

 

 

Subgrade 

Soil gradation, soil 

classification, 

maximum dry unit 

weight, OMC, index 

properties, and resilient 

modulus 

HMA 

material 

sampling 

For the selected 1 mile, cores at 

every 1000 ft (preferably entire 

HMA thickness with multiple 

lifts/layers) and GPR data for the 

entire project length.  

HMA layer 

QA cores can be used within 

the selected 1 mile 

IDT strength 

5 to 6 buckets per mix  HMA (Plant mix) 
Dynamic modulus and 

creep compliance 

2 Gallon per mix HMA (Binder) 
Complex shear 
modulus 

PCC 

material 

sampling 

For the selected 1 mile, cores at 

every 1000 ft and GPR data for 

the entire project length 

PCC layer 

QA cores can be used. 

If the project is more than a 

mile, a one-mile section can 

be randomly selected for 

testing. 

'

cf , IDT, and elastic 

modulus (E) 

9 cylinders (6” dia.) per project 
3 beams (6” x 6” x 18”) per 

project 

PCC mixture 

'

cf , IDT, E, and CTE 

Flexural strength 

(MOR) 

Note: All testing and sampling are in the mainline outer lane wheel path. If the project is in both 
directions, the testing and sampling will apply for both directions if different materials are used. 
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Table 6-53 HMA material testing methods  

Material Test Property Test Method 

Dynamic Modulus (E*) AASHTO T342, and master curves generated in accordance with the 

AASHTO R 84  

Complex Shear Modulus 
(G*) and Phase Angle 

(δ) 

AASHTO T 315, and G*/δ master curves were generated at the loading 
frequencies and temperatures in accordance with MDOT RC-1593. 

Asphalt Mixture Creep 
Compliance and IDT 

Strength 

AASHTO T 322 

Air Voids (%) AASHTO T 166 / MTM 315 

Effective Binder 
Content 

AASHTO T 308 

Theoretical Maximum 

Specific Gravity 

ASTM D 2041 

Layer Thickness HMA core depth measure 

Asphalt Binder Creep 
Compliance 

AASHTO T 322, estimated (Park, 1999), or multiple stress creep 
recovery (MSCR) test using a DSR system in accordance with 

AASHTO T 350. 

Fatigue Life (number of 
cycles to failure, Nf) 

3PBC test as developed per NCHRP IDEA 20-30/IDEA 218 project, 
using cylindrical samples subjected to cyclic three-point bending. 

 

Table 6-54 PCC material testing methods  

Material Test Property Test Method 

Coefficient of Thermal 

Expansion (CTE) 

AASHTO T 336-15 

Modulus of Rupture 
(MOR) 

ASTM C 78 (third-point loading beam method) 

Compressive Strength ASTM C 39 

Elastic Modulus ASTM C 469 

PCC Surface Resistivity AASHTO TP 95  

Water Sorption and 

Freeze/Thaw Resistance 

ASTM C 1585 for water sorption testing. The water sorption test 

provided a near full water saturation state before freeze-thaw (F-T) 

testing with the bottom surface continuously in contact with deionized 

water. 
 

Scaling resistance of concrete surfaces exposed to deicing chemicals 

using ASTM C672 
 

ASTM C215 was used to evaluate changes in the Relative Dynamic 

Modulus (RDM) of the saturated concrete samples.  

Air Voids ASTM C 457 

Layer Thickness PCC core depth measure 

Unit Weight ASTM C 138 
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Table 6-55 Unbound material testing methods  

Material Property Test Method 

Material 
Classification 

The particle size distribution of the granular materials was determined in 

accordance with ASTM C136, D6913, and D7928. 
 

Atterberg limits determined in accordance with the ASTM D4318 

 

Classification according to the Unified Soil Classification System (USCS) 
(ASTM D2487) and the American Association of State Highway and 

Transportation Officials (AASHTO) soil classification system (AASHTO 

M 145) 

Proctor Compaction 

The maximum dry unit weight (MDU) and optimum moisture content 

(OMC) are determined in accordance with: 

• ASTM D1557-12 (method C) technical standard for aggregate 

base materials 

• ASTM D7382-20 (method 2A) if D1557-12 cannot be used 

• ASTM D698-12 (methods A and B) for sand subbase and non-

stabilized subgrade materials 

• ASTM D558/D558M-19 (method A) for cement-stabilized 
subgrade materials 

Resilient Modulus 
(MR) 

AASHTO T 307 

• If unbound material is not stiff enough to withstand the standard 

testing sequences, use a reduced stress sequence. 
 

Data Analysis and Test Results –  

• MEPDG model to determine MR using the elastic deformations 

recorded during the last five cycles of each testing sequence. 

• SMR values per NCHRP Project 1-28A. 

o For stiff materials (i.e., base), the bulk stress (θ) and the 

octahedral shear stress (τoct) values correspond to the 6th 

sequence to calculate SMR (θ = 30 psi and τoct = 7 psi). 

o For the reduced stress sequence (low stiffness), the 

stresses corresponding to the 13th sequence to calculate 

SMR (θ = 12 psi and τoct = 3 psi) 
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Figure 6-60 JPCP testing and sampling plan 
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Figure 6-61 JPCP FWD per slab 

 

 

Figure 6-62 JPCP LTE testing 
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Figure 6-63 Flexible pavement testing and sampling plan per mile 
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6.6 SUMMARY 

This chapter presents the selection of eight projects, four each from the 2020 and 2021 

construction seasons, along with the collected material samples and field-testing data. 

