A Preliminary Mechanistic Evaluation of PCC Cross-Sections Using ISLAB2000 - A Parametric Study

Neeraj Buch, Ph.D.
Kaenvit Vongchusiri, M.S.
Michigan State University
Department of Civil and Environmental Engineering
Dennis Gilliland, Ph.D.
Michigan State University
Department of Statistics and Probability
Thomas Van Dam, Ph.D., P.E.
Michigan Technological University
Department of Civil and Environmental Engineering

DISCLAIMER

This document is disseminated under the sponsorship of the Michigan Department of Transportation (MDOT) in the interest of information exchange. The MDOT assumes no liability for its contents or use thereof.

The contents of this report may not necessarily reflect the views of the MDOT and do not constitute standards, specifications, or regulations.

1. Report No. Research Report RC-1441	2. Government Accession No.		3. MDOT Project Manager Curtis Bleech, P.E.
4. Title and Subtitle A Preliminary Mechanistic Evaluation of PCC Cross-Sections Using ISLAB2000 - A Parametric Study			5. Report Date August, 2004
7. Author(s) Neeraj Buch, Ph.D., Dennis Gilliland, Ph.D., Kaenvit Vongchusiri, M.S.Thomas Van Dam, Ph.D., P.E.			6. Performing Organization Code
9. Performing Organization Name and Address Michigan State University 3546 Engineering Building East Lansing, MI 48824			8. Performing Org Report No. $61-9522$
12. Sponsoring Agency Name and Address Michigan Department of Transportation Construction and Technology Division P.O. Box 30049 Lansing, MI 48909			10. Work Unit No. (TRAIS)
			11. Contract Number:
			11(a). Authorization Number:
15. Supplementary Notes			13. Type of Report \& Period Covered
			14. Sponsoring Agency Code
16. Abstract This report summarizes the impact of structural, environmental and loading factors on jointed concrete pavement responses. The report also highlights the sensitivity of pavement response to the interactions between these factors. As a part of the project, relevant issues that relate the implementation of pavement responses to engineering practice using the ISLAB2000 structural model are also discussed. To this end an experimental matrix was constructed based on the concept of complete factorial for all combinations of design inputs reflecting MDOT practice, climatic condition, and load configurations in Michigan. Several engineering principles and common knowledge were applied to modify the experimental matrix with the purpose of making the matrix more concise, but providing the same level of information. 43,092 combinations of parameters were identified for the preliminary parametric study. The ISLAB2000 structural model was used for the analysis. In addition to the analysis an interpolation scheme was developed to compute mechanistic responses for all combinations of the non-discrete inputs, not addressed in the final experimental matrix.			
17. Key Words Pavement response, finite element, axle configuration, lateral support	18. Distribution Statement No restrictions. This document is available to the public through the Michigan Department of Transportation.		
19. Security Classification (report) Unclassified	20. Security Classification (Page) Unclassified	21. No of Pages	22. Price

TABLE OF CONTENTS

Executive Summary 1
Chapter I: Introduction 4
1.1 Background 4
1.2 Research Objectives 5
1.3 Scope of Research 5
1.4 Organization of Report. 7
Chapter II: Robustness and User Friendliness of ISLAB2000 9
2.1 Review of Westergaard Theory 9
2.2 Review of FE Method 14
2.3 Comparison of Published Results with ISLAB2000 Results 14
2.4 Summary Comparison of Published Results with ISLAB2000 Results 15
2.5 Summary Comparison of Practical Engineering Results based on ISLAB2000 and EverFE 17
Chapter III: Experimental Matrix 21
3.1 Data Collection 21
3.2 Preparation of Experimental Matrix 23
3.3 Final Experimental Matrix 29
Chapter IV: Parametric Study 30
4.1 Structural Model 30
4.2 Analysis Process. 31
4.3 Documentation of Analysis Results 36
4.4 Possible Application of Analysis Results 46
Chapter V: Interpolation Scheme 47
5.1 Least-Squares Criteria 47
5.2 Development of Interpolation Scheme 48
5.3 Validation and Goodness of Fit 52
5.4 Example Use of Interpolation Scheme 58

TABLE OF CONTENTS (CONTINUED)

Chapter VI: Potential Implementation of Study Results 61
6.1 Mechanistic-Empirical Design Concept 61
6.2 Weigh-in-Motion (WIM) Data Synthesis 64
6.3 Hourly Thermal Gradients 67
6.4 Mechanistic-Empirical Procedure for JCP - Example 69
Chapter VII: Summary of Findings and Recommendations for Future Research 87
7.1 Summary of Findings 87
7.2 Recommendations for Future Research 89
References 90

Appendices

Appendix A: Review of the Kirchhoff plate theory
Appendix B: Comparison between ISLAB2000 results and Westergaard's solution
Appendix C: ISLAB2000 graphical results for the comparison with Westergaard's solution
Appendix D: Data collection
Appendix E: Validation of thermal strain gradients (the product $\alpha(\Delta T / D)$)
Appendix F: Documentation of pavement response
Appendix G: Impact of lateral placement on different lateral support conditions
Appendix H: Equivalent stress cross-sections
Appendix I: Catalog of pavement response
Appendix J: Hourly load spectra from WIM database
Appendix K: Hourly thermal gradient from EICM
Appendix L: Technology transfer package

LIST OF TABLES

Table 2-1: Required L/l ratio for FE solutions to satisfy Westergaard's assumptions 15
Table 2-2: Summary of results and percent variation of the results. 16
Table 2-3: Overall variation between Westergaard and FE solutions 16
Table 3-1: Summary of design parameters from the 14 MDOT designs 22
Table 3-2: Ranges of input parameters obtained from other sources. 22
Table 3-3: Final experimental matrix 29
Table 4-1: Summary of critical load locations 35
Table 4-2: Summary of interaction between parameters on stresses 44
Table 5-1: Example prediction matrices 51
Table 5-2: Comparison of MSE, bias, and variance 58
Table 6-1: Summary of single axle load repetitions from SPS-2 section 65
Table 6-2: Summary of tandem axle load repetitions from SPS-2 section 65
Table 6-3: Summary of tridem axle load repetitions from SPS-2 section 65
Table 6-4: Summary of quad axle load repetitions from SPS-2 section 66
Table 6-5: Summary of multi-axle (5) load repetitions from SPS-2 section 66
Table 6-6: Summary of multi-axle (6) load repetitions from SPS-2 section 66
Table 6-7: Summary of multi-axle (7) load repetitions from SPS-2 section 67
Table 6-8: Summary of multi-axle (8) load repetitions from SPS-2 section 67
Table 6-9: Design features and material properties for the SPS-2 sections 67
Table 6-10: Seasonal backcalculated k-value obtained from LTPP database 68
Table 6-11: Summary of illustrative examples 73

LIST OF FIGURES

Figure 2-1: Idealization of dense liquid foundation. 9
Figure 2-2: Interior loading condition. 9
Figure 2-3: Edge loading condition 10
Figure 2-4: Corner loading condition. 11
Figure 2-5: Dual tires simulation represented by a circular loading area 12
Figure 2-6: Effect of temperature gradient on slab curling 13
Figure 2-7: Finite slab stress correction factors 14
Figure 2-10: Longitudinal stress at the bottom of the slab from ISLAB2000 for Problem 1 17
Figure 2-11: Longitudinal stress at the bottom of the slab from EverFE for Problem 1 18
Figure 2-12: Longitudinal stress at the bottom of the slab from ISLAB2000 for Problem 2 18
Figure 2-13: Longitudinal stress at the bottom of the slab from EverFE for Problem 2. 19
Figure 2-14: Longitudinal stress at the bottom of the slab from ISLAB2000 for Problem 3 19
Figure 2-15: Longitudinal stress at the bottom of the slab from EverFE for Problem 3 20
Figure 3-1: An overview of the development of experimental matrix for parametric study 21
Figure 3-2: Combining base and subbase layers 24
Figure 3-3: Variation in results for combined base/subbase and no subbase approaches 24
Figure 3-4: Combining CTE and thermal gradient 25
Figure 3-5: Load configurations considered in the study 26
Figure 3-6: Sensitivity trend due to the variation in base/subbase thickness 27
Figure 3-7: Sensitivity trend due to the variation in modulus of subgrade reaction 28
Figure 3-8: Sensitivity trend due to the variation in thermal strain gradients 28
Figure 4-1: Overview of structural model 30
Figure 4-2: Required components for the analytical tool 31
Figure 4-3: Procedure of determining critical load location 32
Figure 4-4: Validation and determination of critical load location. 33
Figure 4-5: Example critical load location (bottom stresses, MI-9, 177-in. joint spacing) 34
Figure 4-6: Example critical load location (bottom stresses, MI-20, 177-in. joint spacing) 35

LIST OF FIGURES (CONTINUED)

Figure 4-7: Example sensitivity plots of longitudinal stresses at the bottom of the PCC slab 38
Figure 4-8: Example sensitivity plots of longitudinal stresses at the top of the PCC slab 39
Figure 4-9: Impact of lateral support condition. 40
Figure 4-10: Slab curling due to different types of thermal gradients 41
Figure 4-11: Effect of longitudinal joint AGG factor on stress magnitude 43
Figure 4-12: Example illustrations of equivalent stress sections 46
Figure 5-1: Interpolation process 51
Figure 5-2: Validation procedure 52
Figure 5-3: Overview of validation process 52
Figure 5-4: Validation results - stage 1 53
Figure 5-5: Validation results - stage 2. 55
Figure 5-6: Validation results - stage 3 (single axle through multi-axle (8)) 57
Figure 6-1: Schematic illustration of damage calculation process. 62
Figure 6-2: Comparison of allowable repetitions based on different fatigue transfer functions. 63
Figure 6-3: Comparison of fatigue damage based on different fatigue transfer functions 63
Figure 6-4: Load spectrum from SPS2 sections for single axle in July, 1998 64
Figure 6-5: Load spectrum from SPS2 sections for tandem axle in July, 1998 64
Figure 6-6: Hourly thermal gradients generated by EICM for 8-in. sections in September 68
Figure 6-7: Cumulative damage calculation process. 69
Figure 6-8: Calibration process for the relationship between cumulative damage and distress 70
Figure 6-9: Example characteristic fatigue curve before calibration process 70
Figure 6-10: Example characteristic fatigue curve after calibration process 71
Figure 6-11: Comparison of results for Example 1 75
Figure 6-12: Comparison of results for Example 2. 77
Figure 6-13: Comparison of results for Example 3. 79
Figure 6-14: Overview of analysis of joint faulting for Example 4 79
Figure 6-15: Slab deflection results for Example 4. 80

LIST OF FIGURES (CONTINUED)

Figure 6-16: Predicted faulting for Example 4 81
Figure 6-17: Differential elastic deformation energy for Example 5 82
Figure 6-18: Predicted faultings for Example 5 82
Figure 6-19: Predicted faultings and differential elastic deformation energy 83
Figure 6-20: Differential elastic deformation energy for Example 6. 84
Figure 6-21: Ratio DE/k for Example 6 84
Figure 6-18: Predicted faultings for Example 6 85
Figure 6-19: Predicted faultings and ratio DE / k at the end of 20 years 85

Executive Summary

The responses of rigid pavements are influenced by three major factors: (i) structural, (ii) loading, and (iii) environmental. However, the interaction between these factors cannot be directly addressed by the current AASHTO 1993 design method. This report summarizes the preliminary findings of a two-year project to study rigid pavement response due to the variations in the above mentioned factors. The report also highlights the sensitivity of pavement response to the interactions between these factors. As a part of the project, relevant issues that relate the implementation of pavement responses to engineering practice using the ISLAB2000 structural model are also discussed.

The primary objectives of this study were to i) evaluate the robustness and user friendliness of the ISLAB2000 software, ii) perform a preliminary parametric study on current and anticipated Michigan Department of Transportation (MDOT) rigid pavement cross-sections, using design inputs consistent with Michigan loading, climatic conditions, materials, subgrade support and construction parameters, and iii) prepare and conduct a technology transfer workshop for MDOT pavement designers to familiarize them with the ISLAB2000 program.

The analysis was based on a sample of 14 "approved" designs for projects that were either recently constructed or were programmed for construction in the near future. These designs provided input parameters like pavement cross-sections, material properties, traffic and environmental conditions. The final experimental matrix for the preliminary parametric study contained 43,092 combinations of inputs. Some findings based on a sample of 14 designs are summarized below:

- The ISLAB2000 program is robust and user friendly. The results from the ISLAB2000 structural model compare well with the Westergaard solutions (after considering the relevant assumptions) and other widely accepted FE structural models.
- The critical load location is influenced by joint spacing and truck or axle configuration. The fractional factorial analysis indicated that the critical load location is generally not influenced by slab thickness, base/subbase thickness, modulus of subgrade reaction, lateral support condition, and thermal gradient or thermal strain gradient.
- For a flat slab condition, when the slab thickness changes from 9 to 12 in. the resulting stress is reduced by approximately 35%. For a constant thermal gradient, pavements constructed with different slab thickness have different temperature differentials, and therefore, the pavement responses could not be compared.
- For a flat slab condition, pavement cross-sections with thicker base/subbase thickness (from 4 to 26 in .) resulted in about $5-30 \%$ lower stresses and as the slab thickness increases the impact of base/subbase thickness becomes less significant.
- Pavements constructed with 27 feet joint spacing resulted in about 33% higher longitudinal stresses as compared to pavements constructed with 15 feet joint spacing for curled slab
conditions at a thermal strain gradient value of $+10 \times 10^{-6} \mathrm{in} .^{-1}$. The severity depends on the level of thermal curling or thermal strain gradient.
- For the load located along the wheel path (approximately 20 " from the traffic stripe), pavements constructed with PCC shoulders resulted in the lowest stresses among the three lateral support conditions (12' lane with tied PCC shoulders, 12' lane with AC shoulders and 14' lane with AC shoulders) that are considered in the study. Although the pavements were constructed with the same AC shoulder, the magnitudes of longitudinal stresses for pavements with $12-\mathrm{ft}$ lane (standard lane) were higher than that for pavements with $14-\mathrm{ft}$ lane (widened lane). As the wheel path shifted 2 ft towards the centerline for pavements with widened lane, a pseudo-interior loading condition was created, resulting in the reduction of stresses from edge loading. Pavements constructed with AC shoulders (12-ft lane with AC shoulder) resulted in about 13% and 9% higher longitudinal stress values than pavements constructed with PCC shoulder (12-ft lane with tied PCC shoulder) and widened lane (14-ft lane with untied AC shoulder), respectively.
- Lateral wander (or lateral placement) of traffic load resulted in higher edge stresses as the load moves from the wheel path towards lane/shoulder longitudinal joint (about 10% for tied PCC shoulder and 30% for AC shoulder).
- The experimental matrix only included three levels of non-discrete inputs (base/subbase thickness, modulus of subgrade reaction and thermal strain gradients), therefore the application of interpolation was employed to capture combinations of non-discrete inputs not included in the experimental matrix. In the validation process considering all axle types, the bias (average error), variance, and mean square of errors (MSE) of the best scheme (scheme 16) were $0.51 \mathrm{psi}, 8.63 \mathrm{psi}^{2}$, and $8.89 \mathrm{psi}^{2}$, respectively, indicating that the interpolation scheme was highly accurate and precise in computing pavement response as compared with the results directly obtained from the ISLAB2000 program.

The pavement response plays a significant role in the mechanistic-empirical (M-E) design process; however, it is necessary to integrate the pavement response with several other components. For the M-E process to be implemental and reflect Michigan practice, the following issues need to be investigated:

1) The coefficient of thermal expansion (CTE) values for concrete mixes and also aggregate (as concrete making material) used in paving Michigan roads need to be determined and cataloged, since CTE plays a critical role in the thermal analysis of jointed concrete pavements. The slab movement and joint opening are also influenced by the CTE of concrete.
2) An extensive traffic database, e.g. WIM database, should be made available for the pavement network as hourly axle spectra is a key input for damage computations. The hourly axle spectra allow for calculation of pavement responses that account for daily and seasonal conditions of climate, roadbed and material. The axle repetitions from the axle spectra and the corresponding pavement responses are the inputs to the cumulative damage calculation.
3) Develop and calibrate transfer functions for key jointed concrete pavement distresses that reflect Michigan practice. The process involves statistical correlation of the cumulative damages to the measured distresses corresponding to the time periods to obtain a calibrated model that can be used for Michigan jointed concrete pavement design.

Chapter I

INTRODUCTION

1.1 Background

The design of rigid pavements in the State of Michigan has changed over time. For the most part, the design process is based on the AASHTO 1993 method, with modifications to reflect the Michigan Department of Transportation (MDOT)'s experience and observations of pavement performance. In general, the rigid pavement cross-sections are comprised of a concrete slab 230 to 280 mm (9 to 11 in .) thick, a 100 mm (4in.) aggregate base (OGDC or otherwise), a separator layer (either a 100 mm (4 in .) dense graded or a geotextile interlayer) all on a 250 to 300 mm (10 to 12 in .) sand subbase. The final cross-section selection is based on various considerations including the following:

- Traffic volumes, commercial trucks and load;
- Roadbed soil, including frost susceptibility;
- Drainage;
- Initial and life cycle costs;
- Joint spacing;
- Load transfer and reinforcement; and
- Life cycle cost analysis.

Current practice is to select the final cross-section based on the guidelines presented in the 1986/1993 AASHTO Guide for the Design of Pavement Structures. However, this design practice is most highly correlated to pavement ride quality, but does not necessarily assure structural integrity, nor does it directly account for the effects of pavement type (JPCP versus JRCP), joint spacing, lane width, variation in material properties along a project, environmental impact and joint design (aggregate interlock versus dowel bars) on pavement design. Further, it does not effectively address the impact of the heavy, multi-axle "Michigan Truck" on the performance of rigid pavements.

Realizing that the only way to address the multiple factors influencing rigid pavement response is through a more mechanistic approach, MDOT and Minnesota Department of Transportation (MnDOT) jointly funded a study to enhance the ILLISLAB 2-D FEM rigid pavement analysis program (Tabatabaie and Barenberg, 1980). ILLISLAB is widely recognized as the most versatile state-of-the-practice rigid pavement analysis software available. Unfortunately, its application was highly limited because of the poor user interface and limitations on the complexity of the problems that it could evaluate. The enhancement entailed the complete rewriting of the code to remove inefficiencies, significantly improving the computational ability of the software. It also included the employment of a graphical user interface (GUI) both for inputting data and examining the output. The use of ISLAB2000 allows the user to assess pavement response due to temperature, cross-section, loading and construction variables.

1.2 Research Objectives

The objective of the project was to study the impact of various parameters and their interrelationship on mechanistic responses of jointed concrete pavement (JCP) using the ISLAB2000 structural model. The primary objective was achieved in the project by i) evaluating the ISLAB2000 software and provide feedback to the developers, ii) performing a preliminary parametric study on current and anticipated MDOT rigid pavement cross-sections, using design inputs consistent with Michigan loading, climatic conditions, materials, subgrade support and construction parameters, and iii) preparing and conducting a technology transfer workshop for MDOT pavement designers to familiarize them with the ISLAB2000 program.

1.3 Scope of Research

The research plan was divided into five tasks to achieve the research objectives and to provide a better understanding of each phase of this project and the connection among them.

Task 1: Determine the robustness and friendliness of ISLAB2000

Various scenarios will be systematically evaluated to establish the robustness of the software and the comparability of the analysis results to the Westergaard's closed form solutions. The results will be compared to known design examples illustrated in the textbook "Pavement Analysis and Design" (Huang, 1993). The user friendliness of the graphical user interface (GUI) will also be assessed.

Task 2: Conduct the parametric study and sensitivity analysis

A parametric study will be designed and conducted using statistically sound practices to evaluate the impact of the following variables on pavement performance:

- Pavement thickness;
- Slab geometry;
- Load transfer;
- Support conditions;
- Axle loading, configurations, and locations;
- Temperature gradient;
- Variable material characteristics; and
- Variable support conditions.

The ISLAB2000 program will be used to calculate response (stress, strain and deflection) of a sample of pavement cross-sections. This information will be evaluated to determine design features that impact pavement response.

Task 3: Create an MDOT specific on-line help feature

To increase the usefulness of the ISLAB2000 program, an MDOT specific on-line help feature will be created. Using this feature, the user will be able to find guidance in generating the various inputs on-line. Typical values for Michigan conditions will be presented, as well as background information to assist the user in making decisions. The full user manual will also be developed and included on the CD-ROM for an easy access, including a search feature to assist the user in finding desired information.

Task 4: Conduct technology transfer workshop

A full-day technology workshop will be developed and presented to MDOT pavement designers and researchers who are the anticipated users of the ISLAB2000 program. The workshop will include:

- An introduction to the theory behind the ISLAB2000 program and mechanistic design;
- A description of the various required inputs and how reasonable values for these inputs can be obtained;
- A demonstration of how to prepare a complete input file;
- A discussion of the results, including example of transfer functions that will enhance the meaningfulness of the output; and
- Hand-on exercises that will allow each participant to develop the input and analyze the output of the problems that are of concern to them.

Each workshop participant will be provided an ISLAB2000 user's guide and a participant's workbook for future reference, as well as a CD-ROM containing the ISLAB2000 program, example problems, and electronic copies of the ISLAB2000 user's guide, participant's workbook, and copies of the presentations used during the workshop.

Task 5: Complete the final report

At the conclusion of the study the PI will submit a draft copy (multiple copies will be submitted if the PM so requests) of the final report documenting the results of the study. It is expected that the PM will review the draft final report and provide feedback within one month after receiving the report. The PI will incorporate the changes and submit the final revised report within one month of receiving the comments. The final submission will consist of 50 double-sided bound copies and one copy single-sided unbound copy`. Furthermore, a CD containing the entire report will also be submitted.

1.4 Organization of Report

This report contains background information on the parametric study of mechanistic responses of JCP using ISLAB2000, a discussion of the analyses performed and the results obtained from the parametric study, and a summary of the conclusions and recommendations derived from this study. A more detailed breakdown of the contents of individual chapters is as follows. Chapter II includes: background on the robustness and accuracy of ISLAB2000 are determined, a summary of Westergaard Theory and a summary of finite element (FE) method used in ISLAB2000. Chapter III provides an overview of the data collection process and how the final experimental matrix for the parametric study is obtained. A detailed analysis process of the parametric study is given in Chapter IV. This chapter also includes documentation and interpretation of the analysis results. The application of 'Interpolation Scheme' in quantifying the magnitude of mechanistic response at the combinations of parameters that are not addressed in the experimental matrix and its validation including the goodness of fit are elaborated in Chapter V. In addition, example use of interpolation scheme and a catalog of mechanistic responses based on the use of this interpolation scheme are also included in this chapter. Chapter VI presents a demonstration of a future step to potentially implement the product of this project into a mechanistic-empirical design process with existing transfer functions. A summary of findings and recommendations for future research arising from the analyses performed in this study as well as a listing of future research needs related to mechanistic analysis and mechanistic-empirical design of JCP are contained in Chapter VII.

Thirteen appendices are also included in this report, which are listed as follows:
Appendix A: Review of the Kirchhoff plate theory
Appendix B: Comparison between ISLAB2000 results and Westergaard's solution
Appendix C: ISLAB2000 graphical results for the comparison with Westergaard's solution
Appendix D: Data collection
Appendix E: Validation of thermal strain gradient (the product $\alpha(\Delta T / D)$)
Appendix F: Documentation of pavement response
Appendix G: Impact of lateral placement on different lateral support conditions
Appendix H: Equivalent stress cross-sections
Appendix I: Catalog of pavement response
Appendix J: Hourly load spectra from WIM database
Appendix K: Hourly thermal gradient from EICM
Appendix L: Michigan ISLAB2000 (submitted in a CD)
Appendix M: Technology transfer package

Chapter II
 ROBUSTNESS AND USER FRIENDLINESS OF ISLAB2000

The robustness and user friendliness of ISLAB2000 program are investigated in this chapter based on two approaches: i) comparison of published results with ISLAB2000 results and ii) comparison of results based on ISLAB2000 program with another FE program for JCP, called EverFE (Davids and Mahoney, 1999). Several types of problems from the textbook "Pavement Analysis and Design" (Huang, 1993) are used for the first approach, while selected MDOT designs are used for the second approach.

2.1 Review of Westergaard Theory

Mechanistic analysis of rigid pavement was first introduced in the 1920's by Westergaard. Since then, mechanistic analysis has been a crucial part of the analysis and design of rigid pavement. The closed-form equations by Westergaard, however, rely on several assumptions (Westergaard, 1926) and they include:

- Infinite slab dimension,
- Full contact interface between slab and subgrade,
- Single layer (no base or subbase layers),
- Single slab (free edge boundary),
- Semi-infinite foundation,
- Single tire print,
- Circular or semi-circular loading area only,
- Dense liquid foundation (Winkler foundation).

The review of the Westergaard theory in this chapter includes information about the Winkler foundation, load cases considered in the Westergaard analysis and the Bradbury thermal curling stress formulation.

Winkler foundation

The Winkler foundation, also referred to as the Dense Liquid foundation (DL), has been traditionally used as a subgrade idealization in rigid pavement design and analysis. This idealization is based on assumptions that the subgrade cannot transfer shear stress and the slab is subjected to vertical reaction pressure equal to deflection times a constant k (modulus of subgrade reaction). In other words, the subgrade will deflect only under the area of applied load. According to McCullough (McCullough and Boedecker, 1968), the Winkler foundation model used in Westergaard's theory is a dense liquid with a density equal to k times the deflection under the load, or a bed of spring with spring constant k as illustrated in Figure 2-1.

Figure 2-1: Idealization of dense liquid foundation

Load Cases

In addition to the several assumptions and the dense liquid foundation, the Westergaard's closed from solutions are also limited to only three loading conditions: interior, edge, and corner (stress at the top of the slab).

Interior loading condition (Load Case I)

Figure 2-2: Interior loading condition
Interior loading condition is the case of a wheel load at a considerable distance from the edges. The loading stress equation was the earliest formula developed by Westergaard in 1926, (Westergaard, 1926) as illustrated in Figure 2-2. The stress at the bottom of the Portland Cement Concrete (PCC) slab due to a circular loaded area of radius "a" is computed as:

$$
\begin{equation*}
\sigma_{i}=\frac{3 \cdot(1+\mu) \cdot P}{2 \cdot \pi \cdot D^{2}} \cdot\left(\ln \frac{l}{b}+0.6159\right) \tag{2-1}
\end{equation*}
$$

Where

$$
\begin{aligned}
\mathrm{b} & =\mathrm{a} \quad \text { when } \quad a \geq 1.724 \cdot D \\
& =\sqrt{1.6 \cdot a^{2}+D^{2}}-0.675 \cdot D \quad \text { when } \quad a<1.724 \cdot D
\end{aligned}
$$

$\ell=$ radius of relative stiffness
$l=\sqrt[4]{\frac{E_{c} \cdot D^{3}}{12 \cdot\left(1-\mu^{2}\right) \cdot k}}$
$\mathrm{D}=$ concrete slab thickness, in.
$\mathrm{E}_{\mathrm{c}}=$ modulus of elasticity of concrete slab, psi
$\mathrm{k}=\quad$ elastic modulus of subgrade support, $\mathrm{psi} / \mathrm{in}$.
$\mu=\quad$ Poisson's ratio for concrete (0.15-0.20 as typical values)
For the same loading condition as shown in Figure 2-2, deflection of the PCC slab underneath the loading area can be calculated using the following equation.

$$
\begin{equation*}
\delta_{i}=\frac{P}{8 \cdot k \cdot l^{2}} \cdot\left\{1+\frac{1}{2 \cdot \pi} \cdot\left[\ln \left(\frac{a}{2 \cdot l}\right)-0.673\right] \cdot\left(\frac{a}{l}\right)^{2}\right\} \tag{2-3}
\end{equation*}
$$

Edge loading condition (Load Case II)

Figure 2-3: Edge loading condition
As illustrated in Figure 2-3, edge loading condition is the case in which the wheel load is at the edge, but at a considerable distance from any corner. Westergaard presented the edge loading stress equation in 1926 (Westergaard, 1926). This loading condition is important in that it results in the most critical stress at bottom of PCC slab of all three loading condition according to Westergaard. The stress and deflection formulation is as follows:

$$
\begin{align*}
& \sigma_{e}=\frac{3 \cdot(1+\mu) \cdot P}{\pi \cdot(3+\mu) \cdot D^{2}} \cdot\left[\ln \left(\frac{E_{c} \cdot D^{3}}{100 \cdot k \cdot a^{4}}\right)+1.84-\frac{4 \cdot \mu}{3}+\frac{1-\mu}{2}+\frac{1.18 \cdot(1+2 \cdot \mu) \cdot a}{l}\right] \tag{2-4}\\
& \delta_{e}=\frac{\sqrt{2+1.2 \cdot \mu} \cdot P}{\sqrt{E_{c} \cdot D^{3}} \cdot k} \cdot\left[1-\frac{(0.76+0.4 \cdot \mu) \cdot a}{l}\right] \tag{2-5}
\end{align*}
$$

Corner loading condition (Load Case III)

Figure 2-4: Corner loading condition
Corner loading condition is the case in which the wheel load is at a corner of the slab. Even though an equation for determining stress due to the corner loading condition was developed by Goldbeck (1919) and Older (1924) earlier, Westergaard was the first to discover that the maximum stress due to corner loading condition is not at the slab corner, but is at a distance of $2.38 \sqrt{a l}$ from the corner. Westergaard also included this correction into his formulas for determining stress and deflection in 1926 as shown below, respectively.

$$
\begin{align*}
& \sigma_{c}=\frac{3 \cdot P}{D^{2}} \cdot\left[1-\left(\frac{a \cdot \sqrt{2}}{l}\right)^{0.6}\right] \tag{2-6}\\
& \delta_{c}=\frac{P}{k \cdot l^{2}} \cdot\left[1.1-0.88 \cdot\left(\frac{a \cdot \sqrt{2}}{l}\right)\right] \tag{2-7}
\end{align*}
$$

The corner loading condition according to Westergaard's produces the most critical deflection of all three Westergaard loading conditions. It should also be noted that the maximum stress due to this loading condition is located at the top of PCC slab (not bottom as edge and interior loading conditions).

Among the three loading conditions by Westergaard, the corner loading condition is the most obscure. It should be noted that fully contacted interface between layers is one of the assumptions used in Westergaard's formulations and this assumption is not realistic because it leads to underestimation of stresses and deflections at top of PCC layer. In other words, the incapability of simulating the lack of support in Westergaard's formulation causes the variation between Westergaard's and FE solutions for corner loading condition, at which the lack of support has a significant impact on stresses and deflections. Stress and deflection equations for the corner loading condition based on the FE method were suggested as shown below (Ioannides et al, 1985).

$$
\begin{align*}
& \sigma_{c}=\left(\frac{3 \cdot P}{h^{2}}\right) \cdot\left[1.0-\left(\frac{c}{l}\right)^{0.72}\right] \tag{2-8}\\
& \delta_{c}=\left(\frac{P}{k \cdot l^{2}}\right) \cdot\left[1.205-0.69 \cdot\left(\frac{c}{l}\right)\right] \tag{2-9}
\end{align*}
$$

Results based on equations recommended by Ioannides et al (1985) were also compared with ISLAB2000 results.

Dual tires simulation

Since all Westergaard's loading stress equations for a single tire print are circular loading area based. It is necessary to convert dual tires into a single circular loading area. Equation 2-10 allows for the conversion from dual tires to a single tire (Huang, 1993).

Figure 2-5: Dual tires simulation represented by a circular loading area

$$
\begin{equation*}
a=\sqrt{\frac{0.8521 \cdot P_{d}}{q \cdot \pi}+\frac{S_{d}}{\pi} \cdot\left(\frac{P_{d}}{0.5227 \cdot q}\right)^{\frac{1}{2}}} \tag{2-10}
\end{equation*}
$$

Where

$$
P_{d}=\quad \text { load on one tire }
$$

$\mathrm{q}=$ contact pressure (one tire)
$\mathrm{S}_{\mathrm{d}}=$ dual spacing (center to center)

Curling stress formulation

The environmental effects on rigid pavements can be accounted for in terms of temperature differential between top and bottom layers of PCC. Positive temperature gradient (top layer is warmer than bottom layer) contributes to downward curling, whereas negative temperature gradient (bottom layer is warmer than top layer) contributes to upward curling. This is illustrated in the Figure 2-6.

Figure 2-6: Effect of temperature gradient on slab curling

For upward curling, the top layer of PCC contracts while the bottom layer expands with respect to the neutral axis; however, the concrete slab weight will try to move the corners of slab down. Negative moment due to slab weight will cause tension at top of PCC layer and compression at bottom of PCC layer. In contrast, for downward curling, top of PCC layer expands while bottom of PCC layer contracts with respect to the neutral axis; corners of slab will move down but slab center will lift up. Consequently, slab weight will try to move its center down and this causes tension at bottom and compression at top of PCC layer. The following are the curling stress equations by Bradbury.

$$
\begin{align*}
& \sigma_{i x}=\frac{E_{c} \cdot \alpha_{t} \cdot \Delta t}{2 \cdot\left(1-\mu^{2}\right)} \cdot\left(C_{x}+\mu \cdot C_{y}\right) \tag{2-11}\\
& \sigma_{i y}=\frac{E_{c} \cdot \alpha_{t} \cdot \Delta t}{2 \cdot\left(1-\mu^{2}\right)} \cdot\left(C_{y}+\mu \cdot C_{x}\right) \tag{2-12}\\
& \sigma_{e}=\frac{C \cdot E_{c} \cdot \alpha_{t} \cdot \Delta t}{2} \tag{2-13}
\end{align*}
$$

Where $\quad \sigma_{\mathrm{ix}}=$ interior curling stress in x -direction
$\sigma_{\mathrm{iy}}=$ interior curling stress in y -direction $\sigma_{\mathrm{e}}=$ edge curling stress (can be used for x and y -direction) $\alpha_{t}=$ coefficient of thermal expansion $\Delta \mathrm{t}=$ temperature differential $\mathrm{C}_{\mathrm{x}}, \mathrm{C}_{\mathrm{y}}=$ finite slab correction factor in x and y -direction

From slab dimension and radius of relative stiffness, finite slab correction factors for both x and y -direction can be approximated using the following chart.

Figure 2-7: Finite slab stress correction factors (Huang, 1993)

2.2 Review of FE Method

Kirchhoff plate theory, which is the theory behind ISLAB2000 FE model, is reviewed, including the Winkler foundation in FE, element discretization, and FE global system. The details of the Kirchhoff plate theory can be found in Appendix A.

2.3 Comparison of Published Results with ISLAB2000 Results

Several examples and problems in chapter 4 (Stresses and Deflections in Rigid Pavements) of the textbook "Pavement Analysis and Design" by Yang H. Huang were solved using ISLAB2000. The software was used to simulate traffic loads, temperature gradients, pavement features such as PCC thickness, joint spacing, and subgrade soils as listed in the textbook. The results obtained from the ISLAB2000 model and Westergaard solutions were compared. It has to be noted that in order to simulate problems using ISLAB2000, two assumptions need to be made: slab size requirements to simulate infinite slab behavior and square load contact area to simulate circular load contact area as indicated in Westergaard's theory.

The following are slab size requirements for Westergaard responses based on the FE method, (Ioannides et al, 1985), in terms of L / ℓ when L is least slab dimension and ℓ is radius of relative stiffness.

Table 2-1: Required L/l ratio for FE solutions to satisfy Westergaard's assumptions (Ioannides et al, 1985)

Response	Load Placement		
	Interior	Edge	Corner
Maximum Deflection	8.0	8.0	5.0
Maximum Bending Stress	3.5	5.0	4.0

The problems can be categorized into three groups:

1. curling (temperature) stress only,
2. corner, interior, and edge stresses and deflections due to wheel load(s),
3. combined temperature and loading stresses.

Each problem was divided into two parts: the textbook solution, and the ISLAB2000 solution (FE solution). The textbook solution consists of the problem statement, an illustration of the problem, and solution based on Westergaard's equations, while the FE solution consists of the summary of inputs, illustration of the mesh and loading used in problem, followed by a short explanation if necessary, and numerical and graphical outputs in Appendices B and C , respectively. Out of the nine problems selected from the textbook, four problems were solved for four mesh sizes ($3,6,12$, and 24 in .) using ISLAB2000. The difference of the results based on 3 in. and 6 in. mesh sizes was found to be negligible. Therefore, the other five problems were solved only for three mesh sizes (6,12 , and 24 in .). It should also be noted that the mesh aspect ratio of 1 (square mesh) was used for all the problems.

2.4 Summary Comparison of Published Results with ISLAB2000 Results

In summary, the variations between the published results based on the Westergaard solutions and the ISLAB2000 results are shown in Table 2-2. The results suggest that responses obtained from the ISLAB2000 program and from the Westergaard theory are comparable with the exception of the corner loading condition. Relatively large variations were observed for corner stress and deflection results. However, the difference in the results between the two approaches has been reported, (Ioannides et al, 1985). After applying the equations suggested by Ioannides et al (1985), the ISLAB2000 results and the results based on the closed form solutions appear to be more comparable. Table 2-3 summarizes the overall percent variation between the closed form and the ISLAB2000 results.

Table 2-2: Summary of results and percent variation of the results

Problem	Response Type	Textbook Results	Unit	FE Results				Percent Variation			
				ISLAB2000 with Various Mesh Sizes				ISLAB2000 with Various Mesh Sizes			
				24"	12"	$6{ }^{\prime \prime}$	3"	24"	12"	$6 "$	3"
1	Int. Stress	238.0	psi	231.6	230.1	230.3	230.5	2.69	3.31	3.25	3.14
	Edg. Stress	214.0	psi	219.0	220.1	220.3	219.8	2.35	2.87	2.95	2.72
2	Cor. Stress	186.6	psi	198.4	197.9	195.8	195.8	6.32	6.06	4.93	4.93
	Cor. Stress*	190.2	psi	198.4	197.9	195.8	195.8	4.29	4.03	2.93	2.93
3	Int. Stress	143.7	psi	140.6	159.0	151.9	144.2	2.16	10.65	5.69	0.35
4	Edg. Stress	279.4	psi	285.9	306.5	294.9	287.2	2.33	9.70	5.54	2.79
5	Cor. Stress	166.8	psi	182.3	178.1	177.6	-	9.29	6.77	6.47	-
	Int. Stress	130.8	psi	135.5	144.2	132.8	-	3.59	10.24	1.54	-
	Edg. Stress	244.2	psi	263.8	267.6	255.2	-	8.03	9.58	4.50	-
6	Int. Stress	282.4	psi	296.6	296.3	296.2	-	5.03	4.92	4.89	-
	Edg. Stress	240.0	psi	244.2	244.9	245.4	-	1.74	2.05	2.23	-
	Pt. A	211.4	psi	197.3	195.3	194.8	-	6.69	7.62	7.87	-
	Pt. B	198.0	psi	197.8	196.3	196.0	-	0.09	0.86	1.04	-
	Pt. C	57.6	psi	50.4	49.9	49.7	-	12.55	13.42	13.65	-
7	Cor. Stress	172.8	psi	171.1	166.5	164.5	-	0.98	3.65	4.80	-
8	Int. Stress	139.7	psi	137.6	134.1	123.3	-	1.50	4.01	11.74	-
9	Edg. Stress	252.5	psi	247.7	237.9	227.4	-	1.90	5.78	9.94	-
2	Cor. Defl.	0.0502	in.	0.0562	0.0563	0.0563	0.0563	11.95	12.15	12.15	12.15
	Cor. Defl.*	0.0560	in.	0.0562	0.0563	0.0563	0.0563	0.36	0.54	0.54	0.54
3	Int. Defl.	0.0067	in.	0.0068	0.0069	0.0069	0.0069	1.94	3.28	2.99	2.84
4	Edg. Defl.	0.0207	in.	0.0211	0.0212	0.0212	0.0212	2.08	2.32	2.42	2.42

* Remarks: the comparison is based on Ioannides's approach

Table 2-3: Overall variation between Westergaard and FE solutions

Response Type and Location	Variation (\%)
Interior Loading Stress	3.84
Interior Loading Deflection	2.99
Edge Loading Stress	4.09
Edge Loading Deflection	2.42
Corner Loading Stress*	2.93
Corner Loading Deflection*	0.54

* Remarks: the comparison is based on Ioannides's approach

2.5 Summary Comparison of Practical Engineering Results based on ISLAB2000 and EverFE

The capability of the ISLAB2000 program to provide comparable results with the closed form solutions has been demonstrated in the previous section; however, the load configurations and the structural conditions in the closed form solutions are not realistic. It is also important to ensure that the ISLAB2000 is also able to provide accurate results for practical engineering problems. To achieve this, the ISLAB2000 program and EverFE program are used to analyze selected MDOT designs. The comparability of the results based on these two FE programs is investigated through following engineering problems:

Problem 1: A pavement system with $11.8-\mathrm{in}$. PCC slab, 15.7-in. aggregate base, 99-psi/in. roadbed, $315-\mathrm{in}$. joint spacing, $12-\mathrm{ft}$ lane, and tied PCC shoulder is given (an MDOT design on I75 (C.S. $82191 \& 82194$ and J.N. 45699) submitted on June 12, 2001 as the second design alternative). Analyze this pavement system for longitudinal stress at the bottom of the slab under the impact of 18 -kips single axle edge loading using the ISLAB2000 and EverFE program.

Solution: The same mesh size (12 in . by 12 in .) is used for both ISLAB2000 and EverFE program. The results obtained from the ISLAB2000 and EverFE program are 87.1 psi and 97.4 psi, respectively. Figures 2-10 and 2-11 illustrate the graphical results obtained from both programs. It can be seen that the peak stress magnitudes and locations obtained from these models are comparable.

Figure 2-10: Longitudinal stress at the bottom of the slab from ISLAB2000 for Problem 1

Figure 2-11: Longitudinal stress at the bottom of the slab from EverFE for Problem 1

Problem 2: A pavement system with 11.0-in. PCC slab, 3.9-in. aggregate base, 169-psi/in. roadbed, $177-$ in. joint spacing, $14-\mathrm{ft}$ lane, and untied AC shoulder is given (an MDOT design on M-39 (C.S. 82192 and J.N. 45702) submitted on July 5, 2000 as the second design alternative). Analyze this pavement system for longitudinal stress at the bottom of the slab under the impact of 18 -kips single axle edge loading using the ISLAB2000 and EverFE program.

Solution: The same mesh size (12 in . by 12 in .) is used for both ISLAB2000 and EverFE program. The results obtained from the ISLAB2000 and EverFE program are 97.1 psi and 104 psi, respectively. Figures 2-12 and 2-13 illustrate the graphical results obtained from both programs. It can be seen that the peak stress magnitudes and locations obtained from these models are comparable.

Figure 2-12: Longitudinal stress at the bottom of the slab from ISLAB2000 for Problem 2

Figure 2-13: Longitudinal stress at the bottom of the slab from EverFE for Problem 2
It should be noted that unlike ISLAB2000, EverFE is not capable of modeling slabs with more than one material in the same system. Therefore, the untied AC shoulder is modeled by having no shoulder for both analyses.

Problem 3: Repeat Problem 1, but also consider a positive thermal gradient of $4^{\circ} \mathrm{F} / \mathrm{in}$.
Solution: The same mesh size (12 in . by 12 in .) is used for both ISLAB2000 and EverFE program. The results obtained from the ISLAB2000 and EverFE program are 557.5 psi and 571 psi, respectively. Figures 2-14 and 2-15 illustrate the graphical results obtained from both programs. It can be seen that the peak stress magnitudes and locations obtained from these models are comparable.

Figure 2-14: Longitudinal stress at the bottom of the slab from ISLAB2000 for Problem 3

Figure 2-15: Longitudinal stress at the bottom of the slab from EverFE for Problem 3

It is important to note that due to their difference in structural models in that the ISLAB2000 program is a 2-D FE program, while the EverFE program is a 3-D FE program, the results obtained from these programs are not expected to perfectly match. However, according to these three practical engineering problems, the ISLAB2000 appears to provide similar results, when compared with results obtained from EverFE, which is another independent analysis approach. Therefore, this proves that the ISLAB2000 program is capable of providing reasonable analysis results for practical engineering problems.

Chapter III

EXPERIMENTAL MATRIX

An experimental matrix was constructed based on the concept of complete factorial for all combinations of design inputs reflecting MDOT practice, climatic condition, and load configurations in Michigan. Several engineering principles and common knowledge were applied to modify the experimental matrix with the purpose of making the experimental matrix more concise, but providing the same level of information. An overview of the process is illustrated in Figure 3-1.

Figure 3-1: An overview of the process of development of experimental matrix for parametric study

3.1 Data Collection

The MDOT Technology Advisory Group (TAG) provided 14 "approved" designs for projects that were either recently constructed or were programmed for construction in the near future. These designs provided the structural parameters used for Michigan rigid pavements, e.g., crosssections, pavement features, material properties, and etc. The ranges of inputs obtained from the MDOT designs are summarized in Table 3-1. Additional details are summarized in Appendix D.

Table 3-1: Summary of design parameters from the 14 MDOT designs

Inputs	Min.	Max.
PCC thickness	$\begin{aligned} & 240 \mathrm{~mm} \\ & (9.5 \mathrm{in} .) \end{aligned}$	$\begin{gathered} \hline 300 \mathrm{~mm} \\ (12.0 \mathrm{in} .) \end{gathered}$
Base thickness	$\begin{aligned} & 100 \mathrm{~mm} \\ & (4.0 \mathrm{in} .) \end{aligned}$	$\begin{aligned} & \hline 400 \mathrm{~mm} \\ & (16.0 \mathrm{in} .) \end{aligned}$
Subbase thickness	No subbase	$\begin{aligned} & 300 \mathrm{~mm} \\ & (12.0 \mathrm{in} .) \end{aligned}$
Joint spacing	$\begin{gathered} \hline 4.5 \mathrm{~m} \\ (177 \mathrm{in} .) \\ \hline \end{gathered}$	$\begin{gathered} 8.0 \mathrm{~m} \\ (315 \mathrm{in} .) \end{gathered}$
Lane width	$\begin{aligned} & 3.6 \mathrm{~m} \\ & (12 \mathrm{ft}) \end{aligned}$	$\begin{aligned} & 4.2 \mathrm{~m} \\ & (14 \mathrm{ft}) \end{aligned}$
Lateral support condition	PCC shoulder, AC shoulder Widened lane	
Joint design	Doweled (1.25 in. diameter at 12 in. spacing center to center)	
$\mathrm{E}_{\mathrm{pcc}}$	$\begin{gathered} 29 \times 10^{6} \mathrm{kPa} \\ \left(4.2 \times 10^{6} \mathrm{psi}\right) \end{gathered}$	
Modulus of subgrade reaction	$\begin{gathered} 24 \mathrm{kPa} / \mathrm{mm} \\ (90 \mathrm{psi} / \mathrm{in} .) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 60 \mathrm{kPa} / \mathrm{mm} \\ & (220 \mathrm{psi} / \mathrm{in} .) \\ & \hline \end{aligned}$

In addition to the above mentioned input parameters, the analytical model required the following additional parameters (i) coefficient of thermal expansion (CTE) of the concrete, (ii) thermal gradients, (iii) axle and truck configurations, (iv) Poisson's ratio and unit weight. Based on the review of the literature (Klieger and Lamond, 1994), LTPP database, Truck driver's guidebook for Michigan (Michigan Center for Truck Safety, 2001), and conversations with the TAG, ranges for these additional input parameters were established and are summarized in Table 3-2.

Table 3-2: Ranges of input parameters obtained from other sources

Input variables	Ranges
Concrete unit weight	$0.0087 \mathrm{lb} / \mathrm{in} .{ }^{3}$
Concrete Poisson's ratio	$0.15-0.20$
Aggregate base unit weight	$0.0061 \mathrm{lb} / \mathrm{in} .^{3}$
Aggregate base Poisson's ratio	0.35
Thermal gradient	$-4-+4^{\circ} \mathrm{F} / \mathrm{in}$.
Coefficient of thermal expansion	$3 \times 10^{-6}-9 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$
Location of stress	Top and bottom $^{\text {Load configuration }}$
Single axle, tandem axle,... Multi-axle (8), MI-1, MI-2,... MI-20	

3.2 Preparation of Experimental Matrix

An important first step in data analysis is to ensure that the project objectives can be accomplished within the limitations of time and funds. If every combination of input parameters is to be considered, the complete factorial experimental matrix would result in millions of FE runs. Hence, the experimental matrix size must be reduced, while the final product still serves the primary objectives. The preparation of the final matrix was achieved by carrying out the following strategies: combining variables, considering only frequently seen load configurations, and adjusting increments for non-discrete inputs.

Combining Variables

Two variables are combined into one variable to reduce the number of input combinations in the experimental matrix based on an assumption that the mechanistic response computed considering the combined variable would be the same or approximately the same as that computed considering the two variables, separately. The variables to be combined are base thickness and subbase thickness, which are combined into base/subbase thickness, and CTE (α) and thermal gradient ($\Delta \mathrm{T} / \mathrm{D}$), which are combined into thermal strain gradient.

Figure 3-2 illustrates how base thickness and subbase thickness can be combined. It is assumed that the two layers have an unbonded interface, one elastic modulus represents the combined layer, and the Poisson's ratios of the two layers are approximately the same (Khazanovich and Yu, 2001). Sensitivity study of the accuracy of the combined base/subbase thickness was conducted for the 14 MDOT designs by comparing the mechanistic responses computed based on the two-layer system (PCC and combined base/subbase layers on the top of subgrade) and that based on the three-layer system (PCC, base and subbase layers on the top of subgrade). In this sensitivity study, for the three-layer system approach, an unbonded interface condition and Totski interface model (ERES Consultants, 1999) were considered between base and subbase layers and between PCC and base layers, respectively. An unbonded interface condition was considered for the two-layer system approach. It was found that the difference in the magnitudes of stresses between the two approaches is less than 4%. The results from the sensitivity study are illustrated in Figure 3-3 as compared with the results based on no subbase for the 14 MDOT design.

Figure 3-2: Combining base and subbase layers

Figure 3-3: Comparison of variation in results for combined base/subbase and no subbase approaches
*Remarks: there is no subbase layer for projects 1 and 5
The CTE and thermal gradient are simultaneously accounted for in terms of the product of the two variables, $\alpha(\Delta T / D)$ or thermal strain gradient. Figure 3-4 illustrates the sensitivity plots to validate this assumption. The sensitivity study was conducted for nine cases by comparing the mechanistic responses computed based on two analysis approaches. Analysis approach 1 consists of varying CTE, while keeping thermal gradient constant. Analysis approach 2 consists of keeping CTE constant, while varying thermal gradient.

Figure 3-4: Combining CTE and thermal gradient

* Analysis 1: Constant temperature gradient ($+2{ }^{\circ} \mathrm{F} / \mathrm{in}$.) with variation of CTE (0.1×10^{-6} to 10×10^{-6} in. $/ \mathrm{in} . /^{\circ} \mathrm{F}$)

Analysis 2: Constant CTE (5×10^{-6} in. $/ \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+4^{\circ} \mathrm{F} / \mathrm{in}$.)
** PCC shoulder, $10-\mathrm{in}$. PCC thickness, 16 -in. base/subbase thickness, $100-\mathrm{psi} / \mathrm{in}$. k -value, single axle loading, 177-in. joint spacing

It was found that the mechanistic responses computed based on the two approaches are identical. A statistical experiment to illustrate the validity of combining CTE and thermal gradient was conducted by repeating this process for eight more combinations of pavement parameters selected based on a fractional factorial (Appendix E). It should be noted that pavements with different slab thickness with the same thermal strain gradient is not valid for comparison since the pavements are subjected to different temperature differentials. Comparison of pavement responses under a curled slab condition, therefore, should only be made within the same slab thickness.

Considering Only Frequently Seen Load Configurations

Several axle and truck configurations are contained in the Truck driver's guidebook for Michigan (Michigan Center for Truck Safety, 2001). Based on the TAG's recommendations, certain axle and truck configurations, not existent or not frequently seen, could presumably be omitted. Only 8 axle configurations and 11 truck configurations are selected for the experimental matrix. Figures 3-5 (a) and (b) illustrate the axle and truck configurations included in the parametric study.

Axle Type	Configuration and Designated Loading
Single Axle	18,000
Tandem Axle	- $3^{\prime} 6^{\prime \prime}$. $16,000 \cdot 16,000$
Tridem Axle	$+3^{\prime} 6^{n}+33^{\prime \prime}=$ $13,000 \quad 13,000 \quad 13,000$
Quad Axle	
Multi-Axle (5)	$3^{3} 6^{n}+33^{3} 6^{*}+36^{\prime}+33^{\prime} 6^{6}+$ $13,000 \quad 13,000 \quad 13,000 \quad 13,00013,000$
Multi-Axle (6)	$+3^{\prime} 6^{\prime \prime}+36^{3} \div 3^{\prime} 6^{\prime}+3^{\prime} 6^{6}+36^{\prime}+$
Multi-Axle (7)	
Multi-Axle (8)	$13,00013,00013,00013,00013,00013,00013,00013,000$

(a) Axle configurations

Figure 3-5: Load configurations considered in the study

Figure 3-5: Load configurations considered in the study (continued)

Adjusting Increments for Non-Discrete Inputs

Input increments need to be carefully considered for non-discrete variables, in this case, these included base/subbase thickness, modulus of subgrade reaction (k-value), and thermal strain gradient. The finer increments can better capture trends of the mechanistic responses, but will
also result in increased number of FE runs. Therefore, it is crucial to capture trends of the mechanistic responses with large increments of input parameters as possible. Five values of each non-discrete variable were used in the sensitivity study of input increments. Based on this "mini analysis", it was determined that response trends could be adequately captured by using three values for each non-discrete variable. These values for the base/subbase thickness, k-value, and thermal strain gradient are $4,16,26$ in., $30,100,200 \mathrm{psi} / \mathrm{in}$., and $0, \pm 10, \pm 20 \times 10^{-6} \mathrm{in} .^{-1}$, respectively. It should be noted that positive thermal gradients are considered for analysis of stresses at the bottom of the PCC slab, while negative thermal gradients are considered for analysis of stresses at the top of the PCC slab, since the critical stress locations correspond with the types of thermal gradient. Figures 3-6 through 3-8 illustrate the trends of stresses with variations of base/subbase thickness, modulus of subgrade reaction, and thermal strain gradient, respectively. Note that if not specified, the parameters for these sensitivity plots are $10-\mathrm{in}$. PCC slab, $16-\mathrm{in}$. base/subbase, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction, PCC shoulder, 177-in. joint spacing, 18 -kips single axle, and thermal strain gradient of zero.

Figure 3-6: Sensitivity trend due to the variation in base/subbase thickness

Figure 3-7: Sensitivity trend due to the variation in modulus of subgrade reaction

Figure 3-8: Sensitivity trend due to the variation in thermal strain gradient

3.3 Final Experimental Matrix

In addition to the above mentioned strategies, locations of stresses (at the bottom and the top of the PCC slab) are also effectively selected to reduce the number of runs. For positive thermal gradients, only stresses at the bottom of the PCC slab are considered, while stresses at the top of the PCC slab are considered for negative thermal gradients. The experimental matrix size has been reduced to 43,092 FE runs as illustrated in Table 3-3. It should be noted that all possible input parameters for all discrete variables and three levels of each non-discrete variable are addressed in this final experimental matrix. However, the combinations of non-discrete variables that are not addressed in this final experimental matrix are still of interest and will be obtained through the interpolation scheme, which is to be discussed later.

Table 3-3: Final experimental matrix

Input variables	Number of cases
PCC slab thickness	$7(6,7, \ldots 12 \mathrm{in})$.
Base/subbase thickness	$3(4,16,26 \mathrm{in})$.
Modulus of subgrade reaction	$3(30,, 100,200 \mathrm{psi} / \mathrm{in})$.
Slab length (joint spacing)	2
Joint design	1
Shoulder type	3
$\alpha . \Delta \mathrm{T} / \mathrm{D}$	$3\left(0, \pm 10, \pm 20 \times 10^{-6} \mathrm{in}^{-1}\right)$
Location of stress	2
Load configuration	19
Total combinations	43,092

Chapter IV

PARAMETRIC STUDY

Based on a complete factorial of 43,092 combinations of parameters identified in the previous chapter, a preliminary parametric study is conducted by performing a series of FE analyses using the ISLAB2000 program. The results obtained from this parametric study are included in this chapter. The parametric study will be presented in four parts: structural model, analysis process, documentation of analysis results and interpretation of analysis results.

