Statewide N Mransportation Analysis \& Research

STATEWIDE PROJECT
REPORT:
REGIONAL PARK
PROXIMITY ANALYSIS

STATEWIDE STUDIES
Repantaa. 6

FEBRUARY, 1973

MICHIGAN DEPARTMENT

OF

STATE HIGHWAYS AND TRANSPORTATION GUREAU OF TRANSPORTATION PLANNING

STATEWIDE PROJECT
REPORT:
REGIONAL PARK
PROXIMITY ANALYSIS

STATEWIDE STUDIES
Repontoo. 6
FEBRUARY, 1973

STATE HIGHWAY COMMISSION
E. V. Erickson

Chairman

Peter B. Pletcher

Charles H. Hewifi
Vice Chairman

CarlV. Pellonpaa

DIRECTOR

John P. Woodford

COMMISSION:
E. V. ERICKSon CHAIRMAN
Charles h. hewitt VICE CHAIRMAN PETER B. FLETCHER clavde J. tobin

STATE OF MICHIGAN

WILLIAM G. MILLIKEN, GOVERNOR

DEPARTMENT OF STATE HIGHWAYS

STATE HIGHWAYS BUILDING - POST OFFICE DRAWERK - LANSING, MICHIGAN $4 B G O 4$
JOHN P. WOODFORD, STATE HIGHWAY DIRECTOR

$$
\text { February } 26,1973
$$

Mr. Sam F. Cryderman
Engineer of Transportation Planning
Transportation Planning Division
Dear Mr. Cryderman:
The Transportation Survey and Analysis Section of the Transportation Planning Division is pleased to present a report entitled "Regional Park Proximity Analysis." The report is an example of the use of the Proximity Analysis process in determining the social impacts of a highway system. It also illustrates a possible means of increasing interdepartmental participation in the transportation planning process by demonstrating impacts upon facilities of other units of state government:

This report shows the relation of population to the site of a proposed Huron-Clinton Metropolitan Authority regional park (Mill Creek), in Washtenaw County. The analysis was conducted with the cooperation of Mr. William Colburn of the Department of Natural Resources.

Sincerely,

Keith E. Bushnell
Engineer of Transportation Survey and Analysis Section

NOTE

More detailed urban and regional modeling efforts, such as that undexway at SEMCOG (Southeast Michigan Council of Governments), typically add "terminal times" to zone-to-zone travel times. Terminal time is the average additional time necessary to reach one's ultimate destination once the centroid of a zone has been reached. For example, a shopper driving to a city must spend time finding a parking place and walking to a store. This is an important assumption, because in the densely-populated southeast region of Michigan, the amount of population contained within a given driving time is very sensitive to the inclusion or deletion of terminal times.

No terminal times are used in this analysis. However, the reader should be aware that the same process could have been rerun with terminal times included with modest additional effort.

Tablo or contenis

INTRODUCTION 1
ANALYSIS ZONE SYSTEM 2
CONSIDERATIONS AND ASSUMPTIONS
SELECTED TREE PLOT 8
PROXIMITY ANALYSIS 10

Iniroduction

In accordance with the Federal Aid Highway Act of 1970, highway agencies are required to monitor the social impacts of any proposed Federal aid transportation plans. To that end the Statewide Studies Unit has developed a process called Proximity Analysis which can measure the concentration of any socio-economic characteristic about a region of interest. This process could be used to facilitate greater interdepartmental cooperation in the planning process, resulting in decreased duplication of effort and consequent increased efficiency in allocating monetary and human resources.

As a test of this process, it was decided to consider a real situation: The possible location of a new regional (Huron-Clinton Metropolitan Authority) park in Washtenaw County. The analysis was done with the cooperation of Mr. William Colburn of the Department of Natural Resources.

The output of the analysis process takes two forms. First, the routes leading from the region of the state park are depicted in the form of a computer plot. This plot shows the shortest routes from the park to the other analysis subareas or "zones" into which Michigan has been divided (see Figure 1). Average driving times were accumulated on each link of each route and expressed in hundredths of a minute. Second, the population residing within $15,30,45,60,75,90$, and 120 minutes are summarized by the Proximity Analysis program. This second output serves as an indicator of the potential demand on the proposed park. The summary is done first for Michigan as a whole, then for only the people living in the counties composing the Huron-Clinton Metropolitan Authority (HCMA): Livingston, Macomb, Oakland, Washtenaw, and Wayne. A11 populations are 1970 data.