Protocols for material sampling and testing were established for these projects and for future 

data collection. Subsequently, pavement cross-section layers’ moduli were estimated using 

the field-collected FWD, LWD, and DCP data. These were compared with the unbound 

material characterization results from the laboratory. Irrespective of the station locations, the 

subgrade SMR values were relatively comparable to the median FWD- and DCP-determined 

moduli. Similarly, the subbase and base layer SMR values were in close agreement with the 

moduli estimated using FWD data. To estimate potential correlations between the lab- and 

field test-based layer moduli, one-to-one correlation plots are presented. When the exact 

sampling locations were unavailable for these correlations, the median moduli estimated 

from the different field tests were compared to their laboratory-determined values. However, 

where available, the moduli values for samples with known locations were matched with the 

estimated moduli from the field test locations. Since an accurate correlation was not found 

between the different layer moduli obtained using field and laboratory tests, correction 

factors were obtained to estimate them from the field-testing data. The bias and SEE were 

determined for the field test-based moduli and the laboratory-determined SMR values. The 

comparison showed that the FWD data results in moduli values with negligible bias and SEE, 

even without correction, among the three field tests evaluated.  

 

The basic aim of finding the correction factors for estimating resilient moduli using field test 

data is to minimize the need for sampling and laboratory testing. Three approaches 

determined correction factors for each pavement layer and field tests. The evaluation showed 

that the third approach (i.e., SG-L3, SG-F3, SG-D3 for subgrade, etc.) significantly reduces 

the bias and the SEE for all pavement layers and field tests (except for the base layer and 

FWD test). However, the FWD-based base layer moduli were comparable to the lab value 

but slightly higher. Hence, using a single multiplier approach (i.e., B-F1) significantly 

reduced the bias with little reduction in the SEE. Therefore, correction factors should be 

carefully reviewed for the most accurate interpretation of moduli and not simply select the 

correct factor with the lowest bias and SEE as this may not practically represent the range of 

moduli.  

 

The relationships presented in this chapter showed that the FWD testing reasonably estimates 

the layer moduli without using the correction factors. Therefore, FWD testing should be used 

to estimate the modulus of different materials for the post-construction design. Additionally, 

exercise caution in applying the correction factors for assessing the lab-based moduli values 

from field tests, especially LWD and DCP, due to differences in soil conditions (density, 

moisture content, and gradations) in the field and the laboratory. LWD and DCP testing can 

be used to quantify individual layers' stiffness to identify the weaker areas during 

construction. 
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CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS 

7.1 SUMMARY 

This study aims to calibrate and validate the Pavement-ME performance models for 

Michigan as per Pavement-ME version 2.6. In addition, it outlines the testing protocols for 

field and laboratory material testing for collecting material input data for future calibrations. 

The research team selected 163 new flexible projects (i.e., 288 sections) and 121 flexible 

rehabilitation projects (i.e., 176 sections). For design purposes, new flexible projects are 

those construction practices used in Michigan that include HMA reconstruction, HMA over 

crushed & shaped HMA, and HMA over rubblized PCC pavements. In contrast, flexible 

rehabilitation fixes are those that are HMA over existing HMA and HMA over existing PCC 

(including existing composite pavement). Similarly, the team selected 46 new JPCP projects 

(i.e., 85 sections) and 11 unbonded overlay projects (i.e., 28 sections) for rigid pavements. 

These projects were selected considering different regions, materials, traffic, performance 

data, and pavement age. Chapter 3 outlines the selection process and details of each input. 

The main objectives of this project were: 

 

• Evaluate projects used in previous calibration efforts and identify new potential 

projects for local calibration (1). 

• Verify the adequacy of global models in the Pavement-ME and the need for local 

calibration. 

• Perform local calibration of performance models for Michigan conditions. 

• Provide the most suitable calibration coefficients for different pavement types. 

• Recommend future local calibration guidelines and data needs. 

• Recommend testing protocol guidelines for field and laboratory material testing. 

 

The research team extracted the Pavement-ME inputs for the selected projects from MDOT 

construction records and other databases and obtained the performance data from MDOT 

PMS data. Some MDOT distress units are incompatible with the Pavement-ME outputs; 

therefore, the team considered necessary conversions. Calibration was performed for 

different combinations of MDOT sections as follows: 

 

Option 1: Reconstruction sections only 

Option 2: Reconstruction and rehabilitation sections 

Option 3: Rehabilitation sections only 

 

The team used several statistical techniques for the calibrations—no sampling, bootstrapping, 

split sampling, and repeated split sampling. Verification using global models shows that 

global models could not provide reasonable predictions, and there was a need for local 

calibration. The number of sections and performance data records has increased since the 

previous calibration effort. Also, some performance models have changed, and the last 

calibration results are no longer valid for those models. These developments further indicated 

a need for a new model calibration effort. Local recalibration results show that the 

performance model predictions improve significantly after calibration for Michigan 
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conditions. Resampling methods provide better predictions for most of the performance 

models. This report documents the calibration results, input data, future local calibration 

guidelines, and data needs.  

7.2 LOCAL CALIBRATION FINDINGS 

Several conclusions are drawn based on the local calibration results and input data 

requirements to the Pavement-ME. These conclusions are categorized into the following 

three parts: 

 

• Data collection for the selected pavement sections 

• Local calibration process  

• Catalog of the local calibration coefficients 

7.2.1 Data Needs for Local Calibration  

Data collection for local calibration is challenging and includes collecting observed 

performance and input data for the selected pavement sections. The team ensured adequate 

data availability for enough pavement sections within each distress type. Chapter 3 outlines 

the process for pavement selection for local calibration sources for each input data. The data 

needed for the local calibration are:  

 

1. Readily available MDOT-measured condition data 

2. Project selection criteria 

3. Pavement cross-section information 

4. Traffic inputs 

5. Construction materials inputs 

6. Climate inputs 

 

Table 7-1 summarizes the inputs and corresponding levels for the available data.  