4.1 Structural Model

The pavement system for this analysis typically comprises of three to six PCC slabs, depending on the length of the load configuration. This is to ensure that the first and last PCC slabs are unloaded as recommended in Report 1-26 (NCHRP, 1990) to analyze the pavement system with extended slabs in order to reflect realistic boundary conditions that all the slabs are bounded by two slabs on both directions. Two lane widths (12 and 14 ft) and two shoulder types (untied AC and tied PCC) are considered. The study focuses on the analysis of the mechanistic responses in the outer lane (the truck lane), which is traditionally the design lane. Two joint spacings (177 and 315 in.) are considered. The structural model with two traffic lanes was not found to result in different pavement response in the outer wheel path as compared to the results obtained from the structural model with one traffic lane. Therefore, the second traffic lane is not included in the structural model to reduce the structure size and consequently analysis time. The wheel path considered in this study is 20 in . from center of outer wheel to the traffic stripe, similar to the pavement model used by Darter et al, 1994. Mesh size of $12 \times 12 \mathrm{in}$. is used as a standard mesh size. This mesh size was found to achieve both satisfactory convergence and reasonable runtime. Figure 4-1 illustrates the typical slab structure layout as modeled using ISLAB2000.

Figure 4-1: Overview of structural model

4.2 Analysis Process

The flow chart in Figure 4-2 illustrates the required components for the FE analysis. It can be seen that all structural and environmental factors have been addressed in the final experimental matrix. However, the critical load location needs to be derived first before the creation of the stress catalog. The critical load location is defined by the load location along the wheel path that results in the most critical mechanistic response, the highest value of the maximum responses for each load location.

Figure 4-2: Required components for the analytical tool

Procedure of determining critical load location

The procedure for determining critical load location is illustrated in Figure 4-3. The procedure involves the computation of stresses at every load location along the wheel path along the slab length for a given set of conditions. The load location that results in the most critical (maximum) stress will be considered as the critical load location.

Figure 4-3: Procedure of determining critical load location

Assumptions and validation process

The procedure for determining critical load location is a time consuming process and is impractical to be performed for all possible combinations of input parameters in the final experimental matrix. It was assumed that variations in the following variables do not affect critical load locations:

- PCC thickness,
- Base/subbase thickness,
- k-value,
- Lateral support condition and
- Thermal strain gradient.

Validation of these assumptions was conducted to show that the critical load location is constant with the variation of the five non-influential variables. The fractional factorial design of $\frac{1}{3^{3}} \cdot 3^{5}=9$ is the method used to study the impact of variables within a practical size of validation matrix. The validation matrix used for all trucks and axles is summarized in Figure 4-4 (a). Note that fractional factorial design is a statistical method that allows for fractionation of a complete experimental factorial, while still balancing the fraction.

	Validation\#1	Validation\#2	Validation\#3	Validation\#4	Validation\#5	Validation\#6	Validation\#7	Validation\#8	Validation\#9
Shoulder Type	PCC	AC	Widened Lane	PCC	AC	Widened Lane	PCC	AC	Widened Lane
PCC thickness, in.	10"	$10^{\prime \prime}$	10"	12"	12"	12"	8"	$8{ }^{\prime \prime}$	$8{ }^{\prime \prime}$
Base/subbase thickness, in.	16 "	26 "	4"	26 "	4"	16 "	4"	16 "	$26^{\prime \prime}$
k-value, psi/in.	100	30	200	200	100	30	30	200	100
$\alpha . \Delta T / D, \times 10^{-6} \mathrm{in}^{-1}$	10	5	15	10	5	15	10	5	15
Location increment, in.	12	24	24	24	24	24	24	24	24

(a) Validation matrix

(b) Example validation and determination (bottom stresses, MI-16, 177-in. joint spacing)

(c) Physical meaning of determined critical load location

(d) Longitudinal stress profile and location of critical stress at critical load location for validation case 1

Figure 4-4: Validation and determination of critical load location

Figure 4-4 (b) illustrates an example of the assumption validation process used in the determination of the critical load location for bottom stresses for MI-16 on 177-in. joint spacing pavements. Stresses were computed for load locations along the wheel path for the nine validation cases as identified in Figure 4-4 (a). From the analysis results in Figure 4-4 (b), the non-influential variables were found to impact the stress magnitude; however, the non-influential variables did not significantly impact critical load location. For this example, the critical load location was approximately 84 in . for all the nine cases irrespective of the variation of the noninfluential factors. Figure $4-4$ (c) illustrates the physical meaning of the computed critical location in Figure 4-4 (b). An example stress profile for validation case 1 and the corresponding critical stress location are illustrated in Figure 4-4 (d). More example illustrations can be seen in Figures 4-5 and 4-6.

					:	:

Figure 4-5: Example validation and determination (bottom stresses, MI-9, 177-in. joint spacing)

Figure 4-6: Example validation and determination (bottom stresses, MI-20, 177-in. joint spacing)
Table 4-1: Summary of critical load locations

Load configuration	For critical stress at the bottom of the PCC		For critical stress at the top of the PCC	
	177 in. joint spacing	315 in. joint spacing	177 in. joint spacing	315 in. joint spacing
Single axle	axle center at the midslab	axle center at the midslab	axle at the joint	axle at the joint
Tandem axle	axle center at the midslab	axle center at the midslab	1 st set of two wheels at the joint	1st set of two wheels at the joint
Tridem axle	axle center at the midslab	axle center at the midslab	1st set of two wheels at the joint	3rd set of two wheels at the joint
Quad axle	axle center at the midslab	axle center at the midslab	1 st set of two wheels at the joint	4th set of two wheels at the joint
Multi-axle 5	axle center at the midslab	axle center at the midslab	1 st set of two wheels at the joint	5th set of two wheels at the joint
Multi-axle 6	axle center at the midslab	axle center at the midslab	1 st set of two wheels at the joint	6th set of two wheels at the joint
Multi-axle 7	axle center at the midslab	axle center at the midslab	1 st set of two wheels at the joint	7 7h set of two wheels at the joint
Multi-axle 8	axle center at the midslab	axle center at the midslab	1 st set of two wheels at the joint	8 th set of two wheels at the joint
MI-2	108 in. from the joint	48 in. from the joint	24 in. from the joint	240 in. from the joint
MI-7	at the joint	36 in. from the joint	96 in. from the joint	192 in. from the joint
MI-8	60 in. from the joint	96 in. from the joint	60 in. from the joint	264 in. from the joint
MI-9	132 in. from the joint	at the joint	60 in. from the joint	264 in. from the joint
MI-11	144 in. from the joint	36 in. from the joint	60 in. from the joint	264 in. from the joint
MI-12	144 in. from the joint	48 in. from the joint	48 in. from the joint	264 in. from the joint
MI-13	144 in. from the joint	156 in. from the joint	48 in. from the joint	264 in. from the joint
MI-16	84 in. from the joint	252 in. from the joint	156 in. from the joint	180 in. from the joint
MI-17	72 in. from the joint	156 in. from the joint	144 in. from the joint	180 in. from the joint
MI-19	144 in. from the joint	36 in. from the joint	48 in. from the joint	276 in. from the joint
MI-20	144 in. from the joint	36 in. from the joint	48 in. from the joint	252 in. from the joint

It is important to note that this process needs to be repeated for every axle and truck configuration, joint spacing, and stress location (top and bottom of the PCC slab) as these factors are considered influential in affecting critical load locations. Critical load locations for all eight axle configurations and 11 truck configurations are summarized in Table 4-1. Critical load locations for axle configurations were found to be in the vicinity of the middle of the slab and the transverse joint for stresses at the bottom and top of the PCC slab, respectively. However, no typical location was found for critical load locations for truck configurations due to the complex combinations of the axles and axle spacings within truck configurations.

4.3 Documentation of Analysis Results

Impact of structural factors, environmental factors, loading factors, and interaction between these factors on three types of mechanistic responses: longitudinal stress at the bottom of the PCC slab, transverse stress at the bottom of the PCC slab, and longitudinal stress at the top of the PCC slab is investigated.

Impact of structural factors

Figures 4-7 (a) through (f) are example illustrations of the impact of structural features on the longitudinal stress at the bottom of the PCC slab under various conditions as stated in the figures. Note that these figures represent MI-16 loading (see Figure 4-7 (c) for configuration), 16-in. base/subbase, $100-\mathrm{psi} / \mathrm{in}$. k-value, PCC shoulder, and $177-\mathrm{in}$. joint spacing unless identified otherwise. All the figures show that PCC thickness has a significant impact in reducing stresses. In addition, the figures show that the changes in stresses due to changes in base/subbase thickness, k-value, and lateral support condition appear to be less relevant as the PCC slab becomes thicker. Also, joint spacing does not appear to have significant impact on edge stresses. Impact of lateral support condition will be discussed in detail later. Figures 4-7 (d) and (f) show an interaction of k -value and joint spacing with thermal gradients, which is to be discussed later. Although the magnitude of longitudinal stress at the bottom of the PCC slab were found to vary with combinations of input parameters, similar trends were observed in sensitivity plots over the entire experimental matrix. Similar trends were observed for the transverse stress at the bottom of the PCC slab with the exception of the impact of joint spacing, which was found to have no significant impact on the transverse stresses, even under the influence of a thermal gradient. An example critical location of stress is illustrated in Figure 4-7 (g).

The impact of structural features on longitudinal stress at the top of the PCC slab is illustrated in Figures 4-8 (a) through 4-8 (f). Note that these figures represent MI-16 loading (see Figure 3-4 (b) for configuration), $16-\mathrm{in}$. base/subbase, 100-psi/in. k-value, PCC shoulder, and 177-in. joint spacing the same conditions as previous parts unless identified otherwise. It can be seen in these figures that the magnitudes of longitudinal stresses at the top of the PCC slab are lower than the longitudinal stresses at the bottom of the PCC slab illustrated in the previous part. However, the trends observed for these stresses are similar. It should be noted that negative thermal gradients are considered in Figures 4-8 (d) and 4-8 (f), since the critical location of stresses is at the top of the PCC slab in these figures. An example critical location of stress is illustrated in Figure 4-8 (g).

Impact of loading factors

Figures 4-7 (h) and 4-8 (h) are example illustrations of the impact of the load configurations (axles and trucks) on the magnitude and normalized magnitude (by total weight of the configuration) of longitudinal stresses at the bottom and top of the PCC slab, respectively. In order to compare the contribution of each axle type (carrying different weight) on loading stress, it is necessary to express the stress as psi/kip. It can be seen that the normalized stress magnitudes are lower as the axle configurations have more load carrying wheels, implying that at the same stress level, a multi-axle can carry heavier loads than a single or tandem axle. However, the impact of truck configurations is not shown in these figures because each truck configuration makes various numbers of passes at the point of interest on the pavement slab. For example, the truck type MI-16 (see Figure 3-4 (b)) will result in four peaks of stresses corresponding to one single axle (driving axle), one quad axle, and two tandem axles. Hence, normalization based on total weight is not valid. The normalization should be based on the number of passes made by each axle group.

Impact of load lateral placement on mechanistic responses is presented in Figure 4-9 (a). Stresses were calculated for several load locations across the lane width. It was found that the PCC shoulder resulted in the lowest stresses among the three lateral support conditions considered in the study for the load located along the wheel path. It was found that the magnitudes of longitudinal stresses for AC shoulder (12-ft lane with AC shoulder) were higher than that for widened lane (also AC shoulder but with 14-ft lane). This could be attributed to the fact that a widened lane (14 ft .) creates a pseudo-interior loading condition (the wheel path shifted 2 ft towards the centerline, resulting in the reduction of stresses from edge loading). An example sensitivity plot of temperature-induced stresses in Figure 4-9 (b) illustrates that lateral support condition does not have a significant impact on temperature-induced stress in longitudinal direction. A series of sensitivity plots of the impact of lateral load placement on stresses for different lateral support conditions are presented in Appendix G.

(a) Impact of base/subbase thickness, $\alpha(\Delta T / D)=0 \times 10^{-6} \mathrm{in}^{-1}$

c) Impact of modulus of subgrade reaction, $\alpha(\Delta T / D)=0 \times 10^{-6} \mathrm{in} .^{-1}$

(e) Impact of joint spacing, $\alpha(\Delta T / D)=0 \times 10^{-6}$ in. $^{-1}$

(b) Impact of lateral support condition, $\alpha(\Delta T / D)=0 \times 10^{-6} \mathrm{in}^{-1}$

(d) Impact of modulus of subgrade reaction, $\alpha(\Delta T / D)=+20 \times 10^{-6} \mathrm{in} .^{-1}$

(f) Impact of joint spacing, $\alpha(\Delta T / D)=+20 \times 10^{-6}$ in. ${ }^{-1}$
335.5

293.1
267.6
242.2
216.8
191.3
165.9
140.5
115.0
89.6
64.2
64.2
38.7
38.7
13.3
13.3
4.8
(g) Stress contour for $10-\mathrm{in}$. PCC slab, thermal strain gradient $=+20 \times 10^{-6} \mathbf{i n} .^{-1}$

(h) 10-in. PCC slab, thermal strain gradient $=0 \times 10^{-6} \mathrm{in}^{-1}$

Figure 4-7: Example sensitivity plots of longitudinal stresses at the bottom of the PCC slab

(g) Stress contour for 10-in. PCC slab, thermal strain gradient $=-20 \times 10^{-6} \mathrm{in}^{-1}$

(h) 10-in. PCC slab, thermal strain gradient $=0 \times 10^{-6}$ in. ${ }^{-1}$

Figure 4-8: Example sensitivity plots of longitudinal stresses at the top of the PCC slab

(a) Effect of load lateral placement on different lateral support conditions

Remarks: Longitudinal stresses at the bottom of the PCC slab, 10-in. PCC thickness, 16-in. base/subbase thickness, $100-\mathrm{psi} / \mathrm{in}$. k-value, single axle, zero thermal gradient)

(b) Longitudinal temperature stress at the bottom of the PCC slab

Figure 4-9: Impact of lateral support condition

Impact of environmental factors

Environmental factors in this study are accounted in terms of thermal strain gradient (the product of CTE with positive or negative thermal gradients). As illustrated in Figures 4-10 (a) and (b), a positive gradient causes a downward curling of the slab, while a negative gradient causes an upward curling of the slab. The increase in magnitude of thermal gradient results in the increase in the magnitude of stresses, when positive and negative thermal gradients are considered in computation of stresses at the bottom and top of the PCC slab, respectively. As observed in the previous section (Figures 4-7 (d) and 4-8 (d)), the magnitude of the longitudinal stress appears to be impacted by the interaction between the thermal strain gradients, k-value and pavement thickness. This interactive trend is supported by the curling stress equations by Bradbury (Huang, 1993), where thermal curling stress is a function of finite slab correction factor. This
factor generally increases with the increase in the ratio of joint spacing (for longitudinal stresses) to radius of relative stiffness.

(a) Downward curling of slab due to a positive thermal gradient

(b) Upward curling of slab due to a negative thermal gradient

Figure 4-10: Slab curling due to different types of thermal gradients (Yu et al, 2004)

Boundary support condition along the longitudinal joints of the slabs is characterized through AGG factor in ISLAB2000 program. It is crucial that an appropriate value of AGG factor is selected to represent the load transfer mechanism. The AGG factor can be empirically estimated as follows (Crovetti, 1994):

$$
\begin{equation*}
A G G=\left(\frac{\frac{1}{L T E}-0.01}{0.012}\right)^{-\frac{1}{0.849}} \cdot k \cdot l \tag{4-1}
\end{equation*}
$$

Where \quad AGG $=\quad$ AGG factor LTE = Load transfer efficiency, percent $\ell \quad=\quad$ Radius of relative stiffness, in $\mathrm{k} \quad=\quad$ Modulus of subgrade reaction

The radius of relative stiffness is defined as follows:

$$
\begin{equation*}
l=\sqrt[4]{\frac{E \cdot h^{3}}{12\left(1-\mu^{2}\right) \cdot k}} \tag{4-2}
\end{equation*}
$$

Where	ℓ	$=$	Radius of relative stiffness, in
E	$=$	Elastic modulus of layer 1	
h	$=$	Thickness of layer 1	
μ	$=$	Poisson's ratio for layer 1	
k	$=$	Modulus of subgrade reaction	

In general, the typical values of LTE for tied PCC shoulder and untied AC shoulder vary from $25-90 \%$ and $0-40 \%$, respectively. Based on equation $4-1$, the ranges of $A G G / k \ell$ were calculated as 0-0.77 and 0.34-16.5 for tied PCC shoulder and untied AC shoulder, respectively. Based on the inputs in the parametric study, the range of $\mathrm{k} \ell$ varies from 1188 to 8286 psi . A sensitivity study of the effect of AGG factor on magnitude of edge stresses is conducted for ranges of AGG factor from 5 to $7,000 \mathrm{psi}$ (AC shoulder and widened lane) and from 300 to $2,500,000 \mathrm{psi}$ (PCC shoulder). Based on these results, the AGG factors of $1,000,000 \mathrm{psi}$ and $1,000 \mathrm{psi}$ are selected for tied PCC shoulder and untied AC shoulder for the parametric study, respectively. Note that this sensitivity study is conducted for 177 -in. joint spacing and 18 -kips single axle at flat slab condition. Several sensitivity plots are generated as illustrated in Figures 4-11 (a) through 4-11 (c). It can be seen that the stress magnitude is not significantly sensitive to AGG factor for PCC shoulder and widened lane, while for AC shoulder the variation in stress magnitude could be up to 10% from stress magnitude computed based on the selected AGG factor ($1,000 \mathrm{psi}$).

A complete documentation of interaction between all design parameters in the parametric study can be seen in Appendix F. Summary of the interaction is summarized in Table 4-2.

(a) PCC shoulder

(b) AC shoulder

(c) Widened lane

Figure 4-11: Effect of longitudinal joint AGG factor on stress magnitude

Table 4-2: Summary of interaction between parameters on stresses

Parameters	Slab condition	Response type	Effects of parameters
PCC thickness versus base/subbase thickness	Flat slab	Longitudinal at bottom of PCC	Thicker base/subbase thickness results in lower stress, but smaller magnitude of stress reduction was observed with thicker PCC
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	Same as that for longitudinal stress at bottom of PCC
	Curled slab	Longitudinal at bottom of PCC	With higher temperature differential (thicker PCC), thicker base/subbase thickness results in higher stress magnitude
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	Same as that for longitudinal stress at bottom of PCC
PCC thickness versus modulus of subgrade reaction	Flat slab	Longitudinal at bottom of PCC	Higher value of modulus of subgrade reaction results in lower stress value. There is no significant interaction between these parameters observed.
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	Same as that for longitudinal stress at bottom of PCC
	Curled slab	Longitudinal at bottom of PCC	Higher value of modulus of subgrade reaction results in higher stress value. Change in stress due to modulus of subgrade reaction is larger as temperature differential increases (PCC thickness increases), and eventually the change in stress will remain constant.
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	Same as that for longitudinal stress at bottom of PCC
PCC thickness versus lateral support condition	Flat slab	Longitudinal at bottom of PCC	Higher stress value is observed in pavement with AC shoulder. There is no significant interaction between these parameters observed.
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	The magnitude of stress are about the same for all three lateral support conditions. There is no significant interaction between these parameters observed.
	Curled slab	Longitudinal at bottom of PCC	Higher stress value is observed in pavement with AC shoulder. There is no significant interaction between these parameters observed.
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	Higher stress value is observed in pavement with Widened lane. There is no significant interaction between these parameters observed.

Table 4-2: Summary of interaction between parameters on stresses (continued)

Parameters	Slab condition	Response type	Effects of parameters
Product of CTE with thermal gradient versus base/subbase thickness	177-in. joint spacing, curled slab	Longitudinal at bottom of PCC	Increase in product of CTE with thermal gradient linearly results in increase in stress magnitude. Interaction between these parameters is observed that increase in stress magnitude due to increase in product of CTE with thermal gradient is more intense with thicker base/subbase
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	Same as that for longitudinal stress at bottom of PCC
	315-in. joint spacing, curled slab	Longitudinal at bottom of PCC	Increase in product of CTE with thermal gradient linearly results in increase in stress magnitude. However, the interaction observed for 177 -in. joint spacing is not observed for this $315-\mathrm{in}$. joint spacing.
		Longitudinal at top of PCC	Increase in product of CTE with thermal gradient linearly results in increase in stress magnitude. However, the interaction observed for 177 -in. joint spacing is not observed for this $315-\mathrm{in}$. joint spacing.
		Transverse at bottom of PCC	Same as that for 177-in. joint spacing
Product of CTE with thermal gradient versus base/subbase thickness	177-in. joint spacing, curled slab	Longitudinal at bottom of PCC	Increase in product of CTE with thermal gradient linearly results in increase in stress magnitude. Interaction between these parameters is observed that increase in stress magnitude due to increase in product of CTE with thermal gradient is more intense with higher value of moduluf of subgrade reaction
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	Same as that for longitudinal stress at bottom of PCC
	315-in. joint spacing, curled slab	Longitudinal at bottom of PCC	Increase in product of CTE with thermal gradient linearly results in increase in stress magnitude. However, the interaction observed for this $315-\mathrm{in}$. joint spacing is not as intense as that for $177-\mathrm{in}$. joint spacing.
		Longitudinal at top of PCC	Increase in product of CTE with thermal gradient linearly results in increase in stress magnitude. However, the interaction observed for this 315 -in. joint spacing is not as intense as that for $177-\mathrm{in}$. joint spacing.
		Transverse at bottom of PCC	Same as that for 177-in. joint spacing
Product of CTE with thermal gradient versus joint spacing	Curled slab	Longitudinal at bottom of PCC	Increase in product of CTE with thermal gradient linearly results in increase in stress magnitude. Interaction between these parameters is observed that increase in stress magnitude due to increase in product of CTE with thermal gradient is more intense with longer joint spacing.
		Longitudinal at top of PCC	Same as that for longitudinal stress at bottom of PCC
		Transverse at bottom of PCC	Increase in product of CTE with thermal gradient linearly results in increase in stress magnitude. Joint spacing has no significant impact on stress magnitude.

4.4 Possible Application of Analysis Results

Although pavements experience a wide variety of stress magnitudes, the preliminary results obtained from the parametric study can be used to obtain pavement cross-sections that will likely have the same stress level. Through the application of the interpolation scheme (to be discussed in the Chapter 5), several pavement design alternatives with the same level of loading stress can be obtained. For example, three cross-sections in Figure 4-12 have different design parameters, but they experience the same level of stress. This application offers the pavement engineers more design alternatives with the same behavior (response) from the mechanistic standpoint. An extensive set of equivalent stress cross-sections is presented in Appendix H.

Figure 4-12: Example illustrations of equivalent stress sections (100 psi stress level under 18-kips single axle)

Chapter V

INTERPOLATION SCHEME

Interpolation scheme is a statistical procedure used to approximate unknown values (non-nodal points) in the vicinity of known values (nodal points). Interpolation scheme in this project is used because it is required to obtain mechanistic responses for all the combinations of the non-discrete inputs, not addressed in the final experimental matrix. The experimental matrix includes all possibilities of all the discrete design inputs: PCC thickness, joint spacing, lateral support condition, and load configuration. However, only three values were specified for each of these non-discrete inputs in the final experimental matrix:

- k-value (30 psi/in., $100 \mathrm{psi} / \mathrm{in} ., 200 \mathrm{psi} / \mathrm{in}$.),
- Base/subbase thickness (4 in., 16 in., 26 in.),
- Thermal strain gradients $\left(0 \mathrm{in}^{-1}, \pm 10 \times 10^{-6} \mathrm{in} .^{-1}, \pm 20 \times 10^{-6} \mathrm{in} .^{-1}\right)$.

Since the interpolation process in this study is used to approximate the results that are not directly analyzed by the FE model across ranges of the three non-discrete input parameters: modulus of subgrade reaction, base/subbase thickness, thermal strain gradient, this interpolation scheme is a three-dimensional process.

5.1 Least-Squares Criteria

The statistical method least-square approximation, proposed by the German mathematician Carl Friedrich Gauss in 1795, is applied to develop and evaluate interpolation schemes in this study. In general, the method is unbiased and algebraically provides an approximation to a dependent (response) variable Y that has the lowest variance. This research study focuses on three response variables: longitudinal stress at the top of the PCC, longitudinal stress at the bottom of the PCC, and transverse stress at the bottom of the PCC. With a linear model, coefficients β_{j} for the leastsquares solution satisfy the normal equations:

$$
\begin{equation*}
\frac{\partial\left(\sum_{i=1}^{n} e_{i}^{2}\right)}{\partial \beta_{j}}=0, j=0,1,2, \ldots, m \tag{5-1}
\end{equation*}
$$

where Y_{i} is the value of variable Y at point $i, y_{i}=\beta_{0}+\beta_{1} \cdot x_{i}^{1}+\beta_{2} \cdot x_{i}^{2}+\beta_{3} \cdot x_{i}^{3}+\ldots+\beta_{m} \cdot x_{i}^{m}$ is the predicted value at point $i, e_{i}=Y_{i}-y_{i}$ is error of the predicted value, and $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, \ldots x_{i}^{m}$ are independent (predictor) variables evaluated at point $i, i=1,2, \ldots, n$.

The matrix formulation of the solution in the nonsingular case is:

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} \cdot x_{i}^{1}+\beta_{2} \cdot x_{i}^{2}+\beta_{3} \cdot x_{i}^{3}+\ldots+\beta_{m} \cdot x_{i}^{m}=\bar{x}_{i} \cdot \bar{\beta} \tag{5-2}
\end{equation*}
$$

$$
\begin{align*}
& \bar{x}_{i}=\left\{\begin{array}{ccccc}
1 & x_{i}^{1} & x_{i}^{2} & \ldots & x_{i}^{m}
\end{array}\right\} \\
& \bar{\beta}=\left\{\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{m}
\end{array}\right\}=\left[X^{T} \cdot X\right]^{-1} \cdot X^{T} \cdot \bar{Y} \tag{5-4}\\
& X=\left\{\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\bar{x}_{3} \\
\vdots \\
\bar{x}_{n}
\end{array}\right\}=\left\{\begin{array}{ccccc}
1 & x_{1}^{1} & x_{1}^{2} & \cdots & x_{1}^{m} \\
1 & x_{2}^{1} & x_{2}^{2} & \cdots & x_{2}^{m} \\
1 & x_{3}^{1} & x_{3}^{2} & \ldots & x_{3}^{m} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n}^{1} & x_{n}^{2} & \cdots & x_{n}^{m}
\end{array}\right\} \tag{5-5}\\
& \bar{Y}=\left\{\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3} \\
\vdots \\
Y_{n}
\end{array}\right\} \tag{5-6}
\end{align*}
$$

The matrix formulation of the least-squares criteria is used to describe the interpolation process which will be discussed later.

5.2 Development of Interpolation Scheme

First, a sensitivity study was conducted to investigate the impact of the three non-discrete input parameters. The impact of modulus of subgrade reaction and base/subbase thickness on the magnitude of stresses were found to be highly non-linear as the change in the slope of the relationship was observed. On the other hand, initial trials showed the impact of thermal strain gradient to have little curvature. Therefore, the interpolation process is divided into two steps: (i) two-dimensional interpolation based on known anchor results obtained from the FE model across ranges of base/subbase thickness and modulus of subgrade reaction at each level of thermal strain gradient, and (ii) one-dimensional interpolation based on the interpolated results from step 1 across range of thermal strain gradient. The interpolation is illustrated in Figure 5-1. Using the least-squares criteria, several interpolation schemes were developed and compared as discussed later. The prototype of the interpolation scheme is explained below in matrix form.

Step 1:

$$
\begin{equation*}
\sigma\left(H^{*}, k^{*}, \alpha_{i}\right)=\bar{X} * \cdot \hat{\beta} \tag{5-7}
\end{equation*}
$$

Where $\quad \sigma\left(H^{*}, k^{*}, \alpha_{i}\right)$ is mechanistic response for the target combination of base/subbase thickness and modulus of subgrade reaction at level α_{i} of thermal strain gradient
$\bar{X} *$ is the vector of predictor variables

$$
\bar{X}^{*}=\left\{\begin{array}{llllllll}
1 & H^{*} & H^{*^{2}} & \ln \left(k^{*}\right) & H^{*} \cdot \ln \left(k^{*}\right) & H^{*^{2}} \cdot \ln \left(k^{*}\right) & \frac{1}{k^{*}} & \frac{H^{*}}{k^{*}} \tag{5-8}
\end{array} \frac{H^{*^{2}}}{k^{*}}\right\}
$$

Where $\quad H^{*}$ is target base/subbase thickness
k^{*} is target modulus of subgrade reaction
α_{1} is anchor value $0 \mathrm{in} .^{-1}$ of thermal strain gradient α_{2} is anchor value $\pm 10 \times 10^{-6} \mathrm{in}^{-1}$ of thermal strain gradient α_{3} is anchor value $\pm 20 \times 10^{-6} \mathrm{in}^{-1}$ of thermal strain gradient $\hat{\beta}$ is least-squares coefficient vector

$$
\begin{align*}
& \hat{\beta}=\left\{\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4} \\
\beta_{5} \\
\beta_{6} \\
\beta_{7} \\
\beta_{8}
\end{array}\right\}=\left[X^{T} \cdot X\right]^{-1} \cdot X^{T} \cdot \hat{\sigma} \tag{5-9}\\
& X=\left\{\begin{array}{l}
\bar{X}\left(H_{1}, k_{1}\right) \\
\bar{X}\left(H_{1}, k_{2}\right) \\
\bar{X}\left(H_{1}, k_{3}\right. \\
\bar{X}\left(H_{2}, k_{1}\right) \\
\bar{X}\left(H_{2}, k_{2}\right) \\
\bar{X}\left(H_{2}, k_{3}\right. \\
\bar{X}\left(H_{3}, k_{1}\right) \\
\bar{X}\left(H_{3}, k_{2}\right) \\
\bar{X}\left(H_{3}, k_{3}\right)
\end{array}\right\}=\left[\begin{array}{llllllll}
1 & H_{1} & H_{1}^{2} & \ln \left(k_{1}\right) & H_{1} \cdot \ln \left(k_{1}\right) & H_{1}^{2} \cdot \ln \left(k_{1}\right) & \frac{1}{k_{1}} & \frac{H_{1}}{k_{1}} \\
\frac{H_{1}^{2}}{k_{1}} \\
1 & H_{1} & H_{1}^{2} & \ln \left(k_{2}\right) & H_{1} \cdot \ln \left(k_{2}\right) & H_{1}^{2} \cdot \ln \left(k_{2}\right) & \frac{1}{k_{2}} & \frac{H_{1}}{k_{2}} \\
\frac{H_{1}^{2}}{k_{2}} \\
1 & H_{1} & H_{1}^{2} & \ln \left(k_{3}\right) & H_{1} \cdot \ln \left(k_{3}\right) & H_{1}^{2} \cdot \ln \left(k_{3}\right) & \frac{1}{k_{3}} & \frac{H_{1}}{k_{3}} \\
\frac{H_{1}^{2}}{k_{3}} \\
1 & H_{2} & H_{2}^{2} & \ln \left(k_{1}\right) & H_{2} \cdot \ln \left(k_{1}\right) & H_{2}^{2} \cdot \ln \left(k_{1}\right) & \frac{1}{k_{1}} & \frac{H_{2}}{k_{1}} \\
\frac{H_{2}^{2}}{k_{1}} \\
1 & H_{2} & H_{2}^{2} & \ln \left(k_{2}\right) & H_{2} \cdot \ln \left(k_{2}\right) & H_{2}^{2} \cdot \ln \left(k_{2}\right) & \frac{1}{k_{2}} & \frac{H_{2}}{k_{2}} \\
\frac{H_{2}^{2}}{k_{2}} \\
1 & H_{2} & H_{2}^{2} & \ln \left(k_{3}\right) & H_{2} \cdot \ln \left(k_{3}\right) & H_{2}^{2} \cdot \ln \left(k_{3}\right) & \frac{1}{k_{3}} & \frac{H_{2}}{k_{3}} \\
\frac{H_{2}^{2}}{k_{3}} \\
1 & H_{3} & H_{3}^{2} & \ln \left(k_{1}\right) & H_{3} \cdot \ln \left(k_{1}\right) & H_{3}^{2} \cdot \ln \left(k_{1}\right) & \frac{1}{k_{1}} & \frac{H_{3}}{k_{1}} \\
\frac{H_{3}^{2}}{k_{1}} \\
1 & H_{3} & H_{3}^{2} & \ln \left(k_{2}\right) & H_{3} \cdot \ln \left(k_{2}\right) & H_{3}^{2} \cdot \ln \left(k_{2}\right) & \frac{1}{k_{2}} & \frac{H_{3}}{k_{2}} \\
\frac{H_{3}^{2}}{k_{2}} \\
1 & H_{3} & H_{3}^{2} & \ln \left(k_{3}\right) & H_{3} \cdot \ln \left(k_{3}\right) & H_{3}^{2} \cdot \ln \left(k_{3}\right) & \frac{1}{k_{3}} & \frac{H_{3}}{k_{3}} \\
\frac{H_{3}^{2}}{k_{3}}
\end{array}\right] \tag{5-10}
\end{align*}
$$

Where $\quad \mathrm{H}_{1}$ is anchor value base/subbase thickness of 4 in.
H_{2} is anchor value base/subbase thickness of 16 in .
H_{3} is anchor value base/subbase thickness of 26 in .
k_{1} is anchor value modulus of subgrade reaction of $30 \mathrm{psi} / \mathrm{in}$.
k_{2} is anchor value modulus of subgrade reaction of $100 \mathrm{psi} / \mathrm{in}$.
k_{3} is anchor value modulus of subgrade reaction of $200 \mathrm{psi} / \mathrm{in}$.

$$
\hat{\sigma}=\left\{\begin{array}{l}
\sigma_{11} \tag{5-11}\\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{21} \\
\sigma_{22} \\
\sigma_{23} \\
\sigma_{31} \\
\sigma_{32} \\
\sigma_{33}
\end{array}\right\}
$$

Where $\quad \sigma_{i j}$ is known anchor value stress from FE analysis at H_{i} and k_{j}

Step 2:

$$
\begin{equation*}
\sigma\left(H^{*}, k^{*}, \alpha^{*}\right)=\bar{\alpha}^{*} \cdot \hat{\gamma} \tag{5-12}
\end{equation*}
$$

Where $\quad \sigma\left(H^{*}, k^{*}, \alpha^{*}\right)$ is mechanistic response for the target combination of base/subbase thickness, modulus of subgrade reaction, and product of $\alpha(\Delta T / D)$
$\bar{\alpha} *$ is the vector of predictor variables based on $\alpha(\Delta T / D)$

$$
\begin{align*}
& \bar{\alpha}^{*}=\left\{\begin{array}{ll}
1 & \alpha^{*} \\
\alpha^{* 2}
\end{array}\right\} \tag{5-13}\\
& \hat{\gamma}=\left\{\begin{array}{l}
\gamma_{0} \\
\gamma_{1} \\
\gamma_{2}
\end{array}\right\}=\left[\begin{array}{lll}
1 & \alpha_{1} & \alpha_{1}^{2} \\
1 & \alpha_{2} & \alpha_{2}^{2} \\
1 & \alpha_{3} & \alpha_{3}^{2}
\end{array}\right]^{-1} \cdot\left\{\begin{array}{l}
\sigma\left(H^{*}, k^{*}, \alpha_{1}\right) \\
\sigma\left(H^{*}, k^{*}, \alpha_{2}\right) \\
\sigma\left(H^{*}, k^{*}, \alpha_{3}\right)
\end{array}\right\} \tag{5-14}
\end{align*}
$$

Step 1

Figure 5-1: Interpolation process

Several interpolation schemes were developed following this prototype with different terms used in the prediction vectors (8) in step 1 and (13) in step 2. Examples of prediction vectors used in some of the schemes developed in this study are given in Table 5-1. It should be noted that the natural logarithm of modulus of subgrade reaction and the interaction terms with base/subbase thickness in the prediction matrices for schemes 15 and 16 are similar to terms suggested in the Westergaard's closed form stress equations (Huang, 1993). A significant drop in error due to the use of these terms was observed. Comparing the interpolated results with FE results at non-nodal points validates these two interpolation schemes. Also note that the solutions to the normal equations for schemes 15 and 16 produce perfect fits at the nine nodal points corresponding to each level of the product $\alpha(\Delta T / D)$. Several more schemes have also been investigated. Most of these schemes that contain high order interaction term(s) in "step 1 ", e.g. $\mathrm{H}^{* 2} \mathrm{k}^{* 2}, \mathrm{H}^{*} \mathrm{k}^{* 3}, \mathrm{H}^{* 3} \mathrm{k}^{*}$, were found to result in low predictive power.

Table 5-1: Example prediction matrices

5.3 Validation and Goodness of Fit

The validation process is illustrated in Figures 5-2 and 5-3. This process involves obtaining FE results at non-nodal points that were not used in developing interpolation schemes. Error is defined as the difference between the interpolated result and the FE result directly obtained from the ISLAB2000.

Figure 5-2: Validation procedure

Figure 5-3: Overview of validation process

More than 12,000 non-nodal FE results have been obtained and used to validate and select from interpolation schemes. The three stages of the validation process are as follow:

Validation Stage 1: In the first stage, all interpolation schemes that were developed are validated with a limited number of non-nodal points. The validation matrix covers 20 non-nodal points with variations of all three non-discrete variables for a fixed combination of discrete variables ($10-\mathrm{in}$. PCC thickness, $16-\mathrm{in}$. base/subbase thickness, $177-\mathrm{in}$. joint spacing, PCC shoulder, and single axle edge loading). Non-nodal points at the middle in between the anchor values are considered in this validation stage. These non-nodal points are believed to result in large magnitudes of errors since they are far from the anchor values. Mean square of errors (MSE), bias, and variance are the measures of the goodness of fit of the interpolation schemes considered in this study, which will be discussed later. These values were calculated for the errors (difference between the FE results and interpolated results) obtained from the validation process. Figures 5-4 (a) through (e) illustrate the validation results at the first stage for six most promising interpolation schemes. The comparison between FE and interpolated results illustrated in Figure 5-4 (a) suggests that all these schemes have high predictive power. However, based on MSE, bias, and variance in Figures 5-4 (b) through (e), schemes 5, 6, 15, and 16 appear to be the best four performing interpolation schemes, and consequently are selected for the next stage of validation.

Validation Stage 2: The validation matrix for this stage consists of 12,348 non-nodal points. The experimental matrix of "validation stage 2 " is a complete factorial of all discrete variable and five values of each of the three non-discrete variables (including two mid points). The process focuses on single, tandem, and tridem axles for all non-discrete and discrete variables. The middle points between nodal points are also used for this validation stage. The validation results are illustrated in Figures 5-5 (a) through (e). Based on the validation results, the two best performing schemes are 15 and 16.

(a) Comparison between FE and interpolated results

Figure 5-4: Validation results - stage 1

Goodness of Fit	Scheme 5	Scheme 6	Scheme 9	Scheme 10	Scheme 15	Scheme 16
MSE, psi^{2}	6.34	32.29	202.31	267.70	1.24	1.22
Variance, psi^{2}	6.23	13.64	69.31	120.71	1.08	1.07
Absolute Bias, psi	0.33	4.32	11.53	12.12	0.40	0.39

(b) Summary of goodness of fit

(d) Comparison of variance

Figure 5-4: Validation results - stage 1 (continued)

Figure 5-4: Validation results - stage 1 (continued)

(a) Comparison between FE and interpolated results

Goodness of Fit	Scheme 5	Scheme 6	Scheme 15	Scheme 16
${\text { MSE, } \mathrm{psi}^{2}}^{2}$	16.47	41.43	4.15	3.11
Variance, psi^{2}	16.40	28.39	4.14	3.11
Absolute Bias, psi	0.25	3.61	0.11	0.01

(b) Summary of goodness of fit

Figure 5-5: Validation results - stage 2

Figure 5-5: Validation results - stage 2 (continued)

Validation Stage 3: Instead of using the middle points between nodal points in the validation process, this validation stage considers non-nodal points that are randomly selected. This validation stage is based on 300 cases for single through tridem axles and 200 cases for quad through multi-axle (8). The validation results illustrated in Figures 5-6 (a) and (b) and Table 5-2 suggest that scheme 16 is the best performing interpolation scheme. It should be noted that the only difference between schemes 15 and 16 is the prediction matrix in step 2 . The values of MSE, bias, and variance obtained from this validation stage were found to be larger than those obtained from the other stages. Since the values for all three non-discrete variables are randomly selected, this validation stage should produce a more realistic result compared to the other stages.

Figure 5-6: Validation results - stage 3 (single axle through multi-axle (8))

Table 5-2: Comparison of MSE, bias, and variance

Cases No.	Statistic Results	Longitudinal stress at bottom		Transverse stress at bottom	
		Scheme15	Scheme16	Scheme15	Scheme16
1-500	MSE, psi^{2}	11.51	8.89	16.40	15.93
	Bias, psi	1.02	0.51	-0.89	-1.21
	Variance, psi^{2}	10.46	8.63	15.61	14.47
1-300	MSE, psi^{2}	3.90	3.38	9.70	8.77
	Bias, psi	0.16	0.02	-0.36	-0.59
	Variance, psi^{2}	3.87	3.38	9.57	8.41
301-500	MSE, psi^{2}	22.93	17.15	26.46	26.67
	Bias, psi	2.32	1.25	-1.68	-2.13
	Variance, psi^{2}	17.53	15.60	23.63	22.14

MSE, which is given by the average of the squared errors (differences between actual and interpolated values), is an overall measure of goodness of fit. MSE represents the overall measure of goodness of fit, estimated by the average of square of errors (difference between actual and interpolated values). The MSE can be decomposed into two parts: square of bias and variance. Bias is the average value of errors, while variance is the average of squared deviation of errors from average error. Based on the results from validation stage 3, scheme 16 was found to be most promising. Figures 5-6 (a) and (b) provide for a comparison between actual and interpolated values based on these schemes. These figures suggest that the interpolation schemes can be a reliable alternative for approximating mechanistic responses. Table 5-2 also shows that the interpolated results for single through tridem axles are exceptionally accurate and precise. The biases and variances associated with the longitudinal stress at the bottom of the PCC slab for scheme 16 are 0.0 psi and $3.38 \mathrm{psi}^{2}$, respectively. Overall maximum absolute biases based on this scheme are 0.6 psi and 2.1 psi for single through tridem axles and quad through multi-axle (8), respectively.

As the validation process has been completed, the interpolation scheme is used to generate a catalog of stresses by assigning a series of sets of design inputs that are not addressed in the experimental matrix into the interpolation scheme. The catalog of stresses can be found in Appendix I.

5.4 Example Use of Interpolation Scheme

Interpolation schemes can simply be implemented by carrying out the mathematical expressions as described earlier. For example, the longitudinal stress is estimated at the bottom of the PCC slab. The pavement cross-section includes a $275-\mathrm{mm}$ (11-in.) PCC slab, $500-\mathrm{mm}$ (20-in.) base/subbase thickness, $40.7-\mathrm{kPa} / \mathrm{mm}$ ($150-\mathrm{psi} / \mathrm{in}$.) k-value, $8.0-\mathrm{m}(27-\mathrm{ft})$ joint spacing, tied PCC shoulder, thermal strain gradient of $6 \times 10^{-7} \mathrm{~mm}^{-1}\left(15 \times 10^{-6} \mathrm{in} .{ }^{-1}\right), 142-\mathrm{kN}(32-\mathrm{kips})$ tandem axle.

Step 1: Interpolation in 2-D space across the ranges of base/subbase thickness and k-value
Prediction vector was computed based on H^{*} and k^{*} at the target point (equation 5-8)

$$
\bar{X}^{*}=\left\{\begin{array}{lllllllll}
1 & 500 & 500^{2} & \ln (40.7) & 500 \cdot \ln (40.7) & 500^{2} \cdot \ln (40.7) & \frac{1}{40.7} & \frac{500}{40.7} & \frac{500^{2}}{40.7}
\end{array}\right\}
$$

A nine by nine matrix was computed based on H_{i} and k_{j} at nodal points (equation 5-10)

$$
X=\left[\begin{array}{c}
\bar{X}(100,8.13) \\
\bar{X}(100,27.1) \\
\bar{X}(100,54.2) \\
\bar{X}(400,8.13) \\
\bar{X}(400,27.1) \\
\bar{X}(400,54.2) \\
\bar{X}(650,8.13) \\
\bar{X}(650,27.1) \\
\bar{X}(650,54.2)
\end{array}\right]=\left[\begin{array}{ccccccccc}
1 & 100 & 10000 & 2.10 & 210 & 20956 & 0.1230 & 12.30 & 1230 \\
1 & 100 & 10000 & 3.30 & 330 & 32995 & 0.0369 & 3.69 & 369 \\
1 & 100 & 10000 & 3.99 & 399 & 39927 & 0.0185 & 1.85 & 185 \\
1 & 400 & 160000 & 2.10 & 838 & 335290 & 0.1230 & 49.20 & 19680 \\
1 & 400 & 160000 & 3.30 & 1320 & 527925 & 0.0369 & 14.76 & 5904 \\
1 & 400 & 160000 & 3.99 & 1597 & 638829 & 0.0185 & 7.38 & 2952 \\
1 & 650 & 422500 & 2.10 & 1362 & 885374 & 0.1230 & 79.95 & 51968 \\
1 & 650 & 422500 & 3.30 & 2145 & 1394053 & 0.0369 & 23.99 & 15590 \\
1 & 650 & 422500 & 3.99 & 2595 & 1686908 & 0.0185 & 11.99 & 7795
\end{array}\right]
$$

Anchor stresses were obtained from FE analysis at H_{i} and k_{j} for $\alpha=0,4$ and $8 \times 10^{-7} \mathrm{~mm}^{-1}$ (equation 5-11)

$$
\hat{\sigma}_{\alpha=0}=\left\{\begin{array}{c}
1092.6 \\
752.2 \\
619.3 \\
1074.0 \\
738.9 \\
608.0 \\
1017.1 \\
698.3 \\
573.7
\end{array}\right\} k P a \quad \hat{\sigma}_{\alpha=4}=\left\{\begin{array}{c}
2192.8 \\
2312.6 \\
2320.8 \\
2182.2 \\
2298.5 \\
2305.9 \\
2150.9 \\
2255.9 \\
2266.8
\end{array}\right\} k P a \quad \hat{\sigma}_{\alpha=8}=\left\{\begin{array}{l}
3293.1 \\
3857.2 \\
3989.4 \\
3290.4 \\
3857.1 \\
4035.2 \\
3284.7 \\
3813.5 \\
3969.3
\end{array}\right\} k P a
$$

Then, stresses at target H^{*} and k^{*} corresponding to the three levels of α were computed (equations 5-7 and 5-9)

$$
\begin{aligned}
& \sigma(500,40.7,0)=\bar{X} * \cdot\left[\left[X^{T} \cdot X\right]^{-1} \cdot X^{T} \cdot \hat{\sigma}_{\alpha=0}\right]=647.5 \quad k P a \\
& \sigma(500,40.7,4)=\bar{X} * \cdot\left[\left[X^{T} \cdot X\right]^{-1} \cdot X^{T} \cdot \hat{\sigma}_{\alpha=4}\right]=2292.5 \quad k P a \\
& \sigma(500,40.7,8)=\bar{X} * \cdot\left[\left[X^{T} \cdot X\right]^{-1} \cdot X^{T} \cdot \hat{\sigma}_{\alpha=8}\right]=3954.2 \quad k P a
\end{aligned}
$$

Step 2: Interpolation in 1-D across the range of thermal strain gradient
Prediction vector was computed based on α^{*} at the target point (equation 5-13)

$$
\bar{\alpha}^{*}=\left\{\begin{array}{lll}
1 & 6 & 6^{2}
\end{array}\right\}
$$

A least-squares coefficient vector was computed based on α_{i} at nodal points and computed stresses obtained from step 1 (equation 5-14)

$$
\hat{\gamma}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 4 & 16 \\
1 & 8 & 64
\end{array}\right]^{-1} \cdot\left\{\begin{array}{c}
647.5 \\
2292.5 \\
3954.2
\end{array}\right\}=\left\{\begin{array}{c}
647.5 \\
409.1 \\
0.526
\end{array}\right\}
$$

Then, the target stress at $\mathrm{H}^{*}, \mathrm{k}^{*}$ and α^{*} was computed (equation 5-12)

$$
\sigma\left(H^{*}, k^{*}, \alpha^{*}\right)=\left\{\begin{array}{lll}
1 & 6 & 36
\end{array}\right\} \cdot\left\{\begin{array}{l}
647.5 \\
409.1 \\
0.526
\end{array}\right\}=3121.2 \quad \mathrm{kPa}
$$

The stress computed using interpolation scheme is $3121.2 \mathrm{kPa}(452.353 \mathrm{psi})$, while the result directly obtained from FE analysis is $3121.8 \mathrm{kPa}(452.436 \mathrm{psi})$. The error of interpolated result in this example is $0.6 \mathrm{kPa}(0.1 \mathrm{psi})$ or 0.02%.

Chapter VI
 POTENTIAL IMPLEMENTATION OF STUDY RESULTS

The mechanistic responses obtained from the parametric study not only provide an opportunity to study the interaction between structural, environmental and loading factors on the mechanistic responses as discussed in previous chapters but also can be directly applied to mechanisticempirical design process of JCP. This chapter reviews the mechanistic-empirical design procedure for JCP and also illustrates how mechanistic responses are used in the process.

6.1 Mechanistic-Empirical Design Concept

The concept of mechanistic-empirical design process is to relate mechanistic responses to certain pavement performance that are considered in design. For each type of performance (e.g. fatigue cracking), the design process is based on damage calculated using mechanistic responses (e.g. longitudinal stresses at bottom of the slab) and accumulated over the entire analysis period as a function of pavement structural features, material properties, axle weights, axle configurations, and thermal gradients that the pavement actually experience. The damage calculation is done using the Miner's hypothesis as shown in (6-1):

$$
\begin{equation*}
\text { Damage }=\sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} \sum_{n} \frac{n_{i j k l m n}}{N_{i j k l m n}}, \tag{6-1}
\end{equation*}
$$

where: $\mathrm{n}_{\mathrm{ijklmn}}=\quad$ Applied number of load repetitions at condition $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}$ $\mathrm{N}_{\mathrm{ijklmn}}=\quad$ Allowable number of load repetitions at condition $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}$
i $=$ Age (year)
$\mathrm{j}=$ Season (winter, spring, summer, and fall)
$\mathrm{k} \quad=\quad$ Axle configuration (single axle, tandem axle, tridem axle, and etc.)
$1=\quad$ Load level (kips)
$\mathrm{m} \quad=\quad$ Thermal gradient $\left({ }^{\circ} \mathrm{F} / \mathrm{in}.\right)$
$\mathrm{n}=\quad$ Traffic path
With the application of interpolation scheme as discussed in the previous chapter, mechanistic responses can be computed based on the information for each load repetition at the condition i, j, $\mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}$. The damage calculation also requires additional data from three sources: material models, hourly axle spectra from WIM (Weigh-in-Motion) database, and hourly thermal gradient generated using EICM (Enhanced Integrated Climatic Model). The computed mechanistic responses, then, are used to calculate the allowable number of load repetitions, $\mathrm{N}_{\mathrm{ijklmn}}$. Figure 6-1 illustrates a schematic overview of the damage calculation as a part of the mechanistic-empirical design process.

Figure 6-1: Schematic illustration of damage calculation process
The allowable repetitions, $\mathrm{N}_{\mathrm{ijklmn}}$, can be obtained by computing mechanistic response at the condition $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}$ and n and inputting the computed response into performance transfer functions. For fatigue cracking, the input to the transfer function is the ratio of tensile stress to 28-day modulus of rupture, R. Several researchers have suggested equations for fatigue transfer function of plain concrete as follows:

1) Vesic and Sexana (1970): $N=225,000 \times R^{-4}$
2) Portland Cement Association (1975): $\log _{10} N=11.78-12.11 \times R$
3) Zero-Maintenance Project (1977): $\log _{10} N=17.61-17.61 \times R$
4) Khazanovich and $\mathrm{Yu}(2001): \log _{10} N=2.13 \cdot R^{-1.2}$
5) NCHRP $1-37 \mathrm{~A}(2004): \log _{10} N=2 \cdot R^{-1.22}+0.4371$

Figures 6-2 and 6-3 show the comparison of allowable repetitions and fatigue damage calculated based on these transfer functions at varying values of the R-ratio. It appears that the allowable repetitions and fatigue damage calculated based on the fatigue transfer function suggested in NCHRP 1-37A (Rao et al, 2004) are more conservative than the other models for the range of the R-ratio between 0.60 and 0.85 . For the R-ratio greater than 0.85 , the results obtained from the Portland Cement Association model are the most conservative.

\rightarrow Vesic and Sexana (1970) \quad - Portland Cement Association (1975) \rightarrow Zero-Maintenance Project (1977)
$*$ Khazanovich and Yu (2001) $\quad *$ NCHRP 1-37 A

Figure 6-2: Comparison of allowable repetitions based on different fatigue transfer functions

$\begin{array}{ll}\rightarrow \text { Vesic and Sexana (1970) } & \rightarrow \text { Portland Cement Association (1975) } \leftarrow \text { Zero-Maintenance Project (1977) } \\ \rightarrow \text { Khazanovich and Yu (2001) } & \rightarrow \text { NCHRP 1-37 A }\end{array}$

Figure 6-3: Comparison of fatigue damage based on different fatigue transfer functions

6.2 Weigh-in-Motion (WIM) Data Synthesis

As a part of the demonstration of the fatigue damage calculation, WIM data are synthesized for the Michigan SPS-2 sections (US-23 Northbound) from 1998 to 2000 . The hourly traffic spectra are generated for each month and each axle type on 3-hour basis. Figures 6-4 and 6-5 are examples of the load spectra. The rest of load spectra are available in Appendix J.

Figure 6-4: Load spectrum from SPS2 sections for single axle in July, 1998

Figure 6-5: Load spectrum from SPS2 sections for tandem axle in July, 1998

The axle repetitions obtained of the WIM database are summarized in Tables 6-1 through 6-8 for each axle configuration. These tables show that the combination of single axle, tandem axle and tridem axle are majority number of repetitions for the SPS-2 sections.

