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ABSTRACT

Accident rate, traffic count, accident severity index, proportion of wet
surface accidents, pavement friction coefficients, highway noise levels,
aggregate gradations, etc., are parameters commonly used in the trans-
portation field. Values of these parameters estimated from samples are
often the basis of information used in administrative decision making such
as the development of effective safety improvement and testing programs.
For example, parameter estimates are compared with the designed or de-
sired values to recommend whether or not toreconstruct or install median
barriers. Another exampleis the rankingof accident parameter estimates
as a priority basis for resurfacing intersections. Also, highway admini-
strators use parameter estimates to develop effective quality control sy-
stems for detecting accidents due to assignable factors and, hope then, to
optimally allocate available fundingaccordingly. For those roadways in the
neighborhood of the ''eritical™ conditions required, e.g., for the median
barrier installation, it is intuitively clear that the small estimation exrrors
could reverse the "correct' decision. In the course of the following dis-
cussion, it will be demonstrated that small estimation errors significantly
affect the accuracy of priority lists and, consequently, decisions based on
these lists. Also, it will be shown that small estimation errors lead to a
more lax quality control system which in the long run fails to detect many
accidents agsociated with assignable causes. Thus, it is of fundamental
importance to reduce estimation errors as much as possible.

The usual estimate of each parameter is the "best" information avail-
able on a single location. However, this estimate is not the best estimate
when the purpose is to develop operational programs involving numerous
locations, material sources, etc. Methods which further "improve' usual
parameter estimates were first made by Stein and later extended by Effron
and Morris. We generalize their theoretical results so that these methods
can beused forestimating parameters from various types of transportation
data. We show mathematically that the proposed estimation methods are
always better than the usual ones in terms of the ''global' or overall esti-
mation error. Based on the theoretical development of the proposed esti-
mation methods, we provide four computer programs with examples for
estimating parameters which are commonlyused in the transportation field.
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INTRODUCTION

Highway administrators must make decisions on how best to improve
the roadway system. While their decisions are affected by many factors,
usually the main constraint is limited funding. With no funding limitation,
new and existing roadways certainly could be designed and updated in con-
formance with ideal design standards. Since no one has the option of un-
limited funding, the interest is focused on developing strategies that would
allocate available funding to maximally improve the roadway system.

Information needed for developing optimal strategies must be provided.
Thus, highway administrators are faced with the problem of obtaining the
best estimates of the commonly used parameters such as accident rates,
accident severity indices, highway noise levels, pavement friction coeffi-
cients, aggregate gradations, etc. Each of the usual estimates of these
parameters is the '"best information'" for decision making on an isolated
location. However, usual estimates generally are not preferable at the
program or policy level, such as designing an effective intersection resur-
facing program, which must concern the estimation error for the program
as a whole (global error). Thus, the shift in concern from individual level
to program ‘planning can and should carry with it a corresponding shift in
estimation method. Estimation methods for this purpose were first made
by Stein (1) and later extended by Effron and Morris (2, 3).

A proposal fora Highway Planningand Research project was submitted
to the Federal Highway Administration in 1978 to investigate, revise and
extend Stein's estimation mecthods to handle various types of estimation
problems in the transportation field. The objectives of the proposal were
to develop a manual of procedure and computer programs toenable highway
personnel to take advantage of the procedures now available for improving
the accuracy of parameter estimates; and, to familiarize researchers with
the issues involved in this type of estimation procedure. This report is
submitted in fulfillment of the proposal's two objectives.

The contents of this report reflect the views of the author, who is re-
sponsible for the facts and the accuracy of the data presented herein. The
contents do not necessarily reflect the official views or policies of the
Federal Highway Administration. This report does not constitute a stan-
dard, specification, or regulation.

First, Stein's results must be generalized. The theoretical develop~
ment 0of the proposed estimation procedures are presented in Part OI for




readers who are interested in the technical development. We show in this
part that the proposed estimation methods are always better than the usual
ones in terms of the global estimation error. The basic concept of the
proposed methods are outlined in Part I for readers who are not familiar
with statistical theory. 1In this part, we explain the logic behind the esti~
mation methods proposed forimproving various types of transportation data
used in estimating the previously mentioned parameters. The important
roles of these parametersin developing highway safety improvement, test-
ing, and maintenance programs are demonstrated in Part II. The potential
benefits of using the proposed estimates of these important parameters in
decision making are also discussed in this part. This explains why the
proposed estimation methods are of considerable value to highway admini-
strators.

Four computer programs are written basedon theoretical results pre-
sented in Part I to handle general estimation problems in transportation.
These computer programs are presented in Parts V through VIII. The
general guidelines for using these programs are outlined in Part IV. The
detailed input and output systems as well as the use of these programs are
explained with examples in Parts V through VIII. These programs are:

Poisson - This program, presented in Part V, is designed for simul-
taneously estimating many Poisson rates such as accident -rates and traffic
counts at various locations. '

Program Proportion - This program, presented in Part VI, is designed
for simultaneously estimating many proportions such as proportions of wet
accidents at various locations and severity indices of various fixed object
accidents.

Program IMEAN - This program, presented in Part VII, is designed
for simultaneously estimating many independent mean values such as fric-
tion coefficients at various locations.

Program CMEAN - This program, presented in Part VIII, is designed
for simultaneously estimating many correlated mean values such as per-
centages of aggregate passing various sieve sizes.

Although each of the eight parts in this manual is self-contained, we
strongly recommend that users always read Parts I and IT beforeusing any
of the four computer programs in Parts V through VIII.




I
BASIC CONCEPTS OF PROPGSED ESTIMATION PROCEDURES

In all data gathering such as that required in acceptance testing and
accident reduction programs, samples aretaken to estimate many constants
which either measure product quality or describe important processes.
These constants are usually termed 'parameters.' Supposethat weare in-
terested in estimating k parameters denoted as 81, . « « , 8. These
parameters could be concrete and coarse aggregate properties such as
flexural and compressive concrete strengths, bulk specifie gravity, percent
deleterious particles, crushed material, loss by washing, etc. These
parameters could also be accident rates of various locations treated with
different types of safety improvements.

Denote X; to be the usual estimate of 8j. In the case of concrete, Xj
could be the average compressive strength of 20 samples. For the safety
improvement example, X; could be thenumber of accidents that occuron a
location treated with the i-th type of safety improvement. Note that as
usually is the case, each parameter estimation can be considered as an
igolated subproblem of the larger estimation problem. If the i-th sub-
problem is the only one of concern, then X; is the best parameter estima-
tion for decision making purposes. However, accuracy of the program as
a whole rather thanthat of isolated subproblems characterizes many, if not
most cases where data are used as a basis for administrative decision
making, Thus, the overall accuracy is more important to the development
and administration of programs than isolated location accuracy. To in-
crease the global estimation accuracy, we propose the following estimates:

A .
Xi=cUi+(1_C)Xi,i=1,oo-,k (1)

where Uj is an initial estimate of 8; and ¢ takes values between 0 and 1,
determined basically by Uj and X, i=1l,. ..,k Methods for determin-
ing U; and ¢ will be discussed later. Thus, Xj always lies between U; and
X;. cis generally called the "shrinking factor" for shrinking ¥; toward
Uj. We will show in Part ITI that the proposed estimates are always better
than the usual ones in terms of the expected sum of squares of residuals
(global estimation error) defined below.

k
A
X;-6)% =E ) (X - 0?2 (2)
1 i=1

k
E )

i

The notation 'E' in Eq. (2) stands for the expectation of a random variable.
The left and right hand sides of Eq. (2) are the expected global estimation




errors made by the proposed and usual methods, respectively. Thus, the
global percentage improvement (reduction of estimation error) of the pro-
posed method over the usual one is

k

k
Fal
E )2 &X-8)2-E 2 &-9)>2
i=1 i=1

GPFI = 100 3)

K
E 2 (% -8)°

i=1

We remark that the global superiority does not guarantee individual
location or source superiority. That is, the following inequality may not
hold for, say, the i-th component of the problem.

X -8

The left and right hand sides of Eq. (4) are the estimation errors made
onthe i-th parameter by the proposed andusual method, respectively. The
question is, "Under what conditions does Eq. {4) hold for each component ?'
We are also interested in computing the percentage of time that the proposed
estimate of the i-th parameter is closer to 6; than the usual one. This
percentage is defined as:

E (4)

fa)
Xi-eil.‘.E

A
PC{) =100 Pr (| X - Gi =

X; - eil ) (5)

The notation "Pr'' in Eq. (5) stands for the probability of an event. There
is no way to completely answer the above question due to the cemplex re-
lationships between initial and usual estimates. However, we provide the
following simulated results to more or less answer the above question.
These simulated results also serve todemonstrate how to obtain good initial
. and, consequently, final parameter estimates.

Suppose that X; is the average of 10 samples randomly obtained from
a normal population with mean 6; and variance 10,i=1,. . . ,10. Thus,
the variance of X; is 1 for every i. For the usual method, it is known that
the expected global and individual estimation errors defined in the right
hand sides of Eqs. (2) and (3)are 10 and 0.798, respectively. We now pro-
vide in Table 1 the simulated results (based on 5000 simulation points) for
the case that U; =‘ei +b,i=1,...,10. That is, the initial estimate for
each parameter is off by the same amount b. When initial estimates are
perfect, i.e., U; = ei (b # 0 in Table 1) for eyery i, the shrinking factor
would be very close to 1. Therefore, every X would be very close to Uj
as it should be. We see from Table 1 (Case 1) that the expected individual
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Tabie 1
Simiiated Resulis for The Case Where

Uu = 8 + b , di=1,.... 10
i i
%-Giobal Individual | Freguency That The Proposed
Case b Gain{ *1) Error (%2} Estimate Is Better (*3}
1 .0 87.28 0.192 100.00
2 c.2 83.91 0.298 86.00
3 0.4 74.70 0.420 73.80
4 0.6 82.23 Q.527 64 .60
5 0.8 49 .48 0.807 57.90
[ 1.0 38 .67 Q.661 53.40
T 2.0 13.96 C.751 44 .40
2 3.0 6,44 Q.776 44 .50
9 4.0 3.687 Q.786 45.60
10 SC.0 Q.05 Q.797 49,20
11 (= - C.C0 Q.798 10C.0C

*1 Based on Eq.(3)
*2 The Left Hand Side of Eq.(4)
*3 Based on Eg.{(5)

absolute error is 0.192 which is considerably smaller than the usual error
(0.798). Moreover, the proposed estimate is more accurate than the usual
one almost 100 percent of the time forevery component of the problem. It
is known that the larger the sample size, the more reliable the sample
average. Therefore, the proposed estimation method, together with rea-
sonably good initial estimates, will substantially improve the estimation
accuracy in the small sample size estimation problem.

Now, let b increase. That is, initial estimates are systematically
getting worse. This will decrease the value of the shrinking factor and,
accordingly, decrease the fraction of U; used to adjust X;. As shown in
Table 1, this process decreases the global improvement from 87.28 per-
cent to zero. Although Eq. (4) still holds, the frequency that the proposed
method is more accurate than the usual one could fall below 50 percent for
some values of b. This means that whenever improvement is made, it is
made in large magnitude but with less frequency. When b becomes very
large (Case 10 in Table 1), the shrinking factor would bhe very close to zero
and consequently, every X. would be very close to X;. Generally, the dif-
ference between X; and X; becomes too small to be practically significant.
If b becomes inﬁ}\'nitely large (Case 11, Table 1), the shrinking factor is
zero and, thus, Xi = ¥X;. This is why PC(i) defined in Eq. (5) is 100 for
every component of the problem. .

Cases in Table 1 are only hypothetical. In reality, the difference be-
tween U; and Bi would not be the same for all components. That is, initial
estimates are better for some components than others. In this case, those
components with poor initial estimates would benefit less than those with




good initial estimates. In some cases, components with poor initial esti-
mates might even be sacrificed toachieve the global gain. To clarify these
statements, we provide in Table 2 the simulated results for the case that
Uj=6 fori=1,...,9and Ujgp~= 819 + b. That is, we have perfect
initial estimates for the first nine components, but are off by a constant b
in the tenth one. In this case, the first nine components have the same
expected individual absolute error which is smaller than the error of the
tenth one. We see from Table 2 that the tenth component benefits much
less than the first nine components in Case 1 and is actually sacrificed in
Case 2 for a 19.88 percent global gain. Tables 1 and 2 indicate that a
particularly bad initial estimate hurts itself and also jeopardizes other
components that have good initial estimates. Thus, great effort should be
made to isolate components for which bad initial estimates seem likely to
occur. This is not as much of a problem as it might first appear.

Table 2
Simuiated Resuits for The Casa Where
Uu==8&, i=t,.. .9 4andU = 8 + b
i i 10 10
" Expected Individual Frequency That The Proposed
Absotute Error (*2) Estimate Is Better (*3)
%-Gtlobal Components | Component Components Component
b § Gain(+1) 1 - 9 10 1t -9 10
] 7913 0.225 Q.778 tQ0 R 43.60
5 19.88 Q.600 1.380 100 28 10

*{ Based on Eqg.{3)
*2 The Left Hand Side of Eq.(4)
*3 Based on Eq.(5)

Many sources, such as past experiments or parallel studies, are avail-
able to obtain good initial estimates. When a source is not available or
reliable for the problem, other means can always be used to obtain initial
parameter estimates. For example, the average of the usual estimates
can be used as the initial estimate of each parameter. This method is

satisfactory if the total parameter variation, (81 - 5)2 +o . (O~ 9)2, is
small, 8 is the average of k parameters. On the other hand, if parame-
ters can be arranged into groups such that within-group parameter vari-
ations are small, group averages will be good initial estimates for para-
meters belonging to the same group. Examples for this method are pre-
gented in Tables 3 and 4.

For the example in Table 3, we first use the average of X1, . . . ,
and Xj g (Case 1) as the initial estimate for each parameter. This results
in a 52.20 percent global gain. Moreover, Eq. (4) holds in the average




Table 3
Simutated Resul=s for Using Group Averages
As Initial Estimates of Parameters

Case 1 Case 2
Compo- True
rnent {Parameter | Group]Individual Freq.| GroupjIndividual Freq.
i vatue No. jError (*1) ] (*2) No. {Error {*1)] (*2)
1 -0.8 1 0.634 55.8C b C.470 76 .30
2 -0.7 i 0. 600 60 .50 1 0.453 77.30
3 -0.6 1 0.572 64 .80 t C.451¢ 77 80
4 -9.5 1 0.522 869,10 1 Q.447 76.20
5 -0.4 1 0.500 73.1C t 0.459 75.70C
6 0.4 i 0.500 76 .20 2 0.472 75.80
7 0.5 1 0.527 70.90C 2 0.458 77.30
8 0.6 1 0.560 66.20 2 C.446 77.90
g 0.7 1 0.595 60,90 2 0.453 76.80
10 0.8 1 0.641 56,40 2 Q.472 75.80
%-Giobatl
Gain(*3) 52.20 % 65.30 %

*{ Based on Eq.(3)
*2 The Left Hand Side of Eq.(4)
*3 Based on Eq.(5)

sense and also in terms of frequency for every component. Generally, the
individual gainis positively correlated with the closeness of 8; to 8. Since
8 is 0 in this example, 8¢ and 96 are clogser to 8 than any other parameters
and, therefore, gain the most as shown in Table 3. Obhserve that there is
an apparent gap between 65 and 85. Thus, the total parameter variation
can be substantially reduced by separating components into the following
two groups:

Group 1 - Components 1 through 5
Group 2 - Components 6 through 10

In this case, the average of Xy, . . . , X5 is used as the initial estimate
of each of the first five parameters. Similarly, the average of Xgs o o s
X10 isused as the initial estimate of each of the last five parameters. As
shownin Table 3 (Case 2), this method substantially increases the individual
as well as global gains.

Now, let us widen the gap between 85 and ;. This will increase the
total parameter variation. The simulated results for using the average of
usual estimates as the initial estimate of every parameter are presented in
Table 4. We see from this table that the global gain has been substantially
reduced due to the large total parameter variation. For every component,
the individual gainstill holds in the average sense, but with less frequency.
If these components are rearranged in the same way as in the previous
example, we would have the same results shown in Table 3 (Case 2). This
indicates that proper grouping which reduces the total parameter variation



Takle 4
Simulated Restilts for Using Group Averages
As Initial Estimates of Parameters

Component True Group | Expected Individual Frequency That The
Parameter| No. Absolute Error Proposed Estimate
i Yalue ‘ {*1) Is Better {(~2)
1 -2.0 1 0.782 43,80
2 -1.9 i 0.757 44 .20
3 -t.8 i Q.763 44,60
4 -t.7 i 0.732 45.6G0
5 -1.86 1 0.738 46,90
5] 1.6 i 0.738 49.60
T 1.7 1 Q.748 46.90
8 1.8 1 0.754 45.20
g 1.9 1 0.754 44 .90
10 2.0 1 0.771 44 .80
The %-Global Gain (*3) is 12.94 %.

*1{ Based on Eq.(3}
*2 The Left Hand Sidm of Eq.{4)
*3 Based on Eq.(5)

is the key element determining the performance of the proposed method.
The general sources for placing members into proper groups are past ex-
periments, parallel studies, and the known physical properties of compo-
nents. ;

We have demonstrated that the overall performance of the proposed
method is always better than the usual one. Individual superiority is also
achieved if initial estimates are reasonably good. However, components
with poor initial estimates gain less and could even be sacrificed to achieve
global gain. Thus, obtaining good initial estimates emerges as the crucial
element in the practical utilization of the proposed estimation method. This
matter is now briefly discussed below:

A) Past experiments and parallel studies are generally good sources
of initial parameter estimates. Here are some examples: laboratory test
results can be used as initial estimatestoadjust field test results; previous
ADTs adjusted by general traffic trends can beused as initial estimates to
adjust current ADTs.

B) In addition to past experiments and parallel studies, the physical
properties of components can also beused to place components into proper
groups as shown inthe previous examples. For example, highway segments
canbe separated intotwo groups; intersected and non-intersected roadways.
The accident rate of each group isthen used as theinitial estimate of every
segment belonging to the same group. As previously shown, this method
is satisfactory so long as the within-group parameter variations are small.




C) Often, the usual estimators are closely related to other variables.
As an example (4), the following equation describes very well the relation-
ship between the number of accidents, X and the total vehicle-miles, t;,
for selected locations.

Xi=ati+btiz, i=1, L ,k

Here, we first obtain the least squares estimates, 2 and %, of a and b. We
then use Uj = ﬁti + B tiz as the initial estimate of the i-th parameter.
Similar situations exist almost everywhere in the transportation field.
Other examples are: current and previous ADT figures; in~place aggregate
gradations before and after compaction; percent wet surface accidents and
percent wet time. This method is satisfactory when the relationship among
usual estimates and supplemental variables is reasonably linear.

The above methods will be further explored with examples in Part IT
(also see Part IIl). Since information for obtaining good initial estimates
exists nearly everywhere in the transportation field, we state that, in ad-
dition to the guaranteed global superiority, the proposed method provides
superior individual estimates as well. The benefits of using better para-
meter estimates for decision makingwill be demonstrated in Part II. Thus,
the proposed estimation method is of great value to those charged with pro-
gram administration and responsibility.

As usual, we require that the usual estimate, Xy, is normally distri~

buted with mean 6.. If the usual estimate is the sample average, the nor-
mality requirement is fulfilled once the sample size is fairly large. In
traffic accic =nt analysis, the usual estimate is generally related to Poisson
or Binomial processes. For example, the number of accidents, X is ap-
proximately distributed (4, 5, 6) according to the Poisson law with para-
meter )\i. That is, we have

Pr ; =j)=enhikij/j!,j=0,1,--, _{6)

For this type of estimator, weuse Anscombe'stransformation (7) to trans-
form X to Z3 defined as

Z; = V'X; +0.375 (7)

Anscombe has shown that Z is distributed rather more normally than X
whenh is large. Moreover, when)\ 2 5, the meanand varianceof Z; are
apprommately f_ and 0,25, respectlvely. Thus, the proposed method is
applicable to the transformed Poisson data.




Denote ¥; to be the numbher of subcategory accidents, e.g., injury and
fatal accidents. It is known (8) that, given that X;=n, Yiisa binomial
random variablewith parameter s, and n. In this case, 84 is the true pro-
portion of injury and fatal accidents. This proportion is also a standard
accident severity index. The usual estimate of S; is

Yy
S; = ey (8)
For this type of estimator, we use Anscoﬁlbe's transtormation (2, 7) to
transform 5 to Z; defined as

_ . -1 n '
2; = Vn +0.5 Sin [n—————+0_75 25; 1)] ©9)

Again, the above transformed random variable is distributed rather more
normally than 8, when nsy is large. Moreover, when ns; >4, the variance
of Z. is approximately equal to one. Therefore, the proposed method is
also applicable to the transformed proportion data.

Sample proportions, Poisson rates and sample averages are parame-
ters commonly used in the transportation field, The important role of these
parameters in the decision making process will be examined in Part II.
Examples are also provided to demonstrate the potential benefits of using
the proposed methods to estimate these important parameters,
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iH
POTENTIAL BENEFITS OF USING THE PROPCSED METHODS
TO ESTIMATE ACCIDENT RATES, TRAFFIC VOLUMES,
ACCIDENT SEVERITY INDICES AND OTHER RELATED
PARAMETERS WHICH PLAY IMPORTANT ROLES IN HIGHWAY
SAFETY, TESTING, MAINTENANCE AND CONSTRUCTION

In the transportation field, the most commonly used parameters can
be grouped into the following three categories according to the distribution
types of their usual estimators. These are:

Poisson ~ accident rate, traffic count, etc.

Binomial - accident severity index, proportion of wet surface acci-
dents, accident reporting level, etc. '

Normal - pavement friction coefficient, highway noise level, aggregate
gradation, etc. :

In each of the following three sections, the roles of the above parame-
ters in designing highway safety improvements and testing programs will
be examined. Since the true parameter values are unknown, the estimated
values must be used as substitutes. It is clear that the mere accurate the
estimated values, the better the program utilizing them will be. Moreover,
small estimation errors can have considerable impact on decision conse-
quences as will be shown. Thus, it is of fundamental importance to reduce
estimation errors as much as possible, We turn now to the role that the
proposed method can play in achieving this end.

Potential Benefits of Usingthe Proposed Method to Estimate Accident Rates

and Related Parameters in Highway Safety Improvements

Some accidents can be prevented either by providing motorists with
sufficient and effective road guidance information (9), or by improving
roadways through reconstruction in conformance with current standards.
Since safety improvement program funding is limited, it is neither practi-
cal nor possible for program administrators te fully examine and improve
every location or roadway segment. Thus, a monitoring and improvement
system isneeded to identify roadway segmentsthat become hazardous and,
therefore, may require treatment. Such asystem can be developed through
the use of quality control techniques. The first step is to statistically set
upper control limits which call attention to locations operating at suspi-
ciously high accident rates. For discussion purposes, we numerically
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index every location from 1 through L, in the highway systemunder consi-
ceration. If we denote 15(1 to be the number of accidents occurring at the
i-th location, X; isassumed to be Poisson distributed with parameter (ac-
cident rate) A ; i» The upper control limit for declaring at the 100 (1 - o)
percent confidence level that the i-th location will operate at an accident
rate higher than A; is

1

UCLi=)\i+Zl_a\f)\-,i=1,...,L (10)

where z1_ ¢ is the upper 1000 percentage point of the standard normal dis-
tribution. Note that, due to random variation, X; could exceed UCL; even

when the i-th location is operating at the usual rate )\ The probability of
this occurrence is @&. Thus, we could examine aL locations even when
every location is operating at the usual rate. Naturally, time and money
spent for examining these locations are essentially wasted. The only way
to trim this waste is to specify a smaller &. Unfortunately, this would also
reduce our chances of detecting assignable factors causing an increase in
accident rates. Generally, & should be chosen as the best compromise of
these conflicting concerns so that one maximizes the total accident reduc~
tion for the available funding. This is an optimization problem beyond the
scope of this study and will not be discussed here.

Since true accident rates are unknown, the estimated rates must be
used as substitutes for )\i, i=1,...,L, in Eq. (10). The moreaccurate
the estimated accident rates, the closer the system operates at the targeted
goal. Thus, it is of fundamental importance to obtain the best possible
estimates of,\ ,i=1, ..., L. Ordinarily, the past accident rate of the

i-th location or a ‘'similar' location is used to estimate /\1 As previously

mentioned, this estimate is satisfactory if the estimation accuracy of an
isolated location is our only concern. This is certainly not the case at the
transportation policy level. For the whole system, the proposed estimation
method can and should be used to obtain better parameter estimates and
hence improve overall system performance.

Two examples are provided below which show how to improve usual
estimates of accident rates. The benefits of the estimation improvement
are also discussed.

Example 1l - The Michigan Department of Transportation has establish-
ed a complete inventory of every 0.2-mile segment of roadway in the Michi-
gantrunkline system. For demonstration purposes, we shall only consider
those rural, two-way, and two-lane segments located in State Highway
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Districts 1 through 4. We group these roadway segments into 24 categories
according to the following roadway characteristics:

Cl) Intersected or non-intersected roadway segment (I or NI)
C2) Tangent or curve roadway segment (T or C)

C3) No passing or passing roadway segments (NP or P)

C4) Lane width (10, 11, or 12).

Table &5
Accident Statistics And ADTs of Twenty-four Categories

No, of Roadway Average No. of aAccidents
Category|Description | Segments { N } ADTA(T } X
i i i i
1 NI-T~-NP-10 471 1420,97 170
2 NI-T-NP-11 539 1605.43 177
3 NI-T-NP-12 370 2562 .92 177
4 NI-T- P-10 691 $1439.33 193
5 - NI-T- P~-114 2477 t61t.50 739
6 NI-T- P-12 .2180 2468 .06 895
7 NI-C~-NP-10 595 t182.83 213
8 NI-C-NP-11 669 1595.71 288
9 NI-C-NP-12 348 2527 .18 237
10 NI-C- P-1{0O 412 t462.57 130
11 MI-C- P-11 1054 t891.70 428
12 NI-C- P12 12144 2654 .28 634
i3 I-T-NP-10 160 f511.23 S
14 I«F-NP-11 183 2167 .14 2
15 " I-T-NP-12 167 2830.36 . 1o3
16 I-T- P-10 224 te0Qt, 36 80
17 I-T- P-1A4 740 1798.27 266
8 I-T- P-12 772 2531.98 354
t9 I-C~NP~- 10 249 t408 .66 133
20 I-C-NP-11 338 2028.42 207
21 I-C~NP-12 166 2859 ,70 107
22 I-C- p-10 122 1601.42 62
23 I-C- P-11 410 . 1930 . 16 180
24 iI-C- P-12 464 2995, 37 258

The number of roadway segments in each category are presented in
Table 5. Also included in this table are the number of accidents and the
average ADT of roadway segments in each category. We are interested in
estimating accident rate for each category. For this purpose, we denote
Nj to be thenumber of roadway segments in the i~th category. Also, denote
T; to be the average ADT of these N; roadway segments. Define X to be
the total number of accidents occurring on roadway segments of the i-th
category during a period of five years (1971 through 1975). Since accidents
occur approximately accordingto the Poisson law, X is Poisson distributed
with parameter )\i, where

Aj=8, x 365 x5 x Tj x 0.2 x Nj x 10-8 1)
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The parameter §; in Eq. (11)is the i-th category accident rate which is
the number of accidents per 100 million vehicle-miles. This parameter
characterizes the accident behavior of every segment in the i-th category.
Thus, the usual estimate of CH is

X
i 8

= 0

i"365 x5x T x 0.2 xN, * (12)

A

The usual estimates of accident rates are presented in Tables 6 and 7.

We observe from Table 5 that the only difference between the first and
thirteenth categoriesis that every roadway segment in the thirteenth cate-
gory contains an intersection. Actually, the above statement speaks for

Table 6
Estimated Results of Categories { through 12
Using Four Group Averages

Poisson Rate Accident Rate
CategoryjUsual(X )|Proposed(X }{Usual(A )|Proposed(A )]|Difference
i i i i i

1 170 161.47 69.59 66, 10 3.49
2 177 179,24 56.04 56.75 -0.71
a 177 184 .43 5%.14 53.29 -2.15
4 193 188,40 53. 7 51.80 1.27
5 739 730.88 50.72 30.17 - 0.56
6 89% 914 .59 45,58 46.57 ~.99
7 213 207 .92 82,92 80.94 1.98
8 288 294t.09 73.9t4 74.71 ~0.79
=] 237 239 .60 73.83 T4.64 -0.81
10 130 128.52 59. 1% 88 .44 C.67
11 428 423. 18 58.81 58.15 0.66
12 634 643,76 53,91 54.74 -0.82
Table 7

Esttmated Results of Categories 13 through 24
(Using Four Group Averages)

Poisson Rate Accident Rate
CategorylUsual(X )}}Proposed(X )]Usual{A }|[Proposed(A }[Difference
i i i i H

13 St 51.62 57 .79 58.50 ~0.7%
14 92 91.52 63 .56 63,23 0.33
15 103 103 .51 58.70 60.0C -0.29
16 80 78 .54 61.11 59.99 1.4
17 266 265.08 54.77 54,58 0.19
18 354 358.68 49.862 50.28 ~0.65
19 133 128,15 103.89 100.10 3.7
20 207 206.31 82.72 82 .44 0.28
21 107 t12.46 61.76 64.91% -3.18
22 62 - 58.87 86 .94 82.56 4.138
23 18C 179.47 62,32 62.13 Q.19
24 258 265.97 50.86 52.43 -1.57
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every pair of categories indexed by i and i +12 for évery i=1,..., 12,
Thus, the rank order of the accident rates of the last 12 categories should
be the same as that of the first 12 categories. Close comparison of Tables
6 and 7 reveals that this is not necessarily the case when ranking is based
on usual estimates of category accident rates. For example, Ajg and Aig
are, respectively, too small and too large relative to Aj4. We shall see
later that this inconsistency is corrected by the proposed estimation meth-
od. We now denote X;j to be the proposed estimate of Ai' Then, the cor-
responding proposed estimate of Bi is
.
_ £

i-365x5xTix0.2xNi

A
A x 108 (13)

The reliability of the usual estimate X; is positively correlated with
accident exposure which is NyT; in this case. We see from Table 5 that X;
is much more reliable than X; +10 for everyi=1, ., ., 12, Basedon
the previous discussions (Part 1), we decide tofirst estimate accident rates
of Categories 1 through 12 to avoid the contamination of poor initial esti-
mates. We observe from Table 6 that lane width has less influence on ac-
cident rate than other roadway characteristics. For this reason we arrange
Categories 1 through 12 into the following four groups by pooling across
lanes:

Group 1 - Categories 1 through 3 (Tangent, No Passing)
Group 2 - Categories 4 through 6 (Tangent, Passing)
Group 3 - Categories 7 through 9 (Curve, No Passing)
Group 4 - Categories 10 through 12 (Curve, Passing).

The group accident rate is then used as the initial accident rate estimate
for each category in the group. Estimated results obtained from using the
computer program of Part V are presented in Table 6. The percentage
improvement of the proposed method over the usual one is 18.29 percent.
We remark that it is generally not easy to substantially improve reliable
usual estimates (large number of accidents in this case). Generally speak-
ing, when the usual estimates are reliable, the global estimation gain is
low and, consequently, the differences between the usual and proposed es-
timates are also small as shown in Table 6. However, two points should
be made here:

a) Reliableusual estimates arenot always available (because of samp-~
ling costs and data validity).

b) A smallestimation improvement could result in substantial accident
reduction in the long run.
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The latter point will now be examined in detail.

We see from Table 6 that the usual and proposed accident rates of the
first category are 34 (= 170/5) and 32.29 (= 161.47/5) accidents per year,
respectively. The true yearly accident rate is unknown. We shall use
these rates as reference for setting up the following hypothetical problem
to demonstrate the potential benefits of small estimation improvement in
detecting accidents due to assignable factors (preventable accidents).

As discussed, the proposed eslimate is generally closer iu the true
value than the usual one. Thus, for exposition purposes, we assume that
true accident rate of the i-th location is 30 accidents per year, Under this
assumption, the distribution of the yearly accidents is approximately sym-
metrical with respect to the true accident rate. Therefore, the probability
that the usual estimate (Xj) is, say, 32 is almost the same as the probability
that itis 28. For this reason, we first consider the following pair of cases:

A
Case 1.1: Xj =32 and X; = 31
and .
A
Case 1.2: Xi = 28 and X; =29

That is, the proposed estimate é\(i) is closer to the trueaccident rate than
the usual one by one accident per year. To examine the potential benefits
of this small estimation improvement in terms of detecting accidents due
to assignable factors, we set O in Eq. (10) to be 0.05. Thus, zj _y =
1.645, For Case 1.1, the usual 95 percent upper control limit is obtained
by substituting 32 for A\ i in Eq. (10):

UCL; =32 +1.645 V¥ 32 =41.3

This meansthat the i-th location will be inspected for possible assign-
able factors if the yearly accidents of this location are greater than 41.
Suppose that there are assignable factors causing this location to operate
at the higher accident rate )\i’ » Each timethe yearlyaccidents of this loca-
tion donot goover the upper control limit, this location will not be inspect-
ed. Consequently, )\1, - 30 extra accidents are expected to occur. 1t is
known that the reciprocal of the probability of the above occurrence is the
expected waiting time before inspecting the i-th location. Thus, the ex-
pected number of accidents due to assignable factors which would not be
detected by the usual upper control limit is

Y; = ()\i, - 30)/ Pr (the yearly accidentsare over 41 when thenew
L4
accident rate isKi )

-16 -




Similarly, the proposed upper contrel limit and the expected number of
accidents due to assignable factors which would not be detected by the pro-
posed upper control limit are, respectively

A
UCLi=31 +1.645 ¥ 31 =40.2
and

Qi = ()\i - 30)/ Pr (the yearly accidents are over 40 when the new
accident rate 1sA )
A A
Since UCL; > UCL;, wehave ¥, >Y1. Therefore, the difference, Yj - Y;,
is the benefit of using the proposed upper control limit to detect accidents
due to assignable factors. The henefits for various values of )\: in this
case are presented in Figure 1.

We similarly obtain the following results for Case 1.2:
UCL; =28 +1.645 y28 =36.7

Y; = (Ai, - 30) / Pr (the yearly accidentsare over 36 when the new
accident rate is )\i/ )

A
UCLy =29 +1.645 \y 29 = 37,8
and
A
Y; (A,l - 30)/ Pr (the yearly accidents are over 37 when the new
accident rate is )\ )

Since UCL; < UCL1 we have Y, < Y . Therefore, the difference, Y - Yj,
is the benef1t of using the usual upper control limit to detect acmdents due
to assignable factors. The benefits for various values of )\1 are also pre-
sented in Figure 1.

The above pair of cases shows that, whereas the proposed estimate is
better than the usual one, using the proposed upper control limit to detect
assignable factors is only beneficial in Case 1.1, However, this benefit is
much greaterthan that of Case 1.2. Since bothcases have anequal chance
of occurrence, the net benefit is one-half of the difference between the two
curves in Figure 1. The net benefits for this pair of cases are presented
in Figure 2.

- When the usual estimate is smallerthan the proposed and true accidént

rate such asin Case 1.2, use of the usual rather than proposed upper con-
trol limit to detect assignable factors will cause the unnecessary inspection
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of additional 'normal'’ locations (operating at the true accident rate). There-
fore, if a second stage monitoring system is implemented to detect the
false alarms, the upper control limit can be updated in the near future.
Thus, the net benefits of using the proposed upper control limit to detect
assignable factors greater than those shown in Figure 2.

Toinvestigate the impact of estimation errors on benefits, we consider
a situation which doubles the previous estimation error. That is, we con-~
sider the following pair of cases:

A
Case 2.1: Xi = 34 and Xi = 32
and
A
Case 2.2: Xl = 26 and Xi = 28

The difference between the usual and proposed estimates is two accidents
per year in both cases. The results obtained by repeating the above pro-
cedures are also presented in Figuresl and 2. The results for other simi-
lar pairs of cases arealso presented in Figure 2 for comparison purposes.,
We conclude from Figure 2 that:

Cl) When major factors are added to the system causing locations to
operate at much higher than normal accident rates, the benefits
of using the proposed upper control limit to detect assignable
factors is rather small (tail of curves in Fig. 2). This is be-

cause bhoth upper control limits have a good chance to detect the
added-in factors in this case.

C2) When minor factors are added to the system causing locations to
operate at slightly higher than normal accident rates, the bene-
fits of using the proposed upper control limit could be very large
indeed (the middle section of curves in Fig. 2). This is because
when the usual estimate is much higher than the true accident
rate, the usual upper control limit has virtually no chance at all
to detect the added-in minor assignable factors.

Intuitively, one expects that minor factors frequently affect the traffic
system. Thus, in the case where the usual estimate is poor and the pro-
posed estimate is good, the benefits of using the proposed upper control
limit to detect assignable factors are considerable as shown by Cases 2.3
and 2.4 in Figure 2. As mentioned in Part I, the proposed estimate could
be worse than the usual estimate. In this gituation, we suffer from using
the proposed upper control limit to detect assignable factors. However,
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the nature of the proposed estimation method is such that this situation oc-
curs far less frequently than the former case. Moreover, when it does
occur, the difference between the usual and proposed estimates is almost
always small. Thus, gain is much larger than loss in terms of magnitude
and frequency. Therefore, we conclude that using the proposed upper con-
trol limit todetect assignable factors results in substantial accident reduc-
tion in the long run.

Note that there is no way to mathematically support the above conclu-
sion due to the complex relationships among initial, usual and proposed
parameter estimates. However, we did simulate the above problem on 10
locations whosge true yearly accident rates are 30, 31, . . . , and 39, re-
spectively. For the cases where initial estimates are all perfect, off by 1,
and 5, the simulated results show thatat least 99 percent of the preventable
accidents undetected by the usual upper control limits will be picked up by
the proposed upper control limits. This demonstrates that a relatively
small improvement in estimation accuracy results in a substantial improve-
ment in practical benefits.

We now proceed toestimate the accident rates of Categories 13 through
24, This is presented in the following example.

Example 2 - The same grouping method used in Example 1 is used
again to estimate accident rates of Categories 13 through 24. Estimated
results are presented in Table 7. In this case, the total percentage gain is
only 9.20 percent. We also see from Table 7 that the order of accident
rates of Categories 13 through 15 remains unchanged. This is because
using group average as initial parameter estimates will preserve the rank
order of parameters within the group. As mentioned previously, the usual
rank order of these three categories isnot compatible with that of the first
three categories. To correct the rank order, supplemental variables are
needed.

The i-th and (i +12)-th categories have the same geometric configura-
tion except that every roadway segment in the (i + 12)-th category contains
an intersection. Thus, 8; and 6; 412, 1=1, . .., 12 could be closely
related such as 8; 415 =b9; or 9; .15 =2 +b 6j. The relationship be-
tween 0, and 8, 419 can then beused toobtain initial parameter estimates.
For the purpose of finding their relationships, we first convert X; to Z; so
that the i-th and (i +12)~th categories have the same accident exposure.
This is accomplished by the following equation:

Zi=Aix365X5xTi+12XO.2xNi+12,i=1,...,12 (14)

-20 -




7. can be interpreted as the number of accidents occurring on roadway
segments in the i-th category that has the same accident exposure as the
(i +12)~th category. Graphical examination reveals that X; ;19 and X;,
i=1,..., 12, are approximately proportionate. Since the proposed
method requires the use of Anscombe's transformation of XL +12° i=1, .
. « , 12, we thereforeuse the following equation to obtain initial estimates

\/Xi+12+0.375 =b JX; +0.375 ,i=1,...,12 15)

Least squares is used to estimate b in Eq. (15) and, subsequently, to
obtain initial accident rates of Categories 13 through 24. The estimated
results obtained from using the computer program of Part V are presented
in Table 8. The total percentage improvement is 30.18 percent. We see
from Table 8 that some of the usual accident rate estimates have been
changed substantially. Inparticular, ﬁ13 iglarger than KM whichis larger
than A15 as expected since wider roadways experience loweraccident rates.

Tanhtie 8
Estimated Results of Categories 13 through 24
Using The First 12 Category Rates to Obtain Initial Estimates

Poisspn Rate Accident Rate
Category | Usual(X } Proposed(X )iUsual(A ) Proposed(A )i Difference
i i i i i

13 5t 56.05 57.79 63.51 -5.72
t4 g2 90. 18 63.56 62.30 1.26
t5 103 99.94 59.70 57.93 1.78
16 a0 78.09 61.11 59.65 1.46
17 266 264,46 54.77 54 .45 0. 31
t8 354 350.93 49.62 49. 19 Q.44
19 133 125,96 103.89 28.39 5.50
20 07 203.26 82.72 81.22 1.80
21 107 147 .01 61.76 67.53 -5.78
22 62 55.89 86.94 78.37 8.57
23 180 180,39 62.32 62.46 ~0.14

-2.20

24 258 269. 16 50.86 53.086

Note that the rank order of Categories 13 through 24 based on usual and
proposed estimates are different. Since the proposed estimates are closer
to the true value than the usual estimates; intuitively, the proposed rank
order should be more accurate than theusual one. We postpone discussion
on this subject until the next section.

We now suppose that Eq. (10) is operating as part of a high accident
location detection program. Each time we do not identify and remove
assignable factors causing the i-th location to operate at the higher rate
)\{ , extra /\i’ - A accidents are expected to occur. Thisoccurrence canbe
reduced by increasing (. The higher ¥ will result ina longer list of loca~
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tions to be examined. As previously mentioned, some locations in the list
will turnout to have no problem at all. They arein the list simply because
of random factors in accident occurrence. Moreover, time and funding
could prevent examination of the full list. Thus, we should rank locations
on a priority basis according to, e.g., accident increase or percent acci-
dent increase which, for the location indexed by j are, respectively, defined
as

(16)
and

)\jl -\j
. =1 —_— T
R; =100 N a7

Again, the estimated rates must substitute for the unknown rates. The
accuracy of the priority list then depends on the closeness of the estimated
rates to true ones. Conventionally, X, serves as the estimate of J\io This
is the point at which the proposed metfxod can beused to improve the usual
estimates and hence the priority list as pointed out in Example 2.

