miCHIGAN
STATE HIGHWAY DEPARTMENT
Charles M. Ziegler
State Highway Commissioner

SLAB ACTION CR CONCRETE PAVEMENT
UNDER STATIC LOADS
by
J. D. Child

A joint research project between Engineering Research Laboratory, University of Michigan and the Michigan State Highway Department

Engineering Research Project No. M-561 Highway Department Project No. 44 F-11

Presented at the 27 th Annual Meeting of the Highway Research Board, Washington, D. C.

December 2-5, 1947

Research Laboratory
Testing and Research Division
Report No. 90
November 1, 1947

TABLE OF CONTENTS

Page
Introduction 1
Description of Equipment and Test Procedure 2
Materials and Equipment 2
Measuring Devices 5
Application of Loads 5
Measurement of Dertructive Effect 5
Subgrade Modulus 5
The Loading Program 7
Free Edige Loading 8
Corner Loading 9
Comparative Tests 10
Comparison of Model Investigation with Results of this Study 12
Results of Other Investigations 13
Limitations of this Study 13
Results of Theoretical Analysis 13
Observations and Conclusions 21
Acknowledgment 24
Bibliography 25

LIST OF TABLES

Page

Table I. Gharacteristics of Subgrade Sand 3
Table II. Mix and Test Data for Concrete Slab
Table III, Stresses Under a Single Wheel
Table IV. Stresses Under Wultiple Wheel.s

LIST OF GEAPHS

Graph 1. Bearing PLate Tests 5
Graph 2. Data for Subgrade Modulus 6
Graph 3. Single Wheel Loading Data 7
Graph 4. Data from Test on One Axle at Slab Edge 3
Graph 5. Results of lests on Two Axles at Siab Edge 9
Graph 6. Three Axle Data for Looding at Free Edge 9
Graph 7. Curves Resulting from Tests on Corner with One Axle 9
Graph 8. Results of Two Axle Tests at Comer Location 9
Graph 9. Data from Corner Tests on Three Axles 10
Graph 10. Curves'for Edge Loading 11
Graph 11. Curves for Comer Loading 11
Graph 12. Effect of Axle Spacing 11
Graph 13. Typical Data from the Model Study 12
Graph 1.4. Extensometer Resdings at Slab Corner 13
Graph 15. Westergaard's Moment Curves for the Interior 16
Graph 16. Westergard's Monent Curves for the Edge 16

LIST OF FIGURES

Page
Rigure 1. Forin for Subgrade 3
Figure 2. Wire Heating Grid 3
Figure 3. Form for Test Slab 4
Figure 4. Plan of rest Blab 4
Figure 5. Method of Grirding Surface for Gage Application 4
Figure 6. Length Change Comparator 5
Figure 7. Arrangement for Bearing Plate Test 5
Figure 8. Slab Loading for Subgrade Modulus 6
Figure 9. Load Being Applied Through a Single Tire 7
Figure 10. One Axle at Free Edge of Slab 8
Figure Il. Two Axles at Slab Edge 8
Figure 12. Three Axles on Corner of Slab 10
Figure 13. Load Spacing for Hultiple Axlos 1.6

A STUDY OF STAB ACTION IN COHCRETE PAVEMENTS

Barly in 1944 an investigation was begun to determine the destructive effect of axle loadings upon concrete slabs. The Department of Engineering Rescarch of the University of Michigan and the dichigan State Highway Department were the participants in this project. Prelininary tests were rade upon a small model and these results have been published. (1)

Briefly, these results indicated that under static conditions the addition of wheels to an axle is not an expedient method of increasing the loading capacity; that, two awles in tandem arrangenent could carry a standing load more than twice that of a single axle if a proper axle spacing wore used; and, that a three axle systen could be spaced so as to support static loads three times the single axle values.

Although the nodel served very well to indicate the relative effects of various loading arrangements and locations upon the slab, it was necessary to repeat certain experimente upon a full scale slab in order to determine absolute values which could be used in slab and vehicle design. With this purpose in mind a 9 inch uniform blab 11 feet wide by 28 feet long was cast and tested in the Highway Research laboratory at Rast Lensing.

Lodds corresponding to full highra loads were applied through actual trailer axles with dual $10.00-20$ tiren at 70 pos.i. air pressure. The loading positions were midway between the end of the longitudinal free edge and also at the comer of the slab. Single axles, two axles spaced from z-1/2 to 9 feet, and three axles spaced from 4 to 7 feet were loaded and the slab strains and deflections metsured.

Note: Numbers in parentheses refer to bibliography.

Results of the tests on the full-aize alab correlated quite well with those of the model. At a full 18,000 pound load per axle, greater stressee were produced in the slab by a single axle then by two or three axle combinations with four foot to eight foot axle spacings. At the usual four foot spacing botween axles the throe axle combination coused considerably less stress than ejther a two axle systen or a single axle when the loads were applied at the comer of the slab.

This report includes a description of the materials and equipnent used for this study, a discussion of the metnod of application of the loads and a graphical preeentation of selected data. A coraparison is made between the model study and the full scala investigation. The results of other investigations and theoretical computations are shown to corroborate certain data, and a bibliogrephy of these sources is includod.

