COLLEGE OF ENGINEERING

COST-EFFECTIVENESS PAVEMENT MARKINGS

by

Tapan K. Datta, Ph.D., P.E.

Utpal Dutta, Ph.D.

Haluk Aktan, Ph.D., P.E.

Prepared in cooperation with

The Michigan Department of Transportation

and

U.S. Department of Transportation

Federal Highway Administration

June 1988

NOTICE

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Michigan Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

1. Resort No.	2 Government Accession	No. 3 Recipient's Cotalog No.				
FHWA-MI-RD-88-05						
4. Title and Subtitle	<u> </u>	5. Report Date				
		June 1988				
Cost-Effectiveness Pavem	ent Markings	6. Performing Organization Code				
1						
7. Author's Tapan K. Datta, Ph.[Haluk Aktan, Ph.D.,)., P.E., Utpal Du P.E.	tta, Ph.D.&				
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)				
Wayne State University	Wayne State University					
Department of Civil Eng	ineerina	11. Contract or Grant No.				
Detroit, Michigan						
		13. Type of Report and Perior Covered				
12. Sponsoring Agency Name and Address		, Final Report				
Michigan Department of		1 Report				
U.S. Department of Tran						
Federal Highway Adminis		14. Sponsoring Agency Code				
Washington, D.C. 20590						
15. Supplementary Notes						
		· ·				
•	·					
16. Abstroct						
The objective of this	s study was to dev	elop a software using DBASE III Plus				
for pavement marking	management infor	mation system. Six data bases were				
developed as a part	of this effort to	store marking and cost-related in-				
formation. A soft	ware named Davier	ont Manking Managament Jafannatia				
Suctom (DM MIC) was	also dosignod with	ent Marking Management Information				
System (FM-M13) was	arso designed with	the following capabilities:				
a Data onthu						
• Data entry						
• Editing						
Updating	•					
Deleting						
Long-term bu	dgeting					
• Cost-effecti	veness analysis					
·	·					
Furthermore, a liter	ature search was	conducted and guidelines for various				
marking material use	, as practiced by	various agencies, were identified.				
	•	3 ,				
17. Key Hords	18.	Distribution Statement				
Dayoment manking data	baso					
Pavement marking, data						
DBASE III Plus, budgeti	ny,					
cost-effectiveness anal	ys15					
e)t.						
19. Security Classif, (of this report)	20. Security Classif. (c	of this page) 21. No. of Pages 22. Price				
Unclassified	Unclassifi	ed				

133

;
-
,
第 .