Once the priority list ig available, we can then start to examine loca~
tions according to the order of the list until time or fundiné rms out., Sup-
pose that this action results in a list of k locations that can be improved.
For discussion purposes, we re-index these locations. Suppose that there
are n; improvement alternatives available for treating the i-th location.
Denote Ai' to be the accident rate of the i-th location after being treated by
the j-th improvement alternative, We also denote bi' and C;s to be the re-
spective accident reductionand improvement cost of implementing the j-th
improvement alternative. That is,

bi.j=A'i -A,ij,j'-‘l,...,niandi.:l,...,k (18)

Our goal is to find a strategy for improving these locations which re-
sults in maximal accident reduction for the available funding. To this end,
we define A;. =1 if the j-th improvement alternative is used to treat the
i-th location, otherwise, Ai' = 0. The best improvement strategy can be
found by selecting Aij SO as %o maximize

k
™
Oy =1, o njandi=1,..., k)= 121 jz_l Ay by (19)
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subject to the following restrictions

n,

i

Y A =1,i=1,...,k (20)
. 1]
J=

k n,

L5 aes

A.c..SF : (21)
i=1j=1 9 7
and

‘Aij is either 0 or 1 for every i and j. (22)

The right hand side of Eq. (19) is the total accident reduction due to
the improvement strategy A,.,,j =1, « + « ,n, andi=1, ..., k. Egs.
(20) and (21) ensure that no nore than one improvement action will be per-
formed on a location and the total cost will not be over the available funding
F. It is apparent that the improvement strategy is determined by the speci-
fied accident reduction and cost of each improvement action and the avail-
able funding. Since bj; and cjj are not known, we are faced with the same
problem as before of obtaining the best possible estimates of these unknown
constants. In this study, we shall not deal with the estimation of improve-
ment costs. However, the proposed estimation method can be used to im-
prove the usual estimates of)\i’ and Aij in Eq. (18) resulting in a superior
improvement strategy.

The above accident rate could be the number of accidents per vehicle-
mile. Traffic volume is generally estimated from traffic counts taken in
short time intervals. Since traffic count is also distributed approximately
according to the Poisson law, the proposed method canalso be used to im~
prove usual estimates of traffic volumes. This would benefit many areas
in which traffic volume is the main variableused in decision making. For
example, the total traffic volumes as well as the ratio of traffic volumes of
two intersecting roadways may be used to determine whether signalization
is required. In this case, the estimated traffic volumes are compared with
thedesigned values to recommend action or noaction. When thetrue values
are not in the neighborhood of the designed values, both usual and proposed
estimates probably lead to the same decision. However, if the true values
are very close to the designed values, the small estimation improvement
could change decisions from no to yes and vice versa. Since the proposed
estimates are closer to thetrue valuesthan theusual estimates, the chance
of making a 'wrong' decision would be reduced by using the proposed esti-
mates.  The consequences of making wrong decisions could be quite seri-
ous. This again demonstrates that small estimation improvement can re-
sult in substantial benefit in the long run. Another important example is

-923 -




the use of traific volumes of various vehicle types to compute highway noise
levels. This will be explained in a later section.

Note that the term 'accident' has been used in a very broad sense.
That is, if the goal is to reduce fatal accidents, Xi and )\i then refer to the
number of fatal accidents and the fatal accident rate, respectively. IHow-
ever, the above optimization procedures remain unchanged. In passing,
we point out that it generally takes a long period of time or a large accident
exposure to build a reliable X because of the relative rarity of fatal acci-
dents., This could make the above optimization procedures impractical.
One way of avoiding this problem is to use the same definitions of X and
)\ as before, but replace Eq. (18) with the following equation.

=A; 81 = Ay; 85 23)

8. is the severity indexof an accident occurringat the i-th location. In this
case, the severity index is the probability that an accident involves at least
one fatality. s; and 8;; can be estimated from the larger data sets. Meth-
ods which improve the usual accident severity estimates are discussed in
the next section.

We have seen that accident rateand other related parameters play very
important roles in highway safety. Since the proposed estimation method
is capable of improving theusual estimates of these important parameters
thereby increasing the overall system performance, it can be of consider-
able value to administrators who are incharge of safety improvement pro-
gram development. '

Potential Benefits of Using the Proposed Method to Estimate Proportions
of Wet Surface Accidents, Accident Severity Indices and Other Related

Parameters in Highway Safety and Maintenance Programs

In this section, we deal with the estimation of parameters such as ac-
cident severity indices and proportions of wet surface accidents. These
parameters take values from 0 to 1. Thus, we would not expect to have
large differences between the usual and proposed estimates. This is espe-~
cially true when the usual estimates are reliable (as in the case of large
sample sizes). However, the estimated values are often incorporated into,
for example, a priority list or values which are either 0 (no) or 1 (ves)
used for administrative decision making purposes. As mentioned in the
previous section, a relativelysmall estimation improvement could reverse
gome decisions resulting in substantial benefit in the long run. This will
now be demonstrated through the development of the followingtwo programs.
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Pavement Resurfacing Program - Suppose that we are interested in
developing a pavement resurfacing program to maximally reduce wet sur-
face accidents at intersections. Naturally, the first step is to obtain a
priority list of locations on which friction tests are to be performed. This
priority listis typically obtained according to the rank orderof proportions
of wet surface accidents. Applying this method to two locations which have
identical friction coefficients favorstesting that location which experiences
greater wet time. This is a systematic error. To avoid this error, we
should rankonly those locations whose proportions of wet surface accidents
are suspiciously higher than the value to be maintained. Thus, the first
step is to statistically set the upper control limit for each location under
the normal condition (average percentage of wet time and the minimum
friction coefficient to be maintained). Suppose that the true proportion of
wet surface accident of the i-th location is wi; Then, the upper control
limit for declaringat the 100 (1 -{X) percent confidence level that the fric-
tion coefficient of the i-th location is lower than the minimum value to be
maintained is

- 1/Wi(1_w)i i=1 L 24
UCLy =Wtz —+175heees %)

1

where z1.¢ is the upper 100 percentage point of the standard normal dis-
tribution and n; is the sample size (number of accidents in this case) for
obtaining the proportion of wet surface accidents. Since the true propor-
tion of wet surface accidents is unknown, the estimated value must be used
as a substitute for w; in Eq. (24). The usual estimate of w; is

W = Total Number of Wet Surface Accidents 25
1 Total Number of Acecidents (25)

Note that this caseis parallel to the previous case which detects accidents
due to assignable factors. Therefore, the same arguments used there can
be used again to conclude that the proposed upper control limits are better -
than the usual ones in detecting locations with friction coefficients lower
than the minimum value to be maintained. We emphasize again that a small
difference, such as 0.01, between the usual and proposed estimates can
result in a significant wet surface accident reduction in the long run (see
discussion in the previous section for obtaining Figures 1 and 2).

Because of limited funding and time, we might not be able totest every
location generated by the above quality control procedure. Thus, a selec-
tion procedure must beused to test only locations that maximize wet acci-
dent reduction for the funding available. For discussion purposes, let us
assume that locations are to be tested according to the rank order of pro-
portions of wet surface accidents. The usual and proposed priority lists
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areobtained by ranking the usual and proposed estimates of proportions of
wet surface accidents, respectively. Since the proposed estimates are
better than the usual ones; intuitively, the proposed list should be more
accurate than theusual list. We provide the following example of simulated
results to support this statement.

Simulated Results on Priority Lists - We assume that the true propor-
tion of wet surface accidents of the k~th location is

Wk=0.76- 0,01k, k=1, ..., 50

That is, the true proportions of wet surface accidents of these 50 locations
range from 0.26 to 0,75, The true rank orderis 1, 2, 3, . . ., 50. If
funding is available for testing, for example, only 10 percent of the list,
our choice is the first five locations. We provide in Table & the simulated
percentages of correct locations picked up by the usual and proposed lists
obtained under the condition that initial parameter estimates randomly de-
viate from the true values by a constant b. When b = 0, the initial para-
meter estimate is perfect for every location. The larger the constant b,
the worse the initial and, consequently, proposed parameter estimates.
We see from Table 9 that the better proposed estimates (corresponding to
smaller b) provide the larger percentage of correct locations picked up by
the list. Since the proposed estimates (with reasonably good initial esti-
mates) are better than the usual ones, the proposed lists are therefore also
better than the usual list as shown in Table 9.

Table 9
Simulated Results on Prority Lists of
l.ocations with Sampte size 20 Each

Percentage of Locations Correctly
Number Detected for Skid Testing Programs
of Top
Locations Usual fropaosed Priority Lists with Initiatl
to Be Tested | prjgrity Estimates off by The Constant b
List
b=0 b=0.02 b=0.05 b=0Q. 10
5 39,68 893.28 93.00 76.5H6 66.72
10 57.76 96 . 34 89.88 82.08 75.10
20 75.91 98 . Q0 94,55 80.08 84 .98
25 79.97 98 .44 95.52 89 .96 87 .04

We note that the differences between usual and proposed estimates
decreases as the constant b increases. This again emphasizes the point
that a relatively small estimation improvement can significantly increase
the accuracy of the priority list (see the case b = 0.1 in Table 9)and, there-
fore, reduce wet surface accidents in the long run.
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The sample size for each usual estimate of ﬁrdportion of wet surface
accidents in Table 9 is 20. Simulated results for the case that the sample
Size is 100 are presented in Table 10, The increase in sample size sub-
stantially increases the reliability of usual estimates of proportions of wet
surface accidents. This also increases the accuracy of the usual priority
list as can be seen from the comparison of Tables 9 and 10. This shows
again that the better the parameter estimates, the more accurate the prior-
ity list. The comparison of these two tables also indicatesthat sample size
influences accuracy of the usual list more than the proposed list. This is
because it is more difficult to substantially improve reliableusual estimates
(large sample sizes). Nevertheless, the proposed lists are still better
than the usual lists as shown in Tables 9 and 10.

Table 10
Simulated Results on Prority Lists of
Locations with Sample size 100 Each

Percentage of Locations Correctly
Detected for Skid Testing Programs
Number
of T?p Usual Proposed Priority Lists with Initial
toL;Za$e::2d Prz?;ity Estimates off by The Constant b

b=0 b=0.02 b=0.0%5 b=0.10
5 65,32 a7.82 96.52 82.04 74.36
10 . 57.76 98.94 91.32 87.48 84 .62
20 89.63 99.36 95.43 93.18 - 91.53
25 91.78 99.34 96.41 93.33 92 .46

Roadside Safety Improvement Program - We are interested in develop-
ing a roadside safety improvement program that would optimally allocate
the available funding to improve roadside safety. Naturally, the first step
is to identify roadside obstacles and the corresponding improvement alter-
natives such as removing curbs, trees, and utility poles; flattening road-
side slopes; installing gore attenuation systems; shieldingbridge abutments,
pier, and wall faces with guardrail; installing median barrier; etc. A more
complete list of roadside improvement alternatives can be found in NCHRP
148 (10). For discussion purposes, we numerically index every roadside
obstacle (location), say, 1 through k. Suppose that there are n, improve-
ment alternatives available for treating the i-th obstacle. Denote )\i and
)\ij to be the expected number of accidents involving the i-th obstacle before
and after implementing the j-th improvement alternative, respectively.
Also, denote c;; tobe the cost of treating the i-th obstacle with the j-th
improvement alternative, We define A;; =1 if the j-th improvement alter-
native is used to treat the i-th obstacle, otherwise Aij = (0. Then, the best
improvement strategy can be obtained by selecting Aij 50 as to maximize
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O(Aij,j:]., s s e ,nia.ndi=l, e ,k)

k nj (26)
= 2 L Ayisi-Agysy
i=1j=1
subject to the following restrictions
n{ ‘
Z A= 1,...,k (@7)
i=1
k - n4
2 2 AjjoyKF (28)
i=1j=1
and
Aij is either 0 oy 1 for every i and j. (29)

Egs. (27) and (28) ensure that no more than one improvement alternative
will beused to treat anobstacle and the total cost will not be over the avail-
able funding, F. 84 and s{; in Eq. (26) are the severity indices of accidents
involving the i-th obstacle before and after being treated by the j-th im-
provement alternative, respectively. If 8; and sj; are conventional severity
indices, the objective function defined in Eq. {26)is the expected total injury
and fatal accident reductiondue to aroadside safety improvement program
specified by Aij= i=,...,nandi=1, ..., k. Accident rates and
severity indices are unknown, and estimated values must be used as sub-
stitutes for these unknowns. As in the case of the priority list, the better
the estimated values, the more accurate the improvement strategy. Since
the proposed estimates are better than the usual ones, we should use the
proposed improvement strategy to improve roadside safety. To what ex-
tent the proposed method can improve the usual improvement strategy de-
pends on the complex relationships among improvement costs and benefits,
and initial, usual, and proposed estimates. Two improvement strategies
could be the same for one case, and completely different for another case.
The point is that it doesnot hurt touse the proposed method when designing
the improvement strategy from an overall system performance point of
view. The worst sifuation is that no improvement is made. On the other
hand, the proposed method could substantially improve the system perfor-
mance. Therefore, the proposed method can be of considerable value in
desipning highway safety programs.

Let us now examine another area in which acecident severity indices
also play an important role in the safety decision making process., For a
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divided highway, we denote py tobe the probability that avehicle encroach-
ing onto the median would collide with the in-place median barrier. Also,
denote 87 to be the severity indexappropriate to vehicle-barrier collisions.
We define the hazard index as the expected number of accidents in the
severity category under consideration. Then, the hazard index (10) of in-
stalling a median barrier is

The notation 'e' in the above equation stands for the expected number
of vehicles encroaching onto the median. If the medianis barrier free, we
denote p, to be the probability that an encroaching vehicle would cross over
the median and collide with vehicle(s) traveling on the opposite roadway.
If 8o is the severity index of this type of accident, the hazard index for this
case is

Hz=e.g2 - 8, (31)

Ignoring installation and maintenance costs, it is beneficial to install
a median barrier only if

Hy < Hg (32)
or -

H p 8

2=21.2¢ (33)

Ho pp 82

It is intuitively clear that p; > Pg. Thus, installing a median barrier
is justified only when the reduction of accident severity is large enough to
compensate for the increase in accident probability.

Generally, hazard indices are functions of traffic volume and roadway
geparation for a given type of median barrier. To set up standard guide-
lines for median barrier installation, we need to know the critical combi-
nation of traffic volume and roadway separation satisfying Hy = Hg. This
involves computing p; and p,, and estimating s; and s,. It is clear that
the accuracy of the estima.te% values has direct impact on the accuracy-of
design guidelines. Of course, small estimation errors would not affect the
decision made on those roadways that are not in the neighborhood of the
critical conditions required for median barrier installation. However, for
those roadways at the critical condition threshold, small estimation errors
could reverse decisions. Thus, the proposed method has an ideal applica-
tion in the design of standard guidelines for median barrier installation
which maximally prevent accidents and unnecessary construction.
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Compitations of py and py are beyond the scope of this study and will
not be discussed here. The usual estimates of severity indices and related
measurements are discussed below.,

For discussion purposes, we denote s to be the conventional severity
index. That is, the usual estimate of s is

_ Number of Reported Injury and Fatal Accidents
Total Number of Reported Accidents

S (34)

Assume that accidents behave according to the Poisson law. It is
known that, given the total number of reported accidents, the number of
injuryand fatal accidents is a binomial random variable with s as the para-
meter of proportionality, That is, S in Eq. (34) is the usual estimate of
the conventional severity index which alsois the proportion parameter of a
binomial process. The usual estimate defined in Eq. (25) is alsoexplained
in the same way asabove. We now provide anexample which demonstrates
improvement over the usual estimates of proportional parameters in the
binomial processes. This example also serves to demonstrate the follow-
ing:

1) Whensample sizesare large (resulting in reliable usual estimates),
the total percentage improvement is generally low. Conseguently, the dif-
ferences betweenusual and proposed estimates are small. However, if the
total percentage improvement is high, the initial and usual estimates must
be very close to each other. This indicates that the method used to obtain
the initial estimates is a proper one for describing the relationships be-
tween supplemental variables and parameters to be estimated. This in-
formation could be useful for future research and applications.

2) Although the usual and proposed estimates are very close to each
other, small differences become meaningful when the estimated values are
transformed into other forms of information used for decision making pur-
poses.

Example: Michigan implemented the 55 mph speed limit in 1974. We
shall use the severity data of 1972, 1973, and 1975 published in "Michigan
Traffic Accident Facts' (11) to examine the effect of the new speed limit on
fixed object accident severity. These data are presented in Tablell. We
note that the sample sizes (total objects hit) are very large. Unless there
are major changes in safety policies, we would not expect changes, other
than small random fluctuation, in severity indices from one year to another.
This assumption is supported by the 1972 and 1973 severity data in Table
11, Nevertheless, the 1972 severity indices can beused as initial estimates
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Tabie 114
Usual Severity Indices of Fixed Object Accidents
{(Michigan Traffic Accident Facts pp. 22-23, 1972,1973 & 1975}

Propertion of
Injury & Fatal Accidents

Type of Object Hit 1972 1973 1975

1. Guard Rail Or Post 0.3565 0. 3709 0.3422

2., Highway .Sign 0.2569 Q.2772 Q,2476

3. Street Light, Utility Pole 0.4742 0.4714 0.4538

4, Culvert 0.5532 3.5554 0.5659

5. Ditch, Embankment, Stream 0.4140 0.4034 0.3804

6. Bridge Pier Or Abutment 0.5700 0.45692 Q.5470

7. Bridge Rail Or Deck 0.4560 0.4604 Q.4023

8. Tree 0.95227 0.5342 0,4987

9 Highway 0r Railroad Signat Q.2601 0.3133 0.2724

10, Bullding Q0.4106 0.3946 0.3791
t1. Mailbox 0.2228 0.2272 0.2080
t2. Fence Q.2921 0.3004 0.2393
13. Traffic Isle Or Curb 0.3946 0.4023 0.3908
t4. Other On-trafficway Okject 0.2832 0.2816 0.2846
15, Other Off-trafficway Object 0.3512 0.3501 0.3329
16. Overhead Fixed Okbject 00,1136 0.1255 0.0738
0.,2198 0.2162 0, 1626

17. Not Kknown

to estimate 1973 severity indices. The estimated results obtained from
using the computer program of Part VI are presented in Table 12. The
total percentage improvement of the proposed method over the usual one is
43.65 percent. Since the sample size (total objects hit) for each type of
accident severity is very large, the usual severity indices are very reli-
able. As mentioned previously, high percentage improvement is obtained
only when the initial estimates are excellent. That is, the initial estimates
are very close to the usual estimates. Consequently, most differences

Table 12
E: timated Severity Indices of
Fixed Object Accidents in {973

Severity Index

Type of Object Hit Usuatl | Proposed
1 0.3709 0.3644
2 0.2772 Q.2680
3 0.4714 0.4727
4 0.5554 0.5544
5 0.4034 0.4082
<] 0.5692 0.5696
7 0.4604 Q.4584
8 0.5342 0.5290
9 0.3133 Q.2890

10 0.3946 0.401%8
11 Q.2272 Q.2252
12 0.3004 0.2967
13 <.4023 0,3988
14 0.2816 0.2823
15 0.3501 0.3506
16 Q. 1255 Q.1201
17 0.2162 0.2178
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between usual and proposed estimates are small. This is precisely the
case in this problem as seen from Table 12. When this occurs, we con-
clude that the method used to obtain initial estimates is proper for des-
cribing the relationship between parameters and supplemental variables.
For this case, it means that there are no major changes in safety policies
which affect accident severities under consideration.

We now combine 1972 and 1973 severity data to form the estimates of
severity indices of various fixed object accidents before implementation of
the new speed limit. These are presented in 1'able 13. We observe that
the new speed limit appears to have greater effect on the lower severity
indices. This seems reasonable for our particular definition of accident
severity. Moreover, lowering the limit should reduce severity indices of
all types of fixed object accidents. This means that the fourth and four-
teenth usual severity indices in Table 18 run counter to the overall trend.

Table 13
Estimated Severity Indices of Fixed Object Accidents
Before and After Implementing 55-MPH Speed Limit

Severity Index %-decrease(increase)
Type of Before After After
Fixed Object {(Usual} | (Usual}} {Proposed)|Usual|Proposed]Difference
1 0.3632 00,3422 $.3428 5,782 5.600 Q.182
2 0.2667 0.2476 C.2461 7.162 7.707 -0.945
3 0.4728 0.4538 .4551 4,019 3,742 7 0.277
4 0.5543 0.5659 ¢.5564 {2.093) (0.371) t.722
5 0.4092 0.3804 Q.3830 7.038 6.396 0.642
51 0.5687 0.5470 0.5428 3.885 4.725 -Q.740
7 0.4584 00,4023 0.4036 12.238 11.9G60 0.278
8 0.52893 0.4987 0.5011 5.603 5,145 Q.458
9 0.2915 0.2724 Q.2669 6.552 8.562 -2.010
10 0., 4025 0.3791 0.37914 5.814 5.81%7 -0.003
11 0.225%0 0.2080 0.2058 7.9%96 8.543 -0.987
12 0.2961 0.2393 0.2444 19.183 17.471 1.712
13 0.3984 0.32C8 0.3872 1.908 2.799 -0.891
14 0.2823 0.2846 0.2804 (0.Bt5}) 0.674 -1.4849
15 0.3508 0.3329 0.3323 5.103 5.276 =0.173
16 0. 1195 0.0738 0.0745 38.243 37.696 0.987
17 Q.2191 0.1626 0.1628 25.787 25.696 0.0914

We now use the proposed method to estimate severity indices of various
fixed object accidents occurring after implementation of the 55 mph speed
limit. For the i-th type of fixed object, we denote X; and Y; to be Ans-

combe's transformation of severity indices before and after implementation
" of the new speed limit, respectively. The data indicate that the following
-equation holds approximately.

L 2

The above linear relationshipis, therefore, used to obtain least squares
estimates as initial estimates of after-period severity indices. The esti-

- 32 -




mated results obtained from using the computer program of Part VI are
also presented in Table 13. The total percentage improvement of the pro-
posed method over the usual one is only 11.39 percent. Consequently, the
differences betweenusual and proposed estimates are very small as shown
in Table 13, However, after converting these estimates to percentages of
decline for the purpose of measuring speed limit impact onaccident sever-
ity, we see from Table 13 that the proposed method substantially reduces
the percent increase of the fourth severity index and reverses the fourteenth
severity index from a 0.815 percent increase to a 0.673 percent decrease
in line with expectation. If better information is available, the proposed
method might alsoreverse the fourth severity index's direction. This sup-
ports the previous remark that small estimation improvement can become
meaningful depending on the evaluation criterion.

Since injury and fatal accidents tend to have a higher reporting level
than property damage accidents, the usual severity index estimate defined
in Eq. (34) is likely to be an overestimate of the true value. To correct
this bias, we introduce the aceident reporting level, r; definedas the prob-
ability that an accident will be reported. The usual estimate of the report-
ing level is

_ Total Number of Reported Accidents
Total Number of Accidents

R (35)

As suggested, the reporting level is positively correlated with the
severity index. Special experiments are required to estimate the reporting
level for any accident class such as those with median barriers. Once
estimated severity indices and reporting levels are available, the decision
on installing a. median barrier can be made based on the ratio of the two
estimated hazard indices. That is,

N R e (36)
Py By By

Again, the proposed method can be used to improve usual estimates of re-
porting level for the purposes of designing standard guidelines for median

barrier installation.

Based on the above discussions, we conclude that the proposed method
is a very useful tool for the development of better highway safety improve-
ment programs.

Potential Benefits of Using the Proposed Method to Estimate Mean Values

in Highway Maintenance, Aggregate Testing, and Noise Programs

In highway construction and maintenance, sé.mple averages are statis-
tics commonly used to estimate parameters that measure product quality
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or characterize processes. Thus, methods for using sample averages to
obtain better estimates of these parameters would be of great value to high-
way administrators. To illustrate this, we present the following three
areas in which sample averages play very important rolesin decision mak-
ing or in developing useful programs.

Pavement Resurfacing Program - As mentioned before, to develop a
pavement resurfacing program for maximally reducing wet surface acci-
dents at intersections, the first step is to obtain a priority list of locations
onwhich friction tests are to be performed. We have shown previously that
the proposed list is better than the usual one. Once a priority list is es-
tablished, the next step is to test locations according to the order of the
list until funding or time runs out. Numerous friction test results are ob-~
tained for each intersection. The test result average is the usual estimate
of the true coefficient of friction. This estimate, together with the propor-
tion of wet time, determines the net benefit of resurfacing an intersection
(12). Net benefits and improvement costs are then used to develop an opti-
mal pavement resurfacing program. We remark that this optimal program
can be obtained either by solving a mathematical system such as Eqs. (19)
through (22) or by using a priority list based on net benefits (per dollar
spent). As mentioned previously, better estimates of parameters (friction
coefficients) would lead to a better improvement strategy. Since the pro-
posed estimates are superior to the usual ones, the proposed method is of
great value in developing effective pavement resurfacing programs.

- Highway Noise Program - The noise level generated by a vehicle tra-
veling on a roadway is a function of vehicle type, speed, distance to re-
ceiver as well as geometric configuration and environmental conditions.
The noise levels of various combinations of these variables are essential
parameters of a computer program (13) which computes highway noise
levels suchas Ly, Lsg and Log> etc. Since these parameters are unknown
and must be estimated from the data, the reliability of the computed value
certainly depends on the accuracy of the estimated parameters. As usual,
averages of the observed noise levels serve as estimates of those para-
meters in the computer program. Thus, the proposed method for improving
sample averages would beof great value indesigning a more accurate com-
puter program.

The noise levels of roadway segments are generally transformed into
a. priority list for administrative decision making purposes such as noise
barrierinstallation. Since the truenoise levels are unknown, the estimated
values must be used as substitutes. As mentioned in the previous section,
small estimation errors could significantly change the priority list and,
consequently, affect decisions based on the list. Thus, it is of fundamental
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importance to reduce estimation errors as much a.é possible. Use of the
proposed method for this purpose is discussed below.

One way toobtain the noiselevel estimates is through theuse of a pub-
lished noise computer program. We shall assume that this program is
valid. Then, the reliability of the computed values dependson the accuracy
of the input variables such astraffic volumes and average speeds of varicus
types of vehicles, geometric configuration and environmental factors. We
note that traffic volumes and average speeds are sample estimated values
and are therefore subject to random error. Moreover, each roadway seg-
ment isunique in terms of geometric configuration and environmental con-
ditions. It is not possible for the computer program to cover all different
types of roadway segments. Therefore, for some roadways, the computed
value may not be a. good estimate of the true noise level due to imperfection
in input variable estimates. Alternatively, we may take random samples
to estimate the true noise level of each location. In this case, the sample
average is the usual estimate of the true noise level. Of course, this esti-
mate is also subject to error. This error can be reduced by the proposed
method which uses the computed values toadjust sample averages as shown
in Part III. Thus, the proposed estimates give better information for de-
cision making purposes.

Agpregate Testing and Acceptance - Aggregate testiné and acceptance
isa major portion of the daily operations in highway construction and main-
tenance. Therefore, it is important to have methods for obtaining good
estimates of parameters used to design aggregate testing and acceptance
procedures.

The Michigan Department of Transportation is currently experimenting
with the mechanical testing method for aggregate testing. It has been shown
by experiment (14) that this method produces different results from the
conventional hand testing method. Intuitively, aggregate degrades if it is
over-shaken. Thus, the shakingtime maybe the keyelement in mechanical
testing method design at least if it is to produce the same results as the
conventional method. The proper time setting can be determined by using
sample averages of a well designed experiment, 'The proposed estimation
method can further improve these averages todesign a better testing meth-
od.

It has been shown that aggregate significantly degrades when transport-
ed and compacted (15). In order toproperly adjust specification limits for
the purpose of designing an in-place aggregate inspection plan, we need to
know aggregate degradation rates. These rates can be estimated from
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Tabhie 14

Peak Noise Lzvels of Commercial Vehicles
No of Sample§ Usual Estimate Proposed
Axles | Spead| size |(Sample Average) | Estimate|Difference
2 25.2 5 72,240 71.558 0.682
2 3.0 i9 72170 72.385 -0.215
2 35.5 60 73.760 74.030 -0.270
2 40.0 34 75.3414 75.4933 ~0.15%2
2 44 .6 22 75.852 76.527 -0.675
2 50,2 i3 79.208 78.928 0.280
2 55.3 32 B8(O.293 80 . 220 0.003
2 59.3 27 B2.048 81.737 0.311
2 865.5 4 B83.475 83.439 0.036
3 25.5 2 79.600 78.485 1.115
3 31.7 g T6.746 77.964 -1.218
3 37.0 7 79.329 79.617 -0.288
3 41.5 11 78.929 79.937 -1.008
3 46.5% 2 82.700 82.054 0.646
3 54 .1 14 85.178 83.912 1.266
3 58.0 19 84,208 83.929 0.279
3 65.7 3 83.800 84,592 -0.792
4 27.7 3 77.900 77.1565% 0.745
4 35.4 5 78.920 78.918 0.002
4 41.8 5 79.320 80.19¢6 ~0.876
4 48 .0 2 B1.850 82.370 =0.420
4 53.5 22 84.783 84.508 0.275
4 57.9 19 85,3248 85.508 =0, 160
4 62.3 7 86.016 86.551 -0.535
4 66.0 2 89.700 88,732 0.968
S 27.8 4 T77.400 77177 0.223
5 32.3 i8 77.367 77 .848 -0.481
2 36.7 22 79,533 79.421 0.112
5 42.0 9 80.600 80.673 -0.073
5 . 45.0 1 81.000 81.296 -0.2396
5 52.9 39 84 .564 83.985 0979
5 55.9 83 85.691 85.064 0.627
5 61.4 55 85.925 85.846 0.079
5 66.3 8 85.189 86.283 ~1.094
5 71.0 2 88.850 88.527 0.323
6 27.0 2 78.500 77.720 0.780
6 36.3 4 79.325 79.623 -0.298
5] 41.0 2 80.850 81.090 =0. 140
6 52.8 8 85.774 85.083 0.691%
5] 56.8 12 86.850 86.203 0.647
6 61.4 16 86.923 a7.004 ~0.081
7 20.0 t 69,900 73.356 -3.456
7 36.0 1 860.200 80.341 =0, 141
7 45.0 2 82,300 82.894 ~0.594
7 57.3 6 87 .567 86,988 0.572
7 62.0 5 87.520 87.7%6 ~-0.236
8 35.5 2 82.750 81,724 t.026
8 41,0 2 82.800 82.667 0.133
8 54.0 5 88.800 87.3%52 t.448
8 60.3 4 88,300 88. 199 0. 101
8 69.C 1 86,800 88.360 -1.560
9 33.3 3 82.4G67 81.639 0.828
9 55.3 4 88.425 87.815 0.610
9 59.8 4 89.425 88.987 0.438
10 55.3 6 88.035 88.054 -0.019
10 59.8 - 5] 89.733 89.518 0.215
11 24 .0 5 81.382 80,431 0.951
IB | 31.4 7 81.871 81.876 -0.005
i1 40.3 11 85.046 84 .694 0.352
11 45.0 4 86.525 86.099 0.426
t1 53.3 8 88.238 88.206 " 0.032
11 57.9 14 88.691 89.166 -0.475
11 61.7 3 88 .767 89.835 -1.068
i1 66.0 i 89.800 90.987 -1.187
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sé.mple averages of a well-designed experiment. Again, the proposed es-
timation method can further improve sample averages to obtain better es-
timates for the purpose of developinga better in-place aggregate inspection
plan.

The small differences between the usual and proposed estimates prob-
ably have no impact on the inspection of very poor and good quality aggre-
gates. This is because any reasonably good inspection plan has a high
chance of rejecting poor and accepting good quality material. However,
when the aggregate quality is on the margin of the specification limits,
small differences become important in the role of rejecting poor quality
aggregate, If thereis apenalty system imposedupon the inferior material,
small estimation improvements could mean a substantial saving in construc-
tion cost.

We note that usual estimates (sample averages)are statistically inde-
pendent in pavement resurfacing and highway noise programs, but corre-
lated in aggregate testingand acceptance programs. In general, the corre-
lated case requires more samples than the independent case to achieve the
same percentage estimation improvement., - Thus, good supplemental data
in the correlated case are almost essential to obtain substantial estimation
improvement. We now provide one example for each case to demonstrate
how to use the proposed method to improve sample averages.

Example 1: The peak noise level generated by anisolated commercial
vehicle traveling on a roadway is measured. The speed and number of
axles of this vehicle are also observed. Our initial investigation on 226
data points surveyed by the Michigan Department of Transportation found
that the peak noise level isalmost a linear function of speed and number of
axles. Moreover, the variance of the peak noise level does not depend on
traveling speed and vehicle type. Capitalizing on this linear relationship,
we combined vehicles that have speeds within 2 mph to increase the reli-
ability and normality of sample averages of peak noise levels and speeds.
The datathereby obtained are presented in Table 14, The linear relationship
among these variables is used to obtain initial estimates of true noise
levels. The estimated results obtained from using the computer program
of Part VII arealso presented in Table 14, The total percentage improve-
ment of the proposed method over the usual one is 47.94 percent. We ob-
serve from Table 14 that some of the differences between sample averages
and proposed estimates are substantial and statistically significant. Also,
the usual and proposed rank orders are significantly different.

Example 2: Toestimate aggregate degradation due totransporting and
compaction processes, we take samples from production and construction
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Aggregate Gradat:on Lifferences
Between Production and Construction Sites

Table

15

Changes in Gradation
Sieva Size | Sample Averagel Mew Estimate
3/4-1n. *.89933 2.0t67
1/2-1n. 3. 3867 3.3670
a/8-1In. 4.0433 4.0t29
No. 4 4,0333 4.0543
No. 8 3.8300 3.8636
No. 16 3.5200 3.53¢8
No. 30 3.1200 3.0830
No. 50 2.4667 2.4529
Na. 100 1.7833 1.8027
NO. 200 1.5200 1.5048
L.B.W. 1.2750 1.2829
Table i6

Aggregate Gradation Differences
Between Production and Construction Sites

Preavious

Change

in Gradation

Sieve SizejEstimate Sample

Avergel;Proposed Estimate

3/4-In. 2
1/2=4n. 3
3/8~in. 4,
No. 4 4.
No. 8 3.
No. 16 3.
No. 30 3.
No. S0 2.
No. 100 1.
No. 200 1.
L.B.w, 1.

.39
.78

ek e DWW R DR W

.8933
L3867
.0433
L0333
.8300
.5200
. 1200
L4667
.7833
.5200
. 2750

S ROWLE &WON

. 1501
.5481
. 1566
. 2651
.8774
.5358
L0765
. 4048
.7978
. 5002
L2770
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sites. The changes inaggregate gradation (percent passing various sieves),
based on 30 samples each, are presented in Table 15. We observe from
the data that the change in gradation is approximately a third order poly-
nomial function of sieve size. Note that, if this relationship is used to
compute initial estimates, the percentage improvement will be low because
four unknown coeificients of a polynomial function are too many relative to
the number of parameters, 11, to be estimated in this probelm (as explain-
ed in Part III and, also, Part VIII). The estimated results obtained from
using the computer program of Part VIII for this case are also presented
inTable 15. As expected, the percentage improvement is only 8.6 percent.
Consequently, sample averages and proposed estimates are almost the
same. We now use the experimental results of other locations as initial
estimates, the data and estimated results are presented in Table 16. We
see from this table that the two experimental test results almost agree on
fine aggregates, This is reasonable because the variances of test results
on fine aggregates are much less than those on coarse aggregates (see

examples in Part VIII). The total percentage improvement of the proposed

method over the usual one in this case is 23.77 percent. However, the
usual and proposed estimates are practically the same. This is because
two experiments provide almost the same usual aggregate degradation es-
timates. This ensures us that either the averages of two experimental re-
sults or the proposed estimates (weighted averages of two experimental
results) can be used to adjust specification limits. Of course, the reli-
ability of these estimates is higher than the usual ones (ba.sed on one ex-
periment). Thus, even in this situation, the proposed method indirectly
provides better estimates than the usual ones.
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m
THEORETICAL DEVELOPMENT OF
STEIN-LIKE ESTIMATION PROCEDURES

1y Background

Let X = (X1, + + » » Xp)” be k-variate normal with mean vector = (91, .
.y ek)’ and covariance matrix &. The superscript / stands for the trans-
pose of a vector or matrix. We are interested in estimating ® under the
quadratic loss function

A A sl A
L@®,9)=0~-8Fr ©-9) : (37
A
where 8 is an estimate of 9.
The usual estimator of ® is X. The risk of the usual estimator is

R, X)=EL® X)=E X - e)’}:"l X-96) =k (38)

The notation 'E' stands for the expectation of a random variable. For
k= 2, the usual estimator is shown to be admissible by Stein (16). How-
ever, for k = 3, James and Stein (1) have shown that the followingestimator
is better than the usual one.

0 =(L-0X (39)
where, if the covariance matrix is the identity matrix,

c = (k- 2)/XX (40)

if the covariance matrix is 02 times the identity matrix, g 2 ig unknown,

82/0 2 isa chi-square with n degrees of freedom and is independent of X,

k-2 82
_ A 41
CTh+2 XX )

and, if the covariance matrix is unknown, S is a k by k Wishart matrix with
parameter n and ¥ and independent of X,

_ k-3 . 1
- n-k+3 X/S’1X ‘ (42)
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This estimator shrinks X toward the origin. One simple extension is to
shrink X toward a given vector U = (Ugs « =« 0 Uk)’ which is independent
of X, That is, we have

6X) =U+(1-¢) (X-1U) {43)

The column vector U can be interpreted as an initial estimate of 8. The
above estimator is substantially better than the usual one when U is near
8. Thus, the key to obtaining a good estimate is the providing of a good
initial estimate.

Past experiments and parallel studies are the usual sources for initial
estimate of 8. However, for many reasons, these scurces may not be
available or reliable enough for our problem. Naturally, one is interested
in constructing estimators that use the usual estimate X and supplemental
data to obtain an initial estimate for the purpose of obtaining a better final
estimate of 8. In this case, U is no longer independent of X and, conse-
quently, the above estimator needs to be modified. For example, for the
case that Z =T,

5 ) =,U+|:1- (X_If),'(f(_m]m-m J @)
where

U=, «0oo,X) 45y
and

- 1 &k ‘

X =z Z X (46)

This estimator, suggested by Lindley (in Stein (17), pp 285-297),
shrinks all Xj toward the sample average X. The improvement of this es-
timator over the usual one is substantial if all 0; are near 8, the average
of 8150 ¢ o s and Gk. In another words, this estimator is an excellent es-

k
timatorif the total parameter variation, ): (8; - )2, is small. We shall
i=1 ‘
extend this idea to cover more general forms of initial parameter estimates.
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It can be verified that the initial estimate U defined in Eqgs. (45) and
(46) satisties X - U= PX and P is a k by k matrix of the following form:

k-1y/k -1/k .. -1/k|
-1/k k-1)/k .. .
P = . : Ce @7

-1k -1/k .. (k-1yk

Furthermore, P is symmetrical and idempotent of rank (k - 1), That is,
P’=P and PP =P. In this case, Rank (P) =Trace (P). Thus, there is
motivation to investigate estimators of the form defined in Eq. (41) with U
satisfying the following three conditions:

C.1l) X-U="Px

C.2) Elements of P are independent of X
and

C.3) P is an idempotent matrix.

Throughout this part, U = (Ugs o « oy Uk)' stands for the initial esti-
mate of 6 and P is the corresponding matrix satisfying the above three
conditions. The major theorem and techniques are presented in the next
section. This section deals with the simplest case that the population co-
variance matrix ) is known. Common examples are given in Section 3.
The applications of the simplest case are discussedin Sections 4 and 5. We
then study the case that the population covariance is of the form § 2: The

results for the case that(Q 2 s unknown and & is known are presented in
Section 6. The reverse case is studied in Section 7.

2) Population Covariance § is Known

Throughout this section we assume that X = Xy, « « » , Xk)’ is k-
variate normal with mean vector 6 = (8;, . . . , Bk)’ and the known covari-
ance matrix 2. We study an estimator of the form

6(X>=U+[1- y— ](X-U) (48)
' x-UvyEL x- ) -

In order to express the risk fupction of 8, we first establish the fol-
lowing lemmas.
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Temma 1 - If Y is noncentral chi-square with k degrees of freedom
and noncentrality parameter 11, we have, for m < k/2,

I'k/2 - m +w)
Taz+w) <%

Ey®=2mg (49)

where [ is the usual gamma function and W is a Poisson random variable
with parameter A =1]/2.

- Proof: The result is obtained through straightforward integration.

Lemma 2 - Let Z be k-variate normal with the identity covariance
matrix. For any k by k symmetric and non-negative definite matrix A such
that Rank (A) > m >0, we have

E z/a7)"™2 < oo | (50)

Proof: There exists an orthogonal matrix Q such that A = Q’DQ where D is
a diagonal matrix of non-negative elements. The number of positive diag-
onal elements is n > m. Denote a to be the minimum of those positive
elements. Since QZ)QZ is a noncentral chi-square with n degrees of
freedom, we have from ILemma 1 that

/ -m/2

E (z’AZ) ™ 2. [(Qz)’DQz] <alg [(QZ)’QZ] 'm/2<oo

Lemma. 3 - For any square matrix Q, Rank (Q’Q) = Rank (Q).

Proof: The proof is quite simple and is omitted.

Lemma 4 - Let Z be k-variate normal with mean vector 8 and identity
covariance matrix. If @ isa k by k idempotent matrix of rank > 2, wehave

(Z -6)’QZ Trace @) - 2
776767 77670z <

E (51)

Proof: The result can be directly established by using Hudson's Natural
Identity (18) together with Lemmas 1 through 3.