DESCETPTION OF RGUTMENT AND TEST PROCFDUEE

Materiels and Equirment

The laboratory at East Lansing ws chosen for the site of the test slab because there was sufficient space for the construction of a large slab and facilities for applying the loads. Other investigatars had performed tests upon slabs cast out or doors, but the results were affected by warping due to changes in temperatuce and noisture. It was hoped that laboratory control would minimize this unfavorable condition.

A wooden form 15 feet by 32 feet by 2 feet was built upon the concrete floor of the laboratory. Tie bars were placed at the comers and at inner points to prevent spreading when the form was filled with subgrade material.

A systen of perforated pipes was laid upon the floor and comected to the water supply for the purpose of controlling subgrade aoisture, thereby giving sone control over subgrade modulus. This stage of construction is shown in Figure 1.

Six inchos of gravel were then placed in the bottom of the form and the remainder filled to within two inches of the top with a delocted bank run sand. This sand was chosen becauso of its similarity to that used as a cushion under highay glabs and becanse of its bearing capacity. Table I is a sumary of the properties of the sond.

TABLe I. GHARACTERTSTICS OF SUBUBADE SAND Sleve Analysis

Sieve Mo.	10	20	40	60	100	200
Percont Possing	99.43	97.57	85.30	45.15	7.80	1.55
	Density Values					

Percent Moisture	1	3	5	7	3	11	15
Density (p.c.f.)	98	104	107	104	102	101	92

In order to maintain a minimun tempereture gradient in the slab some method of control had to be devised. Prelirinary investigation showed that, the difference in temperature betreen the top and botton of the slab would be gmall, but that the Lower surface of the slab would likely be cooler than the top. Of the various nethods proposed for heating this lower surface, the one which appeared to affect the subgrade bearing capacity the least was an electrically heated wire grid. This was installed as shom in Figure 2 and it was covered with a two inch thickness of subgrade band.

A wooden form 11 feet by 28 feet by 9 inches was built upon the pre. pared subgrade. It was carefulty leveled and securely fixed. The subgrade was planed and auxiliary equipnent incidental to the tests mas installed.

Figure $]$. Fom for oubgrede mhonge tie rods, waterm proofire cho moisture control pipg layout.

Wigure 2. Wre hostine grio placoci in subgreae to control tmoneture diferentich in shab.

For the purpose of measuring strains on the bottom of the slab, SR-4 geges were attached to mortar blocks and those blocks were placed on the subgrade in such a way that the gages would be in the plane of the lower surface of the slab. Unfortunately these gages were not sufficiently insulated to give reliable reoults after a fem weeks time.

For a separate study, incidental to the loading investigation, dowel bars of various sizes and lengths were installed at one foot intervals on all edges of the slab. These bars and the mortar blocks are seen in Figure 3.

The test slab was cast using a carefully designed transit mixed air entrained concrete. Table II gives the mix and strength data. At this time five installations of thermocouples and Bouyoucos moisture cells (2) were made for the purpose of keeping accurate record of temperature and moisture differential throughout the glab and to aid in their control. A diagram of the slab and the location of measuring equipment is given in Figure 4.

Curing was accomplished by applying a membrane curing compound to the slab four hours after pouring. The relstive humidity of the room was maintained at about 70 percent and the temperature held at 75° for twenty-eight days. During this period moisture and temperature measurements were made and comparator readings were taken for length change and warping. Flat suxfaces were ground on the slab surface according to the plan of Figure 4 and $1 / 2$ inch by $1 / 16$ circular brass discs were cemented to the slab for elevation and deflection measurements. $5 R-4$ strain gages were applied and wired to junction boxes for fscility in reading. The method of grinding snooth surfaces for these installations is shown in Fisure 5.

Figuco 3. Horm for tegt slaty whthotar blocks and dowel bras in place.

TABLE II

MIX AND TEST DATA FOR CONCRETE SLAB

PLAN of TEST SLAB
Figure 4

Measuring Devices

The apparatus necessary for the measurement of moicture in the subgrade and concrete is thoroughly described jn the technical builetin to Which reference was made. Temperatures were found by reading on a standard potentiometer the small e.m.f. generated by iron-constantan thermocouples. Strains were measured by resistance changes in bonded wire SR-4 type A-1 and AR-I strain gages. These resistance changes were read directiy as unit strain by a Baldwin Southwerk SR-4 strain indicator. Federal one-thousandth dials at the slab edges and corners indicated deflections, while one-ten thousandth dials were used in calibrated ringe to deternine the load intensity. A special comparator was constructed to measure leneth change and warping. This is illustrated in Figure 6.

Application of Joads

All loads were applied by means of hydraulic jacks reactine against an "I" bean on the laboratory ceiling. Calibrated dynamoter rings served to indicate the load intensity. Although loads of any value up to 20,000 pounds could be applied, most of the toste nere made at $10,000,13,000$, 16,000, and 18,000 pound axle loads.