METRIC CONVERSION FACTORS

	Approximate	Conversions to A	Aetric Measures		9	23		Approximate Co	onversions fro	m Metric Measure	15
Symbol	When You Knov	Multiply by	To Find	Symbol	8	22	Symbol	When You Know	Multiply by	To Find	Symbol
					8	20			LENGTH	···	
		LENGTH				19 18 18 17 16 16 16 11 11 10 10 19 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	. mm	millimeters	0.04	inches	in
		*2.5				=18	m m	centimeters meters	0.4 3.3	inches feet	in fl
in h	inches feet	30	centimeters centimeters	cm cm	7		m	meters	1.1	Yards	γd
yd	yards	0.9	meters	m		Ē17	km	kilometers	0.6	miles	mi
mi	mile4	1.6	kilometers	km		≣ ′′					
						≣16			AREA		
		AREA	_		-==	=	•	-	2.10	····	
		c z	<u>-</u>	,	· =	16	ws cws	square centimeters square meters	0.16 1.2	square inches	Acts IVT
ini 	Minere Inchet	6.5 0.09	Fquare Centimeters	em ²			km²	square kilometers	0.4	square yards square miles	Wig.
Any Hy	squara feet Squara yards	8.0	square meters	m²		≣14	he	hacteres (10,000 m ²)		acres	****
m/l	equare miles	2.6	square kilomaters	km²				•			
	acres	0.4	hectares	ha	5	13					
		MASS (weight)			=	12		<u> </u>	MASS (weight	: <u>} </u>	
		mixtoo (mengine)				<u>=</u>		ameno	0.036	ounces	
o.	buntet	28	Br ew t	g	=	11	û kg	kilograms	2.2	pounds	t) 10
B	pounds	0.45	kilograms	kg	-	≣—	t .	tonnes (1000 kg)	1.1	short tons	
	thort tont (2000 lb)	0.9	tonnes	t	4	=10		-			
	(1000 10)								VOLUME		
•	-	VOLUME				<u> </u>			VOLONE		
IIP	leasouns	6	milliliters	ml			ml	milliliters	0.03	fluid ounces	11 ez
The	tablespoons	16	militars	ml	3	=	ı	liters	2.1	pints	ρt
flox	fluid ounces	30	milliliters	ml	<u> </u>	= ,	i	litors	1.06	quarts	1p
c	cups	0.24	liters	ŧ		≣′	1	liters	0.26	gallons	eal
ρŧ	pinti	0.47	litors	ŀ		Ξ ,	այ այ	cubic meters	36	cubic feet	m³.
qŧ _.	Quarts	0.96	liters	ı		<u> </u>	m.,	cubic meters	1.3	copic Asige	Aqı
gel 4.3	galluns	38	liters	,	_ =	= _					
A9) 1/3	cubic feet cubic yeards	0.03 0.76	cubic meters	այ այ	2	<u> </u>		TEMP	ERATURE (xact)	
••	•	PERATURE (ex	•	•••	***************************************	4	°C	Celsius	9/5 (then	Fahranhait	٥Ł
	I E M	LIMIONE (EX	ac.()				-	temperature	edd 32)	temperature	•
٥F	Fahrenheit	6/9 (after	Celsius	oC .		≣3				····	
	temperature	subtracting	temperature	-	1 — =	=					٥f
	•	32)				2			12	98.6	212
4		· · · · · · · · · · · · · · · · · · ·				—		-40 O	40 80	120 160	200
			ions and more detail to		=	- = 1		10	 	40 60	± 71-1-1 (160 100
		eight and Measure	L Price \$2.26 SD Cota	οų	inches =	E cni		4020 9C	! 20	140 00 37	#C
NE C13 I	U 486.				H1C1103	== ==		- ∪		-·	

1
55 55
1
는 사람 설
*** ***
3 ₄

Table of Contents

<u>Page</u>	
ntroduction1	
Establishing System Requirements	
General Guidelines	
eferences	

		4				
				•		
	·			·		
	,					
						: .
					•	es alter en
					•	
				·		
	·		·			
)

List of Figures

<u>Figure</u>	<u>.</u>	age
1	Service life curves for 35" snowfall	12
2	Service life curves for 50" snowfall	13
3	Illustration of economic model	15
•		
·	List of Tables	
<u>Table</u>		Page
1	Description of the Lane/Edgeline Subsystem Data Item	2
2	Description of the Lane/Edgeline Subsystem Contractor Information File	4
3	Description of the Special Marking Subsystem Data Item	5
4	Description of the Special Marking Contractor Information File	7
5	Description of the Ramp Lane/Edgeline Subsystem Data Item	8
6	Description of the Ramp Lane/Edgeline Subsystem Contractor Information File	10
7	Comparison of costs of thermoplastic and conventional paint striping	17
8	Comparison of service life and costs of pavement-marking materials by ADT level	18
9	Cost comparison of striping materials	19

		·			
			·		
	·				
				·	196 (197) (198) (198)
					11 11 13 13 13 13 13
			·		
				·	
	•				
	 ,		•		

Introduction

In 1986, the Michigan Department of Transportation (MDOT) retained the services of Wayne State University to develop a software for a pavement marking management information system. The primary activities of this contract consisted of: 1) establishing system requirements, 2) designing system and developing software, 3) providing system training and documentation, and 4) developing guidelines for pavement marking material use.