Table 6-1: Summary of single axle load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-4999	73,897	32,139	34,057	66,686	64,857	49,400	34,017	52,423	68,877	58,896
5000-7999	60,122	30,905	34,364	58,049	58,986	52,168	46,874	42,322	58,098	55,975
8000-10999	214,552	127,964	141,516	225,246	208,159	206,808	142,597	153,711	219,733	208,158
11000-13999	99,780	55,168	65,935	106,207	100,406	91,723	69,660	72,201	93,886	94,095
14000-16999	44,970	27,668	30,027	48,737	43,026	38,696	38,084	29,325	38,642	34,699
17000-19999	30,322	16,948	19,744	32,313	31,365	30,560	29,086	23,056	32,010	26,885
20000-22999	9,427	4,683	6,560	9,720	9,756	9,254	6,412	6,144	9,188	7,113
23000-25999	2,018	1,100	1,467	2,264	2,334	1,744	1,106	991	1,471	1,172
26000-28999	594	307	488	561	628	496	276	221	300	275
29000-31999	133	68	149	158	148	116	73	53	60	54
32000-34999	36	20	46	34	29	26	18	12	20	11
35000-37999	5	4	16	9	13	5	4	4	10	3
38000-40999	4	1	4	2	2	3	0	1	0	0
>41000	1	0	4	1	4	0	0	0	0	0

Table 6-2: Summary of tandem axle load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-9999	65,457	55,233	39,411	52,386	54,205	53,444	31,429	24,211	44,844	38,954
10000-15999	113,470	97,841	62,729	100,599	99,644	98,989	79,753	70,261	101,550	102,054
16000-21999	81,779	72,875	50,835	82,935	75,736	74,204	67,743	61,949	81,472	83,218
22000-27999	73,319	64,717	47,237	74,352	64,502	60,455	53,444	49,981	64,713	65,338
28000-33999	98,301	91,484	65,400	105,950	95,230	89,498	77,218	73,024	96,309	91,395
34000-39999	41,867	35,275	27,330	44,421	48,277	48,201	41,889	33,371	49,251	43,921
40000-45999	7,619	4,633	3,391	5,619	6,485	4,388	2,907	2,161	3,776	3,129
46000-51999	695	399	377	505	626	399	287	210	330	339
52000-57999	105	64	83	78	95	62	53	35	55	52
58000-63999	27	22	14	19	18	17	16	8	11	5
64000-69999	6	4	4	8	2	5	2	2	1	1
70000-75999	1	0	1	0	1	0	0	0	0	0
76000-81999	1	0	0	0	0	0	0	0	0	0
>82000	0	0	0	0	0	0	0	0	0	0

Table 6-3: Summary of tridem axle load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-17999	7,305	4,891	1,547	3,049	3,495	4,312	2,237	2,188	2,906	3,486
18000-26999	1,340	727	475	799	798	684	654	610	686	631
27000-35999	1,507	1,394	992	1,438	1,059	1,317	1,074	1,200	1,374	1,596
36000-44999	4,833	5,160	2,889	6,679	5,588	5,483	3,817	5,352	7,466	7,245
45000-53999	4,194	4,160	1,924	3,894	4,224	3,469	1,605	1,735	3,662	2,825
54000-62999	695	587	244	465	487	443	206	251	439	343
63000-71999	84	53	38	57	72	53	28	32	92	47
72000-80999	10	8	5	8	11	12	1	7	10	4
81000-89999	1	2	5	3	4	2	1	1	3	2
90000-98999	3	0	0	0	0	0	0	4	3	0
>99000	0	0	1	0	0	0	0	1	1	0

Table 6-4: Summary of quad axle load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-23999	848	678	379	453	535	767	325	316	493	413
24000-35999	442	323	239	499	448	407	438	382	460	371
36000-47999	631	701	436	761	877	728	477	403	685	703
48000-59999	2,497	2,837	1,454	3,437	3,790	3,071	1,691	2,534	3,692	3,105
60000-71999	1,309	1,160	486	1,020	1,218	1,030	673	916	2,050	1,506
72000-83999	89	62	38	115	82	45	22	66	157	94
84000-95999	3	1	7	6	6	4	2	3	12	11
96000-107999	2	1	1	5	1	7	0	0	1	1
108000-119999	0	4	0	0	1	0	0	0	1	0
120000-131999	0	0	0	0	0	0	0	0	0	0
>132000	0	0	0	0	0	0	0	0	0	0

Table 6-5: Summary of multi-axle (5) load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-29999	634	316	221	306	337	473	237	238	283	273
30000-44999	62	19	45	41	39	71	41	23	40	23
45000-59999	73	79	68	158	99	160	75	97	96	135
60000-74999	686	779	386	1,142	1,207	983	513	710	1,053	1,018
75000-89999	267	199	137	242	409	175	86	123	223	113
90000-104999	17	18	16	14	12	11	5	3	7	8
105000-119999	3	3	4	8	2	1	0	1	2	0
120000-134999	0	0	0	0	0	0	0	0	0	0
135000-149999	0	0	0	0	0	0	0	0	0	0
150000-164999	0	0	0	0	0	0	0	0	0	0
>165000	0	0	0	0	0	0	0	0	0	0

Table 6-6: Summary of multi-axle (6) load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-35999	79	5	2	1	11	23	8	2	7	2
36000-53999	58	10	88	29	15	23	40	19	33	16
54000-71999	139	114	147	163	200	131	79	96	170	103
72000-89999	666	833	450	657	898	660	415	825	1,110	810
90000-107999	345	152	84	135	181	175	51	191	332	107
108000-125999	4	2	0	0	7	13	1	0	1	2
126000-143999	0	0	0	0	0	1	0	0	0	0
144000-161999	0	0	0	0	0	0	0	0	0	0
162000-179999	0	0	0	0	0	0	0	0	0	0
180000-197999	0	0	0	0	0	0	0	0	0	0
>198000	0	0	0	0	0	0	0	0	0	0

Table 6-7: Summary of multi-axle (7) load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-41999	4	6	2	4	4	6	6	1	4	4
42000-62999	23	6	9	21	29	18	23	13	31	21
63000-83999	128	104	62	115	77	81	93	118	197	155
84000-104999	249	100	46	147	211	168	140	139	308	394
105000-125999	25	21	6	5	15	9	6	6	16	20
126000-146999	0	0	0	0	1	0	0	0	1	0
147000-167999	0	0	0	0	0	0	0	0	0	0
168000-188999	0	0	0	0	0	0	0	0	0	0
189000-209999	0	0	0	0	0	0	0	0	0	0
210000-230999	0	0	0	0	0	0	0	0	0	0
>231000	0	0	0	0	0	0	0	0	0	0

Table 6-8: Summary of multi-axle (8) load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-47999	10	4	4	5	10	2	12	4	6	2
48000-71999	35	20	18	53	43	42	42	24	30	39
72000-95999	295	355	195	331	277	330	293	293	416	419
96000-119999	248	251	174	406	337	381	199	331	391	252
120000-143999	8	11	9	8	11	2	3	8	17	6
144000-167999	0	2	0	0	0	0	0	0	0	0
168000-191999	0	0	0	0	0	0	0	0	0	0
192000-215999	0	0	0	0	0	0	0	0	0	0
216000-239999	0	0	0	0	0	0	0	0	0	0
240000-263999	0	0	0	0	0	0	0	0	0	0
>264000	0	0	0	0	0	0	0	0	0	0

6.3 Hourly Thermal Gradients

As a part of fatigue damage calculation, hourly thermal gradients are generated through the use of Enhanced Integrated Climatic Model (EICM). The hourly thermal gradients are obtained for four dense-graded aggregate base (DGAB) SPS-2 sections (26-0213 through 26-0216). The details of these sections are as shown in Table 6.9 below:

Table 6-9: Design features and material properties for the SPS-2 sections

Description	$26-0213$	$26-0214$	$26-0215$	$26-0216$
PCC thickness, in.	8	8.1	10.7	11.1
Base thickness, in.	6.1	5.8	6.2	5.9
Joint spacing, ft	15	15	15	15
Lateral support condition	Widened lane	AC shoulder	AC shoulder	Widened lane
One-year modulus of rupture*, psi	915	1000	915	$1000^{* *}$
Design 14-day modulus of rupture, psi	550	900	550	900
k-value, psi/in.	See Table 6-10			

Remark: * Obtained from "SPS-2 Construction Report" (Soil and Materials Engineering, Inc., 1995)
** Assumed equal to the modulus of rupture of section 26-0214, since this information is not available in the construction report

Table 6-10: Seasonal backcalculated k-value obtained from LTPP database (FHWA, 2001)

Month	$26-0213$	$26-0214$	$26-0215$	$26-0216$
January	248	300	254	267
February	203	215	244	221
March	203	215	244	221
April	203	215	244	221
May	158	130	235	174
June	158	130	235	174
July	158	130	235	174
August	203	215	244	221
September	203	215	244	221
October	203	215	244	221
November	248	300	254	267
December	248	300	254	267

Figure 6-6 illustrates an example of hourly thermal gradient distribution obtained from EICM. The rest of hourly thermal gradient distributions are also available in Appendix K.

Figure 6-6: Hourly thermal gradients generated by EICM for 8 -in. sections in September

6.4 Mechanistic-Empirical Procedure for JCP - Example

Mechanistic-empirical design procedure for JCP relies on relationship between cumulative damage and level of distress. For example, fatigue damage could be calculated using the NCHRP 1-37 A transfer function (Equation 6-6) based on the magnitude of longitudinal stress at the bottom of the slab corresponding to axle type, axle weight, seasonal k-value and hourly thermal gradient for each axle repetition over the analysis period, which could be obtained from the catalog of stresses. This results in the allowable number of load repetitions at a specified condition, N , in the Miner's hypothesis (Equation 6-1). Along with the number of axle repetitions, n, which could be obtained through the WIM database or any available traffic database, cumulative damage could be calculated. The schematic of the process is shown in Figure 6-7.

Figure 6-7: Cumulative damage calculation process
The next step is to plot the computed cumulative damage against distress (e.g. cracking). It is widely believed that a cumulative damage of 1.0 relates to a failed pavement. On a plot of cumulative damage versus distress, the cumulative damage of 1.0 may not match with the cracking threshold established by the agency; hence the performance curve needs to be calibrated. The calibration process is illustrated in Figure 6-8. For example, Figures 6-9 and 6-10 illustrate an example characteristic fatigue curve before and after calibration process for 50% slabs cracked considered as the rehabilitation distress level.

Figure 6-8: Calibration process for the relationship between cumulative damage and distress

Figure 6-9: Example characteristic fatigue curve before calibration process

Figure 6-10: Example characteristic fatigue curve after calibration process
The design process for faulting and spalling are also based on cumulative damage concept. However, the relationship between cumulative damage and these distresses is expressed in different forms from cracking. Based on NCHRP 1-37 A (Khazanovich et al, 2004), the design process for faulting and spalling could be summarized as follows:

Design of Faulting

$$
\begin{align*}
& \text { Fault }_{m}=\sum_{i=1}^{m} \Delta \text { Fault }_{i} \tag{6-7}\\
& \Delta \text { Fault }_{i}=C_{34} \times\left(\text { FAULTMAX }_{i-1}-\text { Fault }_{i-1}\right)^{2} \times D E_{i} \tag{6-8}\\
& \text { FAULTMAX }_{i}=\text { FAULTMAX }_{0}+C_{7} \times \sum_{j=1}^{m} D E_{j} \times \log \left(1+C_{5} \times 5.0^{\text {EROD }}\right)^{C_{6}} \tag{6-9}\\
& \text { FAULTMAX } \tag{6-10}
\end{align*} 0=C_{12} \times \delta_{\text {curling }} \times\left[\log \left(1+C_{5} \times 5.0^{\text {EROD }}\right) \times \log \left(\frac{P_{200} \times \text { WetDays }}{P_{s}}\right)\right]^{C_{6}} .
$$

Where:
Fault $_{\mathrm{m}}=$ mean joint faulting at the end of month m , in.
Δ Fault $_{\mathrm{i}}=$ incremental change (monthly) in mean transverse joint faulting during month i , in.
FAULTMAX $_{\mathrm{i}}=$ maximum mean transverse joint faulting for month i , in.
FAULTMAX $_{0}=$ initial maximum mean transverse joint faulting, in.
EROD = base/subbase erodibility factor
$\mathrm{DE}=$ differential elastic deformation energy

$$
D E=\frac{1}{2} \cdot k \cdot\left(W_{L}+W_{U L}\right) \cdot\left(W_{L}-W_{U L}\right)
$$

$\mathrm{k}=$ modulus of subgrade reaction, $\mathrm{kPa} / \mathrm{mm}$
$\mathrm{W}_{\mathrm{L}}=$ deflection of loaded slab, mm
$\mathrm{W}_{\mathrm{UL}}=$ deflection of unloaded slab, mm
$\delta_{\text {curling }}=$ maximum mean monthly slab corner upward deflection PCC due to temperature curling and moisture warping
$\mathrm{P}_{\mathrm{s}}=$ overburden on subgrade, lb .
$\mathrm{P}_{200}=$ percent subgrade material passing \#200 sieve
WetDays $=$ average annual number of wet days (greater than 0.1 in . rainfall)
C_{1} through C_{7} and $\mathrm{C}_{12}, \mathrm{C}_{34}$ are calibration constants:

$$
\begin{aligned}
& \mathrm{C}_{12}=\mathrm{C}_{1}+\mathrm{C}_{2} * \mathrm{FR}^{0.25} \\
& \mathrm{C}_{34}=\mathrm{C}_{3}+\mathrm{C}_{4} * \mathrm{FR}^{0.25} \\
& \mathrm{C}_{1}=1.29, \mathrm{C}_{2}=1.1, \mathrm{C}_{3}=0.0001725, \mathrm{C}_{4}=0.0008, \mathrm{C}_{5}=250, \mathrm{C}_{6}=0.4, \mathrm{C}_{7}=1.2
\end{aligned}
$$

$\mathrm{FR}=$ base freezing index defined as percentage of time the top base temperature is below freezing ($32^{\circ} \mathrm{F}$) temperature

Design of Spalling

$$
\begin{equation*}
S P A L L=\left[\frac{A G E}{A G E+0.01}\right] \cdot\left[\frac{100}{1+1.005^{\left(-12^{* *} A G E+S C F\right)}}\right] \tag{6-11}
\end{equation*}
$$

Where:
SPALL = percentage joints spalled (medium- and high-severities)
AGE = pavement age since construction, years
SCF $=$ scaling factor based on site-, design-, and climate-related variables
$S C F=-1400+350 \cdot A I R \% \cdot(0.5+$ PREFORM $)+3.4 \cdot f_{c}^{\prime} \cdot 0.4$
$-0.2(F T C Y C \cdot A G E)+43 \cdot h_{P C C}-536 \cdot W C_{-}$Ratio
AIR\% = PCC air content, percent
PREFORM = 1 if preformed sealant is present; 0 if not
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathrm{PCC}$ compressive strength, psi
FTCYC = average annual number of freeze-thaw cycles
$h_{\text {PCC }}=$ PCC slab thickness, in.
WC_Ratio = PCC water/cement ratio
Seven illustrative examples to demonstrate the calculation process for fatigue damage, faulting damage and spalling damage are presented. Relevant inputs and details, including calculation results for these examples are summarized in Table 6-11.

Table 6-11: Summary of illustrative examples

Example	Type of Damage			Inputs	Results	Remarks
	Fatigue	Faulting	Spalling			
1	X				Allowable number of axle repetitions: 3.81 million for single axle, 0.83 million for tandem axle and 8.24 million for tridem axle	Fatigue damage due to different axle configurations
2	X			Same as Example 1 but with i) 12ft lane with untied AC shoulder and ii) 14-ft lane with untied AC shoulder and only under 39 -kips tridem axle	Allowable number of axle repetitions: 0.87 million for 12 ft lane with untied AC shoulder and 3.07 million for $14-\mathrm{ft}$ lane with untied AC shoulder	Fatigue damage due to different latera support conditions
3	X			Same as Example 1 but with 8, 9, 11 and $12-\mathrm{in}$. slab thickness and only under 32 -kips tandem axle	Allowable number of axle repetitions: 0.056 million for 8 in. slab, 0.193 million for 9 -in. slab, 4.60 million for $11-\mathrm{in}$. slab and 32.53 million for $12-$ in. slab	Fatigue damage due to different slab thickness
4		X		Same as Example 1 but consider typical traffic spectra and climatic conditions in Michigan	Predicted faulting at the end of 20-years period: 0.1671 in .	Transverse joint faulting damage calculation
5		X		Same as Example 4 but with i) 1.5in. dowel dia. at 12 in . spacing, ii) $1.25-\mathrm{in}$. dowel dia. at 18 in . spacing, iii) 1.5-in. dowel dia. at 18 in. spacing	Predicted faulting at the end of 20-years period: 0.0935 in . for $1.5-\mathrm{in}$. dowel dia. at 12 in . spacing, 0.1682 in . for $1.25-\mathrm{in}$. dowel dia. at 18 in. spacing, 0.0941 in . for $1.5-\mathrm{in}$. dowel dia. at 18 in. spacing	Transverse joint faulting damage due to different joint designs
6		X		Same as Example 4 but with lean concrete base (LCB) and asphalt treated base (ATB)	Predicted faulting at the end of 20-years period: 0.1066 in. for LCB and 0.1280 in . for ATB	Transverse faulting damage due to different types
7			X	3% air content, no preformed sealant, $2,000-\mathrm{psi}$ concrete compressive strength, average freeze thaw cycles per year of 250, 8 -in. slab and 0.45 water/cement ratio	Predicted percent slabs spalled at the end of 20 -years period: 3%	Transverse joint spalling damage

Illustrative Example 1 (fatigue damage due to different axle configurations)

Analyze the number of load repetitions of 18 -kips single axle, $32-\mathrm{kips}$ tandem axle, and $39-\mathrm{kips}$ tridem axle that could be carried at daytime thermal gradient of $2{ }^{\circ} \mathrm{F} / \mathrm{in}$. by a pavement system with the following features:

- 10-in. slab thickness,
- 16-in. aggregate base,
- $100-\mathrm{psi} / \mathrm{in}$. roadbed soil,
- 177-in. joint spacing,
- 12-ft lane,
- tied PCC shoulder,
- and 1.25 -in. dowel diameter at 12 in. center to center spacing.

Note that the concrete coefficient of thermal expansion and 28-day modulus of rupture were found to be $5 \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$ and 550 psi , respectively.

From the catalog of stresses in Appendix I, the magnitudes of the longitudinal stresses at the bottom of the PCC slab are:

For 18-kips single axle: $\quad 219.2 \mathrm{psi}$
For 32-kips tandem axle: 230.3 psi
For 39-kips tridem axle: 198.0 psi
The stress ratios for the three axle configurations are calculated as follows:
For 18-kips single axle: $R_{18 \text {-kips single axle }}=\frac{219.2}{550}=0.399$
For 32-kips tandem axle: $R_{32-\text { kips tandem axle }}=\frac{230.3}{550}=0.419$
For 39-kips tridem axle: $R_{39-\text { kips tridem axle }}=\frac{198.0}{550}=0.360$
Considering the performance transfer function in equation (6-6), the number of load repetitions of 18 -kips single axle, 32 -kips tandem axle and 39-kips tridem axle that could be carried for the given conditions could be analyzed as follows:

Recall that $\log _{10} N=2 \cdot R^{-1.22}+0.4371$ or $N=10^{\left[2 \cdot R^{-1.22}+0.4371\right]}$
For 18-kips single axle: $N_{18 \text {-kips single axle }}=10^{\left[2 \cdot(0.399)^{-1.22}+0.4371\right]}=3.81$ million cycles
For 32-kips tandem axle: $N_{32 \text {-kips tandem axle }}=10^{\left[2 \cdot(0.419)^{-1.22}+0.4371\right]}=1.67$ million cycles
For 39-kips tridem axle: $N_{39 \text {-kips tridem axle) }}=10^{\left[2 \cdot(0.360)^{-1.22}+0.4371\right]}=24.71$ million cycles

However, the number of repetitions needed to account for the number of repetitions within each axle group. For example, each tandem and tridem axle results in peak stress level two and three times, respectively. The number of repetitions for each axle could be adjusted as follows:

Adjusted number of repetitions, $N_{\text {adjusted }}=\frac{N}{\text { number of repetitions within each axle }}$
For 18-kips single axle: $N_{18-\text { kips single axle }}=\frac{3.81}{1}=3.81$ million cycles

For 32-kips tandem axle: $N_{32 \text {-kips tandem axle }}=\frac{1.67}{2}=0.83$ million cycles
For 39-kips tridem axle: $N_{39-\text { kips tridem axle) }}=\frac{24.71}{3}=8.24$ million cycles

Figure 6-11 illustrates the number of allowable repetitions and the weight of each axle. It can be seen that the pavement could carry more repetitions of 39-kips tridem axle, when compared with the others. The more number of wheels in an axle reduce the level of stress and consequently increase the number of allowable repetition.

With the use of WIM database, the actual number of load repetitions, n, could be additionally applied to the allowable number of repetitions, N , to compute the damage, n / N. Then, the summation of the damage over conditions, $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}$, and n will provide cumulative damage as described in Figure 6-7. With availability of pavement performance data (percent slabs cracked for this case), the cumulative damage could be plotted against the performance data. After that, calibration process is required to match the cumulative damage of one with the rehabilitation distress level, illustrated in Figure 6-8.

Figure 6-11: Comparison of results for Example 1

Illustrative Example 2 (fatigue damage due to different lateral support conditions)
Analyze the number of load repetitions of 39-kips tridem axle that could be carried at daytime thermal gradient of $2{ }^{\circ} \mathrm{F} / \mathrm{in}$. by pavement systems in Example 1 but with $12-\mathrm{ft}$ lane with untied AC shoulder and $14-\mathrm{ft}$ lane with untied AC shoulder.

From the catalog of stresses in Appendix I, the magnitudes of the longitudinal stresses at the bottom of the PCC slab are:

For 12-ft lane with untied AC shoulder: 224.1 psi
For 14-ft lane with untied AC shoulder: 208.6 psi
The stress ratios for the two lateral support conditions are calculated as follows:
For 12-ft lane with untied AC shoulder: $R_{12-\mathrm{ff} \mathrm{lane} \mathrm{with} \mathrm{united} \mathrm{AC} \mathrm{shoulder}}=\frac{224.1}{550}=0.407$
For 14-ft lane with untied AC shoulder: $R_{14-\mathrm{ft} \mathrm{lane} \text { with untied AC shoulder }}=\frac{208.6}{550}=0.379$
Considering the performance transfer function in equation (6-6), the number of load repetitions of 39 -kips tridem axle that could be carried for the given conditions could be analyzed as follows:

Recall that $\log _{10} N=2 \cdot R^{-1.22}+0.4371$ or $N=10^{\left[2 \cdot R^{-1.22}+0.4371\right]}$
For 12-ft lane with untied AC shoulder:
$N_{12-\mathrm{ft} \mathrm{lane} \text { with united AC shoulder }}=10^{\left[2 \cdot(0.407)^{-1.22}+0.4371\right]}=2.62$ million cycles
For 14-ft lane with untied AC shoulder:
$N_{14-\mathrm{ft} \text { lane with united AC shoulder }}=10^{\left[2 \cdot(0.379)^{-1.22}+0.4371\right]}=9.21$ million cycles
However, the number of repetitions needed to account for the number of repetitions within each axle group. The number of repetitions for each axle could be adjusted as follows:

$$
\text { Adjusted number of repetitions, } N_{\text {adjusted }}=\frac{N}{\text { number of repetitions within each axle }}
$$

For 12-ft lane with untied AC shoulder:
$N_{12 \text {-ft lane with united AC shoulder }}=\frac{2.62}{3}=0.87$ million cycles
For $14-\mathrm{ft}$ lane with untied AC shoulder:

$$
N_{14-\mathrm{ft} \mathrm{lane} \text { with united AC shoulder }}=\frac{9.21}{3}=3.07 \text { million cycles }
$$

Figure 6-12 illustrates the number of allowable repetitions for each lateral support condition, including the $12-\mathrm{ft}$ lane with tied PCC shoulder from Example 1. It can be seen that the pavement with 12 -ft lane with tied PCC shoulder could carry more repetitions of 39 -kips tridem axle, when compared with the others. For the untied AC shoulder pavements, the $14-\mathrm{ft}$ lane pavement could carry more load repetitions than the $12-\mathrm{ft}$ pavement. The two-foot shifting of the wheel path away from the edge creates the pseudo-interior loading condition for the 14 -ft lane pavement and consequently reduces the level of stress.

Figure 6-12: Comparison of results for Example 2

Illustrative Example 3 (fatigue damage due to different slab thickness)
Analyze the number of load repetitions of 32-kips tandem axle that could be carried at daytime thermal gradient of $2{ }^{\circ} \mathrm{F} / \mathrm{in}$. by pavement systems in Example 1 but with 8, 9, 11, and 12-in. PCC slab.

From the catalog of stresses in Appendix I, the magnitudes of the longitudinal stresses at the bottom of the PCC slab are:

For 8-in. slab: 277.2 psi
For 9-in. slab: 253.3 psi
For 11-in. slab: 208.6 psi
For 12-in. slab: 188.7 psi
The stress ratios for the four slab thicknesses are calculated as follows:
For 8-in. slab: $R_{8-\text { in. }}=\frac{277.2}{550}=0.504$
For 9-in. slab: $R_{9-\text { in. }}=\frac{253.3}{550}=0.461$
For 11-in. slab: $R_{11-\mathrm{in} .}=\frac{208.6}{550}=0.379$

For 12-in. slab: $R_{12-\text { in. }}=\frac{188.7}{550}=0.343$
Considering the performance transfer function in equation (6-6), the number of load repetitions of 39 -kips tridem axle that could be carried for the given conditions could be analyzed as follows:

Recall that $\log _{10} N=2 \cdot R^{-1.22}+0.4371$ or $N=10^{\left[2 \cdot R^{-1.22}+0.4371\right]}$
For 8-in. slab: $N_{8-\text { in. }}=10^{\left[2 \cdot(0.504)^{-122}+0.4371\right]}=0.112$ million cycles
For 9-in. slab: $N_{9 \text {-in. }}=10^{\left[2 \cdot(0.461)^{-1.22}+0.4371\right]}=0.387$ million cycles
For 11-in. slab: $N_{11-\mathrm{in} .}=10^{\left[2 \cdot(0.379)^{-1.22}+0.4371\right]}=9.21$ million cycles
For 12-in. slab: $N_{12-\mathrm{in} .}=10^{\left[2 \cdot(0.343)^{-1.22}+0.4371\right]}=65.05$ million cycles

However, the number of repetitions needed to account for the number of repetitions within each axle group. The number of repetitions for each axle could be adjusted as follows:

Adjusted number of repetitions, $N_{\text {adjusted }}=\frac{N}{\text { number of repetitions within each axle }}$
For 8-in. slab: $N_{8-\text { in. }}=\frac{0.112}{2}=0.056$ million cycles
For 9-in. slab: $N_{9 \text {-in. }}=\frac{0.387}{2}=0.193$ million cycles
For 11-in. slab: $N_{11-\text { in. }}=\frac{9.21}{2}=4.60$ million cycles
For 12-in. slab: $N_{12-\mathrm{in} \text {. }}=\frac{65.05}{2}=32.53$ million cycles
Figure 6-13 illustrates the number of allowable repetitions for each slab thickness, including the 10 -in. slab from Example 1. The number of allowable load repetitions is very sensitive to the slab thickness. It can be seen that load carrying capacity of the pavement is logarithmically related to the slab thickness as a linear relationship could be observed on a semi-logarithmic plot.

Figure 6-13: Comparison of results for Example 3

Illustrative Example 4 (faulting damage)

Analyze the joint faulting of pavement systems in Example 1 at the end of a design period of 20 years.

Figure 6-14: Overview of analysis of joint faulting for Example 4
The analysis joint faulting damage involves the calculation of differential elastic deformation energy, which is a function of slab corner deflections obtained from FE analysis with loading at the transverse joint, e.g. 18-kips single axle as shown in Figure 6-14.

Figure 6-15: Slab deflection results for Example 4

From the results shown in Figure 6-15, the slab deflections on both loaded and unloaded sides at the corners of the slabs could be obtained as follows:

Unloaded deflection, $W_{U L}=0.013797 \mathrm{in} .=0.35044 \mathrm{~mm}$
Loaded deflection, $W_{L}=0.017627 \mathrm{in} .=0.44773 \mathrm{~mm}$
For the given modulus of subgrade reaction ($100 \mathrm{psi} / \mathrm{in}$. or $27.145 \mathrm{kPa} / \mathrm{mm}$), the differential elastic deformation energy could be calculated as follows:

$$
\text { Differential elastic deformation energy, } D E=\frac{1}{2} \cdot k \cdot\left(W_{L}+W_{U L}\right) \cdot\left(W_{L}-W_{U L}\right)
$$

$$
D E=\frac{1}{2} \cdot(27.145) \cdot(0.44773+0.35044) \cdot(0.44773-0.35044)=1.053871 \mathrm{kPa} \cdot \mathrm{~mm}
$$

If a typical load spectrum and a typical climatic condition for Michigan are assumed for this example, the faulting calculation could be conducted using Equations 6-7 through 6-10. It should be noted that an erodibility index of 3 (erosion resistant) is assumed for this example.

The predicted faulting is illustrated in Figure 6-16. The predicted faulting is 0.1671 in . at the end of the design period.

Figure 6-16: Predicted faulting for Example 4

Illustrative Example 5 (faulting damage due to different joint designs)
Repeat Example 4 but with three of the following transverse joint designs:

- $1.5-\mathrm{in}$. dowel diameter at 12 in . center to center spacing,
- $1.25-\mathrm{in}$. dowel diameter at 18 in . center to center spacing and
- $1.5-\mathrm{in}$. dowel diameter at 18 in . center to center spacing.

Figure 6-17 illustrates the differential elastic deformation energy for the three joint designs as well as the joint design from Example 4 at the end of the design period of 20 years. It can be seen that the increase in the dowel diameter size result in a decrease in the differential elastic deformation energy, while dowel spacing has only slight impact on the differential elastic deformation energy. The predicted faulting is illustrated in Figure 6-18.

It is important to note that the variation in the joint design directly affects the slab deflections on both loaded and unloaded sides and consequently the differential elastic deformation energy. As illustrated in Figure 6-19, the decrease in the differential elastic deformation energy results in reduced faulting magnitudes.

$-1.25^{\prime \prime}$ at $12^{\prime \prime}-1.5^{\prime \prime}$ at $12^{\prime \prime}-1.25^{\prime \prime}$ at $18^{\prime \prime}-1.5^{\prime \prime}$ at $18^{\prime \prime}$

Figure 6-17: Differential elastic deformation energy for Example 5

Figure 6-18: Predicted faultings for Example 5

Figure 6-19: Predicted faultings and differential elastic deformation energy at the end of 20 years

Illustrative Example 6 (faulting damage due to different base types)
Repeat Example 4 but with lean concrete base (elastic modulus of $2,000,000 \mathrm{psi}$, Poisson's ratio of 0.15 and erodibility index of 1 or "extremely resistant") and asphalt treated base (elastic modulus of $300,000 \mathrm{psi}$, Poisson's ratio of 0.30 and erodibility index of 2 or "very erosion resistant"). Then, also compare the results with Example 4, which is an aggregate base section.

Figure 6-20 illustrates the differential elastic deformation energy for the three base types. The differential elastic deformation energies for all base types were observed to be approximately equal. However, differential elastic deformation energy is not only a function of slab deflections, but also a function of modulus of subgrade reaction. In this case, the three pavement systems have different values of modulus of subgrade reaction. Therefore, the ratio of differential elastic deformation energy to modulus of subgrade reaction, DE/k, is illustrated in Figure 6-21 to eliminate the impact of modulus of subgrade reaction and focus on the slab deflections.

Predicted faulting for the three pavement systems is illustrated in Figure 6-22. It can be seen in Figure 6-23 that the level of the predicted faulting at the end of 20 years of design period corresponds to the ratio DE / k.

Figure 6-20: Differential elastic deformation energy for Example 6

Figure 6-21: Ratio DE/k for Example 6

Figure 6-18: Predicted faultings for Example 6

Figure 6-19: Predicted faultings and ratio DE / k at the end of 20 years

Illustrative Example 7 (spalling damage)

Analyze percentage of joints spalled at the end of 20 years of design period for a pavement system with 3% air content, no preformed sealant, 2,000-psi compressive strength, an average of 250 freeze thaw cycles per year, 8 -in. slab, and 0.45 water/cement ratio.

Scaling factor can be computed based on the given information as follows:

$$
\begin{aligned}
S C F= & -1400+350 \cdot \text { AIR } \% \cdot(0.5+\text { PREFORM })+3.4 \cdot f_{c}^{\prime} \cdot 0.4 \\
& -0.2(\text { FTCYC } \cdot \text { AGE })+43 \cdot h_{P C C}-536 \cdot \text { WC_Ratio } \\
S C F= & -1400+350 \cdot(3) \cdot(0.5+0)+3.4 \cdot(2,000) \cdot 0.4 \\
& -0.2(250 \cdot 20)+43 \cdot 8-536 \cdot(0.45) \\
= & 947.8
\end{aligned}
$$

Percentage joints spalled can be compute as follow:

$$
\begin{aligned}
& S P A L L=\left[\frac{A G E}{A G E+0.01}\right] \cdot\left[\frac{100}{1+1.005^{\left(-12^{*} A G E+S C F\right)}}\right] \\
& S P A L L=\left[\frac{20}{20+0.01}\right] \cdot\left[\frac{100}{\left.1+1.005^{\left(-12^{* 20+947.8)}\right.}\right]=3 \%}\right.
\end{aligned}
$$

Chapter VII

SUMMARY OF FINDINGS AND RECOMMENDATIONS FOR FUTURE RESEARCH

7.1 Summary of Findings

The primary objective of this research study was to conduct a preliminary parametric study to investigate the impact of the interaction between structural, environmental, and load factors on pavement responses using ISLAB2000 structural model. This was accomplished through performing structural analysis of 43,092 input combinations and the use of interpolation scheme. The secondary objective is to develop a technology transfer package that will introduce the rigid pavement analysis tools to the MDOT pavement engineers, demonstrate the versatility of the rigid pavement analysis tool and summarize a variety of pavement design scenarios in a workbook for the MDOT pavement engineers. An elaborate tutorial for the use of ISLAB2000 program and several step-by-step examples were included in the technology transfer package to fulfill this objective. The package should enable engineers to apply the ISLAB2000 program to analyze JCP systems. In addition, several MDOT designs were selected as practice problems, for which the key answers were also provided.

The analysis results of this study lead to several findings, which can be categorized into three groups: robustness and user friendliness of the ISLAB2000 program, parametric study results and interpolation scheme.

Findings Related to Robustness and User Friendliness of the ISLAB2000 Program

- The ISLAB2000 program is robust and user friendly. The results from the ISLAB2000 structural model compare well with the Westergaard solutions (after considering the relevant assumptions) and other widely accepted FE structural models.
- The variations of stresses and deflections obtained from the ISLAB2000 structural model, when using mesh size of 12 in ., were found to be about 4% and 3%, respectively.

Findings Related to Parametric Study Results

- The critical load location is influenced by joint spacing and truck or axle configuration. The fractional factorial analysis indicated that the critical load location is not influenced by slab thickness, base/subbase thickness, modulus of subgrade reaction, lateral support condition, and thermal gradient or thermal strain gradient.
- For a flat slab condition, when the slab thickness changes from 9 to 12 in . the resulting stress is reduced by approximately in about 35% lower stresses. For a constant thermal gradient,
pavements constructed with different slab thickness have different temperature differentials, and therefore, the pavement responses could not be compared.
- For a flat slab condition, pavement cross-sections with thicker base/subbase thickness (from 4 to 26 in.) resulted in about $5-30 \%$ lower stresses and as the slab thickness increases the impact of base/subbase thickness becomes less significant.
- Pavements constructed with 27 feet joint spacing resulted in about 33% higher longitudinal stresses as compared to pavements constructed with 15 feet joint spacing for curled slab conditions at a thermal strain gradient value of $+10 \times 10^{-6} \mathrm{in}^{-1}$. The severity depends on the level of thermal curling or thermal strain gradient.
- For the load located along the wheel path (approximately 20 " from the traffic stripe), pavements constructed with PCC shoulders resulted in the lowest stresses among the three lateral support conditions (12' lane with tied PCC shoulders, 12^{\prime} lane with AC shoulders and 14 ' lane with AC shoulders) that are considered in the study. Although the pavements were constructed with the same AC shoulder, the magnitudes of longitudinal stresses for pavements with $12-\mathrm{ft}$ lane (standard lane) were higher than that for pavements with $14-\mathrm{ft}$ lane (widened lane). As the wheel path shifted 2 ft towards the centerline for pavements with widened lane, a pseudo-interior loading condition was created, resulting in the reduction of stresses from edge loading. Pavements constructed with AC shoulders (12-ft lane with AC shoulder) resulted in about 13% and 9% higher longitudinal stress values than pavements constructed with PCC shoulder (12-ft lane with tied PCC shoulder) and widened lane (14-ft lane with untied AC shoulder), respectively.
- Lateral wander (or lateral placement) of traffic load resulted in about 10% and 30% higher edge stresses as the load moves from the wheel path towards longitudinal joint (lane/shoulder joint) for tied PCC shoulder and AC shoulder, respectively.

Findings Related to Interpolation Scheme

- In the validation process considering all axle types, the bias (average error), variance, and mean square of errors (MSE) of the best scheme (scheme 16) were $0.51 \mathrm{psi}, 8.63 \mathrm{psi}^{2}$, and $8.89 \mathrm{psi}^{2}$, respectively, indicating that the interpolation scheme was highly accurate and precise in computing pavement response as compared with the results directly obtained from the ISLAB2000 program.
- If only single, tandem and tridem axles were considered, the bias, variance and MSE of the best scheme were found to be $0.02 \mathrm{psi}, 3.38 \mathrm{psi}^{2}$, and $3.38 \mathrm{psi}^{2}$, respectively.

7.2 Recommendations for Future Research

This research study focuses on pavement responses and several factors that affect them. Although pavement response plays a significant role in the mechanistic-empirical design process, it is necessary to integrate the pavement response with several other components in order for it to become practical. Pavement responses need to be used an inputs to transfer function, which relate responses to performance. However, the transfer function coefficients need to be localized and therefore it is important to ensure the constants reflect climatic and loading conditions in Michigan. Calibration process also needs to take place to ensure MDOT policies are met in the calculation process. The following research topics are recommended:

1) The CTE values for concrete mixes and also aggregate (as concrete making material) used in paving Michigan roads need to be determined and cataloged, since CTE plays a critical role in the thermal analysis of jointed concrete pavements. The slab movement and joint opening are also influenced by the CTE of concrete.
2) An extensive traffic database, e.g. WIM database, should be made available for the pavement network as hourly axle spectra is a key input for damage computations. The hourly axle spectra allow for calculation of pavement responses that account for daily and seasonal conditions of climate, roadbed and material. The axle repetitions from the axle spectra and the corresponding pavement responses are the inputs to the cumulative damage calculation.
3) Develop and calibrate transfer functions for key jointed concrete pavement distresses that reflect Michigan practice. The process involves statistical correlation of the cumulative damages to the measured distresses corresponding to the time periods to obtain a calibrated model that can be used for Michigan jointed concrete pavement design.

REFERENCES

American Association of State Highway and Transportation Officials (AASHTO). AASHTO Guide for Design of Pavement Structures. Washington, DC, USA, 1993.

Armaghani, J.M; Larsen, T.J; Smith, L.L. Temperature Response of Concrete Pavements. Transportation Research Record 1121, TRB, National Research Council, Washington, DC, USA, 1987, pp. 23-33.

Channakeshava, C.; Barzegar, F.; Voyiadjis, G.Z. Nonlinear FE analysis of plain concrete pavements with doweled joints. Journal of Transportation Engineering, v 119, n 5, American Society of Civil Engineers, New York, NY, USA, 1993, pp. 763-781.

Crovetti, J. A.; Darter, M. I. Void detection for jointed concrete pavements. Transportation Research Record 1041, TRB, National Research Council, Washington, DC, USA, 1985, pp. 5968.

Darter, M.I; Hall, K.T; Kuo, C. Support Under Concrete Pavements. University of Illinois, Urbana-Champaign, Illinois, USA, 1994.

Darter, M; Khazanovich, L; Snyder, M; Rao, S; Hallin, J. Development and Calibration of a Mechanic Design Procedure for Jointed Plain Concrete Pavements. $7^{\text {th }}$ International Conference on Concrete Pavements, Orlando, FL, USA, 2001.

Davids, W.G.; Mahoney, J.P. Experimental verification of rigid pavement joint load transfer modeling with EverFe. Transportation Research Record 1684, TRB, National Research Council, Washington, DC, USA, 1999, pp. 81-89.

Huang, Y.H. Pavement Analysis and Design. Prentice-Hall, Englewood, NJ, USA, 1993.
Ioannides, A.M.; Thompson, M.R.; Barenberg, E.J. Westergaard solutions reconsidered. Transportation Research Record 1043, TRB, National Research Council, Washington, DC, USA, 1985, pp. 13-23.

Khazanovich, L.; Yu, H.T. Modeling of jointed plain concrete pavement fatigue cracking in PaveSpec 3.0. Transportation Research Record 1778, TRB, National Research Council, Washington, DC, USA, 2001, pp. 33-42.

Khazanovich, L; Darter, M.I.; Yu, T. Mechanistic-empirical for transverse joint faulting prediction. Presented at the $83{ }^{\text {rd }}$ Annual Meeting of the TRB, Washington, DC, USA, 2004.

Michigan Center for Truck Safety. Truck driver's guidebook, $6^{\text {th }}$ edition. Michigan Center for Truck Safety, Lansing, MI, USA, 2001.

Mirambell, E. Temperature and Stress Distributions in Plain Concrete Pavements Under Thermal and Mechanical Loads. $2^{\text {nd }}$ International Workshop on the Theoretical Design of Concrete Pavements, Siquenza, Spain, 1990.

NCHRP. Calibrated Mechanistic Structural Analysis Precedures for Pavement. NCHRP 1-26, Vol. 1, Final Report; Vol. 2, Appendices, University of Illinois, Urbana-Champaign, Illinois, USA, 1990.

Oh, B.H. Cumulative damage theory of concrete under variable-amplitude fatigue loadings. ACI Materials Journal, v 88, n 1, American Concrete Institute, Detroit, MI, USA, 1991, pp. 41-48.

Rao, C; Barenberg, E.J; Snyder, M.B; Schmidt, S. Effects of Temperature and Moisture on the Response of Jointed Concrete Pavements. $7^{\text {th }}$ International Conference on Concrete Pavements, Orlando, FL, USA, 2001.

Rao, C; Selezneva, O; Darter, M.I. Calibration of a mechanistic empirical performance model for CRCP punchouts. Presented at the $83^{\text {rd }}$ Annual Meeting of the TRB, Washington, DC, USA, 2004.

Strategic Highway Research Program. Specific pavement studies experimental design and research plan for experiment SPS-2 strategic study of structural factors for rigid pavements. National Research Council, Washington, DC, USA, 1990.

Tabatabaie, A.M.; Barenberg, E.J. Structural analysis of concrete pavements systems. Journal of Transportation Engineering, v 106, n 5, American Society of Civil Engineers, New York, NY, USA, 1980, pp. 493-506.

Tayabji, S.D.; Colley, B.E. Improved rigid pavement joints. Transportation Research Record 930, TRB, National Research Council, Washington, DC, USA, 1983, pp. 69-78.

Ullidtz, P. Pavement Analysis. Elsevier, New York, NY, USA, 1987.
Westergaard, H.M. Stresses in concrete pavements computed by theoretical analysis. Public Road, v 7, 1926, pp. 25-35.

Yu, T.; Khazanovich, L.; Darter, M.I. Consideration of JPCP curling and warping in the 2002 Design Guide. Presented at the $83^{\text {rd }}$ Annual Meeting of the TRB, Washington, DC, USA, 2004.

Appendix A

Review of Kirchhoff Plate Theory

Kirchhoff plate theory and FE

Rigid pavement can be idealized using Kirchhoff theory, which is applicable to thin plates (Cook et al, 1989; Reddy, 1993). In other words, since rigid pavement thickness is very lesser than other two dimensions, transverse shear deformation is insignificant and can be neglected. With this important statement, all stress-strain relations that involved transverse shear deformation are vanished and what remains is the plane stress-strain relation that is shown below in form of matrices (for an isotropic material).

$$
\left\{\begin{array}{c}
\sigma_{x} \tag{A-12}\\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
E^{\prime} & E^{\prime \prime} & 0 \\
E^{\prime \prime} & E^{\prime} & 0 \\
0 & 0 & G
\end{array}\right] \cdot\left(\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}-\left\{\begin{array}{c}
\alpha \cdot T \\
\alpha \cdot T \\
0
\end{array}\right\}\right)
$$

When $\alpha=$ coefficient of thermal expansion of concrete
$\mu=$ Poisson's ratio of concrete
$\mathrm{T}=$ temperature differential between top and bottom of concrete

$$
\begin{align*}
& E^{\prime}=\frac{E^{\prime \prime}}{\mu}=\frac{E}{1-\mu^{2}} \tag{A-13}\\
& G=\frac{E}{2 \cdot(1+\mu)} \tag{A-14}
\end{align*}
$$

Based on stress-strain relations as written in matrix form above, stiffness matrix of concrete slab $\left[K_{p}\right]$ may be derived using the following formula.

$$
\begin{equation*}
\left[K_{p}\right]=\int_{A}[B]^{T} \cdot\left[D_{k}\right] \cdot[B] d A \tag{A-15}
\end{equation*}
$$

When $[B]=$ strain-displacement matrix (will be discussed later) $\mathrm{A}=$ area boundary of an element

$$
\begin{align*}
& {\left[D_{k}\right]=\left[\begin{array}{ccc}
D & \mu \cdot D & 0 \\
\mu \cdot D & D & 0 \\
0 & 0 & \frac{(1-\mu) \cdot D}{2}
\end{array}\right]} \tag{A-16}\\
& \mathrm{D}=\text { flexural rigidity } \\
& D=\frac{E \cdot t^{3}}{12 \cdot\left(1-\mu^{2}\right)} \tag{A-17}
\end{align*}
$$

When $\mathrm{t}=$ slab thickness

Winkler foundation and FE

Theoretically, rigid pavement, which is actually a slab on grade, can be approximately considered as one elastic structure supported by a foundation model called Winkler foundation. There are a great many other foundation models available for rigid pavement foundation idealization; however, Winkler foundation is traditionally used and considered as the most effective model. Details of characteristics, advantages, and disadvantages of Winkler foundation will not be discussed at this time. Another name of Winkler foundation is "Dense Liquid" foundation because this foundation simulates the behavior of subgrade or original soil under concrete slab by providing a vertical resistant pressure equal to $\beta \mathrm{w}$ when w is vertical deflection and β is the Winkler foundation modulus (modulus of subgrade reaction). Stiffness matrix of foundation is written below in matrix form.

$$
\begin{equation*}
\left[K_{f}\right]=\int_{A} \beta \cdot[N]^{T} \cdot[N] d A \tag{A-18}
\end{equation*}
$$

When [N$]$ = interpolation functions matrix (will be discussed later)
A = area boundary of an element

Discretization into FE and interpolation functions

Since rigid pavement has rectangular geometry, the pavement can be discretized using rectangular linear FE with three degrees of freedom at each node: one vertical displacement, and two horizontal rotations as shown in FigureA-8. In other words, one FE contains twelve degrees of freedom and this means each element has 12×12 stiffness matrix and 12×1 force vector and 12×1 displacement vector.

Figure A-8: Twelve-d.o.f. rectangular Kirchhoff plate element with typical d.o.f. shown at node 3
Since Kirchhoff plate elements provide interelement continuity of vertical displacements and rotations in x and y directions, the elements can be considered C^{1} elements; therefore, interpolation functions for C^{0} elements like Lagrange's interpolation formula may not be applied. Hermitian interpolation function, one of interpolation functions C^{1} elements, can be used for this
situation (thin plate elements). For an element that has four nodes: 1, 2, 3, and 4, Hermitian interpolation functions can be derived using following formulae.

$$
\begin{align*}
& w=N_{1} \cdot w_{1}+N_{x 1} \cdot \boldsymbol{\theta}_{x 1}+N_{y 1} \cdot \boldsymbol{\theta}_{y 1}+N_{2} \cdot w_{2}+N_{x 2} \cdot \boldsymbol{\theta}_{x 2}+N_{y 2} \cdot \boldsymbol{\theta}_{y 2} \tag{A-19}\\
& +N_{3} \cdot w_{3}+N_{x 3} \cdot \boldsymbol{\theta}_{x 3}+N_{y 3} \cdot \boldsymbol{\theta}_{y 3}+N_{4} \cdot w_{4}+N_{x 4} \cdot \boldsymbol{\theta}_{x 4}+N_{y 4} \cdot \boldsymbol{\theta}_{y 4}
\end{align*}
$$

When
$\left[\begin{array}{lll}N_{1} & N_{x 1} & N_{y 1}\end{array}\right]=\frac{1}{16} \cdot X_{1} Y_{1}\left[X_{1} Y_{1}-X_{2} Y_{2}+2 X_{1} Y_{2}+2 Y_{1} Y_{2} \quad 2 b Y_{1} Y_{2} \quad-2 a X_{1} X_{2}\right]$
$\left[\begin{array}{lll}N_{2} & N_{x 2} & N_{y 2}\end{array}\right]=\frac{1}{16} \cdot X_{2} Y_{1}\left[X_{2} Y_{1}-X_{1} Y_{2}+2 X_{1} Y_{2}+2 Y_{1} Y_{2} \quad 2 b Y_{1} Y_{2} \quad 2 a X_{1} X_{2}\right]$
$\left[\begin{array}{lll}N_{3} & N_{x 3} & N_{y 3}\end{array}\right]=\frac{1}{16} \cdot X_{2} Y_{2}\left[X_{2} Y_{2}-X_{1} Y_{1}+2 X_{1} Y_{2}+2 Y_{1} Y_{2} \quad-2 b Y_{1} Y_{2} \quad 2 a X_{1} X_{2}\right]$ (A-20-3)
$\left[\begin{array}{lll}N_{4} & N_{x 4} & N_{y 4}\end{array}\right]=\frac{1}{16} \cdot X_{1} Y_{2}\left[X_{1} Y_{2}-X_{2} Y_{1}+2 X_{1} Y_{2}+2 Y_{1} Y_{2} \quad-2 b Y_{1} Y_{2} \quad-2 a X_{1} X_{2}\right]$
When $\quad X_{1}=1-\frac{x}{a}$
$X_{2}=1+\frac{x}{a}$
$Y_{1}=1-\frac{y}{b}$
$Y_{2}=1+\frac{y}{b}$
Now the interpolation functions can be written in matrix form 1×12 as shown below.

$$
[N]=\left[\begin{array}{lllllllllll}
N_{1} & N_{x 1} & N_{y 1} & N_{2} & N_{x 2} & N_{y 2} & N_{3} & N_{x 3} & N_{y 3} & N_{4} & N_{x 4} \tag{A-22}
\end{array} N_{y 4}\right]
$$

Strain-displacement matrix [B] can also be written in matrix form 3×12 as shown below.

$$
[B]=-\left[\begin{array}{ccccc}
\frac{\partial^{2} N_{1}}{\partial x^{2}} & \frac{\partial^{2} N_{x 1}}{\partial x^{2}} & \frac{\partial^{2} N_{y 1}}{\partial x^{2}} & \cdots & \frac{\partial^{2} N_{y 4}}{\partial x^{2}} \tag{A-23}\\
\frac{\partial^{2} N_{1}}{\partial y^{2}} & \frac{\partial^{2} N_{x 1}}{\partial y^{2}} & \frac{\partial^{2} N_{y 1}}{\partial y^{2}} & \cdots & \frac{\partial^{2} N_{y 4}}{\partial y^{2}} \\
2 \cdot \frac{\partial^{2} N_{1}}{\partial x \partial y} & 2 \cdot \frac{\partial^{2} N_{x 1}}{\partial x \partial y} & 2 \cdot \frac{\partial^{2} N_{y 1}}{\partial x \partial y} & \cdots & 2 \cdot \frac{\partial^{2} N_{y 4}}{\partial x \partial y}
\end{array}\right]
$$

FE of one element

From previous part, stiffness matrix of each element $\left[\mathrm{K}_{\mathrm{e}}\right](12 \times 12)$ can be derived as shown below.

$$
\begin{equation*}
\left[K_{p}\right] \cdot\left\{u_{p}\right\}+\left[K_{f}\right] \cdot\left\{u_{f}\right\}=\left\{r_{e}\right\} \tag{A-24-1}
\end{equation*}
$$

but $\quad\left\{u_{p}\right\}=\left\{u_{f}\right\}=\left\{u_{e}\right\}$

$$
\begin{align*}
& {\left[K_{e}\right] \cdot\left\{u_{e}\right\}=\left\{r_{e}\right\}} \tag{A-24-3}\\
& {\left[K_{e}\right]=\left[K_{p}\right]+\left[K_{f}\right]}
\end{align*}
$$

When $\left\{u_{p}\right\}=$ slab displacement vector
$\left\{u_{f}\right\} \quad=$ foundation displacement vector
$\left\{u_{e}\right\}=$ element displacement vector (12x1)

$$
\left\{u_{e}\right\}=\left\{\begin{array}{c}
w_{1} \tag{A-25}\\
\theta_{x 1} \\
\theta_{y 1} \\
w_{2} \\
\theta_{x 2} \\
\theta_{y 2} \\
w_{3} \\
\theta_{x 3} \\
\theta_{y 3} \\
w_{4} \\
\theta_{x 4} \\
\theta_{y 4}
\end{array}\right\}
$$

$$
\left\{\mathrm{r}_{\mathrm{e}}\right\}=\text { element force vector }(12 \times 1)
$$

$$
\begin{equation*}
\left\{r_{e}\right\}=\int_{A}[B]^{T} \cdot\left[D_{K}\right] \cdot\left\{\kappa_{o}\right\} d A \tag{A-26}
\end{equation*}
$$

$$
\text { When }\left\{\kappa_{o}\right\}=\left[\begin{array}{lll}
\frac{\alpha \cdot T}{t} & \frac{\alpha \cdot T}{t} & 0 \tag{A-27}
\end{array}\right]^{T}
$$

Global system

Global stiffness matrix and force matrix can be computed based on element stiffness matrix and element force matrix. The concept of generating element stiffness matrix and element force vector into global stiffness matrix and global force vector is exactly the same as the concept of using Boolean matrix that is applicable for C^{0} elements but the method is slightly different. This is because each node of a Kirchhoff element has 3 degrees of freedom. This means the element stiffness matrix, which is actually 12×12, can be considered as 4×4 and the element force vector,
which is actually 12×1, can be considered 4×1 in order to generate them into global system as shown below.

$$
\begin{align*}
& {\left[K_{e}\right]=\left[\begin{array}{llll}
K_{11(3 x 3)} & K_{12(3 \times 3)} & K_{13(3 \times 3)} & K_{14(3 x 3)} \\
K_{21(3 \times 3)} & K_{22(3 \times 3)} & K_{23(3 \times 3)} & K_{24(3 \times 3)} \\
K_{31(3 x 3)} & K_{32(3 \times 3)} & K_{33(3 \times 3)} & K_{34(3 \times 3)} \\
K_{41(3 \times 3)} & K_{42(3 \times 3)} & K_{43(3 \times 3)} & K_{44(3 \times 3)}
\end{array}\right]} \tag{A-28}\\
& \left\{r_{e}\right\}=\left\{\begin{array}{l}
r_{1(3 \times 1)} \\
r_{2(3 x 1)} \\
r_{3(3 \times x)} \\
r_{4(3 x 1)}
\end{array}\right\} \tag{A-29}
\end{align*}
$$

Once global stiffness matrix and global force vector are derived, displacement vector of global system can be computed.

$$
\begin{equation*}
\{U\}_{3 N \times 1}=[K G]_{3 N \times 3 N}^{-1} \cdot\{F\}_{3 N \times 1} \tag{A-30}
\end{equation*}
$$

When $\{\mathrm{U}\}=$ global displacement vector
[KG] = global stiffness matrix
$\{\mathrm{F}\}=$ global force vector
$\mathrm{N} \quad=$ number of nodes in global system

Appendix B

Comparison between ISLAB2000 Results and Westergaard's Solution

Comparison between ISLAB2000 results and Westergaard's solution

Each problem was divided into two parts: the textbook solution (Huang, 1993), and the ISLAB2000 solution (FE solution). The textbook solution consists of the problem statement, an illustration of the problem, and solution based on Westergaard's equations, while the finite element (FE) solution consists of the summary of inputs, illustration of the mesh and loading used in problem, followed by a short explanation if necessary, and numerical graphical outputs.