MEASUREMEST OF DESTRUCTIVE EFFECT

Subgrade Modulus

In order to make a comparison of test results with theoretical values, it was necessary to detomine the modulus of subgrade stiffness. This was done by two methods. First, before the alab mas poured a number of loading

Figure 5. Methor of gxincing surface for appliostion of strain gages and deflection tergetd.

Pheure ó, Jongth change and wapine mosurements being mare by mpecial comarator.
tests were made using a 30 irch plate. Pigure 7 exhibits the apparatuc, and data for two locations are show in Graph 1 . It is apparent that the modulus, k , is about 110 p.c.i. under the existing conditions.

At the end of a 28 dey curing period further tests were made by loading the slab in four locations. Having found the modulus of elasticity of the concrete, the subgrade modulus was computed from both load-deflection data and load-stress data by foxnulas developed by Westergard (3) and by the modified equations from the athington test, (4). Figure 8 is an inlustration of the apparatus used for these teste. The data are compiled and presented in Gaph 2, and the accompanying table. There appears to be good correlation between these two methods of terting since the value 110 which was obtained by the bearing plate method slso appears geveral tines in the table. From these tests the subgrade modulus values for the two soll conditions which prevailed were chosen. For the firet condition the value $k=110$ p.c.i. was used, and for the saturated condition $k=60$ p.c.i. neemed to be a fair value.

In spite of rigid control of temperature and hunidity there was some upward warping of the concrete elab. A continuous record of comparator reading and dial readings at the siab corners showed that the slab comers had raised about two tenths inches. Since the temperature differential was small, the curline was attributed to mointure and fundomental differences in the concrete caused by the method of placement. In an attempt to rectify this condition the upper surface or the slab was flooded with water and left in that state until there was no further domward movenent of the slab. The recovery was about fifty percent. A heavy coat of membrane curing compound was applied as soon as the water was removed.

Modulus of subgrade siiffness, $k=\frac{\text { unif load }}{\text { deflecion }}=110$ p.c.i. approximately

Graph 1. Thirty inch bearing plate testa for two locations on subgrade.

Figure 7 . Arorgement of diala, calibrated ring anc jack for tegts on mbgrade mith 30 inch bearing plete.

Figure 8. Methot of glab loating for the determination of subgrede modulua by thooretios formulas.

DATA FROM LOADS ON 9" SLAB through 6" DIAMETER PLATE

 IDENTIFICATION:
SAND NORMAL
$a=$ INTERIOR POINT
$b=$ FREE EDGE
$c=$ JOINT EDGE
$d=$ CORNER

$$
\begin{gathered}
\text { SAND SATURATED } \\
a^{\prime}=\text { INTERIOR } \\
b_{=}^{\prime}=\text { FREE EDGE } \\
c^{\prime}=\text { JINT EDGE }
\end{gathered}
$$

$$
d=\text { CORNER }
$$

TABULATED VALUES OF SUBGRADE MODULUS K IN P.C.I.

LOCATION	IST SUBGRADE CONDITION	2ND CONDITION	FORMULAS	
	BY DEFLECTION	BY STRESSES	BY DEFLECTIONS	USED
INTERIOR	100	110	65	WESTERGAARD
FREE EDGE	110	110	65	WESTERGAARD
JOINT EDGE	80	95	40	B.PR.
CORNER	55	60	-	B.PR.

The Loading Program

As soon as a series of slab elevation readings had been completed the loading program was begun. A preliminary series of tests vere made at aymmetric points with a metal plate for bearing area to determine the local differences in the slab and to attempt to attain good bearing between slab and subrrade.

A single $10.00-20$ tire at 70 p.e.i. inflation pressure was now located at several points on the slab and deflection and strain readings wexe taken. Figure 9 is on example of this test. The data curves are shom in Graph 3. A comparison of these curves with those of Graph 2 showe that the strains and deflections under the wheel are comparable to those under the metal plate. Apparently the greater contact area under the tire and consequent reduced unit pressure upon the slab does not cause any appreciable decrease in slab stressee below those produced under the metal plate.

This study was followed by aimilar testis on a single axle equipped with dual tires. Due to the mall strain magnitudes and the difficulty in obtaining reliable deflection measurements at interior points of the slab, tests at thess locations were discontinued, and the only data presented for these and subsequent tests are those for the edge and corner locations.

Next, two axles wre placed with outer wheels on the free edge of the slab. One series of terts was run with the axles symmetrically placed about the midale point of the edge, and another series mas made with one axle at the slab corner. A variety of axle spacings was used in each group of tests.

Finally three azles were loaded in the same test pattem as was used for two axles. The maximan axle spacing was necessarily limited because of the length of the test slab. For large spacings, the tests at the center

Figure 9. Loud being aphied through a single tiro.

DEFLECTIONS AND MAXIMUM STRAINS DUE TO LOADS ON A SINGLE 10.00-20 TIRE
AT 70 P.S.I. INFLATION FRESSURE

Groph B. Bingle meel Londing Tota
were affected by the ends, and the tests at the end were infiuenced by the center. However, a fair comparison may be made between two and three axle systems for small axle spacinge.

