WAYNE STATE UNIVERSITY COLLEGE OF ENGINEERING DETROIT, MICHIGAN 48202

ARROH AIMITG II TRAFPIC GUIDE SIGNS:

A ILBORATORY INVESTIGATION
by
Syron in. Zajkowski Ph.D.

```
IIBRARY
    michigan department of
        state highways
            LANSING
\begin{tabular}{|c|}
\hline \begin{tabular}{c} 
LIBRARY \\
michigan department of \\
state highways \\
LANSING \\
\hline
\end{tabular}
\end{tabular}

ARRON AIMING IT TRAFFIC GUIDE SIGNS:
A LABORATORY INVESTIGATION
by
Myron M. Zajkowski Pho.
```

Sponsored by and submitted to:
INchigan State Highway
Commission
Traffic and Safety Division
Traffic.Research Section

```

The opinions, findings, and conclusions expressed in this puolication are those of the author and not necessarily those of the Michigan State Highway Commission.
```

LIBRARY
michigan department of
state highways
LANSING

```
Page
LIST OF TABLDS ..... i1i
IIST OF FIGURES ..... V
INPRODUCTIO: ..... 1
SXPERIEAT I ..... 3
METHOD. ..... 6
Subjects.................................................. ..... 6
Apparatus. ..... 8
Procedure. ..... 9
RESULTS ..... 13
DISCUSSION. ..... 27
EXPERIMENT II ..... 29
DESIGN. ..... 29
Subjects ..... 32
Methodology. ..... 32
Results. ..... 34
SUMMARY ..... 39
APPE NDIX
I. ..... 41
II ..... 43
III ..... 47
IV ..... 54
V ..... 61
REFERENCES ..... 77

\section*{IIST OF TABLES}
Table ..... Page
3. Angular Inclinations Used in Experiment I..... ..... 4
2. Age and Frequency of subjects ..... 7
3. Response to Stimuli for Constrained Group. ..... 12
4. Analysis of Variance Summary: Latencies on Arrow Inclinations. ..... 14
5. Frequency of Responses to Anguler Inclination: Restricted Response Condition ..... 17
6. Statistical Analyses of Frequencies to Angular Inclinations: Restricted Response Condition ..... 18
7. Distribution of Response Frequencies to Angular Inclinations: Unrestricted Response Condition................................ ..... 20
8. Statistical Analyses of Prequencies to Angular Inclinations: Unrestricted Response Condition. ..... 23
9. Analysis of Variance Summary: Latencies on Arrow Types ..... 25
10. Frequency of Response Analyses: Arrow Type X Response Category ..... 26
11. Sumary of Mean Number of Oategories and Mean Latencies for Sequences Reaching Criterion.. ..... 36
12. Equipment used in Experiment \(I\) and II. ..... 42
13. Frequency Analysis: Age \(Y\) Arrow Inclination Restricted Response Condition. ..... 43
14. Frequency Enalysis: Sex X Arrow Inclination Restricted Response Condition. ..... 49
Table
Page
15. Frequency Analysis: Information Oontent
\(X\) Arrow Inclination Restricted Response Condition. ..... 50
16. Frequency Analysis: Age \(x\) Arrow Inclination
Unrestricted Response Condition............... ..... 51
17. Frequency Analysis: Sex \(X\) Arrow Inclination Unrestricted Response Condition. ..... 52
13. Frequency Enalysis: Information Content \(X\) Arrow Inclination Unrestricted Response Condition.............. ..... 53
19. Experimental sequences. ..... 55
20. Number of Different Catearorical Responses to Arrow Sequences. ..... 62
21. Means and Standard Deviations of Latencies on Arrow Sequenees ..... 63

\section*{IIST OF FIGURES}
Figure Page1. Response Latency as a Function of InformationContent and Arrov Inclination...............15

\section*{INTRODUCTION}
- This report summarizes the results of two laboratory experiments designed to yield information regarding the effective utilization of arrows in highway guide signs. The Lanual on Uniform Traffic Control Devices (1971) makes several specific recommendations with regard to the use of arrows in guide signs which have led to a number of standardized signing practices. For example, the manual recommends horizontal arrows for right angle intersections, vertical upward for straight through movements, and arrows for turns at angles related to the sherpnoss of the turn. İttle moro then thess suggestions seems to be available to the Traffic Engineer in his attempts to design efficient information displays con" taining arrows as directional devices. In a recent review of the literature Zajkowsiki and Satterly (1970) cite a number of studies concerned with the elements involved in the design of signs fncluding shape; dimension and size of the sign; use of words or symbol messages; lettering visibility and legibility; color; reflectorization and illumination. However, few studies were found which dealt with the effective utilization of information on signs containing directional arrows. In two of these studies (Enustun, 1964; riley, 1964) it was suggested that vertical upward or upward slanting arrows be used in advance of a crossroad or ramp and that domnard
slanting arrows be used at the point of turning or bifurcation. Wiley reports that the use of this principle at the New York World Fair (1964-1965) resulted in fewer mistakes being made by out of state drivers and a reduction in driver complaints. Enustan suggests that the adoption of this principle "on a nationwide basis would eliminate the possibility of misleading the motorist." It is the contention of the present investigator that such use of arrows on informational guide signs may be both valid and highly desirable.

However, before such a recommendation can be implemented, it is necessary to determine the conditions under which directional arrows may be able to enhance the information extraction process. The present investigation was conducted to provide information about several of these importent conditions. specifically, berore any modification of present signing techniques is undertaken, it behooves us to examine the possibility that well established stimulus response associations (population stereotypes) may already exist for the materials under consideration. If the existence of stereotypes can be demonstrated, then the changes in these associations caused by signing innovations must be examined. A benefit of such an analysis is that it permits the introduction of changes in associations where disruption will be minimal.

In addition to the analysis of the problem of habit competition, information regarding the relative interpretability of arrow aiming devices in various angular inclinations is of utmost importance in guide sign design. Since such signs are intended to commuicate information symbolically,
the effectiveness of these symbols must be closely scrutinized. Experiment \(I\) of this investigation provides data with respect to both population stereotypes and symbolic meanings. It is clearly not sufficient to examine arrow aiming devices in isolation from the conditions in which they are presently used or will be used in the near future. Certain of these conditions are inevitably experienced under normal diving conditions. Among these are sequential information processing, varying frequencies of information sources, and various distractions. Experiment II was designed to examine several of these variables.

Thus the intent of the present investigation is to provide the preliminary information necessary to the design of a full scale field study of the innovative use of directional arrows in highway guide signs.

\section*{Experiment I}

The experiment followed a basic 9(arrow inclination) \(x\) 2(arrow vertical orientation) \(x\) 3(informational content) factorial design with repeated measures on all factors. A description of each of these variables as well as the rationale for their inclusion in the investigation is given below.

\section*{Arrow Inclination}

The inclusion of this factor in the investigation is obvious in that anguler inclination is the basis for communi. cating directional information in many highway guide signs. The fact that this variable has also been a key element in
several current and recommended signing standards constitutes further justification for the examination of its differential effects. The specific levels utilized are given below in Table 1.

Table 1.

Angular Inclinations Used in Experiment I *
\begin{tabular}{|c|c|c|}
\hline Upward orientation & Horizontal & Downward Orientation \\
\hline 221 0 & 00 & 202 \({ }^{\frac{1}{2}}\) - \\
\hline 45 - & \(180^{\circ}\) & \(225^{\circ}\) \\
\hline 67 岩 0 & & \(247 \frac{1}{2} 0\) \\
\hline 90 - & & 270 \\
\hline 112 ○ & & \(292 \frac{1}{2}\) - \\
\hline 1350 & & 3.150 \\
\hline \(157 \frac{1}{2} 0\) & & \(337{ }^{\text {a }}\) \\
\hline
\end{tabular}
* \(0^{\circ}\) refers to an arrow which is horizontal and pofinting to tie right and ine remaining incinations read counter-clockwise from that position.