We are now ready toexpress the risk function of the estimator defined
in Eg. (48). We first note that Z =z-1/ 2% is k-variate with mean vector
£-1/2¢ ang identity covariance matrix. Also, @ =¥ ~1/2 P£1/2 is an
idempotent matrix with Trace @) = Trace (P) and Rank @) = Rank (P).

- 44 -




Under the assumption that Rank (P) > 2, we obtain from Lemma 4 that

R(9,5)=k-—2bE Trace (P) - 2 +b2E 1
x/p/ ¥l px x/p/E-1px

When Trace (P) > 2, the above risk function is minimizedat b = Trace (P) -
2. This completes the proof of the following main theorem.

Theorem 1 - If Trace (P) > 2 and Rank (P) > 2, the estimator defined
in Eq. (48) with b = Trace (P) - 2 is better than the usual one. The risk
function of this estimator is

R (8, 0) =k - [Trace () - 2]° + E[ L ] (52)
-0t x-v)

Wenote that when £.=1 and U = 0 (consequently, P =T), this estimator
isthe Stein estimator defined in Eq. (38). We remark that, if P in Theorem
1 is also symmetrical, (X - U)’ -1 (X = U) is achi-square with n degrees
of freedom and noncentrality parameter 7] , where

n = Trace (P) = Rank (P) (53)
and
N=e¢’''L Do ) (54)

Consequently, R (9, 5 ) is computable. The risk is k - Trace (P) + 2, when
T = 0, and increages to k as T increases to infinity., The behavior of the -
risk function can be better explained by Figure 3. This figure indicates
that it is essential to have 7] low and Trace (P) high in order to obtain good
parameter estimates. Unfortunately, we shall see later that Trace (P) and
1) generally operate in the same direction,

In the next section, we provide practical forms of the initial estimate
of the parameter. These practical forms will be the options of computer
programs written for solving practical problems such as those discussed
in Part II.

3) Practical Forms of Initial Estimates

Example 1: Shrinking X TowardanIndependent Initial Estimate - When
the initial estimate is obtained from past experiments or parallel studies,
we shall use the following estimator to estimate the unknown parameter.

k-2
X-Uuyrlx-u

6(X)=U+[1- ](X-U) . (55)
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The improvement of this estimator over the usual one is substantial if the
initial estimate is near the parameter.

Example 2: Shrinking Every X; Toward the Average of Kiso s oy Eli
Xk - In this case, U and P were defined in Egs. (45) and (46), respectively.
The trace of P is k - 1, Thus, by Theorem 1, the following estimator is
better than the usual one for k > 3.

o) =U+ |1~ k-3 - 56
“ x-wEtE-ul o

The improvement of this estimator over the usual one is substantial if the
k
total parameter variation, Z (8 - '6')2, is small
i=1

Example 3: Shrinking Every X; Toward the Weighted Average of X1
+ + + , X; - For a given set of real numbers, W, i=1,..., k, satis-
" k
fyi_ngwl +. 0 o W =1, we deiine Up=«¢eo=U= z w. X;+ That is,
: i=1
U; is the weighted average of usual estimates. Then, X -~ U = PX with P
defined as -

l—wl - Wy -w
-Wl 1""W2 I Y "'Wk
P= (57)
__"Wl ~Wg .« .. 1-wk_

Tt can be easily verified that the above matrix is idempotent with Rank
(P) = Trace (P) =k - 1. Wenote that P is not a symmetrical matrix unless
W1 =+ s =Wp. Thus, by Theorem 1, the estimator defined in Eq. (56)
is better than the usual one. The improvement of this estimator over the
ugual one is substantial if the total weighted parameter variation is small.

The next two examples demonstrate the techniques of using current
data (usual estimate) and supplemental variables to obtain an initial esti-
mate of 8.
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Example 4: Shrinking X Toward an Initial Estimate Determined by

Supplemental Data (Method I) - Often, 8; can be expressed as the product
of anunknown parameter b; and a known variable ti:l.e., 8; = by tj» Gener-
ally speaking, t; is supplemental data suchas sample size, number of years
or traffic volume, etc., involved in observing X;. We shall term t; as the
'supplemental' variable for 9;. 1f every ti is near theunknown constant b,
we have apprommately that 9 =h t for every i. In this situation, we may
take U; = b t where b is an unblased estimate of b defined as

k
= Z X/ ¥ 4 (58)
i=1 i=1
k k
We now define w; =t / Z tj Then, we have that U; =Wy Z X with
i=1 J“'l

Wy+eeotw,=1and X-U = P'X, where P was defined in Eq. (57).
Thus, by Theorem 1, the estimator defined in Eq. (56) is better than the
usual one if k > 3. For this estimator, we estimate 8, to be

(39)

A N
Si® =bt +[1- k-3 ] i =b t;
R - RN

The improvement of this estimator over the usual one is substantial if
k

A
Z (b - b)2 is small.
i=1

Example 5: Shrinking X Toward an Initial Estimate Determined by
Supplemental Information (Method 1) ~ Suppose that there are n supplemen-
tal variables satisfying the equatmn 8; b11 tj1 ++ .« + by, tiy- Apgain, we
assume that Bi = (byy, « + « , bi,) is nearB (bys+ + » , by )  for every i.
Then, we have approximately that 8 =T B, where T 1is the supplemental
matrix of the following form.

t11 t12 LI B tln

. . ¢ ® L -

T = til ti2 s & @ t. (60)
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A A
The least square estimate of B is B = (T’T) TX. 1f we take U = TB

as the initial estimate of 8, we have

1

P=I-T ('T) T’ (61)

It can be eagily verified that P is a symmetrical idempotent matrix
with Trace (P) =k - n. Thus, by Theorem 1, the estimator

k-n-2 :

0X)=U+|1- o1 X -0 (62)
X-UYL (X -U)

is better than the usual one for k > (n + 2). As previously mentioned, keep-

ing Trace (P) high is a good practice for obtaining a good estimate of 6.

Thus, the vector size of B should be kept small relative to the vector size

of 8.

Example 6: Mixture of Above Examples - Congider a k by k matrix of
P of the following form

Pl 0 - L I 0
0 PZ " 8 9 0

P=| . (63)

m

] e

where every Pjis an idempotent matrix and 0 is the null matrix. It can
be easily verified that P is also an idempotent matrix such that Rank (P) =
k k
2 Rank (P;) and Trace (P)= ) Trace (Py). Thus, if Trace (P) >2
i=1 i=1
and Rank (P) > 2, the estimator

6(X)=U+[1- Trafe(f)“z ](X—U) | (64)
X-Uyy " X-U

is better than theusual one. In this case, U = (I - P)X. We interprete the

above estimator as follows: |

a} 6 is partitioned into m groups,
by If 6; is in the j-th group, X; is shrunk toward the initial estimate

Uj determined by Pj'
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For example: supplemental information is available for the first kl
parameters, but not forthe last kz parameters, kl + k2 =k, Furthermore,
we have that 9; = b; ti’ i=1,. .. ’_kl‘ If bi is neara constant b fori =1,
+ .+, kand 9; is near a constant 8 for i = kl +1, ..., k, we maytake
P; and P, asdefined inExample 5 (k = kj)and Example 2 (k = kz), respec-
tively. In this case, Trace (P) =k - 2 and the above estimator shrinks X,
toward U; which is defined as

A
bt"i=l "‘. L ] * ,k ’
Ui 4 = 1 (65)
Xz ,l“kl +1,' LI ,k .
A k k 5 _

where b=.z tiXi/,Z ti andX2 is the average oin, 1=k1 +1, & &
i=1 i=1

. 5 K.

As previously mentioned, the key to obtaining good estimates isto keep
the trace of P high and 1) defined in Eq. (54) low. Unfortunately, the only
way to reduce 7] is to properly increase the number of groups which de-
creases Trace (P) and, consequently, increase the total error. In gener-
al, if the reduction on 1) with an additional group does not compensate the
logs of extra degrees of freedom (use higher up curves in. Figure 3 to de-
termine the squared error), the extra group is not beneficial and, there-
fore, should not be used.

4) Application of Theorem 1 to the k-Variate Poisson Problem

In this section, we assume that . €} is a Poisson random variable with
‘parameter A s+ Many measurements in the transportation field, suchas
traffic count and traffic accidents, possess this property. We alsoassume
that X3, . « . , and X are independent. The usual estimator of A= (Al,
v oo, A7iI8X = (X, « .+, X)) We areinterested inestimating A by
the method presented in the previous sections. For this purpose, we first
use Anscombe's transformation (7) to transform X, to Z; defined as

Z, = yX; +0.375 (66)

Thistransformed random variable is distributed rather more normally
than X; when )\i is large. The mean of Z; is approximately \/A_l when ’\i
is fairly large. Based on our computation, when ’\i 2 5, the variance of Zi
is near 0.25. That is, Z = (Zl, .0 a Zk)’ is almost a k-variate normal
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withmean vector 8 = (84, « . . , 8 )”andcovariance matrix 0.25 I ifevery
A; is large enough, say =5, The parameter 6; is defined as

w k »
6,=EZ,= 2 [i+0.375 = AL

i=0

(67)

Ny
j!

Applying Theorem 1 tothe transformed random variables, we estimate
@ to be

_ Trace (P) - 2 (68)
8,(zy=1U, + [1 - )] (Z; - Up)

4Z -UY(Z-U

We then estimate )\i to be the solution of Eq. (67) with 8; replaced by
61(2). Since Z isnot exactly a normal random vector, we shall investigate
whether the above estimator is still better than the usual one.

The risk function of the above estimator is too complicated to be ana-
lytically computed. Therefore, we simulate the risk of the above estima-
tor in terms of the following four loss functions:

k k 9
L a-sw ) T [5-a0)%

i=1 i

A k A 9
Ihi-)\'i ls Z (}\.i'Ai)

1 i=1

™ =

In the above four loss functiohs, ai(Z) ig the estimate of Bi defined in Eq..

o)
(68) and A ; is the corresponding estimateof \;. Based on extensive simu-
lation, the above estimation procedures are aﬁso superior to the usual one
in the global sense. "

[t

Since Theorem 1 was applied to the transformed random vector Z,
methods for determining initial estimate presented in Examples 1 through
6 of Section 3 should be operated on the transformed parameter Bi. The
details will be discussed with examples in Part V.

5) Application of Theorem 1 to the k~Variate Binomial Problem

In this section we assume that X, is a binomial random variable with
parametsr n (sample size) and p, (untmown proportion), We also assume
that Xl’ . 4 e X‘k are independent. The usual estimator of P, is

Y, =X, /n (69)
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It has been shown (2, 7) that the random variable Zi’ defined as

= /0, +0.5 Si -1 n’ i- 1)
in +075 (70)

is distributed rather more nearly normally than Y; if n; p, is large. Based
on our computation, the variance of Zl is near 1 for n, p; =4, Thatis,

(Zl, s e s Z )’ is almost a k-variate normal with mean vector 6 =
(9 y e e ey 8) a.nd identity covariance matrix when n, p, is fairly large
for every i, say = 4, The parameter 6 is defined as !

! 2j - n4 n; = j
_1l i i (71)
+ 0. i 1l-~-np,
/n 5J§_OSm n 0,75 ('. P ( Pl)

Applying Theorem 1 to the transformed random variable Z, we first
estimate Bi to be

Trace (P) - 2 |
5,2 = Gt |} "z ia%i'((z) - U)] (Z; = Uy (72)

We then estimate p; to Re the solution of Eq. (71) Wl,th 8; replaced by
0. (Z) Another estunate, P;» of p can be obtained through the inverse
functlon of Eq. (70), That is,

n; +0.75 (2} __
AR P sin |01 +1 . (73)
1 2 ni ni + 0.5

Again, based on extensive simulation, the above estimation procedure
is superior to the usual one.

Methods presented in Examples 1 through 6 of Section 3 should be used

on thetransformed parameter 9, to determine initial parameter estlmates.
The details will be dlscussed with examples in Part VI.

6) Population Covariance O 2% with 02 Unknown and ¥, Known

In this section we assume that X = (Xl, + «+ X ) isa k-variate nor-
mal with mean vector 8 = (154 -+, 0 )" ‘and covar1ance matrix 0'22. We
also assume that &, is a. known k by k matrix, but O' is unknown. However,
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we independently observe s2 distributed as O 2 times a chi-square with n
degree of freedom. We study an estimator of the form

2
5x)=U+ | 1- bS8 X - U) (14)
x-UuYL-l x-u |

If Rank (P) > 2 and Trace (P) >2, we obtain from Lemma 4 and the
independent assumption of X and S that the risk function of the above es-
timator is minimized at b = I:Tra.ce ) - 2] /(n +2). This completes the
proof of the following theorem,

Theorem 2 - If Trace (P) »> 2 and Rank (P) >>2, the estimator defined
in Eq. (74) with b = EI‘race r) - 2:| /(n +2) is better than the usual one.
The risk function of this estimator is

2 i
Re,a =k - = Trace -22E g 75
(,0)=k-—= ®) - 2] [(X-U)f}:*l(x-m (75)

If P isalso symmetrical, (X - U)’Z'1 x-uy/ 0' is chl—square with Trace
(P) degrees of freedom and noncentrality parameter 8’ P't Pe/g2,

We now describe a general situation to which the above theorem can be
applied to obtain a better estimate of 8. This is as follows: we observe
X 1r * 0 Xm from the i-th populafion with mean 9 and variance O'

i=1,..., k. 0= (9 , o s, 0 ) and 02 are unknown. Furthermore,
all }filé are 1ndependent. The usu.alkestlmator of 91 is the sample average,
fined as

1
n

n M .P

X, = X | (76)

1ij

=7

]

If the i-th population is normal, X, is normally distributed. Other-
W1se X. is approximately normally distributed with mean 8; and variance
g2 /n when n, is fairly large. That is, when sample sizes are fairly large,

= (Xl’ cee s X ) is approximately a k-variate normal with mean vector
9 and covariance matI'lX 0“Z, where £ is a diagonal matrix whose (11)—th
kK nj
element is 1/ n. In this case, S2 Z Z (X - X, ) is independent of
i=1j=1
X, and S /0' is a chi-square with (n; +. . . +n, - k) degrees of freedom.
Thus, for any U satisfying X - U = PX, we estimate 9 to be
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9
_ Trace(P) -2 S =
0.x) =U, + |:1 - = - ] &, -U) (77

—= 2
‘Z n, -k+2 _Z &, - Uy~ /o,
i=1 i=1

We note that the above estimation procedure should be used with caution
when populations are non-normal. The key is to make sure that sample
sizes are large enough to guarantee the normality assumption.

We now present aspecial application of Theorem 2 tolinear regression
analysis. For this purpose, we denote Y to be the vector of dependent ob-
servations, X to be the matrix of independent observations, B to be the
vector of parameters, and ¥ to be the vector of errors. Then, for the
linear model ¥ = XB +£, the least squares estimate of B is

B = (X’X)"l XY (75)

In ordinary multiple regression analysis, the first column of X is
L, « « o, 1) and Z is normally distributed with null mean vector and co-
variance matrix 21,2 B is norma.lly distributed with mean vector B, and
covanance matrix (X‘S() . Furthermore, the sum of squares of resi-
duals, S , defined as :

2 A, A -
=(Y-XB)/ (Y -XB) (79)

is independent of ﬁ and is 02 times a chi-square with N-k degrees of free-
dom. N is the total number of observations (vector size of Y) and k is the
vector size of B, By Theorem 2, the followmg estimator is better than the
usual one for estimating B.

2
AN _ Trace (P) - 2 S AN
@) =U+ l: N~k +2 (ﬁ-U)’X’X(ﬁ-U):‘ ®-0) @0

7) Population Covariance Matrix O 2% with 02 Known and & Unknown

In this section we assume that X=K1se s ¢,X ) is a k~variate nor-
mal with mea.nvector B=(0,...,6) and covarla.nce matrix 022, We
also assume that 0% is kn.own, but & is unknown. However, we indepen-
dently observe a k by k Wishart matrix S with parameters n and L. we
gtudy an estimator of the form

b g2
50‘)=U+]}'(xuuys-l(x-U] & - 1) (81)
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Using Lemma. 4 and the known fact (7) that Y, defined as

X - U’Z X - U)
X -vy s lx-u

Y = (82)
is chi-square distributed n ~ k +1 degrees of freedom and independent of
X - U, we find that the risk function of the above estimator is minimized
at b= ETra.ce (P) - 2]/(n -k +3) if Trace (P) >»>2and n >k - 1. This
completes the proof of the following theorem.

Theorem 3 - If Trace (P) >>2, Rank (P) >>2 and n >k - 1, theestima-
tor defined in Eq. (81) with b = |:Trace (P) - ]/(n -k + 3)18 better than
the usual one. The risk function of this estimator is

2 g?
R, 5) =K ——— ETrace @) - 2] [ (83)
k+3 O(-U)/Z-l (X"'U)

~1
If P is also symmetrical, (X - U)'L ~ (X - U)/O2 is a chi-square
W1th Trace (P) degrees of freedom and the noncent rality parameter
o’ P’E 1 po/02.

We now describe a general situation where the above theorem can be
applied. We independently observe N sample vectors from a population
with mean 6 = (91, s e, ek) and covarlance matrix Z Both 6 and L are
unknown. Denote X=X Xi12s ¢ o Xl.k) to be the i-th observation vector.

Define X = (Xl, e k)’ with
— N N
X = Y Xy/N (84)

j=

If N is fairly large, X is approximately a k-variate normal with mean
vector 8 and covariance matrix ¥ /N. Moreover, S = (X - x)’ X-X)isa
Wishart matrix with parameter N - 1 and Z and isindependent of X. Thus,
we estimate 6, to be

_ _ Trace (P)-2 , 1 . - 1.
ai(X)“Ui+|:1 NN -k+2) (X-u)y/s-1 (X-UJ *~U) @)

Again, the above estimation procedure should be used with caution when the
population is non-normal. As before, one should ensure that the sample
size N is large enough to satisfy the normality assumption.

We remark that estimators presented in previous sections are of the
form defined in Eq. (43). These estimators can be slightly improved by
setting the constant ¢ to be 1 if it is greater than 1. By doing so, the new
estimate is the weighted average of initial and usual estimates.
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v
GENERAL GUIDELINES FOR USING COMPUTER PROGRAMS OF
PARTS V THROUGH VIII TO ESTIMATE PARAMETERS

Four computer programsare written based on theoretical results pre-
sented in Part III to handle various types of estimation problems. These
computer programs are presented in Parts V through VIII. Thus, for a
given problem, the first step is to identify the problem type so that the
proper computer program can be selected,

Step 1: Identify the Problem Type

Denote X; to be the usual estimate of 8., i=1, . . . , k. Computer
programs of Parts V through VIII are designed to improve the following
types of usual estimates.

A) Xi is Poisson distributed with parameter 8, 1=1, ..., k
Moreover, X;, « « » , and Xk are independent. As mentioned in the first
section of Part IT, accident frequency and traffic counts (of various loca-
tions) are of this type. For this kind of problem, the computer program of
Part V should be used to estimate Poisson parameters.

B) X. is the sample proportion based on sample size n, such that n; X;
. S O, i i 1ot
ig a binomial random variable with parameters n, andp.,i=1, ..., k.
Moreover, Xl, « » o« ,and X, areindependent. As mentioned in the second
section of Part I, severity indices (of various fixed object accidents)and
proportions of wet accidents (at various locationg) are of this type. For
this kind of problem, the computer program of Part VI should be used to
estimate (proportion) parameters of binomial processes.

C) X is the sample average of n, observations obtained from the i-th
population such that X, is normally distributed with mean parameter8. and
variance OZ/ni, i=1, ..., ke That is, k populations have the common
unknown variance 0J°. We alsoindependently observe $2 which is G2 times
a chi-square with N degrees of freedom. Moreover, Xl, e« s« ,and Xk
areindependent. As mentionedin the third sectionof Part IT, sample aver-
ages of peak noise levels (generated by various vehicle types) and friction
tests (of various locations) are of this type. For this kind of problem, the
computer programof Part VII should beused toestimate mean parameters.

We remark that 2 is obtained from either previous experiments or
current data. In the latter case, S2 is defined as
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where X,, is the j-th observation from the i-th population. In this case,
N=n1+| . @ +I’].k—k.

DYy X=0,,¢ s ¢, Xk)" is the sample average vector of n cbhservation
vectors obtained from the population such that X is normally distributed
with mean vector & = (91, e s e, 0 )’ and covariance matrix &/n. In this
case, X,,+ + « ,and X, are correlited. We independently observe a Wis-
hart matrix 8 with parameters N and L. Asmentioned in Part II, aggregate
gradation is of this type. For this kind of problem, the computer program
of Part VIII should be used to estimate mean parameters.

We remark that S is obtained from either previous experiments or
current data. In the latter case, the (i, j)-th element of S is defined as

where (th, e ey th)’ is the h-th observation vector. In this case,
N=n-1.

Step 2: Select the Option of Computing Initial Estimates

We have stressed that providing good initial estimates is the key to
obtaining good final estimates of parameters., Thus, this is the most im-
portant step of the estimation procedure.

Quite often, parameters can be partitioned into groups within which
they are closely related in some fashion. With this in mind, each computer
program contains many options for computing initial estimates of parame-
ters in each group. These options can be categorized into the following
three types.

Type A - Initial estimates are given for a group of parameters.

Type B - For a group of parameters clustering at one point, the
(weighted) average of usual estimates is used as the esti-
mate of each parameter in the group.

Type C - For a group of parameters that can be approximated by a
linear function of supplemental variables, least squares
estimates are used as initial parameter estimates.
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In order to utilize these options to obtain good initial estimates, one
can use past experience or graphically examine the relationship among
usual estimates and supplemental data to properly group parameters. Ide-
ally, the number of groups is small relative to the number of parameters
undergoing estimation and, also, parameters within a group are closely -
related according to one of the above options. Grouping techniques for each
type of problem are explained with examples in Parts V through VIII.

Step 3: Run the Computer Program

The final step is to arrange the data into the format specified by the
computer program, The input and output formats of computer programs
can be found in Parts V through VIII.
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v
A COMPUTER PROGRAM FOR SIMULTANEQOUSLY
ESTIMATING POISSON PARAMETERS BY USING
STEIN-LIKE ESTIMATION PROCEDURES

In this part, we provide a FORTRAN Computer Program for simul-
taneously estimating k' Poisson parameters, A TREEE )\K This program
is written based on the theoretical results and groupingtechniques present-
ed in Sections 2 and 3 of Part II1.

There are eight sections in this part. In Section 1, we describe the
basic data required by the program. The estimation procedures are out-
lined in Section 2. Six methods for computing initial estimates of para-
meters are discussed in Section 3. The input format of the basic data is
presented in Section 4. When the option of transforming final estimates to
other estimates is chosen, the user must provide the transformation to the
usersupplied subroutine EQN. An example for this purpose is provided in
Section 5. The instructions for modifying the program, if needed, to fit a
particular problem are given in Section 6. Seven examples are presented
in Section 7 which demonstrate the use of various program options and logic
for computing initial estimates of parameters. The program listing is pre-
sented in the last section. '

1) The Basic Data

The essential data for estimating parameters are the independent ob-
servations Xy» + ¢+, and K The observation Xi is sampled from the
i-th population which is Poisson distributed with parameter )\i.

Other essential data is the information for computing initial estimates
of parameters. This information istermed the 'supplemental’ information
for discussion purposes. Six methods for using the supplemental informa-
tion to compute initial estimates of parameters are described in Section 3.

Quite often, one is also interested in transforming )\i toanother para-
meter ni through the function ¥. That is,

M =FN) - | (86)

When this option is chosen, the user must provide the functional form
of F to the user-supplied subroutine EQN. The information required by F
must also be provided. This information is termed the 'auxiliary' infor-
mation.

- 61 -




2) What the Program Does

The first step of this program is touse Anscombe's transformation (7)
to transform Xi to Zi' That is,

Z; = \fxi +0.375 (87)

It has been shown in Part IIT that, when A. is at least 5, Z i is nearly
normally distributed with mean Bi and variance 1/4, where

o0
ei=e)\i )2 ,/j+o.375 )\i]/js (88)

j=0

The second step is to compute the initial estimate, Ui’ of 8, by the
chosen method. In thig step, the trace of the idempotent matrix P satis-
fying the following equation '

/

(21,--.,Zk)-(U1,-..,U

W =P (2 ey 2 (89)

is also computed. The superscript 7 stands for the transpose of a vector
or matrix. The third step is to compute the shrinking factor ¢ defined as

c= Trace (P) -~ 2 (90)

k
4y (z-Uy®
=1 -

A sligutly better estimation procedure is to set ¢ at 1 if it is greater
than 1. The fourth step is to compute zi defined as

A

Z

Zg is the Stein-like estimate of 8. The fifth step ks to obtain é(\i which is
the )\i satisfying Eq. (88) with Bi replaced by %i' X, is algo considered a
Stein-like estimate of )\i. If the option of transforming to A i gpecified in
Eq. (86) is chosen, the last step is to estimate T[i to be

A

N
M, = F&) (92)

N N

X. and T}i arethe final estimatesof Ai and T]i, respectively. This program
a.Ilso computes the estimated percentage improvement of the above proce-
dure over the usual one.
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3) Methods for Computing Initial Estimates

, The key to obtaining good estimates of parameters is to provide good
initial estimates U;, . . ., Uy in the sense that N is high and { is low,
where

N =Trace (P) (93)

and

k
C'—' 4 Z (Ui- 91)2 (94)
i=1

We have shown in Part I that, if P is a symmetrical idempotent ma-
trix, N and l; are, respectively, the number of degrees of freedom and the
noncentrality parameter of a noncentral chi-square distribution. For this
cage, the maximal percentage improvement that can be achieved is
100N - 2)/k. Six methods for computing initial estimates of parameters
are built in the program. These are:

Method 1: Initial Estimates are Given - Based onpast experiments or

independent.paraliel studies, we estimate or guess )\i tobe V,, i=1, . »
« » Ko The initial estimate of Bi is then obtained from Eq. (Bé). That is,

I °z° Vi +0.375 v
17° it

i=0

(95)

In this case, we treat U; - 8; as the parameter to be estimated., Con-
sequently, the matrix P satisfying Eq. (89) is the identity matrix. Thus,
N =Trace (P) =k. We note that the maximal trace of P in Eq. (89) is k.
The estimation accuracy is the degree of closeness of V15 o0 oy Vi) to
()\1, + + « s Ay)+ The final estimate of /\i always lies between the initial
estimate V, and the usual estimate X,. When the initial estimates are ex-
cellent, say Vv, =)\i for all i, the fina.i estimate of A, is Vi for all i. How-
ever, if the inlitial estimates are poor, i.e., (Vl, .1. « 5 Vi) is quite dis-
tant from (/\1, o+« » Ak), the final estimate of ’\i will be very close to
the usual estimate X; for every i.

This method is used only when the number of parameters to be esti-
mated is at least 3. When the independent initial estimates are reliably
close to the true parameters, this method will provide good parameter
estimates.
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Method 2: Weighted Average (I) - If is not unusual that the unknown
parameter 9. can be expressed as the product of an unknown paramecter bi
and a known variable t.. Thatis, 8; = b, t;. Inthis case, t, is a supple-
mental variable, If the variation among bl’ « » 4+ ,and b,_is small, i.e.,
(by ~ b)2 tow et by - b)2 is small for some b, we may write

6, =bt,i=1,...,k (96)

A
The weighted average b can then be used to estimate b. That is,

k
N
b= > t; (97)

Ul g oy
N

_

~

i

. N
We then take Ui =b t; as the initial estimate of ei. We note that, when all
ti are equal, Ui is the average of Zys o o0 s and Zk for every i.

For this method, we have N =Trace (P) =k - 1. The loss of one de-
gree of freedom is due to the use of b as an estimate of b. We note that the
above U, can be rewritten as

k
U =W 2 Z (98)
]:1 -
with
k
w, =t / _Zl ty 99)
J=

It is obvious that

wl+w2+...+wk=1 (100)

This method is used only when the number of paramsters to be esti-
mated is at least 4. When the supplemental variable ti is available and,
approximately, ei =b t;, i=1, ..., k, this method will produce good
estimates of parameters. In practice, one may use this method if the re-
lationship, Z.=b ti, holds approximately for a supplemental variable ti,’

i=1, ..., k.

Method 3: Weighted Average (II) - For a given set of numbers, Wi, o
c e W, satisfying Eq. (L00), the initial estimate of ei is taken to be

- B4 =




k
U; =w; Z Zj' For this case, N = Trace (P) =k - 1. We note that this
i=1
isthe same formused in Method 2. The only difference is that Wy in Method
2 was computed from the supplemental data, but is given in this method.
Whent, =...=tgandwy =. .. =w_, Methods 2and 3 areidentical and
use the average of Zqs « « « , Zy as the initial estimate of every parame-
ter.

This method is used only when the number of parameters to be esti-
mated is at least 4, When the relationship 8; = b w; holds approximately
for a given set of numbers satistying Eq. (100), this method will produce
good estimates of parameters. In practice, one may use this method if the
linearrelationship, Zi = b w;, holds approximately for a set of supplemental
numbers Wi, ¢+ « , W satisfying Eq. (100). For example, we have ap-

k
proximately Z; =bt,, then wy =t; / . Z t

Wi=1/k. =1

1 We note that, if 1:i =1, then

Method 4: Weighted Average (II) - For a given set of numbers, w, , .
» + » Wi, satisfying Eq. (100), the initial estimate of Bi is taken to be
k
U; = Z Ws Zj‘ For this case, N =Trace (P) =k -1. Methods 3 and 4
i=1
are identical when all W, are equal to 1/k.

This method is used only when the number of parameters to be esti-
mated isat least 4. Whenall 8, arealmost equal toa. constant, this method
will produce good estimates of parameters for any set of numbers gatisfy-
ing Eq. (100). w, can be interpreted as the weight assigned to Z. for esti-
mating the common constant, If every X, or Zi is equally reliable, we
assignw; =1/k, i =1, . . . , k. If one has reason to doubt the reliability
of a particularobservation, say X4, zero weight may be assigned to Z1 and
an equal weight assigned to the remaining observations. That is, Wy = 0
a.ndwi=1/(k-‘-1), i=2,...,k%k

Method 5: Least Squares Estimate (I) - Suppose that the supplemental
data (til’ « « », t._)are available and satisfy the following equation,

im
aizbiltil+'"+bimtim’i=1""’k (101)

Ifb,.,+ « « ,and bk' are near an unknown common parameter b;, Eq.
. ]
(101) can’be rewritten a

8 =b ty tue. . +b b 151, ...,k (102)
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N N
Denote (by, . . . , b)) to be the least squares estimate of (by, . . .
, bm). We then take the initial estimate of 8, to be

A T .
Ui_b1t11+--n+b t ,1“1,0-.,]‘.{ (103)

m im
In this case, N = Trace (P) = k - m. The loss of m degrees of freedom
is due to the least squares estimatesof m linear parameters. We note that
Ui canalways be improved by increasing the number of supplemental vari-
. ables, i.e., by increasing m. However, this decreases N which is an un-
desirable property as previously mentioned. In general, m should be kept
small relative to the number of parameters k.

This method is used only when the number of parameters to be esti-
mated isat least m + 3. This method will produce good estimates of para-
meters if Eq. (102) holds approximately and the number of supplemental
variables is small relative to the number of parameters to be estimated.
In practice, one may use this method if the following linear relationship
holds approximately. '

Z.=b, t. +...+b_t

i "1l mbim» 171+ 0 ¢y k (104)

Method 6: Least Squares Estimate () - This method is the same as
Method 5 except that Eqs. (102) and (103) are, respectivély, replaced by

ei=b0 +b1 til +| . e +bmtim’ i.:]., . s 8 g k a05)
and
N A A .
Ui—b0+b1 til +o . @ +bmtim’ 1—1, » s ® k (106)

In this case, N = Trace (P) =k - m -~ 1 because of the extra parameter
b.. Thus, this method is used only when the number of parameters to be
estimated is at least m + 4. 1In practice, one may usge this method if the
following linear relationship holds approximately

Zi=b0 +b1 til PR +bmtim, i

=1, ...,k (107)

The k parameters may be arranged into many groups towhich different
methods are applied to minimize the honcentrality parameter defined in
Eq. (94). Forexample, we mayuse Method 1 fora group of k; parameters,
Method 5 for a group of ko parameters, Method 2 for a group of k3 para-
meters, and again, Method 2 for the group of the remaining ones. In this
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case, we have N =Trace (P) = kl +(k2 -m) + (kg -1 +(k—k1 -k k
-1)=k-m=-2. m is thenumherof supplemental variablesused in ﬁfIﬁth—
od 5. For this particular case, the numbher of parameters to be estimated
should be at least m + 5. In general, for any method or combination of
methods, the number of degrees of freedom should be at least 2. The use
of combining the above six methods to compute initial paramster estimates
will be clearly demonstrated by examples presented in Section 7.

Every method except the first one suggests that k populations should
be arranged into groups in which parameters cluster at a point or can be
approximated by a linear function of supplemental variables. The sources
for obtaining proper group-method combinations are past experiments,
parallel studies, and physical properties of populations. Unfortunately,
these sources may not be available or reliable enough ina particular prob-
lem. In this circumstance, one may examine the data. as suggested in each
method to choose the proper method-group combination. That is, the em~
pirical relationship among X;, Z; and supplemental variables can be used
to determine the method-group combination for computing initial estimates
of parameters. Since the program computes the estimated percentage im-
provement of each chosen method-group comhination over the usual method,
one may use the one that produces the maximal improvement to estimate
parameters. We remark that the method-group combhination generated by
examining the data may not be the best one and, possibly, could be the
worst one for this problem due to random variation of the data. But no
matter what the true case is, if the chosen method-group combination is
used thereafter for the same problem, the above method is always better
than the usual one. The worst situation is that no improvement is made.
Based on our experience, qualitative properties of populatmns are useful
bhases for groupmg purposes.

4) Data Input

The data input of this program is arranged into two portions. The first
portion is composed of six cards. The number of cards in the second por-
tion is equal to the number of parameters to be estimated.

The first sixcards specify the numberof groups and parameters, com-
putational methods, and supplemental and auxiliary variables in each group.
Variables used in these cards are defined below.

NP: Numberof parameters to be estimated, 1 = NP = 500

NGROUP: Number of groups used, 1 = NGROUP = 20
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NMG{I): Number of parameters in the I-th group, NMG(1) +«

METHOD({) = j: The j-th method presented in Section 3 is used to
compute initial estimates of parameters in the I-th
group, 1= j =6

NAUX(I): Number of supplemental variables used fo compute
: initial estimates of parameters in the I-th group.
Tlis variable is 1 if METHOD() = 4.

>0: Number of auxiliary variables used to transform
parameters in the I-th group, 1 £ NAUX{) +NCOV({I)
£ 5

NCOV({)+4 = 0: Means that the supplemental variables also serve as
auxiliary variables.

<0: No transformation.

-
(DESCPT(I), ,
I=1, 70): Title (no more than 70 letters).

The second portion is composed of NGROUP subportions or groups.
The I-th subportionis composed of NMG() cards. Define K= JifI =1 and
K=NMG{l)+... +NMG@-1) + J if I >1, Then, the K-th cardof the
second portion contains essential and supplemental data for estimating the
J~th parameter of the I-th group. We note that the J-th parameter of the
I-th group is the parameter of the K-th population. The data input for es-
timating this parameter is as follows:

NCDV({I) DATA INPUT
< 0 IDCKY NX{K) . (AUX(J, M), M=1 NAUX(I))
> 0 ID(K ), NX(K), (AUX(J M) M=1 NAUX(I1)),
{BUX(K,M} M=1{ NCOV(I))

Variables used in this card are defined below: o

ID(K): Identification number of the K-th population such as lo-
cation number and year, etc. The K-th parameter is
the J-th parameter of the [-th group. This number has
no effect on the estimation procedure.

NX(K): The K-th sample (the usual estimate of the J-th para-
meter of the I-th group).
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AUX(J, M): The M-thsupplemental variable for the K-th paramster.
BUX(K, M): The M-th auxiliary variable for the K-th paramecter.

The input deck is presented inTable 17. This deckisalso diagrammead
in Figure 4 to show the format and logic used. The user can follow this
diagram to change, if needed, read statements and formats to fit a parti-
cular problem.

Table 17
The Input Deck
card
Number Variabtes Used in Each Card Remarks
1 NP, NGROUP
2 { NMG(1), I=t,...,NGROUP )
3 ( METHOD(I), I=1,...,NGROUP ) * The Data Input of
4  NAUX(I),I=1,NGROUP) The First Portion
5 { NCOV(I)},I=1,NGROUP)
6 (DESPT(IL},I=1,70)

IDCHY NX(1), {AUXEE, M) M=t NA),

{(BUX(1,M),M=1 NC) * L=NMG(1)
NA=NAUX( 1)} :NC=NCOV(I)
* { cards for The First

Group

+*

L+6  ID(L).NX(L), (AUX(L,M),M=1,NA),
(BUX(L,M),M-1,NC)

aea
XYL
sensna

NA=NAUX{T):NC=NCOV(I)

*
* K=NMG( 1)+,  +NMG(I-1)

. +dJ
K+6 IDCK)  NX(K), (AUX{J M), M=1,NA), * This card is for the
(BUX(K,M) M=1 NC) k-th parameter which

is the J-th parameter
of the I-th group.

LI TR
sessre
masnses

L=NMG{NGROUF)
NA=NAUX { NGROUP }
NC=NCOV{NGROUP }
N=NP-L_+1

L Cards for The last
GROUP

N+6 TD(N)  NX{N), (AUX( 1, M} ,M=1,NA),
(BUX(N,M} M=1,NC)

L

NP+6 ID(NP) ,NX(NP), {AUX{L M) M=1 NA),
{BUX{NP M}, ,M=1,NC)

5) The User-Supplied Subroutine (EQN)

The functional form of the transformation F defined in Eq. (86) must
be specified between two statements, DO 1001 = N1, N2and 100 CONTINUE,
in the user-supplied subroutine EQN. The input variables for this sub-
routine are NP, ID, IG, NX, XEST, BUX, N1, and N2. The meaning of
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START

COMPUTE INITIAL
ESTIMATES OF
PARAMETERS IN

THE I-TH GROUP

READ NP, NGROUP 213 VES
READ (NMG(I), I =i, NGROUP) 2013
READ (METHOD(I), I =1, NGROUP) 20I3 NO EoF
READ (Naux(i},1=1, NGROUP} 2ZOI3 }*~ ]
READ (Ncov(I),I=1 NGROUP) 20I3
READ (DESCPT(I), I=1, 70) TOAI
'
I =0 i
1]
-t I=1+} j
) YES COMPUTE
{ 1S I > NGROUP? ) FINAL
NG ESTIMATES
CTENETHODM) S 47 oo
¥ NO
NA = NAUX(I) , A

J=0
1
| J = J+| |
f
~ YES Ms I NG )
§No
K=J JF Iz
K= NMG(I) ++ NMG(I-1) +J, IF I > |

__.......l:‘..O_L IS NC>Q P )iﬁé...__._

i

READ ID(K), NX(K}, (AUX(T,M),
M=,

M=1, NC)

READ ID(K), NX(K)(AUX(TM),
NA) M=1, NA), (BUX (KM,

I13,15,5Fi2.2 I3,15,5FI2.2

Y
—2 e NC =0 2 )

{ YES

| BUX(K, M) = AUX (M)
M 1",""‘, NA

1

V

Figure 4. Flow of control for data input.
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NP, ID, NX and BUX were explained in Section 4. IG(i) is the group num-
ber to which the i~th parameter belongs. XEST(i) is the final estimate of
the i-th parameter. N1 and N2 are integers set automatically in the main
program. The output of this subroutine is W2(i) and W3(i) fori=N1, . .
. , N2, where W2(i) = F[X({)] and W3(i) = F(XEST(i)] »

Example: We are also interested in estimating paramster 17, satisfy-
ing the following equations.

)\i=n1ti +my ti)“, i=1,...,10 (108)
and

)\i=ni Mg 1=11, ..., 100 O (109)

Thus, t; is the auxiliary variable for the first 10 populations to convert
k to Ty deflned in Eq. (108). For the remaining populations, M; is the
aux111ary variable for converting A, to 11 defined in Eq. (109). As an ex-
ample, t1 and M, can be,; respectively, the ADT and number of years in-
volved in measuring the usual estimate X+ In this case, we have

ty i=1,..., 10

BUX (i, 1) = Jm,i=11, ..., 100 10)
Solving Eqs. (108) and (109), we obtain
-21— [\/4)\1”'1] ,i=1,...,10
i
MNi=F\) = (111)

)\i/Mi,i=11, «e., 100

The usual estimate of T]l is then obtained from Eq. (111) with /\ Te-
placed by the usual estimate X Similarly, the final estimate of 1], is also
obtained from Eq. (111) w1th)\ replaced by the final estimate of X . The
function F defined in Eq. (111) must be specified in the user-supphéd sub~
routine EQN. TFor example,

DO 100 I=N1,N2
IF{I .GT. 10) GO TO 5¢
W2{I)=(SQRT(4., * NX(I} +1.)-1.}/€BUX{TI, 4)*2.)
W3(I)={SQRT(4. * XEST{I)+1.)-1.)/(BUX(I, 1)*2.)
GO TO 400

50 W2{I)=NX(I}/BUX(I, 1)
WI{I)=XEST(I)/BUX{I,1)

$t00 CONTINUE




6) Limitations of the Program and How to Make Necessary Changes

This program was designed to handle problems where the number of
parameters, NP, does not exceed 500. This number can be easily in-
creased toany desired number. However, one must changethe dimensions
of variables that appear on the DIMENSION STATEMENTS of the main pro-
gram and subroufines ISE and EQN, i.e., replace each 500 by the desired
number.

The number of groups is limited to 20. This number is large enough
for most practical problems. However, one can increase this number to
any desired number not exceeding NP by properly changing the READ for-
mat of the second input card (FORMAT 3).

The total number of supplemental and auxiliary variables is limited to
5. This number should be large enough for practical application. The user
can change this number to any desired number, say N, by the following
steps:

a) Change the READ format of the second portion of the data input
(FORMAT 60).

b) Change dimensions of variables that appear on the DIMENSION
STATEMENTS of the main program and subroutines ISE, MTXINV and
EQN, i.e., replace 5 and 6 by N and N + 1, respectively.