Free Edge Loading

Single Axle: An arrangenent for measuring strains and deflections at the edge of the slab due to a load on one axle may be seen in figure 10. A total of fifteen tests were made at edge locations for each of two subgrade conditions. In order to avoid ecentric results due to local conditions the axle was shifted to positions both sides of the lateral center line of the slab and all of these resulte were averaged for the presentation in Graph 4.

The strains from which the stresses were computed were measured longitudinally in a line on the top of the slab parallel to the edge and nine inches inward from the edge. This location was chosen because this line fell midway between the dual tires when the whels were at the edge of the pavement. Although this is not the line of mavimua strain it is sufficiently close for the purposes of these tests. It is also true that the longitudinal strains are not necessarily maximu, but calculations from 45° rosette readings gave values within 10 percent of the longitudinal magnitudes and within a few degrees of the longituainal direction.

Two sxles: A second axle was placed in tender with the first and strain and deflection readings were noted when these axles were looded simultaneously. The distance between the axles was varied from the mechanical minimun of 3-1/2 feet to a maximun of 9 feet. Figure 11 pictures one of these arrangements.

figure lo. me sxle at free edge of sinb.

Figure li, Tro axiee pleced on sleb rad loaded
propratory to mosauring strans and eflectiona,

Greph 4

Since four feet is a standerd spacing for axles on a heavy trailer, a number of tests were made ot this spacing and the averages of these results are shom in Graph 5. The macimum stresses for this arrangement do not differ significantly from those due to the single axle. However, the deflections are greater under the two axle systen than under one axle.

Three Axles: A third axle was added to the group and the loading tests were repeated for this system. The spacings for this group were from four to seven feet. Again for comparative purposer the four foot spacing was emphasized and averages of these teste are given in Graph 6.

The deflections increased over those of one axle and the two axle systems. The stresses, however, were only slightly less than the values under the single axle. The differences are not significant.

Corner Loading

Single Axle: Strains and deflections made by an axle at a coxner of the pavement slab were meacured at two corners at extreme ends of the slab. As in the case of edge loading, Graph 7 is a portrayal of average values.

An inspection of these data and a comparison with Graph 4 reveals that the comer deflections are much greater than the deflections at the edge at both high and low loads. For the softer subgrade, the maximum stresses also are greater at the comer then at the edge for corresponding loads. However, very little difference is noted for maximum stresses at the two locations when the subgrade modulus was 110 p.c.i.

Two Axles: Loads were applied to a two axle systen with one axle remaining at the comer and the second axle being inward from the first at distances from four to nine feet. Repeated tests were made at two corners and averages of these data for the four foot spacing are given in Graph 8.

STMESS IN P.S.I. DEELECTION: $1 \mathrm{~N} . \times 10^{-3}$

LOAD PER AXLEE IN PHOUSANO POUNDS

DISTAMGE IN FEET FROM CEMTER AXLE ALONG SLAG EDGE

Graph 6

Graph 7

maximun stmess im p.S.I.

MAKIRUA DEFLEGTION-IM. $\times 10^{-3}$

Deflections for this case were larger than for the single axle. Although the maximm stresses were greater than those caused by one axle when the slab was supported by the stiffer subgrale, the ptresses were considerably less than those for one axle when the tert was made upon the soft subgrade。

Three Axles: Finally, three axles were so placed that the first was on a corner and the others wexe equally spaced inwardy at distances of four, five and six feet. The armangement may be cieanly sean in Figure 12 . Aveaage data from loading tests at the four foot gpacing are shom in Graph 9.

Although the deflections for the three axle syatem are greater than the corresponding deflectiong for the single axle and two axle amangenents, the stresses are less. Apparently the deflection curve is flattened to such an extent that larger subgrade displacement is obtained with a smaller slab curvature.

Comparative Tests
Effect of Multiple Axles: Although the previously described tests provided average values for stresses and deflections for the arrangements specified, it was noted that the differences in maximun stresses as produced by the three systems at the edge of the slab were not significant. The several testis made in each group gave maximun strain values which differed substantiajly fron a mean value. However, repeated tests upon a system whose position on the slab was not disturbed usually produced results in close agreement. This fact led to the conclusion that some local condition in or below the slab, such as grouping or size of aggregate or perhaps subgrade bearing beneath the slab, influenced the strain readings.

With this thought in mind, and the object a direct comparison of the maximum stresses under the one, two, and three axle arrangements, the systems were tested in such an order that an axle once placed was not disturbed. The results of this method applied to the axles locsted at the slab edge are given in (trapls 10.

A similar set of comparative tests was made at one comer of the slab. The curves are show in Graph 11. It may be seen that the stresses are quite high for these testa. This fact nay be explained by the warped condition of the slab at this time. The irregularity of the stress curve for one axle is evidence that warping affected the results.