The \(0^{\circ}\) and \(180^{\circ}\) positions represent perceptual anchor points since they may be construed as belonging to either an upward or downward series. The seven positions of the downward orientation are considered to be the inverted analogies of the seven positions in the upward orientation. It is clear that the number of angles in each of the orientations probably exceeds the number required to communicate directionality to drivers. However, the inclusion of a wide range of arrow positions in this investigation perifts an analysis of the unique discriminant power of each position. Thus, recommendations regarding the utilization of particular arrow positions can be made on the basis of their ability to communicate
instructions and their confusability with other positions.

\section*{Arrow Vertical Orientation}

As indicated in Table 1. two major groupings of arrow inclinations were studied. These major groupings refer to the vertical orientations of the arrow head (upward and downWard). In Iight of the Wiley (1964) and Enustun (1964) sug= gestions and because of existing signing practices in the differential use of arrow vertical orientations, a thorough analysis of this variable was considered necessary. There is the distinct possibility that general upward or downward orientations are capable of producing unique responses. If such response differences exist they may be utilized to enhance driver choice behaviors. If no differences are
 unnecessary or superfluous design practices in guide signs. It should be noted that because of their obvious relationship, the angular inclinations were deslgned to be isomorphie within the vextical orientations in order that possible interaction effects could be studied.

\section*{Information Content}

Highway guide signs containing arrows are often combined with other types and amounts of highway information. Since such combinations of information seem to be the rule rather than the exception, an examination of the interactions of several selected types of information with directional arrows was made a part of the present investigation. Three types of
\begin{tabular}{|c|}
\hline LIBRARY \\
michigan department of \\
state highways \\
LANSING
\end{tabular}
situations were used. In situation one, directional arrows were presented aione. This type of stimulus permits the establishment of base line behavior to be used in comparative analyses of the other situations. In situation two, the additional information consisted of a route number. This combination of information is often encountered in intercity driving. The specific route number on the signs was selected from a table of random numbers to prevent any previously learmed associations from having an effect. The final information situation combined a street name with a directional arrow, a situation often encountered in urban driving. The particular street nane was selected on the basis of its relative freedom from specific stimulus-response associations. The three conditions of this variable have been labeled symbolic, numberical, and verbal, respectively.

It has been demonstrated in the psychological literature that stimuli of the type described above interact significantly with the type of response required of the subject to produce stimulus response compatabilities. thus, because of the fact that these conditions presently exist on the highwey and because of their psychological significance, this variable is of particular interest.

\section*{Method}

\section*{Subjects}

Ideally, the subject pool for an experiment of this type should represent a sampling of all age ranges from the actual population of drivers. The inclusion of such a range permits
the determination of age related differences in the processing of traffic sign information as well as providing a sound foundation for the generalization of results. Table 2. gives the age ranges and frequencies of subjects included in the experiment.

Table 2.
Age and Frequency of Subjects
\begin{tabular}{cc} 
Age & Frequency \\
\(16-25\) & 20 \\
\(26-35\) & 20 \\
\(36-45\) & 20 \\
\(46-55\) & 20 \\
\hline
\end{tabular}

Subjects were selected randomly from among the students and faculty of Wayn State Tnitrersity and from among respondents to advertisements placed in the campus and daij.y newspapers. The only restrictions placed on the subjects in the investigation were that they had to be a licensed driver and have normal vision either corrected or uncorrected. Each. subject was paid \(\$ 3.00\).

Originally, it was planned to include age groups in the 56-65 and 65-over age ranges. However, it proved to be extremely difficult to obtain volunteers in these age groups. Consequently, the data obtained from the several volunteers obtained in these age ranges, were not included in the final analyses. Interestingly, preliminary data analyses suggested that the performances of these individuals was not significantly different from several of the younser age groups and
in some instances showed a decided superiority to them.

\section*{Apparatus}

The equipment used in the experiment was of standard manufacture. Thus, a general description of the equipment configurations and their operations will suffice here. A list and manufacturer's description of the equipment is given in Table 12 of Appendix I.

The equipment was designed to serve three basic functions: the presentation of stimuli, the control of stimulus duration and interstimulus intervals, and the measurement of the subm jects' response latencies. The length of stimulus duration was set by determining the approximate amount of time that a directional sign is available to drivers for processing. This measurement, taken at maximum speeds on a frepway, had an approximate average of five seconds. The interstimulus interval was determined by the purely pragmatic consideration of the time necessary to record the subjects' responses. This process required approximately ten seconds.

Upon the start of the experimental sequence the experim menter manually activated the timing sequences. From the time of this activation, a decade interval timer measured a ten second interval. At the end of this interval a second decade interval timer was activated. This second timer served two functions. First, when activated it advanced the slide projector to the next stimulus position. However, in order to assure that the stimulus duration was held constant, a delay between slide change and stioulus exposure was considered
necessary, Thus, the second timer was also used to time a .05 second interval, at the end of which a relay activated an electronically timed and controlled tachistoscopic shutter on the slide projector. This shutter exposed the stimulus material for a duration of five seconds. Simultaneously with this exposure, a synohronized passive relay closure on the shutter control activated both a voice key and a standard olock timer which measured the subjeot's response time. When the subject vocalized his response, the circuit on the voice key was completed, the latency timer stopped, and a new stimulus sequence was initiated. In the interval between the subject's response and a new stimulus, the experimenter recorded both the subject's latency and his categorical response.

The stimuli in the experiment were drawn to half scale, on artboard, in shapes corresponding to the recommendations of the Michigan Manual of Uniform Traffic Control Devices. This hard copy was then photographed against a green backm ground to produce 35 m color transparencies which served as the basic stimuli. The specific content of the slides is discussed in the following section.

\section*{Procedure}

The basic set of information to which each subject was exposed consisted of depictions of the sixteen arrow inclinam tions described in an earlier section. This basic set of information was displayed alone (arrow alone), with verbal information (street name), and with numerical information (route number). Thus, each subject was exposed to toree sets
of sixteen slides. The route number, when used, was identical on all slides and consisted of a two digit number selected at random from a random number table. The street name was also identical on all slides where depicted, and was selected so that familiarity and readability were controlled.

A second set of slides was also prepared to gather information on the ability of different types of arrows to commuicate directionality. In this instance, eight major arrow inclinations were combined with four different arrow types. Because in this analysis the interest was primarily on the impact of the arrows rather than the arrow inclinations, the number of inclinations was restricted to the eight considered to be the most unequivocal. Therefore, in this set, only the \(0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}, 270^{\circ}\), and \(315^{\circ}\) inclit nations were used. The arrows used in this comparison are named and scaled according to the standards set by the Michlgan Stote Highway Department. One arrow type was the "Down" arrow. This arrowis a short and straight-shafted arrow whose arrowhead width tow length ratio considerably exceeds a value of 1.00 . The type "A" arrow is relatively short and taper-shafted with a rather broad head having a width-to-length ratio greater than one but less than that of the down arrow. The type "B" arrow is also a taper-shafted grrow whose overall length and arrowhead length are somewhat Greater than that of the type"A" arrow. These dimensional changes create a casual impression of greater "arrowness". The final arrow was a type "G" arrow This arrow is typically
used on Hichigan Route Marker Arrow Panels. It is a relatively long straight-shefted arrow whose arrowhead width-to-length ratio approached a value of one more closely than any of the other types, creating an even greater impression of "arrowness". Several random orders of the slides were constructed to control order effects. One half of the subjects in each experimental group received one of the random orders and the other half the second rendom order.

Each of the experimental age groups was constituted so that half of the subjects were male and the other half fem male. This permits an analysis of the data using sex as a moderator vardable.

Another procedural variable of considerable importance deals with the amount of freedom that subjects had in which to make categorical judgments in the present experiment. Since the amount of constraint placed on the subjects' rem sponses can make a significant difference in the type of data one obtains, it was decided to use two conditions of constraint. One half of the subjects were given instructions thet they were to respond to each slide presentation with a sixed set of responses. Table 3. lists the responses with which these subjects were to respond.