7.2.2 Process for Local Calibration 

The local calibration guide describes the calibration process for local conditions (2). Local 

calibration aims to minimize the SEE and bias between the measured and predicted distress. 

SEE shows the scatter of data with respect to the line of equality, whereas bias shows the 

constant underprediction or overprediction by performance models. This study improved the 

SEE and bias values for all performance models. In general, the local calibration of the 

performance models involves the following steps: 

 

1. Select an adequate number of projects based on performance and statistical 

requirements to a minimum number of projects. These projects should represent 

typical local construction practices and a wide range of Pavement-ME inputs.  

2. Collect performance data and Pavement-ME inputs for the selected sections.  

3. Run Pavement-ME analysis and extract critical responses and predicted distresses. 

4. Compare the predicted distress with measured distress based on SEE, bias, and 

hypothesis tests. 
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5. Based on the results from step 4, test the accuracy of the global models and the need 

for local calibration. 

6. If global models are satisfactory (see Table 7-2 for minimum requirements), local 

calibration is not required. If the global model has significant bias and standard error, 

recalibrate the models for local conditions.  

7. Validate calibration results by applying them to an independent set of sections not 

used for calibration. 

8. Estimate the reliability equations based on the calibrated model predictions and 

measured distress.  

Table 7-1 Summary of input levels and data source 

Input 

Pavement-

ME input 

level 

Data 

source 

level 

Input source 

Traffic 

Vehicle class distribution 1 2 

MDOT specified traffic per cluster data 

Hourly distribution 1 2 

Monthly adjustment factor 1 2 

Number of axles per truck 1 2 

Single, tandem, tridem, and quad 

axle load distribution 
1 2 

AADTT 1 1 From design drawings  

Vehicle class 9 percentage 1 1 MDOT TDMS website 

Cross-

section 

layers 

(new and 

existing) 

HMA thickness 1 1 
Project-specific HMA thicknesses based on 

design drawings 

PCC thickness 1 1 
Project-specific PCC thicknesses based on design 

drawings 

Base thickness 1 1 
Project specific base thicknesses based on design 

drawings 

Subbase thickness 1 1 
Project-specific subbase thicknesses based on 

design drawings 

Layer 

materials 

HMA 

Mix properties 1 
Mix of 

2 and 3 
MDOT HMA mixture characterization study 

(DYNAMOD database) 

HMA mixture 
aggregate gradation 

1 1 or 3 
Project-specific mixture gradation data obtained 
from data collection or average statewide values 

Binder properties 1 3 
MDOT HMA mixture characterization study 

(DYNAMOD database) 

PCC 
Strength (f'c, MOR) 3 1 or 3 

Project-specific testing values or average 
statewide value 

CTE 1 2 MDOT recommended values 

Base/ 

subbase 
MR 3 3 

Recommendations from MDOT unbound material 

study 

Subgrade 

MR 3 3 
Soil-specific MR values per MDOT subgrade soil 
study 

Soil properties 
Mix of all 

levels 
1 

Location-based soil type per MDOT subgrade soil 

study 

Climate  1 1 Closest available climate station 

Note:  Data source Level 1 is project-specific data. Data source Level 2 inputs are based on regional averages in Michigan. 

Data source Level 3 inputs are based on statewide averages in Michigan. 
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Table 7-2 Recommended initial values for tolerable bias and standard deviation of the 

measured distress 

Type Distress/performance parameter Tolerable Bias Standard deviation of 

maximum measured 

distress 

Flexible 

Fatigue cracking (% total lane area) 1.5 5 

Rutting (inches) 0.075 0.2 

Thermal cracking (ft/mile) Thermal 

Reflection cracking 

200 650 

IRI (inch/mile) 20 65 

Rigid 

Transverse cracking (% slabs cracked) 4 15 

Faulting (inch) 0.02 0.07 

IRI (inch/mile) 20 65 

7.2.3 Coefficients for the Locally Calibrated Models 

Final coefficients for calibration models were selected based on the efficiency of different 

calibration approaches for a combination of datasets. Mostly, bootstrapping provided the 

lowest SEE and bias. Also, bootstrapping provides a more robust optimization with CI. 

Therefore, recommended model coefficients are primarily using bootstrapping. For flexible 

sections, the team selected adequate sections for new and rehabilitation sections. A separate 

set of calibration coefficients is recommended for new flexible (Option 1), HMA over HMA, 

and composite sections (Option 3). Option 2 (new and overlay sections) is recommended for 

rigid pavements. CAT tool was used to calibrate thermal cracking and faulting models, which 

were calibrated using no sampling technique only. Tables 7-3 to 7-6 summarize the 

recommended model coefficients and standard error equations for flexible sections, whereas 

Tables 7-7 and 7-10 show the same for rigid sections. Some of the observations from 

calibration results are as follows: 

 

• Global model underpredicted bottom-up cracking. For a measured value of 38%, the 

global model predictions were close to zero.  

• Option 1a (which combines all cracking, bottom-up and top-down cracking to 

represent bottom-up cracking) provided better predictions compared to option 1b 

(which uses the estimated bottom-up cracking alone) for bottom-up cracking. It is 

difficult to estimate the origin of a crack (bottom-up or top-down); hence, combining 

bottom-up and top-down cracking reduces assumptions. Also, option 1a has more 

sections and measured data available.  