Problem 1 (Example 4.1 page 172 in the textbook)

Textbook solution

Given: Concrete elastic modulus	$=$	$4 * 10^{6} \mathrm{psi}$
Concrete Poisson ratio	$=$	0.15
Slab length	$=$	25
ft		
Slab width	$=$	12 ft
Slab thickness	in.	
Temperature differential	$=20{ }^{\circ} \mathrm{F}$	
k-value	$=$	200
$\mathrm{psi} / \mathrm{in}$.		
α_{t}	$=$	$5 * 10^{-6} \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$

Find: (a) The maximum curling stress in the interior of the slab (b) The maximum curling stress at the edge of the slab

Problem illustration:

Figure B-1: Problem illustration (Figure 4.5 in the textbook)
Solutions (based on Westergaard's equations):
(a) The maximum curling stress in the interior of the slab $=238 \mathrm{psi}(1641 \mathrm{kPa})$
(b) The maximum curling stress at the edge of the slab $=214 \mathrm{psi}(1476 \mathrm{kPa})$

FE solution

Summary of inputs: All pavement features and temperature gradients used in this part are the same as indicated in the textbook solution. For the finite element model, fine mesh size (6 "), medium mesh size (12 "), coarse mesh size (24 "), and manual mesh size (3 ") with mesh aspect ratio of one were chosen. It should be noted that these are the mesh configurations used for the rest of the analysis using ISLAB2000 in this report unless otherwise indicated. An illustration of the fine mesh size, which is a default in the software, is shown below.

Figure B-2: Mesh used for finite element model in ISLAB2000
Numerical outputs:
For fine mesh:
The maximum stress in the interior of the slab $\quad=230.3 \mathrm{psi}(1588 \mathrm{kPa})$
The maximum stress at the edge of the slab $\quad=220.3 \mathrm{psi}(1519 \mathrm{kPa})$
For medium mesh:
The maximum stress in the interior of the slab
$=230.1 \mathrm{psi}(1587 \mathrm{kPa})$
The maximum stress at the edge of the slab
$=220.1 \mathrm{psi}(1518 \mathrm{kPa})$
For coarse mesh:
The maximum stress in the interior of the slab $\quad=231.6 \mathrm{psi}(1597 \mathrm{kPa})$
The maximum stress at the edge of the slab $\quad=219.0 \mathrm{psi}(1510 \mathrm{kPa})$
For manual mesh:
The maximum stress in the interior of the slab $\quad=230.5 \mathrm{psi}(1589 \mathrm{kPa})$
The maximum stress at the edge of the slab

$$
=219.8 \mathrm{psi}(1516 \mathrm{kPa})
$$

Result comparison:

Table B-1: Maximum curling stress in the interior of the slab comparison

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	238.0	1641	0.00
ISLAB2000 (24" mesh size)	231.6	1597	2.69
ISLAB2000 (12" mesh size)	230.1	1587	3.31
ISLAB2000 (6" mesh size)	230.3	1588	3.25
ISLAB2000 (3" mesh size)	230.5	1590	3.14

Table B-2: Maximum curling stress at the edge of the slab comparison

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	214.0	1476	0.00
ISLAB2000 (24" mesh size)	219.0	1510	2.35
ISLAB2000 (12" mesh size)	220.1	1518	2.87
ISLAB2000 (6" mesh size)	220.3	1519	2.95
ISLAB2000 (3" mesh size)	219.8	1516	2.72

Problem 2 (Example 4.2 page 176 in the textbook)

Textbook solution

Given: Concrete elastic modulus $=4 * 10^{6} \mathrm{psi}$
Concrete Poisson ratio $=0.15$
Slab thickness $=10$ in.
k -value $=100 \mathrm{psi} / \mathrm{in}$.
Tire contact radius $=6$ in.
Wheel load $=10,000 \mathrm{lb}$
Find: (a) The maximum stress due to corner loading
(b) The maximum deflection due to corner loading

Problem illustration:

Figure B-3: Problem illustration (Figure 4.7 in the textbook)
Solutions (based on Westergaard's equations):
(a) The maximum stress due to corner loading $=186.6 \mathrm{psi}(1287 \mathrm{kPa})$
(b) The maximum deflection due to corner loading $=0.0502 \mathrm{in}$. (1275 microns)

FE solution

Summary of inputs: All pavement features used in this part are the same as indicated in the textbook solution. However, the circular tire contact area as illustrated in the problem is not an option in ISLAB2000. As a result, a square tire contact area with the same tire contact pressure and wheel load was used instead. The tire contact pressure will be used again in problems 3 and 4. The tire pressure is computed as follows.

Tire contact pressure, $q=\frac{P}{\pi \cdot a^{2}}=\frac{10,000}{\pi \cdot 6^{2}}=88.42 \quad \mathrm{psi}$
Figures A4 and A5 represent the mesh used in the analysis.

Figure B-4: Mesh used for finite element model in ISLAB2000

Figure B-5: Equivalent square contact area used in ISLAB2000
Numerical outputs:
For fine mesh:
The maximum stress due to corner loading $\quad=195.8 \mathrm{psi}(1350 \mathrm{kPa})$
The maximum deflection due to corner loading For medium mesh:

The maximum stress due to corner loading
The maximum deflection due to corner loading
For coarse mesh:
The maximum stress due to corner loading
The maximum deflection due to corner loading
$=0.0563 \mathrm{in}$. (1430 microns)
$=197.9 \mathrm{psi}(1365 \mathrm{kPa})$
$=0.0563 \mathrm{in}$. (1430 microns)
$=198.4 \mathrm{psi}(1368 \mathrm{kPa})$
$=0.0562 \mathrm{in}$. (1427 microns)

For manual mesh:
The maximum stress due to corner loading $\quad=195.8 \mathrm{psi}(1350 \mathrm{kPa})$
The maximum deflection due to corner loading $\quad=0.0563 \mathrm{in}$. (1430 microns)

Result comparison:

Table B-3: Stress result comparison

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	186.6	1287	0.00
ISLAB2000 (24" mesh size)	198.4	1368	6.32
ISLAB2000 (12" mesh size)	197.9	1365	6.06
ISLAB2000 (6" mesh size)	195.8	1350	4.93
ISLAB2000 (3" mesh size)	195.8	1350	4.93

Table B-4: Deflection result comparison

Approach	Maximum Deflection		Difference (\%)
	(in.)	(microns)	
Westergaard's	0.0502	1275	0.00
ISLAB2000 (24" mesh size)	0.0562	1427	11.95
ISLAB2000 (12" mesh size)	0.0563	1430	12.15
ISLAB2000 (6" mesh size)	0.0563	1430	12.15
ISLAB2000 (3" mesh size)	0.0563	1430	12.15

Table B-5: Stress result comparison

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Ioannides's	190.2	1311	0.00
ISLAB2000 (24" mesh size)	198.4	1368	4.31
ISLAB2000 (12" mesh size)	197.9	1365	4.05
ISLAB2000 (6" mesh size)	195.8	1350	2.94
ISLAB2000 (3" mesh size)	195.8	1350	2.94

Table B-6: Deflection result comparison

Approach	Maximum Deflection		Difference (\%)
	(in.)	(microns)	
Ioannides's	0.0560	1422	0.00
ISLAB2000 (24" mesh size)	0.0562	1427	0.36
ISLAB2000 (12" mesh size)	0.0563	1430	0.54
ISLAB2000 (6" mesh size)	0.0563	1430	0.54
ISLAB2000 (3" mesh size)	0.0563	1430	0.54

Problem 3 (Example 4.3 page 177 in the textbook)

Textbook solution

Given: Concrete elastic modulus $=4 * 10^{6} \mathrm{psi}$
Concrete Poisson ratio $=0.15$
Slab thickness $=10$ in.
k -value
$=100 \mathrm{psi} / \mathrm{in}$.
Tire contact radius $=6$ in.
Wheel load $=10,000 \mathrm{lb}$
Find: (a) The maximum stress due to interior loading
(b) The maximum deflection due to interior loading

Problem illustration:

Figure B-6: Problem illustration (Figure 4.8 in the textbook)

Solutions (based on Westergaard's equations):
(a) The maximum stress due to interior loading $=143.7 \mathrm{psi}(991 \mathrm{kPa})$
(b) The maximum deflection due to interior loading $=0.00670 \mathrm{in}$. (170 microns)

FE solution

Figures A7 and A8 represent the mesh used in the analysis.

Figure B-7: Mesh used for finite element model in ISLAB2000

Figure B-8: Equivalent square contact area used in ISLAB2000

Numerical outputs:
For fine mesh:
The maximum stress due to interior loading $\quad=151.9 \mathrm{psi}(1047 \mathrm{kPa})$
The maximum deflection due to interior loading $\quad=0.00690 \mathrm{in}$. (175 microns)
For medium mesh:
The maximum stress due to interior loading $\quad=159.0 \quad \mathrm{psi}(1096 \mathrm{kPa})$
The maximum deflection due to interior loading $\quad=0.00692 \mathrm{in}$. (176 microns)
For coarse mesh:

> | The maximum stress due to interior loading | $=140.6 \mathrm{psi}(969 \mathrm{kPa})$ |
| :--- | :--- |
| The maximum deflection due to interior loading | $=0.00683 \mathrm{in} .(173$ microns $)$ |
| For manual mesh: | |
| The maximum stress due to interior loading | $=144.2 \mathrm{psi}(994 \mathrm{kPa})$ |
| The maximum deflection due to interior loading | $=0.00689 \mathrm{in} .(175 \mathrm{microns})$ |

Result comparison:

Table B-7: Stress result comparison

Approach	Maximum Deflection		Difference (\%)
	(in.)	(microns)	
Westergaard's	0.00670	170	0.00
ISLAB2000 (24" mesh size)	0.00683	173	1.94
ISLAB2000 (12" mesh size)	0.00692	176	3.28
ISLAB2000 (6" mesh size)	0.00690	175	2.99
ISLAB2000 (3" mesh size)	0.00689	175	2.84

Table B-8: Deflection result comparison

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	143.7	991	0.00
ISLAB2000 (24" mesh size)	140.6	969	2.16
ISLAB2000 (12" mesh size)	159.0	1096	10.65
ISLAB2000 (6" mesh size)	151.9	1047	5.69
ISLAB2000 (3' mesh size)	144.2	994	0.35

Problem 4 (Example 4.4 page 178 in the textbook)

Textbook solution

Given: Concrete elastic modulus	$=$	$4^{*} 10^{6} \mathrm{psi}$
Concrete Poisson ratio	$=$	0.15
Slab thickness	$=$	10 in.
k-value	$=$	$100 \mathrm{psi} / \mathrm{in}$.
Tire contact radius	$=$	6 in.
Wheel load	$=$	$10,000 \mathrm{lb}$

Find: (a) The maximum stress due to edge loading
(b) The maximum deflection due to edge loading

Problem illustration:

Figure B-9: Problem illustration (Figure 4.9 in the textbook)
Solutions (based on Westergaard's equations):
(a) The maximum stress due to edge loading $\quad=279.4 \mathrm{psi}(1926 \mathrm{kPa})$
(b) The maximum deflection due to edge loading $=0.0207 \mathrm{in}$. (526 microns)

FE solution

Figures A10 and A11 represent the mesh used in the analysis.

Figure B-10: Mesh used for finite element model in ISLAB2000

Figure B-11: Equivalent square contact area used in ISLAB2000

Numerical outputs:
For fine mesh:
The maximum stress due to edge loading

$$
\begin{aligned}
& =294.9 \mathrm{psi}(2033 \mathrm{kPa}) \\
& =0.0212 \mathrm{in} .(538 \text { microns })
\end{aligned}
$$

The maximum deflection due to edge loading
For medium mesh:

The maximum stress due to edge loading
The maximum deflection due to edge loading For coarse mesh:

The maximum stress due to edge loading
The maximum deflection due to edge loading For manual mesh:

The maximum stress due to edge loading
The maximum deflection due to edge loading
$=287.2 \mathrm{psi}(1980 \mathrm{kPa})$
$=306.5 \mathrm{psi}(2113 \mathrm{kPa})$
$=0.0212$ in. (538 microns)
$=285.9 \mathrm{psi}(1971 \mathrm{kPa})$
$=0.0211 \mathrm{in}$. (537 microns)
$=0.0212$ in. (538 microns)

Result comparison:

Table B-9: Stress result comparison

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	279.4	1926	0.00
ISLAB2000 (24" mesh size)	285.9	1971	2.33
ISLAB2000 (12" mesh size)	306.5	2113	9.70
ISLAB2000 (6" mesh size)	294.9	2033	5.54
ISLAB2000 (3" mesh size)	287.2	1980	2.79

Table B-10: Deflection result comparison

Approach	Maximum Deflection		Difference (\%)
	(in.)	(microns)	
Westergaard's	0.0207	526	0.00
ISLAB2000 (24" mesh size)	0.0211	537	2.08
ISLAB2000 (12" mesh size)	0.0212	538	2.32
ISLAB2000 (6" mesh size)	0.0212	538	2.42
ISLAB2000 (3" mesh size)	0.0212	538	2.42

Problem 5 (Example 4.5 page 180 in the textbook)

Textbook solution

Given: Concrete elastic modulus $=4 * 10^{6} \mathrm{psi}$
Concrete Poisson ratio $=0.15$
Slab thickness $=10$ in.
k -value $\quad=100 \mathrm{psi} / \mathrm{in}$.
Dual tire spacing
$=14 \quad \mathrm{in}$.
Tire contact pressure $=88.42 \mathrm{psi}$
Wheel load $=10,000 \mathrm{lb}(5,000 \mathrm{lb}$ each $)$
Find: (a) The maximum stress due to corner loading
(b) The maximum stress due to interior loading
(c) The maximum stress due to edge loading

Problem illustration:

Figure B-12: Problem illustration (Figure 4.11 in the textbook)

Solutions (based on Westergaard's equations):
(a) The maximum stress due to corner loading $\quad=166.8 \mathrm{psi}(1150 \mathrm{kPa})$
(b) The maximum stress due to interior loading $\quad=130.8 \mathrm{psi}(902 \mathrm{kPa})$
(c) The maximum stress due to edge loading $\quad=244.2 \mathrm{psi}(1684 \mathrm{kPa})$

FE solution

Summary of inputs: All pavement features used in this part are the same as indicated in the textbook solution. However, the circular tire contact area as illustrated in the problem was not the option in ISLAB2000. As a result, a square tire contact area with the same tire contact pressure and wheel load was used instead. The tire pressure was computed as follows.

Radius of contact area,

$$
\begin{aligned}
& \begin{aligned}
a & =\sqrt{\frac{0.8521 \cdot P_{d}}{q \cdot \pi}+\frac{S_{d}}{\pi} \cdot\left(\frac{P_{d}}{0.5227 \cdot q}\right)^{1 / 2}}(\mathrm{~A}-2, \text { Eq. } 4.31 \text { in the textbook) } \\
& =\sqrt{\frac{0.8521 \times 5000}{88.42}+\frac{14}{\pi} \cdot\left(\frac{5000}{0.5227 \times 88.42}\right)^{1 / 2}}=7.85 \mathrm{in} .
\end{aligned} \\
& \text { Tire contact pressure, } q=\frac{P}{\pi \cdot a^{2}}=\frac{10,000}{\pi \cdot 7.85^{2}}=51.65 \mathrm{psi}
\end{aligned}
$$

A fine mesh size (6 ") with an aspect ratio of one was used for this analysis and is illustrated in Figures A13-A18.

Figure B-13: Mesh used for finite element model for corner loading in ISLAB2000

Figure B-14: Equivalent square contact area used for corner loading in ISLAB2000

Figure B-15: Mesh used for finite element model for interior loading in ISLAB2000

Figure B-16: Equivalent square contact area used for interior loading in ISLAB2000

Figure B-17: Mesh used for finite element model for edge loading in ISLAB2000

Figure B-18: Equivalent square contact area used for edge loading in ISLAB2000

Numerical outputs:
For fine mesh:
The maximum stress due to corner loading $=177.6 \mathrm{psi}(1225 \mathrm{kPa})$
The maximum stress due to interior loading $=\quad 132.8 \mathrm{psi}(916 \mathrm{kPa})$
The maximum stress due to edge loading $=255.2 \mathrm{psi}(1760 \mathrm{kPa})$
For medium mesh:
The maximum stress due to corner loading =
$178.1 \mathrm{psi}(1228 \mathrm{kPa})$
The maximum stress due to interior loading $=$
$144.2 \mathrm{psi}(994 \mathrm{kPa})$
The maximum stress due to edge loading $=267.6 \mathrm{psi}(1845 \mathrm{kPa})$
For coarse mesh:
The maximum stress due to corner loading $=182.3 \mathrm{psi}(1257 \mathrm{kPa})$
The maximum stress due to interior loading $=\quad 135.5 \mathrm{psi}(934 \mathrm{kPa})$
The maximum stress due to edge loading $=263.8 \mathrm{psi}(1819 \mathrm{kPa})$

Result comparison:

Table B-11: Stress result comparison for corner loading

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	166.8	1150	0.00
ISLAB2000 (24" mesh size)	182.3	1257	9.29
ISLAB2000 (12" mesh size)	178.1	1228	6.77
ISLAB2000 (6" mesh size)	177.6	1225	6.47

Table B-12: Stress result comparison for interior loading

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	130.8	902	0.00
ISLAB2000 (24" mesh size)	135.5	934	3.59
ISLAB2000 (12" mesh size)	144.2	994	10.24
ISLAB2000 (6" mesh size)	132.8	916	1.54

Table B-13: Stress result comparison for edge loading

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	244.2	1684	0.00
ISLAB2000 (24" mesh size)	263.8	1819	8.03
ISLAB2000 (12" mesh size)	267.6	1845	9.58
ISLAB2000 (6" mesh size)	255.2	1760	4.50

Problem 6 (Problem 4-1 page 203 in the textbook)

Textbook solution

Given: Concrete elastic modulus	$=$	$4 * 10^{6}$	psi	
Concrete Poisson ratio	=	0.15		
Slab length	=	20	ft	(for part b.)
Slab width	=	12	ft	(for part b.)
Slab thickness	=	8	in.	
Temperature differential	$=$	24	${ }^{0} \mathrm{~F}$	
k -value	=	50	psi	
$\alpha_{\text {t }}$	=	$5 * 10^{-6}$	in.	

Find: a) for an infinite slab
The maximum curling stress in the interior of the slab The maximum curling stress at the edge of the slab
b) for a finite slab

The maximum curling stress at points A, B, and C in the Figure P4.1
Problem illustration:

Figure B-19: Problem illustration (Figure P4.1 in the textbook)
Solutions (based on Westergaard's equations):
(a) for an infinite slab

The maximum curling stress in the interior of the slab $=282.4 \mathrm{psi}(1947 \mathrm{kPa})$
The maximum curling stress at the edge of the slab $=240.0 \mathrm{psi}(1655 \mathrm{kPa})$
(b) for a finite slab

The maximum curling stress at points A $\quad=211.4 \mathrm{psi}(1458 \mathrm{kPa})$
The maximum curling stress at points B $\quad=198.0 \mathrm{psi}(1365 \mathrm{kPa})$
The maximum curling stress at points $\mathrm{C} \quad=57.6 \mathrm{psi}(397 \mathrm{kPa})$

FE solution

Summary of inputs: All pavement features and temperature gradient used in this part are the same as indicated in the textbook solution. The slab dimension of 48^{\prime} by 60^{\prime} was used to represent the infinite slab. A fine mesh with an aspect ratio of one was chosen and is illustrated in Figures A20 and A21.

Figure B-20: Mesh used for finite element model for an infinite slab in ISLAB2000

Figure B-21: Mesh used for finite element model for a finite slab in ISLAB2000

Numerical outputs:

I. For an infinite slab

For fine mesh:
The maximum curling stress in the interior of the slab $=296.2 \mathrm{psi}(2042 \mathrm{kPa})$
The maximum curling stress at the edge of the slab $=245.3 \mathrm{psi}(1692 \mathrm{kPa})$
For medium mesh:
The maximum curling stress in the interior of the slab $=296.3$ psi $(2043 \mathrm{kPa})$
The maximum curling stress at the edge of the slab $=244.9 \mathrm{psi}(1689 \mathrm{kPa})$ For coarse mesh:

The maximum curling stress in the interior of the slab $=296.6 \mathrm{psi}(2045 \mathrm{kPa})$
The maximum curling stress at the edge of the slab $=244.2 \mathrm{psi}(1684 \mathrm{kPa})$

II. For a finite slab

For fine mesh:
The maximum curling stress at points A
$=194.8 \mathrm{psi}(1343 \mathrm{kPa})$
The maximum curling stress at points B
The maximum curling stress at points C For medium mesh:

The maximum curling stress at points A
$=195.3 \mathrm{psi}(1347 \mathrm{kPa})$
The maximum curling stress at points B
The maximum curling stress at points C For coarse mesh:

The maximum curling stress at points A
$=197.3 \mathrm{psi}(1360 \mathrm{kPa})$
The maximum curling stress at points B
$=197.8 \mathrm{psi}(1364 \mathrm{kPa})$
The maximum curling stress at points C
$=50.4 \quad$ psi $(347 \mathrm{kPa})$

Result comparison:

Table B-14: The maximum curling stress comparison in the interior of an infinite slab

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	282.4	1947	0.00
ISLAB2000 (24" mesh size)	296.6	2045	5.03
ISLAB2000 (12" mesh size)	296.3	2043	4.92
ISLAB2000 (6" mesh size)	296.2	2042	4.89

Table B-15: The maximum curling stress comparison at the edge of an infinite slab

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	240.0	1655	0.00
ISLAB2000 (24" mesh size)	244.2	1684	1.74
ISLAB2000 (12" mesh size)	244.9	1689	2.05
ISLAB2000 (6" mesh size)	245.4	1692	2.23

Table B-16: The maximum curling stress comparison at points A of a finite slab

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	211.4	1458	0.00
ISLAB2000 (24" mesh size)	197.3	1360	6.69
ISLAB2000 (12" mesh size)	195.3	1347	7.62
ISLAB2000 (6" mesh size)	194.8	1343	7.87

Table B-17: The maximum curling stress comparison at points B of a finite slab

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	198.0	1365	0.00
ISLAB2000 (24" mesh size)	197.8	1364	0.09
ISLAB2000 (12" mesh size)	196.3	1353	0.86
ISLAB2000 (6" mesh size)	196.0	1351	1.04

Table B-18: The maximum curling stress comparison at points C of a finite slab

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	57.6	397	0.00
ISLAB2000 (24" mesh size)	50.4	347	12.55
ISLAB2000 (12" mesh size)	49.9	344	13.42
ISLAB2000 (6" mesh size)	49.7	343	13.65

Problem 7 (Problem 4-2 page 204 in the textbook)

Textbook solution

Given: Concrete elastic modulus	$=$	$4 * 10^{6} \mathrm{psi}$
Concrete Poisson ratio	$=$	0.15 p
Slab thickness	$=$	10 in.
k-value	$=$	$200 \mathrm{psi} / \mathrm{in}$.
Tire contact pressure	$=$	psi
Wheel load	$=12,000 \mathrm{lb}(6,000 \mathrm{lb}$ each $)$	
Dual tire spacing	in.	

Find: (a) The maximum stress due to corner loading

Problem illustration:

Figure B-22: Problem illustration (Figure P4.2 in the textbook)
Solutions (based on Westergaard's equations):
(a) The maximum stress due to corner loading $=172.8 \mathrm{psi}(1191 \mathrm{kPa})$

FE solution

Summary of inputs: All pavement features used in this part are the same as indicated in the textbook solution. However, the circular tire contact area as illustrated in the problem was not the option in ISLAB2000. As a result, a square tire contact area with the same tire contact pressure and wheel load was used instead. It should be noted that this tire contact pressure will also be used in problem 8 and 9 . The tire pressure was computed as follows.

Radius of contact area,

$$
\begin{aligned}
a & =\sqrt{\frac{0.8521 \cdot P_{d}}{q \cdot \pi}+\frac{S_{d}}{\pi} \cdot\left(\frac{P_{d}}{0.5227 \cdot q}\right)^{1 / 2}} \text { (A-2, Eq. } 4.31 \text { in the textbook) } \\
& =\sqrt{\frac{0.8521 \times 6000}{80}+\frac{14}{\pi} \cdot\left(\frac{6000}{0.5227 \times 80}\right)^{1 / 2}}=10.83 \mathrm{in} .
\end{aligned}
$$

Tire contact pressure, $q=\frac{P}{\pi \cdot a^{2}}=\frac{12,000}{\pi \cdot 10.83^{2}}=32.57 \quad \mathrm{psi}$
Figures A23 and A24 represent the mesh used in the analysis.

Figure B-23: Mesh used for finite element model in ISLAB2000

Figure B-24: Equivalent square contact area used in ISLAB2000
Numerical outputs:
For fine mesh:
The maximum stress due to corner loading $=164.5 \mathrm{psi}(1134 \mathrm{kPa})$
For medium mesh:
The maximum stress due to corner loading $=166.5 \mathrm{psi}(1148 \mathrm{kPa})$
For coarse mesh:
The maximum stress due to corner loading $=171.1 \mathrm{psi}(1180 \mathrm{kPa})$

Result comparison:

Table B-19: Stress result comparison for corner loading

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	172.8	1191	0.00
ISLAB2000 (24" mesh size)	171.1	1180	0.98
ISLAB2000 (12" mesh size)	166.5	1148	3.65
ISLAB2000 (6" mesh size)	164.5	1134	4.80

Problem 8 (Problem 4-3 page 204 in the textbook)

Textbook solution

Given: Concrete elastic modulus	$=$	$4 * 10^{6} \mathrm{psi}$
Concrete Poisson ratio	$=$	0.15 p
Slab thickness	$=$	10 in.
k-value	$=$	$200 \mathrm{psi} / \mathrm{in}$.
Tire contact pressure	$=$	psi
Wheel load	$=12,000 \mathrm{lb}(6,000 \mathrm{lb}$ each $)$	
Dual tire spacing	in.	

Find: (a) The maximum stress due to interior loading

Problem illustration:

Figure B-25: Problem illustration (Figure P4.3 in the textbook)
Solutions (based on Westergaard's equations):
(a) The maximum stress due to interior loading $=139.7 \mathrm{psi}(963 \mathrm{kPa})$

FE solution

Figures A26 and A27 represent the mesh used in the analysis.

Figure B-26: Mesh used for finite element model in ISLAB2000

Figure B-27: Equivalent square contact area used in ISLAB2000

Numerical outputs:
For fine mesh:
The maximum stress due to interior loading $=123.3 \mathrm{psi}(850 \mathrm{kPa})$ For medium mesh:

The maximum stress due to interior loading $=$
$134.1 \mathrm{psi}(925 \mathrm{kPa})$
For coarse mesh:
The maximum stress due to interior loading $=137.6 \mathrm{psi}(949 \mathrm{kPa})$

Result comparison:

Table B-20: Stress result comparison for interior loading

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	139.7	963	0.00
ISLAB2000 (24" mesh size)	137.6	949	1.50
ISLAB2000 (12" mesh size)	134.1	925	4.01
ISLAB2000 (6" mesh size)	123.3	850	11.74

Problem 9 (Problem 4-4 page 204 in the textbook)

Textbook solution

Given: Concrete elastic modulus	$=$	$4 * 10^{6} \mathrm{psi}$
Concrete Poisson ratio	$=$	0.15 p
Slab thickness	$=$	10 in.
k-value	$=$	$200 \mathrm{psi} / \mathrm{in}$.
Tire contact pressure	$=$	80 psi
Wheel load	$=$	$12,000 \mathrm{lb}(6,000 \mathrm{lb}$ each $)$
Dual tire spacing	$=14 \mathrm{in}$.	

Find: (a) The maximum stress due to edge loading

Problem illustration:

Figure B-28: Problem illustration (Figure P4.4 in the textbook)
Solutions (based on Westergaard's equations):
(a) The maximum stress due to edge loading $=\quad 252.5 \mathrm{psi}(1741 \mathrm{kPa})$

FE solution

Figures A29 and A30 represent the mesh used in the analysis.

Figure B-29: Mesh used for finite element model in ISLAB2000

Figure B-30: Equivalent square contact area used in ISLAB2000
Numerical outputs:
For fine mesh:
The maximum stress due to edge loading $=227.4 \mathrm{psi}(1568 \mathrm{kPa})$
For medium mesh:
The maximum stress due to edge loading $=237.9 \mathrm{psi}(1640 \mathrm{kPa})$
For coarse mesh:
The maximum stress due to edge loading $=247.7 \mathrm{psi}(1708 \mathrm{kPa})$

Result comparison:

Table B-21: Stress result comparison for edge loading

Approach	Maximum Curling Stress		Difference (\%)
	(psi)	(kPa)	
Westergaard's	252.5	1741	0.00
ISLAB2000 (24" mesh size)	247.7	1708	1.90
ISLAB2000 (12" mesh size)	237.9	1640	5.78
ISLAB2000 (6" mesh size)	227.4	1568	9.94

Appendix C

ISLAB2000 Graphical Results for the Comparison with Westergaard's Solution

Problem 1 (Example 4.1 page 172 in the textbook)

Stress Distribution at Bottom of PCC

Figure C-1: Graphical stress results using ISLAB2000 (fine mesh)
Stress Distribution at Bottom of PCC

Figure C-2: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Bottom of PCC

Figure C-3: Graphical stress results using ISLAB2000 (coarse mesh)

Stress Distribution at Bottom of PCC

Figure C-4: Graphical stress results using ISLAB2000 (manual mesh)

Deflections

Figure C-7: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-8: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

Figure C-9: Graphical deflection results using ISLAB2000 (coarse mesh)

Deflections

Figure C-10: Graphical deflection results using ISLAB2000 (manual mesh)

Problem 2 (Example 4.2 page 176 in the textbook)

Stress Distribution at Top of PCC

Figure C-13: Graphical stress results using ISLAB2000 (fine mesh)

Stress Distribution at Top of PCC

Figure C-14: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Top of PCC

198.4
185.7
188.8
147.6
128.6
100.5
90.4
71.4
52.3
33.3
14.2
-4.8
. 23.9
. 42.9
.49 .3

Figure C-15: Graphical stress results using ISLAB2000 (coarse mesh)
Stress Distribution at Top of PCC

196.8
185.8
170.7
155.7
140.8
125.5
110.6
95.4
80.4
e5. 3
50.2
35.2
20.1
5.0
0.0

Figure C-16: Graphical stress results using ISLAB2000 (manual mesh)

Deflections

Figure C-19: Graphical deflection results using ISLAB2000 (fine mesh)
Deflections

Figure C-20: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

Figure C-21:Graphical deflection results using ISLAB2000 (coarse mesh)
Deflections

Figure C-22: Graphical deflection results using ISLAB2000 (manual mesh)

Problem 3 (Example 4.3 page 177 in the textbook)

Stress Distribution at Bottom of PCC

Figure C-25: Graphical stress results using ISLAB2000 (fine mesh)
Stress Distribution at Bottom of PCC

162.0
150.9
138.7
125.5
114.3
102.0
89.8
77.8
85.4
53.2
41.0
28.8
18.8
4.4
0.3

Figure C-26: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Bottom of PCC

Figure C-27: Graphical stress results using ISLAB2000 (coarse mesh)

Stress Distribution at Bottom of PCC

Figure C-28: Graphical stress results using ISLAB2000 (manual mesh)

Deflections

Figure C-31: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-32: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

Figure C-33: Graphical deflection results using ISLAB2000 (coarse mesh)

Deflections

Figure C-34: Graphical deflection results using ISLAB2000 (manual mesh)

Problem 4 (Example 4.4 page 178 in the textbook)

Stress Distribution at Bottom of PCC

Figure C-37: Graphical stress results using ISLAB2000 (fine mesh)

Stress Distribution at Bottom of PCC

308.6
200.7
287.1
243.5
219.8
158.2
172.8
148.9
126.3
101.7
78.0
54.4
30.8
7.1
-0.7

Figure C-38: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Bottom of PCC

Figure C-39: Graphical stress results using ISLAB2000 (coarse mesh)
Stress Distribution at Bottom of PCC

Figure C-40: Graphical stress results using ISLAB2000 (manual mesh)

Deflections

Figure C-43: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-44: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

0.02113
0.01596
0.01821
0.01647
0.01472
0.01297
0.01122
0.00947
0.00772
0.00597
0.00422
0.00247
0.00072
. 0.00103
$-0.001 \mathrm{G1}$

Figure C-45: Graphical deflection results using ISLAB2000 (coarse mesh)

Deflections

Figure C-46: Graphical deflection results using ISLAB2000 (manual mesh)

Problem 5 (Example 4.5 page 180 in the textbook)

Stress Distribution at Top of PCC

177.8
168.4
154.9
141.1
127.6
113.8
100.2
88.5
72.9
59.2
45.6
31.9
18.2
4.8
0.0

Figure C-49: Graphical stress results using ISLAB2000 (fine mesh)
Stress Distribution at Top of PCC

178.1
109.0
155.3
141.6
127.9
114.2
100.5
88.8
73.1
59.4
45.7
32.0
18.3
4.8
0.0

Figure C-50: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Top of PCC

182.3 170.4
152.8
134.8
117.0
\% 2.2
81.4
63.7
45.9
28.1
10.3
.7 .5
.26 .3
. 43.1
. 49.0

Figure C-51: Graphical stress results using ISLAB2000 (coarse mesh)

Deflections

Figure C-54: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

0.0532
0.0507
0.0486
0.0423
0.0390
0.0338
0.0295
0.0253
0.0211
0.0188
0.0128
0.0083
0.0041
-0.0002
.0 .0002
.0 .0015

Figure C-55: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

Figure C-56: Graphical deflection results using ISLAB2000 (coarse mesh)

Stress Distribution at Bottom of PCC

132.8
125.0
116.8
105.6
96.4
85.2
75.0
84.8
54.8
44.4
34.2
24.1
13.9
3.7
0.3

Figure C-59: Graphical stress results using ISLAB2000 (fine mesh)

Stress Distribution at Bottom of PCC

Figure C-60: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Bottom of PCC

Figure C-61: Graphical stress results using ISLAB2000 (coarse mesh)

Deflections

Figure C-64: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-65: Graphical deflection results using ISLAB2000 (medium mesh)

> Deflections

Figure C-66: Graphical deflection results using ISLAB2000 (coarse mesh)

Stress Distribution at Bottom of PCC

255.2 242.1
222.4
200.7
183.0
163.3
143.8
124.0
104.3
84.8
84.9
45.2
25.6
5.8
-0.7

Figure C-69: Graphical stress results using ISLAB2000 (fine mesh)
Stress Distribution at Bottom of PCC

267.8
253.9
233.2
212.6
191.9
171.3
160.8
130.0
100.3
88.7
88.1
47.4
28.8
8.1
-0.8

Figure C-70: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Bottom of PCC

Figure C-71: Graphical stress results using ISLAB2000 (coarse mesh)

Deflections

Figure C-74: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-75: Graphical deflection results using ISLAB2000 (medium mesh)

> Deflections

Figure C-76: Graphical deflection results using ISLAB2000 (coarse mesh)

Problem 6 (Problem 4-1 page 203 in the textbook)

Stress Distribution at Bottom of PCC

Figure C-79: Graphical stress results using ISLAB2000 (fine mesh)
Stress Distribution at Bottom of PCC

Stress Distribution at Bottom of PCC

Figure C-81: Graphical stress results using ISLAB2000 (coarse mesh)

Deflections

Figure C-84: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-85: Graphical deflection results using ISLAB2000 (medium mesh)
Deflections

Figure C-86: Graphical deflection results using ISLAB2000 (coarse mesh)

Stress Distribution at Bottom of PCC

Figure C-89: Graphical stress results using ISLAB2000 (fine mesh)

Stress Distribution at Bottom of PCC

Figure C-90: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Bottom of PCC

Figure C-91: Graphical stress results using ISLAB2000 (coarse mesh)

Deflections

Figure C-94: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-95: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

Figure C-96: Graphical deflection results using ISLAB2000 (coarse mesh)

Problem 7 (Problem 4-2 page 204 in the textbook)

Stress Distribution at Top of PCC

184.5
155.1
143.4
130.8
118.1
105.4
92.8
80.1
87.4
54.8
42.1
29.4
18.7
4.1
. 0.1

Figure C-99: Graphical stress results using ISLAB2000 (fine mesh)
Stress Distribution at Top of PCC

108.5
158.0
145.2
132.3
119.6
105.7
03.9
81.1
88.2
55.4
42.8
29.8
18.9
4.1
. 0.1

Figure C-100: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Top of PCC

Figure C-101: Graphical stress results using ISLAB2000 (coarse mesh)

Deflections

0.0397
0.0376
0.0345
0.0313
0.0292
0.0250
0.0219
0.0188
0.0168
0.0125
0.0093
0.0082
0.0031
.0 .0001
.0 .0011

Figure C-104: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-105: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

Figure C-106: Graphical deflection results using ISLAB2000 (coarse mesh)

Problem 8 (Problem 4-3 page 204 in the textbook)

Stress Distribution at Bottom of PCC

123.3
117.0
107.6
58.0
88.6
78.9
89.4
59.9
50.4
40.9
31.4
21.8
12.3
2.8
-0.4

Figure C-109: Graphical stress results using ISLAB2000 (fine mesh)
Stress Distribution at Bottom of PCC

134.1
127.2
118.9
105.5
08.2
55.8
75.6
85.1
54.8
44.5
34.1
23.8
13.4
3.1
-0.4

Figure C-110: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Bottom of PCC

Figure C-111: Graphical stress results using ISLAB2000 (coarse mesh)

Deflections

Figure C-114: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

Figure C-115: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

Figure C-116: Graphical deflection results using ISLAB2000 (coarse mesh)

Problem 9 (Problem 4-4 page 204 in the textbook)

Stress Distribution at Bottom of PCC

227.4
215.6
198.0
150.3
182.7
145.0
127.3
109.7
92.0
74.4
58.7
39.1
21.4
3.7
-2.1

Figure C-119: Graphical stress results using ISLAB2000 (fine mesh)
Stress Distribution at Bottom of PCC

237.9
225.6
207.1
188.7
170.2
151.7
133.3
114.8
08.3
77.8
59.4
40.9
122.4
4.0
-2.2

Figure C-120: Graphical stress results using ISLAB2000 (medium mesh)

Stress Distribution at Bottom of PCC

Figure C-121: Graphical stress results using ISLAB2000 (coarse mesh)

Deflections

Figure C-124: Graphical deflection results using ISLAB2000 (fine mesh)

Deflections

0.01671
0.01487
0.01382
0.01236
0.01110
0.00984
0.00858
0.00733
0.00807
0.00481
0.00366
0.00229
0.00104
.0 .00022

Figure C-125: Graphical deflection results using ISLAB2000 (medium mesh)

Deflections

Figure C-126: Graphical deflection results using ISLAB2000 (coarse mesh)

Appendix D

Data Collection

Table D-1: Descriptions of projects

Project No.	Alternative No.	Route	Pavement Type	C.S.	J.N.	Submitted Date
1	2	I-75	JRCP	$82191 \& 82194$	45699	12-Jun-01
2	$2 A$	I-96	JRCP	23152	45640	20-Mar-01
	2B		JRCP			
	2C		JRCP			
3	2	I-69	JPCP	$12033 \& 12034$	49921	16-Apr-01
4	2 A	US-127	JPCP	38111	43497	27-Nov-00
	2B		JPCP			
	2 C		JPCP			
5	2	M-39	JPCP	82192	45702	5-Jul-00
6	2	US-127	JRCP	$82011 \& 82061$	45688	20-Mar-00
7	2	US-24	JRCP	63031	45714	1-Nov-99
8	2	I-96	JPCP	41024	51908	30-Aug-99
9	2	I-496	JRCP	33045	51396	19-Jul-00
10	2	I-75	JRCP	$09034 \& 09035$	46575	1-Apr-00

Table D-2: Summary of pavement data from MDOT

Proj. No.	Date	Route	$\begin{array}{\|l\|} \hline \text { Alt. } \\ \text { No. } \\ \hline \end{array}$	Pavement Type	PCC Thickness (mm)			Base Thickness (mm)		
					Mainline	Outside Shoulder	Inside Shoulder	Mainline	Outside Shoulder	Inside Shoulder
1	12-Jun-01	I-75	2	JRCP	300	300	220	400	400	480
2	20-Mar-01	I-96	2A	JRCP	280	AC	AC	100	NA	NA
			2B	JRCP	280	AC	AC	100	NA	NA
			2 C	JRCP	280	AC	AC	100	NA	NA
3	16-Apr-01	I-69	2	JPCP	280	AC	AC	100	NA	NA
4	27-Nov-00	US-127	2A	JPCP	240	AC	AC	100	NA	NA
			2B	JPCP	240	AC	AC	100	NA	NA
			2 C	JPCP	240	AC	AC	100	NA	NA
5	5-Jul-00	M-39	2	JPCP	260	Valley Gutter	Valley Gutter	400	NA	NA
6	20-Mar-00	US-127	2	JRCP	280	280	220	100	100	160
7	1-Nov-99	US-24	2	JRCP	240	Valley Gutter	Valley Gutter	100	NA	NA
8	30-Aug-99	I-96	2	JPCP	260	AC	AC	100	NA	NA
9	19-Jul-00	I-496	2	JRCP	260	260	220	100	100	140
10	1-Apr-00	I-75	2	JRCP	260	260	220	100	100	140

Table D-2 (continued): Summary of pavement data from MDOT

Proj. No.	Date	Route	$\left.\begin{array}{\|c\|} \text { Alt. } \\ \text { No. } \end{array} \right\rvert\,$	Subbase1		Subbase2		MR of soils (kPa)	Jt. Spa (m)	Width (m) Inner shoulder/lanes/outer shoulder	DARWin Inputs			
				Thickness	Type	Thickness	Type				Sc (kPa)	E (kPa)	k -value ($\mathrm{kPa} / \mathrm{mm}$)	J
1	12-Jun-01	I-75	2	NA	NA	NA	NA	20,684	8	2.4/3.6/3.6/3.6/3.0	4,620	28,958,000	27	2.7
2	20-Mar-01	I-96	2A	300	Sand	NA	NA	22,260	8	$3.0(\mathrm{AC}) / 3.6 / 3.6 / 3.6 / 3.0(\mathrm{AC})$	4,620	28,958,000	35	2.7
			2B	46	Sand	254	Ex. Subbase	22,260	8	$3.0(\mathrm{AC}) / 3.6 / 3.6 / 3.6 / 3.0(\mathrm{AC})$	4,620	28,958,000	35	2.7
			2C	300	Sand	NA	NA	22,260	8	$3.0(\mathrm{AC}) / 3.6 / 3.6 / 3.6 / 3.0(\mathrm{AC})$	4,620	28,958,000	35	2.7
3	16-Apr-01	I-69	2	300	Sand	NA	NA	26,890	4.5	1.2(FSO)/3.6/4.2/2.4(FSO)	4,620	28,958,000	46	2.7
4	27-Nov-00	US-12才	2A	305	Ex. Subbase	NA	NA	31,000	4.5	1.2(FSO)/3.6/4.2/2.4(FSO)	4,620	28,958,000	43	2.7
			2B	182	Sand	305	Ex. Subbase	31,000	4.5	1.2(FSO)/3.6/4.2/2.4(FSO)	4,620	28,958,000	43	2.7
			2 C	300	Sand	NA	NA	31,000	4.5	1.2(FSO)/3.6/4.2/2.4(FSO)	4,620	28,958,000	43	2.7
5	5-Jul-00	M-39	2	NA	NA	NA	NA	24,475	4.5	NA/3.6/3.6/3.6/NA	4,620	28,958,000	60	2.7
6	20-Mar-00	US-12才	2	300	Sand	NA	NA	20,680	8	1.5/3.6/3.6/3.0	4,620	28,958,000	35	2.7
7	1-Nov-99	US-24	2	300	Sand	452	Ex. Subbase	20,684	8	3.658/3.658/3.658/3.658	4,620	28,958,000	38	2.7
8	30-Aug-99	I-96	2	280	Ex. Sand	NA	NA	26,200	4.5	1.2(AC)/3.6/3.6/3.0(AC)	4,620	28,958,000	43	2.7
9	19-Jul-00	I-496	2	219	Ex. Subbase	NA	NA	20,684	8	2.4/3.6/3.6/3.6/3.0	4,620	28,958,000	24	2.7
10	1-Apr-00	I-75	2	300	Sand	NA	NA	27,500	8	2.4/3.6/3.6/3.6/3.6	4,620	28,958,000	41	2.7

Table D-3: Source of input

Inputs	MDOT	Other sources
Slab width (outer), in Slab width (next to outer), in Outer shoulder width (if PCC), in Outer shoulder width (if AC), in Joint spacing, in. PCC thickness, in PCC elastic modulus, psi PCC CTE, in $/$ in. $/{ }^{\circ} \mathrm{F}$ PCC unit weight, $1 \mathrm{~b} / \mathrm{in}^{3}$ PCC Poisson's ratio AC elastic modulus (AC shoulder), psi Interface condition Base thickness, in Base el astic modulus, psi Base CTE, in $/$ in $/{ }^{\circ} \mathrm{F}$ Base unit weight, $\mathrm{lb} / \mathrm{in}^{3}$ Base Poisson's ratio Subbase thickness, in Subbase elastic modulus, psi Subbase CTE, in. $/ \mathrm{in} . /{ }^{\circ} \mathrm{F}$ Subbase unit weight, $\mathrm{lb} / \mathrm{in}^{3}$ Subbase Poisson's ratio k -value, $\mathrm{psi} /$ in Dowel bar diameter, in. Dowel bar spacing, in. LTE lane/lane (AGG), psi LTE 1ane/shoulder (AGG), psi		
Total	12	15

Table D-4: Additional inputs used in ISLAB2000 analysis

Inputs	Possible Range		Selected Value	Reason for Selection
	Min.	Max.		
PCC CTE, in. $/$ in..$^{\circ} \mathrm{F}$	3.3×10^{-6}	6.7×10^{-6}	5.0×10^{-6}	typical value
PCC unit weight, $\mathrm{lb} / \mathrm{in}^{3}$	0.070	0.104	0.087	typical value (150 pcf)
PCC Poisson's ratio	0.15	0.20	0.15	typical value
AC elastic modulus (AC shoulder), psi	300,000	600,000	300,000	conservative value
Interface condition	unbonded	bonded	unbonded	untreated granular base
Base elastic modulus, psi	15,000	45,000	30,000	typical value
Base CTE, in. $/ \mathrm{in} .1{ }^{\circ} \mathrm{F}$	3.0×10^{-6}	6.0×10^{-6}	3.0×10^{-6}	typical value for limestone
Base unit weight, $\mathrm{lb} / \mathrm{in}^{3}$	0.049	0.070	0.061	typical value (105 pcf)
Base Poisson's ratio	0.30	0.40	0.35	typical value
Subbase elastic modulus, psi	10,000	25,000	15,000	typical value for sand
Subbase CTE, in./in. $/{ }^{\circ} \mathrm{F}$	3.0×10^{-6}	6.0×10^{-6}	3.0×10^{-6}	typical value for sand
Subbase unit weight, $\mathrm{lb} / \mathrm{in}^{3}$	0.049	0.070	0.061	typical value (105 pcf)
Subbase Poisson's ratio	0.30	0.45	0.35	typical value
LTE lane/lane (AGG), psi	1,000	1,000,000	1,000,000	high aggregate interlock
LTE lane/shoulder (AGG), psi	1,000	1,000,000	1,000 (AC shoulder)	low aggregate interlock
			1,000,000 (PCC shoulder)	high aggregate interlock

Table D-5: Summary of inputs used in ISLAB2000 analysis

Inputs			1/2	2/2A	2/2B	2/2C	3/2	4/2A	4/2B
Slab width (outer), in Slab width (next to outer), in Outer shoulder width (if PCC), in Outer shoulder width (if AC), in Joint spacing, in. PCC thickness, in PCC elastic modulus, psi PCC CTE, in./in. $I^{\circ} \mathrm{F}$ PCC unit weight, $\mathrm{lb} / \mathrm{in}^{2}$ PCC Poisson's ratio elastic modulus (for AC shoulder), psi Interface condition			$\begin{gathered} 142 \\ 142 \\ 118 \\ 0 \\ 315 \\ 12 \\ 4.2 \times 10^{6} \\ 5.0 \times 10^{-6} \\ 0.087 \\ 0.15 \\ 0 \\ \text { unbonded } \\ \hline \end{gathered}$	$\begin{gathered} 142 \\ 142 \\ 0 \\ 118 \\ 315 \\ 11 \\ 4.2 \times 10^{6} \\ 5.0 \times 10^{-6} \\ 0.087 \\ 0.15 \\ 300,000 \\ \text { unbonded } \\ \hline \end{gathered}$	$\begin{gathered} 142 \\ 142 \\ 0 \\ 118 \\ 315 \\ 11 \\ 4.2 \times 10^{6} \\ 5.0 \times 10^{-6} \\ 0.087 \\ 0.15 \\ 300,000 \\ \text { unbonded } \\ \hline \end{gathered}$	$\begin{gathered} \hline 142 \\ 142 \\ 0 \\ 118 \\ 315 \\ 11 \\ 4.2 \times 10^{6} \\ 5.0 \times 10^{-6} \\ 0.087 \\ 0.15 \\ 300,000 \\ \text { unbonded } \end{gathered}$	165 142 0 94 177 11 4.2×10^{6} 5.0×10^{-6} 0.087 0.15 300,000 unbonded	$\begin{gathered} 165 \\ 142 \\ 0 \\ 94 \\ 177 \\ 9 \\ 4.2 \times 10^{6} \\ 5.0 \times 10^{-6} \\ 0.087 \\ 0.15 \\ 300,000 \\ \text { unbonded } \\ \hline \end{gathered}$	$\begin{gathered} \hline 165 \\ 142 \\ 0 \\ 94 \\ 177 \\ 9 \\ 4.2 \times 10^{6} \\ 5.0 \times 10^{-6} \\ 0.087 \\ 0.15 \\ 300,000 \\ \text { unbonded } \end{gathered}$
		Base thickness, in Base elastic modulus, psi Base CTE, in. $/ \mathrm{in} . /^{\circ} \mathrm{F}$ Base unit weight, $\mathrm{lb} / \mathrm{in}^{3}$ Base Poisson't ratio Subbase thickness, in Subbase elastic modulus, psi Subbase CTE, in. $/$ in. $/{ }^{0} \mathrm{~F}$ Subbase unit weight, $\mathrm{lb} / \mathrm{in}^{3}$ Subbase Poisson's ratio	15.75 30,000 2.0×10^{-6} 0.061 0.35 0.0 15,000 2.0×10^{-6} 0.061 0.35	3.94 30,000 2.0×10^{-6} 0.061 0.35 11.8 15,000 2.0×10^{-6} 0.061 0.35	3.94 30,000 2.0×10^{-6} 0.061 0.35 11.8 15,000 2.0×10^{-6} 0.061 0.35	3.94 30,000 2.0×10^{-6} 0.061 0.35 11.8 15,000 2.0×10^{-6} 0.061 0.35	3.94 30,000 2.0×10^{-6} 0.061 0.35 11.8 15,000 2.0×10^{-6} 0.061 0.35	3.94 30,000 2.0×10^{-6} 0.061 0.35 12.0 15,000 2.0×10^{-6} 0.061 0.35	3.94 30,000 2.0×10^{-6} 0.061 0.35 19.2 15,000 2.0×10^{-6} 0.061 0.35
		Base/subbase thickness, in Base/subbase elastic modulus, psi Base/subbase CTE, in./in. $I^{\circ} \mathrm{F}$ Base/subbase unit weight, lb/in3 Base/subbase Poisson's ratio	$\begin{gathered} 15.75 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 9.60 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 9.60 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 9.60 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 9.60 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 9.75 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 15.31 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \hline \end{gathered}$
		Base thickness, in Base elastic modulus, psi Base CTE, in. $/ \mathrm{in} . I^{\circ} \mathrm{F}$ Base unit weight, $\mathrm{lb} / \mathrm{in}^{3}$ Base Poisson't ratio Subbase layer	$\begin{gathered} 15.75 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \text { No } \\ \hline \end{gathered}$	$\begin{gathered} 3.94 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \text { No } \\ \hline \end{gathered}$	$\begin{gathered} 3.94 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \text { No } \\ \hline \end{gathered}$	$\begin{gathered} 3.94 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \mathrm{No} \\ \hline \end{gathered}$	$\begin{gathered} 3.94 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \text { No } \\ \hline \end{gathered}$	$\begin{gathered} 3.94 \\ 30,000 \\ 2.0 \times 10^{-6} \\ 0.061 \\ 0.35 \\ \text { No } \\ \hline \end{gathered}$	3.94 30,000 2.0×10^{-6} 0.061 0.35 No
k-value, psi/in Dowel bar diameter, in. Dowel bar spacing, in. Dowel bar in shoulder LTE lane/lane (AGG), psi LTE lane/shoulder (AGG), psi			$\begin{gathered} 99.5 \\ 1.25 \\ 12 \\ \text { No } \\ 1 \times 10^{6} \\ 1 \times 10^{6} \\ \hline \end{gathered}$	$\begin{gathered} 128.9 \\ 1.25 \\ 12 \\ \text { No } \\ 1 \times 10^{6} \\ 1,000 \\ \hline \end{gathered}$	$\begin{gathered} 128.9 \\ 1.25 \\ 12 \\ \text { No } \\ 1 \times 10^{6} \\ 1,000 \\ \hline \end{gathered}$	$\begin{gathered} 128.9 \\ 1.25 \\ 12 \\ \text { No } \\ 1 \times 10^{6} \\ 1,000 \\ \hline \end{gathered}$	$\begin{gathered} 169.5 \\ 1.25 \\ 12 \\ \text { No } \\ 1 \times 10^{6} \\ 1,000 \\ \hline \end{gathered}$	$\begin{gathered} 158.4 \\ 1.25 \\ 12 \\ \text { No } \\ 1 \times 10^{6} \\ 1,000 \\ \hline \end{gathered}$	$\begin{gathered} 158.4 \\ 1.25 \\ 12 \\ \text { No } \\ 1 \times 10^{6} \\ 1,000 \\ \hline \end{gathered}$

Table D-5: Summary of inputs used in ISLAB2000 analysis (continued)

Figure D-1: Example of truck configuration (MI-9)

Figure D-2: Example of pavement feature with PCC/AC shoulder in ISLAB2000 analysis

Figure D-3: Example of pavement feature with widened lane in ISLAB2000 analysis

Figure D-4: Example of pavement feature with valley gutter in ISLAB2000 analysis

Appendix E

Validation of the Product $\alpha(\Delta T / D)$

Table E- 1: Experimental matrix

	Validation\#1	Validation\#2	Validation\#3	Validation\#4	Validation\#5	Validation\#6	Validation\#7	Validation\#8	Validation\#9
Shoulder Type	PCC	AC	Widened Lane	PCC	AC	Widened Lane	PCC	AC	Widened Lane
PCC thickness, in.	10"	10"	10"	12"	12"	12"	8"	8"	$8{ }^{\prime \prime}$
Base/subbase thickness, in.	$16^{\prime \prime}$	$26 "$	$4{ }^{\prime \prime}$	$26 "$	4 "	$16^{\prime \prime}$	4"	$16^{\prime \prime}$	$26 "$
k-value, psi/in.	100	30	200	200	100	30	30	200	100
Loading type	Single Axle	Tandem Axle	Multi-Axle (8)	Tandem Axle	Multi-Axle (8)	Single Axle	Multi-Axle (8)	Single Axle	Tandem Axle
Joint spacing, in.	177	315	315	177	177	315	315	177	177

Table E- 2: Validation\#1

α (Δ T/D)	Analysis 1					Analysis 2				
$\left(10^{-6} \mathrm{in} .^{-1}\right)$	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans }, \text { bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\sigma_{\text {long,top }}$ (psi)	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans, bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\sigma_{\text {long,top }}$ (psi)
0.0	+2 or -2	0.10	118.2	76.0	75.6	0	5.00	116.1	74.8	74.0
2.5	+2 or -2	1.25	141.9	89.4	94.5	+0.5 or -0.9	5.00	141.9	89.4	94.5
5.0	+2 or -2	2.50	167.7	104.0	115.1	+1 or -1	5.00	167.7	104.0	115.1
7.5	+2 or -2	3.75	193.4	118.6	135.6	+1.5 or -1.5	5.00	193.4	118.6	135.6
10.0	+2 or -2	5.00	219.2	133.2	156.2	+2 or -2	5.00	219.2	133.2	156.2
12.5	+2 or -2	6.25	245.2	149.7	177.3	+2.5 or -2.5	5.00	245.2	149.7	177.3
15.0	+2 or -2	7.50	271.2	166.3	198.3	+3 or -3	5.00	271.2	166.3	198.3
17.5	+2 or -2	8.75	297.2	182.8	219.4	+3.5 or -3.5	5.00	297.2	182.8	219.4
20.0	+2 or -2	10.00	323.2	199.3	240.4	+4 or -4	5.00	323.2	199.3	240.4

Figure E- 1: Plot of validation\#1
Analysis 1: \quad Constant temperature gradient $\left(+2^{\circ} \mathrm{F} /\right.$ in. $)$ with variation of CTE $\left(0.1 \times 10^{-6}\right.$ to $10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$)
Analysis 2: \quad Constant CTE ($5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+4^{\circ} \mathrm{F} / \mathrm{in}$.)