\section*{Table 3.}

Response to Stimuli for Constrained Group
A. Maintain present course
B. Turn off here (left or right)
C. Adjust course ahead (left or right) slowly
D. Adjust course ahead (left or right) quickly

The remeining half of the subjects were given the responses in Table 3. as examples of responses that they could make, but were told that they should give whatever response they felt was appropriate. Thus, this group was unrestricted in their responses. The responses of the subjects under these two conditions of constraint were then compared in torma of both latanoyn anu obtegury diffesences.

Before beginning the experiment, each subject was show a shont set of demonstration slides to insure that he underm stood the procedure. Fach subject was told to respond as quickly as he could after having made his decision and out loud so that the voice key wovld be activated and the experimenter would have an opportunity to record the response. The complete instructions to the subjects are given in Appendix II.

The results of the latenoy analysis on the arrow incilinations are summarized in Table 4. An examination of this table reveals that only the main variables of age, \([(3,64)=3.60\), \(p<.05\), information content, \(F(2,128)=16.62, p<.001\), and arrow inclination, \(\vec{F}(15,960)=16.45, p<.001\) proved to be significant. A eraphical analysis of the age variable revealed that a major portion of the variance contributing to the significance of tinis variable was due to the 36 m 45 year age group. Nore specifically, it was determined that this variance could be attributed to two male subjects whose performances significantly raised the overall performance level of their group. Thus, it is conoluded that this significant effect is due primarily to artfects within a specific group.

The significant effect due to information content seems due to an average latency in the numerical condition which is significantly greater than in either the symbolic condition or the verbal condition, although these two latter conditions do not appear significantly different from each other. Reference to Figure 1 indicates that while higher, the trends in performance related to the numerdeal condition follow a pattern similar to the other two conditions.

Figure 1 also assists in the analysis of the significant effect due to angular inclinations. From the figure it appears that the \(0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}\), and \(180^{\circ}\) inclinations consistently produce shoriter latencies than the other positions. It should be pointed out that none of these inclinations is in a downward orientation. It would thus appear

Table 4.
Analysis of Variance Summary: Latencies on Arrow Inclination
\begin{tabular}{|c|c|c|c|c|c|}
\hline Source & df & MS & F & 0 & \(W^{2}\) \\
\hline A (Objective-subjective) & 1 & 17.02 & 1.73 & & \\
\hline B (Age & 3 & 35.43 & 3.60 & . 05 & . 0158 \\
\hline 0 (Sex) & 1 & . 27 & . 03 & & \\
\hline AXB & 3 & 39.40 & 4.01 & . 05 & . 0183 \\
\hline AXO & 1 & 9.58 & . 97 & & \\
\hline BXO & 3 & 37.24 & 3.76 & . 05 & . 01.69 \\
\hline \(\triangle \mathrm{ABXC}\) & 3 & 13.71 & 1.39 & & \\
\hline S & 64 & 9.84 & & & \\
\hline D (Infornation Content) & 2 & 45.67 & 16.62 & . 001 & .0177 \\
\hline AXD & 2 & 3.24 & 1.18 & & \\
\hline BXD & 6 & 1. 55 & . 564 & & \\
\hline CXD & 2 & 1.36 & . 496 & & \\
\hline AXBXD & 6 & 3.29 & 1.19 & & \\
\hline AXCXD & 2 & 2.37 & . 861 & & \\
\hline BXCXD & 6 & 1.00 & . 364 & & \\
\hline AXBXCXD & 6 & . 402 & .146 & & \\
\hline SXD & 128 & . 274 & & & \\
\hline E (Arrow Inclination) & 15 & 13.67 & 16.45 & .001 & . 0397 \\
\hline AXE & 15 & 1.81. & 2.18 & . 01 & . 0030 \\
\hline BXE & 45 & 2.00 & 2.41 & . 001 & . 0109 \\
\hline AXBXA & 45 & 1.51 & 1.81 & . 01 & . 0063 \\
\hline OXE & 15 & . 82 & . 98 & & \\
\hline AXCXE & 15 & . 75 & . 39 & & \\
\hline BXCXE & 45 & .92 & 1.11 & & \\
\hline AXBXCXE & 45 & 1.77 & 2.14 & .001 & . 008 \\
\hline SXE & 960 & . 83 & & & \\
\hline DXE & 30 & 2.63 & 3.35 & . 001 & . 0112 \\
\hline AXDXE & 30 & 1.16 & 1.48 & . 05 & .0023 \\
\hline BXDXE & 90 & 1.09 & 1.38 & . 05 & .0057 \\
\hline CXD \({ }^{\text {de }}\) & 30 & . 460 & . 585 & & \\
\hline \(\triangle \times B \times D X E\) & 90 & 1.10 & 1.41 & . 01 & . 006 \\
\hline AXCXDXE & 30 & .34 & 1.07 & & \\
\hline BXCXDXE & 90 & . 87 & 1.11 & & \\
\hline AXBXCXDTE & 90 & . 56 & . 71 & & \\
\hline SXDXE & 1920 & . 79 & & & \\
\hline
\end{tabular}


Fig. 1. Response Latency as a Function of Information Content and Arrow. Inclination.
that these partioular positions produce a perceptual response that one mignt conclude is a population stereotype. The variability in the remaining positions suggest that, at least in terms of latency data, these positions are more amenable to retraining in the form of new responses.

The results of the frequency of eetegorical resporises tead to confirm the above analysis. These frequency data are broken dow into two basic sets of analyses, those for the restricted condition and those for the unrestricted response. We shall deal with the results of the restricted data first. The frequency distributions of the categorical responses to the verious arrow jnclinations are sumarized in table 5.

Table 6. summarizes the statistical analyses of the frem quency data in Table 5. The data in this table clearly reveal thet arrow inclinations in an poward and horizontal orientation have specific meanings attached to them. In each of these orlentations, there is a single category of response which accounts for most of the responses to that specific stimulus. Examination of Table 6. gives the categorical response of highest frequency while cross reference with Table 5. provides verbal labels fox these numerical categories. It is equally clear that downard oriented inclinations are much less consistent in producing stereotypic responses except for the \(270^{\circ}\) inclination. This data tends to substan. tiate the latency analyses reported earlier.

In addition to the major frequenoy analysis three other supplemental analyses wexe done. These analyses compered

Table ：
Frequency of Responses to Angular Inclinations：
Restricted Response Condition
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Angle} & & \multicolumn{8}{|c|}{Category of Response} \\
\hline & － & No & & RIGHT & & Maintain Position & & LEFT & \\
\hline & & Response & Turn & Adjust Quickly & \[
\begin{aligned}
& \text { Ad ust } \\
& \text { Slowly }
\end{aligned}
\] & & Adjust Turn & Adjust Quickly & \[
\begin{aligned}
& \text { Adjust } \\
& \text { Slowly }
\end{aligned}
\] \\
\hline & & & （1） & （2） & （3） & （4） & （5） & （6） & （7） \\
\hline \(0^{\circ}\) & \(\bigcirc\) & & 102 & 6 & 9 & 3 & & & \\
\hline \(22.5{ }^{\circ}\) & V & 1 & 25 & 65 & 28 & & & & \\
\hline \(45^{\circ}\) & 罗 & & 20 & 84 & 14 & & & & \\
\hline \(67.5^{\circ}\) & ＊ & & 14 & 89 & 12 & 3 & & & \\
\hline \(90^{\circ}\) & 4 & & 1 & & & 158 & & & 1 \\
\hline \(112.5^{\circ}\) & 曷 & 1 & & & 1 & 2 & 15 & 86 & 15 \\
\hline \(135^{\circ}\) & ， & & & 2 & 1 & 1 & 18 & 84 & 14 \\
\hline \(157.5^{\circ}\) & 䐗 & 1 & & 1 & & & 29 & 64 & 25 \\
\hline \(180^{\circ}\) & 4 & & 1 & & & 2 & 101 & 7 & 9 \\
\hline \(202.5^{\circ}\) & \(\Delta\) & 4 & & & & & 34 & 38 & 44 \\
\hline \(225^{\circ}\) & \(\otimes\) & 5 & & 1 & & 3 & 25 & 33 & 53 \\
\hline \(247.5^{\circ}\) & \％ & 6 & & & & 8 & 25 & 38 & 43 \\
\hline \(270^{\circ}\) & － & 20 & & & 3 & 132 & 3 & 1 & 1 \\
\hline \(292.5^{\circ}\) & d & 8 & 19 & 41 & 45 & 5 & 1 & 1 & \\
\hline \(315^{\circ}\) & 週 & 6 & 25 & 37 & 47 & 2 & 1 & 1 & 1 \\
\hline \(337.5^{\circ}\) & \(\Delta\) & 5 & 31 & 34 & 50 & & & & \\
\hline
\end{tabular}

Table 6.