• Top-down cracking model calibration improved the SEE and bias but did not provide 

realistic results. Option 1a is valuable for incorporating top-down cracking into 

calibration options. However, it should be noted that if option 1a is adopted for 

alligator cracking, the longitudinal cracking model should not be used because such 

measured cracking is already included in option 1a. 

• Rutting calibration using method 2 minimizes the error for total rutting, but it is 

difficult to keep track of predictions for individual layers. Method 1 for rutting 

provides more realistic predictions and is recommended.  

• The Pavement-ME limits the thermal cracking prediction to 2112 ft/mile, but the 

measured data showed several records of thermal cracking above 2112 ft/mile. Also, 
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the thermal cracking coefficient in the current version is changed and is a function of 

MAAT. This made the calibration of the thermal cracking model challenging. A 

single value of 0.85 was finally recommended. The SEE and bias were improved after 

local calibration, but the thermal cracking model still showed high prediction 

variability. Notably, sections with Superpave mixes were only considered to calibrate 

the thermal cracking model. 

• Transverse cracking model for rigid pavements underpredicts using global 

coefficients. 

• Joint faulting model for rigid pavements overpredicts using global coefficients. It is 

challenging to separate faulting at joints and cracks. Further, MDOT sensor data had 

records with more faulted joints than the number of joints. Joint faulting was cut off 

at 0.4 inches, and the maximum number of faults to 36 for any 0.1-mile sections to 

accurately estimate the measured joint faulting.  

• IRI models for both flexible and rigid models provided good results after calibrating 

their components. Local calibration of these IRI models further improved the SEE 

and bias.
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Table 7-3 Summary of flexible pavement performance models (reconstruct pavements) 

Data Subset 
Performance prediction 

model 
Performance models and transfer functions Local coefficient 

Option 1a 

(Combined data for 

bottom-up & top-

down) Fatigue cracking  

(bottom-up) ( )* *
11 22 100

1 6000

60 1 Bottom
Bott Com C C L g DIC o

FC
e

+

  
=   
  + 

 

𝐶1 = 0.2320 
𝐶2 = 0.6998 (hac <5 in) 

𝐶2 = (0.867 + 0.2583 ∗ ℎ𝑎𝑐) ∗
0.2204 (5 in <= hac <=12 in) 

𝐶2 = 0.8742 (hac >12 in) 

Option 1b 

(only bottom-up data) 

𝐶1 = 0.2540 
𝐶2 = 0.7303 (hac <5 in) 

𝐶2 = (0.867 + 0.2583 ∗ ℎ𝑎𝑐) ∗
0.2692 (5 in <= hac <=12 in) 

𝐶2 = 1.0678 (hac >12 in) 

Option 1 
Fatigue cracking 

(top-down) 

𝑡0 =
K𝐿1

1 + 𝑒K𝐿2×100×(a0/2A0)+K𝐿3×HT+K𝐿4×𝐿𝑇+𝐾𝐿5×log10 AADTT
 

 

𝐹𝐶𝑇𝑜𝑝 = Lmax × e
−(

𝐶1𝜌
𝑡−𝐶3𝑡𝑜

)𝐶2𝛽

 

K𝐿2 = 0.90 
K𝐿3 = 0.09 
K𝐿4 = 0.101 
K𝐿5 = 3.260 

𝐶1 = 0.30 
𝐶2 = 1.155 

Option 1 Rutting 

HMA 𝛥𝑝(𝐻𝑀𝐴) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 = 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10𝑘1𝑟𝑛𝑘2𝑟𝛽2𝑟𝑇𝑘3𝑟𝛽3𝑟 
𝛽1𝑟 = 0.148 

𝛽2𝑟 = 0.7 

𝛽3𝑟 = 1.3 

Base/subgrade 
( ) 11

no
p soil s v soil

r

s k h e







 

 
− 
 

 
 =  

 

 𝛽𝑠1 = 0.301 

𝛽𝑠𝑔1 = 0.070 

Option 1 Thermal cracking 𝐴 = 10𝑘𝑡𝛽𝑡(4.389−2.52𝐿𝑜𝑔(𝐸𝐻𝑀𝐴𝜎𝑚𝜂)) 𝐾 = 0.85 

Option 1 IRI ( ) ( ) ( ) ( )1 2 3 4o TotalIRI IRI RD FC TC SFC C C C= + + + +  
𝐶1 = 42.874, 𝐶2 = 0.102 
𝐶3 = 0.0081, 𝐶4 = 0.003 

Note:  Option 1 = Reconstruct pavements, Option 2 = Combined reconstruct and rehabilitated pavements, Option 3 = Rehabilitated pavements. The model 
coefficients in red color show the locally calibrated new coefficients. Option 1a uses bottom-up and top-down cracking; therefore, if Option 1a is used, the 
top-down model should not be used. 
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Table 7-4 Summary of flexible pavement performance models (rehabilitation pavements) 

Data Subset 
Performance prediction 

model 
Performance models and transfer functions Local coefficient 

Option 3  

(HMA over HMA) 

Fatigue cracking 

(top-down) 

𝑡0 =
K𝐿1

1 + 𝑒K𝐿2×100×(a0/2A0)+K𝐿3×HT+K𝐿4×𝐿𝑇+𝐾𝐿5×log10 AADTT
 

 

𝐹𝐶𝑇𝑜𝑝 = Lmax × e
−(

𝐶1𝜌
𝑡−𝐶3𝑡𝑜

)𝐶2𝛽

 

