ROUGHNESS MEASUREMENTS OF BRIDGE DECKS AND APPROACHES

R. E. Hooper L. T. Oehler

Research Laboratory Division Office of Testing and Research Report No. 325 Research Project 59 F-51

Michigan State Highway Department John C. Mackie, Commissioner Lansing, March 1960

ROUGHNESS MEASUREMENTS OF BRIDGE DECKS AND APPROACHES

This investigation of bridge roughness was made at the request of Mr. C. B. Laird, Chief Construction Engineer. The original request was that bridge roughness be measured by the Department's Roughometer truck, in the same manner as pavement roughness. However, because of the short lengths of bridge spans, the procedures used for pavement roughness were not suitable for bridge roughness without major modifications. As an alternative, the Research Laboratory Division proposed the use of a 10-ft rolling straight-edge which had been used previously to measure roughness on short sections of pavement. This instrument was used in the study. Mr. Laird had stated that information on bridge roughness was required to correlate riding qualities with deck pour widths, bridge types, kinds of screeds and strikes used, and a number of other factors. Mr. Paul A. Nordgren, Bridge Construction Engineer, specifically selected the following six bridges for a preliminary study of bridge roughness;

- 1. B2 of 9-10-5, M 20 over US 23, 1.5 mi west of Bay City.
- 2. B1 of 13-3-4, Climax Road over US 12, 3 mi southwest of Battle Creek.

3. B1 of 25-7-3, US 23 over the Flint River, 1/2-mi west of Flint.

- 4. B2 of 63-11-4, US 16 over Milford Road, 1/2-mi north of New Hudson.
- 5. X1 of 63-13-4, US 16 over the C & O RR, 1/2-mi northwest of Novi.
- 6. B1 of 83-11-11, US 131 over the Manistee River, 5.7 mi north of Manton.

Figure 1 shows plan views of the selected bridges. To compare the straight-edge technique with conventional vehicular methods of roughness measurement, Mr. E. A. Finney, Director, Research Laboratory Division, requested that the University of Michigan's Pavement Profilometer truck measure the riding quality of these same bridges. This report discusses the procedure and test results obtained with the rolling straight-edge and includes a comparison of this method and the Profilometer truck.

TEST EQUIPMENT AND PROCEDURE

The device used by the Laboratory in this bridge roughness study consists essentially of a 10-ft straight-edge with a hard rubber wheel attached at either end to allow propulsion along a desired path (Fig. 2). A third wheel, suspended at the midpoint of the straight-edge, is so mounted as to allow displacement in a vertical direction only. A metal arm attached to the third wheel can make contact at any one of ten equidistant points on a fixed scale. Each interval between adjacent contact

-2-

	WI OWP	196 278 175 322	171	300 / 17 282 / 163	2	
	W 2 0WP IWP	176 300 211 260	252 250	300 / 146 296 / 174		B2 OF 9-10-5
		226 171 212 309 211 276	238	252 2 252 20 220 17		
	E I OWP	198 190	228 / SPAN 2	247 / 195 SPAN 3	E, APPROACH	
·	W. APPROACH	SPAN 1 90,2'		- 90.2'	200'	
·····	· · · ·				· · · · · · · ·	
S i	OWP 152	193 1	50	193 193	SOUTHBOUND	
	1WP 154	221 192	255	150 is 182 i	82	BI OF 13-3-4
(\ N	1 eei 990	193	236	133	NORTHBOUND	
	S. APPROACH	SPAN I	SPAN 2	SPAN 3	N. APPROACH	N
	2001	li9,5′⊷	96.5'	•	200 °	
	•••••••••••••••••••••••••••••••••••••••				· · · ·	
N 1 OWF		37 206	230	357	364 232 N	ORTH BOUND
	WP 126 323	364 173 326 20	1	349 269	230 150 247 217	BI OF 25-7-3
N	P 146 \ 45! \ 3	83 298	278	251	273 155	
5 2 ON	<u>IP 127 401 1</u>	249 278	178	199	253 108 242 110	
	WP 79 211	223 29	1	288	302 143	
N. APPROA	CH . SPAN 6 :		N 4 5PAN .9'	3 SPAN 5' 112.0'		200'
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
	OWP 215	237 327	260 3	82 246	202	
5		- S.			зоцтнво	
	1WP 202 1WP 240	253 318 305 248		12 224 33 269	206 252	BI OF 83-11-11
N					NORTHBO	
	OWP 210 5. APPROACH	301 327 SPAN I SPAN 2		57 219 N 4 SPAN 5	N. APPROACH	
	211′ +	- 73' -++- 54'+	BO'	i4′ 	214'	<u>→</u> .
						· · · · · · · · · · · · · · · · · · ·
	W 1 OWP 263		234	271 224	WESTBOUND	
	W 2 0WP 16		210	177 ' 220 217 244		XI OF 63-13-4
					k	
	E 2 1WP 262 0WP 25	63 207	218 \	240 270 177 258		
		24 320 177 344	254	360 224 286 294		
ļ.	W. APPROACH 200'	SPAN I	SPAN 2	SPAN 3 - 60.2' -	E. APPROACH	
	· · · · · · · · · · · · · · · · · · ·		•		.	
	WI OWI		340 402	213	WESTBOUND	
	IW 1W	WP 227 424	310 498	232	here	
	www.a 🕶 🗠	IWP 355 461	420 59	1 \ 214		B2 OF 63-11-4
			546 459 423 399	182.	CASTBOUND	
		/P 195 473	423 399	192		
		VP 195 473 WP 195 402 WP 200 388 OWP 162 365	423 399	192 233 6 139 N 3 E.	APPROACH	