Statistical Analyses of Frequencies to Angular Inclinations: Restricted Response Condltion
\begin{tabular}{|c|c|c|c|c|}
\hline Inclination & \(x^{2}\) & df & p & Most Frequent dategory \\
\hline \(0^{\circ}\) & 231.00 & 3 & . 001 & 1 \\
\hline \(22.5{ }^{\circ}\) & 25.23 & 2 & . 001 & 2 \\
\hline 45.00 & 76.55 & 2 & . 001 & 2 \\
\hline 67.50 & 100.51 & 2 & .001 & 2 \\
\hline \(90.0{ }^{\circ}\) & \% & & & 4 \\
\hline \(112.5{ }^{\circ}\) & 143.11 & 3 & .001 & 6 \\
\hline \(135.0^{\circ}\) & 79.73 & 2 & .001 & 6 \\
\hline \(157.5^{\circ}\) & 23.40 & 2 & .001 & 6 \\
\hline \(180.0^{\circ}\) & 147.90 & 2 & .001 & 5 \\
\hline 202.50 & 1.30 & 2 & . 70 & 7 \\
\hline \(225.0{ }^{\circ}\) & 21.25 & 2 & . 62 & 7 \\
\hline 247.50 & 4.83 & 2 & . 10 & 7 \\
\hline \(270.0^{\circ}\) & * & & & 4 \\
\hline \(292.5^{\circ}\) & 33.83 & 2 & . 001 & 3 \\
\hline \(315.0{ }^{\circ}\) & 6.67 & 2 & .10 & 3 \\
\hline \(337.5^{\circ}\) & 5.44 & 2 & . 10 & 3 \\
\hline
\end{tabular}
*indicates that frequencies concentrated in essentially a single category thus obviating the necessity of an analysis
responses to angular inclinations as a function of age group, information content, and gender of the subjects. In the age analyses several significant effects were found. However, there was no consistent trend relating age category to specific response types. As indicated in the latency analyses a majority of the sienificant effects seemed to be due to a few male subjects in the \(36-45\) age group, thus suggesting artion factual data. In the gender analyses only a few comparisons were found to be significant, suggesting that gender probably plays no sigaificant role in determining the relationship between response categories and arrow inclinations. Jinally, not a single significant effect was found to be due to inform mation content on the siens. These analyses are sumuarized in Tables 13, 14, and 15 in Appendix III.

The analysis of the unrestricted response conaition data tends to confirm the frequency analyses indicated above. In this condition, subjects were permitted to respond with any response they felt was appropriate for a particular stimulus. The responses were then sorted according to general meanings, those having what the experimenter considered to be similar meaning being given a single category name. This process resulted in a list of 30 responses generated by the subjects in this condition. Table 7 contains the frequency distribution of category responses to each angular inclination. An exanination of this table reveals that once again inclinations of an puard or horizontal orientation generally resulted in having a single predomant response. It is also

Table 7.
Distribution of Response Frequencies to Angular Inclinations: Unrestricted Response Condition


Table 7. (continued)
Distribution of Response Frequencies to Angular Inclinations: Unrestricted Response Condition


\section*{LIBRARY}
michigan department of state highways LANSING
clear that the downward orientations are much less consistent in the response they evoke both in terms of different responses evoked and the occurrence of several categories which contain a significant number of responses. Of umpual interest, is the fact that several of the inclinations were able to elicit responses of vertical directionality. Once again, the concluston is reeched that uphard and horizontal orlentations produce a much wore stereotyped set of responses suegesting that when design innovations are desired, attention should be focused on downard orientations as they would appear to be more amenable to manipulation, Rable 8 . summarizes the statistical analyses of these data. It should be pointed out however that the \(X^{2}\) analyses were done by collapsing low frequency categories into a single "all others" category to meet the requirement of the test. Thus one can get a more accurate picture of the variability in subject responses from an exame snation of the frequency distributions.

Several supplemental analyses were made on these data. specifically, \(x^{2}\) analyses of the relationships between angular inclinations and sex, age, and information content wexe done. No significant trends were observed in any of these analyses, although a few significant effects were found. These analyses are sumnarized in Table 16, 17, 313 of Appendix III. These results suggest that the major source of systematic variance in the experfment is due to angular inclinations of the arrows.

A final set of analyses evaluated the effect of different arrow types on latency of response and categorical responses.

Table 8.
Statistical Analyses of Frequencies to Angular Inolinations: Unrestricted Response Condition
\begin{tabular}{|c|c|c|c|c|}
\hline Inclination & \(x^{2}\) & df & p & Most Frequent Category \\
\hline \(0^{\circ}\) & 137.39 & 2 & . 001 & 5 \\
\hline 22.58 & 54.16 & 2 & . 001 & 2 \\
\hline 45.0 & 102.20 & 2 & . 001 & 2 \\
\hline \(67.5{ }^{\circ}\) & 36.30 & 1 & . 001 & 2 \\
\hline \(90.0{ }^{\circ}\) & 112.22 & 1 & .001 & 8 \\
\hline \(112.5^{\circ}\) & 97.56 & 1 & . 001 & 1 \\
\hline \(135.0^{\circ}\) & 86.46 & 2 & .001 & 1 \\
\hline \(157.5^{\circ}\) & 30.66 & 2 & .001 & 1 \\
\hline \(280.0^{\circ}\) & 1.02 .22 & 2 & . 001 & 4 \\
\hline 202. 50 & 36.55 & 5 & .001 & 1 \\
\hline \(225.0^{\circ}\) & 19.60 & 5 & . 09 & 1 \\
\hline 247.50 & 40.80 & 5 & . 001 & 1 \\
\hline \(270.0^{\circ}\) & 114.15 & 4 & . 001 & 8 \\
\hline \(292.5^{\circ}\) & 17.01 & 4 & . 01 & 2 \\
\hline \(315.0^{\circ}\) & 30.20 & 5 & . 001 & 2 \\
\hline \(337.5^{\circ}\) & 22.59 & 4 & . 001 & 2 \\
\hline
\end{tabular}

In these analyses some redundancy to earlier data is present, since arrow topes were combined with response type, ace, sex, and inclinations. However, with regard to inclinations, only the eight major inclinations were used. This allows some assessment of the reliability of the data in the earlier analyses. The analyses of the latency data are given in Table 9. The results of these gnalyses tend to confirm the results of the latency analysis presented in Table 4. In addition, the interpretation of the signficance of these effects in the previous analysis also gypear to be valid in this instance. The significance of the arrow type verichle is apparently due to a slightiy higher mean latency for the "A" and "G" type arrows. These means were 2.67 and 2.53 secs respectively as compared to 2.34 and 2.49 secs ror the "B" and "D" type arrows. il though these differences achieve statistical signifjoance, one can only conjecture about their practical significance.

The results of the frequency of category responses to Inclinations as a function of arrow type indicate that axrow type has no signifioant impact. Once again, one is led to the conclusion that the most sigaificant source of variance In these analyses is due to the arrow inclinations. The results of the frequency analyses for both the restricted and unrestricted response conditions are given in Table 10 .

Table 9.