Establishing System Requirements: A meeting was conducted between the Contractor and Michigan Department of Transportation personnel at Wayne State University, Detroit. The Contractor demonstrated the proposed software and obtained comments from MDOT personnel on the required data elements and report format. This information was later used to design the software.

<u>Designing System and Developing Software:</u> A software called "Pavement Marking Management Information System (PM-MIS)" was designed as a part of this activity. PM-MIS consists of three subsystems to represent three types of marking configurations, namely:

• Lane/Edgeline Subsystem (LES)

- Special Marking Subsystem (SMS)
- Ramp Lane/Edgeline Subsystem (RES)

Each subsystem is equipped with auxiliary programs designed to add, modify and extract data items. It is designed for use on IBM-XT (or compatible) microcomputer and structured with DBASE III Plus file management system.

Each subsystem consists of two data files, totaling six data files for the three subsystems. File number one (PAVMARK.DBF, SPECMARK.DBF, RAMP.DBF) stores marking-related information, i.e., PAVMARK.DBF stores Lane/Edgeline information, SPECMARK.DBF stores Special Marking information, and RAMP.DBF stores Ramp Lane/Edgeline information. File number two stores cost information related to each marking type. Data elements of each subsystem are presented in Tables 1, 2, 3, 4, 5 and 6.

				- T
				N
				7 TO 1
		÷		
				enn rån
	•	·		1 (1) 1 (1) 1 (1) 1 (1) 1 (1)
	•			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	·			
		,		ī. .: - :
			·	
				• 1 •
		·		(1) 1) 1)
				1, - -
				• :
				iing.
				.*!

Column Heading	Data Type	Data Limitation	Description
District	Alpha-Numeric	None	The name of maintenance district.
County	Alpha	None	The name of the county.
Route	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha	The name of the route (such as US-23).
Alt #1 (sometimes a road segment has more than one name)	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha	The first alternate name of the route, if any.
Alt #2 (sometimes a road segment has more than one name)	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha	The second alternate name of the route, if any.
Control Section	A1 ph a	None	An unique number assigned to a road segment by MDOT.
Segment Description	Alpha	None	A brief description of the road segment.
Milepoint	Numeric	No Alpha	Digit 1 - begining of section. Digit 8 - end of section.
Traffic Direction	Numeric	No Alpha '	Roadway configuration (such as 2-way, 1-way).
Number of Lanes	Numeric	No Alpha	Total number of lanes.
Marking Width	Numeric	No Alpha	Width of the marking in inches.
Center Lane Left Turn Option	Al ph a	Y/N	Provision of left turn center lane.

		1, 1 5
	•	
		:
		13
		<u> </u>
		· · · · · · · · · · · · · · · · · · ·
		24
		j.

U.S. DEPARTMENT OF TRANSPORTATION

FEDERAL HIGHWAY ADMINISTRATION

SUBJECT Basic Properties of Pavement Components

FHWA NOTICE

September 29, 1972

HRS-20

Pavement design requires that an engineer analyze pavement structures in terms of parameters which permit realistic estimates of performance. This investigation has attempted to define some of these parameters; namely, (1) those properties of saturated granular materials which contribute to deflections of asphalt pavements under moving traffic, and (2) those factors influencing the ultimate properties of asphalt concrete mixtures in tension. Because of the dissimilar nature of these two objectives of the investigation, the report is divided into two parts.

Some of the more important findings of Part I were as follows: (1) Water content, while causing a reduction in modulus as it was increased, did not cause a marked reduction in stiffness when the material was saturated. That is, liquefaction under repetitive loading was not obtained and pore water pressures were observed to be relatively small. (2) One laboratory specimen can be used to assess the resilient response of saturated granular materials over a range in both axial and radial stresses. Reasonable estimates of resilient response for a particular stress state can be determined after 50 to 100 repetitions of stress. (3) Resilient Poisson's ratio is dependent on stress, varying from 0.25 at low principal stress ratios. In addition, Poisson's ratio is dependent on water content; however, this ratio exhibits less tendency to increase in value with principal stress ratio as the water content of the aggregate is increased.