ANALYSIS ZONE SYSTEM

Analysiszone Sysiem

Figure 1 shows the 508 instate zones of the 547 -zone system. Only these zones were used in the analysis, because the outstate zones are very large (see Figure 2) and the shortest time path to Indiana, for instance, means little in this context. Figure 3 shows the proposed location of the park on a map of Washtenaw County.

The zone-to-zone travel times were calculated on the network shown in Figure 4. This is a plot of all links in the system, as contrasted with the plots in the next section of selected paths from the zone of the proposed park to all other zones.

Considerations And Assumptions

Abstract

Using the 547-zone Statewide Traffic Forecasting Model network, "trees", or minimum-time paths, were created from the proposed park site to every other zone in the system. These paths were than plotted using a CALCOMP plotter. Before reading the plots, however, a user unacquainted with the model should familiarize himself with certain assumptions of the process.

First, the network used includes only the state trunkline system and certain selected secondary roads, because the level of detail of the 547 zone system is not sufficient to support a richer highway system.

Second, the time needed to traverse a given link is derived from the length of the link and the average driving time on the link as determined by MDSH speed studies. It cannot be emphasized too strongly that the speed on a link is not the speed limit on that link; rather, it is the effective speed for all traffic on that link.

Third, all travel times are computed utilizing a given point within each zone, referred to as a centroid. The proposed Mill Creek park lies within zone 490, the centroid for which is north of, and 2.91 minutes from, I-94. The proposed park site is about two miles southeast of this centroid, south of I-94. Thus, travel times calculated are not those from the precise location of the park.

However, any difference between travel times shown and the true travel times from the park site is roughly of the order of two minutes (see Figure 3).

SELECTED TREE PLOT

(elected Tres Plot

Figure 5 is a plot of the shortest time paths from the proposed park site, indicated by a star, to every other zone in the system. The number along a link is the cumulative time in hundredths of a minute, needed to travel from the zone of origin (the park site) to the end of that link farthest from the proposed park. For example, consider the following blow-up of a portion of the tree for zone 490:

KEY
*-Beginning point for "Tree"

- - Node

482 a - Centroid and zone number

FIGURE 5

ZONE 490 TREE PLOT

Proximily Analysis

Considering the proposed park site as a reference point, the program uses the skimmed tree for zone 490 to determine the accumulated 1970 population of all zones having their centroids within $0-15,15-30,30-45$, 45-60, 60-75, 75-90, and 90-120 minutes driving time away. It also specified cumulative bands: $0-15,0-30,0-45$, and so on. In addition, the program subdivided the total population in each band into "urban", "suburban", and "rural" subtotals.

In the state-wide analysis (Figure 6), the population in each band is expressed as a percentage of the total population of the state. The numbers of the zones in each band are also listed, together with their driving time from the park site.

For the HCMA area analysis (Figure 7), the population in each band is expressed as a percent of the total population of the HCMA district. The zone list is ommitted here, since it would duplicate the information given in Figure 6.

In considering the program output following, three things must be kept in mind. First, as has been stated above, driving times between zones are calculated using average speeds (derived from speed studies) on all links. Second, the process does not subdivide zones: A zone is included in a given band if, and only if, its centroid lies within that time band.

For further information on the proximity analysis routine, the reader is referred to Statewide Transportation Analysis and Research report volume I-D titled "Proximity Analysis". This report also details other options available to the user in the program. Any other inquiries regarding the
proximity analyais procedure may be directed to the statewide Stadies Unit, Tranaportation Survey and Analysis Section, Transportation Planning Division, Michigan Department of State Highways.