Analysis of Variance Summary: Latencies on Arrow Types
\begin{tabular}{|c|c|c|c|c|c|}
\hline Souree & df & MS & F & \(p\) & \(W^{2}\) \\
\hline A (ObjectivewSubjective) & 1. & 40.209 & 2.763 & & \\
\hline B (Age) & 3 & 60.565 & 4.169 & . 05 & . 0234 \\
\hline 0 (Sex) & 1 & 17.059 & 1.174 & & \\
\hline \(A X B\) & 3 & 99.986 & 6.883 & . 005 & . 0435 \\
\hline \(A X C\) & 1 & 65.196 & 4.488 & . 05 & . 0036 \\
\hline BXO & 3 & 85.653 & 5.897 & .01 & . 0362 \\
\hline AXBXC & 3 & 50.339 & 3.465 & & \\
\hline S & 64 & 14.526 & & & \\
\hline D Arrow type) & 3 & 13.519 & 3.774 & . 05 & . 0051 \\
\hline AXD & 3 & 17.684 & 4.937 & . 01 & . 0072 \\
\hline BXD & 9 & 17.741 & 4.952 & .005 & . 0217 \\
\hline OXD & 3 & 28.252 & 7.337 & . 005 & . 0126 \\
\hline AXBXD & 9 & 17.382 & 4.852 & . 005 & . 0211 \\
\hline AXCKD & 3 & 14.372 & 4.151 & . 01 & . 0058 \\
\hline BXCXD & 9 & 21.103 & 5.891 & .005 & . 0263 \\
\hline AXBXOXD & 9 & 20.764 & 5.796 & . 005 & . 0263 \\
\hline SXD & 192 & 3.582 & & & \\
\hline E (Arrow Incination) & 7 & 23.564 & 19.091 & .005 & .0266 \\
\hline AXE & 7 & 13.178 & 1.067 & & \\
\hline BXE & 21 & 13.984 & 1.133 & & \\
\hline AXBXE & 21 & 1.406 & 1.139 & & \\
\hline CXE & 7 & 2.363 & 1.914 & & \\
\hline AXCXE & 7 & . 888 & . 719 & & \\
\hline BXOXE & 21 & 1.765 & 1.430 & & \\
\hline \(\triangle \mathrm{ABXOXB}\) & 21. & 2.911 & 2.358 & . 01 & . 0060 \\
\hline SXE & 448 & 1.234 & & & \\
\hline DXE & 21 & 1.967 & 2.434 & . 01 & . 0041 \\
\hline AXDXE & 21 & 3.743 & 4.632 & .005 & . 0105 \\
\hline BXDXE & 63 & . 717 & . 388 & & \\
\hline CXDXE & 21 & . 682 & .845 & & \\
\hline AXBXDXE & 63 & . 669 & . 828 & & \\
\hline AXOXDXE & 21 & 1.091 & 1.351 & & \\
\hline BXOXDXE & 63 & . 672 & . 832 & & \\
\hline AXBMOXDXE & 63 & . 795 & . 984 & & \\
\hline SXDXE & 1344 & . 808 & & & \\
\hline
\end{tabular}

Table 10.
Frequency of Response Analyses: Arrow Type X Response Category


Unrestricted Response Gondition
\[
\begin{array}{r}
0^{\circ} \\
45.0^{\circ} \\
90.0^{\circ} \\
135.0^{\circ} \\
180.0^{\circ} \\
225.0^{\circ} \\
270.0^{\circ} \\
315.0^{\circ}
\end{array}
\]
\begin{tabular}{lrrl}
6.88 & 6 & .50 & 5 \\
6.50 & 6 & .50 & 2 \\
\(\#\) & \(\%\) & \(\%\) & 8 \\
2.99 & 3 & .50 & 1 \\
1.40 & 3 & .80 & 4 \\
8.33 & 12 & .30 & 6 \\
1.89 & 6 & .95 & 8 \\
11.1 .3 & 12 & .70 & 5 \\
\hline
\end{tabular}
*the majority of responses fall in a single category thus obviating the need for an analysis. The category of response are the same as those of Tables 5 and Table 7 respectively.

\section*{DISOUSSION}

The general results of Experiment I allow several conclusions to be reached. First, it would seem that arrow inclinations have developed, through past practice and experience, some rather consistent meanings for drivers. This generalization applies partioularly to arrows in an upward or homizontal orientation. Presumably, this is because more signs are experienced in this type of orientation. Even vithin this sweeping statement certain of the inclina tions consistently produce very stable categorical responses. One con only suppose that inclinathons which are not quite as stable are not experienced as often or are easily confused with other orientations. Thus it might be prudent to consider
 relatively stable in our present signing programs. The inclinations which do not elfoit stereotypic responses might then be used for innovations in signing techniques such as that suggested by Wiley (1964) and Enustun (1964). That is, the downerd oriented arrows, since they are more variable in the responses elicjted, would in all probability be more susceptible to innovations in signing practices. In adaltion, these inclinations have a greater potential for change through driver education programs.

Several other conclusions seem to follow from the results. Specifically, it seems reasonable to conolude that categorjcal judgments are independent of sex or age of the driver. This is as it should be if most dxivers are driving as the designers
of the information systems fintended. There are some slight differences in latencies of response of course, but these are not of practical significance and are to be partially expected due to maturational difeerences.

The fact that arrow type produced no significant differential effect was somewhat surprising but nevertheless heartening, because it suggests that oategorical responses are independeat of iateractions wh th purely physioal characteristics of the arrows. This fact allows the sign designer a bit more freedon in the physical configuration of signs.

A word of caution should be added at this point. The research reported in Experiment I is purely laboratory in nature. It would not be prudent to suggest that the results are definftive in nature. It is sugrested that a reliability and valtaity check of the dato should be done and combined with field tests before the data are incorporated in future signing work. Fowever, it is felt that results clearly indicate that such data can be of considerable assistance in future signing practices. In the following sections, Experiment II will be described. This experinent is an attempt to extend the findings of Experiment \(I\) and provide additional insights into the utility of directional arrows in highway signs.

\section*{Experiment II}

\section*{Basto Design}

The basio design of this experiment was a 2 (experience) X 2(distraction) X 2(frequency) factorial with repeated measures on frequency. This basic design allows the assessm ment of the basio arrow aimjng devices when used in various combinations athea than singularly. In partioular, an attempt was made to identify the sequences of arrow airing which produce the least amount of variebility in categarical responses and the fastest reation times. The rationale for including each of the variables is given below.

\section*{Experience}

Bxperience is an integral part of any leaming situation and therefore was jncluded in this experiment to evaluate its jmpact on oategorical responses to angular inclinations in sequence. To gain some insight into the effects of this vartable, two levels of experience were inoluded in the experiment. In the first level of experience, najve subjects were required to make judgments of slgns with only a brief introduction to the experiment. This type of condition allowed the assessment of the effects of uninstructed learning on information utilization. Very often it is possjble to instruot subjects as to the meaning of symbolic messages before they actually gain any real experience with the syster. Therefore, as the second level of experience, the design included a group of subjeots who were instructed as to the intended meaning of the symbol system before they were actually
required to use the system. A comparison of the levels of performance under the two levels of experience would thus permit some degree of generalization about the utility of an instructional system to accompany design changes in highway marking systems.

\section*{Distraction}

It is obvious that drivers do not experience information in a completely noisemfee environment and therefore, it was considered desireble to evaluate the effects of distraction on information processing. Two levels of distraction were included. The first level used no distraction. Thus, haji the subjeots performed the task with no secondaxy dutiee to perform. The remaining subjects were distracted by a second-
 task of the experiment. The secondany task consisted of following a pursuit rotor track at 30 RPM with a stylus. The subject in this latter condition was instructed that his performances on both the primary and secondary tasks were being assessed and therefore, he should be as acourate and quick as possible on both tasks. This instruetion was given to the subjects to suggest to them that the interaction between vehicle control and information processing was oritical and of unique interest in itself.

Frequenoy of 3ymbols
The impact of the frequency of stimulus presentation is of obvious importance. The notion here is that as the
quantity of advance information increases the more likely the driver is to make acourate choices. Two levels of frequency Were used in the experiment. It was felt that sequences of two and four stinull would be adequate to assess the effect of this variable. The inclusion of this variable in the design also allows the assessment of the effects of interactions of frequency, with distraction, experience, and errow inclinations.