From the results of Part II it may be concluded that the ultimate tensile strength and strain of asphalt mixtures can be estimated from the stiffness of the asphalt contained in the mixture. This procedure requires that the tensile strength of the asphalt concrete be measured at one specific temperature and time of loading. It would appear that this procedure is applicable to an asphalt stiffness of about 7500 psi.

Results of an analysis of the fracture and fatigue data indicate that tensile fracture data obtained for asphalt mixes tested at temperatures less than 70°F can be used to estimate the fatigue response of asphalt concrete using crack-growth models developed for other materials. Thus

- more -

DISTRIBUTION: Headquarters
Regions
Divisions

it seems possible to predict the fatigue response of asphalt mixtures from fracture tests which are short-term rather than the necessarily long-term fatigue tests. Moreover, such an approach provides a quantitative description of the fatigue process and from a practical standpoint has the potential to predict the extent of cracking in a pavement rather than only the onset, as is done with current procedures. It was emphasized, however, that quantitation of the method requires additional experimentation.

Ultimate strength analyses of bituminous surfacings were carried out for typical problems including a pavement containing cement-treated base and a runway pavement section subjected to braking tractions. A plane stress finite element analysis was used with incremental load application and nonlinear material properties. In each case the pavement section was loaded to failure and the sequence of cracking outlined. The analyses indicated the importance of the boundary conditions and materials properties including bond slip at interfaces, in the mode and sequence of failure of the loaded system.

The report constitutes the results of a 3-year contract with the University of California at Berkeley and the FHWA's Office of Research. Parts I and II are condensed versions of doctoral dissertations by Mr. R. G. Hicks and Mr. Y. M. Salam, respectively, which were conducted under the direction of Professor C. L. Monismith. Both parts represent the efforts of well-conducted and well-documented research studies.

Distributed with this Notice are sufficient copies of the report to provide a minimum of one copy to each regional office, one copy to each division office, and two copies to each State highway department. Direct distribution is being made to the division offices. Additional copies are available at the National Technical Information Service, Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22151. A small charge will be imposed for each copy ordered from NTIS.

Charles F. Scheffey Director of Research

Attachment: Special Distribution (under separate cover)

Table 1. Description of the Lane/Edgeline Subsystem Data Item (Continued)

Column Heading	Data Type	Data Limitation	Description
Estimate Quantity in Feet	Numeric	No Alpha	This represents the quantity in LFT of marking by type, such as:
			Solid white - Broken white - Solid yellow - Broken yellow -
Road Surface	Alpha	(B,C,L,R)	The roadway material (such as bituminous, concrete, etc.).
Material	Alpha	No Numeric	The marking material (such as fast dry, polyester, etc.).
Product Brand	Alpha-numeric	None '	Brand of the marking material is divided into two broad categories based on color:
			White - Yellow -
			A typical brand could be <u>3M</u> , etc.
Contract Number	Numeric and Alpha	5 Numeric 1 Alpha	The contract number assigned to a particular painting job.
Date	Date	-	Date variable consists of only two segments; month and year of marking.
Cycle	Numeric	No Alpha	When information on a road segment marking is entered into the system, the system sets cycle to 1. However, when the same section of the roadway is repainted, the system sets cycle to (current year - previous year of painting).

L

Table 2. Description of the Lane/Edgeline Subsystem Contractor Information File

Column Heading	Data Type	Data Limitation	Description	
Contractor Name	Alpha-Numeric	None	The name of the contractor.	
Federal Project Number	Alpha-Numeric	5 Numeric & 1 Alpha	The federal project number relate to a specific contract.	
Unit Cost	Numeric	No Alpha	This variable provides the cost/LFT information regarding the yellow paint and white paint.	
Mobilization Cost	Numeric	No Alpha	This represents the cost of mobilization.	
Minor Traffic Cost	Numeric	No Alpha	This represents the cost related to temporary traffic barricading, etc. while marking the roadway.	