K𝐿2 = 0.714 

K𝐿3 = 0.093 
K𝐿4 = 0.102 

K𝐿5 = 0.191 

𝐶1 = 0.084 
𝐶2 = 2.007 

Option 3 

(HMA over PCC) 

K𝐿2 = 0.475 
K𝐿3 = 0.097 
K𝐿4 = 0.104 
K𝐿5 = 0.206 

𝐶1 = 0.104 
𝐶2 = 1.635 

Option 3  

(HMA over HMA) 
Rutting 

HMA 𝛥p(HMA) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 = 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10𝑘1𝑟𝑛𝑘2𝑟𝛽2𝑟𝑇𝑘3𝑟𝛽3𝑟 𝛽1𝑟 = 1.0422 

Base/subgrade 
( ) 11

no
p soil s v soil

r

s k h e







 

 
− 
 

 
 =  

 

 𝛽𝑠1 = 0.3823 

𝛽𝑠𝑔1 = 0.1212 

Option 3 (HMA over 

PCC) 
HMA Δp(HMA) = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 = 𝛽1𝑟𝑘𝑧𝜀𝑟(𝐻𝑀𝐴)10𝑘1𝑟𝑛𝑘2𝑟𝛽2𝑟𝑇𝑘3𝑟𝛽3𝑟  𝛽1𝑟 = 1.535 

Option 3 

(HMA over HMA) 
Thermal + Reflective 

cracking 

𝐴 = 10𝑘𝑡𝛽𝑡(4.389−2.52𝐿𝑜𝑔(𝐸𝐻𝑀𝐴𝜎𝑚𝜂)) 

𝛥𝐷 =
𝐶1𝑘1𝛥𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝐶2𝑘2𝛥𝑠ℎ𝑒𝑎𝑟𝑖𝑛𝑔 + 𝐶3𝑘3𝛥𝑡ℎ𝑒𝑟𝑚𝑎𝑙 

ℎ𝑂𝐿

 

𝑅𝐶𝑅 = (
100

𝐶4 + 𝑒𝑐5𝑙𝑜𝑔 𝐷
) ∗ 𝐸𝑋𝐶𝑅𝐾 

𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗

𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 0.55 + 0  

𝐶1 = 3.25, 𝐶2 = 25 
𝐶3 = 0.14, 𝐶4 = 180 

Option 3  

(HMA over PCC) 

𝐾 = (3 ∗ 𝑃𝑂𝑊(10, −7)) ∗

𝑃𝑜𝑤(𝑀𝐴𝐴𝑇, 4.0319)) ∗ 0.55 + 0  
𝐶1 = 0.2833, 𝐶2 = 0.7333 
𝐶3 = 2.5, 𝐶4 = 70 

Option 3  

(HMA over HMA) 
IRI ( ) ( ) ( ) ( )1 2 3 4o TotalIRI IRI RD FC TC SFC C C C= + + + +  

𝐶1 = 15.072, 𝐶2 = 0.140 
𝐶3 = 0.004, 𝐶4 = 0.0192 

Option 3  

(HMA over PCC) 
𝐶1 = 14.911, 𝐶2 = 2.460 
𝐶3 = 0.011, 𝐶4 = 0.0212 

Note:  Option 1 = Reconstruct pavements, Option 2 = Combined reconstruct and rehabilitated pavements, Option 3 = Rehabilitated pavements. The model 
coefficients in red color show the locally calibrated new coefficients.   
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Table 7-5 Summary of flexible pavement performance model standard errors (reconstruct pavements) 

Data Subset Performance prediction model Standard error 

Option 1a Fatigue cracking 

(bottom-up) 

𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 0.2262 +
14.2349

1 + exp (0.2958 − 0.1441 log(𝐶𝑟𝑎𝑐𝑘))
 

Option 1b 𝑠𝑒(𝐴𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) = 4.4396 +
25.4391

1 + exp (4.3119 − 2.2778 log(𝐶𝑟𝑎𝑐𝑘))
 

Option 1 
Fatigue cracking 

(top-down) 
𝑠𝑒(𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙) = 0.6417 × 𝑇𝑂𝑃 + 0.5014 

Option 1 Rutting 

HMA 𝑠𝑒(𝐻𝑀𝐴) = 0.1481(𝑅𝑈𝑇𝐻𝑀𝐴)0.4175 

Base/subgrade 
𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.0411(𝑅𝑈𝑇𝑏𝑎𝑠𝑒)0.3656 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0. 0728(𝑅𝑈𝑇𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.5456

 

Option 1 Thermal cracking 𝑠𝑒(𝑇𝐶) = 0.1223(𝑇𝐶) + 400.9 

Option 1 IRI Internally determined by the software 
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Table 7-6 Summary of flexible pavement performance model standard errors (rehabilitation pavements) 

Data Subset Performance prediction model Standard error 

Option 3- HMA over 

HMA Fatigue cracking (top-down) 
𝑠𝑒(𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙) = 0.838 × 𝑇𝑂𝑃 + 0.0269 

Option 3- Composite 𝑠𝑒(𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙) = 0.9236 × 𝑇𝑂𝑃 + 0.6452 

Option 3-HMA over 

HMA 
Rutting 

HMA 𝑠𝑒(𝐻𝑀𝐴) = 0.272(𝑅𝑈𝑇𝐻𝑀𝐴)0.6939 

Base/subgrade 
𝑠𝑒(𝑏𝑎𝑠𝑒) = 0.0236(𝑅𝑈𝑇𝑏𝑎𝑠𝑒)0.184 

𝑠𝑒(𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒) = 0. 1706(𝑅𝑈𝑇𝑠𝑢𝑏𝑔𝑟𝑎𝑑𝑒)
0.7269