Loads of 17,000 pounds, 16,000 pounds and 18,000 pounds were used in this latter series of tests in order to make comparisons anong the legal loading values. These data bring out the fact that from the standpoint of slab stresses, the single axle 13,000 pound load is more severe than any other loading system tested. The detrimental effect of large deflections under multiple axle loeds has not been determined.

Effect of Axle Spacing

Although the stress and deflection curves for two ayles shown in this report ane draw from data obtained when the axles were spaced four feet apart, other apacinge were used in an effort to find the distances at which the slab strains would be the least. When the axles were located along the slab edge the minimum strain ias found to occur at a six. foot spacing, while a four foot distance between axles produced the least strain in the corner region. These figures may be easily verified by examination of Graph 12.

STRESS and DEFLECTION at the EDGE


```
LONGITUDINAL DISTANGE IN FEET BETWEEN TWO AXLES WHICH ARE PLACED WITH OUTER WHEELS ON SLAB EDGE
```


EFFECT of AXLE SPACING on MAXIMUM STRESS NEAR SLAB EDGE

A COMPARISON OF THE MODEL INVESTIGATION WITH RESUUTS OF THE STUDY

A group of curves representing data from the model study are repeated here as Graph 13. Comparisons between these curves and the corresponding curves for similar loading on the full-size slab show a marked similarity. The strain curves for the model have several times the amplitude of the curves for the lorge slab. This indicates that the model was considerably overloaded. These excessive loads magnified the differences in deflections, however, and brought out, fluctuations that are not apparent in the full-size slab study.

No conflicts are seen between data from the large slab and data from the model. The prototype study vas necessary for the determination of working values for slab design, but the relative effects of different loading arrangements are brought out clearly in the model study and are corroborated by this later investigation.

RESUETS OF OTHER INVESTIGATIONS

Static load tests somewhat similar to those made in this study heve been conducted by other investigators. A six wheel truck study was made by Teller ${ }^{(5)}$ in 1925. A six inch plain concrete slab was tested, and deflection and strain curves for one and tro axles were found. These were sinilar to those of the present study. In 1931 the N1inois Division of Highways (6) made tests on the edge of a 9-6-9 pavement when it was subjected to loading by four and six wheel trucks. Again the one axle and two axle data compare well with the results of the present investigation. A thorough study of stresses in the comer region of concrete pavements was made by Spangler (7) in 1942. These resulte were used as a guide for gage placement in the present test.

three axles at slab edge
CHANGE IN STRESS OVER THE SINGLE AXLE VALUE CAUSED EY LOAD ON A SECOND AXLE

two axles at slab edge

EFFECT OF SECOND AXLE WHEN FIRST IS AT SLAB CORNER

Numerous other studies have been made where the investigators used actual vehicles and also loading pintes to apply loads to the concrete slabs. The strains have heen measured by mechanical gages of standard and self recording types. Investigations by 0 . Graf. (10) and G. Weil(11)are particularly thorough.

LHTTATIONS OF THLS STUDY

Although the concrete alab under investigation was constructed in the laboratory, test conditions did not prove to be as ideal as anti.cipated. Jack of room precluded the possibility of maling any study under moving loads, and a curling phononenon which materially afected the stress values was encountered.

The extensometer shom in Figure 6 gave a recurd of slab waping at each comer. Graph 14 provides a typical curve. This upward movement of the comers and edges mas verifhed by a procise level. The causc of this slab distortion cannot be attributed to a temperature diferential, for continuous records showed littie or no differences in temperature readings between the top and botton of the slab. Further experimentation and analysis is necessary before a attisfactory solution to the causes of such behavior can be presented.

RESULTS OF THEOETYGA ANALYSIS

The foregoing section suggests that the streins ineasured in this experinent were not total strains. The uprard worping of the slab no doubt produced stresses causing tensile strains on the upper surface. These

vertical movement at corner, $y=\frac{L}{h}\left(x_{t}-x_{b}\right)$
WHERE L = DISTANCE IN INCHES FROM CORNER TO START OF CURL. $h=$ SLAB THICKNESS IN INCHES. x_{t} AND x_{b} ARE DISPLACEMENTS AT TOP AND BOTTOM OF SLAB.

EXTENSOMETER RECORD at SLAB CORNER

values should be added to those neasured under corner londing and subtracted from the edge loading values. Such wapping strains were not measured because of the failure of the gages inbelded in the concrete.

For the purpose of this study of the relative effects of static loads it was not necessary to know the total stresses. However, their magnitudes are of interest and a theoretical examination of the slab stresses is presented.

The Westerguaro Lormulas (3) provide a theoretical. check on sone of the results of this axporimental study. It must be remembered that these formulas wore developed under the assumption that the slab was of infinite extent and that the cubgrade prossure was proportional to the deflection. The finite dimencions of the test glab and the curling of the edges necessarily modified these resulte.