Column Heading	Data Type	Data Limitation	Description
District	Alpha-Numeric	None	The name of maintenance district.
County	Alpha	None	The name of the county.
Route	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha .	The name of the route (such as US-23).
Alt #1 (sometimes a road segment has more than one name)	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha	The first alternate name of the route, if any.
Alt #2 (sometimes a road segment has more than one name)	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha	The second alternate name of the route, if any.
Federal AID System	Al pha	No Numeric	A special code for the federally funded projects.
Control Section	Alpha	None	An unique number assigned to a road segment by MDOT.
City of Township	Alpha	No Numeric	The name of the city or township.
Cross Street or Railroad Crossing	Alpha-Numeric	None	The name of the nearest cross street or rail- road crossing.
Surface	Alpha	None	The name of the roadway surface material (such as bituminous, concrete, etc.).
Geometry	Numeric	No Alpha	This represents the roadway configuration (such as 2-way, 1-way).

ហ

Column Heading	Data Type	Data Limitation	Description
Number of Lanes	Numeric	No Alpha	This represents the number of lanes.
Intersection Leg	Alpha	No Numeric	This represents the compass direction of the intersection leg (such as N for North, S for South, etc.).
Affected Lane	Alpha-Numeric	1 Numeric & 1 Alpha	This represents the number and the type of lane affected by the special marking.
Distance from Cross Street	Numeric	No Alpha	Distance of the special marking from the nearest cross street.
Marking Type	Alpha	No Numeric	This represents the type of special marking (such as S for School, LTO for left turn only, etc.).
Contract Number	Alpha-Numeric	5 Numeric & 1 Alpha	The contract number assigned to a particular job.
Quantity (Each)	Numeric	No Alpha	The number of special markings.
Quantity (Linear Ft)	Numeric	No Alpha	The amount of marking in LFT.
Milepoint	Numeric	No Alpha	This represents the reference point of a mark-ing.
Cycle	Numeric	No Alpha	When information on a road segment marking is entered into the system, the system sets cycle to 1. However, when the same section of the roadway is repainted, the system sets cycle to (current year - previous year of painting).

6

Table 4. Description of the Special Marking Contractor Information File

Column Heading	Data Type	Data Limitation	Description	
Contractor Name	Alpha-Numeric	None	The name of the contractor.	
Job Number	Alpha-Numeric	5 Numeric & 1 Alpha	The job number related to a specific contra	
Material	Alpha	No Numeric	The marking material (such as fast dry, polyester, etc.).	
Product Brand	Alpha-Numeric	None	Brand of the marking material is divided into two brand categories based on color: White - Yellow -	
Unit Cost (Each)	Numeric	No Alpha	Cost of marking by number.	
Unit Cost (Linear Ft)	Numeric	No Alpha	Cost of marking by LFT.	

Column Heading	Data Type	Data Limitation	Description
District ·	Alpha-Numeric	None	The name of maintenance district.
Date	Date	No Alpha	The date of installation (month/year).
Federal AID System	Al pha	No Numeric	A special code for the federally funded projects.
County	Al pha	None	The name of the county.
Route	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha	The name of the route (such as US-23).
Alt #1 (sometimes a road segment has more than one name)	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha	The first alternate name of the route, if any.
Alt #2 (sometimes a road segment has more than one name)	Alpha-Numeric	2 Alpha, 3 Numeric & 2 Alpha	The second alternate name of the route, if any.
Control Section	Al pha	None	An unique number assigned to a road segment by MDOT.
Location Description	Al pha	None	A brief description of the road segment.
Name of Exit	Alpha-Numeric	None	The name of the exit (such as 123A, 14A, etc.)
Number of Ramps	Numeric	No Alpha	The number of ramps (entrance and exit) at a particular location.
Interchange Number	Numeric	No Alpha	The number of the nearest interchange.