 

Option 3- Composite HMA 𝑠𝑒(𝐻𝑀𝐴) = 0.2336(𝑅𝑈𝑇𝐻𝑀𝐴)0.7763 

Option 3: HMA over 

HMA Thermal + Reflective cracking 
𝑠𝑒(𝑇𝐶) = 338.59(𝑇𝐶)0.0849 

Option 3-Composite 𝑠𝑒(𝑇𝐶) = 308.74(𝑇𝐶)0.1063 

Option 3- HMA over 

HMA 
IRI Internally determined by the software 

Option 3- Composite 
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Table 7-7 Summary of rigid pavement performance models (reconstruct and rehabilitation pavements: widened lane width = 

14 ft) 

Data Subset 

Performance 

prediction 

model 

Performance models and transfer functions Local coefficient  

Option 2 

 

Transverse 

cracking ( ) 5
/

4

100

1
BU D CT

FC
CRK

DI
=

+
 𝐶4 = 0.426 

𝐶5 = −0.953 

Option 2 
Transverse 

joint faulting 

1

m

m i

i

Fault Fault
=

=   

2

34 1 1( )i i i iFault C FAULTMAX Fault DE− − =  −   

𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋𝑖 = 𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 + 𝐶7 ×  ∑ 𝐷𝐸𝑗

𝑚

𝑗=1

× 𝐿𝑜𝑔(1 +  𝐶5 × 5. 0𝐸𝑅𝑂𝐷)𝐶6 

𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 = 𝐶12 × 𝛿curling

× [𝐿𝑜𝑔(1 + 𝐶5 × 5. 0𝐸𝑅𝑂𝐷) × 𝐿𝑜𝑔(
𝑃200 × 𝑊𝑒𝑡𝐷𝑎𝑦𝑠

𝑝𝑠
)]

𝐶6

 

𝐶12 = 𝐶1 +  C2 × 𝐹𝑅0.25 
0.25

34 3 4C C  C FR= +   

𝐶1 = 0.8 
𝐶2 = 1.3889 
𝐶3 = 0.00217 
𝐶4 = 0.00444 
𝐶5 = 250 
𝐶6 = 0.2 
𝐶7 = 7.3 
𝐶8 = 400 

Option 2 IRI 1 2 3 4
        

I
IRI IRI CRK SPALL TFAULTC SC FC C= +  +  +  +   

𝐶1 = 0.1 
𝐶2 = 2.0611 
𝐶3 = 1.6338 
𝐶4 = 22.9978 

Note:  Option 1 = Reconstruct pavements, Option 2 = Combined reconstruct and rehabilitated pavements, Option 3 = Rehabilitated pavements. The model 

coefficients in red color show the local calibrated new coefficients.  
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Table 7-8 Summary of rigid pavement performance model standard errors (reconstruct and rehabilitation pavements: 

widened lane width = 14 ft) 

Data Subset Performance prediction model Reliability 

Option 2 Transverse cracking 𝑠𝑒(𝐶𝑅𝐾) = 2.8285(𝐶𝑅𝐾)0.5205 

Option 2 Transverse joint faulting 
𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.0902(𝐹𝑎𝑢𝑙𝑡)0.2038 

Option 2 IRI Internally determined by the software 
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Table 7-9 Summary of rigid pavement performance models (reconstruct and rehabilitation pavements: widened lane width = 

12.5 ft) 

Data Subset 

Performance 

prediction 

model 

Performance models and transfer functions Local coefficient  

Option 2 
Transverse 

cracking ( ) 5
/

4

100

1
BU D CT

FC
CRK

DI
=

+
 

𝐶4 = 0.415 
𝐶5 = −0.965 

 

Option 2 
Transverse joint 

faulting 

1

m

m i

i

Fault Fault
=

=   

2

34 1 1( )i i i iFault C FAULTMAX Fault DE− − =  −   

𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋𝑖 = 𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 + 𝐶7 × ∑ 𝐷𝐸𝑗

𝑚

𝑗=1

× 𝐿𝑜𝑔(1

+  𝐶5 × 5. 0𝐸𝑅𝑂𝐷)𝐶6 

𝐹𝐴𝑈𝐿𝑇𝑀𝐴𝑋0 = 𝐶12 × 𝛿curling × [𝐿𝑜𝑔(1 + 𝐶5 × 5. 0𝐸𝑅𝑂𝐷) × 𝐿𝑜𝑔(
𝑃200 × 𝑊𝑒𝑡𝐷𝑎𝑦𝑠

𝑝𝑠

)]
𝐶6

 

𝐶12 = 𝐶1 +  C2 × 𝐹𝑅0.25 
0.25

34 3 4C C  C FR= +   

𝐶1 = 0.6 
𝐶2 = 1.611 
𝐶3 = 0.00217 
𝐶4 = 0.00444 
𝐶5 = 250 
𝐶6 = 0.2 
𝐶7 = 7.3 
𝐶8 = 400 

 

Option 2 IRI 1 2 3 4
        

I
IRI IRI CRK SPALL TFAULTC SC FC C= +  +  +  +   

𝐶1 = 0.0942 
𝐶2 = 1.5471 
𝐶3 = 1.7970 
𝐶4 = 23.7529 

 
Note:  Option 1 = Reconstruct pavements, Option 2 = Combined reconstruct and rehabilitated pavements, Option 3 = Rehabilitated pavements. The model 

coefficients in red color show the local calibrated new coefficients.  
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Table 7-10 Summary of rigid pavement performance model standard errors (reconstruct and rehabilitation pavements: 

widened lane width = 12.5 ft) 