Strensen at the slab comer, intorior, tronsverse edge, and longitudinal edge produced by a single loating area were conputed by the following fommas:

$$
\begin{aligned}
& \text { Corner stress }=\frac{3 P}{h^{2}}\left(1-\frac{a v 2}{t}\right) \\
& \text { Interior stress }=0.31625 \frac{p}{h^{2}}\left(4 \log \frac{t}{b}+1.0693\right) \\
& \text { Edge stress }=0.57185 \frac{p}{h^{2}}\left(4 \log \frac{t}{b}+0.3593\right)
\end{aligned}
$$

where $P=10 a d, h=s l a b$ thickness, a and b are functions of the Ioading area and

$$
t=4 \sqrt{\frac{e_{1}^{3}}{12\left(1-u^{2}\right) x}}
$$

For these computations $P=10,000$ pounds; $h=9$ inches; a and b are average values from Bradbury (1.3); the modulus of elasticity of concrete, $E=5.25 \times 10^{6}$ p.s.i.; Poisson's ratio, $u=0.15$, and the subgrade modulus, $k=110$ p.c.i. The tables presented by Kelley (12) were used to facilitate the computation.

The samo data were used in the modified versions of these formulas Which evolved from the Arlington tests (4). Thege equations are listed herewith:

$$
\begin{aligned}
& \text { Corner stress }=\frac{3 P}{b^{2}}\left(1-\frac{a \sqrt{2}}{t}\right) 1.2 \\
& \text { Interior stress }=0.31625 \frac{p}{h^{2}}\left(4 \log \frac{t}{b}+0.1788\right) \\
& \text { Edge stress }=0.57185 \frac{P}{h^{2}}\left(4 \log \frac{t}{b}+\log b\right)
\end{aligned}
$$

The results of these computations together with the results of experiment are presented in the following table:

TABLE IET
Stresses Under a Single Wheel with 10,000 1b. Load

Westergaard fomalas	Arlington formilas	Test Slab (Experimental)
222 psi.	311 psi.	350 psi.
166	142	250
194	238	330
234	27.	350

It is readily seen that the neasured strosses exceeded the values computed by both methods, although the Arlington fomulas give a closer approach to the experimental values than the Westergard results.

Loads on Two Wheels

When the slab was loaded through two wheels on a single axle, these stresses were somewhat nodified. Computations are shown herewith for principal stresses due to a 20,000 pound axle load at the interior, and at longitudinal and lateral edges of the glab.

Interior Location: Consiaer the stresses at point l (Figure 1\%) due to 10,000 pound loads at positions 1 and 2 only. The stresses due to the load at 1 were found previousty and are equal in all directions. Let us coll this value S_{1}. Stresses at 1 due to load a which is 72 inches in the y-direction from 1 are found with the help of Westorgardts $(3)_{\text {moment }}$ curves show in Graph 15.

For this slab the radius of relative stiffers $t=41.5$ inches. The distance from 1 to 2 is 72 inches $=1.74 t$. Hence, $M_{r}=M_{y}=-.021$ and $M_{t}=$ $M_{\mathrm{X}}=+.020$. The section modulus for the rectangular section, $\frac{h^{2}}{6}=13.5 \mathrm{in} .^{2}$. Then $S_{y}=\frac{-.021 x 10,000}{13.5}=-16$ p.s.i. Stmilerly $\mathrm{S}_{\mathrm{x}}=+15$ p.s.i., conse quently the principal stresses at 1 expressed as functions of S_{1} are,

$$
\begin{array}{r}
\text { Longitudinally: } S_{1}+S_{x}=S_{1}+1.5 \\
\text { Laterally: } S_{1}+S_{y}=S_{1}-16
\end{array}
$$

Longitudinal Pdge: The longitudinal stress Se under load J due to the load at 2 when point 1 is on the longitudinal edse of the slab has been

LOAD SPACING for MULTIPLE AXLES

Graph 15

previously computed. The effect of lood 2 at position 1 is found in a manner siniler to that for an interjor location. Wheel 2 is at an interior point, and its effect on I will approfimate the value found in the interior case, namely $15 \mathrm{p} . \mathrm{s}_{\mathrm{i}}$. The Longitudinal stress will then be $\mathrm{S}_{\mathrm{o}}+\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{e}}+$ 15.

Trensverse Edge: When londs I and a are on the transverse edge, the load at 1 produces strass S_{0}. The influence of load 2 is found by use of Graph 16, which is draw by interpolation fra Westergard's graphs in order to obtain a direct reading curve for $u=0.15$. At distance 1.7 . 4 , the coefficient $\frac{M}{P}=-0.057$, hence $S_{X}=\frac{-0.057 \times 10,000}{18.5}=-42$ p.s.i. Then the total transverse stress at 1 is $S_{e}-42$ p.s.i.

Loads on Four Wheels
Interior location: Consider loads at interior positions 1, 2, 3 and 4. The accumbation of stresses due to loads at 1 and 2 have been found. We now find the effects of loads at 3 and 4.

Figure 13 shows load 3 to be 48 inches fron 1 . Since 48 inches $=$ 1.156t, we find from Graph 35 that $\frac{M_{y}}{P}=\frac{M t}{P}=0.044$ and $\frac{M x}{P}=\frac{M r}{P}=-0.01$. Hence $S_{y}=\frac{0.044 \times 10^{4}}{13.5}=37$ p.e.i. and $s_{x}=\frac{-0.01 \times 104}{13.5}=-7.4$ p.s.i.