7y Examples

We shall use the data presented in the first section of Prrt I1 to demon-
stratethe use of various program options for computing thenitial estimates
of parameters.

Number of accidents and vehicle~-miles are available for 24 locations.
These locations are codedas 1 through 24. Accident statistics and vehicle-
miles of these locations are presented in Table 18. Denote X and t; to be
the number of accidents and vehicle-miles of the i-th location, respectively.
It is reasonable to assume that X; is Poisson distributed with parameter
Ai' We are interested in estimating the accident rate (numbher of accidents
per vehicle-mile)of Locations 13 through 24. If wedenote ni to be the ac-
cident rate of the i-th location, then

n;=F A\ =A /A o (112)

The question now is what group-method comhination should be used to
compute initial estimates of parameters. To answer this question, we

-9 -




Table 18
Accident Statistics And Vehicle-Miles
For Each of 24 Locations

Location | No of Accidents Vehicle-miles

1 170 3346384 .35
2 177 43226633.85
3 177 4741402 .00
4 183 4972885. 15
] 738 19958427 .50
5 895 26901854 .00
7 213 3518919.125
8 288 5337648 .95
9 237 4397293.20
10 130 3012894 .20
i1 428 8969259, 00
12 534 16111479 .60
13 51 1208984 .00
14 a2 1982933 . 10
15 103 2363350.60
16 80 1783523.20
17 266 66535939.00
i8 354 9773442 .80
19 133 1753781.70
20 207 3428029 .80
21 107 . 2373551.00
22 62 976866 . 20
23 180 3956828 .00
24 258 6949258, 40

graphically examine the relationiship between the supplemental variable and
the transformed variable defined in Eq. (87). We see fram Figure 5 that
the following linear equations hold approximately,

Z; =bg +by J t; (113)
Z; =b J? (114)

or
Z,=by \t; +by t; (115)

Thus, Methods 2, 5, and 6 can be used to compute the initial parame-
ter estimates. The supplemental variable used in Eqs. (113) and (114) is
the square root of £ The auxiliary variable for converting A, to the acci-
dent rate T, is tie If Eq. (115) is used, the supplemental variables become
J—tI and t;» Inthis case, the second supplemental variable also serves as
the auxiliary variable. We present in Table 19 the second portion of the
data input for Examples 1 through 5. Four numbers are shown on each
card. These are location numbers, number of accidents, square root of
vehicle-miles, and vehicle-miles.

Example 1;: Using Method 2with One Group - Sincethe linear relation-
ship Z; =b t; holds approximately for every i, the weighted average
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A

Tahle 18
The Second Porticon of The Data Input
aof Examplies 1 Through 5

Column Number
Card MNo. 12345678301234567890123456783012345678901234567890

7 13. 51 1099.54 1208984 .00
8 14 92 1408 .17 1982933.10
9 15 103 1537 .32 2363350.60
10 16 80 1339.22 1793523.20
11 17 266 2579.46 6653599.00
12 18 354 3126.25 9773442.80
13 18 133 1324 .30 1753781.70C
14 20 207 18E1. 1S  35426029.80
15 21 107 1540.63 2373551.00
{6 22 G2 988.37 976866. 20
17 23 180 1989. 18 3956828.00
t8 24 258 2636. 14 §949258.40

(weighted by the square root of ti) can he used fo estimate b. That is,
Method 2 isused to compute initial estimates of parameters. The first six
cards of the data input for this example are presented below.

COLUMN NUMBER
CARD NO. | 12345678901234567890123456783012345678901234567890

12 14
12
2
1
1
METHOD 2, {1-GROUP -

[T A L

The first card sets NP = 12 and NGROUP = 1. Consequently, NMGQ@Q) =
12 which is set in the second card. The third card sets METHOD(1) = 2.
The fourth and {ifth cards, respectively, set NAUX(1) =1 and NCOV(l) = 1
Thus, for the only group, AUX(, 1) = JTiand BUX(i, 1) = t;. Since
NCOV(1) = 1, the final estimate of ’\i will be converted to 77 defined in Eq.
(112)., To do this, we supply the following statements to the user-supplied
subroutine EQN. '
DD 100 I=N1,N2
W2(1}=NX{1)/BUX(I,1)

W3(I)=XEST(I)}/BUX(I,1)
100 CONTINUE

The run results are presented in Table 20,

Example 2: Using Method 2 with Three Groups - Basedon the physical
properties of these locations, the parameter inhomogeneity can be reduced
by separating these locations into the following three groups:

Group 1 - Locations 13 - 18
Group 2 - Locations 19 - 21
Group 3 - Locations 22 ~ 24




HAA NN R AN R R AR m A b GG A N BRI HAR NS H

Table 20

Estimated Results of Example 1

METHQOD 2., 1-GROUP

FHAGEHAA G AE  A AR AN NN B AR RN IR RSO R I AE I AEH A Eaa iRk i

SUPPLEMENTAL TINFORMATION

1099 .54 1208984.00
1408 .17 1982933, 10
1537 .32 2363350.60
1339.22 1793523.20
2579.46 6653599.00
3126.25 89773442.80
1324.30 1753781.70
1851.43 3428029.80
1540.63 2373551.00

8.37 976866 .20

1989.18 3956828.00

DATA

GROUP

10 X NO
13 21 1
t4 92 1
15 103 1
16 80 1
17 266 1
i8 354 1
189 133 1
20 207 1
21 107 1
22 62 1
232 180 t
24 258 1

2636.14 6949258.40

ESTIMATED RESULTS

POISSON RATE

ID ACTUAL ESTIMATED

ACTUAL ESTIMATED
13 51 0.000042184 C.000042720
14 92 . 000046396 0.000C46427
15 103 C.000043582 C. 000043834
16 80 ¢, 000044605 C.000044835
17 266 C. 000039878 €. 000040551
18 354 C. 000036221 C.000037155
19 133 0.000075836 C.000072450
20 207 0.000060385 0.000058738
21 107 0.000045080 0.000045238
22 62 0.0000834¢8 0.0Q0061683
23 18¢C 0.000045491 Q0.000045%64
24 258 0.000037126 ©.000037974
C.8954

263.

SHRINKING FACTOR
%~ IMPROVEMENT OVER

We then use Method 2 to compute initial estimates of parameters in
each group. For this case, the first six cards of the data input take the

following form.

us

CONVERTED RATE

UAL ESTIMATE 8.2065 %

CARD NO.| 12345678901234567890123456788012345678901234567890

COLUMN NUMBER

1

(5 IS I N A R BEH

M

The first cardsets NGROUP = 3. Consequently, three numbers appear
oneach of Cards 2 through 5. The second card sets NMG(1) = 6, NMG(2) =
The user-supplied subroutine EQN 1is the same as the
one used in Example 1. The run results are presented in Table 21.

3 and NMG(3) = 3.

2
G
2
1
1
E

3
3
2
i
1
o

THQD

3
2
1
f
2

,3-GROUPS(13-18, 19-21 & 22-24)
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000042142
.000045547
.000043227
.000044086
000040153
. 000037024
000072953
. 000060174
000047470
000060129
. 000045348
.000038320

METHOD 2,
DATA
iD X
13 51
14 92
15 103
16 80
17 266
iB 354
i9 133
20 207
21 1o7
22 62
23 180
24 258
ESTIMATED
POI
ID ACTUA
13 51
i4 92
15 103
i6 a0
17 266
18 354
19 133
20 207
21 167
22 62
23 180
24 258
SHRINKING

%~ IMPROVEM

Example 3: Using Method 5 with Two Groups - The common scale

Table 21

Estimated Results of Example 2

3-GROUPS{ 13-

GROUP
NO SUPP

WWWRNNN & et e
-
o
(L]
—-

RESULTS

SSON RATE
L ESTIMATED

266,30

FACTOR

ENT DVER USUAL ESTIMATE

18, 19-21 & 22-24)

LEMENTAL INFORMATIDN

.54 1208984 .00
.17  18828933.10
.32 2363350.G0
.22 1793523 .20
.46 6653599.00
.25 9773442 .80
.30 1753781.70
.49  3428028.80C
.83 237355%.00
.37 976866.20
.18 3956828.00
.14 ©949258 .40

CONVERTED RATE
ESTIMATED

ACTUAL

.000C042184
.000046396
.000043582
.000044605
.000039978
.CG00C36221
.000075836
. 000060385
. 000045080
.000063468
.000045491
.C00037126

[sNeNeoNoNeNoNoNoNoNaNoNa!

0.8281

Hon

11.0296 %

Q0000000

parameter b in Example 1 canalso be estimated by the least squares meth-
od. That is, Method 5 can beused to compute initial estimates of parame-

ters. In this case, the first six cards of the data input takes the following

form.

CARD NO,

COLUMN NUMBER

123456789012345678B90123456789012345678901234567890

DGR WKN -

t2 1
12
5
i
1
METHQD 5,

1-GROUP

-7 =




Theuser-supplied subroutine EQN is the same as the one used in Exam-
ple 1. The run results are presented in Table 22.

Table 22
Estimated Results of Example 3

HHABURET RGNS RN RGNS RHR N RBR N EERREHHEEH Y
METHOD 5, t-GROUP
HRUNTER BRGNS RN AR R NS EHHRNARE R AR S

DATA
GROUP
ID X NO SUPPLEMENTAL INFORMATION
13 51 1 1099.5%4 1208984 .00
14 92 1 1408.17 1982933. 10
15 103 t 1537 .32 236335%0.60
16 ac 1 1339.22 1793523.20
17 266 1 2579.46 6653599.00
18 354 1 3126.25 9773442.8C
19 133 t 1324.3C 1753781.70C
20 207 t 1851.49 3428029.80
21 107 1 1540.63 23735%1.00C
22 62 1 988,37 8976866.20
23 180 1 1889.18 3956828.00
24 258 1 2636.14 6949258.4C

ESTIMATED RESULTS

POISSON RATE CONVERTED RATE

ID ACTUAL ESTIMATED ACTUAL ESTIMATED

13 5t 51.38 0.000C42184 0.000042496
t4 92 91.55 0.000046396 0.000046168
15 103 103. 19 0.000043582 0.0000C43661
i6 B8O 79.97 0.000044605 0. 000044591
17 266 268.47 0.0000392978 C.000040349
ia 354 361.47 0.000036221 C. 000036984
t9 133 126. t4 0.0Q00075836 C.00007T 1923
20 207 20C.04 0.000060385 . 000058356
21 107 106.789 0.000C45080 0.00CC4499C
22 62 59.85 0.0CC00C63468 C. 000061269
23 180 179.30 0.000045481 C.0C0C45315
24 258 262.65 0.000037126 C.0000C37796
SHRINKING FACTOR = 0,8892

%-IMPROVEMENT OVER USUAL ESTIMATE = 8.7243 %

Example 4: Using Method 6 with Two Groups - Figure 5 shows that
Eq. (113) is better than Eq. (114) in expressing the linear relationship be-
{ween Z; and Jt_. That is, the noncentrality parameter 4; defined in Eq.
(94) is smaller by using Eq. (113), However, the extra parameter used in
Egd. (113) decreases the number of degrees of freedom by one. This is the
negative side of using Eq. (113). We shall see later that the percentage
improvement has been substantially increased by using Eq. (113). That is,
the reduction on C by using Eq. (113) is more than enough to compensate
for the loss of one degree of freedom. Therefore, Method 6 is better than
Method 5 inthis problem. The first six cards of the data input are those in

-8 -
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&

Example 3 with the number '5' inthe third card replaced by the number '6°,
The user-supplied subroutine is the same as the one used in Example 1.

The run results are presented in Table 23,

HEAHERRR SRR RSN BRI BARE SR BB AN BRI RN A B i # Y

HAHBRH AR HE DR TR RSN BRI RA R R RAREBN AR AR

METHOD &,
DATA
iD X
13 51
14 92
15 103
16 ag
17 266
t8 354
i9 133
20 207
21 107
22 62
23 180
24 258

1-GROUP

ESTIMATED RESULTS

POISSDON RATE

ID  ACTUAL ESTIMATED ACTUAL

13 51 54,61 ©.000042184
14 a2 93.85 0.000046396
15 103 105.43 0.000043582
16 80 82.68 0.000044605
17 266 265,74 0.000039973
18 354 356.42 0.000036221
19 133 125,25 0.000075836
20 207 196.70 ©.000060385
21 107 108 .80 0.000045080
22 62 G62.08 0.000063468
23 180 178.87 0.00004549 14
24 258 260.96 0.000037126
SHRINKING FACTOR = 0.8175

%~ IMPROVEMENT OVER USUAL ESTIMATE = 13.2790 %

Example 5: Using Method 5 with Two Groups ~ Figure 5alsoindicates

Tabte 23

Estimated Results of Example 4

SUPPLEMENTAL INFORMATION

1099.54 1208984 .00
1408 .17 1982933.10
1537.32 2363350.60
1339.22 1793523.20
2579.46 6653599.00
3126.25 9773442.80
1324.30 175378t.70
1851.49 3428029.80
1540.63 2373551.00
988,37 976866.20
1989.18 3956828.00
2636, 14 6949258.40

CDNVERTED RATE

ESTIMATED

O0O0O0O00O0OO0OO0OO0

. 000045 t67
.000047331
.000044612
. 000046096
.000039839
.000036468
.0000714 18
.000057381
.000045840
. 000063555
. 000045205
.000037552

that the linear relationship can be well expressed by Eq. (115).

Method 5 can be used to compute initial estimates of parameters.
demonstration purposes, we shall use Method 2 with two groups: Locations
As mentioned before, the supplemental
variables for using Eq. (115) are J_b: and t;. Sincet; also serves as the
auxiliary variable, by definition, NCOV(l) and NCOV(2) are get to be 0.

13 through 18 and 19 through 24.

Tl}e first six cards of the data input take the following form.
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COLUMN NUMBER
CARD NOQ 1234567890 1234567890423456789012345678901234567890

12
5]
5
2
o)

[ 5, A S .
DO MMULO R

METHOD 5, 2-GROUPS{13-18 & 19-24)

We note that BUX(i, 1) = ti in Examples 1 through 4. However, in this
case, BUX(i, 2) = ti. Thus, in order to convert )\i to T]j defined in Eq.
(112), the user-supplied subroutine EQN takes the tollowing form.

DO 100 I=N1,N2
W2(1)=NX{I)/BUX(I,2)
W3(1)=XEST(I)/BUX{I,2)

100 CONTINUE

The run results are presented in Table 24.

Table 24
Estimated Results of Example S
HHRREHTRATHERE IR NSRBI RA RN RN RN RN R
METHOD 5, 2-GROUPS(13-18 & 19-24)
HUBUEHRENE RN RERE TR R BRI RN R N ERE AR RN R

OATA
GROUP

iD X NO SUPPLEMENTAL INFORMATION
13 51 1 1099.54 1208984 .00

14 92 1 1408 .17 1982933.10 B
15 103 1 1537.32 2363350.60

16 8O 1 1339.22 1793523.20

17 266 1 2579.46 6653592.00

18 354 1 3126.25 9773442.80

19 133 2 1324.30 175378Bt.70

20 207 2 1851.49 3428029.80

21 107 2 1540.63 2373551.00

22 62 2 988,37 976866 .20

23 18¢C 2 1989.18 3956828.00C

24 258 2 2636.14 ©6949258.40

ESTIMATED RESULTS

POISSON RATE CONVERTED RATE
ID ACTUAL ESTIMATED ACTUAL ESTIMATED
13 51 52.60 0.000042184 0. 000043506
t4 a2 91,00 0.000046386 0.000045894
15 103 103.44 0.000043582 0.000043769
16 80 80.32 ©.000044605 0.000044781
17 266 264, 14 ©.000039978 0.000039699
18 354 255,42 ©.000036221 0.000036366 ?
ig 132 125,49 0.000075836 0.000071556
20 207 197 .43 0.000060385 ©.000057505
21 107 116.25 0.000045080 0.00004B976
22 62 64,06 0.000063468 ©.00C06558 1
23 180 184 .32 0.000045491 0.000046582
24 258 258 .33 0.000037126 0.000037174
SHRINKING FACTOR = 0.6862

%-IMPROVEMENT OVER USUAL ESTIMATE = 19.0130 %
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Example 6: Using Methods 2 and 5with Two Groups - For demonstra-
tion purposes, we separate these locations inte two groups:

Group 1 - Locations 13, 16, 19, 22
Group 2 - The remaining locations.

Method 5 with Eq. (115) is then used to compute initial estimates of
parameters in the first group as done in Example 5. Thus, NMG(l) = 4,
NAUX@@) =2, and NCOV({1) = 0. For the second group, we use Method 2 to
compute initial estimates of parameters as done in Example 1. The data
input are presented in Table 25, We see from this table that the first four
cards (Cards 7 through 10)of the second portionare the data for estimating
parameters in the first group. The orderof these four cards has no effect

Table 2%
Data Input of Example &

Coiumn Number

Card No. 12345678901234567890123456789012345678901234967890

1 12 2

2 4 8

3 5 2

4 2 1

5 O 1

5] METHOD 5 DN (13,116,119 & 22), METHOD 2 ON REMAINING LOCATIONS
7 13 S1 1099.54 1208984.00

8 16 80 1339.22 1793%23.20

g 19 133 1324.30 1753781.70

10 22 G2 98B, 37 976866.20

LR 14 92 1408.17 1982933.10

12 15 103 1537.32 2363350.60

13 17 266 2579.46 6653599.C0

14 18 354 3126 .25 9773442 .80

1% 20 207 t851.49 3428029.80

16 21t 107 t540.63 2373%51.00

17 23 {80 1989.18 39856828.00

18 24 2%5B 2636.14 6849258.40

on the estimation procedures. Cards 11 through 18 are the data for para-
meters in the second group. Since BUX({, 2)=t; fori=1, 2, 3, and 4,
and BUX(, 1) = ti for i = 5, the user-supplied subroutine EQN takes the
following form.

DO 100 I=Nt,N2

K=t

IF(I .LE. 4)K=2

W2(I1)}=NX(1)/BUX(I,K)

W3(T)=XEST(I)/BUX{1, K)
100 CONTINUE

The run results are presented in Table 26.
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Table 246
Estimated Results of Example &

BAAAGGR SRS RE AR R RS RGBT RAE Bk R AR AR AN B R o 0w
METHOD 5 ON (13.16,19 & 22}, METHOQ 2 ON REMAINING LOCATIONS
HHARES RN RN SRR A SRR AR AE AR HAN D AN RS

DATA
GROUP
ID X NO SUPPLEMENTAL INFORMATION
13 R 1 1089.54 1208984 .00
i6 80 1 1339.22 1793%23.20
19 133 1 1324 .30 1753781.7
22 62 1 988 .37 978866 .20
14 92 2 1408.17 1882833.10
15 103 2 1537.32 2363350.60
17 266 2 2578.46 6653%99.00
18 354 2 3126.25 9773442.80
20 207 2 1851.49 3428029.80
21 107 2 1540.63 2373551.00
23 180 2 1989.18 3956828.00
24 258 2 2636.14 63849258 .40

ESTIMATED RESULTS

POISSON RATE CONVERTED RATE

ID AGTUAL ESTIMATED ACTUAL ESTIMATED

13 St 52.88 0.000042184 0.000043739
16 80 82.73 0.000044605 0.000046126
19 133 129.23 0.000075836 0.000073686
22 €2 61.06 Q.000063468 0.000062506
14 92 9t.39 0.000046396 0.000046081
15 103 103.04 ©.000043582 0.000043598
17 266 268.18 ©.000039978 0.000040308%
18 354 361,22 ©.000036221 0.000036960
20 207 199.52 0. 000060385 0.000058202
21 to7 106.62 0.000045080 0.000044920
23 180 179.02 0.000045491 0.000045243
24 258 262.45 0.000037126 Q. 000037767
SHRINKING FACTOR = (0.8848

%-IMPROVEMENT OVER USUAL ESTIMATE = 7.1824 %

Example 7: Using Method 5 with Parallel Data as the Supplemental
Variable - The only difference between the i~th and (i-12)-th locations for
everyi=13, . . . , 24, is the presence of an intersecting roadway. We
now define

~ Xi-12

e T L L AR, (116)

V. in Eq. (116) can be interpreted as the number of accidents occurring on
the (i-12)-th location when its vehicle-mileage is t;. Weobsexve graphic-
ally that the following linear relationship holds approximately:

Z, =b [V; +0.375 | 117)

- B2 ~




Data

5

Tabie 27
Input of Example 7

Column Number

Card No. 12345678901234567820123456788C123456782012345687830

1 t2 1

2 i2

3 5

4 1

5 1

6 METHDD 5 WITH PARALLEL DATA AS SUPPLEMENTAL VARIABLE
7 13 51 7.86 1208984 .0C
8 14 92 9.03 198:2933.10
9 15 103 9.41 2363350.60
10 16 80 8.37 1793523.20
11 17 266 15.71 6653599.00
12 18 354 18.04 9773442.80
13 19 133 10.32 1783781.70
14 20 207 13.61 3428029.80
15 21 107 11.33 2373551.00
16 22 62 6.52 976866 .20
17 23 180 13.05 3856828.00
18 24 258 16.55% 63949258.40

HUBERENBE A SR RHE RN AR RN RAR AR RN IR RN AR BH
METHOD S WETH PARALLEL DATA AS SUPPLEMENTAL VARIABLE
HUHNBERNEERERINHY R RN RAH R RN RAHA RN REH BRI RN

DATA

GROUP
ID X NO
13 51 1
14 92 1
15 103 1
16 80 1
17 266 1
18 354 i
18 133 t
20 207 1
21 167 1
22 62 1
23 180 1
24 258 1

Table 28

Estimated Results of Example 7

SUPPLEMENTAL INFORMATION

ESTIMATED RESULTS

POISSON RATE
ID ACTUAL ESTIMATED

.000046348
.Q0C045488
. 000042281
. 000043561
. 000039751
, 000035303
.000071823
.0000C59283
.000C49294
.000057221
.000@45595
. 0000387321

t3 51
14 92
i5 103
16 80
17 266
18 354
19 133
20 207
21 1C7
22 62
23 180
24 258

SHRINKING FACTOR

%~ IMPROVEMENT OVER

USUAL ESTIMATE

1208984 .00
1982933. 10
2363350.60
t793523.20
6653599.00
9773442 .80
175378t.70
3428029.80
23735%1.00
976866 .20
3956828 .00
6949258 . 40

CONVERTED RATE
ESTIMATED

ACTUAL

.000042184
. 000046396
.000043582
. 000044605
.000039978
.000036221
.000075836
.000060385
. 000045080
. 000063468
.00004549 ¢
.000037126

QOQoCOCOOCOOOO

0.6498
30.0854 %

00000000
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" Thus, Method 5 with ‘!Vi + 0.375 as the supplemental variable can be
used to compute initial estimates of parameters. The data input for this
case are presented in Table 27. We see from this table that four numbers
appear on Cards 7 through 18. These are location number, number of ac~
cidents, the square root of (V; +0.375) and vehicle-miles. The user-

supplied subroutine EQN is the same as the one used in Example 1.
run results are presented in Table 28.

8) Program Listing

PROGRAM POISSON(TAPE{=INPUT ,TAFZ2=QUTPUT)

DIMENSION NX(500),U{5C0)},XT{500}),NAUX(500),

1UT(500) , KEST{500),NMG{500},1G(500), ID{500),NCOV(500),
2AUX(500,%),B(68},BUX(500,5) ,METHOD(S0Q0Q} ,BESCPT(72}

THIS PROGRAM SIMULTANEQUSLY ESTIMATES NP POISSON PARAMETERS
USING STEIN-LIKE ESTIMATION PROCEDURES. THE ESTIMATED RESULTS
ARE BETTER THAN THE USUAL ESTIMATES IN TERMS OF THE SQUARED
ERRDR LOSS

1 READ( {,3,END=9939)NP, NGROUP
READ(1,3) (NMG(I),I=1,NGROUP)
READ(1,3) (METHOD(I),I=1,NGROUP)
READ(1,3) (NAUX(I),I=t,NGROUP)
READ(1,3) (NCOV(I),I=1,NGROUP)
READ( 1, fQ)}{(DESCPT(1),1=1,70)
WRITE(2,1S)(DESCPT(I},I=1,70)
WRITE(2,30)
SSR=0,
NDF =0
K=0
1CHO=2
DO t000 I=1,NGROUP
NCOUNT =K
NPT =NMG( )
WB1=0,
WBE2=0.
IF{METHOD(T) .LE. 4)NAUX(I)=1
DO SC0 J=1,NPT
K=NCQUNT+J
IG(K)=1I
NA=NAUX (I}
NC=NCOV(I)
IF(NC .GT. O)GO TO 150
READ(1,80)YID(K),NX(K}, (AUX(J,M) M=1 NA)
WRITE(2,300)}1D{K) NX(K),IG(K), (AUX(J,M) M=1,NA)
IF(NC .LT. O)GO TO 200
00 100 M=1,MA

100 BUX(K,M)=AUX(J,M)
G0 TO 2006

150 READ(t,80)I0(K) NX{K), {AUX(dJ, M), M=1 NA),
1{BUX{K, M) M=1 NC)
WRITE(2,200)I0(K) NX{KY, IG(K), {AUX{J . M) M=1,NA),
1 (BUX{K, M) ,M=1{ NG}

200 XT(K}=SQRT{0O.375+NX{K))
U{J)Y=xT{K)
IF(METHOD(I) .GE. 5)GO TO 500
IF(METHOD(I) .NE. 1)GD TO 350
A1=AUX{(dJ, 1) o
CALL TRANSF(ICHD,A2,A %)
UT({K)=A2
SSR=SSRH{XT{K)=UT(K)}*¥2
GO TO 500

350 CONTINUE

The

QOQCO 100
00000200
Q0002300
00000400
Q0000500
00000600
00000700
00000800
£0000900
00001000
00001100
00001200
00001300
00001400
00001500
0000 1600
00001700
0000 1800
00001900
00002000
00002100
0002200
00002300
oo0C2400
00002500
00002600
00GC2700
00002800
00023900
00003000
Q0003100
00003200
00003300
G0003400
Q0003ASN0
00003600
Q0003700
00003800
00003900
00004000
00004 100
QnGco4200
00004 300
00004400
00004500
Q0004600
00004700
ceoc4800
COo004900
00005000
Q0005100
G0005200
00005300
00005400




400

45¢
500

800

900

950
1000

2000

2100

330C
3400

3500
4000

3989

c

IF{METHOR( I} EQ. 4)¢0 TO 4580
IF(METHOD(I)Y .EQ. 3)G0 TI 400
WE1=WB1+XT{K)

WE2=WB2+AUKL J, +)

GC TO 500

WB1=WB1+XT(K)

GO TO 500
WB1=WB1+XT{K)*AUX(dJ, 1)

CONTINUE

IF{METHOD(I) .EQ. 1}GO TO 1000
IF(METHOD(1) .GE. 5)G0 TU 200
IF{METFCD(I) .EQ. 2YWB{=WB1/WE2
0C 800 J=1,HPT

K=NCOUNT+J

UT(K)}=wB+*

IF(METHOO(I} .LE. 3JUT(K)}=UT(K}*aUXtud, 1}
SSR=SSR+(XTeKI-UT(K))*»2

NOF =NDF+ 4

GO TO 1000

CONTINUE

NFORCE=METHOD(I)-5

NIND=NAUX(1)

NDF=NDF +NIND-+NFORGE

CALL LSE(NFORCE,NPT,NIND,U,AUX,B,XEST,SERQR)
DO 95C J=1,NPT

K=NCOUNT+J

UT{K)=XEST(J)
SSR=SSRH{XT(K)-UT(K))**2
CDNTINUE

ICHO=1

NTRACE=NP -NDF

IF(NTRACE .GT. 2)GO0 TO 2000
WRITE(2, 1500 INTRACE

GO TO 9993

CONTINUE

SSR=55R*4 .
FACTOR=1,-{NTRACE-2)/SSR
IFEFACTOR .LT. C.)FACTOR=0.

00 210C J=1,NP
EST=UT(J}+FACTOR*{XT{J)}-UT(J})
CALL TRANSF(ICHO,EST,WB2)
XESTtJ)=WE2

CONTINUE

WRITE(2,2200)

N2=0

DO 4000 I=1,NGROUP

Nt=N2+1

N2=N1FrNMG{I) -1

IF(NCOV{I) .LT, ©)GO TO 3400
CALL EQN(MP,ID,IG.NX,XEST,BUX,N1,N2,XT, UT)
DO 3300 J=N1,N2
WRITE(2,3200)ID(J}.NX{J},XEST{J) XT{J) UT(L)
CONTINUE

GO TO 4000

DO 3500 J=N1,N2

WRITE{2,3200) ID{J},NK{J),XEST(J}
CONTINUE

CONTINLUE

SSR=5SR-NTRACE

IF{55R .LE. O.})35R=0.

CALL E¥PECT(NTRACE,SSR,EYY)
PIMPRO=EYY*(NTRACE=-2)*¥2/NP*$00
WRITE(2,5000}FACTOR,PIMPRO

GO TO 1

CONTINUE

LOCK 2

3TOP

C INPUT AND OUTPUT FORMATS FOR THIS PROGRAM

3
10

FORMAT(2013)
FORMAT(1X,70A1)

-85 =

000055200
COG05500
o0COS700
00005800
0005800
QOC0B200
00006100
000Ne20C
00006300
00006400
20206500
Q0006600
00005700
0000680C
0000/90C
O000700C
QOCC7100
0000720C
00ONT3CO
Q0007400
O000750C
Q0C0780C
QORRT70C
00007800
Q00O0790C
00008000
QCO08 100
QQO08200
000CB300
0QQOB4C0O
00008500
0Q0086CO
00008700
000CBBOO

100008300

COO09000
Co0C3 100
00008200
00009300
0o0CO840C
00C03500
00009800
0o0C0970C
000039800
00C0990C
Q0010000
00010100
00010200
00010300
0C0 10400
00010500
00010600
0QQ 10700
00010800
00010800
Q0011000
00011100
0011200
o0C 11300
00C 11400
Q000 1180C
00C 11600
OO 14700
00014800
oNC14900
CCO12000
QQo1210¢
00012200
QC0O12300
0012300
00012500




13 FORMAT(/ ,IX ,AGHAN SNy BB 5 a i GG ZA RGOS HERHE B AH iR fEF il
100G Hmro#e #Erdnddpanidgdbaisdaois [ AL TOA, S AX AQHEnsd 4 %
ORTHH AP G E R n g S fE el G HFE D i g W E B AP RSN a5 i8NG i)

30 FORMAT (/. 1%, AMHDATA.//, 1OX . SHGROUP, /, 2X,
140HID X NO SUPPLEMENTAL INFORMATION,/,1X,

FaEHEGH

60  FORMAT({I3,I[5,512.2)

300 FORMAT(1x,13,16,I4,4Ft2 2,5(/,15X,4F12.2)}

1S0O0 FORMAT(//,1X,29H4--- ERROR - ERROR - ERROR ---,/.2X,
{9HTRACE{P)=,14,/,2x,28HTHE TRACE OF P SHOULD BE AT ,
27HLEAST 2,/,2X,34HCHECK TO SEE WHETHER YOU HAVE USED,
a/.2%,44HTO0 MANY GROUPS OR/AND TOO MANY VARIABLES IN,
4/ . 2X,20HTHE REGRESSIGN LINES, /)

2200 FORMATL/,1X.17HESTIMATED RESULTS .///.8X, 12HPOISSON RATE,

115X, 14HCONVERTED RATE,/,2X,20HID ACTUAL ESTIMATED,7X,6HACTUAL,

213X, SHESTIMATED, /, 1X, 35H= === === oo s m e e mem e o

AOH-- === m = m e m e )

3200 FORMATE1X,13,17,F11.2,2F20.9) :

6000 FORMAT(/,tX,35H SHRINKING FACTOR =,F8.4,/,
11X, A5H%-IMPROVEMENT OVER USUAL ESTIMATE =,F8.4,2H4 %,//}
END

SUBROUTINZ LSE{MODEL,NPT,NIND,YDATA, XDATA B,YEST,SEROR)
DIMENSION YDATA{S00),XDATA(S00,5),8(6),x(500,6),
1YEST(500).XX{6,68) . XXIXT{6,500}

SUBROUTINE FOR COMPUTING THE LEAST SQUARES ESTIMATE
OF B IN THE LINEAR MODEL,

YOATA = XDATA * B , IF MODEL = ©
AND

YOATA = (I,XDATA) * B , IF MODEL = 1

WHERE YDATA IS THE THE (NPT BY t) VECTOR OF DEPENDENT
OBSERVATIONS, XDATA 1S THE (NPT BY NIND) MATRIX OF
INDEPENDENT OBSERVATIONS, I IS THE COLUMN VECTOR WITH
EVERY ELEMENT EQUAL TO ONE, * STANDS FOR THE PRODUCT
OF TWU MATRICES, NIND IS THE NUMBER OF INDEPENDENT
VARIABLES AND B IS THE VECTOR OF PARAMETERS TO BE
ESTIMATED.

OO0 0OO000000000

IF(MODEL EQ. Q)}GD TO 100
0o 10 I=1,NPT
10 X(1,4%)=4,
MM=NEINDG+1
DO 2C I=2,MM
TI=1-1,
DO 3C J=1,MPT
30 X{J,I1)=XDATA(J,II)
20 CONTINUE
GO TO 200
100 MM=NIND
00 120 I={,MM
DO 130 J=1,NPT
130 X{J,I11=XDATA(J,1)
120  CONTIMNUE
200 CONTINUE
DO 23C I=1,MM
DO 240 J=1,MM
XX(I,d)=0.
DO 250 K=+, ,NPT
250 XXED,uY=xXX(I,J)+X{k,I}*X(K,J)
240 CONTINUE
230 CONTINUE
CALL MTXTNV{MM, XX, XX}
00 300 I=1,Mm
Do 310 u=1,NPT
XAIXT(I,d)=0,
DO 320 K=1 MM
320 XXIXT(L, JY=XXIXT(I,J)+xX (I, K})*%(J,K)
310 CONTINUE

- 86 -

70012300
00013000
GON13100
00013200
00013300
$00 13400
007 13500
000 13600
00013700
00013800
00013300
000 14000
00014160
00014200
000 {4300
00014400
00014500
00014600
00014700
00014800
000 14900
00015000
00015100
00015200
000 15300
00015400
00015500
00015600
00015700
00015800
000 £5900
00016000
00016100
GO016200
00046300
00016400
00216500
000 16600
00016700
00016800
00016900
00017000
00017100
00017200
00N 17300
00017400
00017500
00017600
00017700
00017800
0C0 17900
CO018C00
00018100
00018200
000 18300
050 18400
00018500
00018600
00018700
00018800
000 18200
000 19000
00019100
00012200
00019300
00013400
C0019500
000 19600
00019700
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300

410
400

510

500

10

138

16

19

22

23

24

CONT INUE

DO J4CO I=1,MM

B{I}=0.

DD 410 J=1 NPT
BOI}=BIT)+LXIXT(I J)*YDATA(J)
CONTINUE

SERQR=0,

DD 500 I=1,NPT

YEST(I)}=0.

DO 540 J=1,MM
YEST{L)=YESTLII+X(I,J)*B(J)
SEROR=SEROR+{YDATA(T}-YEST{I))**2
CONTINUE
SEROR=SORT(SERDR/{NPT-MM})
RETURN

END

SUBROUTINE MTXINV(NSIZE,W,WINV}
DIMENSION ARRAY(6,6),WINV(6,E),W1i(6,2),%(6,6)

SUBROUTIMNE FOR FINDING THE INVERSE OF AN (NSIZE BY NSIZE}
SQUARE MATRIX W BY USING THE PARTITION METHOD. WINV IS THE
INVERSE MATRIX OF W.

00 5 1=1,NSIZE

DO 5 J=1,NSIZE

ARRAY (1 ,J)=W(I,J)

IF(NSIZE .GT. 1) GO TO tO
WINV(1,1)=1./ARRAY{1,1}

RETURN

CONTINUE

MSIZE=NSIZE~-+4

DO 15 II=1,MSIZE

J=I1+1

DO 16 KK=J,NSIZE

DO 17 M=1,NSLZE

Wi{M, 1)=W(M, II}

Wi{M,2)=W(M, KK)

DET=W1(1, 1)*Wi1(2,2)-Wi(1,2)*wi(2,1)
IF(DET .€EQ. 0.) GO TO 1*6

IF(If .EQ. 1 .aND. KK .EQ. 2) GO TO 19
0D 48 K=1,MNSIZE

ARRAY(K,1)}=w{K,I1)
ARRAY (K, 2)=W({K, KK)
ARRAY(K,1I)=W(K,1)
ARRAY (I KK )=W(K,2)}

GO TO 19

CONT INUE

CDNTIMUE

CONT INUE

WINV{1,1}=ARRAY{2,2)/DET
WINV(2,2)=ARRAY(1,1)/DET
WINVI{,2)=-ARRAY{1,2)}/DET
WINVEZ,1)=-ARRAY({2,1)/DET

IF(NSIZE .EQ. 2) GO TD 100

DD 20 I=3,NSIZE

K=3-1

DO 21 J=1,K

Wild,1}=0.

Wi(J,21=0.

DO 22 M=1,K

Wi(J, 1)=Wi{Jd, 1+ WINV{J MI*ARRAY (M, 1)
W1(J,2)=Wi(J,2)+ARRAY (I M)}=WINV(M, J)
CONT INUE

ELTA=ARRAY(T,1)

DD 23 J=1,K
ELTA=ELTA-ARRAY{I.u)*Wi(J, 1)
WINV(I,I}=1./ELTA

0D 24 u=1.,K

WINV(J, I =-Wi{J, 1)/ELTA

WINV{I, JY=-W1{J,2}/ELTA

DO 24 M=% K

WINVED MI=WINV(J . MY+WILJ 1) Wt (M, 2}/ELTA
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QCO19B0O0
cO0 19900
COQR0LA0
QL0100
GOO20200
QOR20300
00020400
00020500
Q00206GC0O
00020700
QOD20800C
00020800
00021000
Q0021100
Q0021200
CC0213G0
00021400
00021500
00021600
00021700
00021800
00021800
0C022000
00022100
00022200
00022300
00022400
©00225C0
00022600
00022700
00022800
Q0022900
00023000
00023100
00023200
00023300
00023400
0002350¢
00023500
0023700
0C023800Q
00023900
00024000
00024100
Q0024200
0C024300
00024400
00024500
00024600
00024700
00024800
00024300
COG25000
00025100
000252CGC
00023300
00025400
00025500
00025600
00025700
00025800
00025900
00026000
00026100
0C026200
00026300
Q0G26400
00026500
0G026600
00026700
00026800
00026900
00027000




aOO0O0O00

O0000

20

103

401

402

403
888

10

CONT INUE

CONTTNUE

IFCIT CEQ. t LAND, KK _EQ. 2) GO T0 8813
DO 401 u=1,NSIZE
Witd, 1)=WINVLT,Jd}
Wild,2)1=WINV{2, 4]}

DO 492 J=1,NSIZE
WINV{ 1, JY=WINV(IL,J}
WINVEZ, JY=WINYV(KK,J)
00 403 J=1,NSIZE
WINVETII,J)=wi{J, 1)
WINVIKK, J)=wi(J,2)
CONTINUE

RETURN

END

SUBROUTINE EXPECT{NP,THETA,EYY}
DOUBLE PRECISION P1,A,EY.P2

THIS SUBROUTINE COMPUTES THE EXPECTATION OF {/Y, WHERE Y IS A
NONCENTRAL CHI-SQUARE WITH NP DEGREES OF FREEDOM AND NCNCENTRALITY
PARAMETER THETA. THIS EXPECTATION IS THE SAME AS THE EXPECTATION
OF 1/(NP-2+42W), WHERE W IS A POISSON WITH PARAMETER (THETA/2).

