Addition of an All Red Clearance Interval to the Traffic Signal Timing Sequence

$$
T S D-G-208-72
$$

TRAFFIC and SAFETY DIVISION

UPRARY
michigan department of
state highways
LANSING

MICHIGAN DEPARTMENT OF STATE HIGHWAYS

```
    EVALUATION OF AN OPERATIONAL
    CHANGE AT 17 LOCATIONS
Addition of an All Red Clearance Interval
    to the Traffic Signal Timing Sequence
            TSD-G-208-72
```

by
Bruce Conradson
and
Lawrence Bunker

Surveillance Unit
Geometrics Section
Traffic and Safety Division

April 1, 1972

COMMISSION

Charles H. Hewitt, Chairman
Louis A. Fisher, Vice Chairman
E. V. Erickson

Claude J. Tobin
State Highway Director Henrik E. Stafseth
Deputy Director - Chief Engineer . . . J. P. Woodford
Assistant Deputy Director. G. J. McCarthy
Chief, Bureau of Operations J. G. Hautala
Engineer of Traffic and Safety. . . . H. H. Cooper

PREPARED BY GEOMETRICS SECTION

Traffic Geometrics Engineer M. R. Hoffman Surveillance Engineer J. R. Hoyt Study Engineer. B. A. Conradson Study Technician D. Bunker

Contributors to the Report:
R. A. Rigotti

Traffic Operations Engineer
R. L. Blost

Electrical Devices Engineer

Synopsis

This report was prepared in order to evaluate the addition of a timing sequence change made at seventeen signalized intersections. The change in traffic signal timing involved the addition of a brief all-red interval (less than 2 seconds), requiring a pause for traffic from all directions.

A comparison of accident experience for a twelve-month period before and after this operational change reveals that total accidents were reduced, with the primary benefit attributable to a decrease in right angle type collisions. Perhaps more importantly, it was found that overall casualties were even more significantly reduced.

The accident reductions were found to be statistically significant. The total cost of the timing change was less than $\$ 2,000$ and the calculated benefit during the one-year period after the improvement was $\$ 219,400$.

```
LIBRARY
michigan department of
    state highways
    LANSING
```


Background

Between 1965 and 1971 a number of locations were selected for a signal timing change, involving the addition of a brief all-red interval. Intersections selected for the signal timing change were generally locations where the speed of approaching traffic was high or where visibility was poor. Evidence of a right angle accident pattern prompted the majority of the changes.

In the absence of any other apparent contributing cause for this accident pattern, all red clearance intervals of two seconds or less in duration were installed. The intention was to provide an increased margin of safety between the opposing traffic movements in addition to that normally afforded by the yellow interval.

```
LIBRARY
michigan department of
    state highways
        LANSING
```


Typical rural high speed, divided roadway with narrow median. All red phase provides extra margin of safety between "near-side" and "farside" signals.

Note truck passing through intersection on "red" while opposing movement is momentarily held back.

Conclusion

This study reviewed "before" and "after" accident experience at seventeen intersections with special attention given to both patterns and severity. A statistical analysis was then performed to confirm the significance of the findings. It was found that total accidents were reduced 10 per cent, from 429 to 385 . More significantly, it was found that overall casualties were reduced 28 per cent, from 276 to 198.

As expected, reductions in right-angle type accidents contributed the primary benefit, decreasing from 141 to 75 , a 46 per cent reduction. Rear-end type accidents did, in fact, increase in the "after" period going from 116 to 158 , but this increase was not enough to counter the overall improvement trend. These improvements were accomplished at a nominal expense totaling less than $\$ 2,000$ for all locations.

This study, while limited in scope to only seventeen intersections, proved to be statistically significant and supports continued and perhaps expanded selective use of the "all red" phase.

EVALUATION OF ALL RED CLEARANCE INTERVALS AT 17 LOCATIONS

TRUNKLINE ADT "BEFORE" - 388,900
TRUNKLINE ADT "AFTER" $-406,300$

STATISTICAL ANALYSIS OF THE ALL RED CLEARANCE INTERVALS
PROJECT AT 17 TRUNKLINE LOCATIONS
I. Objective

The primary objective of this analysis is to determine if the ALL RED CLEARANCE INTERVALS project is effective in reducing accidents at 17 trunkline locations.
II. Traffic and Accident Data Used

The traffic and accident data used are as shown in Figure 1.
III. Testing Hypothesis
H_{o} (null hypothesis): The probability of accident occurrences at 17 trunkline locations for the "AFTER" period is higher than or equal to the probability of accident occurrences in the "BEFORE" period (i.e. the safety project is ineffective in reducing accidents).
H_{A} (Alternative hypothesis): The probability of accident occurrences at 17 trunkife locations for the "AFTER" period is less than the probability of accident occurrences in the "BEFORE" period (i.e. the safety project is effective in reducing accidents).

Using Normal approximation to Binomial distribution,* we make our decisions based on the following Z statistic:

$$
z=\frac{\hat{p}_{b}-\hat{p}_{a}}{\sqrt{\frac{\hat{p}_{b}\left(1-\hat{p}_{b}\right)}{N_{b}}+\frac{\hat{p}_{a}\left(1-\hat{p}_{a}\right)}{N_{a}}}}
$$

*See Paul G. Hoel, Introduction to Mathematical Statistics, (Wiley) New York, 1971.

$$
\text { where } \hat{p}_{b}=\frac{T_{b}}{N_{b}}, \hat{p}_{a}=\frac{T_{a}}{N_{a}}
$$

$$
T_{b}=\begin{aligned}
& \text { Total accidents before the safety } \\
& \text { project }
\end{aligned}
$$

$$
\begin{aligned}
N_{b}= & \text { Total traffic volumes before the } \\
& \text { safety project }
\end{aligned}
$$

$$
T_{a}=\begin{aligned}
& \text { Total accidents after the safety } \\
& \text { project }
\end{aligned}
$$

$$
\begin{aligned}
N_{a}= & \text { Total traffic volumes after the } \\
& \text { safety project }
\end{aligned}
$$

Decision Rules:

Use $\alpha=0.01$ (level of significance)
Rule 1: Reject H_{o} if $Z>2.33$
Rule 2: Accept H_{o} if $Z \leq 2.33$
From Figure 1, we find

$$
\begin{aligned}
& \hat{\mathrm{p}}_{b}=\frac{\mathrm{T}_{\mathrm{b}}}{\mathbb{N}_{b}}=\frac{429}{141,948,500}=3.02 \times 10^{-6} \\
& \hat{\mathrm{p}}_{\mathrm{a}}=\frac{\mathrm{T}_{a}}{\mathrm{~N}_{\mathrm{a}}}=\frac{385}{148,299,500}=2.60 \times 10^{-6}
\end{aligned}
$$

The Z statistic is

$$
\begin{aligned}
Z & =\frac{3.02 \times 10^{-6}-2.60 \times 10^{-6}}{\sqrt{\frac{3.02 \times 10^{-6}(1-0.00000302)+\frac{2.60 \times 10^{-6}(1-0.00000260)}{141,948,500}}{148,299,500}}} \\
& =10.82
\end{aligned}
$$

We reject H_{o} since $Z=10.82>2.33$. Hence, we conclude that the ALL RED CLEARANCE INTERVALS project did significantly reduce accidents at 17 trunkline locations.