The effect of the load at 4 upon position 1 is alightly more complex. In this case the tangential anc radial stresses are not in the x and y directions but make angles of 34° with those axes. Position 4 is 86.5 inches $=2.03 t$ fron 1 ao by Graph 14 again $\frac{M t}{P}=0.012$ and $\frac{M r}{P}=-0.022$ whence $S_{t}=+9$ and $S_{y}=-16$. Since the principal stresses from positions 2 and 3 are on the x and y directions, the effects of S_{t} and S_{r} in these directions
must be computed before the longi.tudinel and lateral stresses can be accumulated. The stresses in directions x and y due to load 4 are:

$$
\begin{aligned}
& X=9 \cos ^{2} 34^{\circ}-16 \sin ^{2} 34^{\circ}=1 \\
& Y=9 \sin ^{2} 34^{\circ}-16 \cos ^{2} 34^{\circ}=-7
\end{aligned}
$$

and shear $\mathrm{T}=1 / 2(-16-3) \cos ^{2} 3 x^{\circ}=-9$

The accumulated stresses in the x and y directions are:

$$
\begin{aligned}
& S_{x}=S_{1}+15-7+1=S_{1}+9 \\
& S_{y}=S_{1}-16+33-7=S_{1}+10
\end{aligned}
$$

and $T=9$

The principal stresses are found by the formula

$$
\begin{aligned}
& S_{\max }=\frac{S_{x}+S_{y}}{2}+\frac{S_{x}-S_{y}}{2}+T^{2} \\
& S_{\min }=\frac{S_{x}+S_{y}}{2}-\frac{S_{x}-S_{y}}{2}+T^{2}
\end{aligned}
$$

$$
\text { Whence } S_{\max }=S_{1}+19 \text { and } S_{\min }=S_{1}+0.5
$$

Longitudinal Edge: The longitudinal stress is necessarily maximum at the edge of the alab. The load at 2 adds 15 p.s.i. as was shown in the two wheel case. Load 3 is at distance 1.156t from 1, hence from Graph $16, \frac{1 / \mathrm{P}}{\mathrm{P}}=$ -0.012 and $S_{x}=\frac{-0.012 \times 10^{4}}{13.5}=-8.9$ p.s.i. The effect of load 4 is not determined, but from the computations above, for the interior, it is
apparent that it is small. An approximate value for stress at the odge is then

$$
S_{X}=S_{e}+15-9=S_{0}+6
$$

Loads on Six Wheels

Interior: When the ioad is distributed through six wheels, the greatest stresseg are at positions 1 and 2 (Figure 13). Consider the stresses at point 1 . Compatations for stresses under four wheel loading may be used for this calculation. The stresses at 1 due to load 1 are S_{l} in all directions. Load 2 contributes +15 p.s.i, longitudinally and -16 p.s.i. laterally. Loads 3 and 5 each affect 1 by longitudinal stresses of -7 and lateral stressez of +33 . Loads at 4 and 6 produce tangential and radial stresses of to and -16 respectively, and the t and x axes make angles of -34° and $+34^{\circ}$ respectively with x. These stresses, accumulated, are equivalent to $S_{x}=2, S_{y}=-14$, and $T=-18$. Finally, the sum of all the stresses at I is:

$$
\begin{aligned}
& S_{x}=s_{1}+15-14+2=s_{1}+3 \\
& S_{y}=s_{1}=16+66-28=s_{1}+22 \\
& T=18
\end{aligned}
$$

The principal stresses are:

$$
S_{\max }=S_{1}+3.1 \quad S_{\min }=S_{1}-6
$$

Longitudinal Edge: For three axles at the longitudinal edge it is sufficient to compute the longitudinal stress under 1 . The stress due to
load 1 is S_{e}. By Graph 15 that due to 2 is +15 . Loads at $\%$ and 5 each cause $\frac{M}{P}$ to be -0.012 from Graph 16 , whence aach $S_{X}=\frac{-0.022 \times 10,000}{13.5}=$ -8.9. The effects of 4 and 6 must be approximoted by the method used for interior loads. From above the effect of these two loads in the longitudinal direction was only 2 p.s.i, Hence the total longitudinal stress due to all loads is:

$$
S_{x}=S_{e}+15-18+2=S_{e}-1
$$

Tabulation of Computed Stresses

The foregoing computations were rade in terms of a variable S_{1} or S_{e} in order that we might make a comparison between the fomulas for stress computation. A tabulation of these results is given below:

TABLE IV
Stresses Under Multiple Wheela with 10,000 ib. Load Per Wheel
Lhaximun Maximum Computed Stress
Load Type Position Experimental Stress Westergaard Arlington

1 axle	Interjor	\ldots	182	157
1 axle	long. edge	220	209	253
1 axle	trans. edge	\ldots	192	229
2 axles	Interior	\cdots	185	161
2 axles	Iong. odge	230	200	244
3 axles	Interior	\cdots	198	173
3 axles	long. edge	220	193	237

It is readily seen that the Public Roads formula yields greater stresses than Westergaard's except for the interior location, and in all
cases of multiple wheel loading our experimental values lie between the values computed by these formas.