ERROR=0. 00001
ERR=ERROR/NP
A=THETA/2
Pt=DEXP{-A)
EY=P1/(NP-2}

pP2=p1

K=0

K=K+ 1

Pi=p1¥A/K

P2:=p2+0 ¢
EY=EY+P1/(NP=-2+K*2)
CHECK=1.-P2 .
IF{CHECK.GE.ERR) GO TQ 10
EYY=EY

RETURN

END

SUBROUTINE TRANSF(ICHO,Y,X)
DIMENSION THETA{166),EY{ 166}

X IS THE POI1SSON RATE, Y IS THE TRANSFORMED RATE
ICHQ=1 FOR CONVERTING Y TQ X
ICHO=2 FOR CONVERTING X TO ¥

DATA  (THETA(1).I=1,166)/ 0.0,
to.4, 0.2, 0.3, 0.4, 0.5, ©.8, 0.7, 0.8, 0.9, 1.0,
2¢.%, t.2, 1.3, 1.4, +t.5, 1.8, .7, t.8, 1.9, 2.0,
2.4, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2,8, 2,9, 3.0,
43.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 2.8, 2.9, 4.0,
54.1, 4.2, 4.3, 4.4, 4,5, 4,8, 4,7, 4.8, 4.9, 5.0,
66.c, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, t2.0, 14.0, 15.0,
716.0, 17.0, 18.0, 192.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.C,
826.0, 27.0, 28.0, 29.0, 20.0, 31.0, 32.0, 33.0, 34.0, 35.0.
936.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0,
046.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, S4.C, 55.0,
156.0, 57.0, 58.0, 59.0, 0.0, 61.0, 62.0, 63.0, 64.0, 65.0,
266.0, 67.0, 6B.0, 69.0Q, 70.0, 71.Q, 72.Q0, 73.0, 74.0, 75.0,
376.0, 77.0, 75.0, 79.0, BO.O, 81.0, 82.0, 83.C, 84.0, £5.0,
486.0, 87.0, 88.0, 89.0, 80.0, 91.0, 92.0, 93.0, 94.0. 95.0,
586.C, 97.C, 98.0, 99.0,100.0,105.0,110.0,115.0, 120.0, 125.0,
0,

6130.0,135.0,140.0,145.0, 15C0.0, 155.0, 160.0, 165.0, 170.0, 175.
7180.0,185.0,190.0,195.0,200.C/

DaTa  (EY(1),I=1,166)/ 0.0,

10.667456, 0.720737, ©.772322, 0.822310, 0.870793, 0.947858,
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00027100

GOC27200
DUQ27300
20027400
20027500
Q0027600
QO027700
(0027800
00027900
00023000
Q002810C
c002820C
Q0Q2330¢
QOG28400
0002850C
cOG286C0
0028700
00028800
Q0028300
00028000
0Q029210C
00029200
Q0029300
00029400
Q0029500
0C02960¢
00029700
00029800
00029900
00030000
00030100
0CGO30200
(0030300
00030400
Q0030500
0030600
0GO30700
COC30800
20030900C
00031000
0003 t100C
00031200
0003 t30C
QOC3 1400
Q0C3 1500
0003 1600
Q003 $70C
00031800
Q0031800
Q0032000
Q0032100
00032200
0003230C
00032400
00032500
000232600
00032700
000232800
00032900
00033000
00033100
05033200
00033300
0Cc033400
00033500
oO033600
0C0337C0
00033800




sNeNsNoNsNs NN NSRS NS]

20.963585, 1.Q0805¢, 1.051310, 1.093450. 1.134%20, 1.174%580, : 0033900
31.213670, 1.251i8G0, 1.289180, 1.325670, 1.3613350, 1.286360. : 00034000
41.430630, 1.464220, 1.497460, 1.529490, 1.56123C, 1.392410, : CN034 100
51.623050, 1.653130Q, 1.682820, 1.711980, 1.74069C, 1.76G8960, : 00034200
61.796820, 1.823270, 1.85:340, 1.878030, 1.904370, 1.930250, : CO034300
71.956010, 1.981340, 2.006370, 2.031090, 2.085520, 2.079570, : 00034400
82.193540, 2,127150, 2.150510, 2.173620, 2.196490, 2.219130. : 00034500
92.241530, 2.263720, 2.474750, 2.669180Q, 2.850370, 3.020710C, : 00034600
03.181940, 3.335390, 3.482080, 3.622830, 3.7568310, 3.889030, : 00034700
i4.01%%90, 4.138230, 4.257340, 4.373210, 4.486080, 4.59G6180, : 00034800
24.703720, 4.808840, 4.911720, 5.012480, 5.11126C, 5.208160, : 00034900
35.303300, 5.396760, 5.488520, 5.573980, 5.667890, §.755430, : 00035000
45.841660, 5.926630, 6.010410, &,093030, 6.174540, 6.253000, : Q0035100
56.33443C, 6.412880, 6.490380, 6.566960, 6.642G60., 5.717510, : 0C033200
66.791540, 6.864760, 6,937220, 7.008920, 7.079900, 7.150170C, : 00035300
77.219760, 7.288690, 7.336270, 7.4%4620, 7.491660, 7.558110, : 00035400
87.623980, 7.G89280, 7.754030, 7.818250, 7.881940, 7.945120, : 00035500
98.007810, B8.070010, 8.131740, 8.192980, B.2%53790, 8.314140, : 00035600
08.374070, B8.433560, 8.492640, B8.551320, 8.609590, 8.667470, : ¢0033700
18.724960, 8.782080, 8,838830, B8.895220, B.951260, 9.006940, : 00035800
29.062280, 9.117290, 9.171970, 9.226320, 9,280360, 9.334080, : 00035900
39.387490, 9.440600, 9,493420, 9.54%940, 9.598180, 9.6501730, : 00036000
49,701800, 9.753200, 9.804340, 9.855200, 9.90%810, 9.956150, : 00036100
510.006200, t0. 253000, 10.494000, 10, 729600, 10, 960200, 11. 185900, : 00036200
611.407200,11.624300,11.837400, 12.046800, 12.252600, 12.454900, : 00036300
712.654100, 12, 850100, 13.043200, t3.233500, 13.421100, 13.606 100, : 00036400
813.788600, 13.968700, 14, 146600/ : 00036500

IF{ICHD .EQ. 2)GO TO 100 : 00036600
DO 10 I=1,165 : 00035700
IF(Y .LT. EY{I))GO TO 30 : 00036800
10 COMTINUE : 00036900
X=Y**2-0,375 . : 00037000
RETURN : 0C037100
20  A=(THETA{I)}-THETA(I-1))/(EY(I}-EY{I-1)}) : 00037200
X=THETA{I-1)}+A*{¥~-EY{LI-1}) : 00037300
RETURN : 00037400
100  CONTINUE : . : 00037500
DO t10 I=1, 165 . ’ : 00037600
IF(X .LT. THETA(T})GO TG 130 : 00037700
110 CONTINUE : 00037800
Y=SORT{Y+0.375} : 00037900
RETURN ' : 00038000
130 A=(EY{I)-EY(I-1))/(THETA(I)-THETA(I-1)) 1 00038100
Y=EY(I-1)+A*{X-THETA(I-1)) : 00038200
RETLURN ! 00038300
END : 00038400
Q003’500
SUBROUTINE EQN{(NF,}D,IG.NX,XEST,BUX,N1,N2,W2,W3) : 00038600

DIMENSION XEST{500},BU¥{(500.5).W3(500).W2({500}. : Q0038700
1ID(500),I1G(500),NX{500) : 0C0388C0O
: 00038900
SUBROUTINE FOR CONVERTING THE ACTUAL{USUAL) AND : 00039000
ESTIMATED POISSON RATES TO OTHER RATES BY THE : 00039 100
FUNCTIOM F. NX{I} AND XEST(I)} ARE RESPECTIVELY THE : 00039200
ACTUAL AND ESTIMATED POISSON RATES. THE FUNCTIONAL : 00039300
FORM OF F IS TO BE SPECIFIED BETWEEN TWO STATEMENTS : : 00039400
DO 100 I=N1,N2 & 100 CONTINUE : 00039500
W2(I) AND W3(I) ARE RESPECTIVELY THE TRANSFORMED RATES : 00039600
OF NX(I} AND XESF(IY. THAT IS5, W2(I)} = F { NX(I} } : 00039700
AND  wa{I} = F { XEST{(I) }. . : 00039800
: 00029900
DO $00 I=N1,N2 : 00030000
W2(I)=NX{I)/BUX{I,1) : 00040100
W3{I)=XEST(I1)/BUX{T, 1) : 00040200

100  SONTINUE : 0CnN40300 ’,
RETURN : 00040400
END : 00040500
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VI .
A COMPUTER PROGRAM FOR SIMULTANEOUSLY
ESTIMATING PROPORTIONS BY USING
STEIN-LIKE ESTIMATION PROCEDURES

The probability that an item sampled from the i-th population will
possess certain properties under consideration is p;> i=1, ...,k 1In
practicalwork, p, is considered a proportion. For example, p; may be the
severity index of a vehicle colliding with the i-th type fixed object. In this
part, we provide a FORTRAN Computer Progran. for simultaneously esti-
mating k (population) proportions, py,+ « + , Pge This program is written
based on the theories and grouping techniques developed in Sections 2 and
4 of Part Iil.

There are eight sections in this part. In Section 1, we describe the
basic data required by the program. The estimation procedures are out-
lined in Section 2. Eight methods for computing initial estimates of para-
meters are discussed in Section 3. The input format of the basic data is
presented in Section 4. When the option of transforming final estimates of
proportions to other estimates is chosen, the user must provide the trans-
formation required by the subroutine EQN. An example is presented in
Section 5. The instructions for modifying the program, if needed, to fit a
- particular problem are given in Section 6. 8ix examples are presented in
Section T to show the use of various program options and logic to compute
initial estimates of parameters. The program listing is presented in the
last section.

1) The Basic Data

The essential data for simultaneously estimating k proportions, Pys -
« « » P, are the independent observations (n., Xids o0 os and (n, , Xk)'
n, is the number of items sampled from the i-th pepulation. Xi and n; X5
are, respectively, the proportion and number of sampled items possessing
certain properties under consideration. Since n; X5 is a binomial random
variable with (proportion) parameter D, X; is the usual estimate of P;-

The other essential data is the information for computing initial esti-
mates of parameters. This information is termed the 'supplemental' in-

formation for discussion purposes.

Quite often, one is also interested in transforming 12 to another para-
meter 9y through the function F. That is,

q; = F(p,) (118)
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When this option is chosen, the user will have to provide the functional
form of F in the user-supplied subroutine EQN. Any information required
by F must also be provided. This is termed the 'auxiliary' information.

2) What the Program Does

The first stepof this program is touse Anscombe's transformation (2,
7) to transform X; to Z;. That is,

_ ’ -1 nj
Z;=y1n;+0.5 Sin [———"—"ni 1 0.75 (2Xj - 1)] : 119)

It has been shown in Part IOI that when n, p; is at least 4, Z; is nearly
normally distributed with mean 6, and unit variance, where

ni s

2‘ - n . . n -

_ -1 _J_L.) B 3 g -y
8 ,’ni+0.5 Y. Sin (n1+0.75 Cj P, L-py (120)

]=0

The second step is to compute the initial estimate, U,, of ei by the
chosen method described in the next section. In this step, t]he trace of the
idempotent matrix P satisfying the following equation

(Zl, . s 8 3 Zk)/- (Ul, e s 8 Uk)’=P (Zl, . 0 g Zk)/ (121)

is also computed. The superscript / stands for the transpose of a vector
or matrix. The third step is to compute the shrinking factor ¢ defined as

Trace (P) - 2
k
2
Y (Z;-Up
i=1

(122)

A slightly better estimation procedure is to set ¢ to be 1 if it is greater
than 1. The fourth step is to compute %i defined as

A

Zi=Ui+(1 -C) (Zi_-Ui)’ izl’ LI I k (123)

A ‘

Z; is the Stein-like estimate of 8;. The fifth step is toobtain ﬁi which
is the p; satisfying Eq. (120) with 8; replaced by Qi' However, analterna-

tive method of obtaining %i is through the inverse function of Eq. (119).
That is,

A 1 [nj+0.5 ( Zi ]
Xj=3 [-——n Sin{ ——5% 5) +1 (124)
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X; is also considered a Stein-like estimate of p;. If the option of trans-
forming p; to q; specifiedin Eq. (118) is chosen, the last stepis to estimate

Cli:

il

FaN A
q; = F(X)) (125)

2>

A
X and ¢, are the final estimates of pi and qi, respectively.

This program also computes the estimated percenta ge improvement of
the above procedure over the usual one,

'3) Methods for Computing Initial Estimates

The key to obtaining good estimates of proportions is to provide good
initial estimates Uy, « . . , Uk in the sense that N is high and Cis low,
where '

N = Trace (P) (126)

and

U
[
IIMPT‘

(Ui - 91)2 (127)
i 1 -

We have shown in Part I that if P is symmetrical and idempotent, N
and C are, respectively, the number of degrees of freedom and the non-
centrality parameter of a non-central chi-square distribution. The maxi-
mal percentage improvement that can be achieved is 100 (N - 2)/k. Eight
methods for computing initial parameter estimates are built in this pro-
gram. These are:

Method 1: Initial Estimatesare Given - Based on past experiments or
independent parallel studies, we estimate or guess P tobev.,,i=1, ..
+ » K. The initial estimate of ei is then obtained from Eq. (118). That is,

= , o [P -
U; = (n; +0.5 Sin [ +0 75 (2Vi 1)] (128)

In this case, we treat U; - 6; as the parameter tc be estimated. Con-
sequently, the matrix P satisfying Eq. (121) is the identity matrix. Thus,
N = Trace {BR) = k. We note that the maximal trace of P used in Eq. (121)
is k. The estimation accuracy is the degree of closeness of (Vis oo Vi)
to (P1s ¢+ o pk)'. The final estimate of p; always lies between the initial
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estimate Vi and the usual estimate X When the initial estimates are ex-~
cellent, say V; = py for all i, the final estimate of B is Vi for all i, How-
ever, if the initial estimates are poor, i.e., (Vis o o o Vk) is quite dis-
tant from (py, « » » , Py), the final estimate of P, will be very close to X
for every i.

This method is used only when the number of proportions to be esti-
mated is at least 3. When the independent initial estimates are reliably
close to the true proportions, this method will provide good estimates of
parameters.

Method 2: Weighted Average () -When n, is fairly large, ny/(n; + 0.75)
= 1and, therefore, Z; & Jn; +0.5 Sin~1 (2X; - 1), Thus, if the variation
among proportions is small, all Bi/ n, + 0.5 would be near a constant b,
The weighted average b can then be used to estimate b. That is,

k k |
b= > zi/z ,/ni +0.5 129)
i=1 i=1

We then take U i =/1; n; + 0.5 as the initial estimate of ei. For this
method, we have N = Trace (P) =k - 1. The loss of one degree of freedom
is due to the use of ﬁ as an estimate of b. We note that the above U; can be
rewritten as '

k
U=w, Y Z : (130)

with

&
[

I |
: fni+0.5/§1 ‘/nj+0.5 (131)

It is obvious that

+ - [ ] - =

Wy tW, + +w 1 (132)
This method is used only when the number of proportions to be esti-

mated is at least 4. When all p; are near a constant, this method will pro-

duce good estimates of proportions. Inpractice, one may graphically exam-

ine the relationship, Zi =h ,/ n, + 0.5, toascertain the degree of linearity.
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Method 3: Weighted Average (II) - For a given set of numbers, Wiy
v ooy Wi satisfying Eq. (132), the initial estimate of 8, is taken to he

U, =w, » Z. (133)

In this case, N = Trace (P) =k -~ 1. Wenote that this is the same form
used in Method 2. The only differenceis that w; in Method 2 was computed
from the sample sizes, but is a given number in this method. Whenny =.
« o =N and w, =. .. =W, , Methods 2 and 3 are identical and use the
average of Zl’ ' s a Zk as the initial estimate of every Gi.

This method is used only when the number of proportions to be esti-
mated is at least 4. When the relationship 8, =b w; holds approximately
for a given set of numbers satisfying Eq. (13:%), this method will produce
good estimates of proportions. In practice, one may graphically examine
the relationship, Zi =b Wis to check the linearity. For example, we have

: k
approximately zi =b ti’ i=1, ..., k, then wy = ti/zl tj. Note that,
ift, =1, w, =1/k.

i i

Method 4: Weighted Average (Il) - For a givenset of numbers, Wis e
.+, W), satisfying Eq. (132), the initial estimate of Bi is taken to be

k
U= 5 W Z 1 ".34)

For this case, N =Trace (P) =k - 1. Methods 3 and 4 are identical
when all w; are equal to 1/k.

This method is used only when the number of proportions to be esti-
mated is at least 4. Whenall p; are almost equal toa constant, this method
will produce good estimates of proportions for any set of numbers satisfy-
ing Eq. (132). In this circumstance, w; can be interpreted as the weight
agsigned to Z, for estimating the common constant, If every X or Zi is
equally reliable, equal weight can be assigned to every Zie That is, w; =
1/k,i=1, . .., k. However, if one has reason to doubt the reliability
of aparticular observation, say X., zeroweight may be assigned to Z, and
equal weight to the remaining observations. That is, w, =0 and w, =

1 i
1/k~-1),i=2,..., k.
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Method 5: Least Squares Estimate (I) - Suppose that the supplemental
variables tﬂ, « + s, and tim are available and satisfy the following equ-
ation,

= ’ni+0.5 bty *+ -+ tb_ti),i=1,...,k (135)

If for every j, bysy . o v, and bk' are near an unknown common para-
meter b]-, Eq. (135) can be rewritten’as

6= m +0.5 Byt e b b, i=1 .k (136)

1m) ’

Denote (b .8 e s b ) to be the least squares estimate of (bl, . a
. bm) We then take the m1t1al estimate of 6, to be

In this case, N = Trace (P) =k - m. The lossof m degrees of freedom
is due to the least squares estimates of m linear parameters. We note that
U canalways be improved by increasing the number of supplemental vari-
ables. However, this decreases the number of degrees of freedom, N,
which is an undesirable feature as prevmusly mentioned. In general, the
number of supplemental variables should be kept small relative to the num-
ber of parameters to be estimated.

This method is used only when the number of proportions to be esti-
mated is at least m + 3., This method will produce good estimates of pro-
portions if Eq. (136) holds approximately and the number of supplemental
variables is small relative to the number of proportions to be estimated.
In practice, one may examine the data to see whether the following linear
relationships hold approximately.

Z; /0 t0.5 =b tjg +. e bt i=1, ...,k (138)
or, when all n; are fairly large,
(2X -1) 1 1 LI Y +bmtim, i.=1, LI T k (139)

Method 6: Least Squares Estimate (II) - This method is the same as
Method 5 except that Eqs. (136) and (137) are, respectively, replaced by

=J ni + 0.5 (bO + bl til + L I +bm tim), i = 1, a8 s 3 k (140)
A A A o |
Ui - ni + 0.5 (bO + bl til + + 8w + bm tim), 1= 1, . 0 s 5 k (14'1)

and
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In this case, N = Trace (P) =k - m - 1 because of the extra parameter
b.. Thus, this method is used only when the numher of proportions to be
estimated is at least m +4. In practice, one may examine the data to see
whether the following linear relationships hold approximately.

zi/,{ni+0.5 =bytby by tew o bt i=1, ..., k (142)
or when all n, are fairly large,
in-1 V= . - . =
Sm (ZXi"l)"‘bO'fhltil"---+1Umtim, l“l,ano,k (143)
Method 7: Least Squares Estimate (III) - This method is the same as

Method 5 except that Eqs. (136) and (137) are, respectively, replaced by
the following equations.

m im
and
A A . _
Ui—bltil+o.u+bmtim, 1"'1,... ,k . (145)

In practice, one may examine the data to see whether the following
linear relationship holds approximately.

Zizbltil','oo.+bmtim,i=l,ooc,k (146)

Method 8: Least Sguares Estimate (IV) - This method is the same as

Method 7 except that Eqs. (144) and (145) are, respectively, replaced by
the following equations.

6, =bg *byt +. .. b t . i=1,...,k (147)
and
NN A . : 14
Ui“b0+b1til+o-o+bmtim,l—l,-o-,k ( 8)

In practice, one may examine the data to see whether the following
linear relationship holds approximately.

Zi:b0+bltil+ll.+bmtim,1=1,ton,k (149)

The k proportions may be arranged into many groups towhich different
methods are applied to minimize the noncentrality parameter defined in
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Ed. (127). For example, we may use Method 1 for a group of ky propor-
tions, Method 5 for a group of 1«:2 preportions, Method 2 for a group of k3
proportions, and again, Method 2 for the group of the remaining propor-
tions. In this case, we have N = Trace (P) = + (k, - m) + (k3 -1y +
(k -k, - l(:2 -kg-1)=k-m- 2. mis the number of %inear parameters
used in Method 5. For this particular case, the number of proportions to
be estimated should beat least m + 5. In general, for any method or com-
bination of methods, the number of degrees of freedom should be at least 2.
Combining these eight methods to compute initial parameter estimates will
be demonstrated by exemples presented in Section 7.

Methods 2 through 8 suggest that k populations should be arranged into
groups in which parameters cluster at a point or can be approximated by a
linear function of supplemental variables. The physical properties of popu-
lations, past experiments and parallel studies are good sources for ob-
taining the proper group-method combination. Unfortunately, these sources
may not be available or sufficiently reliable in a particular problem. In
this circumstance, one may examine the data as suggested in each method
to choose the proper group-method combination. That is, the empirical
relationships among Xi» 245 Zi/ .[ n, + 0.5 and supplemental variables can
be used to determine the groupume%hod combination for computing initial
parameter estimates. Since the program computes the estimated percent-
age improvement of each chosen group-method combination over the usual
method, one may use the one that produces the maximal ‘improvement to
estimate proportions. We remark that the group-method combination gen-
erated by examining the data may not be the best one and, possibly, could
be the worst one for this problem due to random variation of the data.
Nevertheless, if the chosen group-method combination is used thereafter
for the same problem, the above procedure is always better than the usual
one. The worst situation is that no improvement is made. Based on our
experience, the qualitative properties of populations often provide adequate
information for grouping purposes.

4) Data Input

The data input of this program is arranged into two portions. The first
portion is composged of six cards. The number of cards in the second por-
tion is equal to the number of proportions to be estimated.

The first sixcards specify the number of groups and proportions, com-

putational methods, supplemental and auxiliary variables in each group.
Variables used in these cards are defined below.
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NP: Number of proportions to be estimated, 1 = NP =500
NGROUP: Number of groups used, 1 £ NGROUP £ 20

NMG(): Number of proportions in the I-th group, NMG(1) +.
. « +NMG (NGROUP) = NP

METHOD() = j: The j~th method presented in Section 3 is used to
compute initial estimates of parameters in the I-th
group, 1 £j =8 '

NAUXT): Number of supplemental variables used to compute
initial estimates of parameters in the I-th group.
This variable is 0 if METHOD() = 2, and 1 if METH~
oD(@) =1, 3, and 4.

>0: Numberof auxiliary variables used totransform pro-
portions in the I-th group, 1 £ NAUX() + NCOV() £
5.

NCOV({)4 = 0: Means that supplemental variables are also served
as auxiliary variables.

£0: No transformation,

- -
(DESCPT (@),
I1=1, 70): Title (no more than 70 letters).

The second portion is composed of NGROUP subportions or groups.
The I-th subportion is composed of NMG({I) cards. Define K=JifI =1 and
K=NMGl)+...+NMG@-1)+J if I 1., Then, the K-th card of the
second portion contains essential and supplemental data for estimating the
J-th proportion of the I-th group. We note that the J-th proportion of the
I-th group is the proportion of the K-th population. The data input for es-
timating this proportion are as follows:

METHOD( I} NCOV(I) DATA INPUT
o] ID(K),X(K),NSAMP{K}
2

NOT O ID(K),X(K) ,NSAMP{K}, (BUX{K ,M) M=1 NCOV(I})

o] ID(K) ,X{K) ,NSAMP{K)}, (AUX{J,M} M=1,NAUX(I})
NOT 2
NOT O ID(K)Y,X(K),NSAMP(K), (AUX{J,M) M=1 NAUX(I}),
(BUX{K,M) ,M=1 ,NCOV(I))
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Variables ugsed in this card are defined below:

ID(K):

X(K):
NSAMP(K):

AUX(J, M):
BUX(K, M):

Identification number of the K-th population such as lo-
cation number and year, etc. The K-th proporfion is the
J-th proportion of the I-th group. This number has no
effect on the estimation procedure.

The K-th sample proportion (usual estimate of the J-th
proportion of the I-th group).

Number of items sampled fromthe K-th population. That
is, the sample size for measuring X(K).

The M-th supplemental variable for the K-th proportion.
The M-th auxiliary variable for the K-th proportion.

Table 29
The Input Deck

Card
Number Variabtles Used in Each Card Ramarks
1 NP , NGROUP
2 ( NMG(L), I=t,,..,NGROUP )
3 ( METHOD(I), I=1,...,NGROUP ) * The Data Input of
4 ( NAUX{I),I=1,NGROWUP) The First Portion
5 ( NCOV(I),I=1,6NGROUP)
&  (DESPT(I),I=1,70)
7 IDCHY,X(1),NSAMP{ 1), (AUX(1,M) M=1 NA),

L;G ID{L),X{L) NSAMP(L)}, (AUX{L,M} ,M=1,N4),

{BUX(1,M) M=% ,NC) = L=NMG(1)
NA=NAUY{ 1) ;NC=NCOV(I)
L cards for The First
Group

*

(BUX{L,M),M-1,NC)

cnnans

* NA=NAUX{I);NC=NCOV(I}
* K=NMG({ 1)+, . +NMG(I-1)
+uJ

K+6  ID(K),X(K),NSAMP(K),{AUX{J,M) M=1,NA), * This card is for the

{BUX{K,M} M=1 _NC) k-th parameter which
is the J-th parameter
of the I-th group.

caseaw
v

‘N+6 ID(NY  X(N) ,NSAMP{N}, (AUX(1,M) M=1,NA),

* | =NMG{NGROUP)
{BUX(N,M) M=1,MC) * NA=NAUX(NGROUR)
* NC=NCOVINGROUP)
* N=NP~L+1
* | Cards for The Last
GROUP

NP+6  ID(NP).X(NP),NSAMP(NP),
(AUX(L.M}.M=1,NA}, (BUX{(NP.M).M=1,NC)
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The input deck is presented inTable 29. This deck is also diagrammed
in Figure 6 to show the format and logic used. The user can follow this
diagram to change, if needed, read statements and formats to fit a parti-
cular problem.

5) The User-Supplied Subroutine (EQN)

The functional form of the transformation ¥ defined in Eq. (118) must
be specified between two statements, DO 100 I =N1, N2and100 CONTINUE,
in the user-supplied subroutine EQN. The input variables for this sub-
routine are NP, ID, IG, NSAMP, X, XEST, BUX, N1, and N2, The mean-
ing of NP, ID, NSAMP, X, and BUX were explained in Section 4. IG(i) is
the group number towhich the i-th proportion belongs, XEST (i) isthe final
estimate of the i-th proportion. N1 and N2 are integers automatically set
in the main program. The output of this subroutine is W2(i) and W3(i) for
i=Nl, ..., N2, where W2(i) = F[X(i)] and W3(i) = F(XEST({)].

Example: We are also interested in estimating parameters 4 satisfy-
ing the following equations. '

- 2 .
pi—qiti+(qiti)’i_1""’10 (150)
and

p,=q; M, i=11, . . ., 100 : (151)

Inthis case, t, is the only auxiliary variable forthe first 10 populations
to convert proportions to % defined in Eq. (150), while Mi is the only auxi-
liary variable for the last 90 populations to convert proportions to ¢; de-
fined in Eq. (151). herefore

t, i=1,..., 10
BUX(, 1) = M, =11, ..., 100 (152)
solving Eqs. (150) and (151), we obtain
(Jp. +0.25 - 0.5)/t
i i
q; =F(p)= (153)

B/ M

The ti and Mi can be, for example, the ADT and the number of years,
respectively. The usual estimate of q, is thenobtained from Eq. (153) with
P replaced by X,. Similarly, the fingl estimate of q. is also obtained from
Eq. (153) with p; replaced by the final estimate of P;e The function F de-
fined in Eq. (153) must be specified in the user-supplied subroutine EQN.
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START

COMPUTE INITIAL
ESTIMATES OF
PARAMETERS IN
THE I-TH GROUP

(S METHOD( < 47 Y0 g

| NAUX(IY = | I

No JYES vES
—{ IS METHOD(I) =27 »—
|NAux(n = o| ¥
NA = NAUX(D)
NC = Ncov(D
J=0
[
' T = J+i | o

READ NP, NGROUP 2I3 YES
READ (NMG(I),1=1, NGROUP) 20I3
READ (METHOD(I), I =1, NGROUP) 2013 NO .
READ (NAux(1), I=i, NGROUP) 20I3 €o
READ (NCOVY(I), I=1, NGROUP) 2013 y
READ (DESCPT(I), I=1, 70) TOAI
¥
=5 ]
'
ol I=T1 +1 |
¥ COMPUTE
(s T > NGROUPP —YES » FINAL
1 *NO ESTIMATES

YES/
AN

IS T > NMGI)? )

gNO

J

x
[LRF]

NMG({} + -+ NMG(I-)+J, IF I >

F IS

YE

IS NC>0 7

READ ID(K), X(K), NSAMP(K)
I3,F8.4,I6,5Fil.4

3

S

1S METHOD(L) = 2 7

NO

i

NO

S NC>0 7

READ 1ID(K), X(K), NSAMP{K),
(AUX(J, M)}, M =1, NA)
13,F8.4,16,5Fil.4

READ ID(K), X(K}, NSAMP(K),
{(BUX(K,M),M = I,NC}

I3,F8.4,16, 5FiL4

YES

READ ID(K},X(K}), NSAMP(K),
(AUX(J, M), M= 1,NA),
(BUX(K, M} M=1,NC)

I3,F8.4,16,5Fl4

IS NG =0 7 NO

YES
[ BUX(KM) = AUX(T,M)|

Figure 6.

Tlow of control for data input.

= Ed
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For example,

DO $00 I=N1,N2
IF{I .GT. 10) GO TQ 50
W2(T)=(SQRT(4. * X(I} +1.)~1.3/{BUX(I,1)*2.)
W3(1)=(SQRT(4. * XEST{I)+1.)-5.)/(BUX{(I,1)*2.)
GO TO 100

50 W2(P)=X{I)/BUX(I,1}
W3(I)=XEST{I)/BUX(I,1}

100 CONTINUE

8} Limitaticns of the Program and How to Make Necessary Changes

=7

This program was designed to handle problems where the number of
proportions, NP, does not exceed 500. This number can be easily increased
toany degired number. However, one must change the dimensions of vari-
ables that appear on the DIMENSION STATEMENTS of the main program
and subroutines LSE and EQN, i.e., replaceeach 500 by the desired num-
ber.

~ The number of groups is limited to 20, This number is large enough
for most practical problems. However, one can increase this number to
any desired number not exceeding NP by properly changing the READ for-
mat of the second input card (FORMAT 3).

The total number of supplemental and auxiliary variables is limited to
5. This number is large enough for the practical applications. The user
can change this number to any desired number, say N, by performing the
following two steps. '

a) Change the READ format of the second poftion of the data input
(FORMAT 60).

b) Change dimensions of variables that appear on the DIMENSION
STATEMENTS of the main program and subroutines LSE, MTXINV, and
EQN, i.e., replace 5 and 6 by N and N + 1, respectively.

7) Examples

Every 0.2-mile segment of roadway is classified into categories ac-
cording to certain physical properties. There are 24 categories coded as
1 through 24. Accident statistics and average ADT figures are presented
in Table 30. Denote Ai' to be the ADT of the j-th segment of the i-th cate-
gory. Based on the previous study (4), the probability that there isat least
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Tabie 30
Proportion of Segments having Accidents
During A Year And Average ADRT in Each Category

No. OF Average
Category Proportion Segments ADT
i Q.06%8 2355 1420.97
2 0.0801 2695 1605.43
3 0.0854 185G 2562.92
4 0.05148 3455 1439 .33
5 Q.0560 1238% 1611.50
& 0.0745 10900 2468.04
7 0.0629 2975 t182.83
) 0.08Q7 3345 1595. 71
9 0.1178 1740 2527 .18
10 0.0578 2080 t462.57
11 0.0729 5270 1891.70C
12 0.0954 6070 2654.28
13 0.0600 8Go 1511.23
14 0.0907 918 2167. 14
i5 0.1126 835 283C. 36
16 Q.0661 1120 1601.36
17 C.0686 37C0 1798.27
18 0.0826 3860 2531.98
19 C. 1020 12458 1408 .66
20 C.t04t 1690 2028 .42
21 C. 1133 830 2859.70
22 C.0902 610 16C1.42
23 C.0776 2050 1930. 16
24 C. 1009 2320 2995.37

one accident occurring in a time period on this segment is q; Ai.. Further-
more, the expected number of accidents per year for this seg‘ment is Rij’
defined as
Rij =q; Aij + (4 Aij)
We are interested in estimating parametersq., i=1,. . . , 24. For
this purpose, we denote n; to be the number of segments in the i-th cate-
gory. We alsodenote ti to bethe average ADT of the i-th category. Define
Xi to be the proportion of segments in the i-th category having accidents
during a year. If every A., is near ti’ n, Xi is approximately binomially
distributed with parametel’ p; =q;t..” For demonstration purposes, we
shall assume that n; Xi is binomially distributed with parameter p;. Thus,
the usual estimate of p; and g; are XL and Xi/ti’ respectively. In this sec-
tion, we present six examples which demonstrate improvement over the
usual estimates of P and q, fori=13, .. ., 24,

2 (154)

After examining the relationships among Z., Zi/ y n, +0.5 and t;, we
see that Zi/ \/ ni + 0.5 isalmost a constantora finear function of ti' Thus,
Methods 2 and 6 (using the average ADT as the supplemental variable) are
applicable to this problem. The second portion of the data input for using
these two methods is presented in Table 31. The data in Table 31 are the
common data for Examples 1 through 4. We note that the only difference
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Tabie 31 :
The Second Pertion of The Data Input
of Examples 1 Threough 4

Calumn Number
Card No. 1234567890123456789012345678901234567890123456789C

7 13 0.068000 a00 1511.23
8 14 0.C2070 915 2167.14 |
9 15 0. 11260 835 2830.136
10 16 Q. 06610 1120 1621, 36
11 17 0.0686¢ 3700 1798 .27
12 18 0.08260 3860 2531.98
13 19 0.10200 1245 1408 .66
14 20 0.1041C0 1650 2028 .42
15 21 0.1%23¢ 83C 2859.70
16 22 ¢.08020 610 1601 .42
17 23 Q.0776C 2050 1930. 16
18 24 . 1009C 2320 2995 .37

between segments in the i-th and (i-lZ)ii:h categories for every i =13, . .
. , 24, is that segments inone category of each pair are intersected by an-
other roadway. We now define

_ Xi-12

» tis i=13, ..., 24 (155)
i-12

V, can beinterpreted as the sample proportionof the (i-12)-th category
when the ADT is tje We cbserve graphically that the following linear re-
lationship holds approximately.

Lex, -1=bstnl@v;-1),1=13, ..., 24 (156)

Thus, Method 5 with Sin~1 (2V; - 1) as the supplemental variable is
also applicable tothis problem. This method will be presented in Example
8.

Example 1: Using Method 2 with One Group - Since all Z;j/ n; +0.5
or SlnT(:?.X._L 1) are near a constant b, i.e., Z; =b m wé shall
use the weighted average to estimate the constant (Method 2). In this case,
we do not need the supplemental variable. ti is the auxiliary variable for
converting_ 19 to qi defined below.

q-j_ = F(pi) = p]'_/ti . (157)

The first six cards of the data input for this case are presented below.

COLUMN NUMBER
CARD NO. 12345678901234567880123456789012345678901234567890

12 1

12

2

O

1
METHOD 2 ON 1 GROUP

g LN -
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The first card sets NP =12 and NCROUP =1, Thus, NMG(l) = 12
which is set in the second card. The third card sets METHOD(L) = 2. The
fourth and fifth cards, respectively, set NAUX() =0 and NCOV(l) = 1.
Thus, BUX{d, 1) =t,,i=1, ..., 12, The sixth card is the title of the
run. Since NCOV(l) =1, the final estimate of P will be converted to q,
defined in Eq. (157). To do this, we must specify Eq. (157) in the user-
supplied subroutine EQN. For example, '

DO 100 I=N1,N2

W2(I)=X{1)/BUX{1 1}

WA{I)=XEST(I}/BUX{I, 1)}
100 CONTINUE

The run results are presented in Table 32.

Tabie Q32
Estimated Results of Example 1

HESHIRRUERHA RN RSB BB RN RN RAN N
METHOD 2 ON 1 GROUP
HEBER R AN NN B NN RE BB #

DATA
SAMPLE GROUP

ID P SIZE NG SUPPLEMENTAL AND AUXILIARY INFORMATION
13 0.06800 800 1 1511.230
14 0.0907 915 i 2167. 140
15 Q,1126 835 1 2830.360
16 0.066% 1120 i 1601. 360
17 0.0686 3700 i 1798.270
t8 0.0826 3860 1 2531.980
19 C. 1020 1245 t 1408 .660
20 ©.t041 1690 1 2028.420
21 ©. 1133 830 t 2859.700
22 0.0802 610 1 1601.420

23 Q.0776 2050 1 1230.160

24 O, 1009 2320 1 2985 .370

ESTIMATED RESULTS

PROPORTIDN CONVERTED PARAMETER

ID ACTUAL ESTIMATED ACTUAL ' ESTIMATED
13 0.0600000 Q.0€35152 C. 000039703 0.000042029
14 0©.0907000 0.0901448 0.000041852 Q.000041526
15 0.1126000 0O.1087636 ©.000039783 0.000038427
16 0.0661000 0.0G88844 0.000041277 Q.0Q00043016
17 Q.068600C¢ 0©.071093C ©.000038 148 0.0000395%34
18 ©.082600C 0©.0832269 0.000032623 Q.00003287C
19 0Q.1Q20000 0.0997963 0.000072409 0.000070845
20 0. 1041002 0.1015904 0.000051321 0.000050083
21 0.1133000 ©.1093550 Q.000039620 0.000038240
22 0.0902000 ©.0896924 0.000056325 0.000056008
23 Q.0776000 ©.07839018 0.000040204 0.000040873
24 0.1009000 (.0988781 0.000033685 0.000033010
SHRINKING FACTOR = (00,8584

%-IMPROVEMENT OVER USUAL ESTIMATE = 11.2895 %
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Example 2: Using Method 2 with Two Groups - Based on physical prop-

erties of Categories 13 through 24, the noncentrality parameter can be fur-
ther reduced by separating 12 categories into two groups: Categories 13
through 18 and 19 through 24. We thenuse Method 2 to compute initial es-
timates of parameters in each group. For this case, the first six cards of

the data input take the following form.

COLUMN NUMBER
CARD NO.| 12345678901234567890123456789012345678801234567830

1 12 2
2 & 6
3 2 2
4 o 0
5 t 1
6

METHOD 2 ON 2 GROUPS(13-18 & 18-24)

The user-supplied subroutine EQN is the same as the one used in
Example 1. The run results are presented in Table 33.

"Estimated Resulits of Example 2
HERAANEAIE RN RTINS RN

Tabte

METHOD 2 ON 2 GROUPS(13-18 & 19-24)

HUSHBAGAAAAR AN AH AR AT AR AT BRI ERHRAN R

SAMPLE GROUP
NDO SUPPLEMENTAL AND AUXILTARY INFORMATION

.0802 610
.0776 2050
. 1009 2320

DATA
P s12¢
13 0.0600 800
14 0.0907 915
15 0.1126 835
16 0.066¢ 1120
17 0.0686 3700
18 0.0826 3860
19 0.1020 1245
20 0.1041 1690
21 0.1133 830

0
)
0

ESTIMATED RESULTS

000041856
.000040650
.0600037183
.000042720
.00003919+1
.000032276
.00007 1699
. 000050623
.000038445
.000057133
.00004213¢%

RN - = 2w
]
=}
;8
[»=]

PROPORTION
I0 ACTUAL ESTIMATED
13 0.0600720 0.0634044
14 0.0907000 0.0880846
15 0.1126000 0.1052409
16 ©.C661000 0.0684100
17 ©.0686C00 ©.0704768
18 C.0826000 0.0817232
19 ©.1020000 0.1009989
20 0O, 1041000 0.1026843
21 G, 1133000 O.1099402
22 0.0902000 (©.0914944
23 0.0776000 C€.081335¢
24 0, 1009000 0.1001444

SHRINKING FACTOR

%-IMPROVEMENT OVER USIJAL ESTIMATE

[eNesNoNeReoNeNoRoNoNoleNo,
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33

CONVERTED PARAMETER
ESTIMATED

.000C39703
.000041852
.000039783
.00004 1277
.000038 148
.000032623
.0000724089
.000051321
.000038620
.000056325
.000040C204

.000033685 -

0.8005
14.6214 %

COO0O0O0O0O0O000O000

. 000033433




Example 3: Using Method 6 with One Group- We mentioned previously
that Sin-1 (X, - l)isa linear functionof t;. Thus, Method 6with ti serving
as the supplemental variable can be used to computfe initial estimates of
parameters. In this case, t; alsoserves as the auxiliary variable for con-
verting p;. Therefore, NAUX(1) =1 and NCOV(L) = 0. The first sixcards
of the data input take the following form.

COLUMN NUMBER
CARD NO. 12345678901234567890123456789012345678901234567890

1 2 1

2 12

3 8

4 1

5 0

6 METHOD 6 ON 1 GROUP

The user-supplied subroutine EQN is the same as the one used in
Example 1. The run results are presented in Table 34.

Table 34
Estimated Resuits of Examplie 3

HHRHA TR R BERRAR SRR BB R R B RN E BB RN HERY
METHOD & ON 1 GROUP
HARHREH SRR HAHH RO RN RN RN R BR R BB RERIBRERR OGN

DATA
SAMPLE GROUP -

10 P SIZE NO SUPPLEMENTAL AND AUXILIARY INFORMATION
13 0.0600 800 1 1511,230
14 0.0907 915 1 2167 .140
15 0.1126 835 1 2830.360
16 0.0661 1120 1 1601 .360
17 0.0686 3700 i 1798 .270
18 0.0826 3860 1 2531 ,980
19 0.1020 1245 1 1408 . 660
20 0.1041 1690 1 2028, 420
21 0.1133 B30 1 2859, 700
22 0.0902 610 1 1601.420
23 0.0776 2050 i 1930, 160
24 0,1009 2320 1 2995 .370

ESTIMATED RESULTS

PROPORTION CONVERTED PARAMETER

1D ACTUAL ESTIMATED ACTUAL ESTIMATED
13 ©0.0600000 0©.0626453 0.000033703 0.000041453
14 0.0907000 0©.0904847 0.00004 1852 0.000041753
15 0.1126000 ©.1109781 0.000039783 0.000039210
16 0.0661000 ©.06809350 0.000041277 0.000042523
17 ©.068G6000 0.0708171 0.000038 {48 0.000039381
18 0.0826000 ©.0849173 0.000032623 0.000033538
19 0.1020000 ©.0872752 0.000072409 0.000069055
20 ©0.1041000 ©.1011423 0.00005432 4 0.000049863
21 0.1133000 O.1116644 0.000039520 0.000039048
22 ©0.0902000 ©0.0881805 0.000056325 0.000055064
23 0.0776000 ©.0787956 0.000040204 0.000040823
24 ©.1009000 ©.1018517 0.000033585 0.000034003
SHRINKING FACTOR = (.8344

%~IMPROVEMENT DVER USUAL ESTIMATE = 11.9604 %
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Example 4;: Method 2 for Categories 13 through 18 and Method 6 for
Categories 19 through 24 - In this example, we use Method 2 to compute
initial estimates of parameters in Categories 13 through 18. Thus,
NMG() = 6, NAUX(1) = 0 and NCOV(l) =1 asin Example 1. For Categor-
ies 19 through 24, we use Method 6 with t.1 as the supplemental variable to
compute initial estimates of proportions., Thus, NMG(2) = 6, NAUX(2) =1,
NCOV(2) = 0 and AUX(i, 1) = BUX(i, 1} = t.1 s1p fort=7, ... ,12asin
Example 3. The first six cards of the data input take the following form.