Data Subset Performance prediction model Reliability 

Option 2 Transverse cracking 𝑠𝑒(𝐶𝑅𝐾) = 2.9004(𝐶𝑅𝐾)0.5074 

Option 2 Transverse joint faulting 
𝑠𝑒(𝐹𝑎𝑢𝑙𝑡) = 0.0919(𝐹𝑎𝑢𝑙𝑡)0.2249

 

 

Option 2 IRI Internally determined by the software 
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7.3 MATERIAL CHARACTERIZATION & TESTING PROTOCOLS 

The in-situ and laboratory-resilient moduli of pavement layers were estimated using field 

(FWD, LWD, and DCP) and lab tests conducted for various layers per projects conducted in 

2020 and 2021. The following are the conclusions based on the test results: 

 

• LWD resulted in the lowest moduli values for all pavement layers (base, subbase, and 

subgrade).  

• The laboratory results show that the median subgrade moduli for all projects are 

between 12 to 17 ksi. The FWD and the DCP data estimated higher moduli for the 

subgrade layer for all projects with considerable spatial variability. 

• The median subbase moduli values determined in the laboratory range between 15 to 

25 ksi for all projects. The LWD and DCP data display similar trends with median 

subbase moduli determined from field tests below 10 ksi. FWD data analyses resulted 

in the highest subbase moduli values, slightly higher than the laboratory-determined 

median subbase moduli values.  

• The laboratory determined median base moduli range between 30 to 40 ksi. FWD 

data analyses resulted in the highest moduli values for all the projects. 

• Among the three field tests evaluated (DCP, LWD, and FWD), when comparing field 

to laboratory results, FWD data results in moduli values with the most negligible bias 

and SEE. Still, an exact correlation was not found for the unbound layers. 

• To potentially minimize the need for sampling and laboratory testing of unbound 

layers, correction factors were provided to estimate them from the field-testing data. 

However, MDOT should exercise caution in applying the correction factors for 

estimating and assessing the lab-based moduli values from field tests, especially 

LWD and DCP, due to potential differences in soil conditions (density, moisture 

content, and gradations) in the field versus those in the laboratory. Furthermore, 

correction factors should be carefully reviewed for the most accurate interpretation of 

moduli and not simply use the correct factor with the lowest bias and SEE, as this 

may not practically represent the range of moduli.   

• The results of material characterizations for HMA, PCC, and unbound materials can 

be used to validate the design inputs used in the Pavement-ME and/or future 

calibration efforts.  

• Protocols for in-situ testing frequency and material sampling quantity and frequency 

are developed for collecting material library data in the future. 

• DynaMOD was expanded to include the material testing results for concrete and 

unbound materials, in addition to its inclusion of asphalt materials for input into 

Pavement-ME. 

7.4 RECOMMENDATIONS 

The following are the recommendations based on the findings of this study: 

 

1. HMA bottom-up cracking is defined as alligator cracking in the wheel path. The PDs 

234, 235, 220, 221, 730, and 731 match this requirement in the MDOT PMS 

database. The PDs have units of miles; however, to make those compatible with the 
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Pavement-ME alligator cracking units, conversion to the percent of the total area is 

needed. The lane width was assumed to be 12 ft. The typical wheelpath width of 3 

feet was assumed. The conversion is shown in Equation (7-1): 

 

 
Length of cracking (miles)  width of wheelpaths (feet)

% 100
Length of section (miles)  Lane width (feet)

bottom up
AC

−


= 


  (7-1) 

 

2. HMA top-down cracking is load-related longitudinal cracking in the wheel path. The 

PDs 204, 205, 724, and 725 were assumed to correspond to the top-down cracking in 

the MDOT PMS database because those may not have developed an interconnected 

pattern that indicates alligator cracking. Those cracks may show an early stage of 

fatigue cracking, which could also be bottom-up. Since estimating such cracking 

based on the PMS data is difficult, these cracks were first converted to % area crack 

and then categorized into bottom-up or top-down cracking based on the HMA 

thicknesses. The PDs are recorded in miles and need conversion to % area. Data from 

the wheelpaths were summed into one value and divided by the total project length, 

as shown in Equation (7-2). The lane width was assumed to be 12 ft. The typical 

wheel path width of 3 feet was assumed. 

 

% 𝐴𝐶𝑡𝑜𝑝−𝑑𝑜𝑤𝑛 =  
Length of cracking (miles) × width of wheelpaths (feet)

Length of section (miles) × Lane width (feet)
 × 100 (7-2) 

 

The calculated top-down cracking using Equation (7-2) is assigned as either bottom-

up or top-down based on the total AC layer thickness. If the thickness is greater than 

a certain threshold, the cracking is considered top-down cracking; else, it is 

categorized as bottom-up cracking. For example, If the HMA thickness is greater than 

5 inches for new flexible pavement, the cracking should be considered top-down. 

Table 7-11 presents the minimum threshold thicknesses for top-down cracking to 

apply for each surface type. 

Table 7-11 Minimum thicknesses for top-down cracking 

Surface type Threshold thickness (in) 

Bituminous overlay on rubblized concrete 6 

Composite overlay 6 

Crush and shape 4 

HMA over HMA overlay 6 

New or reconstruct 5 

 

3. HMA thermal cracking corresponds to transverse cracking in flexible pavements. The 

transverse cracking is recorded as the number of occurrences, but the Pavement-ME 

predicts thermal cracking in feet/mile. To convert transverse cracking into feet/mile, 

the number of occurrences was multiplied by 3 feet for PDs 114 and 701 because 

these PDs are defined as "tears" (short cracks) that are less than half the lane width. 