OBSERTATTONS AND CONCLUSIONS

The greater part of this report has been limited to the effecte of one axle, two axles at an axle spacing of four feet, and three axles at a four foot spacing. Except where othorwise stated, all observations and conclusions given here are restricted to a discussion of results found under these limitations. The outstanding results are as follows:

1. A comparison of the curves presenting average values shows that the maximum stresses for a constant axle lond ore produced by a single axle on the comer of the slab.
2. Stresses due to corner loading by all three bystens were considerably greater wher the alab restod on a subgrade with modulus $\mathrm{k}=$ 60 p.c.i. than they were when $k=110$ p.c.j.
3. At $k=110$ p.c.i. atresses due to comer loading did not greatly exceed those due to edge loading for any of the three systems tested, but at $k=60$ p.c.i., corner loading produced greater stresses than edge loading.
4. The special comparative tests, the date for which were given in Graph 10, indicate the following relationships for edge loading:
(a) The maximum stress for the two axle systern under loads of 18,000 poundia per axle did not exceed that for the single axle at 18,000 pounds.
(0) The three axle systen at 18,000 pounds per axle caused less stress than either of the other two systems.
(c) The maximum deflection under the two axle system was twice thet under the single axle, but the three axle system did not cause a corresponding increase in deflection.
5. The corner loading tests which furniched the data for Graph 11 showed the following:
(a) The single axle produced a greater naximum stress than either other systen.
(b) Three axles at 18,000 pounds each produced less than 70 percent as great a maximum stress value as the single axle, and two axles at 18,000 pounds each caused a maximun stress which was more than 90 percent of the single axle value.
(c) The deflections under two arles were twenty percent greater than under one axle, but the three axle deflections were only ten percent greater than those for a single axle.
6. Upward warping of the silab at the ends affected tho total stresses, but measured values were found to lie between those computed by the Public Roads and Westergard Pomulas.
7. The resuits of this atuay are so nearly those that might have been predicted by the model investigation that model studies are recommended for further investigation in slab gtresses.
8. Strains as measured by the $\operatorname{SR}-4$ type A-1 and AR-1 gages vary somewhat due to locel conditions. Strain differences as high as ten
micro-inches per inch were \mathcal{I} ound, and when the strains due to loading were small, these local differences caused decided incegularities in the curves.
9. The intensity of maximum stress caused by the two-axle systems was influenced by the axle spacing. The optimun distance between axles is about five foet.

Throughout this atudy the research staff has been guided by the suggestions of m . 0. Fremont, and his help in outlining procedures and criticism of results is gratefully comomledged.

Special equipment for this investigation was constructod by P. C. Filter and A. G. Davis. These men participated in the entire testing program and their aid in the simplification of tecmicue and in the compilation of data is apreciated.

IITBLIOGRAPHY

(1) Michigan State Fighway Department -. A Hodel Study of Slab Action in Concrete Pavements - Proceedings of the Highway Research Board - 1945.
(2) Bouyoucos and Mick, Michigan State College Agricultural Experiment Station, Techmical Bulletin No. 172 -- April, 1940.
(3) H. M. Westergard - Computation of Stresses in Concrete Roads Proceadings of the Highway Research Board -- 1925.
(4) Teller and Sutherland -- The Structural Design of Concrete Pavements. Part 5 - Public Roeds - Amil, 1943.
(5) L. W. Teller .. The Bix Theel Truck and the Pavenent - Public Roads Octobor, 1925.
(6) Illinois Division of Bighwys - Tnvestigation of the Effect of Wheel Loads Applied to the Pavenent by Six Wheel Trucks -- Mimeographed 1931.
(7) M. G. Spongler - Stresses in the Cormer Bogion of Concrete Pavements. Iowa Enginearing Experament Station - Bulletin 1.57-1942.
(8) W. O. Frenont - Effect of Various Axle Lowings m Highway Pavenents. Michigan State Fighway Department - Fesompoh Report F--25-1942, Mineographed.
(9) Spangler and Lightburn - Stresses in Concreto Pavenent slabs. Proceedings of Highway Research Board - 1937.
(10) 0. Graf - Aus Versuchon mit Betondecken dex Reichskraftfohrbahnen, durchgeführt in den Jahren 1934 und 1935. -- Zenentverlag GmbH., BerlinCharlottenburg 2.
(11) G. Weil -- Einrichtungen zur Messung der Beanspruchung von BetonFahrbahplatten. - 1936 -- Zementrerlag CmbH., Berlin-Charlottenburg 2.
(12) E. F. Kelley - Application of the Results of Research to the Structural Design of Concrete Pavenents - Public Roads - July, 1939.
(13) R. D. Bradbury -- Evelustion of Wheel Lond Distribution for the Purpose of Computing Stresces in Concrete Pavenents -- Proceedings of the Highway Research Board - 1.334.