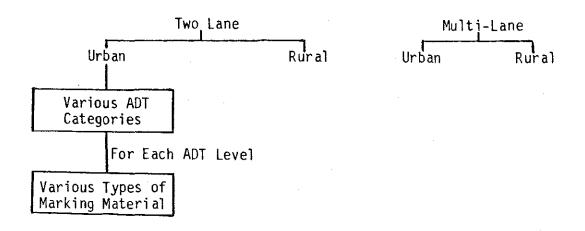
Table 5. Description of the Ramp Lane/Edgeline Subsystem Data Item (Continued)

Column Heading	Data Type	Data Limitation	Description
Material	A1 pha	No Numeric	The marking material (such as fast dry, polyester, etc.).
Estimated Quantity (Ft)	Numeric	No Alpha	This represents the quantity in LFT of marking by type, such as: 4 in white 6 in white 6 in yellow 12 in white 4 in white thermoplastic
Product Brand	Alpha-Numeric	None	Brand of marking material is divided into two brand categories based on color: White Yellow A typical brand could be 3M.
Contract Number	Alpha-Numeric	5 Numeric & 1 Alpha	The contract number assigned to a particular job.
Cycle	Numeric	No Alpha	When information on a road segment marking is entered into the system, the system sets cycle to 1. However, when the same section of the roadway is repainted, the system sets cycle to (current year - previous year of painting).

Table 6. Description of the Ramp Lane/Edgeline Subsystem Contractor Information File

Column Heading	Data Type	Data Limitation	Description
Contractor Name	Alpha-Numeric	None	The name of the contractor.
Job Number	Alpha-Numeric	5 Numeric & 1 Alpha	The job number relate to a specific contract.
Unit Cost	Numeric	No Alpha	Unit cost of four marking types are stored in this regard, namely: 4 in white 6 in white 6 in yellow 12 in white 4 in white thermoplastic
Mobilization Cost	Numeric	No Alpha	This represents the cost of mobilization.
Minor Traffic Cost	Numeric	No Alpha	This represents the cost related to temporary traffic barricading, etc. while marking the roadway.

Providing System Training and Documentation: PM-MIS software, along with source code, were delivered to Michigan Department of Transportation and training was conducted in Lansing. The training consisted of providing MDOT personnel with hands-on experience in generating various system output and overall system familiarization. A user's guide was also developed as a part of this project to provide continued guidance to MDOT personnel.


Developing Guidelines for Pavement Marking Material Use:

General Guidelines

Selection of various pavement marking materials should be based on their performance under various traffic and environmental conditions in addition to their relative cost. Determination of the service life of various marking materials should be done either by testing markings under real-life situations or MDOT should attempt to use other research results as a criteria for replacement of pavement markings. The following factors should be used for developing criteria for marking replacement:

- Traffic volume
- Snowfall
- Salting rate
- Type of roadway
- Others

The dependent variable will be the average marking life. So, MDOT needs to develop a set of service life curves for determining the productive life of various types of pavement markings. A typical stratification to be used is presented below.

Figures 1 and 2 represent some examples of service life curves for various materials. Please note that curves presented in figures 1 and 2 should be developed either by extensive research or adopted from the other available sources.

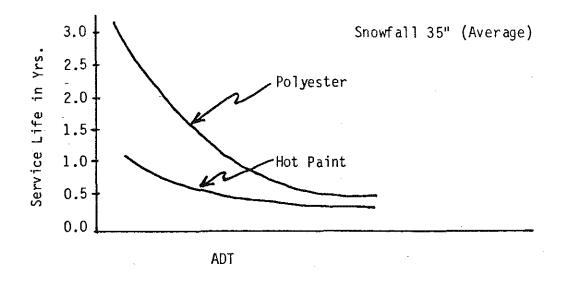


Figure 1. Service life curves for 35" snowfall.