COLUMN NUMBER
CARD NO. 12345678901234567890123456789012345678901234567890

1 12 2
2 6 6
3 2 6
4 o 1
9 1 ©
S METHOD 2 ON CATEGORIES 13-18 & METHOD & ON 19-24

The user-supplied subroutine EQN is the same as the one used in
Example 1. The run results are presented in Table 35.

Table 39
Estimated Results of Exampie 4
HA AT A AR SRR BHERHE
METHOD 2 ON CATEGORIES {13-18 & METHOD & ON 19-24
HHEREERERST AR E TR BRI ERT AT RN GR BRI A

DATA
SAMPLE GROUP

ib ¢ S1ZE NO SUPPLEMENTAL AND AUXILIARY INFORMATION
13 ¢.060C 800 H 1511.230
14 G.C907 915 k| 2167.140
15 ¢.1126 835 1 2830.360
16 0.06G1 1120 ! 1601. 360
17 ©.0686 3700 1 1798 .270
18 0.0B26 386¢ 1 2531.980
13 C.102C 1245 2 1408 . 660
20 0.1041 1690 2 2028.420
21 ¢. 1133 830 2 2859.700C
22 0.0902 610 2 1601.420
23 ©.0776 2050 2 1930. 160
24 ©. 1009 2320 2 2995.370

ESTIMATED RESULTS

PROPORTION CONVERTED PARAMETER

I0 ACTUAL ESTIMATED ACTUAL ESTIMATED
13 0.0600000 0.0630893 0.0C0039703 0.000041747
14 ©.C907000 0.08B83316 0.00004 1852 Q.000040760
15 0.1126000 0©.1059053 0.000039783 ‘ 0.0Q00037418
16 0©.0661000 0.0681871 0.000041277 Q.000042587
17  0.06B6000 0.0703041 0.0000C38 148 0.000039C95
18 0.0826000 0.0818033 0.000032623 0.000032308
12 0.1020000 0. 1000786 ©. 000072409 0.000071045
20 0.1041000 0.1027717 0.000051321 0. 000050666
21 0.1133000 O©.1115621 Q.000039620 0.000039012
22 0.0902000 0.0906953 0.000056325 0. 000056634
23 0.0776000 0.0808130 0.000040204 Q.000041869
24  0.1009000 0.1016872 Q.000033685 0.000033948
SHRINKING FACTOR = 0.8188

%~IMPROVEMENT OVER USUAL ESTIMATE = 11.6827 %
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Tabie 36
Data Input of Example §

Column Number
Card No. 123456789012345678901234567890123456789012345678390

1 12 2

2 5 7

3 2 2

4 o 0

S 1 1

5] METHCD 2 ON (13,16-18,23) & (14-145,19-22,24)
7 3 0.0600 800 1511.2300
8 16 ©.0661 1120 1601.3600
9 17 ©.0686 370C 1798.2700
10 18 ©.0B26 386C 2531.39800
11 23 0.0776 2050 1930.1600
12 14 ©.0907 915 2167.,1400
13 15 ¢.1126 835 2830.3600
14 19 0.1020 124% $408.6600
15 20 0.1041 1690 2028.4200
16 2t 0.1133 83C 2B59.7000
17 22 0.0802 610 1601.420C0
18 24 0.1008 2320 2995.3700

Tabte 37
Estimated Results of Example S

REHROS A LRGN BRI RERON SRR RN B HR R BHNB R HR RO RN B . -
METHOD 2 ON (13,16-18,23) & (14-15,19-22,24) :
HHHAAH NN B I RRR NN BN B RN ER BN RR BB RO RE RO NR

DATA
SAMPLE GROUP
ID P STZE NGO SUPPLEMENTAL ANC AUXILIARY INFORMATION
13 0.0600 800 1 1511.230
16 0.0661 1120 1 1601.36C
17 0.06886 3700 1 1798.27C
18 0.082G 38GO 1 2531.380
23 0.0776 2050 i $930C. 160
14 0.0907 915 2 2187. 140
15 0.1126 835 2 2830, 360
19 0.1020 1245 2 1408 .660
20 0.1041 1690 2 2028,420
21 0.1%33 830 2 2859.70C
22 0.08C2 610 2 tG01.42C
24 ©0,1009 2320 2 2995 .37C
ESTIMATED RESULTS
PROPORTION CDNVERTED PARAMETER
IC  ACTUAL ESTIMATED ACTUAL ESTIMATED
13 ©.060000C0 ©.0668263 0.000039703 0.000C44220
16 ©.066100C 0.0696404 0.000041277 0.00C043488
17 ©.068600C (.0C708597 Q.000038148 0.000039404
t8 ©.0826000 0©.0768893 0.C000C32623 0.000030367
23 C.0776000 0Q.0747271 0.000040204 0.00C038715
14 ©.090700C 0.0969863 0.000041852 0.000044753
15 0.112600C 0.1065046 0.000039783 0.000037629
9 ©.302000C ©O.1020188 Q.0000C72409 0.00C072423
20 0.1041000 0.1029664 0.000051321 0.000050762
21 0.113300C ©O.10680C1 0.000C39620 0.Q00037347
22 0.0902000 0.0966723 0.000056325 0.0Q00060367 ®
24 0.100900C 0.1016035 0.000033685 0.0C00033920
SHRINKING FACTOR = 0.4348
%-IMPROVEMENT OVER USUAL ESTIMATE = 46.315% %
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Takple
Data Input of Example 6

a8

Column Number
Card No. 12345678901234567890123456789012345678901234567890

1 12 1

2 12

<] 5

4 1

5 1

6 METHOD S(PARALLEL DATA AS SUPPLEMENTAL VARIABLE}

7 13 0.0600 BOO -1.0338 1511.23

8 14  0.,0907 915 -0.9919 2167. 14

9 15 0.1126 835 -(.9453 2830.36

10 16 0.0661 1420 -1.0847 1601, 36

11 17 0.0685 3700 -1.0651 1798 .27

12 18 0.0826 3860 -1.0103 2531.98

13 19 0.1020 1245 -1.0154 1408 .66

14 20 0.1041 1690 -0.9182 2028.42

15 21 0.1t33 830 ~0.8223 2859.70

16 22 00,0902 610 «1.0600 1601.42

17 23 0.0776 2050 -1.0177 1930, 16

18 24  0.1009 2320 -0.9018 2895.37
Table 39

METHIO S{PARALLEL DATA AS SUPPLEMENTAL VARIABLE)
HAURAUARAEE AR RTERYREB RGP RI BRI RHARERAARBEAAR RN

" DATA

Estimated Resuits of Example 6 L
RAHRRH AR RIRERE R RN E AR HRERR IR HRAHR R RO

SAMPLE GRDUP
NO SUPPLEMENTAL AND AUXILIARY INFORMATION

ID P STZE
13 ©.0600 B8CO
14 ©.0907 315
15 ©. 1126 83%
16 ©.0661 1120
17 G.0686 3700
18 ©.0826 3860
19 0. 1020 1245
20 C, 1041 16320
21 0.1133 830
22 ©.0902 610
23 0.0776 2050
24 ¢, 1008 2320

ESTIMATED RESULTS

-k kb kb ok e ek ke ke

PROPORTION
ID ACTUAL ESTIMATED
13 0.0600000 0.0656316
14 0.0907000 0.0896818
15 0.1126000 O.1084551
16 0.0661000 0.0653296
17 0.0686000 0.0687151
18 0.0826000 0.0827749
13 0.1020000 0.0944717
20 0.104t000 0.10539983
2%t 0.1133000 0.1226162
22 0.0902000 0.0826330
23 0.0776000 ©.0788177
24 O, 1008000 C. 1056841

SHRINKING FACTOR

%~1MPROVEMENT DVER USUAL ESTIMATE

[eNoNeNoNoNoNoNeoNeoNoNoNol

CONVERTED PARAMETER

.Q00039703
00004 1852
.000039783
.00004 1277
.000038148
.000032623
.00C0O72409
.00005 4321
.000038620
. 000056325
. 000040204
. 000033685

0.6433
30.7016 %
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ESTIMATED

. 0000434689
.00054 1383
.000038318
.000040796
.000038212
.000032692
.0000B7065
.Q00052257
.000042877
.000051600
.00C040835
.000035282
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Example 5: Using Method 2 with Two Groups - This example is the ‘ 4
same as Example 2 except that group members are different. In thisexam- &
ple, 12 categories are arranged into the following two groups:

Group 1 - Categories 13, 156, 17, 18, 23
Group 2 - Categories 14, 15, 19, 20, 21, 22, and 24.

Thus, NMG(L) = 5 and NMG(2) = 7. The data input for this example is pre-
sented in Table 36.

As one can see from Table 36, the second portion of the data input for
this example was arranged according to the order of group members speci-
fied above. Note that the order of members within a group has no effect on
the estimation procedure. The user-supplied subroutine is the same as the
one in Example 1. The run results are presented in Table 37.

Example 6; Using Parallel Data as a Supplemental Variable - We men-
tioned at the beginning of the section that Sin=* (2V; - 1) with V; defined
in Eq. (155) can serve as the supplemental variable for using Method 5
to compute initial parameter estimates. In this case, AUX(, 1) =
Sin"l 2V 415 -1)and BUX (1, 1) =t; 19 fori=1, ..., 12. The data
input for this example is presented in Table 38. Note that the fourth and
fifth numbers in each of Cards 7 through 18 are, respectively, Sin"l (2v; -
1) and tye The user-supplied subroutine EQN is the same as the one used
in Example 1. The run results are presented in Table 39.

We note that the above procedure can be repeated with X in Eq. (155)
replaced by an estimate of p;-

8) Program Listing

PROGRAM PROPORTION{TAPE {=INPUT, TAPE2=0UTRUT) : 000C0O 100
DIMENSION NSAMP{S0C),X(5C0),U(500),XT(500},NAUX(500), : 00000200
1UT(500),XEST{500) .NMG(50C},IG(500}, ID(500) ,NCOV(50C) . : 02000300
2AUX (300,.5),B{6),BUX(500,5),METHOD(500) ,DESCPT{72), - : 0000C400
IW1(507),W2{500) : 00000500
: oo000G00
THIS PROGRAM IS FOR SIMULTANEQUSLY ESTIMATING NP : 00QQ0700
PROPURTIONS USING STEIN-LIKE ESTIMATION PRDCEDURES. T 00C008Q0 “ L
: COQO0I00 ig
READ( 1, 3,END=9999)NP , NGROUP ,NTITLE : 0000 1000 i
READ{1.,3) (NMG(L),I1=1,NCROUP) : 00001100 E
READ{1,3) (METHOD(I}, I=1,6NGROUP) : 00C0 1200 B
READ(1,3) (NAUX{I)Y,I=t,NGROUP) : o0001300 b
READ( 1.3} (MCOV{I}.I=1,NGROUP) : 0C00 1400 i
READ(1,*0Y(DESCPT{I1),1=1,70) : 00001500
WRITE(2,15){DESCPT(L),1=1,70} : 0000 1300
WRITE(2,20) _ : 00301700
SSR=0. ; 090C 1800
NDF=0 : : 20001900
K=0Q : 00002200
DO 1000 1=%,NGROUP : co002100
NCOUNT =K. : 002002200
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100

110
115
120

130

180

3aso

500

800

900

950
1000

NPT =NMG{I)

WB1=0.

WB2=0,

IF(METHOO(I) .LE. 4)}NAUX{I)=1
IF(METHOD(I) .EQ. ZINAUX{I)=0

00 5CQ J=1,MPT

K=NCOUNT+J

IG(K}Y=I

MC=NCOV{T)

NA=NAUX{I}

IF(METHOD(I) .NE. 2)}G0 TO 11C

IF{NC .GT. 0O) GO TO 100
READ($,GO)ID(K Y, X(K} . NSAMP(K)
WRITE{2,300)ID{K), X(K) ,NSAMP{K}, IG(K)

GO TO 150
READ(*,G60)ID(KY,X(K),NSAMP(K), fBUX (K ,M) M=1 NC)

WRITE(2,300}I0(K)},x{K) NSAMP{K),IG(K), (BUX{K .M} M=1 NC)

GO TO 150

IF(NC .GT. DIGD TO 130
READ(1,60)ID(K), X(K) . NSAMP(K), (AUX{J,M) M=1, ,NA)
IF(NC .LT. 0)GD TO 120

DU 115 M=1,NA

BUX(K . M)=AUX(.J,M)

CONTINUE

WRITE{2,3CO)ID{(K).X(K} ,NSAMP(K}, IG(K}, (AUX{J,M) ,M=1 NA}

G0 To 150
READ(!,GO)ID(K),X{K) NSAMP{K), (AUX{J ,M),M=1 NA),
1{BUX(K,M) M=1,NC)

WRITE(2,300)ID{K),X(K} NSAMP{K)}, IG{K}, (AUX{J, M) ,M=1,NA),

1{BUX(K,M) ,M=1,NC)
A=NSAMP (K)
W1{J)=SQRT{A+0.5)

BB=A/{(A+0.75)
W2(JY=ARSIM(BEB*{X{K)*2-1})
U(J)=wi(J)=wz ()

XT{K)=U(J) .

IF(METHROO(I)} .LE. 8)U(J}=w2(J)
IF{METHOD(I) .GE. 5}G0 TOD 500
IF(METHOD(I) .NE. 1)}3D TO 250
UT{K)=W1{J)*ARSIN{EB* (AUX(J, 1)*2-1))
SSRESSREF{XT(K)-UT{K}}*r*2

GO TO 500

CONTINUE

WB1=WB1+XT(K)

WEB2=WR2+Wi(J)

IF(METHOD(I) .EQ. 4)}WB1=WBi{+AUX{dJ,1)*XT(K)
CONTINUE

IF{METHOO(I) .EQ. 1)}GD TO 1000
IF{(METHOO(1) .GE. 5)}GD TO 300
IF(METHOD(1) .EQ. 2)}WE1=WBi/WB2

DO BOO J=1,NPT

K=NCOUNT+J

UTIK)=WB1+w1(J)

IF(METHCD(I) .EQ. 3WWT{K)=wB{*aUX{J, 1)
IF{METHOD{I) .EQ. 4YUT{K)=WB1
SSR=SSR+(XT(K)-UT(K))**2

NOF =NOF + 1

GO TO 1000

CONTINUE

NFORCE =0

IF(METHOD(I) .EQ. 6 .OR. METHDD(!) .EQ. B)NFORCE=1
NIND=NAUX{I)

NOF =NOF +NINO+NFORGE

CALL LSE{NFORCE,NPT,NIND,U,AUX,B,XEST,SERQR)
DO 950 Jd=1,NPT

K=NCOUNT+J

UT{K)=XEST(J}

IF(METHOD{1) .LE. €)UT(K)=UT(K}*Wi{J)
SSR=SSR+{XT(K)~-UT(K))**2

CONTINUE

NTRACE =NP-NOF

IF{NTRAZE .GT. 2)G0 TO 2000
WRITE{?2, 1500 )}NTRACE
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OOO0000000

GO TQ 9393
2000 COMTINUE
FACTOR=14.-(NTRACE=-2)},/55R
IF{FACTOR .LT. O.)FACTOR=D,
00 2400 J=1,MP
EST=UT{J)+FACTOR = (XT{UI-UT{J))
A=NSAMP( U}
BB=SQRT(A+0Q.5)
A=A/ (A+0.75)
AEST(J)=(SIN(EST/BE)/A+1%.)/2.
2100 CONTTNUE
WRITE{2,2200)
N2=0
DO 4000 I=1{,NGROUP
Ni=N2+1t
NZ=N1+MNMG(I)}=1 .
IF(NCOV(I) .LT. QG0 TO 3400
CALL EQMN{NP.ID,IG,NSAMP, X XEST,BUX,N1,N2,XT, UT)
00 3300 J=Ni,N2
WRITE(2,3200)ID(J),X(J),XEST{J} , XT(J),UT(J}
J300 CONTINUE
GO TD 4000
3400 DO 3500 J=Nt,N2
WRITE(2,3200)I0(J),X(J),XEST(J)
3500 CONTINUE
4000 CDONTINUE
S5R=5SR-NTRACE
IF{SSR .LE. ©.)}55R=0.
CALL EXPECT{NTRACE,SSR,EYY)
PIMPRO=EYY*{NTRACE-2)¥**2/NP¥* 100
WRITE{(2,8000)FACTOR,PIMPRO

GG TO 1

9999 CCONTINUE
STGP

3 FORMAT({20I3}

i0 FORMAT( X ,70A1)

i5 FORMATL / AN , AAHAH A SR EHA BN HREIN BB HB AR H BN BN G H BB R
12CHN NI REABRREEERRIBTRERRERENN [ AX,TOM [/ IX  tAHE R R HBHRFR Y,
AETHANE B A AR MRS OB R R BB RN BRIV S RE A )

30 FORMAT(/, 1X,4HDATA,/, 11X, 12HSAMPLE GROUP,/,2X,5HID P,5X,
149HS [ ZE NO SUPPLEMENTAL AND AUXILIARY INFORMATION,/, 1X,

50 FORMAT(I3.FB.4,I6.5F11.4)

300 FORMAT(1X,13,F7.4,15,1X,[4,1X,5F10.3)

1500 FORMAT(//,1%,29H--- ERROR - ERROR - ERROR ---,/,2X,
19HTRACE{P)=,14,/,2X,28HTHE TRACE OF P SHOULD BE AT ,
27HLEAST 2,/,2X,34HCHECK TOQ SEE WHETHER YOU HAVE USED,
a/,2X,44HT00 MANY GROUPS DR/AND TOO MANY VARIABLES IN,
4/,2%,20HTHE REGRESSION LINES,/)

2200 FORMAT(/,1X,17HESTIMATED RESULTS,//, 11X, 1OHPROPORTION, 20X,

119HCONVERTED PARAMETER,/,2X,24HID ACTUAL ESTIMATED, 8X,
26HACTUAL , 12:(, OHESTIMATED, /, 1%, 26H-—==— == m oo .
FAQH == === = = m e m oo e e )

3200 FORMAT(!X,I3,2F1%.7,2F20.9)

6000 FORMAT(,,1X,35H SHRINKING FACTOR =, FR.4,/,
11X, 35H%-IMPROVEMENT DVER USUAL ESTIMATE =,F8.4,2H %,//)
END

SUBROUTINE LSE(MODEL,NPT,NIND,YDATA,XDATA,B,YEST, SEROR)
DIMENSION YDATA(S00),XDATA(500,5).B(6).X(500,.6}.
tYEST(500) ,XX{6,6) ,XXIXT(&,500)

SUBROUTINE FOR COMPUTING THE L.EAST SQUARES ESTIMATE
OF B IN THE LINEAR MODEL,

YDATA = XDATA * B . IF MODEL = O
AND

YDATA = {I,XDATA) * B , IF MODEL = 1

WHERE YDATA IS THE THE (NPT BY 1) VECTOR OF DEPENDENT
OBSERVATIONS, XOATA IS THE (NPT BY NIMD) MATRIX OF
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30
20

100

130

120
200

28¢
240
230

320
310
300

410
400

510

500

5

INDEPENDENT OBSERVATIONS, I IS THE COLUMN VECTOR WITH
EVERY ELEMENT EQUAL TQ OME, * STANDS FOR THE PRODUCT
OF TWO MATRICES, NIND IS THE NUMBER OF INDEPENDENT
VARIAELES ANDC B IS THE VECTOR OF PARAMETERS TO BE
ESTIMATED.

IF{MODEL .EQ. O}GD TD 100
DD 10 I=1,NPT

X(1,1)=1.

MM=NIND * 1

D0 20 I=2,MM

It=1-1%

DO 30 J=%,NPT
X{J,1)=XDATA(J,11}
CONTINUE

GO TO 200

MM=NIND

0O 120 I=1,MM

DO 130 J=1,NPT
%(J,1)=XDATA(J, 1)
CONTINUE

CONTINUE

DO 230 I=1,MM

DD 240 J=1,MM

XX(I,J)=0.

DO 250 K=1,NPT

AX{T, ) =Xx (1, JY+X{K, T}*X(K,J)
CONTTNUE

CONTIMNUE )

CALL MTXINV(MM,XX,XX})

DO 200 I=1,MM

DO 210 J=1,.NPT
XXIXT{I,J)=0.

DO 320 K=1,MM

XXIXTED, JY=XXIXT(L, J)+XX (I, K)*X{J,K)
CONTINUE

CONTINUE

DO 4CO I1=1,MM

B(I)=0.

D0 410 J=1,.NPT
B{I}=B(I)+XXIXT{I,J)*YDATA(J)
CONTIMUE

SEROR=0,

D0 500 I=t NPT

YEST(I)=0.

D0 540 J=1,MM
YEST{I)=YEST(I)+X{I,J)*B{J)
SEROR=SEROR+(YDATA(I)-YEST{I))}**2
CONTINUE

SEROR=SQURT{SERCR/ (NPT-MM)}

RETURN

END

SUBROUTINE MTXINV{NSIZE,W, WINV)
CIMENSIDN ARRAY(6,6) WINV(G,6) ,Wwi(56,2),W(5,6)

SUBROUTINE FOR FINDING THE INVERSE OF AN (NSIZE BY NSIZE)

SQUARE MATRIX W BY USING THE PARTITION METHOO. WINV IS THE
INVERSE MATRIX OF W.

DO 5 I=1,NSIZE

DO 5 J=1,NSIZE

ARRAY(T J)=W(I,6J)
IFENSIZE .GT. 1) GO TO 10
WINV{1,1)}=1./ARRAY{1.1) *
RETURN

CONTINUE

MSIZE=NSIZE-1

DO" 15 JI=1,MSIZE

J=L1I+t

DO 16 KK=J,NSIZE

DO t7 M=1,NSIZE
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GO 16800
20016900
o000 17000
20017100
DO 1T2A00
OO0
00017400
00017500
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Q0018100
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00018300
00018400
GO0 18500
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00018800
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20020800
00020900
00021000

00021100
Q0021200
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00021400
00021500
00021600
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17

18
16

19

22
21

23

24

20
100

401

402

403
A88

WI(M, 1)=W(M,II)

WM, 21 (M, KK)
DET=WI{1,1)*Wi(2,2)-wi(1,2}*Wi{2, 1)
IF{DET .EQ. O.) GO TO 16

TF41I .EQ. { .AND. KK .EQ. 2) GO TO 19
DO 18 K=1,MSIZE

ARRAY{K,1)=W(K,IL)}
ARRAY{XK,2)=W({K, KK}
ARRAY (K, IT)Y=wW({K, 1)
ARRAY (K KK }=W{K,2)

GO TO 19

CONTINUE

CONT [NUE

CONTINUE

WINV(4,1)=ARRAY(2,2)/DET
WINV(2,2)=ARRAY{1,1)/DET
WINV{1,2)=-ARRAY{1,2)/DET
WINV(2, 1 )=-ARRAY{2,1)/DET

IF{NSIZE .EQ. 2} GO TO 100

DO 20 [=3,NSIZE

K=1-1

DO 2t J=1.K

Wi{J,1}=0.

WilJ,2)=0.

DO 22 M=1.K

Wi(d, 1)swWi{J, 11+WINV(J , MI*ARRAY (M, I}
Wi(Jy,2)=W1i(J,2}+ARRAY (I M)*WINVIM, J)
CONTINUE

ELTA=ARRAY(I,I)

D0 23 J=1,K
ELTA=ELTA-ARRAY(I,J)*Wi(J, 1)
WINVII,I)=1./ELTA

DO 24 J=1,.K

WINV(J,1)=-Wi(J,1)/ELTA
WINV(I,J)=-Wi(J,2)/ELTA

DO 24 M=1,K

WINV(J, MI=WINV-(J , MY+WH(J, 1)*W1{M 2)/ELTA
CONTINUE

CONTINUE

IF(TI .EQ. 1 .AND. KK .EQ. 2) GO TQ 888
DO 401 J=1,NSIZE

WilJ, t)=WINV(1,d)

WilJd,2)=WINV(2,d)

DO 402 J=1,NSIZE

WINVE T, JY=WINVIIT, )

WINVE2, JI=WINV{KK,J}

DO 4¢3 J=1,NSLZE

WINVIIT, J)=W1i(J, 1)
WINVIRK,J)=W1(u.2)

CONTINUE

RETURN

END

SUBROUTINE EXPECT{NP,THETA EYY)
DOUBLE PRECISION P1,A,EY,P2

THIS SUBROUTINE COMPUTES THE EXPECTATION OF 1/Y,

WHERE Y IS A

NONCENTRAL CHI=-SQUARE WITH MNP ODEGREES OF FREEDOM AND NONCENTRALITY
PARAMETER THETA., THIS EXPECTATION IS THE SAME AS THE EXPECTATION
OF t/{MP-2+2W), WHERE W IS A POISSON WITH PARAMETER (THETA/2).

ERROR=0. 0000
ERR=ERRIF/NP
A=THETA/2
P1=DEXF(=A)
EY=P1/(NP-2)
P2=P1

K=0

K=K +1
P1=P1*A/K
P22P2+F 1
EY=EY+P 1/ {NP-2+K*2)
GIECK=1,-P2
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100

IF(CHECK.GE.ERR) GO TO 10
EYY-EY

RETURH

END

SUBROUTINE EGN(NP,ID,IG,NSAMP X, XEST,.BUX ,N1,N2,W2,W3)
DIMENSION XEST(S00),BUX{500,5},W3(500),w2(500},
1ID(SCC)Y, IG(500)} . %X{500) ,NSAMP {500}

SUBROUTINE FOR CONVERTING THE ACTUAL(USUAL} AND ESTIMATED
PROPORTIONS TO OTHER PARAMETERS THROUGH THE FUNCTION F.
X(I) AND XEST(1) ARE RESPECTIVELY THE ACTUAL AND ESTIMATED
PROPORTIONS. THE FUNCTIONAL FDRM OF F MUST BE SFPECIFIED
BETWEEN TWO STATEMEMNTS : CO 100 T=Nf,N2 & 100 CONTINUE.
W2{I)} ANO W3(I) ARE RESPECTIVELY THE TRANSFORMEO FARAMETERS
OF X(I) AND XEST(I). THAT IS, W2{1) = F { X{(I) } AND

wali) = F { XeEST(L} }.

DO tCO I=N1, N2
W2(E)}=X{I}/BUX{L 1)
W3(I)=XEST(I)/BUX(I.1}
CONTINUE

RETURN

ENO
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ViI
A COMPUTER PROGRAM FOR SIMULTANEOUSLY
ESTIMATING INDEPENDENT MEANS BY USING
STEIN-LIKE ESTIMATION PROCEDURES

1) The Basic Data

The essential data for estima.ting population means are the independent
observations X1 s b 8w g Xl and s2, X is the average of ny observatmns
sampled from the i-th population with mean 8, and unknown variance O“"
That is, k populations have a. common va. rlance. Denote X, to be the j-th
observation from the i-th population. Then,

——— 1
X, == s 158
i oo 1‘X1] (158)

M=

J

We assume that either the population is normally distributed or the
sample size is large enough to guarantee the normahty of sample averages
by the Central Limit Theorem. Therefore, X = (Xl’ ¢ s ey Xk) is a k-
var1ate normal with mean vector 6 = (8, . . . , 8 } and covariance ma-
trix O D where the superscript stands for the transpose of a vector or
matrix and D is a diagonal matrix with the (i, i)-th element 1/ n;. In this
case, X is the usual estimate of 8.

$2 is anunbiased estimate of 02 such that m SZ/C)'2 is chi-square with
m degrees of freedom. This estimate is obtained from either the past ex-
periments or the current data. In the latter case, 82 is the unbiased sam-
ple variance defined as

. k nj
s2== Y Y X,-X) (159)
m , 1] i
i=1j=1
and

The other essential data is the information for computing initial esti-

mates of mean parameters. This istermed the 'supplemental’ information
for discussion purposes. Five methods for using the supplemental infor-
mation to compute initial estimates of mean parameters are discussed in
Section 3.
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2) What the Program Does

This program is written, based on theoretical results developed in
Part III, for combining sample averages and supplemental information to
estimate population means, 91, s oo B

The program first computes the initial estimate, U;, of ei by the method
chosen. Denote U= (Uy, « + » , Uk)’. In this step, the trace of the idem-
potent matrix P satisfying the following equation

X-U=PX (161)

is also computed. The second step is to compute the shrinking factor ¢
defined as

g2

¢ = [Trace (B)-2] =% (162)

k
2 n & - Uy?
i=1

A slightly better procedure is toset ¢ equal to 1 if it is greater than 1.
The third step is to compute the final estimate of 8; defined as

N
ii=Ui‘+(1—C)(ii—Ui),izls"'sk - (163)

This program also computes the estimated percentage improvement of
the above procedure over the usual one.

3) Methods for Computing Initial Estimates

The key to obtaining good estimates of population means is to provide
good initial estimates in the sense that N is high and £ is low, where

N =Trace (P) (164)
and
K
L= ¥ n(u;-6,)%/02 (165)
i=1

We have shown in Part III that, if P is a symmetrical.idempotent ma-
trix, N and C are, respectively, the number of degrees of freedom and the
noncentrality parameter of a noncentral chi-square distribution. For this
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case, the maximal percentage improvement that can be achieved is
100 m(N - 2)/ [(m + 2)k}. Five methods for computing initial estimates of
parameters are built in this program. These are:

Method 1: Initial Estimatesare Given - Based on past experiments or
parallel studies, we estimate or guess Bi tobeU;,,i=1,. .. ,k. Inthis
case, we treat Ui - 91 as the parameter to be estimated. Consequently, the
idempotent matrix P satisfying Eq. (161) is the identity matrix. Thus,
N = Trace (P) =k. The estimation accuracy is the degree of closeness of

U to 8. The final estimate %1 always lies between U, and X;. When initial
estimates are excellent, i.e., U is very close to 6, %he final estimate of 8
is U. However, if initial estimates are poor, i.e., U is quite distant from
8, the final estimate of & will be very close to the usual estimate X.

This method is used only when at least three parameters are to be es-
timated. When initial estimates are reliably close to the true means, this
method will produce good final estimates of population means.

Method 2: Weighted Average (I) - When the population means are al-
most homogeneous, we may considerthat 6; = 8 for every i. We therefore
use the unbiased estimate of @ as the initial estimate of every population
mean. That is,

k k -

U1=‘Z n, X; 'Z n,i=1, ...,k (166)
i=1 i=1

For this method, N =Trace (P) =k ~ 1. The loss of one degree of

freedom i: due to the estimation of the unknown parameter 8. Note that the
above Ui can be written as

k .
= . _. i= « o 1
U= 3 WX, i=l, , k (167)
] —
with
k
Wy =n; j§1 n (168)

It is obvious that

Wy FW, Fe . +wk=1 » (169)
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This method is used only when the number of population means to be
estimated is at least 4. This method will produce good estlmates of popu-
lation means if these means are homogeneous.

Method 3: Weighted Average (II) - For a given set of numbers, wy, .
.+ s W, satisfying Eq. (169), we take U, defined in Eq. (167)as the initial
estimate of 8,. For this case, N = Trace (P) = k - 1. We note that this is
the same form used in Method 2. The only difference is that w; in Method
2 is computed from sample sizes, but is given in this method.

This method is used only when the number of population means to be
estimated is at least 4. The estimation results will be good if population
means are homogeneous.,

We remark that w; can be interpreted as the welght assigned to Ei for
estimating the common parameter 8. If one has reason to doubt the re-
liability of a particular obse-rva.tion, say X, , zero weight may be assigned
to X;. That is, Wy =0 and L& o e +wk=1.

Method 4: Least Squares Estimate () ~ Suppose that the supplemental
data (til’ ce ey tim) are available and satisfy the following equation. '

t +b, _t. ,i=1, ...,k (L70)

8, =Dy tg Toe o Tl b

il
If for every j, by:y « » » , and b, . are near an unknown common para-
meter bj’ Eq. (170) can be rewritten As

e_b t +...+b t
m

11 ,i=1, ...,k (L71)

im
Denote (b RPN b ) to be the least squares estimate of (by, . .
» » b)e We then take the nitial estimate of 9 to be

A A
Ui=b ti1+l L] L] +b t ] 1 1, L] L] - £} k (172)

1 m im
In this case, N = Trace (P) =k ~ m. The loss of m degrees of freedom
is due to the least squares estimates of m linear parameters. We note that
U can always be improved by increasing the number of supplemental vari-
ables, i.e., by increasing m, However, this decreases N which is an un-
desirable property as previously mentioned. In general, m should be kept
small relative to the number of parameters k.

This method is used only when the number of parameters to be esti-
mated is at least m + 3. This method will produce good estimates of para-
meters if Eq. (171) holds approximately and the number of supplemental
variables is small relative to the number of parameters to be estimated.
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In practice, one may use this method if the following linear relationship
holds approximately.

X=bytyg to0.tb to,i=1, ...,k - (173)

Method 5: Least Squares Estimate (II) - This method is the same as
Method 4 except that Eqs. (171) and (172) are, respectively, replaced by

ei =b0+b1til+--o+bmtim,i=l,.na ,k ’ (174)
and
AOA n o
Uj=bg+byty +.0 v +b t . 1=1,...,k A75)

In this case, N =Trace (P) =k - m - 1 because of the extra parameter
b,.. Thus, this method is used only when the number of parameters to he
estimated is at least m +4. In practice, one may use this method if the
following linear relationship holds approximately.

X, =by+byty *e..tb t ,i=1, ...,k (176)

The k parameters may be arranged into many groups towhich different
methods are applied to minimize the noncentrality parameter defined in
Eq. (165), Yor example, we may use Method 1 for a group of kl parame-
ters, Method 4 for a group of k2 parameters, Method 2 for a group of k3
parameters, and again, Method 2 for the group of the remaining ones. 1In
this case, we have N = Trace (P) = k; + (k2 -m)+(k,-1)+(k-k -k, -
k,-1)=k - m - 2, m is the number of 'supplemental variables used in
Method 4. For this particular case, the number of parameters to be esti-
mated should be at least m + 5. In general, for any method or combination
of methods, the number of degrees of freedom should be at least 2. Com-
bining the above five methods to compute initial parameter estimates will

be demonstrated by examples presented in Section 6.

Every method except the first one suggests that k populations should
be arranged into groups in which parameters cluster at a point or can be
approximated by a linear function of supplemental variables. Physical
properties of populations, past experiments and parallel studies are good
sources for obtainingthe proper group-method combination. Unfortunately,
these sources may not be available or reliable enough in a particular prob-
lem. In this circumstance, one may examine the data as suggested in each
method to choose the proper group-method combination. That is, the em-
pirical relationshipamong fl, . e e, ik’ and supplemental variables can
be used to determine the method-group combination for computing initial
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estimates of parameters, Since the program computes the estimated per-
centage improvement of each chosen method-group combination over the
usual method, one mayuse the one that produces the maximal improvement
to estimate parameters. We remark that the method~group combination
generated by examining the data may not be the best one and, possibly,
could be the worst one for this problem due torandom variation of the data.
Nevertheless, if the chosen group-method combination is used thereafter
for the same problem, the above method is always better than the usual
one. The worst situation is that no improvement is made. Based on our
experience, qualitative properties of populatlons generally provide adequate
information for grouping purposes.

4) Data Input

The data input of this program is arranged into two portions. The first
portion is composed of five cards. These cards specify the number of
groups and parameters, computational methods, and number of supplement-
al variables in each group. Variables used in these cards are defined be~
low.

NP: Numberof parameters to be estimated, 1 £ NP £ 500
NGROUP: Number of groups used, 1 £ NGROUP < 20
MDEG: Number of degrees of freedom for estimating Sz.

(When this number is positive, the unbiased estimate
of 0'2 is supplied. Otherwise, the program will use
Eq. (159) to compute this estimate.)

VAR: The unbiased estimate, 82, of 0‘2. (When MDEG is
negative, the input value of this variable is meaning-
less and will be computed by the program.)

NMG{): Number of parameters in the I-th group, MNG(l) + .
. « TNMG (NGROUP) = NP.

METHOD({) = j: The j-th method presented in Section 3 is used to
compute initia,l estimates of parameters in the I-th

group, L€ j <5

NAUX(T): Number of supplemental variables used to compute
initial estimates of parameters in the I-th group.
This variableis 1 if METHOD(I) =1 or 3, and is 0 if
the METHOD(I) = 2.

(DESCPT (),
1=1, 70): Title (no more than 70 letters).
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The second portion is composed of NGROUP subportions or groups.
The input format of this portion is determined by the input value of MDEG.
This is explained below.

When MDEG is positive, the I-th subportion is composed of NMG(I)
cards. Define K=J ifI=1 and K=NMG(1) +. . . +NMG(@A-1) + J if
I >1. Then, the K-th card of the second portion contains essential and
supplemental data forestimating the J-th parameter of the I-th group. We
note that the J-th parameter of the I-th group is the parameter of the K-th
population. The data input for estimating this parameter is as follows:

ID(K), NSAMP(K), X(K), (AUX{J, M), M =1, NAUX{T))
Vvariables used in this card are defined below:

ID (K}: Identification number of the K-th population such as loca-
tion number and year, etc. The K-th parameter is the
J-th parameter of the I-th group. This number has no
effect on the estimation procedure.

NSAMP(K): Number of observations from the K-th population.

X(K): The K-th sample average (the usual estimate of the K-~th
population mean}. '

AUX(J, M): The M-th supplemental variable for the K~th parameter.

When MDEG is negative, the data input for estimating the K-th popula-
tion mean is

ID(K), NSAMP(K), (AUX(J, M), M =1, NAUX())
XT (M), M =1, NSAMP(K))

XT (M) is the M-th observation from the K-th population. These observa-
tions are arranged into cards such that each card, except the last one, has
10 observations. In this case, X(1), . « « , X(NP), VAR and MDEG will
be computed according to Eqs. (158) through (160).

The input deck is presented inTable 40 for the case that MDEG is posi-
tive, and in Table 41 for the case that MDEG is negative. The input deck
is also diagrammed in Figure 7 to show the format and logic used. The
user can follow this diagram to change, if needed, read statements and
formats to fit a particular problem.

5) Limitations of the Program and How to Make Necessary Changes

This program was designed to handle problems where the number of
parameters, NP, does not exceed 500. This number can be easily increased
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START

i ;
..__....YE.._.L 1S MDEG > 0 P )_N_O_

[k = NMG()) +---+ NMG(T-D+J |
o

END
[ NCARD =10 | :
¥ YES
READ NP, NGROUP, MDEG, VAR 313, Fi0.3
READ (NMG(I), I =1, NGROWP) 2013 NO
READ (METHOD(I}, I =1, NGROUP) 2013 EQF
READ (NAUX(I), 1 =1, NGROUP) 2013
READ (DESCPT(I), I =1,70) FOA
1
| =0 ]
)
{ I=1+1 }
1 1 YES COMPUTE
{ 1S T > NGROUP ? }——=———s| FINAL
COMPUTE INITIAL
ESTIMATES OF NA = NAUX(I)
PARAMETERS IN I=o0
THE I-TH GROUP T
1 [ J=J +1 e
u—TES ST S AMGIDE )
R fro t
K =7 JoYES ST 2 Y
. t NO

READ

ID(K), NSAMP(K), (AUX{T,M), M =], NA}

14,15, 6F10.4

READ

ID(K) ,NSAMP(K), X{K),AUX (T, M) M =1, 1A) [

14, 15,6F10.4

1
2 =0

z

-«—N—O-(_ISsz

N
N

1 N
25N

{ 1S N2 > NSAMP(K) ?

YES _ W[N2 = NSAMP(K) |

gNO

10FT.2

READ(XT(M), M= NI, N2)

|

1

NSAMP(K) 2 )

YES

Figure 7. Flow of control for data input.
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toany desired number. However, one must change the dimensions of vari-
ables that appear on the DIMENSION STATEMENTS of the main program
and subroutines ISE, i.e., replace every 500 by the desired number.

When the input value of MDEG is negative, the individual observations
sampled from each population are the input data. The number of observa-
tions for each population is limited to 2000. This is sufficiently large for
this type of estimation problem. However, one can increase this number
toany desired number by changing the dimension of the input variable, XT,
which canbe located inthe DIMENSION STATEMENT of the main program.
These obgervations are arranged into cards such that each card, except the
last one, has 10 observations. One can easily reset this number through
the first statement, NCARD =10, of the main program. Of course, one
would also have to properly change the input format (FORMAT 61) to cope
with the corresponding change.

The number of groups is limited to 20. This number is large enough
for most practical problems. However, one can increase this number to
any desired number not exceeding NP by properly changing the READ for-
mat of the second input card (FORMAT 3).

The total number of supplemental variablesis limited to 5. This num-~
ber should be large enough for the practical applications. The user can
change this number to any desired number, say N, by the following two
steps:

a) Change the READ format of the second portion of the data input
(FORMAT 60).

b) Change dimensions of variables that appear on the DIMENSION
STATEMENTS of the main program and subroutines ISE and MTXINV,
f.e., replace 5 and 6 by N and N + 1, respectively.

6) Examples

For an isolated commercial vehicle passing through a checkpoint, the
peak noise level generated by this vehicle was measured, its traveling
speed and number of axles were also observed. Two-hundred twenty-six
vehicles were observed. We are interested inestimating peak noise levels
of various vehicle types (classified according tonumber of axles) traveling
at various speeds. Initial investigation of this data set reveals that:

a) The variance of the peak noise level is constant over vehicle type
and speed.
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b) The peak noise level can be well approximated by a linear function
of speed and number of axles. This relationship will be used to obtain ini-
tial estimates of mean noise levels.

We now provide three examples using this set of data to show how to
improve usual estimates of mean noise levels.