\section*{Ampore Sequences}

The general purpose of both the experimentis was to examine possible axyow orientetions for indioating immediate turning points on the highway situation aftex a sequence of advance information arrows hes been experienced. In Expertment
 (right) or \(180^{\circ}\) (left) olearly oonnotes a turaing point. Arrows which also connoted such a driving action wexe the uoward oriented \(45^{\circ}\) (right) and \(135^{\circ}\) (left) arrows and the downard oriented \(225^{\circ}\) (left) and \(325^{\circ}\) (right) inclinations. Thus, for comparative purposes each of the above arrow inclis nations (horizontal, upward and downard) were combined with all possible logical advance information sequences. However, the advance information possibilities were restricted to those inclinations which were judged as those producing the most unequivocal responses. Thus the advance information slides were selected from among the \(0^{\circ}, 45^{\circ}, 30^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}\), \(270^{\circ}\), or the \(315^{\circ}\) inclinations. These consideretions thus requine that twenty-four two arrow sequences maninetyosix
four arrow sequences be used in the experiment. This methodology permits the comparison of the effectiveness of different sequences of information in connoting certain desired responses. A complete description of these sequences is given in Table 19. Appendix IV.
subjects
The subjects in this experiment consisted of forty subjects randomly selected from age levels and driving experience. All subjects were licensed drivers and had not participated in Experiment I. Thus, the research employed 4 basic groups of 10 each ss based upon the experience (2) \(X\) distraction (2) variables since all ss received all levels of the other factors. The proportion of male and fenale subjects wass hetd onstant in all groups Fan shbient rocoived a payment of \(\$ 4.00\) for his partictpation in the experiment.

\section*{Methodology}

As indicated above, all subjects experienced all inform mation sequences. The equipment and methodology was i.dentical to that used in Experiment I with a siagle exception. The distracted groups were required to maintain a stylus in contact with a rotating disk on a Lafagette Instruments Rotary Pursuit Meter. Bach sequence of slides was set off from the other sequences by means of a blank interval. The order of sequences to be presented was randomed and half the subjects In each of the groups received one randow order while the other half received a different xandom order. Subjects were
given a five minute rest between each series of sequences which was timed to chorinate with shide tray chages.

The dependent veriables in this experiment consisted of latency of response and subjective categorical response as in Experiment I. The objective response condition was eliminated from this experiment since it essentially duplicates the subjective condition and in nost cases is not as inclusive.

The subjects in the experiment were instructed that the experiment was designed to assess the interaction of effects of ariving to be simulated in this experiment by the pursuit, rotor and highmey information processing to be simulated by the slides. It wes stressed that we were concerned with the speed and accuracy of performance on both these tasks. The complete instructions to subjects are givea in Appendix II.

The initial analysis of frequency data consisted of an examination of the effects of distraction and information about arrow meanings on the categorical responses to the various arrow sequences. To accomplish this analysis, a separate chi squere analysis was done for each sequence utilizing the distraction and information conditions as the categories of the contingenoy table. The data consisted of the different number of otegorical responses elicited under each of the conditions. Only two of the 120 analyses reached significance. The frequencies and the chi square tests are summarized in Table 20 of Appendit \(V\). One must conolude from these results that in the present study neither distracting the subjoctemor informing them es to the meaninga of grows significantly affect the subjects'oategorical responses. The 120 sequences were then rank ordered in terms of the number of different categorical responses elicited. It would seem reasonable to assume that those sequences which elicit the femest different categories are the sequences which wost probably are eliciting population stereotypic responses. Arbitrary criteria were then established by which to separate the "best" sequences from the others. These criteria were empirically established and were detemmined to be six or . fewer different categories for the two-arrow sequences and thirteen or fewer different oategories for the fourmarow sequences. No attempts were made to establish the "correctness" of the ontegories, the sequences which met these oriteria are
given in Table 11 along with the mean number of categories elicited and the mean latency of response to the sequence. A complete description of each of these numbered sequences can be found in Table 19 of Appendix IV. Several additional analyses of the criterial sequences were then done to determine their essential characteristics. A chi square of the right.m left orientation revealed no significant differences in the frequency with which these orientations ocourred in the sequences, \(x^{2}(1 d f)=.0236\). Similarly an analysis of the vertical orientation in the sequences revealed no significant differences in the frequency with which these orientations were represented in the advance intormation portions of the sequences, \(X^{2}(1 d f)=2.9412\). However, several additonal analyses revealed some interesting characteristios of the sequences inoluded in the orsterial group. an analysis of the end arrows of the aequences reveeled that uprard orientations, including the horizontal, were signifioantig more frequent than downard orientations, \(x^{2}(1 d x)=30.12, p<.001\). Pinally, it was determined that the horizontal onjentetion in the end arrows occurced in the oriterial group more frequentiy than any other type of orientation, \(X^{2}(1 d f)=6.4236\), \(p<.025\). Thus, one can reach the conclusion that the driving population represented by the sample in this investigation seems to have established population stereotyper for the end arrow in guide sign sequences., Specifjcelly, it would eppear that upward oriented and horizontel end arrows are most firmy established in terms of driver expectations.

Table 11.
Summary of a Vean Number of Categories and Mean Latencies for Sequences Reaching Oriterion
\begin{tabular}{|c|c|c|}
\hline Sequence \% & Meen Mumber of Oategories & Mean Latenoy \\
\hline 1 & 5.00 & 1.30 \\
\hline 4 & 4.25 & 1.74 \\
\hline 7 & 5.25 & 1.86 \\
\hline 10 & 5.00 & 1.79 \\
\hline 11 & 5.00 & 1.73 \\
\hline 13 & 5.00 & 1.81 \\
\hline 1.6 & 5.50 & 1.72 \\
\hline 22 & 5.00 & 1.88 \\
\hline 25 & 9.75 & 1. 64 \\
\hline 27 & 10.50 & 1.68 \\
\hline 23 & 9.75 & 1. 67 \\
\hline 31 & 9.25 & 1.71 \\
\hline 37 & 10.25 & 1.69 \\
\hline 33 & 10.00 & 1.82 \\
\hline 43 & 9.75 & 1.76 \\
\hline 44 & 10.25 & 1.73 \\
\hline 46 & 10.00 & 1.92 \\
\hline 49 & 10.50 & 1.64 \\
\hline 50 & 10.50 & 1.76 \\
\hline 51 & 10.25 & 2.68 \\
\hline 55 & 9.75 & 1.72 \\
\hline 56 & 9.75 & 1.77 \\
\hline 57 & 10.25 & 1.67 \\
\hline 61. & 9.75 & 1.77 \\
\hline 62 & 10.75 & 1.81 \\
\hline 68 & 9.75 & 1.37 \\
\hline 75 & 11.50 & 1.90 \\
\hline 79 & 12.00 & 1.93 \\
\hline 32 & 11.50 & 1.74 \\
\hline 97 & 11.00 & 1.72 \\
\hline 33 & 10.50 & 1.79 \\
\hline 103 & 11.00 & 1.81 \\
\hline 106 & 1.0 .75 & 1.76 \\
\hline 112 & 12.00 & 1.75 \\
\hline
\end{tabular}
*omplete description of sequences can be found in Table 19 of Appendix IV.

The analysis of response latencies was restricted to the sequeaces malin had met the frequency criteria discussed earlier. Howevex, a complete summery of the means and standard deviations for all sequences as a function of information and distraction conditions is given in Table 21 of Appendix \(V\). No sienificant diferences in latencies were found as a function of sequences in the criterion group, \(2(33,1.02)=\) . 3509. In adaition, a test for unequal sample sizes revealed no significant differences in latencies between the two-arrow and four-arrov sequences, \(6(164 d f)=1.2079\). Finally, an analysis of variance revesied that the distreotion variable, \(F(1,1.32)=12.00, p<.01\) and the information variable, \(\mathrm{r}(1,232)=178.00, \mathrm{p}<.01\) both wexe signjifocht. In the case of the distraction variable, the mean for the distracted condition was 7.74 secs. as opposed to 2.30 secs. for the undistracted condition. This suggested the possibility that In the experimental situation the dual tasks of following a target and extraoting information from highway signs caused the subject to more efficiently distribute his attention, resulting in a lower letenoy for the distracted group. The fact that the nean latency for the group which wes instructed as to the meanings of arrows whe 1.33 sees. as opposed to 1.65 secs. for the uninstructed eroup is interesting and open to some interpetatjon. One explanation for such a finding is that the subjeots may hove had stexeotypic responses to the arrons prior to partioipating in the experment and that the mentiges esteblished by the experimenter oonficted with
these stereotypes thus raising the mean latency. A second explanation for this finding is that the subjects given speaific meanings to use took longer to make their response because they attempt to cheok their cholce agalnst avallable response before overtly stating their choice. This finding implies that if one attempts to change information on highway signs and then attempts to modify drivers'responses through educational progrars, it may be reasonable to expect an increase in response latencies until the new stimulus response associations are thoroughly learned.