Figure 1. Plan views of six test bridges, showing straight-edge profilometer roughness for each span and 200-ft approach; IWP indicates the inner wheel path, OWP the outer.

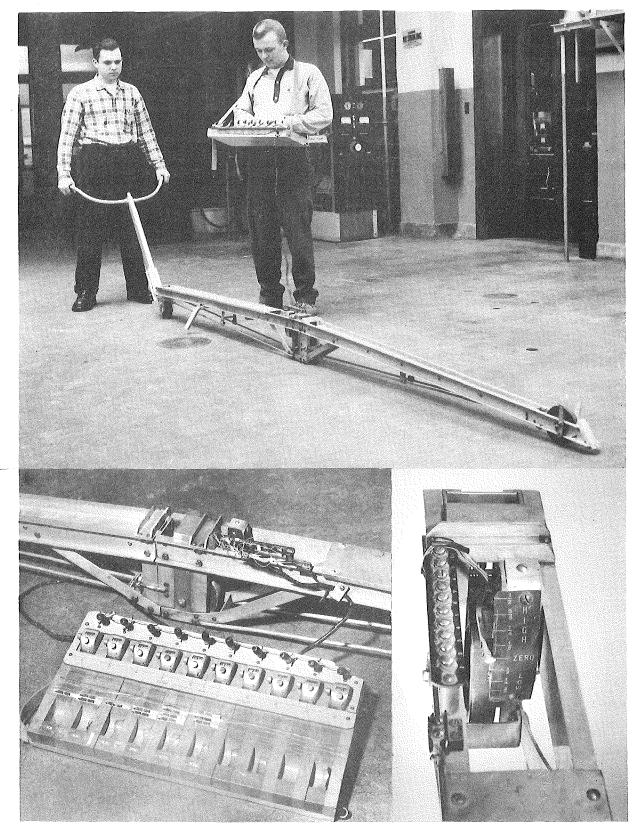


Figure 2. The 10-ft straight-edge profilometer (top) using a measuring arm and a calibrated scale (bottom right) to register vertical increments of surface irregularity, and the manually operated control board (bottom left) with hand counter for each increment.

points on this scale is equivalent to 1/8-in. of actual vertical displacement. As the metal arm makes contact with one of the ten points, a light flashes on a portable control board for the corresponding 1/8-in. of vertical slab displacement. The minimum recordable vertical slab displacement is $\pm 1/16$ - and the range is $\pm 1/2$ -in. As the lights flash on the control board, the operator punches corresponding hand counters. Thus, a continuous record of vertical displacement due to slab surface irregularities is obtained on the counters.

The field measurements were conducted in October and December 1959. A crew of five men conducted the bridge roughness tests: a supervisor, an operator for the straight-edge profilometer, a man for the control panel, and two flagmen. In field notation and in the figures and tables of this report, the bridge traffic lanes were designated according to the direction of traffic: N1, S1, E1, or W1. Similarly, on four-lane pavement, center passing lanes were designated N2, S2, E2, or W2. Each traffic or passing lane was divided into an inner wheel path (IWP) and an outer wheel path (OWP). This notation is used in the accompanying figures and tables. The general procedure used throughout the study was as follows:

1. Bridge span lengths were measured and recorded.

2. The 200-ft approach distances were measured and marked for each wheel path to be tested.

-5-

3. The fixed dial was adjusted to read zero while the suspended third wheel was maintained at its zero position.

4. Two profilometer runs were taken for each wheel path; where sizable discrepancies occurred, a third run was made.

A typical example of the data recorded is shown in Table 1, for Bridge B2 of 9-10-5, after reduction from the recorded information. The values are the average of two profilometer runs. High readings (upward displacement) and low readings (downward displacement) are tabulated separately. To obtain the final straight-edge profilometer roughness index, the high and low readings were added and substituted into the following formula:

$$RI = \frac{1(a) + 2(b) + 4(c) + 6(d) + 8(e)}{16} \times \frac{5280}{L}$$

where a = the total number of 1/16-in. displacements,
b = the total number of 1/8-in. displacements,
c = the total number of 1/4-in. displacements,
d = the total number of 3/8-in. displacements,
e = the total number of 1/2-in. displacements,
L = the length of the span in ft, and
RI = the roughness index in in. per mi.

DATA EVALUATION

Decks

Table 2 summarizes the results of this study. In the column "Bridge Deck" three subcolumns are titled "Length," "Straight-Edge Profilometer," and "Truck Profilometer." The linear feet figures refer to the total bridge deck lengths. The straight-edge roughness index was obtained

TABLE 1 TYPICAL RECORDED DATA Bridge B2 of 9-10-5, Bay City

1 Wheel			Length	Avg. High Readings, inches				Avg. Low Readings, inches					
Lane ¹	Path ²	Area	ft	1/16	1/8	1/4	3/8	1/2	1/16	1/8	1/4	3/8	1/2
E-1	OWP	W. App.	200.0	30.5	34.5	2.0	2.0	0.0	10.0	0, 5	0.0	0.0	0.0
E-1	OWP	Span 1	90,2	5.0	9.5	3.5	0.0	0.0	4.0	3.0	1,0	0.0	0.
E-1	OWP	Span 2	83.2	3.0	10.0	3.5	1.5	0.0	8.5	1.5	0.0	0.0	0.
E-1	OWP	Span 3	90.2	1.5	23.0	0.5	0.0	0.0	4.0	7.0	0.0	0.0	0.0
E-1	OWP	E. App.	200.0	31, 5	37.0	1.0	0.0	0.0	4.5	1.0	0,0	0,0	0.1
₩-1	OWP	W. App.	200.0	21.0	33, 3	1.3	1.6	0,0	14.3	1. 3	0.0	0.0	0.0
W-1	OWP	Span 1	90.2	1.5	19.0	2.5	0.0	0.0	6.5	4.0	3.0	0.0	0,0
W-1	OWP	Span 2	83.2	3.0	14.0	0.0	0.0	0.0	5,0	0.5	1.5	0,0	0.0
W-1	OWP	Span 3	90.2	2.5	10.5	4.0	2.0	0.0	10.5	4.0	3.0	0.0	0.0
W-1	OWP	E. App.	200.0	27.5	28.5	2,5	0.0	0.0	6.5	1, 0	0.0	0.0	0,0
E-1	IWP	W. App.	200.0	42.5	24.0	5.0	1.0	0,0	7.5	2.0	0.0	0.0	0.0
E-1	IWP	Span 1	90,2	3.5	9,5	5.0	1.0	0.0	7.5	5.5	2,5	0,0	0.0
E-1	IWP	Span 2	83,2	5.5	9,0	4.5	1.0	0,0	12, 0	3.0	0.0.	0.0	0,0
E-1	IWP	Span 3	90.2	4.0	17.5	1.0	0.0	0.0	8.0	4,5	0.0	0.0	0,0
E-1	IWP	E. App.	200.0	32.0	33.5	0.0	0.0	0.0	3.0	0,0	1.0	0.0	0.0
W-1	IWP	W, App.	200.0	29, 5	24.0	1.0	2.0	0.0	9.5	1.5	0.0	0.0	0.0
₩-1	IWP	Span 1	90.2	6.0	15.5	5,5	0,0	0.0	9.0	5.0	2.5	0.0	0.0
W-1	IWP	Span 2	83.2	1, 0	13, 5	2,0	0.0	0.0	11.5	3.5	0,0	0.0	0.0
W-1	IWP	Span 3	90.2	9.0	11.5	3.0	1.5	0,0	20.0	2.0	0,0	0.0	0.0
W-1	IWP	E. App.	200,0	41,0	24.0	0,0	0.0	0.0	7.5	1,0	0.0	0.0	0.0
E-2	OWP	W. App.	200.0	22, 5	35.0	5.0	1.0	0,0	10,0	0.0	0.0	0.0	0,0
E-2	OWP	Span 1	90.2	1, 5	6.0	7.5	2.0	0.0	11.0	4.0	2.5	0.0	0.0
E-2	OWP	Span 2	83.2	4.0	10,0	4.5	0,0	0.0	7.5	6.0	0.0	0.0	0,0
E-2	OWP	Span 3	90.2	8.5	17,5	2.5	0.0	0.0	10.5	2, 5	0.0	0, 0	0.0
E-2	OWP	E. App.	200.0	29.5	36.5	2.0	0,0	0.0	6.5	1.5	0.0	0.0	0,0
W-2	OWP	W. App.	200.0	27.0	31.0	1.0	1.0	0.0	6.5	0,5	0.0	0.0	0.0
W-2	OWP	Span 1	90.2	1, 5	19.0	3.5	0.0	0.0	5.5	4.5	3.5	0.0	0.0
W-2	OWP	Span 2	83.2	0.0	15.0	3,5	0.0	0.0	11.5	4.5	0.0	0.0	0.0
W-2	OWP	Span 3	90.2	3.0	19.0	4.5	0.0	0.0	5.0	8,0	0,5	0.0	0.0
W-2	OWP	Е. Арр.	200.0	30.0	20.5	3.0	0.0	0.0	2,5	1.0	0.0	0.0	0.0
E-2	IWP	W. App.	200.0	23.5	33.0	5.0	1.0	1.0	13.0	1.0	0.0	0.0	0.0
E-2	IWP	Span 1	90.2	3.0	10.5	9.0	0.0	0.0	4.0	7.5	3.0	0.0	0.0
E-2	IWP	Span 2	83.2	1.5	11.0	2.0	1.0	0.0	8.5	7.0	0.0	0.0	0,0
E-2	IWP	Span 3	90, 2	1.0	8.0	7.5	0.0	0.0	11.5	5.0	0.0	0.0	0.0
E-2	IWP	E. App.	200.0	30, 5	39.0	2.0	. 0, 0	0.0	8.5	0.0	0.0	0.0	0.0
W2	IWP	W. App.	200.0	32, 5	32.5	2.5	0.0	0.0	12.5	1.5	0.0	0.0	0.0
W-2	IWP	Span 1	90.2	9.0	14.0	3.5	0.0	0.0	9.5	3.0	2.5	0.0	0.0
W-2	IWP	Span 2	83.2	4.5	13.0	3.0	1,0	0.0	7.5	2.5	0.5	0.0	0.0
W-2	IWP	Span 3	90.2	0.0	16.5	4.0	0.0	0.0	15.0	8.5	0.0	0.0	0.0
W-2	IWP	E. App.	200.0	30, 0	19.0	5.5	1.0	0.0	8.5	0.5	0.0	0.0	0.0