Example 1;: Using Method 2 with Ten Groups - We arrange the full data
get into 10 groups according to the number of axles. Every vehicle with
(i +1) axles belongs to the i-th group, i=1, ..., 10, Group averages
are then used as initial estimates of mean noise levels. Due to the length
of the data set, we shall only present the partial data in Table 42 to show
the input format. The first card sets NP = 226, NGROUP = 10, MDEG = -1,

Tabte 42
Data Input of Example 1

Cotumn Number
12345678901234567890123456789012345678920123456789012345678901234567890

226 10 -1 0.000
42 28 28 40 20 1 12 10 7 28
2 2 2 2 2 2 2 2 2 2
00 000 0 0 0 ¢ 0
WEIGHTED AVERAGES ON 10 GROUPS ACCORDING TO NO DF AXLES
(]
223 1
0
230 5
59.80 70.30 74.40 67.50 7G.70
1
235 11
70.10 T72.00 73.80 72.50 6&7.10 76.70 77.20 72.50 79.00 80.70
0>
353 5
81.10 £3.90 85..0 83.00 B86.30
Fl l
485 7
]??.70 85.90 B81.90 82.50 B86.60 B86.60 82.90
554 18

82.10 87.30 90.80 84.50 84.60 84.60 81.90 83.60 84.8C 82.90
91,10 82.80 83.30 83.50 87.20 85.60 85.60 84.20

86.70

69,90

o +]
=Y
-
I e

82.30 83.30

@w
[3:]
-
(%]

92.10 85.50

0 —

1057
90.10e 86.10 87,70

] ——

1157
88.10 22.4C 30.00 86.80 89.10 B87.2C 88.30

- 129 -




43

Table .
Estimated Results of Example 1

Hd BERGHE RN BRI BRI AR E G RGN H BN N AN AR S AR ES R

WEIGHTED AVERAGES

ON 10 GROUPS ACCDRDING TO NO OF AXLES

ﬁ#ﬂ##ﬂ####ﬁﬂ####H##########J#ﬂ#######Hﬂﬁﬂ###ﬂ##ﬂ#ﬁﬂ#ﬂ############dﬁ###

DATA

SAMPLE GRDUP

AVERAGE

SAMPLE

SUPPLEMENTAL VARIABLES

ND

SIZE

1D
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e O e O —— O = [ e F st ) e P P ) ) e O e

———

STRATIFIED SAMPLE VARIANCE
NO OF DEGREES OF FREEDOM

ESTIMATED RESULTS

SAMPLE AVERAGE NEW ESTIMATE

I0o

0.8263
16.4971 %
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and VAR = 0. Consequently, there are 10 numbers in each of Cards 2
through 4. In thiscase, NMG() is the number of different speeds travelled
by vehiclesthat have I + 1 axles. The third card instructsthat the weighted
average of noise levels in a group is the initial estimate of every parame-
ter belonging to this group. Thus, no supplemental variable is required by
the program. This is set in the fourth card. Since the input value of MDEG
is negative, the common population variance is to be estimated from sam-
ple observations. Therefore, the data input for the K-th parameter in the
second portion ig as follows:

ID(K)Y, NSAMP{K)
XT(A)Y, . ., XT(10)
XTOH1Y, e XT(20)

NSAMP(K) is the numberof observations sampled from the K-th popu-
lation identified by ID(K). In this example, ID(K) is a four-digit number.
The first and last two digits stand for the number of axles and speed, re-
spectively, of a vehicle. These observations are arranged into many cards
guch that each card, except the last one, contains 10 observations. Again,
the estimated results are partially presented in Table 43 for the same
reason as before. -

Example 2: Using Method 5with One Group - As previously mentioned,
the noise level is almost a linear function of speed and number of axles.
Thus, we shall use Method 5 with speed and number of axles as supple-
mental variables to compute initial estimates. Theinput data forthis meth-
od is partially presented in Table 44. The second number of the first card
in this table sets NGROUP to be one. Therefore, there is only one number
ineach of Cards 2 through 4. The third card commands the program using
Method 5 to compute initial estimates. The number of supplemental vari-
ables needed for Method 5 is set in the fourth card. The estimated results
are partially presented in Table 45. Comparing this example with Example
1, we see that the percentage improvement has been increased from 16.49
to 46.71 percent. This can be credited to the better method of computing
initial estimates. '

Example 3: Using Method 5 with Five Groups of the Combined Data -
We see from Table 42 that some sample sizes are very small. If the peak
noise level generated bya vehicleis not normally distributed, the normality
assumption of sample average would not be satisfied. Consequently, the
above estimated results would be invalid., One way to remedy this problem
is to increase the sample size. For this purpose, we list noise levels ac-
cording to the rank of vehicle speeds within each vehicle type (number of
axles). At 4 mph intervals, we consecutivelytake averages of noise levels
and speeds within each vehicle type. In so doing, we have reduced 226
members (combinations of speed and number of axles) to 64 members. We
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Table 44
Data Input of Example 2

Column  Number
123456789(0123456789012345678901234567890123456789012345678901234567890

226 1 -9 0.000
226
5
2
??TED B NO OF AXLES ARE SUPPLEMENTAL VARIABLES, ONE GROUP
223 1 2.0000  23.0000
66.80
|11 |
230 5. 2.0000 30.0000
I??.BO 70.30 74.40 67.50 70.70
235 11 2.0000 35.0000
70.10 72.00 73 80 72.50 67.10 76.70 77.20 72.50 79.00 80.70
74.50
H | PR L
353 5  3.0000  53.0000
81.10 83.90 85.80 83.00 86.30
H | PR L
458 7  4.0000 55,0000
86.70 85.90 81.90 82.50 B86.60 86.60 B82.80
[ LEELLE TEILE L
554 18  5.0000 54.0000
83.10 87.30 90.80 84.50 84,60 B84.60 81.90 83,60 84.80 82.90
91.10 82.80 83.30 83.50 87.20 85.60 B85.80 84.20
fl LI T
664 1 6.0000 64.0000
86.70
720 1 7.0000  20.0000
69.90
t | VILLH T
841 2 B.0000  41.0000

82.30 83.39
957 2 9. 0000 57.0000

92.10 85.50

it L TR BT

1067 3  10.0000  57.0000
90.10 86.10 87.70

TR E

i
t157 7 11.0000 57 . 0000
88.10 92.40 32.00 B85.80 89.1i0 87.20 88.30
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Table 45
Estimated Resulils of Example 2

HEHAE AR RGBT AR S ART AR RN TR G AR BN TR G AR
SPEED & NO DF AXLES ARE SUPPLEMENTAL VARIABLES, ONE GROUP
HUEBERE BN RN RO N R R IR RN RN BRI AN R A AR

DATA

SAMPLE SAMPLE GROUP
ID S5IZE AVERAGE NO SUPPLEMENTAL VARIABLES

|11 l ! | T
223° {1 €6.B000 ! 2. 23.0
I HIEIUN
230 § 70.5400 1 2.000  30.000
N RN Y LI T
235 11 4,190 1 2.000 35.00C0
I NS It
353 5 84.0200 2 3,000 53.000
PO b LHETLE PEEEE LT
© 455 7  84.7286 2 4,000 55,000
U N FLLED LHEHL
554 18 85.0778 4 5.000 54.000
S ARV Y PR T
664 1 B86.7000 5 6.000 64,000
720 t 69,9000 6 7.000 20,000
A AN R N Y S P LHLH
841 2  82.8000 7 8.000 41.000
957 2 88.8000 8 9,000 57.000
L TH TR PRI TTH
1087 3 87,9667 9 10.000  §7.000
PR TR TREHELE PR L
1157 7 88.8429 10 11.000  57.000
STRATIFIED SAMPLE VARIANCE =  7.0510
NO DF OEGREES OF FREEGOM = 512
ESTIMATED RESULTS
10 SAMPLE AVERAGE NEW ESTIMATE
] BREAAS [T
223 6.800 69.6742
L1 PITELT BRNARS
230 70.5400 72,5419
|11 P LIPELT
235 74,1309 75. 1048
1 P FITELT
353 84.0200 83. 0000
H [T P
455 84.7286 84.0399
Hi L1811 FHELEE
554 85.0778 84.5042
|t LI [TELE
664 86 .7000 87.0558
720 69.9000 72,9648
LH LN SEARR
841 82.8000 82.8601
957 88. 8000 88.4856
1] LTI LU
1057 87.9667 88.4575
L PITELT SU
1157 88.8429 89.3275
SHRINKING FACTOR = 0.5254
%-IMPROVEMENT OVER USUAL ESTIMATE = 46.7176 %
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Table 4G

Data Input of Exampte 3

Column  Number .

12345675901234567890123456789C123456878301234567830123456789012245G6789Q

64 55
9 8
5 5
11

METHOD

201

202

203

204

205

2086

207

606G

1001

1101
1102
1103
1104
1109
1106
1107
1108

1

-

- N —

N -
“— PN LEN~NTORNMMNMNARWOQOEN-=-~JWOMNLA

-
— WRODAR~JUADONRLAW-RONNUIOON -~ ONODNMNAMNKND

-~

e

10 2
S

)

2
S
2

7.051

ON FIVE GROUPS

72.
. 1700
. 7600
.3410
.8520
. 2080

72

. 2930

2400

.0480
.4750
.6000
.7460
.3290
.9290
L7000
L1730
.2080
.B0OOO
.9000
. 8200
.3200
. 9500
.7330
. 3480
.0160
L7000
.4000
.3670
.5330
. 6000
Q000
. 5640
.6910
.92%0
. 1890C
. 8500
.8C00C
. 3250
.9500
L7740
.8500
.8230
.8000
. 2000
. 300C
.5670
.5200
L7500
.8Q00

8000

. 3000
.8000
.4570
.4250
.4250
.0350
L7330
.3820
.B710
L0460

5.5250

.2380
.6910
L7670
.8C00

25,
30.
35.
40.
L6000
. 1000
, 3000
. 3000
5000
5000
. 7000
. 0000
.5000
.S000
. 1000
. 0000
. 7000
. 7000
. 4000
.80QO
. 0000
. 5000
.B3000
. 3000
.0000
.8000
.3000
. 7000
. 0Lo0
. 0000
9000
. 9000
. 1000
. 3000
. 0000
. 0000
. 3000
. 0000
. 8000
. 8000
. 4000
. 0000
. 0000
. 0000
. 3000
. 0000
. 5000
. 0000
. 0000
. 3000
Nelele'o]
. 3000
. 3000
.BOCO
. 3000 1G. 0000
.BOQO t0. 0000
Nelelole] 11,0000
. 4000 11.0000
. 3000 11.0000
.0000 11.0000
. 3000 11.0000
. 9000 11.0000
. 7000 11.0000
. 0000 11.0000

44

{2,3.4,5 & 6-11 AXLES) OF THE COMBINED DATA
2000
0000
5000
0000

. 0000
. Q000
Q000
.000C
Neleldle)
. 0000
. 0000
. Q000
.C00C
.CO0C
L0000
. 0C00
.0G00
. 0000
. 000
.0C00
.0C00
. 0000
. 0000

COOURODNDD~N~dd~N-ITZOOHOOD
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Tabhlie 47
Estimated Results of Example 3

N e Nu N MGG U N A A SR dn A RN AN RN AU AR UR R @ didndd
METHOD 5 ON FIVE GROUPS 12.3.4.5 & 6-10 AXLES) OFf THE COMEINED DATA
WS H N B A H A H G RN G R AR Ul G B AN NG EURH R ARG AR A GrA i n a5 NNl g
DATA
SAMPLE SAMPLE GROUP
In SIZE AVERAGE ND SUPPLEMENTAL VARIABLES

2014 5 72.2400 A1 25.200

202 19 72.1700 1 30.000

203 60 73.7600 1 35.500

204 34 75.3410 1 40.000

205 22 75.8520 44 .600

208 13 79.2080 ¢ 50.200

207 32 80.2930 55.300

208 27 82.0480 1 59.300

209 4 83.4750 ¢ 65.500

301 2 79.6000 2 25.500

302 9 76.7460 2 31.700

303 7 79.3280 2 37 .000

304 11 78.9290 2 41.500

305 2 82.7000 2 46.500

306 14 85.178¢ 2 54.100

o7 19 84,2080 2 58.000Q

08 3 B3.8000 2 | 65,700

401 3 77.9000 23 27.700

402 5 78.9200 13 35.400

403 5 79.3200 3 41.800

404 2 8t.9%00 3 48 . 000

405 22 84,7830 3 53.500

406 19 85.3480 3 57.900

407 7 86.0160 3 62.300

408 2 89.7000 3 66,000

501 4 77.4000 4 27.800

502 18 77.3670 4 32,300

5G3 232 79.5330 4 36.700

504 9 80.6000 4 42.000

505 1 81.00C0 4 45,000

506 39 84.5640 4 52.900

507 B3 85.6910 4 56.900

208 55 85.925%0 4 61.400

509 8 85.1890 4 66.300

510 2 88.85%00 4 71.000

601 2 78.5000 S 27.000 6,000
602 4 79.3250 5 36.300 6.000
603 2 80.9500 5 41,000 6.000
604 8 85.7740 S 52.800 6.000
605 12 86.8500 5 56,800 6.000
606 16 86.9230 5 61.400 &.000
T 1 69.2000 S 20.000 7.0Q0
702 1 80.2000 % 36.000 7.000
703 2 82.3000 ©& 46 . 000 7.000
704 6 87.5670 S5 57.300 7.000
705 5 87.5200 65 62.000 7.000
801 2 82.75G0 5 35.500 8.000
802 2 82.8C00 & 41,000 8.000
803 5 88.8000 &5 54,000 8.00¢
804 4 88.3000 65 60.300 8.000
805 1 86.8000 5 65 . 000 8.000
901 3 82.4670 5 33.300 9.000
202 4 88.4250 5 5%2.300 9.000
903 4 89. 4250 5 59.800 9.000
10014 8 88.0350 5 55.300 10.000
1002 6 89,7330 § 59.800 10.000
1101 5 81.3820 5 24 .000 11.000
1102 7 81.8710 5 31.400 11.000
1103 t 85.0450 5 40.300 11.000
1104 4 86.5250 &5 45.000 11.000
1105 8 88.2380 5 53.300 11.000
1106 14 88.6910 &5 57.900 11.000
1107 3 88.7870 5 61.700 11.000
1108 1 89.8000 5§ 66.000 11.000
GIVEN ESTIMATE OF VARIANCE = 7.0510

NO OF DEGREES OF FREEDOM = 512
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ESTIMATED RESULTS

ID SAMPLE AVERAGE NEW ESTIMATE

201 72.2400
202 72.1700
203 73.7600
204 75.3410
2058 75.8520
206 79.2080
207 B80.2930
208 82.0480
209 83.4750
301 79.6000
302 76.7460
303 79,3290
304 78.9290
305 82.7000
306 85.1780
307 84.2080
308 83.8000
401 77.9000
402 78.9200
403 79.3200
404 81.9500
4085 84,7830
408 85.3480
407 86.0160
408 89,7000
501 7.4000
502 77.367¢
503 79.5330
504 80.6000
305 81.000C
506 84 .5640¢
507 85.691C
508 85,925¢
509 85. 1890
510 88.8500
601 78.5000
602 79,3250
603 80.9500
604 85.7740
605 8%G.8500
606 86.9230
701 69.9000
702 80.2000
703 82.30C0
704 B7.5670
705 87.5200
801 82.7500
802 82,8000
803 88.8000
804 88.3000
BOS 86.8000
201 82.4670
802 88 .4250
803 89,4250
1001 88 .0350
1002 89.7330
110t 81.3820
1102 81.8710
1103 85.0460
1104 86.5250
1105 88.2380
1106 88.68910C
1107 88.767C
11C8 89.8000

SHRINKING FACTOR

%-IMPROVEMENT OVER WUSUAL ESTIMATE

0.4177
47.9383 %

LI |
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note that the average noise level is still theusual estimate of the true noise
level due to the sectionally linear relationship between noise level and
traveling speed. Thus, the above method for combining data to increase
sample sizes is valid in this problem.

In general, the proposed estimation method works better when large
numbers of parameters (populations)are to be estimated. Thus, combining
data to reduce params=ters should not be done unless necessary. Because
sample sizes are increased, new sample averages are more reliable than
those in Examples 1 and 2. Consequently, it will be more difficult for the
method to improve new sample averages.

For this combined data set, we shall arrange sample averages into five
groups with memhers defined below:

Group 1 - Vehicles with 2 axles
Group 2 - Vehicles with 3 axles
Group 3 - Vehicles with 4 axles
Group 4 - Vehicles with 5 axles
Group 5 - Vehicles with 6 - 11 axles,

Again, the linear relationships among peaknoise level, speed and num-
ber of axles are used to compute initial estimates. Thus, traveling speed
is the only supplemental variable for each of Groups 1 through 4. For the
fifth group, the supplemental variables are speed and number of axles.
Since the combined data are no longer suitable for estimating the variance
of the peak noise level, we shall supply the estimated variance obtained
from the original sample observations (see Table 43 or 45). The data input
for the above model specification is presented in Table 46. We see from
thistable that the fi: st card sets NP = 64, NGROUP = 5, MDEG = 512, and
VAR = 7.051. The second card indicatesthat thereare 9, 8, 8, 10, and 29
members in Groups 1, 2, 3, 4, and 5, respectively. The third card in-
structs that the linear least squares estimatesare to beused as initial es—
timates. The fourth card specifies that only one supplemental variable is
to be used for the first four groups, but two for the last group. The esti-
mated results are presented in Table 47.

7Y  Program Listing

PROGRAM IMEAN{TAPE1=INPUT,TAPE2=0UTPUT) : Q0000100
DIMENSION NSAMP(500},X(500),U(500),XT{(2000),NAUX(500}, : Q0000200
$XEST(S00) ,NMG{500),1G(500},1D{500),AUX(%500,5}),B(6), : Q000300
2ZMETHOD (500} ,DESCPT(72),XL(500} : 00000400

: 00000500
THIS PROGRAM IS5 FOR SIMULTANEOUSLY ESTIMATING NP INDEPENDENT : 00000600
POPULATION MEANS BY USING STEIN-LIKE ESTIMATION PROCEDURES, : Q0000700

: Q0CO0EQO
NCARD=10 : Q00000800
READ( t,2,END=99389 }MP,NGROUP , MDEG, VAR : 20001000
READ{%,3} (NMG{1),6I=1,NGROUP) : : Q000G 1100
READ(1,3) (METHOD{(I),I=1,NGROUP) : 00001200
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112
113

116

147

11

200

READ( 1.3} (NAUX(I),I=1,NGROUP)
READ(1,10)(DSSCPT(I},I=1,70)
WRITE(2, 15)(DESCPT{I),I=1,79)
WRITE{2,30)

S5R=0.

NDF =0

SSR1=0.

NDF 1=0

K=0

DO 1000 I=1,NGROUP

MCOUNT =K

NPT=NMG{1)

WB1=0.

wB2=0.

D0 SGC J=1,MPT

K=NCOUNT +J

IG(K)=I

NA=NAUX{ 1)}

IF{MDEG .LE. 0)GO TO 1t
IF(METHOD(I) .NE. 2)GD TO 10
READ{1,80)ID(K} , NSAMP{K) K X{K)}
GO TO 220

READ{ 1,60)ID(K) , NSAMP(K), x{K) (AUX{J, M), M=1 NA)
GO TO 200

CONT INUE

IF{METHOD{I) .NE. 2)60 TO {12
READ(1,50)ID(K),NSAMP(K)

G0 TO 1143
READ(1,60)ID(K),NSAMP{K), {AUX(J M) M=1 NA)
N3=NSAMP (K)

IF(N3 .GT. $)GN TO 116
READ(1,64)%{K)

IF{METHOD(I) .EG. 2)GO TQ 220
GO TQ 200

N2=0

SX=Q.

SX%=0,

Nf=N2+1

N2=N$+NCARD- 1

IF(N2 .GT. N3IN2=N3
READ(1,61)(4T(M) M=N1 ,N2)

DO t18 M=N1,N2

SX=SXEXT (M)

SKX=SHA+AT{M}=*2

IF(N2 NE, N3)GO TO 117

X{KY=SX /N3
SSR1=SSRI+SXX-X{K}**2*N3

NDF 1=NDF 1+N3-1

IF(METHOD{I) .EQ. 2)GO TO 220
WRITE(2,210)ID(K) NSAMP{K) . X{K), IG(K),(AUX(J,M) M=1 NA)
IF(METHOD(I} .LT. 4)GO0 TQ 213
XL{Jy=X (k)

GO TO S00

CONTINUE

IF(METHOD{I)} .EQ. 3)GO TO 215
U(K)=AUX{J, 1)
SSR=SSR+{X{KI-U(K)} I **2*NSAMP{K)
G0 TO 500

WB1=WB1+AUX{J, 1) *X (K}

GO TO 500
WRETE{2,210)ID(K),NSAMP(K) ,X(K)}, IG(K)
WE1-ME14X(K)*NSQMP(K)
WB2=WE2+NSAMP (K )

CONTINUE

IF(METHOD(I} .EQ. 1)GD TO 100D
IF(MSTHOD{(1) .GE. 4)GO TO 800
IF{METHOD(I) .EQ. 2)WB1=WB1/WB2
DO BOQ J=1,NPT

K=NCOUNT+4

U(K)=WB1

-1238 -

Q0001300
02001400
00001500
00001800
ooCc017Q0
00001800
000G 1300
coCe2000
20002100
OCC02200
00C02300C
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
00003200
02003300
00003400
00003IS00
00003600
00003700
00003800
©0C03900
00004000
Q0004100
00004200
Q0004300
Q0004400
00004500
00004600
000QaA700C
Q0004800
00004900
00005000
Q0G5 100
0N005200
0OC0Q53C0
00005400

Q0005500
00005600
20003700
0Co05800
Q0005900
00006000
00006100
00006200
00006300
00006400
00006500
00006600
00006700
00006800
0Q0QG30C0
CO007000
CcO0OT 100
00007200
00QO7300
Qoo0T7400
00007500
Q0007602
Q0007700
Q0Cc0o7800
Q00073900
00008000
Q0008100
Q0008200




BCO  SSR=SSRH(N(KI- U(KY)* *2<NSAMP(K)
NDF =NOF+ 1
GD TQ (200
900  CONT INUE
NFEQRCE=0
IF{METHOD{I) .EQ. S)NFORCE=1
NIND=NAUX({I}
NOF =NDf +NING+NFORCE
CALL LSE{NFDRCE.NPT,NIND,XL, 6 AUX B, XEST,SERGR)
DO 950 J=1,NFT
K=MCOUMT +J
U{K)aXEST(J)
950  SSR=SSRH(X(K)-ULK) ) *¥*2*NSAMP{K)
1000 COGNTINUE
IF(MDEG .LE O0)GO TO 1020
WRITE(2.1015)VAR MOEG
G0 TQ {050
1020 MDEG=MNOF 1
VAR=SSR1/MOEG
WRITE(2,1025)VAR,MUEG
1050 NTRACE=NP-NOF
IF{NTRACE .G+V. 2)GO TO 2000
WRITE(2, 1500 )JNTRACE
GO TO 9999
2000 CONTINUE
FACTCR=1.-VAR*MDEG*{NTRACE-2)}/(3SR*{MDEG+2})
IF{FACTOR .LT. C.)FACTOR=O.
WRITE(2,2200)
DG 2100 J=1,NP
XEST(J)=U(JI+FACTOR*{X(d)-U(d))
WRITE{2,3200)ID(J},Xx{J},XEST(J)
2100 CONTINUE
SSR=55R/VAR-NTRACE
IF{3SR .LE. 0O.)SSR=0.
CALL EXPECT(NTRACE,SSR,EYY)
PIMPRD=EYY*{NTRACE-2}**2*MDEG/{MDEG+2 }/NP* 100
WRITE(2,6000)FACTOR, PIMPRO

GO TO 1
9999 CONTINUE
STOP
2 FORMAT(313, F1o 3}

: FORMAT{2013)

10 FORMAT{ tX,70A1)

15 FORMATE/ (AX, ASHAN ARG AR BN ER R RN R HERaO N,
V2BHAHHANANRAHERBHRERNBRERENES [ WX TOMY /X IBHIE b HRBHEREEN A,
PO THA G kG RTINS TR BB HEEHOHHRARHBE AN )

30 FORMATE//, tX,4HDATA,//,5X,21HSAMPLE SAMPLE GROUP,/,2X,
147HID SIZE AVERAGE NO SUPPLEMENTAL VARIABLES,/.,1X,

60 FORMAT(I4,15,6F10. 4)

61 F0RMAT(1OF7 2)

210 FORMAT(1X,i4,I6,F10.4,13,2%,5F2.3)

1015 FORMAT({/,1X,2BHGIVEMN ESTIMATE OF VARIANCE =.F10.4,/.1X,

128+NO OF OEGREES OF FREECOM =,15,/)

1025 FORMAT(/,1X,2BHSTRATIFIED SAMPLE VARIANCE =,F10.4./,1X
128HNO OF DEGREES OF FREEDOM =,15,/)

1500 FORMAT(//,1X,33H--- WOO ----- ERROR ----- WDo ---,/,2x,
{43HTRACE( P ) = ,I4,/,2X,2BHTHE TRACE OF P SHDULD BE AT

2THLEAST 2./,2X. 3BHCHECK TO SEE WHETHER YOU HAVE TOOD- MANY
ITH GROUPS,/ 2X,34HOR/AND TOO MANY PAREMETERS IN THE
416HEGRESSIUN LINES,/)

2200 FORMAT(//,1X,{17HESTIMATED RESULTS,//,2%,1BHIO SAMPLE AVERAGE,

113H NEW ESTIMATE,/ . 1X, 33H- === o e oo )
3200 FORMAT(1X,I4,3%,F10.4,4%X,F10.4) '
6000 FORMAT!/,1X,35H SHRIMKING FACTOR =.FB.4,/,1X
135H% - IMPROVEMENT OVER USUAL ESTIMATE =,F8.4,2H %,/)
END
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10

3o

100

130
120
200

250
240
230

320
J10
Jc0

410
400

510

500

SUBRQUTINE LSZ{MODEL,NPT NIND,YDATA, K XDATA ,B,YEST,SEROR}

DIMENSION YDATA(S500Q),XDATA(S500,.5).B(6}.X{5C0.6},
IYEST(500),XX(6,6),XXIXT(6,500)

SUEBRODUTINE FDR COMPUTING THE LEAST SQUARES ESTIMATE
OF B IN THE LINEAR MODEL,

H

YDATA = XDATA * B . IF MODEL Q
AND

YDATA

(1I,X0ATA) * B , IF MODEL H

WHERE YDATA IS5 THE THE (NPT BY 1) VECTOR OF DEPENDENT
OBSERVATIONS, XDATA IS THE (NPT BY NINO} MATRIX OF
INDERPENDENT OBSERVATIONS, T IS THE COLUMN VECTOR WITH
EVERY ELEMENT EQUAL TO ONE, * STANDS FOR THE PRODUCT
OF TWO MATRICES, NIND IS THE NUMEER OF INDEPENDENT
YARTABLES AND B IS THE VECTOR OF PARAMETERS TO BE
ESTIMATED.

IF{MODEL .EQ. ©)GD TO {00
00 10 I=1,NPT

X(1,1)=1.

MM=NIND+1

DO 20 I=2, MM

II=1-1

DO 30 J=1,NPT
X(J,I)=XDATA(J,II)

CONTINUE

GO TO 200

MM=NIND

00 120 [=1,Mm

00 130 Jd=1,NPT
X(J,I)=XDATA{J,I)

CONTINUE

CONTINUE

DD 230 I=4,MM

DD 24C J=1,MM

XX(I,d}=0.

D0 2%G K=1,NPT

XXOT, 0 )=XX{I,d)+X{K, I }*%x{K, J)
CONT INUE

CONTEINUE

CALL MTXINV{MM, XX, XX}

D0 300 I=1,MM

DO 350 J=1,NPT
XXIXT(I,J)}=0.

DO 320 K=1,MM
AXIXTOL,UsXXIRT (L, J)+XX(I,KI*X(J,K)
CONTINUE

CONT INUE

DO 400 I=1,MM

B(1)=0.

DD 410 J=1 NPT
B(I)=B{I}+XXIXT(I,J}*YDATA(J}
CONTINUE

SEROR=C,

DO 500 I=1,NPT

YEST{I}=0.

DO 510 J=1,MM
YEST{LI=YEST(I)+X(I,J}*B(J)
SERDOR=SEROR+{YDATA{I)}-YEST(I))}**2
CONT INUE
SEROR=SQRT(SEROR/(NPT-MM))
RETURMN

END
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7

18

16

18

22
21

23

24

20
160

401

403
8a8

SUBRDUTINE MTXINV{NSIZE,W,WINV)

CIMENSION ARRAY(&,8) WINV(BG,8) W1(58,2},W(6.6}

SUBROUTINE FOR FINOING THE INVERSE OF AN (NSIZE B8Y NSIZE)
SQUARE MATRIX W BY USING THE PARTITIGN METHOO. WINV IS THE

INVERSE MATRIX JF W.

00 5 I=1,NSIZE

00 5 J=1,NSIZE

ARRAY(I,J)=W(T,J)

IF(NSIZE .GT. 1)} GO TO 10
WINV{1, 1)=1. /ARRAY(1,1}

RETURN

CONTINUE

MSIZE=NSIZE-1{

00 15 1I=t%,MSIZE

J=TI+1

00 16 KK=J.NSIZE

00 t7 M=1,NSIZE

Wt(M, 1)=W(M,II)

Wi(M,2)=W(M,KK)
DET=W1(4,1)*Wi{2,2)-wi(1,2)*Wi(2,1)
IF(DET .EQ. ©¢.) GO TQ 16

IF(ITI .EQ. 1 .AND, KK .EQ. 2) GO TO 18
DO 18 K=1,NSIZE

ARRAY (K, 1)=w(K, 6 II}
ARRAY(K,2)=W(K, KK)
ARRAY{K,II)=W{K, 1)}
ARRAY (K ,KK}=W{K,2)}

GO TO t9

CONT INUE

CONTINUE

CONTINUE

WINV(Y, 1)=ARRAY(2,2)/DET
WINV(2,2)}=ARRAY(1,1)/0ET
WINV(1,2}=~ARRAY(1,2}/DET
WINV(2,1}=-ARRAY(2,1)/DET

IF(NSIZE .EQ. 2Y GO TO 100

DO 20 I=3,NSIZE

K=1-1

00 21 J=1.,K

Wi{u,1)=0.

wWi{dJ,2)=0,

COD 22 M=1,%

Wi(J, 1)=WI{J. 1)+WINV(J ,M)*ARRAY(M, I}
Wi{J,2)=aW1(J, 2)+ARRAY (I , M)*WINV(M. J)
CONTINUE .
ELTA=ARRAY(I,1)

DO 23 U=t K
ELTA=ELTA-ARRAY(I,J)*WtiJ, 1)
WINV(], I)=1,/ELTA

DO 24 J=1,K

WINV{J,I)=-W1{J, 1)/ELTA
WINV{I,J)=-W1{J,2)/ELTA

00 24 M=1,K
WINVIJ,M)=WINV(J, MI+Wi{J, 1)*W1 (M, 2)/ELTA

CUNTINUE

CONTINUE

IF(IT .EQ. {1 .AND. KK .EQ. 2) GO TO 888
00 401 J=1,NSIZE
Wild, 1)=WINV(t,J)
WilJ,2)Y=WINV(2,J)

00 402 J=1,NSIZE
WINVEA,J)=WINV(1T )
WINV(2,J)=WINV{KK,J}
DO 403 J=1,NSIZE
WINV(II,J)=W1(J, 1)
WINV(KK, J¥=Wt{uJ,2)
CONTINUE

RETURN

END
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Q0028800

SUBROUTIME EXPECT{NP,THETA,.EYY) : C0023000
DOUBLE PRECISION P1,A EY,P2 oo : 00029100
C : 00029200
c THIS SURROUTINE COMPUTES THE EXPECTATION OF /Y, WHERE Y IS A : 00029300
c NONCENTRAL CHI-SQUARE WITH NP DEGREES OF FREEDOM AND NONCENTRALITY : 00023400
c PARAMETER THETA, THIS EXPECTATION IS THE SAME AS THE EXPECTATION : Q0029500
c OF 1/(NP-2+2W), WHERE W IS A POISSON WITH PARAMETER (THETA/2). : 0CC29600
C : 00029700
ERROR=(, 0000 1 : Q0029800
ERR=ERROR/NP : 00029900
A=THETA/2 : 00030000
P1=DEXP{=-a) : 00030100
EY=P1/(NP-2) : 00030200
P2=P1 : 00030300
K=0 : 00030400
10 K=K+1 - : : 00030500
Pi=Pi*a/K : 00GA0600
P2=P2+P 1 : 00030700
EY=EY+P1{/(NP-2+K+2) : QOCR0800
CHECK=1,-P2 _ : C0G30900
IF(CHECK.GE.ERR) GO TO 1O : 0003 1000
EYY=EY : cooatiod
RETURN : 00031200
END : Q0031300
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Vi :
A COMPUTER PROGRAM FOR SIMULTANEOUSLY
ESTIMATING CORRELATED MEANS BY USING
STEIN-LIKE ESTIMATION PROCEDURES

1) The Basic Data

T__Ile esgential data forestimating population mean vector are X = (}_(1, .
o e s Xk)’ _Eand S. The superscript / stands for the transpossof a vector or
matrix. X is the sample average of n observation vectors from the popu-
lation with meanvector 8 = (8¢, . . . , 8;) and unknown covariance matrix
Y. The size of mean vector is k which is the number of mean parameters
to be estimated. Denote Xy, = Xy - e Xy10) to be the h-th observation
vector. Then,

=N

n
X = h. a7
i hgl hi

We assume that either the population is normally distributed or the
sample size is large enough to guarantee the normality of the vector of
samgle averages by the Central Limit Theorem. Therefore, X = (3?1, ..
. Xk)' is a k-variate normal with mean vector 6 = (8, . ., Bk)’ and
covariance matrix&./n. In this case, X 1s the usual estimate of 6.

S is an unbiased estimate of & such that m S is a Wishart matrix with
parameters n and 3., This matrix is obtained from éither past experiments
or current data. In the latter case, S is the unbiased sample covariance
matrix with the (i, j)-th element defined as

n
ST n-1 g Epi ~ X Eyy ~ %y | (178)

In this case, we have

m=n-1 (179)

Other essential data is the information for computing initial estimates
of mean parameters. This is termed the 'supplemental’ information for
discussion purposes. Five methods forusing the supplemental information
to compute initial parameter estimates are discussed in Section 3.
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2) What the Program Does

This program is written, based on theoretical results developed in
Part I, for combining the usual estimate X and supplemental information
to estimate the population mean vector 8.

The program first computesthe 1n1t1a1 estlmate U;» of 8; by the chosen
method. Denote U = (Ul, e e ey Uk) . In this step, the trace of the idem-
potent matrix P satisfying

X-U=PX (180)

is also computed. The second step is to compute the shrinking factor c
defined as

1 .
c = [Trace (P) - 2] — -111:+3 . ST g (181)

A slightly better procedure is to set ¢ to be 1 if it is greater than 1.
The third step is to compute the final estimate of Gi defined as

N

X1=Ui+(1—c)(xi-Ui),1=l,--u,k (182)

This program also computes the estimated percentage improvement of
the above procedure over the usual one,

3) Methods for Computing Initial Estimates

The key to obtaining good estimates of mean parameters is to provide
good initial estimates in the sense that N is high and C is low, where

N =Trace (P) (183)
and
{=n@w-o’E -0 (184)

We have shown in Part II that if P isasymmetrical idempotent matrix,
N and C are, respectively, the number of degrees of freedom and the non-
centrality parameter of a noncentral chi-square distribution. TFor this
case, the maximal percentage improvement that can be achieved by this
method is 100 [(m -k +1) (N-2)] / [(m -k +3)k]. Five methods for
computing initial estimates of mean parameters are built into this program.
These methods are presented below.
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Method 1: Initial Estimates are Given - Based on past experiments or
parallel studies, we estimate or guess Gi tobeU,,i=1,., .. ,k, Inthis
case, we treat U, - 8; as the parameter to be estimated. Consequently,
the idempotent matrix P satisfying Eq. (180) is the identity matrix. Thus,
N =Trace (P) = k. The eﬁtima.tion accuracy is the degree of closeness of U

to 8. The final estimate X; always lies between U; and —Xi' When initial es-
timates are excellent, i.e., U is very close to 8, the final estimate of 8 is
U. However, if initial estimates are poor, i.e., U is quite distant from 8,
the final estimate of 8 will be very close to the usual estimate X.

This method is used only when the number of parameters to be esti~
mated is at least 3. When initial estimates are reliably close to the true
means, this method will produce good final estimates of mean parameters.

Method 2: Weighted Average (I) - When mean parameters are almost
homogeneous, we may consider that Oi =9 for every i. We therefore use
an unbiased estimate of 8 as the initial estimate of every mean parameter.
That is,

Ej/n, i=1, ...,k (185)

For this method, N =Trace (P)=k - 1. The loss of one degree of
freedom is due to the estimation of the unknown parameter 8.

This method is used only when the number of parameters to be esti-
mated is at least 4. This method will produce good estimates of mean
parameters, if these mean parameters are nearly homogeneous.

Method 3: Weighted Average (II) - For a given set of numbers, Wi oo
s e s Wi satisfying Wy +. .. +Wk =1, we define

w.X.,i=1,...,k (186)
L 37

Ui=

Il =

i

For this case, N = Trace (P) =k - L. We note that this method is the
same as Method 2 when w'1 T TW

This method is used only when the number of mean parameters to be
estimated is at least 4. The estimation results will be good if the mean
parameters are almost homogeneous.
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We remark that w; can be interpreted as the weight assigned to X for
estimating the common parameter 8. If one has reason to doubt the reli-
ability of a particular observation, say Xq» zero weight may be assigned to
Xl' That is, W, = 0 and W2 .0 +Wk=l‘

Method 4: Least Squares Estimate (I) - Suppose that the supplemental
data (t, PRI tim) are available and satisfy the following equation,

6 =bty +...+b t ,i=1,...,k (187)

If for every j, bl" « o« ,and bk are near an unknown common para-
meter bj’ Eq. (187) can be rewritten as

ei=blti1+n.-+bmtim,i=l,eoo,k (188)
A A
Denote (b,, « » « , b_) to be the least squares estimate of (bl’ .o
. bm). We then take theminitial estimate of ei to be

N
U =b,t,+.ee+b t ,i=1,...,k (189)
Im

In this case, N = Trace (P) = k - m. The loss of m degrees of freedom
is dueto the least squares estimates of m linear parameters, We note that
U, canalways be improved by increasing the number of supplemental vari-
ables, i.e., to increase m. However, this decreases N which is an unde-
sirable property as previously mentioned. In general, m should be kept
small relative to the number of parameters k.

This method is used only when the number of mean parameters to be
estimated is at least m + 3. This method will produce good estimates of
mean parameters if Eq. (188) holds approximately and the number of sup-
plemental variables is small relative to the number of parameters to be
estimated. In practice, one may use this method if the following linear
relationship holds approximately.

X =b/t +...+b t ,i=1,...,k (190)

Method 5; I.east Squares Estimate (II) - This method is the same as
Method 4 except that Eqs. (188) and (189) are, respectively, replaced by

= L I E = 3 * & & 3 l
91 bO +bl til + +bm tim i=1 k (191)
“and
b o+b ; B t 1 19
= + e & & + 3 i = s % * s 3
Ui bO bl til + bm ‘m i k (192)
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In this case, N = Trace (P) =k - m - 1 because of the extra parameter
bO‘ Thus, this method is used only when the number of mean parameters
to be estimated is at least m + 4. In practice, one may use this method if
the following linear relationship holds approximately

X = + - L] - i = ] L] [ ]
X, =by +b; t. + +b_t. ., i=1, , k (193)

The k components of the mean vector may be arranged into many groups
to which different methods are applied to minimize the noncentrality para-
meterdefined in Eq. {184). For example, we mayuse Method 1 for a group
of k, parameters (components), Method 4 for a group of k, parameters,
Method 2 for a group of k parameters, and again, Method 2 for the group
of the remaining ones. In thls case we have N = Trace (P) =k, + (k2 - m)+
(k3 -+ k-k -k -~k -1)=k-m=-2. m is the number of supple-
mental variables used in Method 4 For this particular case, the number
of mean parameters to be estimated should be at least m + 5. In general,
for any method or combination of methods, the number of degrees of free-
dom should be at least 2. Combining these five methods to compute initial
parameter estimates will be demonstrated by examples presented in Sec-
tion 6.

Every method except the first one suggests that k parameters should
be arranged into groups in which parameters cluster at a point or can be
approximated by a linear function of supplemental variables. Physical
properties of populations, past experiments and parallel studies are good
sources for obtaining the proper group-method combination. Unfortunately,
these sources may not be available or reliable enough in a particular prob-
lem. In this circumstance, one may examine the dataas suggested in each
method to choose the proper_ group-method combination. That is, the em-

pirical relationship among X3, . . . , X, and supplemental variables can
be used to determine the group-method combination for computing initial
estimates of parameters. Since the program computes the estimated per-
centage improvement of each chosen method-group combination over the
usual method, one may use the one that produces the maximal improvement
to estimate parameters. We remark that the group-method combination
generated by examining the data may not be the best one and, possibly,
could be the worst one for this problem due to random variation of the data.
Nevertheless, if the chosen group-method combination is used thereafter
for the same problem, the above method is always better than the usual
one. The worst situation is that no improvement is made. * Based on our
experience, qualitative properties of populations often provide adequate in-
formation for grouping purposes.
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4) Data Input

The data input of this program is arranged into three portions. The
first portion is composed of five cards. These cards specify the number
of groups and parameters, computational methods, and number of supple-
mental variables in each group. Variables used in these cards are defined

below.

NP:

NGROUP:

NSAMP:

MDEG:

NMG(I):

METHOD(I) = j:

NAUX®):

(DESCPT (1),
I=1, 70):

Number of parameters to be estimated (the size of
mean vector), 1 £ NP = 50

Number of groups, 1 £ NGROUP = 20

Number of observation vectors sampled from the
populationto obtain usual estimate of population mean
vector.