\section*{SUMMARY}

The results of the two experiments discussed in this report provide considerable information with respect to the use of arrows in route guide sjgns. Experiment I demonstrated that age or sex have little impact on categorical responses to various engulax inclinetions. In addition it was found thet the type of srrow used in the experiment hed little effect on cetegorical responses and only marginal effects on cesponse latencies. On the other hand, it was determined that upward orientations were consistenty related to more stereotyoic responses while downard orientations produced significantly more variety in responses. A detailed examinam tion of this data revealed that the amrow inclinations occupying the major upwetd compass pointa produced raster response latencies and more unequivocal categorioal responses. It was also found that arrow inclinations combined with numerical information on the guide sign produced higher latencies than when the arrows are oombined whth verbal jnfornation or are presented alone. Data are also presented whioh permjt an inspection of the reletionshlo between specifio cetegorical responses and the various angular inolinations. Finally, it was found that permitting the subjeot unrestricted latitude jon making his oategorioal responses provides a more edequate deta base then does forcing responses into a set of fixed categories.

In Ixperiment II attention was focused on the effect of verious arrow inolmethons in sequences. The anayses cevealed
that upward oriented sequences produce the fewest different categorical responses. It was also detemmed that the end arron of the sequences is significantly more often in the horizontal orientation in the eriterion sequences. No sig. nificant difierences were found between right and left oriented sequenoes. Distracting subjects from the primary task or providing them with specific meanings for the angular inclinations apperped to have no effect on categorical rem sponses. The latency data indicated no significant difference between individual sequences or between two-arrow and four arrow sequences. pinally, it was detemined that both the distraction variebles and instruction variables significantly affected response Iatencies.

In conclusion, the dete of this report demonstrate the existence of stereotypic ariver responses to guide sign arrows in upard orientations. The results also suggest that the innovative use of arrows in guide signs should be concentrated in downard orientations. Eowever, the abstract nature of the stimuli in the present investigetion requires the implementation of the recomendatlons made by Zajkonski and Jatterly (1970) fox a laboratory study utilizing slides of actual highe way scenes and a field test of the proposed signing methods. Putting these recomeadations into effect will permit a validity assessment of the data obtained in the present investigetion and an examination of the effeots of differential rocdway and intersection guide sign placement as suggested by Enusten (1964) and Tiley (1964).
michigan deparment of state highways LANSING

\section*{Appendix 1}

Equipment used in the Experiment.

TABLE 12
Equipment used in Experiment 1 and 11
\begin{tabular}{|c|c|c|c|}
\hline Quantity & Manufacturer & & Unit \\
\hline 1 & Gerbrands & G1168 & Electronic Tachistoscopic Shutter with Timer \\
\hline 1 & Geribrands & G1169 & Kodak Carousel 800 Projector \\
\hline 2 & Hunter & 111 c & Decade Interval Timer \\
\hline 1 & Hunter & 150 & Self Holding Relay \\
\hline 1 & Lafayette & & Pursuit Rotor \\
\hline 1 & Lafayette & 6602A. & Voice Response Time Control \\
\hline 1 & Lafayette & 5661ADW & Stop Clock \\
\hline
\end{tabular}

\section*{Appendix 11}

Instructions to Subjects in Experiments 1 and 11

\section*{Instructions for Experiment 1}

You are going to be participating in an experiment which deals with highway safety. Generally what we are trying to determine is the extent to which licensed drivers agree on the meanings of certain types of traffic signs. You will be shown a series of slides which depict highway signs as they might actually be experienced on the highway. There will be a number of sets of these slides. After each set there will be a slight pause while we change to the next set and you will be able to take a rest during these pauses. Your task will be relacively simple. As soon as each slide appears we want you to determine what action the sign indicates that you should take.
A. Instructions for restricted alternatives

If you will look at the card we have provided you will see the choices of response that you have. For example your choices are A. Maintain present course
B. Turn off here (left or right) Note: emphasize that the left
or right must be included
C. Adjust course ahead (left or right) slowly
D. Adjust course ahead (left or right) quickly
B. Instruction for nonrestricted group

We would like you to indicate whatever the sign Means To You. For example it could mean
A. Maintain present course
B. Turn off here (left or right) Note: Do not show card. \(\therefore\). Adjust cuntse ahead (iefi or rigne) siowiy D. Adjust course ahead (left or right) quickly These are only a few of the possibllities of course, but we do want you to clearly indicate what the signs mean to you. It is extremely important that you supply us with as exact a meaning as possible.

As soon as each slide appears we would like you to make your decision as quickly as possible. Once you have made your decision please report your answer out loud INTO THE MICROPHONE IN FRONT OF YOU. Please speak clearly, distinctly and in a normal tone of voice. As your response will stop a timer and must also be hand recorded. If possible, please avoid a cough or unnecessary talking into the microphone when a slide is on the screen as this might accidently activate the device controlling the timing. Once again, in your responses always indicate exactly what action the sign comotes. That is, you should always indicate the direction and the type of action. The speed and accuracy of your responses are both critical. Therefore we would like you to make your responses as quickly and accurately as possible.

Do you have any questions?
Before we get started with the main, body of the experiment I will show you some demonstration slides so that you can see the kind of sides you will be asked to respond towonce again even with these slides respond as accurately and quickly as you can.

\section*{Instructions for Experiment 11}

\section*{Instructions to be read to all Subiects}

You are going to be participating in an experiment which deals with highway safety. In this specific instance, we are going to be examining the drivers ability to extract information from highway signs. Naturally, we will not be using a:real vehicle or highway signs in the experiment but the tasks we have chosen for the experiment do contain the essential elements of the actual tasks we are attempting to examine. For example, instead of actual highway signs, you will be shown several series of slides arranged in meaningful orders, but not necessarily as they are seen on highways. Therewill be a slight pause between each set of these slides. Your task will be relatively simple, with regard to these slides. As soon as each slide appears we want you to tell us what the sign means to you. For example the sign could mean.
1. Stop.
2. Yield
3. Turn here

Let me emphasize that these are only examples and we want you to indicate whatever the sign means to you.

As soon as each slide appears we would like you to make your decision as quickly as possible. Once you have made your decision please RePORT YOUR
 distinctiy, and in a mormal tone of voice. if possible, please avoid a cough or unnecessary talking into the microphone when a slide is on the screen as this might accidently activate the timing device. Once again, in your responses indicate exactly what action the sign comnotes. That is, you should always indicate the DIRECTION AND THE TYPE OF ACTION. The speed and accuracy of your responses are both critical. Therefore we would like you to make your responses as quickly and accurately as possible.

\section*{Additional Instructions-Distraction group only}

We are of course interested in the interaction between visual task capabilities and the ability to drive the vehicle. Thus, while you are seeing the slides we will ask you to perform a second and simultaneous task, which simulates the actual vehicle control task. As you will note, on the table in front of you is an apparatus which sonewhat resembles the turntable on a phonograph. Your task is to take this stylus (an lashaped rod on a hinged handle) and holding the handle, keep the metal tip on this little disc as it revolves. As you can see, this requires some degree of coordination as you must respond to each slide as it appears while doing your best to keep the stylus on the target. I wish to emphasize that we are concerned with your ability to perform of both of the tasks. Your performance on each of the tasks will be automatically on record.