- Shoulder type: PCC
- PCC thickness: 10"
- Base/subbase thickness: 16 "
- k-value: $100 \mathrm{psi} / \mathrm{in}$.
- Loading type: single axle
- Joint spacing: 177"

Table E- 3: Validation\#2

$\begin{gathered} \hline \alpha(\Delta \mathrm{T} / \mathrm{D}) \\ \left(10^{-6} \mathrm{in} .^{-1}\right) \end{gathered}$	Analysis 1					Analysis 2				
	Gradient (${ }^{\circ} \mathrm{F} / \mathrm{in}$.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . I^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \sigma_{\text {long,bottom }} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ \quad(\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$	Gradient (${ }^{\circ} \mathrm{F} / \mathrm{in}$.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \sigma_{\text {long,bottom }} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ \quad(\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$
0.0	+2 or -2	0.10	201.6	78.0	125.3	0	5.00	198.1	77.0	122.7
2.5	+2 or -2	1.25	241.8	89.6	155.4	+0.5 or -0.5	5.00	241.8	89.6	155.4
5.0	+2 or -2	2.50	285.6	102.2	188.1	+1 or -1	5.00	285.6	102.2	188.1
7.5	+2 or -2	3.75	329.3	114.7	220.7	+1.5 or -1.5	5.00	329.3	114.7	220.7
10.0	+2 or -2	5.00	373.0	127.3	253.4	+2 or -2	5.00	373.0	127.3	253.4
12.5	+2 or -2	6.25	416.8	139.9	296.6	+2.5 or -2.5	5.00	416.8	139.9	296.6
15.0	+2 or -2	7.50	460.5	152.4	339.7	+3 or -3	5.00	460.5	152.4	339.7
17.5	+2 or -2	8.75	504.3	165.0	382.9	+3.5 or -3.5	5.00	504.3	165.0	382.9
20.0	+2 or -2	10.00	548.0	177.5	426.0	+4 or -4	5.00	548.0	177.5	426.0

\longrightarrow Analysis $1 \longmapsto$ Analysis 2

Figure E- 2: Plot of validation\#2
Analysis 1: \quad Constant temperature gradient $\left(+2^{\circ} \mathrm{F} /\right.$ in. $)$ with variation of CTE $\left(0.1 \times 10^{-6}\right.$ to $\left.10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right)$
Analysis 2: \quad Constant $\mathrm{CTE}\left(5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right.$) with variation of temperature gradient (0 to $+4^{\circ} \mathrm{F} /$ in.)

- Shoulder type: AC
- PCC thickness: 10"
- Base/subbase thickness: 26 "
- k-value: $30 \mathrm{psi} / \mathrm{in}$.
- Loading type: tandem axle
- Joint spacing 315 "

Table E- 4: Validation\#3

$\alpha(\Delta \mathrm{T} / \mathrm{D})$	Analysis 1					Analysis 2				
$\left(10^{-6} \mathrm{in} .^{-1}\right)$	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$	Gradient (${ }^{\circ} \mathrm{F} / \mathrm{in}$.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans }, \text { bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\sigma_{\text {long,top }}$ (psi)
0.0	+2 or -2	0.10	57.2	88.8	29.5	0	5.00	52.8	86.4	24.8
2.5	+2 or -2	1.25	107.8	116.7	84.1	+0.5 or -0.5	5.00	107.8	116.7	84.1
5.0	+2 or -2	2.50	162.9	147.0	143.4	+1 or -1	5.00	162.9	147.0	143.4
7.5	+2 or -2	3.75	217.9	177.3	202.7	+1.5 or -1.5	5.00	217.9	177.3	202.7
10.0	+2 or -2	5.00	272.9	207.6	262.0	+2 or -2	5.00	272.9	207.6	262.0
12.5	+2 or -2	6.25	331.3	240.2	316.3	+2.5 or -2.5	5.00	331.3	240.2	316.3
15.0	+2 or -2	7.50	389.7	272.9	370.7	+3 or -3	5.00	389.7	272.9	370.7
17.5	+2 or -2	8.75	448.0	305.5	425.0	+3.5 or -3.5	5.00	448.0	305.5	425.0
20.0	+2 or -2	10.00	506.4	338.1	479.3	+4 or -4	5.00	506.4	338.1	479.3

Figure E- 3: Plot of validation\#3

Analysis 1: Constant temperature gradient ($+2^{\circ} \mathrm{F} /$ in.) with variation of CTE (0.1×10^{-6} to $10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$)
Analysis 2: Constant CTE ($5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+{ }^{\circ} \mathrm{F} / \mathrm{in}$.)

- Shoulder type: Widened lane
- PCC thickness: 10"
- Base/subbase thickness: 4"
- k-value: $200 \mathrm{psi} / \mathrm{in}$.
- Loading type: Multi-axle (8)
- Joint spacing 315"

Table E- 5: Validation\#4

α (Δ T/D)	Analysis 1					Analysis 2				
$\left(10^{-6} \mathrm{in} .^{-1}\right)$	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\sigma_{\text {trans,bottom }}$ (psi)	$\sigma_{\text {long,top }}$ (psi)	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . / /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans, bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\sigma_{\text {long,top }}$ (psi)
0.0	+2 or -2	0.10	88.1	60.4	64.9	0	5.00	85.5	58.6	62.5
2.5	+2 or -2	1.25	118.4	81.1	91.9	+0.5 or -0.9	5.00	118.4	81.1	91.9
5.0	+2 or -2	2.50	151.4	103.5	121.2	+1 or -1	5.00	151.4	103.5	121.2
7.5	+2 or -2	3.75	184.3	126.0	150.6	+1.5 or -1.5	5.00	184.3	126.0	150.6
10.0	+2 or -2	5.00	217.2	148.4	179.9	+2 or -2	5.00	217.2	148.4	179.9
12.5	+2 or -2	6.25	248.6	169.6	206.8	+2.5 or -2.5	5.00	248.6	169.6	206.8
15.0	+2 or -2	7.50	280.1	190.8	233.7	+3 or -3	5.00	280.1	190.8	233.7
17.5	+2 or -2	8.75	311.5	211.9	260.6	+3.5 or -3.5	5.00	311.5	211.9	260.6
20.0	+2 or -2	10.00	342.9	233.1	287.5	+4 or -4	5.00	342.9	233.1	287.5

Figure E- 4: Plot of validation\#4

Analysis 1: Constant temperature gradient ($+2^{\circ} \mathrm{F} /$ in. $)$ with variation of CTE (0.1×10^{-6} to $10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$)
Analysis 2: Constant CTE ($5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+4^{\circ} \mathrm{F} / \mathrm{in}$.)

- Shoulder type: PCC
- PCC thickness: 12"
- Base/subbase thickness: 26"
- k-value: $200 \mathrm{psi} / \mathrm{in}$.
- Loading type: tandem axle
- Joint spacing 177"

Table E- 6: Validation\#5

$\begin{gathered} \hline \alpha(\Delta \mathrm{T} / \mathrm{D}) \\ \left(10^{-6} \mathrm{in} .^{-1}\right) \end{gathered}$	Analysis 1					Analysis 2				
	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . I^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \sigma_{\text {long,bottom }} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ \quad(\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long, bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$
0.0	+2 or -2	0.10	52.9	56.6	66.4	0	5.00	51.6	55.8	65.0
2.5	+2 or -2	1.25	68.4	65.7	82.5	+0.5 or -0.5	5.00	68.4	65.7	82.5
5.0	+2 or -2	2.50	85.1	75.6	100.1	+1 or -1	5.00	85.1	75.6	100.1
7.5	+2 or -2	3.75	101.9	85.4	117.6	+1.5 or -1.5	5.00	101.9	85.4	117.6
10.0	+2 or -2	5.00	118.6	95.3	135.2	+2 or -2	5.00	118.6	95.3	135.2
12.5	+2 or -2	6.25	133.3	106.6	147.8	+2.5 or -2.5	5.00	133.3	106.6	147.8
15.0	+2 or -2	7.50	148.0	118.0	160.3	+3 or -3	5.00	148.0	118.0	160.3
17.5	+2 or -2	8.75	162.6	129.3	172.9	+3.5 or -3.5	5.00	162.6	129.3	172.9
20.0	+2 or -2	10.00	177.3	140.6	185.4	+4 or -4	5.00	177.3	140.6	185.4

Figure E-5: Plot of validation\#5
Analysis 1: Constant temperature gradient ($+2^{\circ} \mathrm{F} / \mathrm{in}$.) with variation of CTE (0.1×10^{-6} to $10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$)
Analysis 2: Constant CTE ($5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+{ }^{\circ} \mathrm{F} / \mathrm{in}$.)

- Shoulder type: AC
- PCC thickness: 12"
- Base/subbase thickness: 4"
- k-value: $100 \mathrm{psi} / \mathrm{in}$.
- Loading type: Multi-axle (8)
- Joint spacing 177"

Table E- 7: Validation\#6

$\alpha(\Delta \mathrm{T} / \mathrm{D})$	Analysis 1					Analysis 2				
$\left(10^{-6} \mathrm{in} .^{-1}\right)$	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$	Gradient (${ }^{\circ} \mathrm{F} / \mathrm{in}$.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans }, \text { bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\sigma_{\text {long,top }}$ (psi)
0.0	+2 or -2	0.10	124.1	63.0	64.3	0	5.00	120.7	62.3	61.3
2.5	+2 or -2	1.25	162.9	70.5	98.5	+0.5 or -0.5	5.00	162.9	70.5	98.5
5.0	+2 or -2	2.50	205.1	78.7	135.8	+1 or -1	5.00	205.1	78.7	135.8
7.5	+2 or -2	3.75	247.2	86.8	173.0	+1.5 or -1.5	5.00	247.2	86.8	173.0
10.0	+2 or -2	5.00	289.4	95.0	210.2	+2 or -2	5.00	289.4	95.0	210.2
12.5	+2 or -2	6.25	331.6	103.2	252.6	+2.5 or -2.5	5.00	331.6	103.2	252.6
15.0	+2 or -2	7.50	373.8	111.3	295.0	+3 or -3	5.00	373.8	111.3	295.0
17.5	+2 or -2	8.75	416.0	119.5	337.3	+3.5 or -3.5	5.00	416.0	119.5	337.3
20.0	+2 or -2	10.00	458.2	127.6	379.7	+4 or -4	5.00	458.2	127.6	379.7

Figure E- 6: Plot of validation\#6
Analysis 1: Constant temperature gradient ($+2^{\circ} \mathrm{F} /$ in.) with variation of CTE (0.1×10^{-6} to $10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$)
Analysis 2: Constant CTE ($5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+4^{\circ} \mathrm{F} / \mathrm{in}$.)

- Shoulder type: Widened lane
- PCC thickness: 12"
- Base/subbase thickness: 16 "
- k-value: $30 \mathrm{psi} / \mathrm{in}$.
- Loading type: single axle
- Joint spacing 315"

Table E- 8: Validation\#7

$\begin{gathered} \hline \alpha(\Delta \mathrm{T} / \mathrm{D}) \\ \left(10^{-6} \mathrm{in} .^{-1}\right) \end{gathered}$	Analysis 1					Analysis 2				
	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . I^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \sigma_{\text {long,bottom }} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ \quad(\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$	Gradient (${ }^{\circ} \mathrm{F} / \mathrm{in}$.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long, bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$
0.0	+2 or -2	0.10	113.9	158.4	68.9	0	5.00	111.2	157.8	65.7
2.5	+2 or -2	1.25	144.7	165.2	105.8	+0.5 or -0.5	5.00	144.7	165.2	105.8
5.0	+2 or -2	2.50	178.2	172.6	145.9	+1 or -1	5.00	178.2	172.6	145.9
7.5	+2 or -2	3.75	211.7	179.9	185.9	+1.5 or -1.5	5.00	211.7	179.9	185.9
10.0	+2 or -2	5.00	245.2	187.3	226.0	+2 or -2	5.00	245.2	187.3	226.0
12.5	+2 or -2	6.25	284.4	196.0	264.8	+2.5 or -2.5	5.00	284.4	196.0	264.8
15.0	+2 or -2	7.50	323.6	204.7	303.6	+3 or -3	5.00	323.6	204.7	303.6
17.5	+2 or -2	8.75	362.7	213.4	342.3	+3.5 or -3.5	5.00	362.7	213.4	342.3
20.0	+2 or -2	10.00	401.9	222.1	381.1	+4 or -4	5.00	401.9	222.1	381.1

Figure E-7: Plot of validation\#7
Analysis 1: \quad Constant temperature gradient $\left(+2^{\circ} \mathrm{F} /\right.$ in. $)$ with variation of CTE (0.1×10^{-6} to $\left.10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right)$
Analysis 2: Constant CTE ($5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+4^{\circ} \mathrm{F} / \mathrm{in}$.)

- Shoulder type: PCC
- PCC thickness: 8 "
- Base/subbase thickness: 4"
- k-value: $30 \mathrm{psi} / \mathrm{in}$.
- Loading type: Multi-axle (8)
- Joint spacing 315"

Table E-9: Validation\#8

$\begin{gathered} \hline \alpha(\Delta \mathrm{T} / \mathrm{D}) \\ \left(10^{-6} \mathrm{in} .^{-1}\right) \end{gathered}$	Analysis 1					Analysis 2				
	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . I^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} \sigma_{\text {long,bottom }} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ \quad(\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long, bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {long,top }} \\ (\mathrm{psi}) \end{gathered}$
0.0	+2 or -2	0.10	154.8	96.5	87.1	0	5.00	151.9	94.4	84.9
2.5	+2 or -2	1.25	188.7	120.4	112.1	+0.5 or -0.5	5.00	188.7	120.4	112.1
5.0	+2 or -2	2.50	225.4	146.4	139.4	+1 or -1	5.00	225.4	146.4	139.4
7.5	+2 or -2	3.75	262.2	172.4	166.6	+1.5 or -1.5	5.00	262.2	172.4	166.6
10.0	+2 or -2	5.00	298.9	198.4	193.8	+2 or -2	5.00	298.9	198.4	193.8
12.5	+2 or -2	6.25	335.5	227.6	228.0	+2.5 or -2.5	5.00	335.5	227.6	228.0
15.0	+2 or -2	7.50	372.1	256.8	262.3	+3 or -3	5.00	372.1	256.8	262.3
17.5	+2 or -2	8.75	408.7	286.0	296.5	+3.5 or -3.5	5.00	408.7	286.0	296.5
20.0	+2 or -2	10.00	445.3	315.2	330.7	+4 or -4	5.00	445.3	315.2	330.7

Figure E- 8: Plot of validation\#8
Analysis 1: \quad Constant temperature gradient ($+2^{\circ} \mathrm{F} /$ in.) with variation of CTE (0.1×10^{-6} to $10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$)
Analysis 2: Constant CTE ($5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+4^{\circ} \mathrm{F} / \mathrm{in}$.)

- Shoulder type: AC
- PCC thickness: 8"
- Base/subbase thickness: 16 "
- k-value: $200 \mathrm{psi} / \mathrm{in}$.
- Loading type: single axle
- Joint spacing 177"

Table E-10: Validation\#9

$\alpha(\Delta T / D)$	Analysis 1					Analysis 2				
$\left(10^{-6} \mathrm{in} .^{-1}\right)$	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long,bottom }}$ (psi)	$\sigma_{\text {trans,bottom }}$ (psi)	$\sigma_{\text {long,top }}$ (psi)	Gradient (${ }^{\circ}$ F/in.)	$\begin{gathered} \text { CTE } \\ \left(10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}\right) \end{gathered}$	$\sigma_{\text {long, bottom }}$ (psi)	$\begin{gathered} \sigma_{\text {trans,bottom }} \\ (\mathrm{psi}) \\ \hline \end{gathered}$	$\sigma_{\text {long,top }}$ (psi)
0.0	+2 or -2	0.10	153.8	108.4	79.3	0	5.00	151.4	106.3	77.1
2.5	+2 or -2	1.25	181.9	132.2	105.1	+0.5 or -0.9	5.00	181.9	132.2	105.1
5.0	+2 or -2	2.50	212.4	158.2	133.1	+1 or -1	5.00	212.4	158.2	133.1
7.5	+2 or -2	3.75	242.8	184.1	161.2	+1.5 or -1.5	5.00	242.8	184.1	161.2
10.0	+2 or -2	5.00	273.3	210.0	189.2	+2 or -2	5.00	273.3	210.0	189.2
12.5	+2 or -2	6.25	303.8	237.2	220.0	+2.5 or -2.5	5.00	303.8	237.2	220.0
15.0	+2 or -2	7.50	334.3	264.4	250.8	+3 or -3	5.00	334.3	264.4	250.8
17.5	+2 or -2	8.75	364.8	291.6	281.5	+3.5 or -3.5	5.00	364.8	291.6	281.5
20.0	+2 or -2	10.00	395.3	318.8	312.3	+4 or -4	5.00	395.3	318.8	312.3

Figure E-9: Plot of validation\#9
Analysis 1: \quad Constant temperature gradient $\left(+2^{\circ} \mathrm{F} /\right.$ in. $)$ with variation of CTE $\left(0.1 \times 10^{-6}\right.$ to $10 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$)
Analysis 2: \quad Constant CTE ($5 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$) with variation of temperature gradient (0 to $+4^{\circ} \mathrm{F} / \mathrm{in}$.)

- Shoulder type: Widened lane
- PCC thickness: 8 "
- Base/subbase thickness: 26 "
- k-value: $100 \mathrm{psi} / \mathrm{in}$.
- Loading type: tandem axle
- Joint spacing 177 "

Appendix F

Documentation of Pavement Responses

Sub Appendix F-1

Documentation of Pavement Responses for

18-kips Single Axle

Figures F-1-1 through F-1-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-1-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-1-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-1-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-1-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-1-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-1-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-1-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-1-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-1-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-1-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-1-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-1-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-1-13 through F-1-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-1-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-1-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-1-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-1-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-1-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the
Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-1-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-1-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-1-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-1-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-1-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-1-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-1-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-1-25 through F-1-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-1-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-1-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-1-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-1-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-1-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-1-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-1-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-1-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-1-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-1-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-1-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-1-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-1-37 through F-1-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-1-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-1-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-1-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-1-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-1-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-1-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-1-43 through F-1-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, $16-i n$. base/subbase thickness and PCC shoulder)

Figure F-1-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-1-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-1-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-1-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-1-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-1-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-1-49 through F-1-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-1-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-1-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-1-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-2

Documentation of Pavement Responses for

32-kips Tandem Axle

Figures F-2-1 through F-2-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-2-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-2-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-2-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-2-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-2-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-2-13 through F-2-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-2-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta \mathrm{T} / \mathrm{D})$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-2-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-2-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-2-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-2-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-2-25 through F-2-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-2-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-2-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-2-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-2-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-2-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-2-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-2-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-2-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-2-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-2-37 through F-2-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-2-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-2-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-2-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-2-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-2-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-2-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-2-43 through F-2-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-2-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-2-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-2-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-2-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-2-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-2-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-2-49 through F-2-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-2-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-2-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-2-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-3

Documentation of Pavement Responses for

39-kips Tridem Axle

Figures F-3-1 through F-3-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-3-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-3-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-3-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-3-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-3-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-3-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-3-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-3-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-3-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-3-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-3-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-3-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-3-13 through F-3-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-3-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-3-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-3-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-3-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-3-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-3-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-3-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-3-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-3-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-3-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-3-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-3-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-3-25 through F-3-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-3-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-3-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-3-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-3-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-3-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-3-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-3-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-3-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-3-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-3-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-3-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-3-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-3-37 through F-3-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-3-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-3-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-3-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-3-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-3-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-3-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-3-43 through F-3-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, $16-i n$. base/subbase thickness and PCC shoulder)

Figure F-3-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-3-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-3-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-3-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-3-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-3-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-3-49 through F-3-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-3-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-3-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-3-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-4

Documentation of Pavement Responses for

52-kips Quad Axle

Figures F-4-1 through F-4-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-4-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-4-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-4-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-4-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-4-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-4-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-4-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-4-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-4-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-4-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-4-11: Impact of PCC thickness and ba se/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-4-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-4-13 through F-4-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-4-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-4-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-4-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-4-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-4-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-4-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-4-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-4-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-4-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-4-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-4-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-4-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-4-25 through F-4-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-4-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-4-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-4-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-4-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-4-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-4-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-4-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-4-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-4-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-4-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-4-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-4-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-4-37 through F-4-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-4-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-4-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-4-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-4-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-4-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-4-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-4-43 through F-4-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, $16-i n$. base/subbase thickness and PCC shoulder)

Figure F-4-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-4-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-4-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-4-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-4-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-4-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-4-49 through F-4-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-4-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-4-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-4-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-5

Documentation of Pavement Responses for

65-kips Multi-axle (5)

Figures F-5-1 through F-5-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-5-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-5-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-5-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-5-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-5-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-5-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-5-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-5-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-5-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-5-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-5-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-5-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-5-13 through F-5-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-5-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-5-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-5-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-5-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-5-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the
Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-5-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-5-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-5-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-5-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-5-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-5-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-5-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-5-25 through F-5-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-5-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-5-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-5-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-5-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-5-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-5-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-5-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-5-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-5-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-5-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-5-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-5-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-5-37 through F-5-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-5-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-5-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-5-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-5-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-5-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-5-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-5-43 through F-5-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-5-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-5-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-5-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-5-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-5-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-5-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-5-49 through F-5-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-5-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-5-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-5-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-6

Documentation of Pavement Responses for

78-kips Multi-axle (6)

Figures F-6-1 through F-6-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-6-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-6-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-6-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-6-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-6-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-6-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-6-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-6-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-6-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-6-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-6-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-6-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-6-13 through F-6-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-6-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-6-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-6-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-6-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-6-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-6-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-6-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

Figure F-6-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-6-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-6-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-6-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-6-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-6-25 through F-6-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-6-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-6-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-6-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-6-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-6-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-6-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-6-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-6-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-6-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-6-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-6-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-6-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-6-37 through F-6-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-6-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-6-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-6-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-6-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-6-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-6-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-6-43 through F-6-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-6-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-6-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-6-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-6-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-6-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-6-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-6-49 through F-6-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-6-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-6-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-6-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-7

Documentation of Pavement Responses for

91-kips Multi-axle (7)

Figures F-7-1 through F-7-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-7-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-7-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-7-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-7-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-7-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-7-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-7-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-7-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-7-13 through F-7-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-7-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-7-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-7-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-7-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-7-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-7-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

Figure F-7-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-7-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-7-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-7-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-7-25 through F-7-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-7-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-7-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-7-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-7-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-7-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-7-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-7-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-7-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-7-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-7-37 through F-7-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-7-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-7-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-7-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-7-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-7-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-7-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-7-43 through F-7-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, $16-i n$. base/subbase thickness and PCC shoulder)

Figure F-7-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-7-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-7-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-7-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-7-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-7-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-7-49 through F-7-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-7-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-7-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-7-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-8

Documentation of Pavement Responses for

104-kips Multi-axle (8)

Figures F-8-1 through F-8-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-8-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-8-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-8-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-8-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-8-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-8-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-8-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-8-13 through F-8-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-8-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-8-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-8-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-8-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-8-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-8-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

Figure F-8-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-8-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-8-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-8-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-8-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-8-25 through F-8-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-8-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-8-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-8-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-8-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-8-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-8-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-8-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-8-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-8-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-8-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-8-37 through F-8-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-8-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-8-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-8-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-8-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-8-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-8-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-8-43 through F-8-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, $16-i n$. base/subbase thickness and PCC shoulder)

Figure F-8-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-8-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-8-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-8-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-8-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-8-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-8-49 through F-8-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-8-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-8-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-8-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-9
Documentation of Pavement Responses for

Figures F-9-1 through F-9-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-9-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-9-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-9-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-9-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-9-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-9-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-9-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-9-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-9-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-9-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-9-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-9-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-9-13 through F-9-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-9-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-9-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-9-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-9-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-9-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-9-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-9-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-9-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-9-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-9-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-9-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-9-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-9-25 through F-9-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-9-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-9-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-9-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-9-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-9-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-9-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-9-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-9-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-9-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-9-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-9-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-9-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-9-37 through F-9-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-9-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-9-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-9-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-9-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-9-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-9-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-9-43 through F-9-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-9-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-9-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-9-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-9-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-9-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-9-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-9-49 through F-9-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-9-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-9-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-9-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-10
Documentation of Pavement Responses for

Figures F-10-1 through F-10-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-10-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-10-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-10-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-10-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-10-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-10-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-10-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-10-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-10-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-10-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-10-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-10-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-10-13 through F-10-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-10-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-10-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-10-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-10-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-10-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-10-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-10-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-10-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-10-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-10-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-10-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-10-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-10-25 through F-10-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-10-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-10-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-10-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-10-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-10-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-10-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-10-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

Figure F-10-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-10-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-10-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-10-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-10-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-10-37 through F-10-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-10-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-10-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-10-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-10-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-10-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-10-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-10-43 through F-10-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-10-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-10-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-10-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-10-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-10-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-10-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-10-49 through F-10-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-10-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-10-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-10-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-11
Documentation of Pavement Responses for

Figures F-11-1 through F-11-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-11-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-11-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-11-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-11-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-11-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-11-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-11-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-11-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-11-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-11-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-11-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-11-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-11-13 through F-11-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-11-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-11-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-11-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-11-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-11-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-11-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-11-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-11-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-11-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-11-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-11-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-11-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-11-25 through F-11-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-11-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-11-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-11-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-11-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-11-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-11-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-11-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-11-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-11-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-11-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-11-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-11-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-11-37 through F-11-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-11-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-11-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-11-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-11-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-11-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-11-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-11-43 through F-11-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta \mathrm{T} / \mathrm{D})$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-11-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-11-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-11-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-11-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-11-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-11-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-11-49 through F-11-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-11-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-11-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-11-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-12
Documentation of Pavement Responses for

Figures F-12-1 through F-12-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-12-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-12-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-12-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-12-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-12-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-12-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-12-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-12-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-12-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-12-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-12-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-12-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-12-13 through F-12-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-12-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-12-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-12-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-12-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-12-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-12-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-12-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-12-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-12-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-12-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-12-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-12-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-12-25 through F-12-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-12-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-12-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-12-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-12-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-12-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-12-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-12-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-12-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-12-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-12-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-12-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-12-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-12-37 through F-12-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-12-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-12-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-12-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-12-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-12-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-12-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-12-43 through F-12-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta \mathrm{T} / \mathrm{D})$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-12-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-12-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-12-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-12-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-12-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-12-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-12-49 through F-12-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-12-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-12-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-12-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-13
Documentation of Pavement Responses for

Figures F-13-1 through F-13-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses (100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-13-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-13-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-13-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-13-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-13-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-13-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-13-13 through F-13-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-13-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-13-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-13-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-13-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-13-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-13-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-13-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-13-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-13-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-13-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-13-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-13-25 through F-13-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-13-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-13-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-13-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-13-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-13-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-13-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-13-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-13-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-13-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-13-37 through F-13-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-13-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-13-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-13-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-13-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-13-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-13-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-13-43 through F-13-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta \mathrm{T} / \mathrm{D})$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-13-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-13-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-13-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-13-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-13-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-13-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-13-49 through F-13-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-13-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-13-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-13-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-14

Documentation of Pavement Responses for

MI-12

Figures F-14-1 through F-14-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-14-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-14-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-14-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-14-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-14-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-14-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-14-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-14-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-14-13 through F-14-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-14-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-14-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-14-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-14-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-14-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-14-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-14-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-14-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-14-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-14-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-14-25 through F-14-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-14-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-14-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-14-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-14-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-14-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-14-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of -20×10^{-6} in..$^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-14-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-14-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-14-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-14-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-14-37 through F-14-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-14-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-14-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-14-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-14-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-14-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-14-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-14-43 through F-14-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta \mathrm{T} / \mathrm{D})$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-14-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-14-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-14-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-14-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-14-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-14-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-14-49 through F-14-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-14-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-14-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-14-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-15

Documentation of Pavement Responses for

Frost Law Restriction

MI-13

Figures F-15-1 through F-15-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-15-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-15-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-15-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-15-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-15-13 through F-15-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-15-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-15-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-15-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-15-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-15-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-15-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-15-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-15-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-15-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-15-25 through F-15-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-15-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-15-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-15-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-15-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-15-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-15-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-15-37 through F-15-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-15-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-15-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-15-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-15-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-15-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-15-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-15-43 through F-15-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta \mathrm{T} / \mathrm{D})$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-15-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-15-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-15-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-15-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-15-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-15-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-15-49 through F-15-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-15-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-15-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-15-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-16
Documentation of Pavement Responses for

Figures F-16-1 through F-16-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-16-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-16-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-16-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-16-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-16-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-16-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-16-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-16-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-16-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-16-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-16-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-16-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-16-13 through F-16-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-16-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-16-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-16-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-16-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-16-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-16-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-16-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-16-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-16-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-16-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-16-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-16-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-16-25 through F-16-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-16-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-16-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-16-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-16-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-16-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-16-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-16-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-16-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-16-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-16-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-16-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-16-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-16-37 through F-16-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-16-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-16-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-16-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-16-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-16-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-16-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-16-43 through F-16-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $16-\mathrm{in}$. base/subbase thickness and PCC shoulder)

Figure F-16-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-16-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-16-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-16-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-16-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-16-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-16-49 through F-16-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-16-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-16-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-16-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-17
Documentation of Pavement Responses for

Figures F-17-1 through F-17-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-17-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-17-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-17-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-17-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-17-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-17-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-17-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-17-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-17-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-17-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-17-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-17-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-17-13 through F-17-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-17-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-17-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-17-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-17-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-17-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-17-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-17-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-17-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-17-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

$\square 30-\mathrm{psi} / \mathrm{in} . \square 100-\mathrm{psi} / \mathrm{in} . \square 200-\mathrm{psi} / \mathrm{in}$.
Figure F-17-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-17-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-17-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-17-25 through F-17-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-17-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-17-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-17-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-17-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-17-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-17-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-17-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-17-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-17-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-17-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-17-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-17-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-17-37 through F-17-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-17-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-17-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-17-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-17-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-17-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-17-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-17-43 through F-17-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta \mathrm{T} / \mathrm{D})$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-17-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-17-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figure F-17-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-17-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-17-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-17-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-17-49 through F-17-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-17-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-17-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-17-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-18
Documentation of Pavement Responses for

Figures F-18-1 through F-18-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-18-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-18-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-18-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-18-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-18-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-18-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-18-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-18-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-18-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-18-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-18-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-18-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-18-13 through F-18-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-18-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-18-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-18-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-18-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-18-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-18-18: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-18-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-18-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-18-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-18-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-18-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-18-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-18-25 through F-18-36 illustrate the impact of PCC thickness and lateral support condition on stresses (16-in. base/subbase and 100-psi/in. modulus of subgrade reaction)

Figure F-18-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-18-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-18-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-18-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-18-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-18-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-18-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-18-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-18-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-18-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-18-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-18-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-18-37 through F-18-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-18-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-18-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-18-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-18-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-18-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-18-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-18-43 through F-18-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta \mathrm{T} / \mathrm{D})$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness and PCC shoulder)

Figure F-18-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-18-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-18-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-18-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-18-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-18-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-18-49 through F-18-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-18-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-18-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-18-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Sub Appendix F-19
Documentation of Pavement Responses for

Figures F-19-1 through F-19-12 illustrate the impact of PCC thickness and base/subbase thickness on stresses ($100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-19-1: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-19-2: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-19-3: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-19-4: Impact of PCC thickness and base/subbase thickness on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-19-5: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-19-6: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-19-7: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-19-8: Impact of PCC thickness and base/subbase thickness on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-19-9: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. $^{-1}$)

Figure F-19-10: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-19-11: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-19-12: Impact of PCC thickness and base/subbase thickness on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-19-13 through F-19-24 illustrate the impact of PCC thickness and modulus of subgrade reaction on stresses (16-in. base/subbase thickness and PCC shoulder)

Figure F-19-13: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-19-14: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-19-15: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-19-16: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at bottom of the slab ($315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-19-17: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-19-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-19-19: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-19-20: Impact of PCC thickness and modulus of subgrade reaction on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-19-21: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-19-22: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \mathrm{in}^{-1}$)

Figure F-19-23: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figure F-19-24: Impact of PCC thickness and modulus of subgrade reaction on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$)

Figures F-19-25 through F-19-36 illustrate the impact of PCC thickness and lateral support condition on stresses ($16-\mathrm{in}$. base/subbase and $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction)

Figure F-19-25: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-19-26: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-19-27: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-19-28: Impact of PCC thickness and lateral support condition on longitudinal stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-19-29: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-19-30: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-19-31: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

\square PCC shoulder \square AC shoulder \square Widened lane
Figure F-19-32: Impact of PCC thickness and lateral support condition on longitudinal stress at top of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $-20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-19-33: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in. ${ }^{-1}$)

Figure F-19-34: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of 0 in..$^{-1}$)

Figure F-19-35: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (177-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figure F-19-36: Impact of PCC thickness and lateral support condition on transverse stress at bottom of the Slab (315-in. joint spacing and $\alpha(\Delta T / D)$ of $20 \times 10^{-6} \mathrm{in}^{-1}$)

Figures F-19-37 through F-19-42 illustrate the impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $100-\mathrm{psi} / \mathrm{in}$. modulus of subgrade reaction and PCC shoulder)

Figure F-19-37: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-19-38: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-19-39: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-19-40: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-19-41: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-19-42: Impact of base/subbase thickness and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (315-in. joint spacing)

Figures F-19-43 through F-19-48 illustrate the impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on stresses ($10-\mathrm{in}$. PCC thickness, $16-\mathrm{in}$. base/subbase thickness and PCC shoulder)

Figure F-19-43: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (177-in. joint spacing)

Figure F-19-44: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab (315-in. joint spacing)

Figure F-19-45: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (177-in. joint spacing)

Figure F-19-46: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab (315-in. joint spacing)

Figure F-19-47: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab (177-in. joint spacing)

Figure F-19-48: Impact of modulus of subgrade reaction and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab ($315-\mathrm{in}$. joint spacing)

Figures F-19-49 through F-19-51 illustrate the impact of joint spacing and product $\alpha(\Delta T / D)$ on stresses (10-in. PCC thickness, 16-in. base/subbase thickness, 100-psi/in. modulus of subgrade reaction and PCC shoulder)

Figure F-19-49: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at bottom of the slab

Figure F-19-50: Impact of joint spacing and product $\alpha(\Delta T / D)$ on longitudinal stress at top of the slab

Figure F-19-51: Impact of joint spacing and product $\alpha(\Delta T / D)$ on transverse stress at bottom of the slab

Appendix G

Impact of Lateral Placement on Different Lateral Support Conditions

Table G-1: Experimental matrix for lateral placement study

Stress type	$\alpha(\Delta T / D), 10^{-6} \mathrm{in} .{ }^{-1}$	177-in. joint spacing			315-in. joint spacing		
		$12-\mathrm{ft}$ wide lane with tied PCC shoulder	$12-\mathrm{ft}$ wide lane with untied AC shoulder	$14-\mathrm{ft}$ wide lane with untied AC shoulder	12-ft wide lane with tied PCC shoulder	$12-\mathrm{ft}$ wide lane with untied AC shoulder	$14-\mathrm{ft}$ wide lane with untied AC shoulder
Longitudinal stress at the bottom of the PCC slab	0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	20	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Longitudinal stress at the top of the PCC slab	0	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	-10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	-20	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Remarks:

1) Each condition contains seven lateral placements: $0,6,12,18,24,36$, and 48 in.
2) Each condition contains three types of axles: single, tandem, and tridem.
3) Load positions are edge and corner loading conditions for analysis of stress at the bottom and the top of the PCC slab, respectively.
4) All the analyses are conducted for $10-\mathrm{in}$. PCC slab, $16-\mathrm{in}$. base/subbase, $100-\mathrm{psi} / \mathrm{in}$. subgrade .

Figures G-1 through G-3 are illustrations of relationship between lateral placement and maximum longitudinal stress at the bottom of the PCC slab for 177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \times 10^{-6} \mathrm{in}^{-1}$ for various lateral support conditions

Figure G-1: Illustration for single axle

Figure G-2: Illustration for tandem axle

Figure G-3: Illustration for tridem axle

Figures G-4 through G-6 are illustrations of relationship between lateral placement and maximum longitudinal stress at the bottom of the PCC slab for 315-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \times 10^{-6} \mathrm{in}^{-1}$ for various lateral support conditions

Figure G-4: Illustration for single axle

Figure G-5: Illustration for tandem axle

Figure G-6: Illustration for tridem axle

Figures G-7 through G-9 are illustrations of relationship between lateral placement and maximum longitudinal stress at the bottom of the PCC slab for 177-in. joint spacing and $\alpha(\Delta T / D)$ of $10 \times 10^{-6} \mathrm{in} .^{-1}$ for various lateral support conditions

Figure G-7: Illustration for single axle

Figure G-8: Illustration for tandem axle

Figure G-9: Illustration for tridem axle

Figures G-10 through G-12 are illustrations of relationship between lateral placement and maximum longitudinal stress at the bottom of the PCC slab for 315-in. joint spacing and $\alpha(\Delta \mathrm{T} / \mathrm{D})$ of $10 \times 10^{-6} \mathrm{in} .^{-1}$ for various lateral support conditions

Figure G-10: Illustration for single axle

Figure G-11: Illustration for tandem axle

Figure G-12: Illustration for tridem axle

Figures G-13 through G-15 are illustrations of relationship between lateral placement and maximum longitudinal stress at the bottom of the PCC slab for 177-in. joint spacing and $\alpha(\Delta \mathrm{T} / \mathrm{D})$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$ for various lateral support conditions

Figure G-13: Illustration for single axle

Figure G-14: Illustration for tandem axle

Figure G-15: Illustration for tridem axle

Figures G-16 through G-18 are illustrations of relationship between lateral placement and maximum longitudinal stress at the bottom of the PCC slab for 315-in. joint spacing and $\alpha(\Delta \mathrm{T} / \mathrm{D})$ of $20 \times 10^{-6} \mathrm{in} .^{-1}$ for various lateral support conditions

Figure G-16: Illustration for single axle

Figure G-17: Illustration for tandem axle

Figure G-18: Illustration for tridem axle

Figures G-19 through G-21 are illustrations of relationship between lateral placement and maximum longitudinal stress at the top of the PCC slab for 177-in. joint spacing and $\alpha(\Delta T / D)$ of $0 \times 10^{-6} \mathrm{in}^{-1}$ for various lateral support conditions

Figure G-19: Illustration for single axle

Figure G-20: Illustration for tandem axle

Figure G-21: Illustration for tridem axle

Figures G-22 through G-24 are illustrations of relationship between lateral placement and maximum longitudinal stress at the top of the PCC slab for $315-\mathrm{in}$. joint spacing and $\alpha(\Delta T / D)$ of $0 \times 10^{-6} \mathrm{in}^{-1}$ for various lateral support conditions

Figure G-22: Illustration for single axle

Figure G-23: Illustration for tandem axle

Figure G-24: Illustration for tridem axle

Figures G-25 through G-27 are illustrations of relationship between lateral placement and maximum longitudinal stress at the top of the PCC slab for 177-in. joint spacing and $\alpha(\Delta \mathrm{T} / \mathrm{D})$ of $-10 \times 10^{-6} \mathrm{in} .^{-1}$ for various lateral support conditions

Figure G-25: Illustration for single axle

Figure G-26: Illustration for tandem axle

Figure G-27: Illustration for tridem axle

Figures G-28 through G-30 are illustrations of relationship between lateral placement and maximum longitudinal stress at the top of the PCC slab for $315-\mathrm{in}$. joint spacing and $\alpha(\Delta \mathrm{T} / \mathrm{D})$ of $-10 \times 10^{-6} \mathrm{in} .^{-1}$ for various lateral support conditions

Figure G-28: Illustration for single axle

Figure G-29: Illustration for tandem axle

Figure G-30: Illustration for tridem axle

Figures G-31 through G-33 are illustrations of relationship between lateral placement and maximum longitudinal stress at the top of the PCC slab for 177-in. joint spacing and $\alpha(\Delta \mathrm{T} / \mathrm{D})$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$ for various lateral support conditions

Figure G-31: Illustration for single axle

Figure G-32: Illustration for tandem axle

Figure G-33: Illustration for tridem axle

Figures G-34 through G-36 are illustrations of relationship between lateral placement and maximum longitudinal stress at the top of the PCC slab for 315-in. joint spacing and $\alpha(\Delta \mathrm{T} / \mathrm{D})$ of $-20 \times 10^{-6} \mathrm{in} .^{-1}$ for various lateral support conditions

Figure G-34: Illustration for single axle

Figure G-35: Illustration for tandem axle

Figure G-36: Illustration for tridem axle

Table G-2: Regression analysis for stress ratio PCC shoulder to AC shoulder (177-in. joint spacing and single axle edge loading)

Predictor	Coef	SE Coef	T	P	
Constant	0.859752	0.009442	91.06	0.000	
Dpcc	-0.0111190	0.0009397	-11.83	0.000	
k-value	0.00048316	0.00002694	17.93	0.000	
AlphaGra	0.0043865	0.0002302	19.06	0.000	
$S=0.02584$	$4 \mathrm{R}-\mathrm{Sq}$	81.7\%	R-Sq(adj) $=81.4 \%$		
Analysis of	Variance				

Source	DF	SS	MS	F	P
Regression	3	0.55063	0.18354	274.92	0.000
Residual Error	185	0.12351	0.00067		
Total	188	0.67414			

Source	DF	Seq SS
Dpcc	1	0.09347
k-value	1	0.21472
AlphaGra	1	0.24244

Figure G-37: Comparison between predicted and actual stress ratio PCC shoulder to AC shoulder (177-in. joint spacing and single axle)

Table G-3: Regression analysis for stress ratio widened lane to AC shoulder (177-in. joint spacing and single axle edge loading)

The regression equation is
Widened Lane/AC $=0.880-0.00761 \mathrm{Dpcc}+0.000339 \mathrm{k}$-value +0.00444 AlphaGrad

Predictor	Coef	SE Coef	T	P
Constant	0.879577	0.008856	99.32	0.000
Dpcc	-0.0076058	0.0008815	-8.63	0.000
k-value	0.00033932	0.00002527	13.43	0.000
AlphaGra	0.0044429	0.0002159	20.58	0.000

$S=0.02424 \quad R-S q=78.6 \% \quad R-S q(a d j)=78.2 \%$
Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	0.39835	0.13278	226.06	0.000
Residual Error	185	0.10867	0.00059		
Total	188	0.50702			

Source	DF	Seq SS
Dpcc	1	0.04373
k-value	1	0.10591
AlphaGra	1	0.24871

Figure G-38: Comparison between predicted and actual stress ratio widened lane to AC shoulder (177-in. joint spacing and single axle)

Table G-4: Regression analysis for stress ratio PCC shoulder to AC shoulder (315-in. joint spacing and single axle edge loading)

Source	DF	SS	MS	F	P
Regression	3	0.74529	0.24843	368.08	0.000
Residual Error	185	0.12486	0.00067		
Total	188	0.87015			

Source	DF	Seq SS
Dpcc	1	0.01994
k-value	1	0.12408
AlphaGra	1	0.60127

Figure G-39: Comparison between predicted and actual stress ratio PCC shoulder to AC shoulder (315-in. joint spacing and single axle)

Table G-5: Regression analysis for stress ratio widened lane to AC shoulder (315-in. joint spacing and single axle edge loading)

The regression equation is
Widened Lane/AC $=0.848-0.00252 \mathrm{Dpcc}+0.000256 \mathrm{k}$-value +0.00650 AlphaGrad

Predictor	Coef	SE Coef	T	P
Constant	0.847724	0.008801	96.32	0.000
Dpcc	-0.0025212	0.0008760	-2.88	0.004
k-value	0.00025563	0.00002511	10.18	0.000
AlphaGra	0.0064984	0.0002146	30.29	0.000

$S=0.02409$
$R-S q=84.8 \%$
R-Sq(adj) $=84.5 \%$
Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	0.59700	0.19900	343.03	0.000
Residual Error	185	0.10732	0.00058		
Total	188	0.70432			

Source	DF	Seq SS
Dpcc	1	0.00481
k-value	1	0.06011
AlphaGra	1	0.53209

Figure G-40: Comparison between predicted and actual stress ratio widened lane to AC shoulder (315-in. joint spacing and single axle)

Table G-6: Regression analysis for stress ratio PCC shoulder to AC shoulder (177-in. joint spacing and tandem axle edge loading)

The regression equation is					
$P C C / A C=0.915-0.014$		Dpcc +0.000563 k-value +			AlphaGrad
Predictor	Coef	SE Coef	T		
Constant	0.915068	0.008003	114.34	0.000	
Dpcc	-0.0149193	0.0007965	-18.73	0.000	
k-value	0.00056274	0.00002284	24.64	0.000	
AlphaGra	0.0035389	0.0001951	18.14	0.000	
$S=0.0219$	R-Sq	87.4% R-Sq (adj) $=87.2 \%$			
Analysis of Variance					

Source	DF	SS	MS	F	P
Regression	3	0.61735	0.20578	429.03	0.000
Residual Error	185	0.08874	0.00048		
Total	188	0.70609			

Source	DF	Seq SS
Dpcc	1	0.16827
k-value	1	0.29128
AlphaGra	1	0.15780

Figure G-41: Comparison between predicted and actual stress ratio PCC shoulder to AC shoulder (177-in. joint spacing and tandem axle)

Table G-7: Regression analysis for stress ratio widened lane to AC shoulder (177-in. joint spacing and tandem axle edge loading)

Source	DF	Seq SS
Dpcc	1	0.07397
k-value	1	0.16375
AlphaGra	1	0.16590

Figure G-42: Comparison between predicted and actual stress ratio widened lane to AC shoulder (177-in. joint spacing and tandem axle)

Table G-8: Regression analysis for stress ratio PCC shoulder to AC shoulder (315-in. joint spacing and tandem axle edge loading)

Source	DF	Seq SS
Dpcc	1	0.06336
k-value	1	0.16739
AlphaGra	1	0.37665

Figure G-43: Comparison between predicted and actual stress ratio PCC shoulder to AC shoulder (315-in. joint spacing and tandem axle)

Table G-9: Regression analysis for stress ratio widened lane to AC shoulder (315-in. joint spacing and tandem axle edge loading)

The regression equation is
Widened Lane/AC $=0.905-0.00581 \mathrm{Dpcc}+0.000308 \mathrm{k}$-value +0.00506 AlphaGrad

Predictor	Coef	SE Coef	T	P
Constant	0.905088	0.007328	123.51	0.000
Dpcc	-0.0058122	0.0007293	-7.97	0.000
k-value	0.00030774	0.00002091	14.72	0.000
AlphaGra	0.0050603	0.0001787	28.32	0.000

$S=0.02005 \quad R-S q=85.4 \% \quad R-S q(a d j)=85.2 \%$
Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	0.43529	0.14510	360.80	0.000
Residual Error	185	0.07440	0.00040		
Total	188	0.50969			

Source	DF	Seq SS
Dpcc	1	0.02554
k-value	1	0.08711
AlphaGra	1	0.32265

Figure G-44: Comparison between predicted and actual stress ratio widened lane to AC shoulder (315-in. joint spacing and tandem axle)

Table G-10: Regression analysis for stress ratio PCC shoulder to AC shoulder (177-in. joint spacing and tridem axle edge loading)

Source	DF	SS	MS	F	P
Regression	3	0.77429	0.25810	501.24	0.000
Residual Error	185	0.09526	0.00051		
Total	188	0.86955			

Source	DF	Seq SS
Dpcc	1	0.21247
k-value	1	0.44558
AlphaGra	1	0.11624

Figure G-45: Comparison between predicted and actual stress ratio PCC shoulder to AC shoulder (177-in. joint spacing and tridem axle)

Table G-11: Regression analysis for stress ratio widened to AC shoulder (177-in. joint spacing and tridem axle edge loading)

```
The regression equation is
Widened Lane/AC = 0.942 - 0.0120 Dpcc +0.000532 k-value + 0.00335 AlphaGrad
\begin{tabular}{lrrrr}
\hline Predictor & Coef & SE Coef & T & P \\
\hline Constant & 0.941706 & 0.007279 & 129.38 & 0.000 \\
Dpcc & -0.0120106 & 0.0007245 & -16.58 & 0.000 \\
k-value & 0.00053182 & 0.00002077 & 25.61 & 0.000 \\
AlphaGra & 0.0033476 & 0.0001775 & 18.86 & 0.000 \\
\hline
\end{tabular}
\(S=0.01992 \quad R-S q=87.4 \% \quad R-S q(a d j)=87.2 \%\)
Analysis of Variance
```

Source	DF	SS	MS	F	P
Regression	3	0.51041	0.17014	428.80	0.000
Residual Error	185	0.07340	0.00040		
Total	188	0.58381			

Source	DF	Seq SS
Dpcc	1	0.10906
k-value	1	0.26015
AlphaGra	1	0.14120

Figure G-46: Comparison between predicted and actual stress ratio widened lane to AC shoulder (177-in. joint spacing and tridem axle)

Table G-12: Regression analysis for stress ratio PCC shoulder to AC shoulder (315-in. joint spacing and tridem axle edge loading)

```
The regression equation is
PCC/AC = 0.943 - 0.0132 Dpcc +0.000560 k-value + 0.00418 AlphaGrad
\begin{tabular}{lrrrr}
\hline Predictor & Coef & SE Coef & \(T\) & \(P\) \\
\hline Constant & 0.943019 & 0.008972 & 105.11 & 0.000 \\
Dpcc & -0.0131825 & 0.0008930 & -14.76 & 0.000 \\
k-value & 0.00055957 & 0.00002560 & 21.86 & 0.000 \\
AlphaGra & 0.0041833 & 0.0002187 & 19.13 & 0.000 \\
\hline
\end{tabular}
\(S=0.02455 \quad R-S q=85.2 \% \quad R-S q(a d j)=84.9 \%\)
Analysis of Variance
```

Source	DF	SS	MS	F	P
Regression	3	0.63988	0.21329	353.81	0.000
Residual Error	185	0.11153	0.00060		
Total	188	0.75141			

Source	DF	Seq SS
Dpcc	1	0.13138
k-value	1	0.28800
AlphaGra	1	0.22050

Figure G-47: Comparison between predicted and actual stress ratio PCC shoulder to AC shoulder (315-in. joint spacing and tridem axle)

Table G-13: Regression analysis for stress ratio widened lane to AC shoulder (315-in. joint spacing and tridem axle edge loading)

Source	DF	Seq SS
Dpcc	1	0.06245
k-value	1	0.15236
AlphaGra	1	0.19817

Figure G-48: Comparison between predicted and actual stress ratio widened lane to AC shoulder (315-in. joint spacing and tridem axle)

Appendix H

Equivalent Stress Cross-Sections

Table H-1: Cross-sections with longitudinal stress of 75 psi under 18-kips single axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value $(\mathrm{psi} / \mathrm{in}$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	12	26	200	75.0
315	12-ft lane with tied PCC shoulder	11	26	200	77.4
315	12-ft lane with tied PCC shoulder	12	4	200	74.6
315	12-ft lane with tied PCC shoulder	12	10	200	74.3
315	12-ft lane with tied PCC shoulder	12	16	200	73.4
315	12-ft lane with tied PCC shoulder	12	20	150	76.8
315	12-ft lane with tied PCC shoulder	12	26	150	74.2
315	14-ft lane with AC shoulder	12	10	200	77.5
315	14-ft lane with AC shoulder	12	16	200	76.6
315	14-ft lane with AC shoulder	12	20	200	75.5
315	14-ft lane with AC shoulder	12	26	200	72.9

Table H-2: Cross-sections with longitudinal stress of 100 psi under 18-kips single axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	$\begin{array}{\|l\|} \hline \mathrm{k} \text {-value } \\ \text { (psi/in.) } \end{array}$	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	9	26	200	99.6
177	12-ft lane with tied PCC shoulder	10	4	200	100.3
177	12-ft lane with tied PCC shoulder	10	10	200	99.7
177	12-ft lane with tied PCC shoulder	10	16	200	97.8
177	12-ft lane with tied PCC shoulder	11	20	100	101.2
177	12-ft lane with tied PCC shoulder	12	4	65	101.7
177	12-ft lane with tied PCC shoulder	12	10	65	101.3
177	12-ft lane with tied PCC shoulder	12	16	65	100.1
177	12-ft lane with tied PCC shoulder	12	20	65	98.6
177	12-ft lane with AC shoulder	12	4	200	101.7
177	12-ft lane with AC shoulder	12	10	200	101.4
177	12-ft lane with AC shoulder	12	16	200	100.3
177	12-ft lane with AC shoulder	12	20	200	99.0
177	14-ft lane with AC shoulder	10	16	200	101.7
177	14-ft lane with AC shoulder	10	20	200	99.4
177	14-ft lane with AC shoulder	10	26	150	101.6
177	14-ft lane with AC shoulder	11	4	150	100.4
177	14-ft lane with AC shoulder	11	10	150	99.9
177	14-ft lane with AC shoulder	11	16	150	98.5
177	14-ft lane with AC shoulder	11	26	100	102.4
177	14-ft lane with AC shoulder	12	4	100	99.3
177	14-ft lane with AC shoulder	12	10	100	98.9
177	14-ft lane with AC shoulder	12	16	100	97.7
177	14-ft lane with AC shoulder	12	26	65	101.3
315	12-ft lane with tied PCC shoulder	9	26	150	101.8
315	12-ft lane with tied PCC shoulder	10	4	150	101.8
315	12-ft lane with tied PCC shoulder	10	10	150	101.2
315	12-ft lane with tied PCC shoulder	10	16	150	99.1
315	12-ft lane with tied PCC shoulder	10	26	100	99.2
315	12-ft lane with tied PCC shoulder	11	26	65	98.3
315	12-ft lane with AC shoulder	11	20	200	101.6
315	12-ft lane with AC shoulder	12	4	150	100.8
315	12-ft lane with AC shoulder	12	10	150	100.4
315	12-ft lane with AC shoulder	12	16	150	99.3
315	12-ft lane with AC shoulder	12	20	150	97.9
315	14-ft lane with AC shoulder	9	26	200	99.4
315	14-ft lane with AC shoulder	10	4	200	99.5
315	14-ft lane with AC shoulder	10	10	200	98.9
315	14-ft lane with AC shoulder	10	20	150	100.5
315	14-ft lane with AC shoulder	11	4	100	101.6
315	14-ft lane with AC shoulder	11	10	100	101.1
315	14-ft lane with AC shoulder	11	16	100	99.6
315	14-ft lane with AC shoulder	11	20	100	97.8
315	14-ft lane with AC shoulder	12	4	65	100.6
315	14-ft lane with AC shoulder	12	10	65	100.2
315	14-ft lane with AC shoulder	12	16	65	99.1
315	14-ft lane with AC shoulder	12	20	65	97.7