¹ Letters designate traffic direction; Numerals: 1 = traffic lane, 2 = passing lane.² OWP = outer wheel path; IWP = inner wheel path.

TABLE 2 SUMMARY OF ROUGHNESS DATA

		1	·	Bridge Dec		1	Deldae A	3	•
Project No.	Lane ¹	Wheel				<u> </u>	Bridge A		
(Year Built)		Path ²	Length, ft	Roughnes Straight Edge Profilometer	s, in./mi Truck Profilometer	Length, ⁴ ft	Rough, in,/mi, Straight Edge Profilometer	Avg. Length ft	Rough, in./ml Truck Profilometer
B2 of 9-10-5 (1956)	• W1	OWP IWP	264	252 275	175 143	200	183 168	65	140 100
	W2	OWP IWP	264	284 276	150 148	200	162 192	65	101 123
	E2	IWP OWP	264	276 269	208 166	200	217 208	65	133 138
	E1	IWP OWP	264	252 222	149 164	200	193 196	65	106 160
			Avg.	263	163		190		125
B1 of 13-3-4	S 1	OWP IWP	331	184 191	157 152	200	172 152	200	` 145 171
(1958)	N1	IWP OWP	331	215 227	175 187	200	198 166	200	222 203
			Avg.	204	168		172		185
	N1 °	ÓWP IWP	- 492	351 349	186 199	200	167 161	90	157 205
B1 of 25-7-3	N2	OWP IWP	- 100 -	353 321	181 218	200 —	138 194	90	148 243
(1958)	S 2	IWP OWP	- 492	401 313	158 131	_ 200	150 118 '	63,5	101 125
	S1	IWP OWP		345 315	115 148		97 111	63.5	83 148
			Avg.	344	167		142		151
B1 of 83-11-11	N1	OWP IWP	334.	270 281	210 184	212	190 241	90	155 179
(1958)	51	IWP OWP	334	270 283	176 206	212	203 209	90	160 182
· .	•		Avg.	276	194		218		169
X1 of 63-13-4 (1958)	W1	OWP IWP	- 252	243 240	164 135	200	243 257	136	276 193
	W2	OWP IWP IWP		203 214 211	135 149 134	200	196 224 265	136	209 226 156
	E2	OWP IWP	- 252	201 308	164 134	200	258 224	90	199 220
	E1	OWP		300	134	· · ·	236	90.	260
			Avg.	240	144		238		217
	W1	OWP IWP	- 170	395 423	263 203	200	214 230	50.5	187 229
B2 of 63-11-4	W2	OWP IWP		401 497	244 273		220 284	50,5	175 235
(1958)	E2	IWP OWP	- 170 -	492 408	237 221	200	188 194	58	115 145
	E1	IWP OWP		401 348	193 220		216 160	58	137 143
			Avg.	421	232		213		172