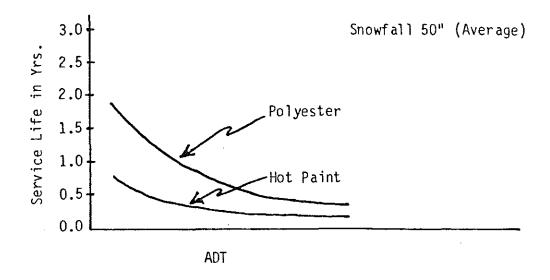


Figure 2. Service life curves for 50" snowfall.

Life cycle cost comparisons between the various pavement marking materials may be performed by a cost-analysis model, which assumes equal benefits of the pavement markings, but considers cost differences due to varying service lives, material costs, installation costs, etc. The mathematical expression of this model, as reported in the FHWA Roadway Delineation Practices Handbook (Sept. 1981) is as follows:[1]

Cost-Analysis Model
 Present Worth of Cost = PWC

PWC =
$$\sum_{n=0}^{N} \left[\frac{(TIC)_n}{(1+i)^n} + \frac{(MC)_n}{(1+i)^n} \right] + \frac{TC}{(1+i)^N}$$

Where:

v = annual percent increase in traffic volume

i = discount rate (set to zero because MDOT does not use a discount rate)

N = analysis period

 $(TIC)_n = total installed cost in year n$

TC = terminal cost at the end of analysis period

 $(MC)_n$ = maintenance cost in year n

A schematic flow diagram of this economic model is given in figure 3. This involves first identifying the highway situation (i.e., tangent, curve, or intersection with given ADT range) within an area where snowfall and maintenance is distinctly different than other areas. The Present-Worth of Cost Model (Cost-Analysis Model) can be used to compare pavement marking materials, since benefits (accident benefits) are extremely difficult to quantify correctly. Those material types with the smallest Present-Worth of Cost (PWC) are the most economical for the appropriate roadway and traffic volume groups.

Specific Guidelines

As a part of this effort a literature search was conducted, and guidelines for various marking use as practiced by various agencies were identified. Cost information on marking material by years was not available to the Contractor, therefore, no cost-effectiveness analysis was conducted with Michigan data. However, information available from other agencies should be useful to MDOT in determining various material use under different traffic conditions.

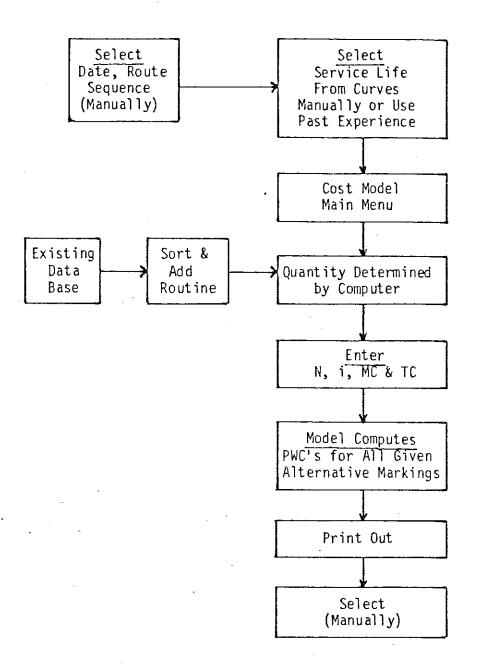


Figure 3. Illustration of economic model.

Thermoplastic stripping

- Thermoplastic striping performed better on bituminous pavement than concrete pavement.
- Thermoplastic striping is less desirable on older pavement.
- Volumes required for thermoplastic to be economical are presented in Table 7.

Epoxy

- Epoxy adheres to both bituminous and portland concrete pavements.
- Epoxy withstands high traffic volumes, sanding, salting and plowing more effectively.
- Epoxy has more reflectivity than paint.
- Epoxy is prone to chipping, however, it is not noticeable to drivers until approximately 50 percent of the striping is removed.