POPULATION PROYIMITY

```
IATA FOR ZONE 4CO
OPIILATIUN= K78I
NMMBER OF SERVERS = I
TOTAL CAPACITY = I
```

TIME RANDPOPULATION	

 = 0.117 PERCENT OF POTAL POPULATIGN
 NUMAFR OF SERVERS IN BANO =
PUPULATION PER SERVER IN RANO $=10392.00$
सITHINOF 15.MTN PODULATION = 10392
NUMBE OF SERVERS
10392
1

TONE	TIME AHAY
490	0
491	0

$\stackrel{1}{\mathrm{~N}}$
$=2.835$ PERCENF OF TOTAL POPULATION
ITHIN O 3O.MIN POPULATION PER SEKVFR IN RAND $=$
WTHIN O* 30 MTN POP POLATION $=262010$
NUMREP OF SERVERS $=1$
POPULATION PER SERVER $=262010.00$

ZONE	TIME AWAY
128	29
216	29
219	27
220	21
225	22
479	22
490	24
481	24
482	27
484	30
488	23
489	21

PUPULATION PROXTNITY

```
    OATA FIR ZCNE 490
    PQPULATION=6}=678
    NUMEER OF SERVERS = . 2
    TOTAG CAPACITY =
                |
                    TIME EAND OF I5 MINUTES 
                    * 0.23\ PERCENT OF FOTAL POFULATIDN
            NUMBER OF SERVERS IN BAND = &
            POPULATIDN PER SERVER IN GAND = $0392.00
WITHIN O- 15 MIN., POPULAIION = 10392
        NUMEEK OF SERVERS 
            8
        PPULATION PER SERVER = 10392.00
            TIME BAND 15* 30 NINUTES
            POPULATIUN WITHIN BAND 
            NUMRER OF SERVERS IN GAND =
            FOPULATION PER SERVER IN BAND m 0.00
    NITHIN O= 30 MINOOPQPULATION = 170526
            NUMBEK OF SERVERS = 1
    POPULATION PER SERVER = 170526.00
            POPULATIGN WITHIN BANO = 141480 O UREAN = 29538' SUBUREAN 5 596&7 % RURAL= 52325
                                    = 3.149 PERCENT OF TOTAG POPULATION
            NUMBER GF SEFVEFS IN BAND =
            PGPULATIUN FER SEKVEK IN GANO = 0.00
WITHIN O- 4S MIN. PGPULATIUN POPULATIUN = SEKVER
            NUMEER OF SFRVERS =
        POPULATION PER SERVER = 312006.00
```

TIME EAND 45* 60 MINUTES

```
            PGPULATION WITHIM GANO= = 1328446 URRAN=487934, SUBURBAN'=763579, % FURAL = 76933
                            =29.567 PERCENT OF TOTAG POPULATION
                            NUMRER UF SERVEES IN BAND =
                            MUMRER OF SERVEKS IN BAND = 0
                            POPULATICN PER SERVER IN BAND =
                                    0.00
WITHINO. 60 MINO, POPPULATION = 164O452
            NUMEER UF SERVERS = 1
    POPULATION PER SERVER = 1640452.00
```



```
NUMRER UF SEKVERS IN GANO = 0
    EMPULATIUN HRK SEGVEK IA; SANL
    0.00
```


TINE BAND $75 \% 90$ MINUTES
 PGPULATIUN NITHIN BAND $=975830$, URQAN = 85279 SUQURRAN E 863433 ORURAL = 27113

NUMBER DF SERVERS IN BAND =
POPULATION PER SERVER IN BAND $¥ \quad 0.00$
ITHIN 0. 9.0 MIN. PQPULATION $=4199105$
NUMBER OF SERVERS =
POPULATION PER SERVER $=4199105.00$

UMBER OF SERVERS IN BAND \approx
POPULATION PER SERVER IN BAND $=0.00$
WITHIN $0=120 \mathrm{MIN}$, POPULATION $=4492998$
NUMBER OF SERVERS = 1
POPULATIQN PER SERVER $=4492998.00$

FIGURE 8 SUMMARY

MINUTES FROM SITE

STATE

NO. OF \quad \% OF
PEOPLE*
WITHIN
0-15 10,392 . 117

0-30
0-45
0-60
0-75
0-90
251,618
2.952
-
494,296
5.569

1,958,289
22.065

4,063,402
45.784

0-120
5,511,133
62.096
72.826
*Michigan people only

No. OF	\% OF
PEOPLE	TOTAL**
WITHIN	
10,392	0.231
170,526	3.795
312,006	6.944
1,640,452	36.511
3,223,275	71.740
4,199,105	93.459
4,492,998	100.000
**In HCMA	