Table H-3: Cross-sections with longitudinal stress of 125 psi under 18-kips single axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	8	16	200	126.3
177	12-ft lane with tied PCC shoulder	9	4	150	122.9
177	12-ft lane with tied PCC shoulder	9	20	100	127.4
177	12-ft lane with tied PCC shoulder	10	20	65	124.9
177	12-ft lane with tied PCC shoulder	11	20	30	126.1
177	12-ft lane with AC shoulder	9	26	200	122.8
177	12-ft lane with AC shoulder	10	4	200	124.5
177	12-ft lane with AC shoulder	10	10	200	123.8
177	12-ft lane with AC shoulder	10	26	150	122.5
177	12-ft lane with AC shoulder	11	26	100	124.7
177	12-ft lane with AC shoulder	12	26	65	124.4
177	14-ft lane with AC shoulder	7	26	200	123.2
177	14-ft lane with AC shoulder	8	20	200	124.5
177	14-ft lane with AC shoulder	9	10	150	126.5
177	14-ft lane with AC shoulder	9	16	150	123.3
177	14-ft lane with AC shoulder	9	26	100	123.8
177	14-ft lane with AC shoulder	10	4	100	125.0
177	14-ft lane with AC shoulder	10	10	100	124.3
177	14-ft lane with AC shoulder	10	26	65	124.5
315	12-ft lane with tied PCC shoulder	7	26	150	126.0
315	12-ft lane with tied PCC shoulder	8	16	200	124.6
315	12-ft lane with tied PCC shoulder	8	20	150	126.1
315	12-ft lane with tied PCC shoulder	8	26	100	123.2
315	12-ft lane with tied PCC shoulder	9	10	100	126.9
315	12-ft lane with tied PCC shoulder	9	16	100	123.4
315	12-ft lane with tied PCC shoulder	11	10	30	127.3
315	12-ft lane with tied PCC shoulder	11	16	30	125.4
315	12-ft lane with tied PCC shoulder	11	20	30	123.2
315	12-ft lane with AC shoulder	9	20	200	127.2
315	12-ft lane with AC shoulder	9	26	150	126.3
315	12-ft lane with AC shoulder	10	4	150	127.0
315	12-ft lane with AC shoulder	10	10	150	126.2
315	12-ft lane with AC shoulder	10	16	150	123.8
315	12-ft lane with AC shoulder	10	26	100	125.2
315	12-ft lane with AC shoulder	11	4	100	123.3
315	12-ft lane with AC shoulder	11	10	100	122.8
315	12-ft lane with AC shoulder	11	26	65	125.9
315	12-ft lane with AC shoulder	12	4	65	122.7
315	14-ft lane with AC shoulder	9	20	100	124.0
315	14-ft lane with AC shoulder	9	26	65	126.0
315	14-ft lane with AC shoulder	10	4	65	126.7
315	14-ft lane with AC shoulder	10	10	65	126.0
315	14-ft lane with AC shoulder	10	16	65	123.5
315	14-ft lane with AC shoulder	11	26	30	125.3
315	14-ft lane with AC shoulder	12	4	30	122.6

Table H-4: Cross-sections with longitudinal stress of 150 psi under 18-kips single axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	8	16	100	150.1
177	12-ft lane with tied PCC shoulder	9	4	65	151.0
177	12-ft lane with tied PCC shoulder	9	10	65	149.8
177	12-ft lane with tied PCC shoulder	10	4	30	152.5
177	12-ft lane with tied PCC shoulder	10	10	30	151.5
177	12-ft lane with tied PCC shoulder	10	16	30	148.2
177	12-ft lane with AC shoulder	6	26	200	151.9
177	12-ft lane with AC shoulder	8	16	200	151.9
177	12-ft lane with AC shoulder	9	4	150	151.5
177	12-ft lane with AC shoulder	9	10	150	150.4
177	12-ft lane with AC shoulder	9	26	100	148.7
177	12-ft lane with AC shoulder	10	4	100	150.8
177	12-ft lane with AC shoulder	10	10	100	149.9
177	12-ft lane with AC shoulder	10	26	65	151.3
177	12-ft lane with AC shoulder	11	4	65	149.2
177	12-ft lane with AC shoulder	11	10	65	148.5
177	12-ft lane with AC shoulder	12	4	30	150.5
177	12-ft lane with AC shoulder	12	10	30	149.8
177	12-ft lane with AC shoulder	12	16	30	147.8
177	14-ft lane with AC shoulder	7	16	200	150.0
177	14-ft lane with AC shoulder	7	20	150	151.4
177	14-ft lane with AC shoulder	8	20	100	149.2
177	14-ft lane with AC shoulder	8	26	65	151.3
177	14-ft lane with AC shoulder	9	20	65	148.2
315	12-ft lane with tied PCC shoulder	6	26	100	148.9
315	12-ft lane with tied PCC shoulder	7	26	65	148.9
315	12-ft lane with tied PCC shoulder	8	4	100	150.8
315	12-ft lane with tied PCC shoulder	8	10	100	149.0
315	12-ft lane with tied PCC shoulder	8	20	65	149.2
315	12-ft lane with AC shoulder	6	26	200	152.2
315	12-ft lane with AC shoulder	7	26	150	152.1
315	12-ft lane with AC shoulder	8	16	200	150.0
315	12-ft lane with AC shoulder	8	26	100	152.2
315	12-ft lane with AC shoulder	9	20	100	148.6
315	12-ft lane with AC shoulder	9	26	65	151.8
315	12-ft lane with AC shoulder	10	10	65	152.3
315	12-ft lane with AC shoulder	10	16	65	149.3
315	12-ft lane with AC shoulder	11	26	30	151.9
315	12-ft lane with AC shoulder	12	4	30	149.0
315	12-ft lane with AC shoulder	12	10	30	148.5
315	14-ft lane with AC shoulder	7	16	200	149.8
315	14-ft lane with AC shoulder	7	20	150	149.3
315	14-ft lane with AC shoulder	8	16	100	148.3
315	14-ft lane with AC shoulder	9	26	30	150.4
315	14-ft lane with AC shoulder	10	4	30	152.3
315	14-ft lane with AC shoulder	10	10	30	151.4
315	14-ft lane with AC shoulder	10	16	30	148.4

Table H-5: Cross-sections with longitudinal stress of 175 psi under 18-kips single axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k -value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	6	16	200	172.6
177	12-ft lane with tied PCC shoulder	7	16	100	173.3
177	12-ft lane with tied PCC shoulder	8	4	65	175.5
177	12-ft lane with tied PCC shoulder	8	10	65	173.5
177	12-ft lane with tied PCC shoulder	9	10	30	176.6
177	12-ft lane with AC shoulder	7	16	200	172.7
177	12-ft lane with AC shoulder	7	20	150	175.9
177	12-ft lane with AC shoulder	7	26	100	173.4
177	12-ft lane with AC shoulder	8	20	100	176.8
177	12-ft lane with AC shoulder	10	26	30	175.5
177	14-ft lane with AC shoulder	6	16	200	175.7
177	14-ft lane with AC shoulder	6	26	65	175.6
177	14-ft lane with AC shoulder	7	4	150	172.8
177	14-ft lane with AC shoulder	8	16	65	174.3
177	14-ft lane with AC shoulder	9	20	30	175.1
315	12-ft lane with tied PCC shoulder	6	16	200	173.7
315	12-ft lane with tied PCC shoulder	7	26	30	175.0
315	12-ft lane with tied PCC shoulder	8	20	30	175.8
315	12-ft lane with AC shoulder	7	16	200	172.8
315	12-ft lane with AC shoulder	7	20	150	173.8
315	12-ft lane with AC shoulder	8	16	100	175.7
315	12-ft lane with AC shoulder	9	4	65	174.9
315	12-ft lane with AC shoulder	9	10	65	173.4
315	12-ft lane with AC shoulder	10	20	30	174.9
315	14-ft lane with AC shoulder	6	16	200	176.9
315	14-ft lane with AC shoulder	7	16	100	173.7
315	14-ft lane with AC shoulder	9	4	30	173.5

Table H-6: Cross-sections with longitudinal stress of 200 psi under 18-kips single axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in).	Base/Subbase Thk. (in).	k-value $(\mathrm{psi} / \mathrm{in})$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	6	10	150	200.3
177	12-ft lane with tied PCC shoulder	6	16	100	202.4
177	12-ft lane with tied PCC shoulder	8	16	30	199.7
177	12-ft lane with AC shoulder	6	16	200	198.6
177	12-ft lane with AC shoulder	7	4	150	199.8
177	12-ft lane with AC shoulder	8	20	65	198.6
177	14-ft lane with AC shoulder	7	16	65	200.0
177	14-ft lane with AC shoulder	7	26	30	197.9
177	14-ft lane with AC shoulder	8	20	30	200.0
315	12-ft lane with tied PCC shoulder	6	10	150	201.1
315	12-ft lane with tied PCC shoulder	6	16	100	200.4
315	12-ft lane with tied PCC shoulder	6	20	65	198.1
315	12-ft lane with tied PCC shoulder	7	4	65	198.1
315	12-ft lane with tied PCC shoulder	7	20	30	201.4
315	12-ft lane with AC shoulder	6	16	200	200.3
315	12-ft lane with AC shoulder	7	4	150	198.8
315	12-ft lane with AC shoulder	8	10	65	200.6
315	12-ft lane with AC shoulder	8	26	30	197.7
315	12-ft lane with AC shoulder	9	16	30	201.1
315	14-ft lane with AC shoulder	6	4	200	198.0
315	14-ft lane with AC shoulder	7	10	65	201.1
315	14-ft lane with AC shoulder	8	4	30	201.7
315	$14-f t ~ l a n e ~ w i t h ~ A C ~ s h o u l d e r ~$	8	10	30	199.3

Table H-7: Cross-sections with longitudinal stress of 225 psi under 18-kips single axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in).	k-value $(\mathrm{psi} / \mathrm{in})$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	6	4	100	226.0
177	12-ft lane with tied PCC shoulder	6	16	65	225.0
177	12-ft lane with AC shoulder	7	4	100	223.4
177	12-ft lane with AC shoulder	9	10	30	225.8
177	14-ft lane with AC shoulder	6	10	100	225.3
315	12-ft lane with tied PCC shoulder	6	4	100	224.9
315	12-ft lane with AC shoulder	6	4	200	223.2
315	12-ft lane with AC shoulder	7	16	65	223.3
315	14-ft lane with AC shoulder	6	10	100	224.0
315	14-ft lane with AC shoulder	6	16	65	225.1
315	14-ft lane with AC shoulder	7	16	30	223.2

Table H-8: Cross-sections with longitudinal stress of 250 psi under 18-kips single axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in).	Base/Subbase Thk. (in).	k-value $(\mathrm{psi} / \mathrm{in})$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	6	4	65	250.9
177	12-ft lane with tied PCC shoulder	6	20	30	248.8
177	12-ft lane with tied PCC shoulder	7	4	30	250.8
177	12-ft lane with AC shoulder	6	26	30	249.9
177	12-ft lane with AC shoulder	7	4	65	251.8
177	12-ft lane with AC shoulder	8	16	30	251.0
177	14-ft lane with AC shoulder	6	10	65	251.3

Table H-9: Cross-sections with longitudinal stress of 100 psi under 32-kips tandem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	10	26	200	99.7
177	12-ft lane with tied PCC shoulder	11	4	200	99.2
177	12-ft lane with tied PCC shoulder	11	10	200	98.8
177	12-ft lane with tied PCC shoulder	11	26	150	100.8
177	12-ft lane with tied PCC shoulder	12	4	150	98.6
177	12-ft lane with tied PCC shoulder	12	10	150	98.2
177	14-ft lane with AC shoulder	11	16	200	102.3
177	14-ft lane with AC shoulder	11	20	200	100.7
177	14-ft lane with AC shoulder	12	20	150	101.9
177	14-ft lane with AC shoulder	12	26	150	98.8
315	12-ft lane with tied PCC shoulder	9	26	200	99.8
315	12-ft lane with tied PCC shoulder	10	4	200	100.6
315	12-ft lane with tied PCC shoulder	10	10	200	100.0
315	12-ft lane with tied PCC shoulder	10	16	200	98.1
315	12-ft lane with tied PCC shoulder	10	26	150	98.3
315	12-ft lane with tied PCC shoulder	11	26	100	101.2
315	12-ft lane with tied PCC shoulder	12	4	100	99.0
315	12-ft lane with tied PCC shoulder	12	10	100	98.7
315	12-ft lane with tied PCC shoulder	12	16	100	97.7
315	12-ft lane with AC shoulder	11	26	200	101.3
315	12-ft lane with AC shoulder	12	4	200	99.6
315	12-ft lane with AC shoulder	12	10	200	99.3
315	12-ft lane with AC shoulder	12	16	200	98.3
315	14-ft lane with AC shoulder	10	16	200	101.8
315	14-ft lane with AC shoulder	10	20	200	99.5
315	14-ft lane with AC shoulder	10	26	150	102.5
315	14-ft lane with AC shoulder	11	4	150	101.5
315	14-ft lane with AC shoulder	11	10	150	101.1
315	14-ft lane with AC shoulder	11	16	150	99.7
315	14-ft lane with AC shoulder	11	20	150	98.1
315	14-ft lane with AC shoulder	12	20	100	101.9
315	14-ft lane with AC shoulder	12	26	100	98.9

Table H-10: Cross-sections with longitudinal stress of $\mathbf{1 2 5}$ psi under 32-kips tandem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k -value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	7	26	200	124.9
177	12-ft lane with tied PCC shoulder	8	20	200	127.2
177	12-ft lane with tied PCC shoulder	8	26	150	127.4
177	12-ft lane with tied PCC shoulder	9	20	150	126.2
177	12-ft lane with tied PCC shoulder	10	26	100	123.6
177	12-ft lane with tied PCC shoulder	11	26	65	126.7
177	12-ft lane with tied PCC shoulder	12	4	65	122.6
177	12-ft lane with AC shoulder	9	26	200	127.3
177	12-ft lane with AC shoulder	10	20	200	125.8
177	12-ft lane with AC shoulder	11	26	150	125.6
177	12-ft lane with AC shoulder	12	4	150	124.0
177	12-ft lane with AC shoulder	12	10	150	123.6
177	14-ft lane with AC shoulder	9	4	200	126.4
177	14-ft lane with AC shoulder	9	10	200	125.5
177	14-ft lane with AC shoulder	9	16	200	122.6
177	14-ft lane with AC shoulder	9	26	150	123.3
177	14-ft lane with AC shoulder	10	4	150	125.8
177	14-ft lane with AC shoulder	10	10	150	125.2
177	14-ft lane with AC shoulder	10	16	150	123.0
177	14-ft lane with AC shoulder	11	20	100	125.5
177	14-ft lane with AC shoulder	12	26	65	123.1
315	12-ft lane with tied PCC shoulder	8	16	200	125.9
315	12-ft lane with tied PCC shoulder	9	4	150	123.2
315	12-ft lane with tied PCC shoulder	10	26	65	124.9
315	12-ft lane with tied PCC shoulder	11	4	65	124.0
315	12-ft lane with tied PCC shoulder	11	10	65	123.5
315	12-ft lane with AC shoulder	8	26	200	126.2
315	12-ft lane with AC shoulder	9	20	200	125.2
315	12-ft lane with AC shoulder	10	20	150	125.1
315	12-ft lane with AC shoulder	11	26	100	126.0
315	12-ft lane with AC shoulder	12	4	100	124.4
315	12-ft lane with AC shoulder	12	10	100	124.1
315	12-ft lane with AC shoulder	12	16	100	122.8
315	14-ft lane with AC shoulder	8	20	200	123.9
315	14-ft lane with AC shoulder	9	10	150	126.6
315	14-ft lane with AC shoulder	9	16	150	123.5
315	14-ft lane with AC shoulder	9	26	100	125.3
315	14-ft lane with AC shoulder	10	4	100	127.0
315	14-ft lane with AC shoulder	10	10	100	126.3
315	14-ft lane with AC shoulder	10	16	100	124.1
315	14-ft lane with AC shoulder	11	20	65	126.7

Table H-11: Cross-sections with longitudinal stress of 150 psi under 32-kips tandem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	7	16	200	150.1
177	12-ft lane with tied PCC shoulder	8	4	150	151.3
177	12-ft lane with tied PCC shoulder	8	10	150	149.8
177	12-ft lane with tied PCC shoulder	9	10	100	151.4
177	12-ft lane with tied PCC shoulder	9	16	100	147.9
177	12-ft lane with tied PCC shoulder	10	16	65	150.6
177	12-ft lane with tied PCC shoulder	11	26	30	148.1
177	12-ft lane with AC shoulder	8	16	200	150.4
177	12-ft lane with AC shoulder	8	26	150	149.3
177	12-ft lane with AC shoulder	9	20	150	150.3
177	12-ft lane with AC shoulder	11	16	100	151.3
177	12-ft lane with AC shoulder	11	20	100	148.8
177	12-ft lane with AC shoulder	12	26	65	148.4
177	14-ft lane with AC shoulder	8	16	150	149.7
177	14-ft lane with AC shoulder	8	26	100	151.3
177	14-ft lane with AC shoulder	9	20	100	150.6
177	14-ft lane with AC shoulder	10	26	65	147.9
177	14-ft lane with AC shoulder	12	4	30	152.1
177	14-ft lane with AC shoulder	12	10	30	151.4
177	14-ft lane with AC shoulder	12	16	30	149.4
315	12-ft lane with tied PCC shoulder	8	16	100	150.8
315	12-ft lane with tied PCC shoulder	8	26	65	147.9
315	12-ft lane with tied PCC shoulder	9	16	65	149.9
315	12-ft lane with AC shoulder	7	20	200	151.6
315	12-ft lane with AC shoulder	8	4	200	149.5
315	12-ft lane with AC shoulder	8	10	200	147.9
315	12-ft lane with AC shoulder	8	20	150	150.4
315	12-ft lane with AC shoulder	10	4	100	148.2
315	12-ft lane with AC shoulder	11	20	65	150.2
315	14-ft lane with AC shoulder	7	16	200	148.2
315	14-ft lane with AC shoulder	7	20	150	150.6
315	14-ft lane with AC shoulder	7	26	100	147.6
315	14-ft lane with AC shoulder	8	20	100	149.8
315	14-ft lane with AC shoulder	9	20	65	152.1
315	14-ft lane with AC shoulder	12	20	30	152.1

Table H-12: Cross-sections with longitudinal stress of 175 psi under 32-kips tandem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	6	16	200	173.4
177	12-ft lane with tied PCC shoulder	7	4	150	174.5
177	12-ft lane with tied PCC shoulder	7	20	100	175.4
177	12-ft lane with tied PCC shoulder	9	4	65	174.2
177	12-ft lane with tied PCC shoulder	9	10	65	172.9
177	12-ft lane with tied PCC shoulder	10	20	30	176.1
177	12-ft lane with AC shoulder	7	4	200	175.9
177	12-ft lane with AC shoulder	7	10	200	173.3
177	12-ft lane with AC shoulder	7	20	150	173.8
177	12-ft lane with AC shoulder	8	4	150	174.2
177	12-ft lane with AC shoulder	8	10	150	172.6
177	12-ft lane with AC shoulder	8	26	100	173.3
177	12-ft lane with AC shoulder	9	20	100	174.2
177	12-ft lane with AC shoulder	10	26	65	175.5
177	12-ft lane with AC shoulder	11	4	65	174.9
177	12-ft lane with AC shoulder	11	10	65	174.1
177	14-ft lane with AC shoulder	6	16	200	175.7
177	14-ft lane with AC shoulder	6	20	150	175.0
177	14-ft lane with AC shoulder	7	10	150	176.0
177	14-ft lane with AC shoulder	8	10	100	177.3
177	14-ft lane with AC shoulder	8	26	65	173.9
177	14-ft lane with AC shoulder	9	20	65	172.5
177	14-ft lane with AC shoulder	10	26	30	176.5
177	14-ft lane with AC shoulder	11	4	30	173.3
315	12-ft lane with tied PCC shoulder	7	16	100	173.3
315	12-ft lane with tied PCC shoulder	8	10	65	175.6
315	12-ft lane with tied PCC shoulder	10	4	30	174.8
315	12-ft lane with tied PCC shoulder	10	10	30	173.8
315	12-ft lane with AC shoulder	6	26	100	173.7
315	12-ft lane with AC shoulder	7	16	150	175.2
315	12-ft lane with AC shoulder	8	16	100	177.0
315	12-ft lane with AC shoulder	8	26	65	177.4
315	12-ft lane with AC shoulder	9	20	65	176.8
315	12-ft lane with AC shoulder	12	26	30	175.9
315	14-ft lane with AC shoulder	6	26	65	176.6
315	14-ft lane with AC shoulder	8	16	65	176.2
315	14-ft lane with AC shoulder	10	20	30	177.1

Table H-13: Cross-sections with longitudinal stress of 200 psi under 32-kips tandem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	7	4	100	197.9
177	12-ft lane with tied PCC shoulder	7	20	65	201.5
177	12-ft lane with tied PCC shoulder	8	4	65	197.9
177	12-ft lane with tied PCC shoulder	9	20	30	199.9
177	12-ft lane with AC shoulder	6	10	200	200.2
177	12-ft lane with AC shoulder	7	20	100	201.7
177	12-ft lane with AC shoulder	8	10	100	200.8
177	12-ft lane with AC shoulder	8	26	65	201.2
177	12-ft lane with AC shoulder	9	20	65	201.6
177	12-ft lane with AC shoulder	11	20	30	200.0
177	14-ft lane with AC shoulder	6	20	100	198.6
177	14-ft lane with AC shoulder	7	10	100	200.9
177	14-ft lane with AC shoulder	8	16	65	198.0
177	14-ft lane with AC shoulder	10	4	30	198.2
315	12-ft lane with tied PCC shoulder	6	10	150	197.7
315	12-ft lane with tied PCC shoulder	6	16	100	201.5
315	12-ft lane with tied PCC shoulder	7	26	30	199.7
315	12-ft lane with AC shoulder	6	4	200	202.2
315	12-ft lane with AC shoulder	6	16	150	198.4
315	12-ft lane with AC shoulder	7	16	100	198.3
315	12-ft lane with AC shoulder	8	16	65	201.7
315	12-ft lane with AC shoulder	10	26	30	198.7
315	12-ft lane with AC shoulder	11	4	30	201.2
315	12-ft lane with AC shoulder	11	10	30	200.3
315	12-ft lane with AC shoulder	11	16	30	197.5
315	14-ft lane with AC shoulder	6	10	150	201.0
315	14-ft lane with AC shoulder	7	16	65	200.9
315	14-ft lane with AC shoulder	9	16	30	198.9

Table H-14: Cross-sections with longitudinal stress of 225 psi under 32-kips tandem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in).	Base/Subbase Thk. (in).	k -value $(\mathrm{psi} / \mathrm{in})$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	7	4	65	227.3
177	12-ft lane with tied PCC shoulder	7	10	65	223.9
177	12-ft lane with tied PCC shoulder	7	26	30	223.9
177	12-ft lane with tied PCC shoulder	8	20	30	226.5
177	12-ft lane with AC shoulder	6	4	150	224.7
177	12-ft lane with AC shoulder	7	4	100	225.6
177	12-ft lane with AC shoulder	8	16	65	227.3
177	12-ft lane with AC shoulder	10	20	30	224.3
177	14-ft lane with AC shoulder	9	10	30	225.5
315	12-ft lane with tied PCC shoulder	6	4	100	224.5
315	12-ft lane with tied PCC shoulder	6	16	65	225.1
315	12-ft lane with tied PCC shoulder	7	20	30	226.6
315	12-ft lane with AC shoulder	6	16	100	223.7
315	12-ft lane with AC shoulder	7	16	65	225.6
315	12-ft lane with AC shoulder	8	26	30	224.6
315	12-ft lane with AC shoulder	9	20	30	225.7
315	14-ft lane with AC shoulder	6	10	100	223.6

Table H-15: Cross-sections with longitudinal stress of 250 psi under 32-kips tandem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in).	Base/Subbase Thk. (in).	k-value $(\mathrm{psi} / \mathrm{in})$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	8	4	30	248.2
177	12-ft lane with AC shoulder	6	10	100	251.5
177	12-ft lane with AC shoulder	7	16	65	248.7
177	12-ft lane with AC shoulder	9	20	30	250.8
177	14-ft lane with AC shoulder	6	16	65	248.4
177	14-ft lane with AC shoulder	8	16	30	249.4
315	12-ft lane with tied PCC shoulder	6	4	65	250.6
315	12-ft lane with AC shoulder	6	4	100	247.9
315	14-ft lane with AC shoulder	6	10	65	251.0
315	14-ft lane with AC shoulder	7	16	30	249.8

Table H-16: Cross-sections with longitudinal stress of 75 psi under 39-kips tridem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	11	16	200	76.7
177	12-ft lane with tied PCC shoulder	11	20	200	75.4
177	12-ft lane with tied PCC shoulder	12	4	150	76.3
177	12-ft lane with tied PCC shoulder	12	10	150	76.0
177	12-ft lane with tied PCC shoulder	12	16	150	75.2
177	12-ft lane with tied PCC shoulder	12	20	150	74.1
177	14-ft lane with AC shoulder	11	26	200	75.6
177	14-ft lane with AC shoulder	12	4	200	74.0
177	14-ft lane with AC shoulder	12	10	200	73.7
177	14-ft lane with AC shoulder	12	16	200	72.9
177	14-ft lane with AC shoulder	12	26	150	75.7
315	12-ft lane with tied PCC shoulder	9	26	200	76.8
315	12-ft lane with tied PCC shoulder	10	4	200	77.1
315	12-ft lane with tied PCC shoulder	10	10	200	76.6
315	12-ft lane with tied PCC shoulder	10	16	200	75.2
315	12-ft lane with tied PCC shoulder	10	20	200	73.5
315	12-ft lane with tied PCC shoulder	10	26	150	75.2
315	12-ft lane with tied PCC shoulder	11	4	150	74.4
315	12-ft lane with tied PCC shoulder	11	10	150	74.1
315	12-ft lane with tied PCC shoulder	11	16	150	73.1
315	12-ft lane with tied PCC shoulder	12	10	100	77.4
315	12-ft lane with tied PCC shoulder	12	16	100	76.7
315	12-ft lane with tied PCC shoulder	12	20	100	75.8
315	12-ft lane with tied PCC shoulder	12	26	100	73.6
315	12-ft lane with AC shoulder	11	4	200	77.4
315	12-ft lane with AC shoulder	11	10	200	77.1
315	12-ft lane with AC shoulder	11	16	200	76.1
315	12-ft lane with AC shoulder	11	20	200	74.9
315	14-ft lane with AC shoulder	10	16	200	77.2
315	14-ft lane with AC shoulder	10	20	200	75.4
315	14-ft lane with AC shoulder	11	4	150	77.2
315	14-ft lane with AC shoulder	11	10	150	76.9
315	14-ft lane with AC shoulder	11	16	150	75.9
315	14-ft lane with AC shoulder	11	20	150	74.6

Table H-17: Cross-sections with longitudinal stress of 100 psi under 39-kips tridem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	9	4	200	99.4
177	12-ft lane with tied PCC shoulder	9	10	200	98.6
177	12-ft lane with tied PCC shoulder	9	20	150	100.7
177	12-ft lane with tied PCC shoulder	10	20	100	101.2
177	12-ft lane with tied PCC shoulder	11	20	65	101.4
177	$12-\mathrm{ft}$ lane with AC shoulder	9	26	200	98.2
177	12 -ft lane with AC shoulder	10	4	200	100.1
177	12 -ft lane with AC shoulder	10	10	200	99.6
177	$12-\mathrm{ft}$ lane with AC shoulder	10	16	200	97.9
177	12-ft lane with AC shoulder	10	26	150	100.7
177	12-ft lane with AC shoulder	11	4	150	100.7
177	12-ft lane with AC shoulder	11	10	150	100.3
177	12-ft lane with AC shoulder	11	16	150	99.0
177	14-ft lane with AC shoulder	8	26	200	97.6
177	14 -ft lane with AC shoulder	9	4	200	102.3
177	14-ft lane with AC shoulder	9	10	200	101.5
177	14-ft lane with AC shoulder	9	16	200	99.0
177	14-ft lane with AC shoulder	10	4	150	98.8
177	14-ft lane with AC shoulder	10	10	150	98.2
177	$14-\mathrm{ft}$ lane with AC shoulder	10	26	100	100.7
177	$14-\mathrm{ft}$ lane with AC shoulder	11	4	100	99.9
177	14 -ft lane with AC shoulder	11	10	100	99.4
177	14 -ft lane with AC shoulder	11	16	100	98.0
177	14-ft lane with AC shoulder	12	16	65	101.8
177	14-ft lane with AC shoulder	12	20	65	100.4
315	12-ft lane with tied PCC shoulder	7	26	150	100.1
315	12-ft lane with tied PCC shoulder	8	16	200	98.9
315	12-ft lane with tied PCC shoulder	8	20	150	100.3
315	12-ft lane with tied PCC shoulder	8	26	100	100.4
315	12-ft lane with tied PCC shoulder	9	16	100	101.6
315	12-ft lane with tied PCC shoulder	9	20	100	98.6
315	12-ft lane with tied PCC shoulder	10	26	65	98.1
315	12-ft lane with tied PCC shoulder	11	4	65	98.1
315	12-ft lane with tied PCC shoulder	11	10	65	97.8
315	12-ft lane with AC shoulder	7	26	200	99.6
315	12 -ft lane with AC shoulder	8	20	200	100.4
315	12-ft lane with AC shoulder	8	26	150	98.6
315	12 -ft lane with AC shoulder	9	16	150	100.3
315	12 -ft lane with AC shoulder	10	26	100	100.3
315	12 -ft lane with AC shoulder	11	10	100	102.4
315	12 -ft lane with AC shoulder	11	16	100	101.3
315	12 -ft lane with AC shoulder	11	20	100	100.0
315	12 -ft lane with AC shoulder	12	4	100	98.2
315	12 -ft lane with AC shoulder	12	10	100	98.0
315	$14-\mathrm{ft}$ lane with AC shoulder	7	26	150	101.9
315	14 -ft lane with AC shoulder	8	16	200	100.5
315	14-ft lane with AC shoulder	8	20	150	102.4
315	14-ft lane with AC shoulder	9	20	100	101.9
315	14-ft lane with AC shoulder	11	16	65	102.4
315	14-ft lane with AC shoulder	11	20	65	101.1
315	14-ft lane with AC shoulder	11	26	65	97.9
315	$14-\mathrm{ft}$ lane with AC shoulder	12	4	65	98.7
315	14-ft lane with AC shoulder	12	10	65	98.4
315	14-ft lane with AC shoulder	12	16	65	97.6

Table H-18: Cross-sections with longitudinal stress of 125 psi under 39-kips tridem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k -value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	7	26	100	124.5
177	12-ft lane with tied PCC shoulder	8	4	150	123.8
177	12-ft lane with tied PCC shoulder	8	20	100	126.2
177	12-ft lane with tied PCC shoulder	9	20	65	126.9
177	12-ft lane with tied PCC shoulder	11	16	30	127.4
177	12-ft lane with tied PCC shoulder	11	20	30	125.0
177	12-ft lane with AC shoulder	7	26	150	123.6
177	12-ft lane with AC shoulder	8	4	200	125.8
177	12-ft lane with AC shoulder	8	10	200	124.5
177	12-ft lane with AC shoulder	8	20	150	126.3
177	12-ft lane with AC shoulder	9	26	100	123.4
177	12-ft lane with AC shoulder	10	4	100	126.2
177	12-ft lane with AC shoulder	10	10	100	125.5
177	12-ft lane with AC shoulder	10	16	100	123.3
177	12-ft lane with AC shoulder	12	4	65	126.8
177	12-ft lane with AC shoulder	12	10	65	126.3
177	12-ft lane with AC shoulder	12	16	65	125.0
177	12-ft lane with AC shoulder	12	20	65	123.4
177	14-ft lane with AC shoulder	6	26	150	122.5
177	14-ft lane with AC shoulder	8	4	150	127.1
177	14-ft lane with AC shoulder	8	10	150	125.7
177	14-ft lane with AC shoulder	9	4	100	125.2
177	14-ft lane with AC shoulder	9	10	100	124.3
177	14-ft lane with AC shoulder	9	26	65	123.8
177	14-ft lane with AC shoulder	10	4	65	125.7
177	14-ft lane with AC shoulder	10	10	65	124.9
177	14-ft lane with AC shoulder	12	4	30	124.5
177	14-ft lane with AC shoulder	12	10	30	124.0
315	12-ft lane with tied PCC shoulder	7	4	200	126.7
315	12-ft lane with tied PCC shoulder	7	10	200	124.3
315	12-ft lane with tied PCC shoulder	7	16	150	123.4
315	12-ft lane with tied PCC shoulder	7	20	100	125.7
315	12-ft lane with tied PCC shoulder	7	26	65	122.6
315	12-ft lane with tied PCC shoulder	8	20	65	124.5
315	12-ft lane with tied PCC shoulder	12	4	30	127.3
315	12-ft lane with tied PCC shoulder	12	10	30	127.0
315	12-ft lane with tied PCC shoulder	12	16	30	125.8
315	12-ft lane with tied PCC shoulder	12	20	30	124.5
315	12-ft lane with AC shoulder	6	26	100	126.4
315	12-ft lane with AC shoulder	8	16	100	126.5
315	12-ft lane with AC shoulder	9	26	65	125.2
315	12-ft lane with AC shoulder	10	20	65	126.5
315	12-ft lane with AC shoulder	11	4	65	125.0
315	12-ft lane with AC shoulder	11	10	65	124.5
315	12-ft lane with AC shoulder	11	16	65	123.2
315	14-ft lane with AC shoulder	7	10	200	125.4
315	14-ft lane with AC shoulder	7	16	150	125.2
315	14-ft lane with AC shoulder	7	26	65	126.2
315	14-ft lane with AC shoulder	8	4	100	124.2
315	14-ft lane with AC shoulder	8	10	100	122.8
315	14-ft lane with AC shoulder	9	4	65	123.9
315	14-ft lane with AC shoulder	9	10	65	123.0

Table H-19: Cross-sections with longitudinal stress of 150 psi under 39-kips tridem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in.)	Base/Subbase Thk. (in.)	k-value (psi/in.)	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	6	16	200	151.8
177	12-ft lane with tied PCC shoulder	6	26	65	149.3
177	12-ft lane with tied PCC shoulder	7	16	100	151.1
177	12-ft lane with tied PCC shoulder	8	16	65	148.5
177	12-ft lane with AC shoulder	7	16	150	148.2
177	12-ft lane with AC shoulder	8	16	100	149.8
177	12-ft lane with AC shoulder	8	26	65	151.6
177	12-ft lane with AC shoulder	9	20	65	150.9
177	12-ft lane with AC shoulder	10	4	65	148.0
177	12-ft lane with AC shoulder	12	16	30	151.3
177	12-ft lane with AC shoulder	12	20	30	148.9
177	14-ft lane with AC shoulder	6	20	150	148.1
177	14-ft lane with AC shoulder	7	4	150	149.3
177	14-ft lane with AC shoulder	8	20	65	148.2
177	14-ft lane with AC shoulder	10	20	30	150.0
315	12-ft lane with tied PCC shoulder	6	16	150	148.4
315	12-ft lane with tied PCC shoulder	7	16	65	148.5
315	12-ft lane with tied PCC shoulder	8	26	30	147.6
315	12-ft lane with tied PCC shoulder	9	16	30	152.1
315	12-ft lane with tied PCC shoulder	9	20	30	148.5
315	12-ft lane with AC shoulder	6	20	100	152.3
315	12-ft lane with AC shoulder	7	10	100	151.6
315	12-ft lane with AC shoulder	8	4	65	151.5
315	12-ft lane with AC shoulder	8	10	65	149.9
315	14-ft lane with AC shoulder	6	16	150	149.7
315	14-ft lane with AC shoulder	7	16	65	152.4
315	14-ft lane with AC shoulder	9	26	30	149.0
315	14-ft lane with AC shoulder	10	20	30	149.9

Table H-20: Cross-sections with longitudinal stress of 175 psi under 39-kips tridem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in).	Base/Subbase Thk. (in).	k-value $(\mathrm{psi} / \mathrm{in})$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	6	10	150	175.4
177	12-ft lane with tied PCC shoulder	6	16	100	176.2
177	12-ft lane with tied PCC shoulder	7	26	30	172.7
177	12-ft lane with tied PCC shoulder	8	20	30	174.3
177	12-ft lane with AC shoulder	6	10	200	173.1
177	12-ft lane with AC shoulder	6	20	100	174.5
177	12-ft lane with AC shoulder	7	10	100	176.1
177	12-ft lane with AC shoulder	10	26	30	172.7
177	14-ft lane with AC shoulder	6	10	150	177.4
177	14-ft lane with AC shoulder	7	16	65	175.4
177	14-ft lane with AC shoulder	9	10	30	176.3
315	12-ft lane with tied PCC shoulder	6	10	100	174.1
315	12-ft lane with tied PCC shoulder	6	16	65	174.0
315	12-ft lane with tied PCC shoulder	7	20	30	175.9
315	$12-\mathrm{ft} \mathrm{lane} \mathrm{with} \mathrm{tied} \mathrm{PCC} \mathrm{shoulder}$	8	4	30	173.7
315	12-ft lane with AC shoulder	6	4	150	172.7
315	12-ft lane with AC shoulder	7	4	65	173.6
315	12-ft lane with AC shoulder	9	26	30	175.9
315	12-ft lane with AC shoulder	11	4	30	176.7
315	12-ft lane with AC shoulder	11	10	30	176.0
315	12-ft lane with AC shoulder	11	16	30	173.8
315	14-ft lane with AC shoulder	6	10	100	176.3
315	$14-f t ~ l a n e ~ w i t h ~ A C ~ s h o u l d e r ~$	8	16	30	173.2

Table H-21: Cross-sections with longitudinal stress of 200 psi under 39-kips tridem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in).	Base/Subbase Thk. (in).	k-value $(\mathrm{psi} / \mathrm{in})$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	7	20	30	197.6
177	12-ft lane with AC shoulder	6	20	65	198.7
177	12-ft lane with AC shoulder	7	10	65	202.0
177	12-ft lane with AC shoulder	8	26	30	198.3
177	12-ft lane with AC shoulder	9	20	30	200.1
177	14-ft lane with AC shoulder	6	4	100	200.2
177	14-ft lane with AC shoulder	6	16	65	201.2
177	14-ft lane with AC shoulder	8	4	30	201.2
177	14-ft lane with AC shoulder	8	10	30	198.8
315	12-ft lane with tied PCC shoulder	7	4	30	198.3
315	12-ft lane with AC shoulder	6	10	65	201.6
315	12-ft lane with AC shoulder	7	20	30	200.7
315	12-ft lane with AC shoulder	8	16	30	200.4
315	14-ft lane with AC shoulder	6	4	65	198.5
315	14-ft lane with AC shoulder	6	20	30	199.6
315	14-ft lane with AC shoulder	7	10	30	201.8

Table H-22: Cross-sections with longitudinal stress of 225 psi under 39-kips tridem axle loading

Joint Spacing (in.)	Lateral Support Condition	Slab Thk. (in).	Base/Subbase Thk. (in).	k-value $(\mathrm{psi} / \mathrm{in})$.	Long. Bot. Stress (psi)
177	12-ft lane with tied PCC shoulder	7	4	30	225.5
177	12-ft lane with AC shoulder	8	16	30	225.0
177	14-ft lane with AC shoulder	6	4	65	223.9
315	12-ft lane with AC shoulder	7	4	30	224.2

Appendix J
Hourly Load Spectra from WIM Database

Appendix K

Hourly Thermal Gradient from EICM

Appendix L

Technology Transfer Package

A Preliminary Mechanistic Evaluation of PCC Cross-Sections Using ISLAB2000 - A Parametric Study

Neeraj Buch, Ph.D.
Kaenvit Vongchusiri, M.S.
Michigan State University
Department of Civil and Environmental Engineering

Thomas Van Dam, Ph.D., P.E.

Michigan Technological University
Department of Civil and Environmental Engineering

Technology Transfer Workshop Package
August, 2004

Contents

Part I: ISLAB2000 Tutorial 1
Pavement Structure 1
Vehicle Load 5
Layer Temperature 8
Batch Application 10
Analysis Results 12
Part II: Examples 15
Example 1: Interior Loading of a Single Slab 15
Example 2: Edge Loading of a Single Slab 23
Example 3: Corner Loading of a Single Slab 28
Example 4: Thermal Gradients on a Single Slab 34
Example 5: Interior Loading with Thermal Gradients on a Single Slab 44
Example 6: Edge Loading with Thermal Gradients on a Single Slab 50
Example 7: Corner Loading with Thermal Gradients on a Single Slab 56
Example 8: Single Axle Edge Loading on a Pavement System 61
Example 9: Single Axle Edge Loading with Thermal Gradients 72
Example 10: Single Axle Corner Loading with Thermal Gradients 78
Example 11: Single Axle Edge Loading with Various PCC Edge Thicknesses 85
Example 12: Single Axle Edge Loading with Various Base Thicknesses 89
Example 13: Single Axle Edge Loading with Various k-values 93
Example 14: Single Axle Edge Loading with Various PCC Elastic Moduli 97
Example 15: Single Axle Edge Loading with Various Base Types 101
Example 16: Repeat Example 13 with a Thermal Gradient 105
Example 17: Repeat Example 14 with a Thermal Gradient 108
Example 18: Repeat Example 15 with a Thermal Gradient 111
Example 19: Single Axle Edge Loading with Various Load Levels 114
Example 20: Tandem Axle Edge Loading with Various Load Levels 118
Example 21: Tridem Axle Edge Loading with Various Load Levels 125
Example 22: Single Axle Edge Loading with Various CTE Values 132
Example 23: Single Axle Wander 136
Example 24: Single Axle with Various Joint Spacing 149
Example 25: Repeat Example 24 with a Thermal Gradient 159
Example 26: Full-depth PCC Patch, 4 Feet Wide 165
Example 27: Full Depth PCC Patch. 6 Feet Wide 171
Example 28: Full-depth AC Patch 178
Example 29: Void at Slab Corner 183
Example 30: Three-layer System 189
Example 31: Non-linear Temperature Profiles 193
Part III: Practice with Actual MDOT Designs 199
Problem Statement. 199
Answer Key 200

Part I: ISLAB2000 Tutorial

Pavement Structure

The first step of modeling using ISLAB2000 is to identify the structural features and material properties of the pavement system. To do so, perform the following procedure.

Step 1: Define Pavement Dimensions, Coordinate System, and FE Mesh Options

To input pavement dimensions, select Geometry from the main panel. The geometry panel appears (see Figure 1). In the \mathbf{X}-direction section, click Insert to add shoulder and lane dimensions for the pavement system. In the Y-direction section, click Insert to add slab dimensions for the pavement system. Note that ISLAB2000 uses a rectangular coordinate system with X-direction in the transverse direction and Y-direction in the longitudinal direction, and the origin is at the left corner of the pavement system.

Figure 1: Geometry Panel

Three default finite element (FE) mesh options are available: coarse (24 in.), medium (12 in.), and fine (6 in.). To define FE mesh other than the defaults, click Customize, and then enter a new nominal element size.
After selecting mesh size, click Generate and then click OK to close the geometry panel and return to the main panel. Based on the inputs, the main panel displays the plan view of the pavement system as illustrated in Figure 2.

Figure 2: Plan View of the Pavement System

Step 2: Define Layer Thickness and Typical Parameters for Material Properties

To define the thickness of layers and the design parameters, select Layers from the main panel. The layers panel appears (see Figure 3). Click Add Layer to enter the number of layers required for the design.

Figure 3: Layers Panel

After you enter the necessary layers you can enter the design parameters for each layer, including thickness (in.), elastic modulus (psi), Poisson's ratio, CTE (in./in. $/{ }^{\circ} \mathrm{F}$), unit weight ($\mathrm{lb} / \mathrm{in} .{ }^{3}$), and interface condition between two layers (only layers beneath PCC layer). Table 1 lists typical design parameter values.

Layers	Design parameters				
	Elastic modulus (psi)	Poisson's ratio	CTE (in./in. $/{ }^{\circ} \mathrm{F}$)	Unit weight (lb/in. ${ }^{3}$)	Interface condition
PCC slab	4,000,000	0.15	5×10^{-6}	0.087	-
Aggregate base	30,000	0.35	2×10^{-6}	0.061	Unbonded
Asphalt treated base	300,000	0.35	2×10^{-6}	0.061	Bonded/unbonded
Lean concrete base	2,000,000	0.20	4×10^{-6}	0.087	Bonded/unbonded
Sand subbase	15,000	0.35	2×10^{-6}	0.061	Unbonded

Table 1: Typical values of design parameters for layers module
(Sources: Huang (1993), Klieger and Lamond (1994))

Step 3: Define Subgrade Model and Typical Parameters for Roadbed Soil

To define the design parameter for subgrade model, select Subgrade from the main panel. The subgrade panel appears (see Figure 4).

Figure 4: Subgrade Panel

Four subgrade models are available in ISLAB2000. In general, Winkler foundation is used in the design. Input for this subgrade model is Subgrade \mathbf{K} (modulus of subgrade reaction, $\mathrm{psi} / \mathrm{in}$.).

Step 4: Define Transverse and Longitudinal Joints and Typical Inputs for Joint Designs

To define design parameters for joint design, select Joints from the main panel. The joints panel appears (see Figure 5). Joints in x-direction and Joints in y-direction are longitudinal and transverse joints, respectively.

Figure 5: Joints Panel

For longitudinal joints, select AGG Interlock as the joint type. The value of the AGG factor parameter is dependent on the stiffness of the joint. For transverse joints, select AGG Interlock as the joint type for undoweled joints; select Doweled for the joint type for doweled joints. Example inputs for doweled joint are described in Example 8 of Part 2.

NOTE

For a pavement system with an area that differs from the rest of the pavement structure, select Areas from the main panel to define a special area. Example inputs for the area module are described in Examples 23 and 26 through 28 of Part 2.

Vehicle Load

To define and position the load on the pavement, perform the following procedure.

Step 1: Define the Axle Configuration Model and the Standard Configurations

Select Load from the main panel to open the load panel appears (see Figure 6).

Figure 6: Load Panel

From the Load panel, select Place Axles and then click Axle Design to open the axle design panel (see Figure 7). ISLAB2000 is capable of modeling single, tandem, and tridem axles. Type an axle name into the Axle Name field, and then enter values for the data requested. If you do not have axle data specific to your application, use the standard inputs in Table 2.

Figure 7: Axle Design Panel

| | Loading parameters | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Axle and wheel type | Tire pressure (psi) | Tire aspect ratio | S1 (in.) | S2 (in.) | S3 (in.) | L1 (in.) | L2 (in.) |
| | | | | | | | |
| Single axle with single wheels | $60-120$ | 0.5 | 72 | - | - | - | - |
| Single axle with dual wheels | $60-120$ | 0.5 | 12 | 72 | 84 | - | - |
| Tandem axle with dual wheels | $60-120$ | 0.5 | 12 | 72 | 84 | 42 | - |
| Tridem axle with dual wheels | $60-120$ | 0.5 | 12 | 72 | 84 | 42 | 84 |

Table 2: Standard Loading Parameters
(Source: Truck Driver's Guidebook, $6^{\text {th }}$ Edition)

Bottom Left is the default reference point. In Figure 7 this point corresponds to loading number 1.

Step 2: Define the Truck Configuration Model

To model a truck loading, all axle components of the truck must already be defined. Select Place Trucks on the load panel, and then click Truck Design. The truck design panel appears (see Figure 8).

Figure 8: Truck Design Panel

Click Add Axle to add axles to the truck, and then select the axle name for each axle number corresponding to the axle type required for the truck. Next, enter x and y relative locations for each axle. Finally, select the reference axle of the truck. Axle number one is the default reference axle, but you can use other axles. The inputs used in Figure 8 result in a truck configuration as illustrated in Figure 9.

Figure 9: Illustration of Truck Configuration and Load Location

Step 3: Define the Load Positioning System

After completing either axle design or truck design process, the load is to be positioned by identifying the X and Y locations for the axle or truck (see Figure 9).

Layer Temperature

ISLAB2000 allows you to account for the impact of temperature through two options: linear thermal gradients and non-linear temperature profile.

- Linear Thermal Gradient: The linear thermal gradient is the temperature differential between the top and bottom of the PCC slab divided by the PCC thickness. To define a linear thermal gradient, select Temperature from the main panel. The layers temperature properties panel appears (see Figure 10). In the layers temperature properties panel, select the Perform Temperature Analysis check box, and then select Linear for the type of thermal gradient. In the Difference field, enter the temperature differential (in degrees Fahrenheit), which is equal to the thermal gradient multiplied by the PCC thickness.

NOTE

The positive thermal gradient or daytime gradient indicates that the top layer is warmer than the bottom layer, while negative thermal gradient or nighttime gradient indicates that the bottom layer is warmer than the top layer.

Figure 10: Layers Temperature Properties Panel

- Non-linear Temperature Profile: This option of temperature analysis requires temperatures from at least three different depths. First, select Nonlinear for the analysis type for layer 1 (see Figure 11), and then click on Edit Nonlinear.

Figure 11: Layers Temperature Properties Panel

The edit nonlinear temperature distributions appear (see Figure 12). Type the temperature at each depth. If more temperature nodes are available, click Insert Temperature Node to add more temperatures.

Figure 12: Edit nonlinear temperature distributions panel

Batch Application

Through batch application, ISLAB2000 is capable of performing multiple analyses for structural conditions, loading levels, and temperature conditions. Batch application is available in three structural modules: Layers, Subgrade, and Joints.

- Layers module: Batch application allows for adding cases for each layer. The added cases could have thickness, elastic modulus, Poisson's ratio, CTE, unit weight, and also interface condition between two layers different from the original case. Figure 13 illustrates an example of batch application for the layers module.

Figure 13: Batch Application for Layers Module

- Multiple analyses for loading levels: For the load module, batch application allows for analysis of several load levels at the same time. Figure 14 illustrates an example of batch application for the load module.

Figure 14: Batch Application for Load Module

- Multiple analyses for temperature conditions: Batch application allows for analysis of several temperature conditions at the same time. Figures 15 and 16 illustrate examples of batch application for linear thermal gradient and non-linear temperature profiles.

Figure 15: Batch Application for Temperature Module (linear)

Figure 16: Batch Application for Temperature Module (nonlinear)

Analysis Results

To generate results, first click Generate Input Files and then click Run ISLAB2000 from the Run menu item. To view results in graphical form, click View Analysis Results from the Run menu item (see Figure 17).

Figure 17: View Analysis Results on Run Menu

Stresses and Deflection

Figures 18 and 19 shows typical graphical representations of stresses and deflection in ISLAB2000. As shown in the figure 18, the following types of stress contours are available for each layer and for top and bottom of the layer:

- X Stresses (transverse stresses)
- Y Stresses (longitudinal stresses)
- XY Stresses (shear stresses)
- Principal Stresses

Figure 19 shows a deflection contour based on the stresses shown in Figure 18. To view a deflection contour, select Deflection from the third pull down menu shown in Figure 17.

Figure 18: Stress Contour Obtained from ISLAB2000

Deflections

Figure 19: Deflection Contour Obtained from ISLAB2000

Part I: ISLAB2000 Tutorial

Part II: Examples

Example 1:
 Interior Loading of a Single Slab

Problem statement

Determine the maximum deflection and maximum stress at the bottom of the PCC slab for Westergaard's interior loading condition.

Given			
Concrete elastic modulus	$=$	4×10^{6}	psi
Concrete Poisson's ratio	$=$	0.15	
Slab thickness	$=$	10	in.
Slab dimension	$=$	144×180	in^{2}
Mesh size	$=$	12×12	in^{2} (medium)
k-value	$=$	100	$\mathrm{psi} / \mathrm{in}$.
Tire contact area	$=$	7.5×15	in^{2}
Wheel load	$=$	10,000	lbs

Problem illustration

Figure E1-1: Problem Ilustration

Solution

Geometry Module

(see Figure E1-2)
Step 1: Click Geometry on the main panel to open the geometry panel.
Step 2: On the geometry panel, click Insert on the \mathbf{X}-direction side, and then type the slab length, which is 144 in . for this example.

Step 3: Click Insert on the Y-direction side, and then type the slab length, which is 180 in. for this example.

Figure E1-2: Edit inputs for the geometry module

Step 4: On the right side of the geometry panel, select the Medium radio button to select the medium mesh size.

Step 5: At the bottom of the panel, click Generate to generate the inputs to the input file, and then click OK to close the geometry panel.

Layers Module

(see Figure E1-3)
Step 1: Click Layers on the main panel to open the layers panel.
Step 2: On the layers panel, type the inputs as identified in the problem statement.
Step 3: Click OK to close the layers panel.

Subgrade Module

(see Figure E1-4)
Step 1: Click Subgrade on the main panel to open the subgrade panel.
Step 2: On the subgrade panel, type the inputs as identified in the problem statement.
Step 3: Click OK to close the subgrade panel.

Figure E1-3: Edit Inputs for the Layers Module

Figure E1-4: Edit Inputs for the Subgrade Module

Load Module

(see Figures E1-5 and E1-6)
Step 1: \quad Click Load on the main panel to open the load panel.
Step 2: On the load panel, click Axle Design to open the axle design panel.

Figure E1-5: Edit inputs for the load module

Step 3: On the axle design panel, type "wheel load" in the Axle Name field to name the axle.

Step 4: Type the tire pressure in the Tire Pressure field. The tire pressure of the wheel load can be computed as shown below:

$$
\text { Tire Pressure }=\frac{\text { Wheel Load }}{\text { Contact Area }}=\frac{10,000 \mathrm{lbs}}{7.5 \mathrm{in} . \times 15 \mathrm{in} .}=88.89 \mathrm{psi}
$$

Step 5: Type the tire width (7.5 in. for this example), in the Tire Width field.
Step 6: Select Bottom Left for the reference point position.
Step 7: Click OK to close the axle design panel.
Step 8: On the load panel (see Figure E1-6), click Add to add an axle.
Step 9: In the Axle Name field, select "wheel load."

Step 10: Enter an X-location and a Y-location to locate the wheel load. X-location and Ylocation for interior loading conditions can be computed as shown below:

$$
\begin{aligned}
X-\text { location } & =\frac{\text { Slab width }}{2}-\frac{\text { wheel load width }}{2} . \\
& =\frac{144}{2}-\frac{7.5}{2}=68.25 \mathrm{in} \\
Y-\text { location } & =\frac{\text { Slab length }}{2}-\frac{\text { wheel load length }}{2} . \\
& =\frac{180}{2}-\frac{15}{2}=82.5 \mathrm{in}
\end{aligned}
$$

Step 11: Enter the load for the wheel load, which is $10,000 \mathrm{lbs}$ for this example.
Step 12: Click OK to close the load panel.

Figure E1-6: Edit Inputs for the Load Module (continued)

At this stage, all inputs are completed. If all the inputs are correct, the color of all status boxes will change from red to blue. The main panel should display the pavement structure, loading condition, and mesh as shown in Figure E1-7.

Figure E1-7: Main Panel After the Completion of Inputs

Analysis Results

Maximum transverse stress at the bottom of the PCC slab $=140.6 \mathrm{psi}$ (see Figure E1-8)
Maximum longitudinal stress at the bottom of the PCC slab $=123.4 \mathrm{psi}$ (see Figure E1-9)

Maximum deflection of the PCC slab $=0.00796 \mathrm{in}$. (see Figure E1-10)

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Part II: Examples

Figure E1-8: Transverse Stress at the Bottom of the PCC Slab

Figure E1-9: Longitudinal Stress at the Bottom of the PCC Slab

Deflections

Figure E1-10: Deflection of the PCC Slab

Example 2:
 Edge Loading of a Single Slab

Problem Statement

Determine maximum deflection and stress for the PCC slab using Westergaard's edge loading condition.

Given

Concrete elastic modulus	$=$	4×10^{6}	psi
Concrete Poisson's ratio	$=$	0.15	
Slab thickness	$=$	10	in.
Slab dimension	$=$	144×180	in^{2}
Mesh size	$=$	12×12	in^{2} (medium)
k-value	$=$	100	$\mathrm{psi} / \mathrm{in}$.
Tire contact area	$=$	7.5×15	in^{2}
Wheel load	$=$	10,000	lbs^{2}

Problem Illustration

Figure E2-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 1.