Polyester

- Polyester adheres well to bituminous pavement but not portland cement.
- Application costs for polyester are higher than those of epoxy or paint.
- The reflectivity properties of polyester were better after one year than those of paint.

A typical cost and service life of different types of marking material is presented in Table 8. It is evident from Table 8, that epoxy appears to be the most cost-effective material for higher volume roadways. Cost breakdowns of each material type are also included in Table 9. Readers interested in more information should refer to references [2, 3, 4] and [5].

Table 7. Comparison of costs of thermoplastic and conventional paint striping.

PAVEMENT TYPE		VOLUME (ADT) REQUIRED FOR THERMOPLASTIC STRIPING TO BE MORE ECONOMICAL			
	LINE COLOR	TWO-LANE HIGHWAY	FOUR-LANE HIGHWAY	SIX-LANE HIGHWAY	
Bituminous	White and Yellow	15,000	28,000	38,000	
Portland Cement	W'hite	26,000	46,000	65,000	
Concrete	Yellow	52,000	93,000	120,000	

Source: Pigman, J.G. and Agent K.R., "Evaluation of Thermoplastic Pavement - Striping Materials (Louisville and Jefferson County),"
Division of Research, Kentucky Bureau of Highways, May 1976.

Table 8. Comparison of service life and costs of pavement-marking materials by ADT level.

ADT	Material	Service Life (days)	Two Years		Four Years	
			Number of Applications	Cost (¢/ft)	Number of Applications	Cost (¢/ft)
< 5000	Paint	365	2	9	4	16
	Epoxy	>730	•			
	10 mils		1	13		
	15 mils		1	18		
	Thermoplastic	<180	4	38	8	76
5000-15 000	Paint	180	4	18	8	36
	Epoxy	> 730				
	10 mils]	13		
	15 mils		ì	18		
	Thermoplastic	<180	4	38	8	76
	Polyester	365	2	25	4	50
70 000	Paint	90	12	34	16	72
	Epoxy	365				
	10 mils		4	52		
	15 mils		4	72		
	Thermoplastic	<180	b	76		

Source: Gillis, H.J., "Durable Pavement - Marking Materials," TRB Record 762, 1980.

Table 9. Cost comparison of striping materials.

	PAINT	THERMO- PLASTIC	EPOXY (Fast Set)**
Material cost	\$.012	\$.0714	5.14
Labor and overhead	.017	.0446	.027
Traffic delay	.005	. 0 05	
Lanc marking life	3 mos.	12 mos.	24 mos.
2 year cost	.272	.242	.1670
Cost lineal foot per year	\$.136	\$.121	\$.0885

^{*}cost based on averages of 40 mil applications, 4" wide striping in the states of Minnesota, Wisconsin, and Indiana.

Source: Fullerton, I.J., "Roadway Delineation Practices Handbook," JHK & Associates, September 1981.

^{**}cost per lineal foot per application based on a 4" wide, 15 mil stripe on PCC in Minnesota, excluding cost of glass beads.

References

- Fullerton, I.J., "Roadway Delineation Practices Handbook," JHK & Associates, September 1981.
- Scott, J.W., "Interim Performance Report, Experimental Use of Thermoplastic Pavement - Striping Materials," Kentucky Bureau of Highways, Division of Research, Report 243, September 1966.
- 3. Chaiken, B., "Comparison of the Performance and Economy of Hot-Extruded Thermoplastic, Highway Striping Materials and Conventional Paint Striping," Public Roads, Vol. 35, No. 6, February 1969.
- Arkansas State Highway Department, "Experimental Pavement Markings," Research Report 63-2-65, July 1965.
- Pigman, J.G. and Agent K.R., "Evaluation of Thermoplastic Pavement -Striping Materials (Louisville and Jefferson County)," Division of Research, Kentucky Bureau of Highways, May 1976.