1

2

3

Letters designate traffic direction; Numerals: 1 = traffic lane, 2 = passing lane. OWP = outer wheel path; IWP = inner wheel path. The tests for the two methods measured different lengths on approaches. Represents the average length of each approach at each bridge tested. For example, "65" means two 65-ft approaches, and "200" means two 200-ft approaches. 4

by averaging the values for each bridge span along the entire length of the wheel path. These individual span roughness values for each wheel path of each bridge are included on the plan views shown in Fig. 1.

Values for the truck Profilometer roughness index are taken from Professor William S. Housel's Departmental Report No. 2 on Measurement of the Riding Qualities of Bridge Decks (Nov. 1959).

Approaches

In Table 2, approach roughness indices are presented for both measuring methods, even though different bridge approach lengths were used for the two methods. These various bridge approach lengths are also shown in Table 2. Naturally, direct comparison of approach roughness values is impossible, because of this variation in the lengths measured. Roughness Comparison of Decks and Approaches

Both methods indicated that the bridge decks were generally rougher than the bridge approaches, as shown by the percentages of deck roughness in excess of approach roughness in Table 3. For the straight-edge method, there was one exception, X1 of 73-13-4, where deck and approach indices were equal. The extreme variation occurred at B1 of 25-7-3, where the deck was 142 percent rougher than the approach; however, the variation at this location is somewhat exaggerated because the approach roughness index was notably lower than for the other approaches, while the deck was considerably rougher.

-9--

Table 3 shows that the relationship between bridge roughness and approach roughness for the two methods is markedly different for several bridges. This disparity in results may be attributed to the fact that the truck Profilometer generally measured roughness over shorter distances on the approach pavements, in areas immediately adjacent to the deck. This near-deck approach region generally contains pavement of great roughness. Thus, the truck method would produce deck and approach figures more nearly equal than those obtained with the straight-edge.

 TABLE 3

 BRIDGE DECK ROUGHNESS IN EXCESS OF APPROACH ROUGHNESS*

Project No.	Straight-Edge, percent	Truck, percent
B1 of 25-7-3	142	10
B2 of 63-11-4	98	35
B2 of 9-10-5	38	30
B1 of 83-11-11	27	15
B1 of 13-3-4	18	-10
X1 of 63-13-4	. 0	-51

*The tests for the two methods measured different lengths on approaches.