Layers Module

Use this module from Example 1.

Subgrade Module

Use this module from Example 1.

Load Module

(see Figures E2-2)
Step 1: Follow steps 1 through 9 from the load module in Example 1.
Step 2: Enter an X-location and a Y-location to locate the wheel load. The X-location and Y-location for edge loading condition can be computed as shown below:

$$
\begin{aligned}
X-\text { location } & =0 \\
Y-\text { location } & =\frac{\text { Slab length }}{2}-\frac{\text { wheel load length }}{2} . \\
& =\frac{180}{2}-\frac{15}{2}=82.5 \mathrm{in}
\end{aligned}
$$

Step 3: Type the load for the wheel load, which is $10,000 \mathrm{lbs}$ for this example.
Step 4: Click OK to close the load panel.

Figure E2-2: Edit Inputs for the Load Module

The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E2-3.

Figure E2-3: Main Panel After the Completion of Inputs

Analysis Results

Maximum transverse stress at the bottom of the PCC slab $=\quad 37.4 \mathrm{psi}$ (see Figure E2-4)
Maximum longitudinal stress at the bottom of the PCC slab $=245.5 \mathrm{psi}$
(see Figure E2-5)
Maximum deflection of the PCC slab $=0.02514 \mathrm{in}$. (see Figure E2-6)

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Part II: Examples

Figure E2-4: Transverse Stress at the Bottom of the PCC Slab

Figure E2-5: Longitudinal Stress at the Bottom of the PCC Slab

Deflections

Figure E2-6: Deflection of the PCC Slab

Example 3:
 Corner Loading of a Single Slab

Problem Statement

Determine maximum deflection and stress at the top of the PCC slab for Westergaard's corner loading condition. Then, compare the results from interior and edge loading conditions in Examples 1 and 2.

Given

Concrete elastic modulus	$=$	4×10^{6}	psi
Concrete Poisson's ratio	$=$	0.15	
Slab thickness	$=$	10	in.
Slab dimension	$=$	144×180	in^{2}
Mesh size	$=$	12×12	in^{2} (medium)
k-value	$=$	100	$\mathrm{psi} / \mathrm{in}$.
Tire contact area	$=$	7.5×15	in^{2}
Wheel load	$=$	10,000	lbs^{2}

Problem Illustration

Figure E3-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 1.

Layers Module

Use this module from Example 1.

Subgrade Module

Use this module from Example 1.

Load Module

(see Figures E3-2)
Step 1: Follow steps 1 through 9 from the load module in Example 1.
Step 2: Type an X-location and a Y-location to locate the wheel load. The X-location and Y-location for corner loading condition can be computed as shown below:

$$
\begin{aligned}
X-\text { location } & =0 \\
Y-\text { location } & =Y-\text { direction slab length }- \text { wheel load length. } \\
& =180-15=165 \mathrm{in}
\end{aligned}
$$

Step 3: Enter the load for the wheel load, which is $10,000 \mathrm{lbs}$ for this example.
Step 4: Click OK to close the load panel.

Figure E3-2: Edit Inputs for the Load Module

The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E3-3.

Figure E3-3: Main Panel After the Completion of Inputs

Analysis Results

Maximum transverse stress at the top of the PCC slab $=137.3 \mathrm{psi}$ (see Figure E3-4)

Maximum longitudinal stress at the top of the PCC slab $=\quad 131.1 \mathrm{psi}$ (see Figure E3-5)

Maximum stress at the top of the PCC slab $=195.5 \mathrm{psi}$ (see Figure E3-6)

Maximum deflection of the PCC slab $=0.0574 \mathrm{in}$. (see Figure E3-7)

Comparison of stresses and deflections from the three loading conditions are illustrated in Figures E3-8 and E3-9.

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E3-4: Transverse Stress at the Top of the PCC Slab

Figure E3-5: Longitudinal Stress at the Top of the PCC Slab

Part II: Examples

Figure E3-6: Principal Stress at the Top of the PCC Slab

Figure E3-7: Deflection of the PCC Slab

Loading condition	Maximum stress, psi	Maximum deflection, in.
Interior	140.6	0.00796
Edge	245.5	0.02514
Corner	195.5	0.0574

Table E3-1: Comparison of results between the three loading conditions

Figure E3-8: Comparison of Maximum Stress from the Three Loading Conditions

Figure E3-9: Comparison of Maximum Deflection from the Three Loading Conditions

Example 4:
 Thermal Gradients on a Single Slab

Problem Statement

Determine maximum deflection and stress at the top and bottom of the PCC slab due to temperature differentials, $\Delta \mathrm{T}$, of $-20,-10,0,+10,+20^{\circ} \mathrm{F}$. Also, plot a graph to show relation between stresses and temperature differentials.

Given

Concrete elastic modulus	$=$	4×10^{6}	psi
Concrete Poisson's ratio	$=$	0.15	
Slab thickness	$=$	10	in.
Slab dimension	$=$	144×180	in^{2}
Mesh size	$=$	12×12	in^{2} (medium)
k-value	100	$\mathrm{psi} / \mathrm{in}$.	
Coefficient of thermal exp., α	$=$	4.4×10^{-6}	$\mathrm{in} . / \mathrm{in} . I^{\circ} \mathrm{F}$
Temperature differential, $\Delta \mathrm{T}$	$=$	$-20,-10,0,+10,+20$	${ }^{\circ} \mathrm{F}$

Problem Illustration

Figure E4-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 1.

Layers Module

Use this module from Example 1.

Subgrade Module

Use this module from Example 1.

Load Module

This module is not required for this example.

Temperature Module

(see Figure E4-2)
Step 1: Click Temperature from the main panel to open the temperature panel.
Step 2: On the temperature panel, select the Perform Temperature Analysis and Batch check boxes.

Step 3: Enter the temperature differential of the first case in the Difference field, $\left(-20^{\circ} \mathrm{F}\right.$ for this problem).

Step 4: Click Edit Batch to open the layers temperature distributions panel.
Step 5: On the layers temperature distributions panel, click Insert four times to add four more cases of temperature differential. Then enter the other four temperature differentials as identified in the problem statement.

Step 6: Click OK to close the layers temperature distributions panel.
Step 7: Click OK layers temperature properties panel.

Figure E4-2: Edit Inputs for the Temperature Module

Analysis Options Module

(see Figure E4-3)
Click Analysis Options to open the analysis options panel, and then select the Batch Processing checkbox. Click OK to close the analysis options panel.

Figure E4-3: Analysis Option Module

The main panel displays the pavement structure, loading condition, and meshing as shown in Figure E4-4.

Figure E4-4: Main Panel After the Completion of Inputs

Analysis Results

Table E4-1 summarizes the analysis results for all five temperature differentials. Stress and deflection contours from ISLAB2000 are also available in Figures E4-5 through E4-14. Figure E4-15 is the plot of relationship between stresses and temperature differentials.

$\Delta \mathrm{T},{ }^{\circ} \mathrm{F}$	Stress at the bottom of the PCC, psi		Stress at the top of the PCC, psi		Deflection, in.
	Transverse	Longitudinal	Transverse		

Table E4-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Part II: Examples

Figure E4-5: Transverse Stress at the Top of the PCC Slab, $\Delta T=-20^{\circ} \mathrm{F}$

Figure E4-6: Longitudinal Stress at the Top of the PCC Slab, $\Delta \mathrm{T}=-20{ }^{\circ} \mathrm{F}$

Part II: Examples

Figure E4-7: Transverse Stress at the Bottom of the PCC Slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Figure E4-8: Longitudinal Stress at the Bottom of the PCC Slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Deflections

Figure E4-9: Deflection of the PCC slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Figure E4-10: Transverse stress at the top of the PCC slab, $\Delta T=+20^{\circ} \mathrm{F}$

Figure E4-11: Longitudinal stress at the top of the PCC slab, $\Delta \mathrm{T}=+20^{\circ} \mathrm{F}$

Figure E4-12: Transverse stress at the bottom of the PCC slab, $\Delta \mathrm{T}=+20^{\circ} \mathrm{F}$

Figure E4-13: Longitudinal Stress at the Bottom of the PCC Slab, $\Delta T=+20{ }^{\circ} \mathrm{F}$

Figure E4-14: Deflection of the PCC Slab, $\Delta T=+20^{\circ} \mathrm{F}$

Figure E4-15: Relationship Between Stresses and Temperature Differentials

Example 5:
 Interior Loading with Thermal Gradients on a Single Slab

Problem Statement

Determine maximum deflection and stress at the bottom of the PCC slab for Westergaard's interior loading condition with temperature differentials, $\Delta \mathrm{T}$, of $-20,-10,0,+10,+20^{\circ} \mathrm{F}$.

Given

Concrete elastic modulus	$=$	4×10^{6}	psi
Concrete Poisson's ratio	$=$	0.15	
Slab thickness	$=$	10	in.
Slab dimension	$=$	144×180	in^{2}
Mesh size	$=$	12×12	in^{2} (medium)
k-value	$=$	$\mathrm{psi} / \mathrm{in}$.	
Tire contact area	$=$	in^{2}	
Wheel load	10,000	$\mathrm{lbs}^{\text {Coefficient of thermal exp., } \alpha}$	$=4.4 \times 10^{-6}$
Temperature differential, $\Delta \mathrm{T}$	$=$	$-20,-10,0,+10,+20$	${ }^{\circ} \mathrm{F} . / \mathrm{in} . /^{\circ} \mathrm{F}$

Problem Illustration

Figure E5-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 1.

Layers Module

Use this module from Example 1.

Subgrade Module

Use this module from Example 1.

Load Module

Use this module from Example 1.

Temperature Module

Use this module from Example 4.

Analysis options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 1 (Figure E1-7.)

Analysis Results

Table E5-1 summarizes the analysis results for all five temperature differentials. Stress and deflection contours from ISLAB2000 are also available in Figures E5-2 through E5-7. Figures E5-8 and E5-9 are the plots of relationship between stresses and temperature differentials and between deflections and temperature differentials, respectively.

$\Delta \mathrm{T},{ }^{\circ} \mathrm{F}$	Stress at the bottom of the PCC, psi		Deflection, in.
	Transverse	Longitudinal	
-20	91.7	41.1	0.02971
-10	113.5	77.5	0.01650
0	140.6	123.4	0.01480
10	168.2	169.8	0.01043
20	195.8	216.3	0.00607

Table E5-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E5-2: Transverse Stress at the Bottom of the PCC Slab, $\Delta T=-20{ }^{\circ} \mathrm{F}$

Figure E5-3: Longitudinal Stress at the Bottom of the PCC Slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Figure E5-4: Deflection of the PCC Slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Figure E5-5: Transverse Stress at the Bottom of the PCC Slab, $\Delta \mathrm{T}=+20^{\circ} \mathrm{F}$

Figure E5-6: Longitudinal Stress at the Bottom of the PCC Slab, $\Delta \mathrm{T}=+\mathbf{2 0}^{\circ} \mathrm{F}$

Figure E5-7: Deflection of the PCC Slab, $\Delta \mathrm{T}=+\mathbf{2 0}^{\circ} \mathrm{F}$

\longrightarrow Transverse stress at bottom of PCC \simeq Longitudinal stress at bottom of PCC

E5-8: Relationship Between Stresses and Temperature Differentials

E5-9: Relationship Between Deflections and Temperature Differentials

Example 6:

Edge Loading with Thermal Gradients on a Single Slab

Problem Statement

Determine maximum deflection and stress at the bottom of the PCC slab for Westergaard's edge loading condition with temperature differentials, $\Delta \mathrm{T}$, of $-20,-10,0,+10,+20^{\circ} \mathrm{F}$.

Given

Concrete elastic modulus	$=$	4×10^{6}	psi
Concrete Poisson's ratio	$=$	0.15	
Slab thickness	$=$	10	in.
Slab dimension	$=$	144×180	in^{2}
Mesh size	$=$	12×12	in^{2} (medium)
k-value	$=$	$\mathrm{psi} / \mathrm{in}$.	
Tire contact area	$=$	in^{2}	
Wheel load	$10,5 \times 15$	$\mathrm{lbs}^{\text {Coefficient of thermal exp., } \alpha}$	$=4.4 \times 10^{-6}$
Temperature differential, $\Delta \mathrm{T}$	$=$	$-20,-10,0,+10,+20$	${ }^{\circ} \mathrm{F} . / \mathrm{in} . /^{\circ} \mathrm{F}$

Problem Illustration

Figure E6-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 1.

Layers Module

Use this module from Example 1.

Subgrade Module

Use this module from Example 1.

Load Module

Use this module from Example 1.

Temperature Module

Use this module from Example 4.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 2 (Figure E2-3.)

Analysis Results

Table E6-1 summarizes the analysis results for all five temperature differentials. Stress and deflection contours from ISLAB2000 are also available in Figures E6-2 through E6-7. Figures E6-8 and E6-9 are the plots of relationship between stresses and temperature differentials and between deflections and temperature differentials, respectively.

$\Delta \mathrm{T},{ }^{\mathrm{o}} \mathrm{F}$	Stress at the bottom of the PCC, psi		Deflection, in.
	Transverse	Longitudinal	
-20	37.4	165.4	0.03000
-10	37.4	203.1	0.03130
0	37.4	245.5	0.03384
10	37.3	289.1	0.03685
20	37.3	332.1	0.03982

Table E6-1: Analysis results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Part II: Examples

Figure E6-2: Transverse Stress at the Bottom of the PCC Slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Figure E6-3: Longitudinal Stress at the Bottom of the PCC Slab, $\Delta T=-20^{\circ} \mathrm{F}$

Deflections

Figure E6-4: Deflection of the PCC slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Figure E6-5: Transverse Stress at the Bottom of the PCC Slab, $\Delta \mathrm{T}=+20^{\circ} \mathrm{F}$

Figure E6-6: Longitudinal Stress at the Bottom of the PCC Slab, $\Delta \mathrm{T}=+20^{\circ} \mathrm{F}$

Figure E6-7: Deflection of the PCC Slab, $\Delta \mathrm{T}=+20^{\circ} \mathrm{F}$

\longrightarrow Transverse stress at bottom of PCC \simeq Longitudinal stress at bottom of PCC

E6-8: Relationship Between Stresses and Temperature Differentials

E6-9: Relationship Between Deflections and Temperature Differentials

Example 7:

Corner Loading with Thermal Gradients on a Single Slab

Problem Statement

Determine maximum deflection and stress at the top of the PCC slab for Westergaard's corner loading condition with temperature differentials, $\Delta \mathrm{T}$, of $-20,-10,0,+10,+20^{\circ} \mathrm{F}$.

Given

Concrete elastic modulus	$=$	4×10^{6}	psi
Concrete Poisson's ratio	$=$	0.15	
Slab thickness	$=$	10	in.
Slab dimension	$=$	144×180	in^{2}
Mesh size	$=$	12×12	in^{2} (medium)
k-value	$=$	$\mathrm{psi} / \mathrm{in}$.	
Tire contact area	$=$	in^{2}	
Wheel load	10,000	$\mathrm{lbs}^{\text {Cof }}$	
Coefficient of thermal exp., α	$=$	4.4×10^{-6}	$\mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$
Temperature differential, $\Delta \mathrm{T}$	$=$	$-20,-10,0,+10,+20$	${ }^{\circ} \mathrm{F}$

Problem Illustration

Figure E7-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 1.

Layers Module

Use this module from Example 1.

Subgrade Module

Use this module from Example 1.

Load Module

Use this module from Example 1.

Temperature Module

Use this module from Example 4.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 2 (Figure E2-3.)

Analysis Results

Table E7-1 summarizes the analysis results for all five temperature differentials. Stress and deflection contours from ISLAB2000 are also available in Figures E7-2 through E7-5. Figures E7-6 and E7-7 are the plots of relationship between stresses and temperature differentials and between deflections and temperature differentials, respectively.

$\Delta \mathrm{T},{ }^{\circ} \mathrm{F}$	Corner stress, psi	Deflection, in.
-20	232.0	0.03923
-10	213.5	0.05201
0	195.5	0.06614
10	182.5	0.08050
20	174.3	0.09524

Table E7-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E7-2: Corner Stress at the Top of the PCC Slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Deflections

Figure E7-3: Deflection of the PCC Slab, $\Delta \mathrm{T}=-20^{\circ} \mathrm{F}$

Figure E7-4: Corner Stress at the Top of the PCC Slab, $\Delta T=+20^{\circ} \mathrm{F}$

Deflections

Figure E7-5: Deflection of the PCC Slab, $\Delta \mathrm{T}=+20^{\circ} \mathrm{F}$

E7-6: Relationship Between Stresses and Temperature Differentials

E7-7: Relationship Between Deflections and Temperature Differentials

Example 8:
 Single Axle Edge Loading on a Pavement System

Problem Statement

Determine maximum stresses at the bottom of the PCC slab for a pavement system and loading condition as illustrated in Figure E8-1.

Given

Concrete elastic modulus	$=$	4×10^{6}	psi
Concrete Poisson's ratio	$=$	0.15	
Slab thickness	$=$	10	in.
Base elastic modulus	$=$	3×10^{4}	psi
Base Poisson's ratio	$=$	0.35	
Base thickness	$=$	16	in.
Lane width	$=$	144	in.
Shoulder width	$=$	120	in.
Joint spacing	$=$	180	in.
Joint design	$=$	Dowel bars ϕ	12 in. c/c
AGG factor	$=$	1×10^{6}	psi
Mesh size	=	12×12	in ${ }^{2}$ (medium)
k-value	$=$	100	psi/in.
Load configuration	$=$	standard singl	
Axle weight	$=$	18	kips
Load location	$=$	edge loading	
Coefficient of thermal exp., α	$=$	5×10^{-6}	in./in. $/{ }^{\circ} \mathrm{F}$
Temperature differential, $\Delta \mathrm{T}$	$=$	none	${ }^{\circ} \mathrm{F}$

Problem Illustration:

Figure E8-1: Problem Illustration

Solution

Geometry Module

(see Figure E8-2)
Step 1: Click Geometry on the main panel to open the geometry module.
Step 2: Click Insert twice on the \mathbf{X}-direction side, and then enter 120 for the shoulder width and 144 for the lane width.

Step 3: Click Insert three times on the \mathbf{Y}-direction side and then enter 180 for the joint spacing.

Step 4: On the geometry panel, select Medium to set the mesh size to medium.
Step 5: Click Generate to generate the inputs to the input file, and then click $\mathbf{O K}$ to close the geometry panel.

Figure E8-2: Edit Inputs for the Geometry Module

Layers Module

(see Figures E8-3 and E8-4)
Step 1: Click Layers to open the layers panel.
Step 2: On the layers panel, type the inputs as identified in the problem statement for the PCC layer.

Step 3: Click Add Layer to open the add layer panel. Enter $\mathbf{2}$ in the Layer number to add field, and then click OK to close the add layer panel.

Step 4: On the layers panel, select Layer 2, and then type the inputs as identified in the problem statement for the base layer.

Step 5: Click OK to close the layers panel.

Figure E8-3: Edit Inputs for the Layers Module

Figure E8-4: Edit Inputs for the Layers Module (continued)

Subgrade Module

(see Figure E8-5)
Step 1: \quad Click Subgrade to open the subgrade panel.
Step 2: Enter the inputs as identified in the problem statement.
Step 3: Click OK to close the subgrade panel.

Figure E8-5: Edit Inputs for the Subgrade Module

Joints Module

(see Figures E8-6 through E8-9)
Step 1: \quad Click Joints to open the joints module.
Step 2: Under Joints in x-direction, select Specify joint parameters, select AGG
Interlock in the Joint type field, and then enter 1×10^{6} (1E6) in the AGG factor field.

Figure E8-6: Edit Inputs for the Joints Module

Step 3: Under Joints in y-direction, select Specify joint parameters, select Doweled in the Joint type field, and then click Edit Dowel Locations to open the dowel locations panel (see Figure E8-7.)

Figure E8-7: Edit Inputs for the Joints Module (continued)

Step 4: On the dowel locations panel, select the \mathbf{X}-Direction tab, and then click Add. Enter "Location1" in the ID field, and then double click on the locations 132, 144... 252. Leave all the locations in the shoulder (locations 12, 24...108) blank (see Figure E8-8). Click OK to close the dowel location panel.

Part II: Examples

Figure E8-8: Edit Inputs for the Joints Module (continued)

Step 5: \quad Select Dowel1 in the Dowel property ID field, select Location1 in the Dowel location ID field, and then click OK to close the joints panel (see Figure E8-9).

Figure E8-9: Edit Inputs for the Joints Module (continued)

Load Module

(see Figure E8-10 and E8-11)
Step 1: Click Load to open the load panel.
Step 2: On the load panel, click Axle Design to open the axle design panel (see Figure E8-10.) Enter "Single Axle" in the Axle Name field.

Step 3: Type the tire pressure in the Tire Pressure field. The tire pressure of the wheel load can be computed as shown below (for more detail, see standard configuration of single axle):

$$
\text { Tire Pressure }=\frac{\text { Wheel Load }}{\text { Contact Area }}=\frac{4,500 \mathrm{lbs}}{5 \mathrm{in} . \times 10 \mathrm{in} .}=90 \mathrm{psi}
$$

Step 4: Enter the tire width in the Tire Width field (5in. for this example).
Step 5: Enter wheel spacing information as shown in Figure E8-10.
Step 6: Select Bottom Left for the reference point position.
Step 7: Click OK to close the axle design panel.

Figure E8-10: Edit Inputs for the Load Module

Step 8: \quad On the load panel, click on Add to add an axle (see Figure E8-11).
Step 9: \quad Select Single Axle in the Axle Name field.

Step 10: Enter an X-location and a Y-location to locate the wheel load. The X- and Ylocation for an edge loading condition can be computed as shown below:

$$
\begin{aligned}
X-\text { location }= & \text { Shoulder width }+ \text { Distance dual wheel center to shoulder } \\
& - \text { Distance dual wheel center to reference point } \\
= & 120+20-\left(\frac{5}{2}+\frac{12}{2}\right)=131.5 \text { in } \\
Y-\text { location }= & \text { Joint spacing }+\frac{\text { Joint spacing }}{2}-\frac{\text { wheel load length }}{2} . \\
= & 180+\frac{180}{2}-\frac{10}{2}=265 \text { in }
\end{aligned}
$$

Step 11: Enter the load for the single axle ($18,000 \mathrm{lbs}$ for this example).
Step 12: \quad Click OK to close the load panel.

Figure E8-11: Edit Inputs for the Load Module (continued)

Temperature Module

Temperature module is not required for this problem.

Analysis Options Module

Use this module from Example 4.

The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E8-12.

Figure E8-12: Main Panel After the Completion of Inputs

Analysis Results

Maximum transverse stress at the bottom of the PCC slab $=72.1 \mathrm{psi}$ (see Figure E8-13)

Maximum longitudinal stress at the bottom of the PCC slab $=114.5 \mathrm{psi}$ (see Figure E8-14)

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also shown in Figures E8-13 through E8-15.

Part II: Examples

Figure E8-13: Transverse Stress at the Bottom of the PCC Slab

Figure E8-14: Longitudinal Stress at the Bottom of the PCC Slab

Figure E8-15: Deflection of the PCC Slab

Example 9:

Single Axle Edge Loading with Thermal Gradients

Problem Statement

Determine maximum stresses at the bottom of the PCC slab for the pavement system and loading condition in Example 8 considering temperature differentials, $\Delta \mathrm{T}$, of $0,+10,+20^{\circ} \mathrm{F}$.

Given

Temperature differential, $\Delta \mathrm{T}=0,+10,+20 \quad{ }^{\circ} \mathrm{F}$

Problem Illustration

Figure E9-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

(see Figures E9-2 and E9-3)
Step 1: Click Temperature to open the temperature panel.
Step 2: On the temperature module, select Perform Temperature Analysis and Batch.

Figure E9-2: Edit Inputs for the Temperature Module

Figure E9-3: Edit Inputs for the Temperature Module (continued)

Step 3: In the Difference field, enter the temperature differential of the first case $\left(0^{\circ} \mathrm{F}\right.$ for this problem).
Step 4: Click Edit Batch to open the Layers temperature distributions panel.
Step 5: On the Layer 1 tab of the layers temperature distributions panel, click Insert two times to add two more cases of temperature differential, and then, enter the other two temperature differentials as identified in the problem statement.

Step 6: On the Layer 2 tab of the layers temperature distributions panel, enter zero (0) in the other two temperature differentials across the base layer.

Step 7: Click OK to close the layers temperature distributions panel.
Step 8: Click OK at the bottom right of the layers temperature properties panel. The panel will disappear.

Analysis options module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

$\Delta \mathrm{T},{ }^{\circ} \mathrm{F}$	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
0	72.1	114.5
10	105.9	169.5
20	139.7	224.5

Table E9-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E9-4 through E9-6. Figure E9-10 illustrates relationship between maximum stresses and temperature differentials.

Figure E9-4: Transverse Stress at the Bottom of the PCC Slab

Part II: Examples

Figure E9-5: Longitudinal Stress at the Bottom of the PCC Slab

Figure E9-6: Deflection of the PCC Slab

E9-10: Relationship Between Stresses and Temperature Differentials

Example 10:

Single Axle Corner Loading with Thermal Gradients

Problem Statement

Determine maximum stresses at the top of the PCC slab for the pavement system in Example 8 but apply corner loading condition considering temperature differentials, $\Delta \mathrm{T}$, of $-20,-10$, and 0 ${ }^{\circ} \mathrm{F}$.

Given

Temperature differential, $\Delta \mathrm{T}=-20,-10,0 \quad{ }^{\circ} \mathrm{F}$

Problem Illustration

Figure E10-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module (see Figure E10-2)

Step 1: \quad Follow steps 1 through 7 from the Load Module in Example 8.
Step 2: On the load panel (see Figure E8-11), click Add to add an axle.
Step 3: Select Single Axle in the Axle Name field.
Step 4: Enter an X-location and Y-location to locate the wheel load. The X-location and Y-location for an edge loading condition can be computed as shown below:

$$
\begin{aligned}
X-\text { location }= & \text { Shoulder width }+ \text { Distance dual wheel center to shoulder } \\
& - \text { Distance dual wheel center to reference point } \\
= & 120+20-\left(\frac{5}{2}+\frac{12}{2}\right)=131.5 \text { in } \\
Y-\text { location }= & \text { Joint spacing } \\
= & 180
\end{aligned}
$$

Step 5: Enter the load for the single axle ($18,000 \mathrm{lbs}$ for this example).
Step 6: Click OK to close the load panel.

Figure E10-2: Edit Inputs for the Load Module

Temperature Module

(see Figures E9-2 and E9-3)
Step 1: Click Temperature to open the temperature properties panel.
Step 2: On the temperature properties panel, select the Perform Temperature Analysis and Batch check boxes.

Step 3: \quad Enter the temperature differential of the first case in the Difference field $\left(-20^{\circ} \mathrm{F}\right.$ for this example).

Step 4: Click Edit Batch to open the layers temperature distributions panel.
Step 5: On the Layer 1 tab of the layers temperature distributions panel, click Insert two times to add two more cases of temperature differential, and then type the other two temperature differentials as identified in the problem statement.

Figure E10-3: Edit Inputs for the temperature module

Figure E10-4: Edit Inputs for the Temperature Module (continued)

Step 6: On the Layer 2 tab of the layers temperature distributions panel, enter zero (0) in the other two temperature differentials across the base layer.

Step 7: Click OK to close the layers temperature distributions panel.
Step 8: Click OK to close the layers temperature properties panel.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E10-5.

Figure E10-5: Main Panel After the Completion of Inputs

Analysis Results

$\Delta \mathrm{T},{ }^{\circ} \mathrm{F}$	Stress at the top of the PCC, psi	
	Transverse	Longitudinal
-20	87.9	148.4
-10	63.2	95.2
0	38.9	47.5

Table E10-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E10-6 through E108. Figure E10-9 illustrates relationship between maximum stresses and temperature differentials.

Figure E10-6: Transverse Stress at the Top of the PCC Slab

Figure E10-7: Longitudinal Stress at the Top of the PCC Slab

Figure E10-8: Deflection of the PCC Slab

—Transverse stress at bottom of PCC \simeq Longitudinal stress at bottom of PCC

E10-9: Relationship Between Stresses and Temperature Differentials

Example 11:

Single Axle Edge Loading with Various PCC Edge Thicknesses

Problem Statement

Determine maximum stresses at the bottom of the PCC slab for the pavement system and loading condition in Example 8 considering PCC thickness $=6,8,10,12 \mathrm{in}$.

Given

$$
\text { PCC thickness } \quad=\quad 6,8,10,12 \quad \text { in. }
$$

Problem Illustration

Figure E11-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

(see Figures E11-2 and E11-3)
Step 1: Click Layers to open the layers panel.
Step 2: On the layers panel, enter the inputs as identified in the problem statement for the PCC layer.

Step 3: Click Add Layer to open the layer panel, enter $\mathbf{2}$ in the Layer number to add field, and then select OK.

Step 4: On the layers panel, select the Layer 2 tab, and then enter the inputs as identified in the problem statement for the base layer.

Step 5: On the layers panel, select the Layer 1 tab, select Batch, and then click Edit Batch to open the layer 1 properties panel (see Figure E11-2).
Step 6: On the layer 1 properties panel click Insert three times to add three additional cases, and then type the PCC thicknesses as identified in the problem statement. (see Figure E11-3)
Step 7: Click OK to close the layer 1 properties panel, and then click OK to close the layers panel.

Figure E11-2: Edit Inputs for the Layers Module

Part II: Examples

Figure E11-3: Edit Inputs for the Layers Module (continued)

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

This module is not required for this problem.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

PCC thickness, in.	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
6	151.8	199.3
8	102.3	148.0
10	72.1	114.5
12	52.8	90.9

Table E11-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E11-4 illustrates relationship between maximum stresses and PCC thickness.

Figure E11-4: Relationship Between Stresses and PCC Thickness

Example 12:

Single Axle Edge Loading with Various Base Thicknesses

Problem Statement

Determine maximum stresses at the bottom of the PCC slab for the pavement system and loading condition in Example 8 considering base thickness $=4,10,16,20,26$ in.

Given

$$
\text { Base thickness } \quad=\quad 4,10,16,20,26 \quad \text { in. }
$$

Problem Illustration

Figure E12-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

(see Figures E12-2 and E12-3)
Step 1: Click Layers to open the layers panel.
Step 2: On the layers panel, enter the inputs as identified in the problem statement for the PCC layer.

Step 3: Click Add Layer to open the layer panel, enter $\mathbf{2}$ in the Layer number to add field, and then click OK.

Step 4: On the layers panel, select the Layer 2 tab, and then type the inputs as identified in the problem statement for the base layer.

Step 5: \quad Select Batch and then click Edit Batch to open the layer 2 properties panel (see Figure E12-2).

Step 6: Click Insert three times to add three additional cases, and then enter the base thicknesses as identified in the problem statement (see Figure E12-3).
Step 7: Click $\mathbf{O K}$ to close the layer 2 properties panel, and then click $\mathbf{O K}$ to close the layers panel.

Figure E12-2: Edit Inputs for the Layers Module

Figure E12-3 Edit Inputs for the Layers Module (continued)

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

This module is not required for this problem.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

Base thickness, in.	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
4	74.4	117.4
10	73.9	116.7
16	72.1	114.5
20	70.0	111.8
26	65.3	105.7

Table E12-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E12-4 illustrates relationship between maximum stresses and base thickness.

—Transverse stress at bottom of PCC \simeq Longitudinal stress at bottom of PCC

Figure E12-4: Relationship Between Stresses and Temperature Differentials

Example 13:
 Single Axle Edge Loading with Various k-values

Problem Statement

Determine maximum stresses at the bottom of the PCC slab for the pavement system and loading condition in Example 8 considering modulus of subgrade reaction, k-value, of $30,65,100,150$, $200 \mathrm{psi} / \mathrm{in}$.

Given

k -value $\quad=\quad 30,65,100,150,200 \mathrm{psi} / \mathrm{in}$.

Problem Illustration

Figure E13-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

(see Figures E13-2 and E13-3)
Step 1: Click Layers to open the layers panel.
Step 2: On the layers panel, enter the first input as identified in the problem statement.
Step 3: On the layers panel, select Batch, and then click Edit Batch to open the subgrade properties panel (see Figure E13-3).

Step 4: On the subgrade properties panel, click Insert four times to add four additional cases, and then type the k -value for each case as identified in the problem statement.

Step 5: Click $\mathbf{O K}$ to close the subgrade properties panel, and then click $\mathbf{O K}$ to close the Subgrade panel.

Figure E13-2: Edit Inputs for the Subgrade Module

Figure E13-3: Edit Inputs for the Subgrade Module (continued)

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

This module is not required for this problem.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

k-value, psi/in.	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
30	77.6	146.6
65	74.5	126.3
100	72.1	114.5
150	69.4	103.7
200	67.2	96.5

Table E13-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E13-4 illustrates relationship between maximum stresses and modulus of subgrade reaction.

\longrightarrow Transverse stress at bottom of PCC \simeq Longitudinal stress at bottom of PCC

Figure E13-4: Relationship Between Stresses and Modulus of Subgrade Reaction

Example 14:

Single Axle Edge Loading with Various PCC Elastic Moduli

Problem Statement

Determine maximum stresses at the bottom of the PCC slab for the pavement system and loading condition in Example 8 considering PCC elastic modulus, $\mathrm{E}_{\mathrm{pcc}}$, of 3, 4, 5, $6 \times 10^{6} \mathrm{psi}$

Given

PCC elastic modulus, $\mathrm{E}_{\mathrm{pcc}}=3,4,5,6 \times 10^{6} \mathrm{psi}$

Problem Illustration

Figure E14-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

(see Figures E14-2 and E14-3)
Step 1: Click Layers to open the layers panel.
Step 2: On the layers panel, enter the inputs as identified in the problem statement for the PCC layer.

Step 3: Click Add Layer to open the add layer panel, enter $\mathbf{2}$ in the Layer number to add field, and then click OK to close the add layer panel and add the layer.

Step 4: On the layers panel, select the Layer 2 tab, and then type the inputs as identified in the problem statement for the base layer.

Step 5: On the layers panel, select the Layer 1 tab, select Batch, and then click Edit Batch to open the layer 1 properties panel (see Figure E14-2).
Step 6: On the layer 1 properties panel, click Insert three times to add three additional cases, and then enter the PCC elastic modulus as identified in the problem statement (see Figure E14-3).

Step 7: Click OK to close the layer 1 properties panel, and then click $\mathbf{O K}$ to close the layers panel.

Figure E14-2: Edit Inputs for the Layers Module

Figure E14-3: Edit Inputs for the Layers Module (continued)

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

This module is not required for this problem.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

$\mathrm{E}_{\mathrm{pcc}}, \times 10^{6} \mathrm{psi}$	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
3	69.5	105.8
4	72.1	114.5
5	73.9	121.2
6	75.1	126.7

Table E14-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E14-4 illustrates relationship between maximum stresses and PCC elastic modulus.

Figure E14-9: Relationship Between Stresses and PCC Elastic Modulus

Example 15:
 Single Axle Edge Loading with Various Base Types

Problem Statement

Determine maximum stresses at the bottom of the PCC slab for the pavement system and loading condition in Example 8 considering three different base types: dense-graded aggregate base (DAGB), permeable asphalt-treated base (PATB), lean concrete base (LCB)

Given

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{DAGB}}=3 \times 10^{4} \mathrm{psi} \\
& \mathrm{E}_{\mathrm{PATB}}=3 \times 10^{5} \mathrm{psi} \\
& \mathrm{E}_{\mathrm{LCB}}=2 \times 10^{6} \mathrm{psi} \\
& \mu_{\mathrm{DAGB}}=0.35 \\
& \mu_{\mathrm{PATB}}=0.35 \\
& \mu_{\mathrm{LCB}}=0.2
\end{aligned}
$$

Problem Illustration

Figure E15-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

(see Figures E15-2 and E15-3)
Step 1: Click Layers to open the layers panel.
Step 2: On the layers panel, enter the inputs as identified in the problem statement for the PCC layer.

Step 3: Click Add Layer to open the add layer panel, enter $\mathbf{2}$ in the Layer number to add field, and then click OK to close the add layer panel.

Step 4: On the layers panel, select the Layer 2 tab, and then enter the inputs as identified in the problem statement for the base layer.

Step 5: \quad Select Batch, and then click Edit Batch to open the layer 2 properties panel (see Figure E15-2).

Step 6: On the layer 2 properties panel, click Insert two times to add two additional cases, and then type the base elastic modulus and Poisson's ratio as identified in the problem statement (see Figure E15-3).

Step 7: Click $\mathbf{O K}$ to close the layer 2 properties panel, and then click $\mathbf{O K}$ to close the layers panel.

Figure E15-2: Edit Inputs for the Layers Module

Figure E15-3 Edit Inputs for the Layers Module (continued)

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

This module is not required for this problem.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

Base type	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
DAGB	72.1	114.5
PATB	56.0	93.6
LCB	25.4	48.1

Table E15-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E15-4 illustrates relationship between maximum stresses and base type.

E15-4: Relationship Between Stresses and Base Type

Example 16:
 Repeat Example 13 with a Thermal Gradient

Problem Statement

Repeat Example 13 but at the same time, apply temperature differential, $\Delta \mathrm{T}$, of $+20^{\circ} \mathrm{F}$.

Given

Modulus of subgrade reaction, k-value	$=$	$30,65,100,150,200$	$\mathrm{psi} / \mathrm{in}$.
Temperature differential, $\Delta \mathrm{T}$	$=$	+20	${ }^{\circ} \mathrm{F}$.

Problem Illustration

Figure E16-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 13.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

(see Figure E16-2)
Step 1: Click Temperature to open the temperature properties panel.
Step 2: \quad Select the Perform Temperature Analysis and the Batch check boxes.
Step 3: Enter the temperature differential of the first case in the Difference field $\left(20^{\circ} \mathrm{F}\right.$ for this problem).

Figure E16-2: Edit Inputs for the Temperature Module

Step 4: \quad Click $\mathbf{O K}$ to close the layers temperature properties panel.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

k-value, psi/in.	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
30	107.7	198.8
65	124.9	211.5
100	139.7	224.5
150	157.3	240.1
200	171.7	252.4

Table E16-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E16-3 illustrates relationship between maximum stresses and modulus of subgrade reaction.

Figure E16-3: Relationship between stresses and modulus of subgrade reaction

Example 17:
 Repeat Example 14 with a Thermal Gradient

Problem Statement

Repeat Example 14 but at the same time, apply temperature differential, $\Delta \mathrm{T}$, of $+20^{\circ} \mathrm{F}$.

Given

PCC elastic modulus, $\mathrm{E}_{\mathrm{pcc}}$	$=$	$3,4,5,6 \times 10^{6}$	psi
Temperature differential, $\Delta \mathrm{T}$	$=$	+20	${ }^{\circ} \mathrm{F}$.

Problem Illustration

Figure E17-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 14.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

Use this module from Example 16.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

$\mathrm{E}_{\mathrm{pcc}}, \times 10^{6} \mathrm{psi}$	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
3	131.6	203.0
4	139.7	224.5
5	145.2	240.7
6	149.2	253.5

Table E17-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E17-2 illustrates relationship between maximum stresses and PCC elastic modulus.

Figure E17-2: Relationship Between Stresses and PCC Elastic Modulus

Example 18:

Repeat Example 15 with a Thermal Gradient

Problem Statement

Repeat Example 15 but at the same time, apply temperature differential, $\Delta \mathrm{T}$, of $+20^{\circ} \mathrm{F}$.

Given

$\mathrm{E}_{\text {DAGB }}=3 \times 10^{4} \mathrm{psi}$
$\mathrm{E}_{\text {PATB }}=3 \times 10^{5} \mathrm{psi}$
$\mathrm{E}_{\mathrm{LCB}}=2 \times 10^{6} \mathrm{psi}$
$\mu_{\text {DAGB }}=0.35$
$\mu_{\text {PATB }}=0.35$
$\mu_{\text {LCB }}=0.2$
$\Delta \mathrm{~T}=+20^{\circ} \mathrm{F}$.

Problem Illustration

Figure E18-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 15.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

Use this module from Example 16.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

Base type	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
DAGB	139.7	224.5
PATB	157.5	223.7
LCB	194.0	223.9

Table E18-1: Analysis Results

NOTE
Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E18-3 illustrates relationship between maximum stresses and base type.

- Transverse stress at bottom of PCC Longitudinal stress at bottom of PCC

Figure E18-3: Relationship Between Stresses and Base Type

Example 19:
 Single Axle Edge Loading with Various Load Levels

Problem Statement

Repeat Example 8 but consider several axle weight levels for single axle: 10, 15, 18, 21, 25 kips

Given

Loading configuration	$=$	single axle
Axle weight	$=$	$10,15,18,21,25 \quad$ kips

Problem Illustration

Figure E19-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

(see Figures E19-2 and E19-3)
Step 1: Follow steps 1 through 10 of Example 8.
Step 2: Enter the load for the first case of single axle (10,000 lbs for this example).
Step 3: Select Batch and then click Edit Batch to open the batch load panel (see Figure E19-2).

Step 4: Click Add four times, and then enter the other four axle weights.
Step 5: Click OK to close the batch load panel, and then click OK to close the Load panel.

Part II: Examples

Figure E19-2: Edit Inputs for the Load Module

Figure E19-3: Edit Inputs for the Load Module (continued)

Temperature Module

This module is not required for this problem.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

Axle wt., kips	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
10	43.6	74.1
15	62.1	101.2
18	72.1	114.5
21	86.1	139.6
25	104.5	172.2

Table E19-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E19-4 illustrates relationship between maximum stresses and axle weight.

Figure E19-4: Relationship Between Stresses and Axle Weight

Example 20:
 Tandem Axle Edge Loading with Various Load Levels

Problem Statement

Repeat Example 8 but consider several axle weight levels for tandem axle: 21, 25, 32,40 kips
Given

Loading configuration	$=$	tandem axle	
Axle weight	$=$	$21,25,32,40 \quad$ kips	

Problem Illustration

Figure E20-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

(see Figures E20-2 through E20-4)
Step 1: Click Load to open the load panel.
Step 2: Click Axle Design to open the axle design panel (see Figure E20-2), and then enter Tandem Axle in the Axle Name field.

Step 3: Enter the tire pressure in the Tire Pressure field. The tire pressure of the wheel load can be computed as shown below (for more detail, see standard configuration of tandem axle):

$$
\text { Tire Pressure }=\frac{\text { Wheel Load }}{\text { Contact Area }}=\frac{4,000 \mathrm{lbs}}{5 \mathrm{in} . \times 10 \mathrm{in} .}=80 \mathrm{psi}
$$

Step 4: Enter the tire width in the Tire Width box (5in. for this example).
Step 5: Enter wheel spacing information as shown in Figure E20-2.
Step 6: Select Bottom Left for the reference point position.
Step 7: Click OK to close the axle design panel.
Step 8: On the load panel, click Add to add a load (see Figure E20-3).
Step 9: In the Axle Name field, select Tandem Axle.
Step 10: Enter X-location and Y-location information to locate the wheel load. X-location and Y-location for an edge loading condition can be computed as shown below:
$X-$ location $=$ Shoulder width + Distance dual wheel center to shoulder - Distance dual wheel center to reference point

$$
=120+20-\left(\frac{5}{2}+\frac{12}{2}\right)=131.5 \mathrm{in}
$$

$Y-$ location $=$ Joint spacing $+\frac{\text { Joint spacing }}{2}-\frac{\text { wheel load length }}{2}-\frac{\text { wheel spacing }}{2}$

$$
=180+\frac{180}{2}-\frac{10}{2}-\frac{42}{2}=244 \mathrm{in}
$$

Step 11: Enter the load for the first case of tandem axle ($21,000 \mathrm{lbs}$).
Step 12: Select Batch and then click Edit Batch to open the batch load panel (see Figure E20-4)

Step 13: Click Add three times to add three additional tandem axle cases, and then enter the other three axle weights.
Step 14: Click OK to close the batch load panel, and then click OK to close the load panel.

Figure E20-2: Edit Inputs for the Load Module

Figure E20-3: Edit Inputs for the Load Module (continued)

Figure E20-4: Edit Inputs for the Load Module (continued)

Temperature Module

This module is not required for this problem.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E20-5.

Figure E20-5: Main Panel After the Completion of Inputs

Analysis Results

Axle wt., kips	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
21	58.7	91.7
25	69.4	107.2
32	87.3	131.6
40	108.6	164.0

Table E20-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E20-6 through E208.Figure E20-9 illustrates relationship between maximum stresses and axle weight.

Figure E20-6: Transverse Stress at the Bottom of the PCC Slab, 32-kips Axle Weight

Part II: Examples

Figure E20-7: Longitudinal Stress at the Bottom of the PCC From ISLAB2000, 32-kips Axle Weight

Figure E20-8: Deflection of the PCC slab, 32-kips Axle Weight

Figure E20-9: Relationship Between Stresses and Axle Weight

Example 21:
 Tridem Axle Edge Loading with Various Load Levels

Problem Statement

Repeat Example 8 but consider several axle weight levels for tridem axle: 21, 25, 32, 40 kips.
Then, compare the results for 21 and 25 kips loading with the results from Examples 19 and 20.

Given

Loading configuration	$=$	tridem axle	
Axle weight	$=$	$21,25,32,40$	kips

Problem Illustration

Figure E21-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

(see Figures E21-2 through E21-4)
Step 1: Click Load to open the load panel.
Step 2: On the load panel, click Axle Design to open the axle design panel (see Figure E21-2), and then enter Tridem Axle in the Axle Name field.

Step 3: Enter the tire pressure in the Tire Pressure field. The tire pressure of the wheel load can be computed as shown below (for more detail, see standard configuration of tridem axle):

$$
\text { Tire Pressure }=\frac{\text { Wheel Load }}{\text { Contact Area }}=\frac{6,500 \mathrm{lbs}}{5 \mathrm{in} . \times 10 \mathrm{in.}}=65 \mathrm{psi}
$$

Step 4: Enter the tire width in the Tire Width box (5 in. for this example).
Step 5: Enter wheel spacing information as shown in Figure E21-2.
Step 6: Select Bottom Left for the reference point position.
Step 7: Click OK to close the axle design panel.
Step 8: On the load panel, click Add to add additional loads.
Step 9: In the Axle Name box, select Tridem Axle.
Step 10: Enter X-location and Y-location information to locate the wheel load. X-location and Y-location for edge loading condition can be computed as shown below:
$X-$ location $=$ Shoulder width + Distance dual wheel center to shoulder - Distance dual wheel center to reference point

$$
=120+20-\left(\frac{5}{2}+\frac{12}{2}\right)=131.5 \text { in }
$$

Y-location $=$ Joint spacing $+\frac{\text { Joint spacing }}{2}-\frac{\text { wheel load length }}{2}-$ wheel spacing
$=180+\frac{180}{2}-\frac{10}{2}-42=223 \mathrm{in}$

Step 11: Enter the load for the first case of tridem axle ($21,000 \mathrm{lbs}$).
Step 12: Select Batch, and then click Edit Batch (see Figure E21-3) to open the batch load panel (see Figure E21-4).
Step 13: Click Add three times to add three additional axles, and then enter the other three axle weights.

Step 14: Click OK to close the batch load panel, and then click OK to close the load panel.

Figure E21-2: Edit Inputs for the Load Module

Figure E21-3: Edit Inputs for the Load Module (continued)

Figure E21-4: Edit Inputs for the Load Module (continued)

Temperature Module

This module is not required for this problem.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E21-5.

Figure E21-5: Main Panel After the Completion of Inputs

Analysis Results

Axle wt., kips	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
21	44.1	57.4
25	51.9	66.5
39	77.6	99.9
45	90.8	113.1

Table E21-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E21-6 through E218. Figure E21-9 illustrates relationship between maximum stresses and axle weight. Figures E2110 and E21-11 illustrate the comparison of the stresses between single, tandem, and tridem axle at the same level of loading.

Figure E21-6: Transverse Stress at the Bottom of the PCC Slab, 32-kips Axle Weight

Figure E21-7: Longitudinal Stress at the Bottom of the PCC From ISLAB2000, 32-kips Axle Weight

Figure E21-8: Deflection of the PCC slab, 32-kips Axle Weight

Figure E21-9: Relationship Between Stresses and Axle Weight

Figure E21-10: Relationship Between Stresses and Axle Type, Axle Weight of 21 kips

Figure E21-11: Relationship Between Stresses and Axle Type, Axle Weight of 25 kips

Example 22:

Single Axle Edge Loading with Various CTE Values

Problem Statement

Repeat Example 8 but consider several PCC coefficient of thermal expansion, $\boldsymbol{\alpha}_{\mathrm{pc}}$, of 3, 5, 7, $9 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$ and at the same time, apply temperature differential, $\Delta \mathrm{T}$, of $+20^{\circ} \mathrm{F}$. Then compare the results with the results from Example 9 by plotting a graph using the product $\alpha . \Delta \mathrm{T}$ for X -axis.

Given

PCC coefficient of thermal expansion, α_{pcc}	$=$	$3,5,7,9 \times 10^{-6} \mathrm{in} . / \mathrm{in} . /{ }^{\circ} \mathrm{F}$
Temperature differential, $\Delta \mathrm{T}$	$=+20$	${ }^{\circ} \mathrm{F}$.

Problem Illustration

Figure E22-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Step 1: Follow steps 1 through 5 of this module in Example 14.
Step 2: Click Insert three times to add three additional cases, and then enter the PCC coefficient of thermal expansion as identified in the problem statement (see Figure E22-2).

Step 3: Click $\mathbf{O K}$ to close the layer 1 properties panel, and then click $\mathbf{O K}$ to close the layers panel.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

Use this module from Example 16.

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

$\alpha, \times 10^{-6}$ in./in./ ${ }^{\circ} \mathrm{F}$	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
5	112.6	180.5
7	139.7	224.5
9	166.7	268.6

Table E22-1: Analysis Results

Part II: Examples

$\alpha, \times 10^{-6} \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$	$\Delta \mathrm{T},{ }^{\circ} \mathrm{F}$	$\alpha . \Delta \mathrm{T}, \times 10^{-6}$	Stress at the bottom of the PCC, psi	
From Example 9		Transverse		Longitudinal
5	0	0	72.1	114.5
5	10	50	105.9	169.5
5	20	100	139.7	224.5
From Example 22				
3	20	100	112.6	180.5
5	20	140	139.7	224.5
7	20	180	166.7	268.6
9	20		193.5	313.3

Table E22-2: Comparison of Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E22-3 illustrates relationship between maximum stresses and PCC coefficient of thermal expansion. Figure E22-4 illustrates relationship between maximum stresses and the product $\alpha . \Delta T$ from this example and Example 9.

Figure E22-3: Relationship Between Stresses and PCC Coefficient of Thermal Expansion

Figure E22-4: Comparison of the Results from Example 9 and Example 22

Example 23:

Single Axle Wander

Problem Statement

Analyze three pavement systems: 1) 12-ft lane width with tied PCC shoulder (Example 8), 2) 12ft lane width with untied AC shoulder, 3) 12 -ft lane width with untied AC shoulder. Also consider lateral wanders of axle loading from shoulder toward the lane center: $-12,-6,0,6,12,18,30,60$ in. (distance from shoulder to outer edge of wheel load)

Given

Lateral support condition $\quad=\quad$ PCC shoulder, AC shoulder, widened lane
Lateral wanders $\quad=\quad-12,-6,0,6,12,18,30,60 \quad$ in.

Problem Illustration

Figure E23-1: Problem Illustration

Solution

Part 1: 12-ft lane width with tied PCC shoulder

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

(see Figure E23-2)
Step 1: \quad Follow steps 1 through 9 of this module in Example 8.
Step 2: Enter X-location and Y-location information to locate the wheel load. X-location and Y-location for an edge loading condition can be computed as shown below:

$$
\begin{aligned}
X \text {-location } & =\text { Shoulder } \text { width }++ \text { Lateral placement } \\
& =120++ \text { Lateral placement }
\end{aligned}
$$

X-location inputs for all eleven lateral placements considered in this problem are summarized in Table E23-1.

$$
\begin{aligned}
Y-\text { location } & =\text { Joint spacing }+\frac{\text { Joint spacing }}{2}-\frac{\text { wheel load length }}{2} . \\
& =180+\frac{180}{2}-\frac{10}{2}=265 \mathrm{in}
\end{aligned}
$$

Step 3: Type the load for the single axle ($18,000 \mathrm{lbs}$ for this example).
Step 4: \quad Click $\mathbf{O K}$ to close the load panel.

Temperature Module

This module is not required for this problem.

Analysis Options Module

This module is not required for this problem.
At this stage, all the steps for inputs are completed for the first of 11 lateral placements. If all the inputs are correct, the main panel should display the pavement structure, loading condition, and meshing as shown in Figure E23-3. For the next lateral placement, apply the X-location as the calculated value to be used shown in Table E23-1.

Lateral placement (in.)	X-Location input
-12	108
-6	114
0	120
6	126
12	132
18	138
30	150
48	168

Table E23-1: X-location Input for each Lateral Placement

Figure E23-2: Edit Inputs for the Load Module (12-ft lane width)

Figure E23-3: Main Panel After the Completion of Inputs (12-ft lane width with PCC shoulder)

Part 2: 12-ft lane width with untied AC shoulder

Geometry Module

Use this module from Example 8.

Area Module

(see Figure E23-4)
Step 1: Click Area to open the area panel, click Add to add an area, and then enter Shoulder in the Area Name field.

Step 2: Select Coordinates in the Coordinate Type box.
Step 3: Enter the coordinate for the shoulder area as identified in the problem illustration.
Step 4: Click OK to close the area definition panel.

Figure E23-4: Edit Inputs for the Area Module

Layers Module

(see Figures E23-5 and E23-6)
Step 1: \quad Follow steps 1 through 4 of this module in Example 8.
Step 2: On Layer 1, select Exception, and then click Edit Exception to open the exception properties for layer 1 panel.
Step 3: Click Insert to add an additional area, and then select Shoulder in the Area Name box.

Step 4: Enter the material properties for AC shoulder as shown in Figure E23-6.
Step 5: Click OK to close the layers panel.

Part II: Examples

Figure E23-5: Edit Inputs for the Layers Module

Figure E23-6: Edit Inputs for the Layers Module (continued)

Subgrade Module

Use this module from Example 8.

Joints Module

(see Figure E23-7)
Step 1: Click Joints to open the joints panel.
Step 2: In the Joints in x-direction section, select Specify joint parameters, select
AGG Interlock in the Joint type field, and then enter the aggregate factor in the AGG factor field (assumed $1,000 \mathrm{psi}$.)

Step 3: Follow steps 3 through 5 of this module in Example 8.

Load Module

Use this module from 12-ft lane width with PCC shoulder in this problem.

Temperature Module

This module is not required for this problem.

Analysis Options Module

This module is not required for this problem.
At this stage, all the steps for inputs are completed for the first of 11 lateral placements. If all the inputs are correct, the main panel should display the pavement structure, loading condition, and meshing as shown in Figure E23-8. For the next lateral placement, apply the X-location as the calculated value to be used shown in Table E23-1.

Figure E23-7: Edit Inputs for the Joints Module (14-ft lane width with AC shoulder)

Figure E23-8: Main Panel After the Completion of Inputs (12-ft lane width with AC shoulder)

Part 3: 14-ft lane width with untied AC shoulder

Geometry module

(see Figure E23-9)
Step 1: Click Geometry to open the geometry panel.
Step 2: On the geometry panel, click Insert two times on the X-direction side to add additional slabs, and then enter the shoulder width (120 inches) and the lane width (168 inches).

Step 3: Follow steps 3 through 5 of this module in Example 8.

Figure E23-9: Edit Inputs for the Geometry Module

Area Module

Use this module from 12-ft lane width with ACC shoulder in this problem.

Layers Module

Use this module from 12-ft lane width with ACC shoulder in this problem.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from 12-ft lane width with ACC shoulder in this problem.