For all other PDs, the number of occurrences was multiplied by the lane width (12 ft). 
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All transverse crack lengths were summed and divided by the project length to get 

feet/mile, as shown in Equation (7-3).   

   

 𝑇𝐶 =
∑ No.  of Occurrences ×Lane Width (ft )

Section Length  (miles )
  (7-3) 

 

Thermal cracking predictions in the Pavement-ME are restricted to a maximum value 

of 2112 ft/mile due to a minimum crack spacing limit of 30 feet. It means Pavement-

ME predictions at 50% reliability cannot exceed 2112 ft/mile. Due to this limitation 

and ARA recommendations, the research team decided to have a 2112 ft/mile cutoff 

where any measured data for a section above 2112 ft/mile was not used for 

calibration. 

4. Total rutting is the total amount of HMA surface rutting all the pavement layers and 

unbound sub-layers contribute. The average rutting (left & right wheel paths) was 

determined for the entire project length. No conversion was necessary. The individual 

layer rutting was obtained using the transverse profile analysis approach from the 

previous calibration effort (1). 

5. MDOT does not have any specific PDs for reflective cracking in flexible pavements. 

Therefore, separating thermal and reflective cracks at the surface is challenging. 

Thus, the total measured transverse cracking was considered a combination of 

thermal and reflective cracking, and bother models were calibrated. 

6. The IRI measurements in the MDOT sensor database are compatible with those in the 

Pavement-ME. Therefore, no conversion or adjustments were needed, and data can be 

used directly. 

7. Transverse cracking in rigid pavements is predicted as % slabs cracked in the 

Pavement-ME. However, MDOT measures transverse cracking as the number of 

transverse cracks. PDs 112 and 113 correspond to transverse cracking. The estimated 

transverse cracking needs conversion to the percent slabs cracked using Equation (7-

4). 

  

 
112, 113

% Slabs Cracked     100
Section Length (miles) 5280

Joint Spacing (ft)

PD

ft
= 

 
 
 


  (7-4) 

 

8. In the Pavement-ME, rigid pavement faulting is predicted as average per joint. 

MDOT's sensor data records the number of faults (FaultNum), average faulting 

(avgFault), and the maximum faulting (FaultMax) for every 0.1-mile segment. The 

faulting values had some inconsistencies. For the years between 2000 and 2011, 

faulting values are maximum fault callouts only (not average values). For 2012 and 

after, both average and maximum fault values are available. To resolve this issue, a 

correlation was developed between the maximum and average faulting values using 

data from 2013 to 2017. The team used these correlations to estimate the average 

faulting from 2000 to 2011. Table 7-12 shows the regression equations between 

average and maximum faulting using the data from 2013 to 2017. These equations are 

based on the number of faults. It is important to note that ideally, the number of faults 
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cannot be greater than the number of joints, but the number of faults in the database 

has records where they are more than the number of joints. These pseudo-fault values 

might come from cracking, spalling, bridge segments, etc. Therefore, the maximum 

number of fault counts was restricted to 36, and the average faulting for a section was 

cut off at 0.4 inches to address this issue. Accordingly, any 0.1-mile section above 

these restricted faulting values was omitted (cut) from the calibration data. 

 

Table 7-12 Correlation equations based on the number of faults 

FaultNum Equation 

(y is avgFault, x is FaultMax) 

R2 

(2013 to 2017data) From To 

0 1 y=x 1 

2 4 y = 0.3438x + 0.03 0.7189 

5 40 y = 0.2132x + 0.0377 0.6074 

41 ALL y = 0.0936x + 0.0777 0.2476 

 

The average joint faulting is calculated based on the number of faulting in a 0.1-mile 

section. It is assumed that if the number of faults is less or equal to the number of 

joints, faulting occurs at the joints only. In that case, the faulting unit conversion 

equation is as shown in Equation (7-5). If, for any 0.1-mile section, the number of 

faults is greater than the number of joints, that section is removed (cut) from the 

calibration data, as previously mentioned. 

 

                                             𝐹𝑎𝑢𝑙𝑡 =
FAULnum ×FAULi

Njoints
                                                 (7-5) 

where, 
FAULnum = number of faults in a 0.1 mile 

FAULi =(FAULT_(Avg_Right )   +  FAULT_(Avg_Left ))/2  = Average faulting in a 0.1 mile (inches) 

 Njoints is the number of joints in 0.1-mile (528 ft) segments, i.e., Njoints=528/Joint Spacing. 

 

9. More sections should be added to the calibration database with additional 

performance data. This is specifically applicable to the limited number of concrete 

overlay projects for rigid sections and HMA over HMA rehabilitation for flexible 

sections.  

10. The as-constructed data for the existing layer for most overlay projects are 

unavailable. It is recommended to obtain the best possible inputs for these sections 

using field coring, FWD, and other relevant tests.  

11. The calibration process using different combinations of MDOT sections and 

statistical techniques is recommended for future calibration.  

12. It is recommended that local calibrations should be performed every six years. 

Pavement sections will likely have three additional performance data points for local 

calibration in six years.  

13. It is recommended that at least FWD testing can be performed at the finished surface 

on all future projects as part of in situ evaluation. However, some material samples 

should be collected to validate the FWD results.  

14. Specifying a minimum 1,000 ft section within a project for material sampling and in-

situ testing for the selected projects is also recommended for all pavement layers.   
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