Number of degrees of freedom for estimating }Z
(When this number is positive, the unbiased estimate
of ¥ is supplied. Otherwise, the program will use
Ed. (178) to compute the sample covariance matrix
as an estimate of &.)

Number of mean parameters in the I-th group,
NMG() ++ « » + NMG (NGROUP) = NP

The j-th method presented in Section 3 is used to
compute initial estimates of mean parameters in the
I-th group, 1= j <5

Number of supplemental variables used to compute
initial estimates of mean parameters in the I-th
group. This variable is 1 if METHOD{) =1 or 3,
and is ¢ if METHOD() = 2.

Title (no more than 70 letters).

The input format of the second portion is determined by the input value
of MDEG. This is explained below.

a)}) MDEG is positive. An unbiased estimate of the population covari-
ance matrix is supplied. The input variable of the (I, J)-th element of this
matrix is COVAR(, J). Since this matrix is symmetrical, only the lower
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triangular portion of the estimated covariance matrix is needed. Each row
is arranged into cards such that each card, except the last one, has 10
numbers. Thus, the input format of the I-th row is as follows:

COVAR(E, 1), ......, COVAR(I, 10)
COVAR(I,1t),......, COVAR(I,20)
........... COVAR(I . I)

The number of cards for the I-th row is L if 10 (L - 1) < I < 10L.

b) MDEG is negative. An unbiased estimate of the population covari-
ance matrix is not supplied and is to be obtained from sample observation
vectors (see Eq. (178)). This portion consists of NSAMP subportions.
Each subportion contains one observation vector. The data input format of
the I~th subportion is as follows:

XTOAY, o, XT(10)
XTCA1) .o, XT(20)

XT(J) is the J-th component of the I-th observation vector. The number of
cards in this subportion ig I, if 10 (L - 1)< NP < 101.. Thus, the I-th ob-
servation vector is arranged into I cards such that each card, except the
last one, has 10 numbers. We note that NSAMP observation vectors will
be converted to the usual estimate by Eq. (177) and the sample covariance
matrix S by Eq. (178).

The third portion is composed of NGROUP subportions or groups. We
define K =JifI =1land K=NMG(l) +... +NMGQ - 1) + J if I >1, Then,
the K-th card of the third portion contains essential and supplemental data
for estimating the J-th parameter of the I-th group. We note that the J-th
parameter of the I-th group is the K-th parameter. The data input for es-
timating this parameter is, when MDEG is positive,

ID(K), X(K), (AUX(J, M), M =1, NAUX())
and is, when MDEG is negative,
IDE), (AUX(J, M), M =1, NAUX({I))

The input variables of the above statements are defined below.

ID(K): Identification of the K-th component (parameter) such as
sieve number, The K-thparameteris the J-th parameter
of the I-th group. This number hasno effect on the esti-
mation procedure.
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X(K): The usual estimate of the K~th mean parameter defined
in Eq. (177).

AUX(J, M); The M-th supplemental variable for the K-th mean para-
meter.

Table 48
Input Deck Used When An Unbiased Estimate
of The Covariance Matrix Is Supplied
(The Input value of MDEG Is Positive)

Card
Number Variabtes Used in Each Card Remarks
1 NP .NGROUP ,NSAMP ,MDEG e
2 (NMG(I),1=1,NGROUP) * The Data Input of
3 (METHOO{I),1=4,NGROUP) The First Portion
4 (NAUX(I), I=1,NGROUP)
5 (DESCPT(1),1=1,70)
5 COVAR(1,1) * There are NP subportions
7 COVAR(2,1),COVAR(2,2) in the 2nd portion of
............................. the data input
COVAR{I, 1), ......... ,COVAR(I, 10) 4 This is the I-th
COVAR(I,t1).,......... L,COVAR{1,20) . subportion which is
................................. . compesed of L cards if
.............. LCOVAR(I,I) = 10{L-1) < I < 10L

* NMG(1) Cards for The 1ist
Group of The 3rd Peortion

rEas
.

. =

* NMG(I) Cards for The
I-th Group ; NA=MNAUX{I)
* K=NMG(1)+..+NMQ(I-1)+J

ID(K) , X(K), [AUX(J, M) M=1,Na) 4~ This card is for the
K-th parameter which
is the J-th parameter
of the [-th Group

.
.

"

* NMG(NGROUP) Cards for
The Last Group of The
Third Portion

The input deck is presented in Table 48 for the case that MDEG is
positive, and in Table 49 for the case that MDEG is negative. The input
deck is also diagrammed in Figure 8 to show the format and logic used.
The user can follow this diagram tochange, if needed, read statements and
formats to fit a particular problem.
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* Table 49 .
Input Deck Used When An Unbiased Estimate
of The Covariance Matrix Is Mot Supplied
{The Input Value of MDEG Is Negative)

Card
Number Varijabies Used in Each Card Remarks
1 NP ,NGROUF ,NSAMP  MDEG
2 (NMGf£),I=1,NGRDUP) * The Data Input of
3 (METHOD{I).1=1,NGROUP} The First Portion
4 (NAUX{I),I=1, NGROUP)
5 (DESCPT(1),I=1,72)

* The 2na portion of the
data input has NSAMP
subportions

XTE1), oo ., XT(10}) 4~ This is the I-th
XT3, oo . XT(20) . 'subportion which is
................................. . composed of L cards
.............. JXT(NP) 4 if 10(L-1) < I < 10OL

* NMG(1) Cards for The tst
Group of The 3Jrd Portion

.

ee-

* NMG(I) Cards for The
I-th Group ; NA=NAUX(I)
* K=NMG( 1)+, +NMG(I-1)+u

ID(K}). (AUX{J, M), M=1 NA) 4= This card is for the
’ K-th paramater which is
the J-th parameter of
the I-th group

* NMG(NGRQUP) Cards Ffor
The Last Group of The
Third Peorticon

5) Limitations of the Program and How to Make Necessary Changes

This program was designed to handle problems where the number of
mean parameters, NP, doesnot exceed 50. This number can be easily in-
creased to any desired number. However, one must change dimensions of
variables that appear on the DIMENSION STATEMENTS of the main pro-
gram and subroutines ISE, i.e., replace every 50 by the desired number.

Whenthe input value of MDEG is negative, NSAMP observation vectors
sampled from the population are the input data for computing the vector of
sample averages and sample covariance matrix. FEach observation vector
is arranged into L, cards, if 10 (L - 1) < NP €101, such that each card,
except the last one, has 10 numbers. One can easily reset this number
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NCARD | = 10
NCARD 2 = 10 @
)
READ NP, NGROUP, NSAMP, MDEG 2013 YES
READ (NMG(I},I=1|, NGROUP) 20I3 '
READ (METHODR(I), I=1, NGROUP) 2013 |+—N2] EoF |u—r
READ (NAUX(I),I=|, NGROUP} 2013
READ (RESCRT(I), I=I, 70) T0A|
¥
L 1t=9 |
¥
T IT=tri YES S WMOEGS 0 2 2 ol T =151 ]
) '
Y e TN {75 T5 NSAMP 2 Va5,
+NO ¥ NO
| N2 =0 | I nN2a=0 ]
¥ ¥
NI = N2 +1 Nt = N2 +1 ..
™] N2 = Ni + NCARD 2~ N2 = N1 + NCARD ! -1
¥ : ¥
CEne>t7 Yeu{Fe=r] | | FEEneesne>nr 7 )
§-NO [ =) iy
READ Y v READ
{COVAR(I,J}, J= NI,N2} (XT(J), T=Ni, N2)
10F7.2 I0F7.2
) ¥
NO, YES YES NO
la—{ s N2=T? ) - st { ISN2=NPP —
| I=0 le— COMPUTE SAMPLE =
7 AVERAGES AND
W TEI i COVARIANCE MATRIX
)
(s T > NGROUP 7 YE3 . I™ COMPUTE -
ESTIMATES
COMPUTE INITIAL J=o0
ESTIMATES OF NA = NAUX(I)
PARAMETERS
IN THE I-TH GROUP x
7 | T= T+ }
YESLIS 7> NMGD) 72 )
YES $NO 1
| K=t = isTI=127 )
§ NO
v (K= NMG) +--- + NMG(I-1) + T |
Pl
[ READ
(s MDEG > 0 7 »He . bD(K),X(P;),(AUX(JM}, -
*YES =1,NA
READ 14, 6F10.4 |
ID(K) , CAUX{T, M),M=1,NA)
I4,6F10.4
I

Y

Figure 8. Flow of control for data input.
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through the first statement, NCARD1 = 10, of the main program. That is,
to replace the number '10' by the desired one. Of course, the correspond-
ing READ statement (FORMAT 60) should also be changed to fit the new
arrangement.

When the input value of MDEG is positive, the lower triangular portion
of the estimated covariance matrix is supplied to the program. The I-th
row of the lower triangular matrix is arranged into L cards, if 10 (L - 1} <
1, £101, such that each card, except the last one, has 10 numbers. Again,
this number can be reset through the second statement, NCARD2 =10, of
the main program. That is, to replace the number '10' by the desired
number. One wouldalso have tochange the corresponding READ statement
(FORMAT 61) to fit the new arrangement.

The number of groups is limited to 20. This number is large enough
for most practical problems. However, one can increase this number to
any desired number not exceeding NP by properly changing the READ for-
mat of the second input card (FORMAT 3).

The total number of supplemental variables is limited to 5. This num-
ber is large enough for most practical work. The user can change this
number to any desired number, say N, by the following two steps.

a) Change the READ format of the second portion of the data input
(FORMAT 62).

_ b) Change dimensions of variables that appear on the DIMENSION
STATEMENTS of the main program and subroutine ISE, i.e., to replace
5 by N. We note that N should not exceed 49.

6) Examples

If aggregate inspection is to be shifted from the production site to the
construction site, specification limits should be adjusted for aggregate
degradation due to transporting and compaction. For the purpose of esti-
mating aggregate degradation, 30 samples each were obtained from pro-
duction and construction sites. For each pair of samples, the differences
in aggregate percentage passing 3/4-in., 1/2-in., 3/8-in., No. 4, No. 8,
No. 16, No. 30, No. 50, No, 100 and No. 200 sieves, and percent loss-by-
washing were measured. We shall use this set of data to demonstrate how
to improve the sample average vector.

Example 1: Method 5 with One Group -~ There is no supplemental in-
formation available for computing initial estimates of aggregate changes
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measured by various sieve sizes. However, if we code the sieve sizes
from 1 through 11, the aggregate change is approximately a third-degree
polynomial function of sieve size. That is, we have approximately,

Xi=a.+bi+ciz+di3,i=1,.... 11

where X, is the aggregate change measured by the sieve size with index i
(1 for 3/?4—in. , 2 for1/2-in., . . ., etc.). The input data for using the
above relationship to estimate initial and final aggregate changes measured
by various sieve sizes ig presented in Table 50. The first card sets NP =
11, NGROUP =1, NSAMP = 30, and MDEG = -1. Because NGROUP =1,
only one number appears on each of cards 2 through 4, and the number of
members in the only group is 11 which is set in the second card. The third
and fourth cards instruct that Method 5 with three supplemental variables
isto beused tocompute initial estimates of aggregate changes due to trans- .
porting and compaction. Since NSAMP = 30 and MDEG is negative, 30 ob-
gervation vectors comprise the data input of the second portion. Since the

Table 50O
Data Input of Example 1

: Cotfumn Number
1234567890123456789012345678901234567890123456789012345678901234567890

11 1 30 -4
11
5
3
L.S.E. OF A POLINOMIAL OF THE 3RD ORDER QF THE SIEVE SIZE
4.75% t1.76 12.20 12.04 10.3t 7.39 4.34 2.71 2.08 1.94
1.72
G.15 -2.85 =-3.40 -4.36 -2.49 -0.71 =-0.46 ~-1.19 Q.05 0.54
0.42
1 1.0000 1.0000 1.0000
2 2.0000 4. 0000 2.0000
3 3.0000 9.0000¢ 27 .0000
4 4.,0005 16.0000 64 .0000
5 5.0000 25,0000 125.0000
6 6.00C0 36.000C 216.COQ0
7 7.0600 49.0C00 343.0000C
8 8.0000 64.0000 512.0000
Q 9.000¢ 81.0000 729.0000
10 10,0000  100.0000 1000.0000
11 11.000Q0 121.0000 1331.0000

vector size is 11, each observation vector is arranged into two cards with
10 and 1 numbers, respectively. These 11 numbers are the aggregate
changes measured by various sieve sizes., Due to the large data set, we
only present the first and thirtieth observationvectors in Table 50 to show
the data input format. The data of the second portion will be converted
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into sample averages and sample covariance matrix. The third portion is
composed of 11 cards. The i-th card of this portion is the identification
and supplemental variables for the aggregate change measured by the sieve
with index i. In this example, this card contains i, i, i*, and i3, The
estimated results are presented inTable 51. Thetotal percentage improve-
ment is only 8.6 percent. This is probably because the number of supple-
mental variables (3) is too large relative to the number of parameters (11)
to be estimated in this problem. Better supplemental information is needed
in order to further improve these results.

We note that sample averages and the sample covariance matrix can
be the data input of the program. The data input for this option is presented
in Table 52. Wesee from this table that MDEG in this case is 29 (NSAMP
- 1). Therefore, the second portion is the lower triangular portion of the
sample covariance matrix (see Table 51). The first 10 rows of the lower
triangular portion of the sample covariance matrix are the first 10 cards
of the second portion. However, the last row is arranged into two cards
with 10 and 1 numbers, respectively, and is presented in the last two cards
of the second portion. The third portion is composed of 11 cards., The
i-th card contains i, Ei’ i, i2, andi®,i=1, ..., 11,

Exa.mple 2: Method 2 with Two Groups - Based on sample averages,
we shall use group averages of the following two groups to compute the
initial paranieter estimates.

Group 1 - Sieve sizes indexed by 2 through 7
Group 2 - Sieve sizes indexed by 8 through 11, and by 1.

The data input is presented in Table 53. We see from this table that
the first card sets NP =11, NGROUP = 2, NSAMP = 30, and MDEG = -1.
Thus, each of ecards 2 through 4 has two numbers. The second card sets
6 and 5 parameters in Groups'1 and 2, respectively. The third card speci-
fies the use of group averages as initial estimates. Therefore, no supple-
mental informationis required. This is set inthe fourth card. The second
portion of the data input is obtained from the second portion of Example 1
by rearranging the sample covariance matrix to match with the new ar-
rangement of group parameters. The third portion is similarly arranged.
The estimated results are presented in Table 54, This table shows that
this method is not as good as the one used in Example 1, This means that
the above group arrangement is not a good way to obtain initial and, conse-
quently, final estimates of mean parameters.

Example 3: Using Previous Results as Supplemental Infermation ~ Ag-
gregate degradation due to transportingand compaction has been previously
established for a different type of aggregate. We observe graphiecally that
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Table. 52
Oata Input of The Second Option in  Example 1

column  Mumber
123456789012345678901234557830123456789042345678390123456789013234567890

11 1 30 29
1
G
<]
L.§S.£. OF A POLINOMIAL OF THE 3RD ORDER OF THE SIEVE SIZE
13.93
15.08 31.05
14.09 30.39 34.93
11.58 26.66 25,87 36.08
8.34 19.40 19.59 27.94 22.80
5.92 11.66 11,27 19.55 17.00 14.22
4.06 7.12 6.01 14.67 13.25 12.05 1{t.21
2.48 3.79 1.10 10,93 9.63 9.09 9,19 8.86
1.08 1.42 0.10 4.32 3.84 3.84 3.84 3.81 t.84
1.05 1.53 0.95 2.49 2.27 2.21 2.13 1.92 0.92 0.62
0.92 " t.48 1.68 .17 1.30 1.28 1.15 0.77 0.41 Q.42
0.49

1.0000 1.0006 1.0000
2.0000 4.0000 8.0000
3.0000 9.0000 27.0000
4.,0000 16.0000 64 .C000
5.00C0 25.0000 125.0000
.5200 6.000C0 36.0000 216.0000
7 .0000 49.0000 343.0000
8.0000 64,0000 512,0000
9.C000 81.0000 7298.0000
©.0000 100.0000 1000.0000
1.0000 121.0000 $331.000Q0

- ODO—NOU R WM ~
—= 2 DO WE R W
o
(A
o
(=]

Tabte 53
Data Input of Example 2

Column Number
12345678901234567890123456789¢01234567890123456789012345678901234567880

11 2 30 -t
& 5
2 2
o 0O

USING 2-GROUP AVERAGES( SIZES 2-7 & OTHERS )
11.75 12,20 12.04 10.31 7.39 4.34 2.71 2.05 .94 1.72
4.75

~2:85 -2.40 -4.36 -2.49 -0.7% -0.46 -1.19 0.05 G .54 0.42
GC. 15

Uy
= =~ 00D~ UBLN
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Table 54 :
Estimated Results cof Example 2

RHABA RSN TR YRR RN SR R AN BRI NGB R R A A g ns
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-
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]

-1
[s+]
[ ]
[#]

- R AR AR o e s

SAMPLE SIZE (FOR SAMPLE AVERAGE) = 30
NO OF DEGREES OF FREEDOM (FOR COVARIANCE)= 29
THE UNBIASED ESTIMATE OF COVARIANCE MATRIX IS

31.05

30.39 34.93

26.66 25.87 36.08

t9.40 19.59 27.94 22.90

11.66 11,27 19.55 17.00 14.22

7.12 6.01 t4.87 13.25 12.05 11.21

3.78 .10 10.93 9.63 9.08 8.19 8.96
t.42 0.10 4.32 3.84 3.84 3.84 3.81 1.84
1.53 0.95 2.49 2.27 2.2¢ 2.13 1.92 0.92 0.62

1.48 1.68 1.17 1.30 1.28 .15 0.77 0,41 0.42 Q.49 £

15.08 t4.09 11,958 g8.34 5.92 4,06 2.49 .08 1.09 Q.92
13.93

ESTIMATED RESULTS

I0 SAMPLE AVERAGE NEW ESTIMATE

2 4.0433 4.0382
3 4,0333 4.0283
4 3.8300 3.8277
9 3.5200 3.5218
[ 3.1200 3.1272
7 2.4687 2.4578
8 1.7833 t.7837
=] 1.5200 1.5238
10 , 1.2750 f.2821
1 t.9933 t.9908
1 3,3967 3.4002
SHRINKING FACTOR = 0.9866
%~-IMPROVEMENT OVER USUAL ESTIMATE = 0.5609 % .
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L

this information is linearly related to the current data. We therefore use
Method 4 tocompute initial estimates. The datainput is presented in Table
55. Explanations of the firstand second portions of this table are the same
as thosein Example 1. Each card of the third portionis sieve index (iden-
tification) and the available aggregate degradation. The estimated results
are presented in Table 56. We see from this table that the percentage im-
provement is substantially increased, but differences between usual and
proposed estimates are very small. This means that the relationship be-
tween aggregate degradations of the twotypes of aggregates is indeed linear.
This information can be used for future application.

Table 55
Data Input of Example 3

Column  Number
12345678901234567890123456738901234567890123456789012345678901234567890

it ¢ 30 ~t
i1
4
1
SUPPLEMENTAL VARIABLE IS OBTAINED FROM PREVIOUS EXPERIMENT
4,75 11.75 12,20 12.04 10.3t 7.39 4.34 2.7 2,068 1.94
72

5 -2.85 -3.40 -4.36 -2.49 =-0.7t -0.46 ~-1.,19 * O 05 0.54
2

- e R WWW LW .
S
Q
Q
&}

- .
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Tabie &6
Estimated Results cof Example 3

BHAGHAE AT ST TR RN ARG R AR R H AR B BH BN G ARUER SR d h S AW HE o
SUPPLEMENTAL VARIABLE IS OBTAINED FROM PREVIDUS EXPERIMENT
HEB S W ARG AEARAT SRR A TN G HE RS RY NIRRT RN ARY B G BHEHg

DATA
SAMPLE GROUP
ID AVERAGE NO SUPPLEMENTAL VARIABLES

1 1.9933 1 1.750
2 3.3967 1 3.100
3 4.0433 i 3.600
4 4.,0333 1 3.650
5 33,8300 1 3.400
G 3.5200 1 3.150
7 3.1200 1 2.850
8 2.4667 1 2,290
9 t1.7833 1 1.620 "
10 1,5200 1 1.350
11 1.2750 1 1.200

SAMPLE SIZE (FOR SAMPLE AVERAGE) = 30

NO OF DEGREES OF FREEDOM (FOR COVARIANCE)= 29
THE UNBIASED ESTIMATE OF COVARIANCE MATRIX IS

13.95

15.08 31.0%

14.09 30.39 34.92

$1.58 26.66 25.87 36.08

8.24 19.40 19.59 27.94 22.80

5,82 11.86 t1.27 19.55 17.00 14,22

4.06 7.12 6.01 14.67 13.25 12.0% 1i.21

2,49 3.79

ey

.10 10.93 9.62 9.09 9.18 8.96

1.08 1.42 .10 4.32 3.84 3.84 3.84 3.81 1.84

o O

t.0% 1.53 .95 2.49 2.27 2.21 2.13 1.82 0.92 0.62

0.92 1.48 i.68 1.17 1.30 1.28 1.15 0.77 0.4t 0.42
0.49
ESTIMATED RESULTS
ID SAMPLE AVERAGS NEW ESTIMATE
1 1.9933 1.9618
2 3.3967 3.4265
K| 4.0433 4,.0150
4 4.0333 4.0468 ’
5 3.8300 3.7960
6 2.5200 3.5066
7 3,1200 2.1492
8 2.4667 2.4875
g t.7833 4.7936
10 1.5200 t.5070
14 1.2750 1.3119
SHRINKING FACTOR = 0.3629
%-IMPROVEMENT OVER USUAL ESTIMATE = 36.5558 % v
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sNeNe NS

32

33

36
3R
40

a2

5C

51

52

70

7) Program Listing

PROGRAM CMEAN{TAFE{1=TNPUT ,TAPE2=0UTPUT)

OIMENSION <(50) . U(50).XT{50),NAUX{5C) ,XEST(3C) . NMG(50),
11G{50}.10(50),AUX(S0,5},B{(50) ,METHOD {50 ) ,DESCPT(72),XL{50]),

2COVAR{50,50). COINV(50,50)

THIS PROGRAM 1S FOR SIMULTANEOUSLY ESTIMATING NP

CORRELATED MEANS BY USING STEIN-LIKE ESTIMATION PROCECURES.

NCARD{=40
NCARD2=10Q ‘
READT 1,3 END=2999 NP, NGROUP ,NSAaM? . MOEG
READ($,3) (NMG(I},I=1,NGROUP)
READ(1,3) (METHOD(I),I=1,NGROUP)
REAG(1,3) (NAUX(I), I=1. NGROUP)
READ(1, 10)(DESCPT(I),I=14,70)
WRITE(2,15)(QESCPT(1),I=1,70)
WRITE({2,30)

IF(MDEG .GT. Q}GO TO 50

DO 32 1=1.NP

DO 32 J=1,NP

COVAR(I,J)=0.

DO 40 I=1,NSamp

N2=0

Nt=N2+1

N2=N{+NCARD1~1

IF{N2 .GT. NP)IN2=NP

READ{ 1,60)¢{ X7 {1}, =NV, N2}

IF(N2 .NE. NP) G0 TO 33

DO 3B J=1,NP
X(J)=X{U)I+XT(LI/NSAMP

DO 36 K=1,4

COVAR(J,K)=COVAR{J ,K)+XT(J)*XTIK)
CONTINUE

CONTINUE

0O 44 I=1,MP

0O 42 J=1,1

COVAR(I.JUM=(COVAR(L J)=-X{I)*X{J)Y*NSAMP)/{NSAMP-1)
COVAR(J,IV=COVAR(I,J)

CONTINUE

GO TO 70

CONT INUE

DO 5% 1=1,NP

N2=0Q

M1=2N2+1

N2=N{+NZARD2~ 1

IF{N2 .GT. I)N2=[
READE1,61) (COVAR(I . JJ.J=N1,N2)
IF{N2 .NE. I) GO TO 514

0o 52 J=t,1

COVAR(J,I)=COVAR{ZI J)

CONTINUE

SSR=0.

NDF =0

K=0

DO 1000 I=1,NGROUP

IF(METHOD(I) .GE. 2 .AND. METHOD(I) .LE. 3)}NDF=NOF+1

NCOUNT =K

NPT=NMG{T)

WB1=0.

DO 50¢ J=1,NPT
K=NCOUNT+4

IG(K)=1I

NA=NAUX(I)

IF(MDEG .LE., O)GO TO 11¢
IF(METHOD(1} .ME. 2)G0 TO 110
READ( ' ,62)ID(K), X(K)

GO TO 220
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Q0ON0 100
0OD0C200
00000300
00000400
000C0500
00000E00
00000700
00000800
00000200
000C 1000
00001100
0000 1200
00001300
£0001400
0000 500
0000 1600
00001700
0000 1800
00001900
00002000
00002 100
00002200
©0002300

T 00002400

Q0002500
00002600
00002700
00002800
Q0002900
00003000
0003100
00003200
0003300
CoQO3400
00003500
00003600
QOOO3TOC
00003800
00003800
00004000
Co00410C
0004200
Q0004300
Co0nd400
CO0C4500
00004800
000C4700
00004800
Q0004900 |
00005000
0CL051C0
Co005200
00005300
Q0005400
CO005500
Q0005600
00005700
00005800
0005900
0C00&0CO
00006 100
0GQ0E620C
00006300
0000640C
00C06500
00006600
Q0006700




t10 READC !, 621ID(K), X{K), {AUX{J. M) M=1 NA) . : ooQ06800

G0 TAQ 200 : 0000AAT0
114 CONTIMUE : 0OUO 7000
IF{METHOD( I} .NE. 2)GD TQ 112 : 00007 100
RZAD(1,62)1D(K) : CQO07200
GO TO 220 : 00007 300
112 READ(1,62)I0(K}, {(AUX(J. M), M=t NA) : 20007400
200 WRITE(2,210}ID(K),X(K),IGIK), (AUX(J,M},M=1,NA) : 00007500
IF{METHOD{I} .LT. 4)GO 7O 213 : 0000TE00
XL{J)=X(K) : 0QUOT700
GO TO 500 : 00007800
213 CONTINUE : Q00CTACO
IF{METHOD{I) .EQ. 3)GO TO 215 : 00008000
U(K)=aUX(dJ, 1} : QCOOB 100
GO TO 5NC i : - : 00008200
215 WBI=WB1+AUX{J, 1)*X{K) : 00008300
GO TO 500 : Q0008400
220 WRITE(2,210}ID(K),X{K),I1G(K) : 00008500
WE1=WB1+X(K)/NPT ‘ : Q0008600
500 CONTINUE : 00C08700
IF(METHOD(I)} .EQ. 1)}G0O TO 41000 : 00008800
IF(METHOD{I} .GE. 4}G0 TO 300 : CO008300
DO 8OC J=1,NP1 : 00009000
K=NCOUNT+Y : 000092100
800 U(K)}=wBi : 00009200
GO TO 1020 : 00009300
90C CONTINUE _ : 00003400
NFORCE=0 ‘ : 00009500
IF{METHOO(I) .EQ. SINFORCE=1 : 00009600
NIND=NAUX(I} : 0000a7C0
NDF =NDF+NIND+NFORCE : 00009800
CALL LSE(NFORCE,NPT,NINO,XL,AUX .B,XEST,SERQR} : 00009300
DO 950 J=1,NPT . : 000 10000
K=NCOUNT+u : 0010100
950 U(K}=XEST(J) : 00010200
1000 CONTINUE . . : 00010300
IF{MDEG .LE. O)}MDEG=NSAMP-~1{ : : Q0C 10400
WRITE(Z, 1015 )INSAMP , MCEG : : COC 10500
DO t020 I=1,NP : 000 10600
N2=0 : 00010700
WRITE(2,1021) : c00 10800
1022 Nt=N2+1 : 00010900
NZ=Nt+NCAROZ2 -1 : CO011000
IFENZ .GT. I)IN2=1I . : 00C 11100
WRITE(Z,1025) (COVAR{I,J),u=N1,N2) : Q0C14200
IF{N2Z NE, I) GO TO 1022 : 00011300
1020 CONTINUE ‘ : 00011400
NTRACE=NP -NOF : 00011500
IF(NTRACE .GT. 2)GO TO 1070 : Q0011600
WRITE(2, 1500 )NTRACE : 00011700
GO TD 9999 : 00011300
1070 NDEG=NP -1 : QOO 11300
IF(MDEG ,.GT. NDEG)GQ TO 2000 : 000 12000
WRITE(2, 13505 }NDEG : 0012100
GO TO 99393 : 00012200 e
2000 CONTINUE : 00012300
NNN=NP : 00012400
CALI. MTXINV(NNN,COVAR, COINV) : 00012500
00 2010 I={,NP : 000125800
P0 2005 J=1,NP : 00012700
2005 SSR=SSR+{(X{I)~U(T)})*COINV(I,J)*{(X{J)-U(u)) : 00012800
2010 CONTINUE : 00012900
SSR=S5R*NSAMP : 00013000
XT(1)=(NTRACE=2)+"MDEG : 00013100
FACTOR=1.-XT(1)/{MDEG-NP+3}/SSR : 00c0 13200
IF{FACTOR .LT. Q.)FACTOR=0Q. ‘ : 000 13300
WRITE(2,2200} : Q00 13400
DC 2109 J=1,NP : o0013500
XESTLU)=U{J)+FACTOR*{X(J)-U(J}) : 00013600
WRITE(2,3200)I0{(J),Xx{J),XEST(J) : 00013700
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2100 CONTINUE

30

60
61
62
210

SSR=SSR-NTRACE

IF{SSR .LE. O.)$5R=0C.

CALL EXPECT{NTRACE,SSR,EYY)
MDEG=MDEG-NF+1

PIMFRO=EYY*(NTRACE-2)**2*MDEG/ {MDEG+2)/NP* 100

WRITE(2,G000)}FACTOR,PIMPRO
GO TO A

CONTINUE

LOCK 2

STOP

FORMAT{20I3)
FORMAT(///, 1%}
FORMAT(1X,70A1)

FORMAT(/ (AKX ASHAHHUNEE BB HBRRERE N G BER YWY EHB U BB HY
12B5HA B R ARG EA AR BRI GHBARR SN [ AKX TOAS /AN ABHE NS S UGB HR Y
ASTHA A AN U TR GHE R AU R R AR AA A ARG BB HH )

FORMAT(//, 1X,4HDATA,//,8%, 12HSAMPLE GROUP,/,K 2X,
141HI0  AVERAGE ND SUPPLEMENTAL VARIABLES,/, 1X,

FORMAT{10F7.2}
FORMAT{ 10F7.2)
FORMAT{14 6F10.4)}

FORMAT{1X,14,F10.4,1I4,1X,5F10,3)

1015 FORMAT{///,1X.42HSAMPLE SIZE {(FDR SAMPLE AVERAGE)

1021

1025
1500

1505

1/,1X,42HND OF DEGREES DF FREEDOM (FOR CDVARIANCE)=,I4,/,1X,

245HTHE UNBIASED ESTIMATE OF COVARIANCE MATRIX IS,/)

FORMAT(/)

FORMAT{1X, tQOF7.2)

FCRMAT{//, 61X ,33H-~- WDD -~--- ERROR ----- woo ---,/,2x,
113HTRACE( P } = ,14,/,2X,2BHTHE TRACE OF P SHOULD BE AT

27HLEAST 2,/,2X,38HCHECK T0O SEE WHETHER YOU HAVE TDD MANY,
37H GROUPS,/.2X,34HDOR/AND TOO MANY PAREMETERS IN THE ,
416HEGRESSION LINES, /)
FORMAT(//.1X,33H~-- WOQ -~=--~-- .
158HND OF DEGREES OF FREEODM FOR COVARIANCE SHOULD BE AT LEAST
2200 FORMAT(//,1X,17HESTIMATED RESULTS,//,2X, 18HID
113H NEW ESTIMATE,/, 41X, 33H=~ oo s m e e e e e

3200 FORMAT(1X,I4,3X,F10.4,4X,F10.4)

6000 FORMAT(/.1X,35H SHRINKING FACTOR

O0O0O0000000000000

10

ERROR ----- woo ---,/,2X,

=, F8.4,/,1X,

$135H%- IMPROVEMENT QVER USUAL ESTIMATE =,FB8.4,2H %./)

END

SUBROUTINE LSE{MDDEL,NPT,NIND,YDATA,XDATA,B,YEST,SEROR)
OIMENSIDN YDATA{S50Q),XDATA(S50,5),B(50),X{(50,50),YEST(50),

1XX{50,50) ,XxIXT(50,50)

SUBRQUTINE FOR COMPUTING THE LEAST SQUARES ESTIMATE

OF B IM THE LINEAR MODEL,

YOATA = XOATA * B
AND
YDATA

(I,X0ATA) * B

IF MODEL

o}

IF MDDEL

1}

1

WHERE YDATA IS THE THE (NPT BY t) VECTOR OF QEPENDENT
OBSERVATIDNS, XDATA IS THE (NPT BY NIND) MATRIX OF
INOEPENDENT CHSERVATIONS, I IS THE COLUMN VECTOR WITH

EVERY ELEMENT EQUAL TO ONE,

STANOS FOR THE PRODUCT

OF TWO MATRICES, MINO IS THE NUMBER OF INDEPENDENT
VARTABLES AND B IS THE VECTOR OF PARAMETERS TO BE

ESTIMATED.

1F(MDUEL .EQ. O)GO TO 100
DO 10 I=1,NPT

X(I.,1)=1.

MM=NTND+ {

DO 20 I=2,MM

IT=1-1

DO 30 J=1,NPT

. =163~

SAMPLE AVERAGE,

SO013800
OO 13920
000 14300
ONG11100
00014200
00214300
00014400
HO014500
Q0C 14600
00014700
00014800
00014900
00015000
oo015100
noo 15200
0015300
00015400
Q0015500
00015600
CC015700
00015800
Q0015200
0001680C0
0016100
00016200
00016300
00016400
00016500
CO0 16600

Q0C16700
00016800
00016900
00017000
00017100
o0C1720C
00C1730C
00017400
Q0017500
0017600
Q0017700
Q0017800
000173900
00018000

00C 18100
000 18200
00018300
(00 18400
00018500
000 18600
00018700
00018800
000 18900
000 19000
00019100
000192C0
00019300
00019400
000 19500
00019600
000 19700
00013800
000 19900
00020000
0002010C
00020200
00020300
00020400
00020500
C0020600
00020700




OOOO0

30 X{J,1)=X0ATA(J,I1) ) : QCO20200

20  CONTIMUE : 0020900

GO TD 200 : C002 1000

100  MM=NIND : OQ02 1 100

DO 120 I=1,MM : 00021200

DO {30 J=t NFET : 00021300

130 X(J.I)=XDATA{J,I) : 0002 1400

120 CDNTIMUE : 0002 1500

200 CDNTINUE : 00021600

DD 230 I=1,MM : 00021700

DO 240 J=1,MM : 0002 1800

XX(I,J)=0. : 00021900

D0 250 K=1,NPT : 00022000

250 XX{I,JV¥=XX{I,J}+X{(K,I}*X(K, 6 J) : 00022100

240 CONTINUE : 00022200

230 CDNTIMNUE : 00022300

CALL MTXINV{MM, XX, 6 XX) : 00022400

00 300 I=1,MM : 00C22%00

DO 319 J={ NPT : : 00022600
XXIXT{I,J)=0. : 00022700 o~

DO 320 X=4 MM : 00022800

320 XXIXT{I,U)=XXIXT{I,J)+XX(I,KI*X(J,K) : 00022800

310 CONTINUE : 00023000

300 CONTINUE : : 00023100

DO 400 I=1,MM : 00023200

B(1)=0. : 00023300

DO 410 J=1,NPT : 00023400

410 B(I)=B(I)}+XXIXT(I,J)*YDATA(J} ' : 00023500

400 CONTINUE : 00023600

SERDR=0. : 00023700

00 50C I=1.NPT : 00023800

YEST(I)=0, : 00023900

DO S0 J=1,MM : 00024000

10 YESTUIX=YEST(1)+X{(I,d)*B{J) : c0024100

SEROR=SEROR+(YDATA(I)-YEST(I))*=*2 ' : 00024200

500 CONTINUE : : ©0024300

SEROR=5QRT{ SERDR/ (NPT~-MM) ) " : 00024400

RETURN : 00024500

END : 00024600

: 00024700

SUBRGUTINE MTXINV{NSIZE,W,WINV) : 00024800

DIMENSION ARRAY(50,50),WINV(5C,50},W1(50,2),W(50,50) : ©0024300

. : ©0025000

SUBRDUTINE -OR FINOING THE INVERSE OF AN (NSIZE BY NSIZE) : 00025 100

SQUARE MATRIX W BY USING THE PARTITIDN METHOD. WINV 1S THE : 00025200

INVERSE MATRIX OF W. : 00025300

: ¢0025400

DD 5 I=1,NSEZE : 00025500

DO & J=1,NSIZE : 00025600

5 ARRAY(I,J)=W(I, J} : : 00025700

IF(NSIZE .GT. {1) GO TO 140 : 00025800

WINVI1,1)=1./ARRAY (1,1} . : 00025900

RETURN . : 00026000

10 CONTINUE : 00026 100

MSIZE=NSIZE-{ : 00026200

DD 15 I1I=t,MSIZ2E : 00026300

JEI+1 : 00026400

D0 16 KK=J,NSIZE : 00026500

00 17 M=1,NSIZE : 00026600

WH{M, 1)=W{M,I1) : 00026700

17 Wi(M,2)=W{M, KK) : 00026800

DET=Wi{t,1)*Wt(2,2)-Wi(1,2)*W1(2,1) : 00026900

IF(DET .EQ. ©.) GO TO 16 : 00027000

IF(IT .EQ. 1 .AND. KK .EQ. 2) GO TO 19 ) : 00027100

DO 18 K=1,NSIZE : 0C027200

ARRAY (K, 1)=w{K,II) : 00027300

ARRAY (K, 2)=W{K,KK)} : ¢Q027400

ARRAY (K, IT)=W{(X, 1) : 00027500 ,
18 ARRAY (K, KK)Y=wW{¥K,2) : 00027600
GO TO 19 : 00027700

: - 1684 -



16
15
19

22
21

23

24

20
100

401

402

403
a8as

[t NeNe e Ne Xe]

10

CONTINUZ
CONTINUE

~ CONTINUE

WINVI1, 1)=ARRAY{2, 2)/0ET
WINVI2,2)=ARRAY{1,1)/DET
WINV{1,2)=-ARRAY(1,2)/DET
WINV{2, K 1)Y=~ARRAY{2, {)/DET

IF{NSIZE .EQ. 2} GD TD 100

DO 20 I=3,NSIZE

K=I-1 )

DD 2t J=%.K

Wi{J,1)=0.

Wi(J,21=0.

DO 22 M=1,K

Wi(d, 13=W1{dJ, 1)}+WINV{J, M) *ARRAY(M, I}
W1(J, 2)=WilJ, 2Y+ARNTAY (I, MY=WINV{M, J4)
CONT INUE

ELTA=ARRAY(I,1)

00 23 J=1t,K
ELTA=ELTA-ARRAY{I,u)*wi(uJ, 1)
WINV(I,I)=1./ELTA

DO 24 J=1,K

WINVEJ, I )==W1(J, t}/ELTA

WINVCI, J)=-W1(J,2)/ELTA

00 24 M=1,K

WINV(J M)=WINV{J M)+Wi(J, 1)W1 (M,2)/ELTA
CONTINUE .
CONTINUE

IF{II .EQ. 1 .AND. KK .EQ. 2) GO TD 838
00 401 J=1,NSIZE

Wi(J, 1)=WINV{1,J)

Wi(J,2)=WINV(2,J)

00 402 J=1,NSIZE
WINV(1,JI=WINV(II,J)
WINV(2,J)Y=WINVIKK,J)

DD 403 J=1,MSIZE

WINV{II,J)=Wwt{uJ, 1)
WINV{KK,J)Y=Wi(J,2)

CONT INUE

RETURN

END

SUBRDUTEINE EXPECT{NP,THETA,EYY)
COUBLE PRECISIOMN P1,.A.EY,P2

THIS SUBROUTINE COMPUTES THE EXPECTATION OF 1/Y, WHERE ¥ IS A
NONCENTRAL CHI-SQUARE WITH NP DEGREES DF FREEDOM AND NONCENTRALITY
PARAMETER THETA. THIS EXPEGCTATION IS5 THE SAME AS THE EXPECTATION
OF 1/(NP=-2+2W), WHERE W IS A FOISSON WITH PARAMETER (THETA/2}.

ERROR=0.00001
ERR=ERROR/NP
A=THETA/2
P1=DEXP(-A)
EY=P1/(NP-2)
P2=p

K=0

K=K+ 1

P1=P{*A/K

P2=P2+P{
EY=EY+P1/(NP-2+K*2)
CHECK=1.-pP2
IF{CHECK.GE.ERR} GO TO 10
EYY=EY

RETURN

END
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Q0027300
LOC27200
CO0280OCC
Q028100
(30028200
(028300
Q0028400
-,00028500Q
QQ0C28600
00C2870C
Q0028800
000283800
00023000
00028100
S0028Z0%
00023300
0029400
00029500
00029600
Q0029700
00029800
00029900
00030000
- Q0Q3010C
00030200
Q0CI0300

00030400
00030500
00030600
Q0030700
Q0030800
00030800
031000
Q0C3t10C
00031200
Q003 130C
Q0031400
Q0031500
00031800
00031700
0031800

00031900
Q0032000
00032100
0C0322C0
00032300
0G032400
00032500
00032600
Q0032700
00032800
00032900
00033000
Q0033100
00033200
QGC33300
00033400
Q0C33500
00033600
0033700
00033800
00033300
G0034000
00034 100
00034200
00034300
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