Load Module

(see Figure E23-10)
Step 1: Follow steps 1 through 9 of this module in Example 8.
Step 2: Enter X-location and Y-location information to locate the wheel load. X-location and Y -location for an edge loading condition can be computed as shown below:

$$
\begin{aligned}
X \text {-location } & =\text { Shoulder } \text { width }+ \text { Lateral placement } \\
& =120+\text { Lateral placement }
\end{aligned}
$$

X-location inputs for all eleven lateral placements considered in this problem are also summarized in Table E23-1.

$$
\begin{aligned}
Y-\text { location } & =\text { Joint spacing }+\frac{\text { Joint spacing }}{2}-\frac{\text { wheel load length }}{2} . \\
& =180+\frac{180}{2}-\frac{10}{2}=265 \mathrm{in}
\end{aligned}
$$

Step 3: Enter the load for the single axle ($18,000 \mathrm{lbs}$ for this example).
Step 4: Click OK to close the load panel.

Figure E23-10: Edit Inputs for the Load Module

Temperature Module

This module is not required for this problem.

Analysis Options Module

This module is not required for this problem.
At this stage, all the steps for inputs are completed for the first of 11 lateral placements. If all the inputs are correct, the main panel should display the pavement structure, loading condition, and meshing as shown in Figure E23-11. For the next lateral placement, apply the X-location as the calculated value to be used shown in Table E23-1.

Figure E23-11: Main Panel After the Completion of Inputs (14-ft lane width with AC shoulder)

Analysis Results

Table E23-2 summarizes maximum for all lateral placements and lateral support conditions. The relationship between maximum stress and lateral placement for each lateral support condition is illustrated in Figures E23-12 and E23-13 for transverse and longitudinal stress at the bottom of the PCC slab respectively.

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Part II: Examples

Lateral placement (in.)	Lateral support condition		
	12-ft lane width with AC shoulder	14-ft lane width with AC shoulder	
Transverse stress at bottom of PCC			
-12	70.6	65.9	65.2
-6	71.4	68.3	68.6
0	73.9	61.8	62.0
6	75.3	64.8	66.9
12	74.6	67.9	72.4
18	73.4	67.7	74.9
30	77.5	67.8	76.8
48	65.2	61.4	76.3
Longitudinal stress at bottom of PCC			
-12	122.0	155.4	154.6
-6	119.6	131.1	130.2
0	115.5	206.7	205.6
6	115.0	165.7	164.7
12	115.5	143.5	142.3
18	119.7	135.3	133.8
30	127.2	130.1	123.1
48	165.8	167.2	123.6

Table E23-2: Analysis Results

Figure E23-12: Relationship between transverse stress at the bottom of the PCC slab and lateral placement for each lateral support condition

- - - - 12-ft lane width with PCC shoulder \longrightarrow - $12-\mathrm{ft}$ lane width with AC shoulder $\longrightarrow 14-\mathrm{ft}$ lane width with AC shoulder

Figure E23-13: Relationship between longitudinal stress at the bottom of the PCC slab and lateral placement for each lateral support condition

Example 24:

Single Axle with Various Joint Spacing

Problem Statement

Repeat Example 8 but consider joint spacing of 315 and 492 in. Then, compare the results with the results from Example 8.

Given

$$
\text { Joint spacing } \quad=\quad 315,492 \quad \text { in. }
$$

Problem Illustration

Figure E24-1: Problem Illustration

Solution

Part 1: 315-in. joint spacing

Geometry Module
(see Figure E24-2)
Step 1: \quad Follow steps 1 and 2 of this module in Example 8.
Step 2: Click Insert three times on the \mathbf{Y}-direction side to add additional slabs, and then type the joint spacing (315 inches for this example).
Step 3: Follow steps 4 and 5 of this module in Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

(see Figure E24-3)
Step 1: \quad Follow steps 1 through 9 of this module in Example 8.
Step2: Enter X-location and Y-location to locate the wheel load. X-location and Ylocation for edge loading condition can be computed as shown below:

$$
\begin{aligned}
X-\text { location }= & \text { Shoulder width }+ \text { Distance dual wheel center to shoulder } \\
& - \text { Distance dual wheel center to reference point } \\
= & 120+20-\left(\frac{5}{2}+\frac{12}{2}\right)=131.5 \text { in } \\
Y-\text { location }= & \text { Joint spacing }+\frac{\text { Joint spacing }}{2}-\frac{\text { wheel load length }}{2} . \\
= & 315+\frac{315}{2}-\frac{10}{2}=467.5 \text { in }
\end{aligned}
$$

Step 3: Follow steps 11 and 12 of this module of Example 8.

Figure E24-2: Edit Inputs for the Geometry Module

Figure E24-3: Edit Inputs for the Load Module

Temperature Module

This module is not required for this problem.

Analysis Options Module

This module is not required for this problem.
The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E24-4.

Figure E24-4: Main Panel After the Completion of Inputs (315-in. joint spacing)

Part 2: 492-in. joint spacing

Geometry Module

(see Figure E24-5)
Step 1: \quad Follow steps 1 and 2 of this module in Example 8.
Step 2: Click Insert three times on the \mathbf{Y}-direction side to add three additional slabs, and then enter the joint spacing (492 inches for this example).

Step 3: Follow steps 4 and 5 of this module in Example 8.

Figure E24-5: Edit Inputs for the Geometry Module

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

(see Figure E24-6)

Step 1: Follow steps 1 through 9 of this module in Example 8.
Step2: Type X-location and Y-location to locate the wheel load. X-location and Y-location for edge loading condition can be computed as shown below:

$$
\begin{aligned}
X-\text { location }= & \text { Shoulder width }+ \text { Distance dual wheel center to shoulder } \\
& - \text { Distance dual wheel center to reference point }
\end{aligned}
$$

$$
\begin{aligned}
& =120+20-\left(\frac{5}{2}+\frac{12}{2}\right)=131.5 \mathrm{in} \\
Y-\text { location } & =\text { Joint spacing }+\frac{\text { Joint spacing }}{2}-\frac{\text { wheel load length }}{2} . \\
& =315+\frac{315}{2}-\frac{10}{2}=467.5 \mathrm{in}
\end{aligned}
$$

Step 3: Follow steps 11 and 12 of this module in Example 8.

Figure E24-6: Edit Inputs for the Load Module

Temperature Module

This module is not required for this problem.

Analysis Options Module

This module is not required for this problem.

The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E24-7.

Figure E24-7: Main Panel After the Completion of Inputs (492-in. joint spacing)

Analysis Results

Joint spacing, in.	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
180	72.1	114.5
315	72.1	107.2
492	72.1	106.7

Table E24-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E24-8 through E2413. Figure E24-14 illustrates relationship between maximum stresses and joint spacing.

Figure E24-8: Transverse Stress at the Bottom of the PCC Slab (315-ft joint spacing)

Figure E24-9: Longitudinal Stress at the Bottom of the PCC Slab (315-ft joint spacing)

Figure E24-10: Deflection of the PCC Slab (315-ft joint spacing)

Figure E24-11: Transverse Stress at the Bottom of the PCC Slab (492-ft joint spacing)

Figure E24-12: Longitudinal Stress at the Bottom of the PCC Slab (492-ft joint spacing)

Figure E24-13: Deflection of the PCC Slab (492-ft joint spacing)

\longrightarrow Transverse stress at bottom of PCC —— Longitudinal stress at bottom of PCC

Figure E24-14: Relationship Between Maximum Stresses and Joint Spacing

Example 25:

Repeat Example 24 with a Thermal Gradient

Problem Statement
Repeat Example 24 but also apply temperature differential, $\Delta \mathrm{T}$, of $+20^{\circ} \mathrm{F}$.

Given

Joint spacing	$=$	315,492	in.
Temperature differential, $\Delta \mathrm{T}$	$=$	+20	${ }^{\circ} \mathrm{F}$.

Problem Illustration

Figure E25-1: Problem Illustration

Solution

PART 1: 315-in. joint spacing

Geometry Module

Use this module from 315 -ft joint spacing in Example 24.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from 315-ft joint spacing in Example 24.

Temperature Module

This module is not required for this problem.

Analysis Options Module

This module is not required for this problem.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 24, Figure E24-4.

PART 2: 492-in. joint spacing

Geometry Module

Use this module from 492-ft joint spacing in Example 24.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from 492-ft joint spacing in Example 24.

Temperature Module

This module is not required for this problem.

Analysis Options Module

This module is not required for this problem.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 24, Figure E24-7.

Analysis Results

Joint spacing, in.	Stress at the bottom of the PCC, psi	
	Transverse	Longitudinal
180	139.7	224.5
315	145.0	325.8
492	140.2	326.2

Table E25-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E25-2 through E25-7. Figure E25-8 illustrates relationship between maximum stresses and joint spacing.

Figure E25-2: Transverse Stress at the Bottom of the PCC Slab (315-ft joint spacing)

Figure E25-3: Longitudinal Stress at the Bottom of the PCC Slab (315-ft joint spacing)

Figure E25-4: Deflection of the PCC Slab (315-ft joint spacing)

Figure E25-5: Transverse Stress at the Bottom of the PCC Slab (492-ft joint spacing)

Figure E25-6: Longitudinal Stress at the Bottom of the PCC Slab (492-ft joint spacing)

Figure E25-7: Deflection of the PCC Slab (492-ft joint spacing)

Figure E25-8: Relationship Between Maximum Stresses and Joint Spacing

Example 26:
 Full-depth PCC Patch, 4 Feet Wide

Problem Statement

Analyze the pavement system in Example 8, but also consider a 4-ft wide full-depth PCC patch in the middle of the lane.

Given

Patch elastic modulus	$=$	3×10^{6}	psi
Patch Poisson's ratio	$=$	0.15	
Patch coefficient of thermal exp	$=$	7×10^{-6}	$\mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}$

Problem Illustration

Figure E26-1: Problem Illustration

Solution

Geometry Module

(see Figure E26-2)
Step 1: Click Geometry to open the geometry panel.
Step 2: On the geometry panel, click Insert two times on the \mathbf{X}-direction side to insert two additional slabs, and then enter the shoulder width (120 inches) and the lane width (144 inches) in the Length field for each slab.

Step 3: Click Insert five times on the \mathbf{Y}-direction side to insert five additional slabs, and then enter the 180, 66, 48, 66, and 180 in the Length field for each slab.

Step 4: On the right side of the geometry panel, select Medium to set the mesh size.
Step 5: Click Generate to generate the inputs to the input file, and then click $\mathbf{O K}$ to close the geometry panel.

Figure E26-2: Edit Inputs for the Geometry Module

Area Module

(see Figure E26-3)
Step 1: Click Area to open the area definition panel, and then click Add and enter Patch in the Area Name field.

Step 2: \quad Select Coordinates in the Coordinate Type field.
Step 3: Enter the coordinate for the shoulder area as identified in the problem illustration.
Step 4: Click OK to close the area definition panel.

Figure E26-3: Edit Inputs for the Area Module

Layers Module

(see Figure E26-4)
Step 1: \quad Follow steps 1 through 4 of this module in Example 8.
Step 2: On Layer 1, select Exception, and then click Edit Exception to open the exception properties panel for layer 1.
Step 3: Click Insert, and then select Patch in the Area Name field.
Step 4: Enter the material properties for patch material as shown in Figure E26-4.
Step 5: Click OK to close the layers panel.

Figure E26-4: Edit Inputs for the Layer Module

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

Temperature module is not required for this problem.

Analysis Options Module

This module is not required for this problem.
The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E26-5.

Figure E26-5: Main Panel After the Completion of Inputs

Analysis Results

Maximum transverse stress at the bottom of the PCC slab $=87.6$ psi (see Figure E26-6)
Maximum longitudinal stress at the bottom of the PCC slab $=91.5$ psi (see Figure E26-7)

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E26-6 through E26-8.

Figure E26-6: Transverse Stress at the Bottom of the PCC Slab

Figure E26-7: Longitudinal Stress at the Bottom of the PCC Slab

Figure E26-8: Deflection of the PCC Slab

Example 27:
 Full Depth PCC Patch. 6 Feet Wide

Problem Statement

Analyze a pavement system with a full-depth PCC patch similar to Example 26, but consider 315in. joint spacing and a 6 -ft wide full-depth PCC patch in the middle of the lane.

Given

Patch elastic modulus	$=$	3×10^{6}	psi
Patch Poisson's ratio	$=$	0.15	
Patch coefficient of thermal exp	$=$	7×10^{-6}	in. $/ \mathrm{in} . /^{\circ} \mathrm{F}$

Problem Illustration

Figure E27-1: Problem Illustration

Solution

Geometry Module

(see Figure E27-2)
Step 1: \quad Click Geometry to open the geometry panel.
Step 2: On the geometry panel, click Insert two times on the X-direction side to add two additional slabs, and then enter the shoulder width (120 inches) and the lane width (144 inches) in the length field for each slab.

Step 3: Click Insert five times on the \mathbf{Y}-direction side to add five additional slabs, and then enter 315, 121.5, 72, 121.5, 315 in the Length field for each slab.

Step 4: On right hand side of the geometry panel, select Medium to set the mesh size.
Step 5: Click Generate to generate the inputs to the input file, and then click $\mathbf{O K}$ to close the geometry panel.

Figure E27-2: Edit Inputs for the Geometry Module

Area Module

(see Figure E27-3)
Step 1: \quad Click Area to open the area definition panel, and then click Add and enter Patch in the Area Name field.

Step 2: \quad Select Coordinates in the Coordinate type field.
Step 3: Enter the coordinate for the shoulder area as identified in the problem illustration.
Step 4: Click OK to close the area definition panel.

Figure E27-3: Edit Inputs for the Area Module

Layers Module

(see Figure E27-4)
Step 1: Follow steps 1 through 4 of this module in Example 8.
Step 2: On Layer 1, select Exception and click Edit Exception to open the exception properties panel for layer 1.

Step 3: Click Insert, and then select Patch in the Are name field.
Step 4: Enter the material properties for patch material as shown in Figure E27-4.
Step 5: Click OK to close the layers panel.

Figure E27-4: Edit Inputs for the Layer Module

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

Temperature module is not required for this problem.

Analysis Options Module

This module is not required for this problem.
The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E27-5.

Figure E27-5: Main Panel After the Completion of Inputs

Analysis Results

Maximum transverse stress at the bottom of the PCC slab $=83.7 \mathrm{psi}$ (see Figure E27-6)
Maximum longitudinal stress at the bottom of the PCC slab $=114.3$ psi $($ see Figure E27-7)

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E27-6 through E27-8.

Figure E27-6: Transverse Stress at the Bottom of the PCC Slab

Figure E27-7: Longitudinal Stress at the Bottom of the PCC Slab

Figure E27-8: Deflection of the PCC Slab

Example 28:
 Full-depth AC Patch

Problem Statement

Analyze the pavement system in Example 8, but also consider a 4-ft wide full-depth AC patch at the middle of the lane.

Given

Patch elastic modulus	$=$	3×10^{5}	psi
Patch Poisson's ratio	$=$	0.35	
Patch coefficient of thermal exp	$=$	2×10^{-6}	in. $/ \mathrm{in} . /^{\circ} \mathrm{F}$
Problem Illustration			

Figure E28-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 26.

Area Module

Use this module from Example 26.

Layers Module

(see Figure E28-2)
Step 1: \quad Follow steps 1 through 4 of this module in Example 8.
Step 2: On Layer 1, select Exception, and then click Edit Exception to open the exception properties panel for layer 1.

Step 3: Click Insert, and then select Patch in the area Name field.
Step 4: Enter the material properties for patch material as shown in Figure E28-2.
Step 5: \quad Click $\mathbf{O K}$ to close the layers panel.

Figure E28-2: Edit Inputs for the Layer Module

Figure E28-3: Edit Inputs for the Joints Module

Subgrade Module

Use this module from Example 8.

Joints Module

(see Figure E28-3)
Step 1: Follow steps 1 through 5 of this module in Example 8, but do not click on OK to close the joints panel.

Step 2: \quad Select Exceptions and click Edit Exception to open the exception panel for case 1.
Step 3: Click Insert two times to add two additional joints. For No. 1, select Joint 2, AGG Interlock, and then enter $\mathbf{1 0 0 0}$ for the AGG Factor. Do the same for No. 2 for Joint 3.

Load Module

Use this module from Example 8.

Temperature Module

Temperature module is not required for this problem.

Analysis Options Module

This module is not required for this problem.

The main panel should display the pavement structure, loading condition, and meshing as shown in Example 26, Figure E26-5.

Analysis Results

Maximum transverse stress at the bottom of the PCC slab $=64.5 \mathrm{psi}$ (see Figure E28-4)
Maximum longitudinal stress at the bottom of the PCC slab $=64.8$ psi (see Figure E28-5)

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Stress and deflection contours from ISLAB2000 are also available in Figures E28-4 through E28-5.

Figure E28-4: Transverse Stress at the Bottom of the PCC Slab

Figure E28-5: Longitudinal Stress at the Bottom of the PCC Slab

Figure E28-6: Deflection of the PCC Slab

Example 29:

Void at Slab Corner

Problem Statement

Determine maximum tresses at the top of the PCC slab for the pavement system in Example 8, but also consider void potential at the slab corner as illustrated in Figure E29-1. Then, compare the results with the results from no void potential case, as in Example 10.

Given

Void potential area $=2 \times 2 \quad \mathrm{ft}^{2}$

Problem Illustration

Figure E29-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Area Module

(see Figure E29-2)
Step 1: Click Area to open the area module, click on Add to open the area definition panel, and then enter Void in the Area Name field.

Step 2: Select Coordinates in the Coordinate type field.
Step 3: Enter the coordinate for the shoulder area as identified in the problem illustration.
Step 4: Click OK to close the area definition panel.

Figure E29-2: Edit Inputs for the Area Module

Layers Module

Use this module from Example 8.

Subgrade Module

(see Figure E29-3)
Step 1: Click Layers to open the layers panel.
Step 2: On the layers panel, enter the inputs as identified in the problem statement.
Step 3: Select Exceptions, click on Edit Exception to open the exceptions properties for subgrade panel, and then add the area Void and type 0.01 for k -value. Click OK to close the exceptions properties for subgrade panel

Figure E29-3: Edit Inputs for the Subgrade Module

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 10.

Temperature Module

This module is not required for the problem.

Analysis Options Module

This module is not required for this problem.

The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E29-4.

Figure E29-4: Main Panel After the Completion of Inputs

Analysis Results

Stress type	Without void potential (Example 10)	With void potential (Example 29)
Corner deflection	0.03512	0.03935
Transverse stress at top of PCC	38.9	52.1
Longitudinal stress at top of PCC	47.5	51.8

Table E29-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

ISLAB2000 stress and deflection contours are also available in Figures E29-5 through E29-7. Comparison of the results between with and without void potential is shown in Figure E29-8.

Figure E29-5: Transverse Stress at the Top of the PCC Slab

Figure E29-6: Longitudinal Stress at the Top of the PCC Slab

Figure E29-7: Deflection of the PCC Slab

Figure E29-8: Comparison of the Results Between with and Without Void Potential

Example 30:
 Three-layer System

Problem Statement

Analyze the pavement system in Example 8, but consider a three-layer system (PCC, DAGB, sand subbase) instead of the two-layer system. Then, compare the analysis results with the results in Example 8.

Given

Sand sub base thickness $\quad=\quad 20$ in.

Problem Illustration

Figure E30-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

(see Figures E30-2)
Step 1: Follow steps 1 through 4 of this module in Example 8.
Step 2: Add a third layer, and then enter the layer properties for sand subbase as illustrated in Figure E30-2.

Step 3: Click OK to close the layers panel.

Figure E30-2: Edit Inputs for the Layers Module

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.

Load Module

Use this module from Example 8.

Temperature Module

This module is not required for this problem.

The main panel should display the pavement structure, loading condition, and meshing as shown in Figure E30-3.

Figure E30-3: Main Panel After Completion of Inputs

Analysis Results

Pavement system	Transverse stress at bottom of PCC	Longitudinal stress at bottom of PCC
Two-layer (Example 8)	72.1	114.5
Three-layer (Example 30)	70.3	112.1

Table E30-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E30-4 illustrates relationship between maximum stresses and pavement system.

- Two-layer (Example 8) $\boldsymbol{\square}$ Three-layer (Example 30)

E30-4: Relationship Between Stresses and Pavement System

Example 31:
 Non-linear Temperature Profiles

Problem Statement

Analyze the pavement system in Example 9, but consider the two non-linear temperature profiles identified in Figure E31-1 instead of a linear temperature differential of $+20^{\circ} \mathrm{F}$. Then, compare the analysis results with the results in Example 9.

Problem Illustration

Figure E31-1: Problem Illustration

Solution

Geometry Module

Use this module from Example 8.

Layers Module

Use this module from Example 8.

Subgrade Module

Use this module from Example 8.

Joints Module

Use this module from Example 8.
Load Module
Use this module from Example 8.

Temperature Module

(see Figures E31-2 and E31-3)
Step 1: \quad Click Temperature to open the temperature properties panel.
Step 2: \quad Select the Perform Temperature Analysis and the Batch check boxes.
Step 3: Select Nonlinear in the Type field for layer 1, select Batch, and then click Edit Batch to open the layers temperature distributions panel.

Step 4: On Layer 1, enter the identified layer temperatures for the two profiles as shown in Figure E31-2.

Step 5: On Layer 2, enter zero in the other temperature differential across the base layer (see Figure E31-3.)

Step 6: Click OK to close the layers temperature distributions panel.
Step 7: Click OK to close the layers temperature properties panel.

Figure 30-2: Edit Inputs for the Temperature Module

Figure E31-3: Edit Inputs for the Temperature Module (continued)

Analysis Options Module

Use this module from Example 4.
The main panel should display the pavement structure, loading condition, and meshing as shown in Example 8, Figure E8-12.

Analysis Results

Temperature characteristic	Transverse stress at bottom of PCC	Longitudinal stress at bottom of PCC
Profile 1	80.9	165.4
Profile 2	198.5	283.0
Linear (Example 9)	139.7	224.5

Table E31-1: Analysis Results

NOTE

Positive and negative values of stress signify tensile and compressive stresses and positive value of deflection indicates deflection in downward direction.

Figure E31-4 illustrates relationship between maximum stresses and layer-temperature characteristic.

E31-4: Relationship Between Stresses and Layer-temperature Characteristic

Part II: Examples

Part III: Practice with Actual MDOT Designs

Problem Statement

Use ISLAB2000 to compute the following:
a) Maximum longitudinal stress at the bottom of the PCC slab under 18-kips single axle edge loading
b) Repeat part a) with a thermal gradient of $+4^{\circ} \mathrm{F} / \mathrm{in}$.
c) Maximum longitudinal stress at the top of the PCC slab under 18-kips single axle corner loading
d) Repeat part c) with a thermal gradient of $-4^{\circ} \mathrm{F} / \mathrm{in}$.

Design No.	PCC thickness (in.)	Base thickness (in.)	k-value (psi/in.)	Joint spacing (in.)	Outer lane width (in.)	Shoulder width (in.)	Shoulder type	t design
1	11.8	15.7	99	315	144	120	PCC	
2	11.0	3.9	129	315	144	120	AC	
3	11.0	3.9	129	315	144	120	AC	$\stackrel{\square}{0}$
4	11.0	3.9	129	315	144	120	AC	9
5	11.0	3.9	169	177	168	96	AC	\%
6	9.4	3.9	158	177	168	96	AC	Ξ
7	9.4	3.9	158	177	168	96	AC	$\stackrel{\square}{\sigma}$
8	9.4	3.9	158	177	168	96	AC	
9	10.2	15.7	221	177	144	-	Valley gutter	E
10	11.0	3.9	129	315	144	120	PCC	$\xrightarrow{\sim}$
11	9.4	3.9	140	315	144	-	Valley gutter	"
12	10.2	3.9	158	177	144	120	AC	O-
13	10.2	3.9	88	315	144	120	PCC	
14	10.2	3.9	151	315	144	144	PCC	

Table P1: Recent MDOT Rigid Pavement Designs

Answer Key

Design No. 1

a) 87.1 psi ,
b) 557.5 psi ,
c) 9.7 psi ,
d) 426.1 psi

Design No. 2-4

a) 115.6 psi ,
b) 573.5 psi ,
c) 21.5 psi ,
d) 383.8 psi

Design No. 5
a) 97.1 psi ,
b) 291.7 psi ,
c) 0.9 psi ,
d) 152.6 psi

Design No. 6-8

a) 119.2 psi ,
b) 372.3 psi ,
c) 2.4 psi ,
d) 191.0 psi

Design No. 9
a) 102.2 psi ,
b) 378.4 psi ,
c) 3.8 psi ,
d) 225.7 psi

Design No. 10
a) 92.0 psi ,
b) 551.6 psi ,
c) 13.2 psi ,
d) 384.9 psi

Design No. 11

a) 122.8 psi ,
b) 549.1 psi ,
c) 23.3 psi ,
d) 389.3 psi

Design No. 12
a) 129.5 psi ,
b) 349.7 psi ,
c) 4.7 psi ,
d) 153.3 psi

Design No. 13

a) 110.5 psi ,
b) 539.6 psi ,
c) 14.9 psi ,
d) 370.7 psi

Design No. 14
a) 98.9 psi ,
b) 553.0 psi ,
c) 15.7 psi ,
d) 394.4 psi

Figure K-1: Role of thermal gradient from EICM in the design process

Table K-1: Thermal gradients generated by EICM for 8 -in. sections (sections 26-0213, 26-0214)

Year	Month	$12 \mathrm{am}-3 \mathrm{am}$	$3 \mathrm{am}-6 \mathrm{am}$	$6 \mathrm{am}-9 \mathrm{am}$	$9 \mathrm{am}-12 \mathrm{pm}$	$12 \mathrm{pm}-3 \mathrm{pm}$	$3 \mathrm{pm}-6 \mathrm{pm}$	$6 \mathrm{pm}-9 \mathrm{pm}$	$9 \mathrm{pm}-12 \mathrm{am}$
1998	July	-1.398	-1.386	-0.257	2.280	2.962	2.169	0.354	-1.316
1998	August	-1.325	-1.143	-0.641	1.696	2.333	1.864	-0.182	-1.501
1998	September	-1.418	-1.382	-1.167	1.205	2.476	1.924	-0.328	-1.361
1998	October	-1.078	-1.125	-1.111	0.783	1.882	1.208	-0.699	-1.028
1998	November	-0.812	-0.786	-0.678	0.311	1.427	0.815	-0.518	-0.742
1998	December	-0.896	-0.886	-0.818	0.046	1.248	0.688	-0.567	-0.823
1999	January	-0.720	-0.839	-0.852	-0.224	0.703	0.361	-0.702	-0.786
1999	February	-0.747	-0.703	-0.671	0.438	1.415	0.905	-0.501	-0.689
1999	March	-0.926	-1.017	-0.937	1.154	2.065	1.802	-0.400	-0.841
1999	April	-1.080	-1.038	-0.717	1.631	2.315	1.499	-0.210	-1.079
1999	May	-1.374	-1.309	-0.269	2.110	2.796	1.827	0.003	-1.381
1999	June	-1.487	-1.435	-0.071	2.163	2.601	2.130	0.147	-1.605
1999	July	-1.591	-1.494	-0.278	2.189	2.618	2.217	0.187	-1.514
1999	August	-1.423	-1.477	-0.836	1.709	2.426	1.700	-0.161	-1.464
1999	September	-1.511	-1.403	-1.288	1.502	2.674	2.010	-0.459	-1.404
1999	October	-1.082	-1.097	-1.020	1.005	2.077	1.262	-0.759	-1.059
1999	November	-0.883	-0.941	-0.904	0.268	1.555	1.014	-0.610	-0.804
1999	December	-0.677	-0.676	-0.661	0.101	1.063	0.670	-0.480	-0.625
2000	January	-0.898	-1.039	-1.036	-0.283	0.856	0.368	-0.813	-0.898
2000	February	-0.499	-0.457	-0.481	0.696	1.737	1.356	-0.173	-0.440
2000	March	-0.930	-0.980	-0.903	1.101	2.303	1.551	-0.462	-0.978
2000	April	-1.157	-1.130	-0.795	1.393	2.119	1.911	-0.114	-1.192
2000	May	-1.349	-1.184	-0.286	1.876	2.589	1.725	0.045	-1.370
2000	June	-1.412	-1.313	-0.150	1.852	2.536	1.757	0.211	-1.478
2000	July	-1.538	-1.363	-0.295	1.790	2.598	2.040	0.076	-1.510
2000	August	-1.424	-1.340	-0.790	1.481	2.541	2.067	0.161	-1.332
2000	September	-1.362	-1.312	-1.135	1.168	2.395	1.773	-0.583	-1.402
2000	October	-1.023	-1.003	-1.005	0.896	2.222	1.436	-0.649	-1.058
2000	November	-0.895	-0.849	-0.807	0.213	1.191	0.744	-0.635	-0.806
2000	December	-0.844	-0.811	-0.824	-0.210	0.728	0.302	-0.747	-0.824

Figure K-2: Hourly thermal gradients generated by EICM for 8-in. sections in January

Figure K-3: Hourly thermal gradients generated by EICM for 8-in. sections in February

Figure K-4: Hourly thermal gradients generated by EICM for 8-in. sections in March

Figure K-5: Hourly thermal gradients generated by EICM for 8-in. sections in April

Figure K-6: Hourly thermal gradients generated by EICM for 8-in. sections in May

Figure K-7: Hourly thermal gradients generated by EICM for 8-in. sections in June

Figure K-8: Hourly thermal gradients generated by EICM for 8-in. sections in July

Figure K-9: Hourly thermal gradients generated by EICM for 8-in. sections in August

Figure K-10: Hourly thermal gradients generated by EICM for 8-in. sections in September

Figure K-11: Hourly thermal gradients generated by EICM for 8-in. sections in October

Figure K-12: Hourly thermal gradients generated by EICM for 8-in. sections in November

Figure K-13: Hourly thermal gradients generated by EICM for 8-in. sections in December

Table K-2: Thermal gradients generated by EICM for 11-in. sections (sections 26-0215, 26-0216)

Year	Month	$12 \mathrm{am}-3 \mathrm{am}$	$3 \mathrm{am}-6 \mathrm{am}$	$6 \mathrm{am}-9 \mathrm{am}$	$9 \mathrm{am}-12 \mathrm{pm}$	$12 \mathrm{pm}-3 \mathrm{pm}$	$3 \mathrm{pm}-6 \mathrm{pm}$	$6 \mathrm{pm}-9 \mathrm{pm}$	$9 \mathrm{pm}-12 \mathrm{am}$
1998	July	-1.057	-1.148	-0.428	1.569	2.423	2.060	0.728	-0.750
1998	August	-1.070	-1.001	-0.699	1.085	1.853	1.702	0.230	-0.994
1998	September	-1.139	-1.193	-1.089	0.653	1.881	1.734	0.123	-0.913
1998	October	-0.909	-1.000	-1.025	0.319	1.380	1.082	-0.314	-0.763
1998	November	-0.688	-0.708	-0.648	0.046	1.025	0.759	-0.251	-0.556
1998	December	-0.766	-0.787	-0.750	-0.158	0.852	0.571	-0.372	-0.659
1999	January	-0.662	-0.771	-0.803	-0.381	0.399	0.266	-0.520	-0.674
1999	February	-0.616	-0.627	-0.621	0.166	1.042	0.839	-0.212	-0.498
1999	March	-0.755	-0.882	-0.860	0.658	1.571	1.563	-0.017	-0.567
1999	April	-0.862	-0.897	-0.719	1.050	1.835	1.426	0.161	-0.710
1999	May	-1.078	-1.115	-0.453	1.439	2.266	1.752	0.388	-0.876
1999	June	-1.166	-1.219	-0.340	1.465	2.116	1.971	0.537	-1.003
1999	July	-1.241	-1.280	-0.502	1.470	2.131	2.039	0.575	-0.937
1999	August	-1.157	-1.282	-0.900	1.050	1.884	1.563	0.209	-0.994
1999	September	-1.221	-1.227	-1.199	0.835	2.044	1.812	0.034	-0.958
1999	October	-0.908	-0.972	-0.949	0.499	1.561	1.174	-0.323	-0.775
1999	November	-0.743	-0.830	-0.838	-0.027	1.107	0.907	-0.306	-0.609
1999	December	-0.582	-0.601	-0.601	-0.075	0.738	0.559	-0.304	-0.498
2000	January	-0.800	-0.920	-0.934	-0.425	0.515	0.283	-0.601	-0.755
2000	February	-0.406	-0.407	-0.447	0.375	1.273	1.123	0.031	-0.285
2000	March	-0.743	-0.835	-0.821	0.624	1.769	1.439	-0.029	-0.647
2000	April	-0.918	-0.971	-0.796	0.864	1.671	1.726	0.274	-0.772
2000	May	-1.070	-1.029	-0.456	1.258	2.097	1.659	0.408	-0.875
2000	June	-1.107	-1.128	-0.374	1.272	2.056	1.674	0.536	-0.926
2000	July	-1.220	-1.180	-0.500	1.186	2.068	1.861	0.450	-0.967
2000	August	-1.118	-1.149	-0.832	0.908	1.985	1.868	0.500	-0.838
2000	September	-1.135	-1.164	-1.078	0.622	1.800	1.597	-0.114	-0.993
2000	October	-0.845	-0.885	-0.923	0.430	1.647	1.322	-0.211	-0.748
2000	November	-0.774	-0.777	-0.766	-0.054	0.821	0.654	-0.372	-0.636
2000	December	-0.740	-0.733	-0.746	-0.322	0.439	0.236	-0.565	-0.697

Figure K-14: Hourly thermal gradients generated by EICM for 11-in. sections in January

Figure K-15: Hourly thermal gradients generated by EICM for 11-in. sections in February

Figure K-16: Hourly thermal gradients generated by EICM for 11-in. sections in March

Figure K-17: Hourly thermal gradients generated by EICM for 11-in. sections in April

Figure K-18: Hourly thermal gradients generated by EICM for 11-in. sections in May

Figure K-19: Hourly thermal gradients generated by EICM for 11-in. sections in June

Figure K-20: Hourly thermal gradients generated by EICM for 11-in. sections in July

Figure K-21: Hourly thermal gradients generated by EICM for 11-in. sections in August

Figure K-22: Hourly thermal gradients generated by EICM for 11-in. sections in September

Figure K-23: Hourly thermal gradients generated by EICM for 11-in. sections in October

Figure K-24: Hourly thermal gradients generated by EICM for 11 -in. sections in November

Figure K-25: Hourly thermal gradients generated by EICM for 11-in. sections in December

Table J-1: Summary of single axle load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-4999	73,897	32,139	34,057	66,686	64,857	49,400	34,017	52,423	68,877	58,896
5000-7999	60,122	30,905	34,364	58,049	58,986	52,168	46,874	42,322	58,098	55,975
8000-10999	214,552	127,964	141,516	225,246	208,159	206,808	142,597	153,711	219,733	208,158
11000-13999	99,780	55,168	65,935	106,207	100,406	91,723	69,660	72,201	93,886	94,095
14000-16999	44,970	27,668	30,027	48,737	43,026	38,696	38,084	29,325	38,642	34,699
17000-19999	30,322	16,948	19,744	32,313	31,365	30,560	29,086	23,056	32,010	26,885
20000-22999	9,427	4,683	6,560	9,720	9,756	9,254	6,412	6,144	9,188	7,113
23000-25999	2,018	1,100	1,467	2,264	2,334	1,744	1,106	991	1,471	1,172
26000-28999	594	307	488	561	628	496	276	221	300	275
29000-31999	133	68	149	158	148	116	73	53	60	54
32000-34999	36	20	46	34	29	26	18	12	20	11
35000-37999	5	4	16	9	13	5	4	4	10	3
38000-40999	4	1	4	2	2	3	0	1	0	0
>41000	1	0	4	1	4	0	0	0	0	0

Table J-2: Summary of tandem axle load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-9999	65,457	55,233	39,411	52,386	54,205	53,444	31,429	24,211	44,844	38,954
10000-15999	113,470	97,841	62,729	100,599	99,644	98,989	79,753	70,261	101,550	102,054
16000-21999	81,779	72,875	50,835	82,935	75,736	74,204	67,743	61,949	81,472	83,218
22000-27999	73,319	64,717	47,237	74,352	64,502	60,455	53,444	49,981	64,713	65,338
28000-33999	98,301	91,484	65,400	105,950	95,230	89,498	77,218	73,024	96,309	91,395
34000-39999	41,867	35,275	27,330	44,421	48,277	48,201	41,889	33,371	49,251	43,921
40000-45999	7,619	4,633	3,391	5,619	6,485	4,388	2,907	2,161	3,776	3,129
46000-51999	695	399	377	505	626	399	287	210	330	339
52000-57999	105	64	83	78	95	62	53	35	55	52
58000-63999	27	22	14	19	18	17	16	8	11	5
64000-69999	6	4	4	8	2	5	2	2	1	1
70000-75999	1	0	1	0	1	0	0	0	0	0
76000-81999	1	0	0	0	0	0	0	0	0	0
>82000	0	0	0	0	0	0	0	0	0	0

Table J-3: Summary of tridem axle load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-17999	7,305	4,891	1,547	3,049	3,495	4,312	2,237	2,188	2,906	3,486
18000-26999	1,340	727	475	799	798	684	654	610	686	631
27000-35999	1,507	1,394	992	1,438	1,059	1,317	1,074	1,200	1,374	1,596
36000-44999	4,833	5,160	2,889	6,679	5,588	5,483	3,817	5,352	7,466	7,245
45000-53999	4,194	4,160	1,924	3,894	4,224	3,469	1,605	1,735	3,662	2,825
54000-62999	695	587	244	465	487	443	206	251	439	343
63000-71999	84	53	38	57	72	53	28	32	92	47
72000-80999	10	8	5	8	11	12	1	7	10	4
81000-89999	1	2	5	3	4	2	1	1	3	2
90000-98999	3	0	0	0	0	0	0	4	3	0
>99000	0	0	1	0	0	0	0	1	1	0

Table J-4: Summary of quad axle load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-23999	848	678	379	453	535	767	325	316	493	413
24000-35999	442	323	239	499	448	407	438	382	460	371
36000-47999	631	701	436	761	877	728	477	403	685	703
48000-59999	2,497	2,837	1,454	3,437	3,790	3,071	1,691	2,534	3,692	3,105
60000-71999	1,309	1,160	486	1,020	1,218	1,030	673	916	2,050	1,506
72000-83999	89	62	38	115	82	45	22	66	157	94
84000-95999	3	1	7	6	6	4	2	3	12	11
96000-107999	2	1	1	5	1	7	0	0	1	1
108000-119999	0	4	0	0	1	0	0	0	1	0
120000-131999	0	0	0	0	0	0	0	0	0	0
>132000	0	0	0	0	0	0	0	0	0	0

Table J-5: Summary of multi-axle (5) load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-29999	634	316	221	306	337	473	237	238	283	273
30000-44999	62	19	45	41	39	71	41	23	40	23
45000-59999	73	79	68	158	99	160	75	97	96	135
60000-74999	686	779	386	1,142	1,207	983	513	710	1,053	1,018
75000-89999	267	199	137	242	409	175	86	123	223	113
90000-104999	17	18	16	14	12	11	5	3	7	8
105000-119999	3	3	4	8	2	1	0	1	2	0
120000-134999	0	0	0	0	0	0	0	0	0	0
135000-149999	0	0	0	0	0	0	0	0	0	0
150000-164999	0	0	0	0	0	0	0	0	0	0
>165000	0	0	0	0	0	0	0	0	0	0

Table J-6: Summary of multi-axle (6) load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-35999	79	5	2	1	11	23	8	2	7	2
36000-53999	58	10	88	29	15	23	40	19	33	16
54000-71999	139	114	147	163	200	131	79	96	170	103
72000-89999	666	833	450	657	898	660	415	825	1,110	810
90000-107999	345	152	84	135	181	175	51	191	332	107
108000-125999	4	2	0	0	7	13	1	0	1	2
126000-143999	0	0	0	0	0	1	0	0	0	0
144000-161999	0	0	0	0	0	0	0	0	0	0
162000-179999	0	0	0	0	0	0	0	0	0	0
180000-197999	0	0	0	0	0	0	0	0	0	0
>198000	0	0	0	0	0	0	0	0	0	0

Table J-7: Summary of multi-axle (7) load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-41999	4	6	2	4	4	6	6	1	4	4
42000-62999	23	6	9	21	29	18	23	13	31	21
63000-83999	128	104	62	115	77	81	93	118	197	155
84000-104999	249	100	46	147	211	168	140	139	308	394
105000-125999	25	21	6	5	15	9	6	6	16	20
126000-146999	0	0	0	0	1	0	0	0	1	0
147000-167999	0	0	0	0	0	0	0	0	0	0
168000-188999	0	0	0	0	0	0	0	0	0	0
189000-209999	0	0	0	0	0	0	0	0	0	0
210000-230999	0	0	0	0	0	0	0	0	0	0
>231000	0	0	0	0	0	0	0	0	0	0

Table J-8: Summary of multi-axle (8) load repetitions from SPS-2 section

Load range, lbs	Time interval									
	7/98-9/98	10/98-12/98	1/99-3/99	4/99-6/99	7/99-9/99	10/99-12/99	1/00-3/00	4/00-6/00	7/00-9/00	10/00-12/00
0-47999	10	4	4	5	10	2	12	4	6	2
48000-71999	35	20	18	53	43	42	42	24	30	39
72000-95999	295	355	195	331	277	330	293	293	416	419
96000-119999	248	251	174	406	337	381	199	331	391	252
120000-143999	8	11	9	8	11	2	3	8	17	6
144000-167999	0	2	0	0	0	0	0	0	0	0
168000-191999	0	0	0	0	0	0	0	0	0	0
192000-215999	0	0	0	0	0	0	0	0	0	0
216000-239999	0	0	0	0	0	0	0	0	0	0
240000-263999	0	0	0	0	0	0	0	0	0	0
>264000	0	0	0	0	0	0	0	0	0	0

Figure J-1: Load spectrum from SPS2 sections for single axle in July, 1998

Figure J-2: Load spectrum from SPS2 sections for tandem axle in July, 1998

Figure J-3: Load spectrum from SPS2 sections for tridem axle in July, 1998

Figure J-4: Load spectrum from SPS2 sections for quad axle in July, 1998

Figure J-5: Load spectrum from SPS2 sections for multi-axle (5) in July, 1998

Figure J-6: Load spectrum from SPS2 sections for multi-axle (6) in July, 1998

Figure J-7: Load spectrum from SPS2 sections for multi-axle (7) in July, 1998

Figure J-8: Load spectrum from SPS2 sections for multi-axle (8) in July, 1998

Figure J-9: Load spectrum from SPS2 sections for single axle in August, 1998

Figure J-10: Load spectrum from SPS2 sections for tandem axle in August, 1998

$$
\begin{aligned}
& \longrightarrow-12 \mathrm{am} \text { (midnight) }-3 \mathrm{am} \longrightarrow-3 \mathrm{am}-6 \mathrm{am} \\
& \cdots \cdots 12 \mathrm{pm} \text { (noon) }-3 \mathrm{pm} \quad \cdots \cdots 3 \mathrm{pm}-6 \mathrm{pm}
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow-6 \mathrm{am}-9 \mathrm{am} \\
& \cdots \mathbf{4}-6 \mathrm{pm}-9 \mathrm{pm}
\end{aligned}
$$

$$
\rightarrow-9 \mathrm{am}-12 \mathrm{pm} \text { (noon) }
$$

$$
\cdots \times \cdots 9 \mathrm{pm}-12 \text { am (midnight) }
$$

Figure J-11: Load spectrum from SPS2 sections for tridem axle in August, 1998

Figure J-12: Load spectrum from SPS2 sections for quad axle in August, 1998

Figure J-13: Load spectrum from SPS2 sections for multi-axle (5) in August, 1998

Figure J-14: Load spectrum from SPS2 sections for multi-axle (6) in August, 1998

Figure J-15: Load spectrum from SPS2 sections for multi-axle (7) in August, 1998

Figure J-16: Load spectrum from SPS2 sections for multi-axle (8) in August, 1998

Figure J-17: Load spectrum from SPS2 sections for single axle in September, 1998

Figure J-18: Load spectrum from SPS2 sections for tandem axle in September, 1998

Figure J-19: Load spectrum from SPS2 sections for tridem axle in September, 1998

Figure J-20: Load spectrum from SPS2 sections for quad axle in September, 1998

Figure J-21: Load spectrum from SPS2 sections for multi-axle (5) in September, 1998

Figure J-22: Load spectrum from SPS2 sections for multi-axle (6) in September, 1998

Figure J-23: Load spectrum from SPS2 sections for multi-axle (7) in September, 1998

Figure J-24: Load spectrum from SPS2 sections for multi-axle (8) in September, 1998

Figure J-25: Load spectrum from SPS2 sections for single axle in October, 1998

Figure J-26: Load spectrum from SPS2 sections for tandem axle in October, 1998

Figure J-27: Load spectrum from SPS2 sections for tridem axle in October, 1998

Figure J-28: Load spectrum from SPS2 sections for quad axle in October, 1998

Figure J-29: Load spectrum from SPS2 sections for multi-axle (5) in October, 1998

Figure J-30: Load spectrum from SPS2 sections for multi-axle (6) in October, 1998

Figure J-31: Load spectrum from SPS2 sections for multi-axle (7) in October, 1998

Figure J-32: Load spectrum from SPS2 sections for multi-axle (8) in October, 1998

Figure J-33: Load spectrum from SPS2 sections for single axle in November, 1998

Figure J-34: Load spectrum from SPS2 sections for tandem axle in November, 1998

Figure J-35: Load spectrum from SPS2 sections for tridem axle in November, 1998

Figure J-36: Load spectrum from SPS2 sections for quad axle in November, 1998

Figure J-37: Load spectrum from SPS2 sections for multi-axle (5) in November, 1998

Figure J-38: Load spectrum from SPS2 sections for multi-axle (6) in November, 1998

Figure J-39: Load spectrum from SPS2 sections for multi-axle (7) in November, 1998

Figure J-40: Load spectrum from SPS2 sections for multi-axle (8) in November, 1998

Figure J-41: Load spectrum from SPS2 sections for single axle in December, 1998

Figure J-42: Load spectrum from SPS2 sections for tandem axle in December, 1998

Figure J-43: Load spectrum from SPS2 sections for tridem axle in December, 1998

Figure J-44: Load spectrum from SPS2 sections for quad axle in December, 1998

Figure J-45: Load spectrum from SPS2 sections for multi-axle (5) in December, 1998

Figure J-46: Load spectrum from SPS2 sections for multi-axle (6) in December, 1998

Figure J-47: Load spectrum from SPS2 sections for multi-axle (7) in December, 1998

Figure J-48: Load spectrum from SPS2 sections for multi-axle (8) in December, 1998

Figure J-49: Load spectrum from SPS2 sections for single axle in January, 1999

Figure J-50: Load spectrum from SPS2 sections for tandem axle in January, 1999

Figure J-51: Load spectrum from SPS2 sections for tridem axle in January, 1999

Figure J-52: Load spectrum from SPS2 sections for quad axle in January, 1999
Axle load, lbs

--12 am (midnight) $-3 \mathrm{am} \longrightarrow-3 \mathrm{am}-6 \mathrm{am}$	$\longrightarrow-6 \mathrm{am}-9 \mathrm{am}$	 $\cdots \cdots 12 \mathrm{pm}$ (noon) -3 pm $\cdots \cdots 3 \mathrm{pm}-6 \mathrm{pm}$
$\cdots \mathbf{- 1 2 \mathrm { pm }}$ (noon)		

Figure J-53: Load spectrum from SPS2 sections for multi-axle (5) in January, 1999

Figure J-54: Load spectrum from SPS2 sections for multi-axle (6) in January, 1999

Figure J-55: Load spectrum from SPS2 sections for multi-axle (7) in January, 1999

Figure J-56: Load spectrum from SPS2 sections for multi-axle (8) in January, 1999

Figure J-57: Load spectrum from SPS2 sections for single axle in February, 1999

Figure J-58: Load spectrum from SPS2 sections for tandem axle in February, 1999

Figure J-59: Load spectrum from SPS2 sections for tridem axle in February, 1999

Figure J-60: Load spectrum from SPS2 sections for quad axle in February, 1999

Figure J-61: Load spectrum from SPS2 sections for multi-axle (5) in February, 1999

Figure J-62: Load spectrum from SPS2 sections for multi-axle (6) in February, 1999

Figure J-63: Load spectrum from SPS2 sections for multi-axle (7) in February, 1999

Figure J-64: Load spectrum from SPS2 sections for multi-axle (8) in February, 1999

Figure J-65: Load spectrum from SPS2 sections for single axle in March, 1999

Figure J-66: Load spectrum from SPS2 sections for tandem axle in March, 1999

Figure J-67: Load spectrum from SPS2 sections for tridem axle in March, 1999

Figure J-68: Load spectrum from SPS2 sections for quad axle in March, 1999

Figure J-69: Load spectrum from SPS2 sections for multi-axle (5) in March, 1999

Figure J-70: Load spectrum from SPS2 sections for multi-axle (6) in March, 1999

Figure J-71: Load spectrum from SPS2 sections for multi-axle (7) in March, 1999

Figure J-72: Load spectrum from SPS2 sections for multi-axle (8) in March, 1999

Figure J-73: Load spectrum from SPS2 sections for single axle in April, 1999

Figure J-74: Load spectrum from SPS2 sections for tandem axle in April, 1999

Figure J-75: Load spectrum from SPS2 sections for tridem axle in April, 1999

Figure J-76: Load spectrum from SPS2 sections for quad axle in April, 1999

Axle load, lbs

$\begin{aligned} & \longrightarrow-12 \mathrm{am} \text { (midnight) }-3 \mathrm{am} \longrightarrow 3 \mathrm{am}-6 \mathrm{am} \\ & \cdots \cdots 12 \mathrm{pm} \text { (noon) }-3 \mathrm{pm} \quad \cdots \cdots 3 \mathrm{pm}-6 \mathrm{pm} \end{aligned}$	$\begin{aligned} & \longrightarrow-6 \mathrm{am}-9 \mathrm{am} \\ & \cdots \Delta 6 \mathrm{pm}-9 \mathrm{pm} \end{aligned}$	$\begin{aligned} & -\times 9 \mathrm{am}-12 \mathrm{pm} \text { (noon) } \\ & \cdots \times \cdots 9 \mathrm{pm}-12 \mathrm{am} \text { (midnight) } \end{aligned}$

Figure J-77: Load spectrum from SPS2 sections for multi-axle (5) in April, 1999

Figure J-78: Load spectrum from SPS2 sections for multi-axle (6) in April, 1999

Figure J-79: Load spectrum from SPS2 sections for multi-axle (7) in April, 1999

Figure J-80: Load spectrum from SPS2 sections for multi-axle (8) in April, 1999

Figure J-81: Load spectrum from SPS2 sections for single axle in May, 1999

Figure J-82: Load spectrum from SPS2 sections for tandem axle in May, 1999

Figure J-83: Load spectrum from SPS2 sections for tridem axle in May, 1999

Figure J-84: Load spectrum from SPS2 sections for quad axle in May, 1999

Figure J-85: Load spectrum from SPS2 sections for multi-axle (5) in May, 1999

Figure J-86: Load spectrum from SPS2 sections for multi-axle (6) in May, 1999

Figure J-87: Load spectrum from SPS2 sections for multi-axle (7) in May, 1999

Figure J-88: Load spectrum from SPS2 sections for multi-axle (8) in May, 1999

Figure J-89: Load spectrum from SPS2 sections for single axle in June, 1999

Figure J-90: Load spectrum from SPS2 sections for tandem axle in June, 1999

Figure J-91: Load spectrum from SPS2 sections for tridem axle in June, 1999

Figure J-92: Load spectrum from SPS2 sections for quad axle in June, 1999

Figure J-93: Load spectrum from SPS2 sections for multi-axle (5) in June, 1999

Figure J-94: Load spectrum from SPS2 sections for multi-axle (6) in June, 1999

Figure J-95: Load spectrum from SPS2 sections for multi-axle (7) in June, 1999

Figure J-96: Load spectrum from SPS2 sections for multi-axle (8) in June, 1999

Figure J-97: Load spectrum from SPS2 sections for single axle in July, 1999

Figure J-98: Load spectrum from SPS2 sections for tandem axle in July, 1999

Figure J-99: Load spectrum from SPS2 sections for tridem axle in July, 1999

Figure J-100: Load spectrum from SPS2 sections for quad axle in July, 1999

Figure J-101: Load spectrum from SPS2 sections for multi-axle (5) in July, 1999

Figure J-102: Load spectrum from SPS2 sections for multi-axle (6) in July, 1999

Figure J-103: Load spectrum from SPS2 sections for multi-axle (7) in July, 1999

Figure J-104: Load spectrum from SPS2 sections for multi-axle (8) in July, 1999

Figure J-105: Load spectrum from SPS2 sections for single axle in August, 1999

Figure J-106: Load spectrum from SPS2 sections for tandem axle in August, 1999

Figure J-107: Load spectrum from SPS2 sections for tridem axle in August, 1999

Figure J-108: Load spectrum from SPS2 sections for quad axle in August, 1999

Figure J-109: Load spectrum from SPS2 sections for multi-axle (5) in August, 1999

Figure J-110: Load spectrum from SPS2 sections for multi-axle (6) in August, 1999

Figure J-111: Load spectrum from SPS2 sections for multi-axle (7) in August, 1999

Figure J-112: Load spectrum from SPS2 sections for multi-axle (8) in August, 1999

Figure J-113: Load spectrum from SPS2 sections for single axle in September, 1999

Figure J-114: Load spectrum from SPS2 sections for tandem axle in September, 1999

Figure J-115: Load spectrum from SPS2 sections for tridem axle in September, 1999

Figure J-116: Load spectrum from SPS2 sections for quad axle in September, 1999

Figure J-117: Load spectrum from SPS2 sections for multi-axle (5) in September, 1999

Figure J-118: Load spectrum from SPS2 sections for multi-axle (6) in September, 1999

Figure J-119: Load spectrum from SPS2 sections for multi-axle (7) in September, 1999

Figure J-120: Load spectrum from SPS2 sections for multi-axle (8) in September, 1999

Figure J-121: Load spectrum from SPS2 sections for single axle in October, 1999

Figure J-122: Load spectrum from SPS2 sections for tandem axle in October, 1999

Figure J-123: Load spectrum from SPS2 sections for tridem axle in October, 1999

Figure J-124: Load spectrum from SPS2 sections for quad axle in October, 1999

Figure J-125: Load spectrum from SPS2 sections for multi-axle (5) in October, 1999

Figure J-126: Load spectrum from SPS2 sections for multi-axle (6) in October, 1999

Figure J-127: Load spectrum from SPS2 sections for multi-axle (7) in October, 1999

Figure J-128: Load spectrum from SPS2 sections for multi-axle (8) in October, 1999

Figure J-129: Load spectrum from SPS2 sections for single axle in November, 1999

Figure J-130: Load spectrum from SPS2 sections for tandem axle in November, 1999

Figure J-131: Load spectrum from SPS2 sections for tridem axle in November, 1999

Figure J-132: Load spectrum from SPS2 sections for quad axle in November, 1999

Figure J-133: Load spectrum from SPS2 sections for multi-axle (5) in November, 1999

Figure J-134: Load spectrum from SPS2 sections for multi-axle (6) in November, 1999

Figure J-135: Load spectrum from SPS2 sections for multi-axle (7) in November, 1999

Figure J-136: Load spectrum from SPS2 sections for multi-axle (8) in November, 1999

Figure J-137: Load spectrum from SPS2 sections for single axle in December, 1999

Figure J-138: Load spectrum from SPS2 sections for tandem axle in December, 1999

Figure J-139: Load spectrum from SPS2 sections for tridem axle in December, 1999

Figure J-140: Load spectrum from SPS2 sections for quad axle in December, 1999

Figure J-141: Load spectrum from SPS2 sections for multi-axle (5) in December, 1999

Figure J-142: Load spectrum from SPS2 sections for multi-axle (6) in December, 1999

Figure J-143: Load spectrum from SPS2 sections for multi-axle (7) in December, 1999

Figure J-144: Load spectrum from SPS2 sections for multi-axle (8) in December, 1999