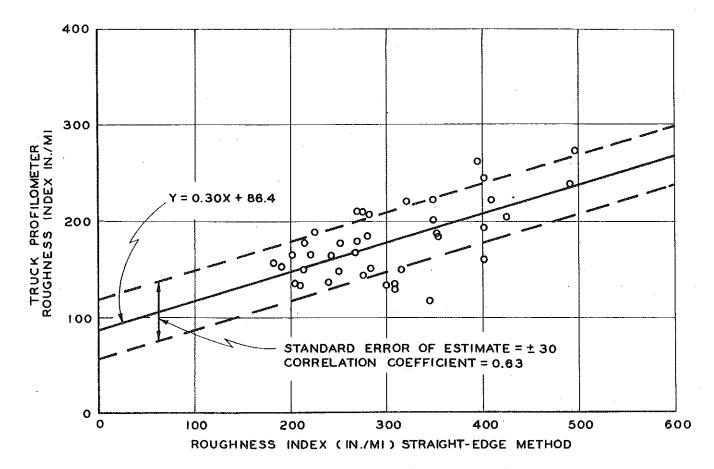
Table 4 presents various pavement roughness ratings, obtained by the Bureau of Public Roads and MSHD truck roughometers as well as the two Profilometers. The descriptive ratings for given measurements are shown for each instrument, although these measurements and ratings cannot be compared directly. Ratings shown for the MSHD straight-edge profilometer are only tentative, since this instrument has been used on an experimental basis only in the tests described in this report; more extensive testing would be necessary to determine final criteria for "good," "average," and "poor" pavement roughness values. The measurements on the six bridges generally fall in the "average" or "poor" categories, on the basis of the tentative values selected. However, readings as low as 79 were obtained on bridge approach pavement, well below the upper limit of 150 for the "good" classification.

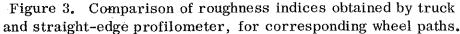
TABLE 4

COMPARISON OF PAVEMENT ROUGHNESS RATINGS OF SEVERAL AGENCIES

Rating	Bureau of Public Roads Roughometer	Truck Profilometer	Rating	MSHD Straight-Edge Profilometer	MSHD Roughometer
Exceptionally smooth	Less than 100	Less than 50			
Very good	100 - 125	50 - 75	Good	Less than 150	Less than 130
Good	125 - 150	75 - 100			
Fair	150 - 175	100 - 125	Average	150 - 275	130 - 175
Acceptable	175 - 200	125 - 150			
Poor	200 - 225	150 - 175	Poor	More than 275	More than 175
Very Poor	225 - 250	175 - 200			
Extremely rough	More than 250	More than 200			· · · · · · · · · · · · · · · · · · ·

Vertical Displacement, Inches Per Mile


COMPARISON OF ROUGHNESS MEASURING METHODS


Test results for the straight-edge and truck Profilometer methods are compared in Figure 3. Statistical analysis of these data indicates a high correlation between the two methods. A correlation coefficient of 0.63 was computed, which is extremely significant for this small sample. The standard error of estimate was determined to be ± 30 in. per mi for the truck Profilometer when compared to a given value for the straightedge Profilometer. This means truck Profilometer roughness can be predicted from known straight-edge roughness values, with a probability that 68 times out of 100 the prediction will be within ± 30 in. per mi of the reading which could be obtained by actual truck measurement.

The graph in Fig. 4 compares average roughness indices for the six bridges tested. By using an average roughness index for an entire bridge, a better correlation coefficient was obtained, in this case 0.73, with a standard error of estimate of ± 20 in. per mi.

The evidence in these two graphs (Figs. 3 and 4) indicates the close agreement on bridge roughness values which can be obtained by the two methods. Within certain limits the straight-edge method can produce the same results as the truck Profilometer. As more data is obtained, an even closer relationship will undoubtedly be established.

The straight-edge profilometer has some specific advantages over the truck Profilometer: 1) lightness and flexibility of use, 2) utility

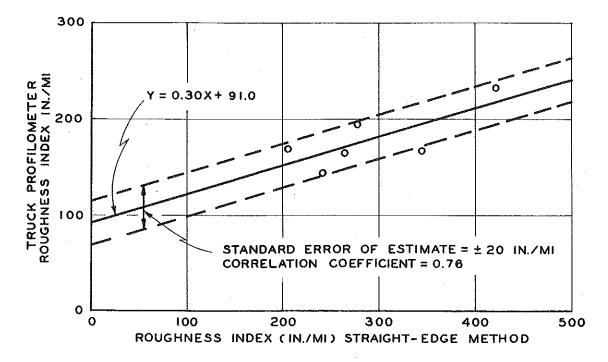


Figure 4. Comparison of average roughness indices obtained by truck and straight-edge profilometer.

prior to completion of approach pavements, and 3) easy maneuverability along a designated wheel path at any velocity desired.

Current disadvantages include several features which will be relatively easy to remedy. Counts are obtained manually and are therefore subject to human error in recording flashing lights on counters, but this source of error can be eliminated with very little expense by using electronic counters or an automatic profile recorder. The present device is also susceptible to misalignment in the vertical plane, because any tipping from the perpendicular introduces inaccurate readings of vertical slab irregularities. This source of error can be corrected by substituting dual wheel assemblies for the present single wheels. In addition, a longer wheel base would probably improve the accuracy of this instrument.