Additional instructions for instructed group only
Before we begin the experiment I would like to take a few moments to explain the information you will be seeing on the slides. On each of these
slides you wili see a guide arrow of a particular kind．in preiminary research we have been able to establish the general meantige of these signs． （Give subject card with arrow inclinations and general categorical responses on it）．If you will look at this card we can go over it together and examine these meanings．

Arrow Inclination
General Categorical response

1．众
2．
3．
4．局
5．踢

Straight Ahead
Keep left（right）
Turn left（right）
Exit left（right
Thru Traffic

All of the slides that you will see contain one of these arrows and we will require you to respond to each slide．However， 1 would like to emphasize once again，that we want you to indicate what each slide means to you．So give whatever you believe to be en appropriate response to each slide．Do you have any questions？

Appendix 111
Statistical Analyses

TABLE 13
Frequency Analysis: Age \(X\) Arrow Inclination
\begin{tabular}{cccc}
\multicolumn{4}{l}{ Restricted Response Condition } \\
\hline Angle & \(x^{2}\) & df & P \\
\hline 0 & \(*\) & \(*\) & \(*\) \\
22.5 & 16.16 & 6 & .02 \\
45 & 20.85 & 3 & .02 \\
67.5 & 9.53 & 1 & .05 \\
90 & \(*\) & \(*\) & \(*\) \\
112.5 & \(*\) & \(*\) & \(*\) \\
135 & \(*\) & \(*\) & \(*\) \\
151.5 & 13.11 & 6 & .05 \\
180 & \(*\) & \(*\) & \(*\) \\
202.5 & 19.34 & 6 & .01 \\
225 & 8.98 & 6 & .20 \\
247.5 & 5.86 & 6 & .50 \\
270 & \(*\) & \(*\) & \(*\) \\
292.5 & 10.25 & 6 & .20 \\
315 & 8.49 & 6 & .30 \\
337.5 & 16.28 & 6 & .02 \\
\hline
\end{tabular}

Note. \(-\infty\) means that majority of responses have fallen in a single category.

TABLE 14
Frequency Analysis: Sex \(X\) Arrow Inclination
\begin{tabular}{cccc}
\multicolumn{4}{c}{ Restricted Response Condition } \\
\hline Angle & \(x^{2}\) & df & P \\
\hline 0 & 1.05 & 1 & .50 \\
22.5 & 7.04 & 2 & .05 \\
45 & 1.99 & 2 & .50 \\
67.5 & 1.71 & 2 & .50 \\
90 & \(*\) & \(*\) & \(*\) \\
112.5 & 2.15 & 2 & .50 \\
135 & .25 & 2 & .90 \\
157.5 & .93 & 2 & .70 \\
180 & 4.47 & 1 & .05 \\
202.5 & 2.10 & 2 & .50 \\
225 & 18.15 & 2 & .01 \\
247.5 & 10.26 & 4 & .05 \\
270 & .08 & 1 & .80 \\
292.5 & 10.88 & 2 & .01 \\
315 & 11.66 & 2 & .01 \\
337.5 & .36 & 2 & .90 \\
\hline
\end{tabular}

Note.... * means that majority of responses have fallen in a single category.

TABLE 15
Frequency Analysis: Information Content \(X\) Arrow Inclination *

Restricted Response Condition
\begin{tabular}{cccc}
\multicolumn{3}{c}{ Restricted Response Condition } \\
\hline Angle & \(x^{2}\) & df \\
\hline 0 & 1.58 & 2 & .50 \\
22.5 & 2.03 & 4 & .80 \\
45 & 2.30 & 4 & .70 \\
67.5 & 1.12 & 2 & .70 \\
90 & \(*\) & \(*\) & \(*\) \\
112.5 & .87 & 4 & .98 \\
135 & 3.28 & 4 & .70 \\
157.5 & 1.03 & 4 & .95 \\
180 & .49 & 2 & .80 \\
202.5 & 6.40 & 4 & .20 \\
225 & 2.29 & 4 & .50 \\
247.5 & 2.28 & 4 & .70 \\
270 L & .11 & 2 & .95 \\
270 R & .83 & 2 & .70 \\
292 & 1.79 & 6 & .95 \\
315 & 2.25 & 4 & .70 \\
\hline & 6.61 & 4 & .20 \\
\hline
\end{tabular}

Note.... * means that majority of responses have fallen in a single category.
table 16
Frequency Analysis: Age \(x\) Arrow Inclination
\begin{tabular}{cccc}
\multicolumn{4}{l}{ Unrestricted Response Condition } \\
\hline Angle & \(x^{2}\) & df & p \\
\hline 0 & 13.58 & 3 & .01 \\
22.5 & 11.22 & 6 & .10 \\
45 & .14 & 3 & .99 \\
67.5 & 7.40 & 3 & .10 \\
90 & \(*\) & \(*\) & \(*\) \\
112.5 & 3.89 & 3 & .30 \\
135 & 4.01 & 3 & .20 \\
157.5 & 2.56 & 6 & .90 \\
180 & 7.49 & 3 & .10 \\
202.5 & 17.97 & 6 & .01 \\
225 & 22.47 & 9 & .01 \\
247.5 & 23.32 & 6 & .01 \\
270 & 33.95 & 9 & .01 \\
292.5 & 16.41 & 9 & .10 \\
315 & 19.48 & 6 & .01 \\
337.5 & 14.34 & 6 & .05 \\
\hline
\end{tabular}

Note... * means that majority of responses have fallen in a single category.

TABLE 17
Frequency Analysis: Sex \(X\) Arrow Inclination
\begin{tabular}{cccc}
\multicolumn{4}{c}{ Unrestricted Response Condition } \\
\hline 2 & 2 & 2 & df \\
\hline 0 & 9.78 & 1 & .01 \\
22.5 & 3.06 & 2 & .30 \\
45 & 2.22 & 2 & .50 \\
67.5 & 3.08 & 2 & .30 \\
90 & \(*\) & \(*\) & \(*\) \\
112.5 & .70 & 2 & .80 \\
135 & 1.90 & 2 & .50 \\
157.5 & 2.16 & 2 & .50 \\
180 & 4.52 & 2 & .20 \\
202.5 & 36.02 & 5 & .01 \\
225 & 6.94 & 5 & .30 \\
247.5 & 12.81 & 5 & .05 \\
292.5 & 12.98 & 3 & .01 \\
315 & 6.06 & 5 & .50 \\
337 & 6.66 & 4 & .20 \\
\hline
\end{tabular}

Note. ... * means that majority of responses have fallen in a single category.

TABLE 19
Frequency Analysis: Information Content \(X\) Arrow Inclination
\begin{tabular}{cccc}
\multicolumn{4}{c}{ Unrestricted Response Condition } \\
\hline Angle & \(x^{2}\) & df & p \\
\hline 0 & 2.42 & 2 & .30 \\
22.5 & 2.24 & 4 & .70 \\
45 & 4.36 & 4 & .50 \\
67.5 & .69 & 2 & .80 \\
90 & \(\%\) & \(*\) & \(*\) \\
112.5 & 1.09 & 2 & .70 \\
135 & 2.39 & 2 & .50 \\
157.5 & 4.68 & 4 & .50 \\
180 & .34 & 2 & .90 \\
202.5 & 3.22 & 6 & .80 \\
225 & 2.68 & 6 & .90 \\
247.5 & 1.11 & 4 & .90 \\
270 & 42.61 & 2 & .01 \\
292.5 & 1.92 & 8 & .99 \\
315 & 1.73 & 4 & .80 \\
337.5 & 2.88 & 6 & .90 \\
\hline
\end{tabular}

Note. - - * means that majority of responses have fallen in a single category.

Appendix IV
Experinentäl Sequences
table 19
Experimental Sequences


TABLE 19
Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sequence & \multicolumn{4}{|l|}{Angular Inclination In Degrees} & \multicolumn{4}{|l|}{Visual Representation} \\
\hline 22 & 270 & 180 & & & \(\downarrow\) & 4 & & \\
\hline 23 & 270 & 135 & & & 1 & \％ & & \\
\hline 24 & 270 & 225 & & & 家 & A & & \\
\hline 25 & 90 & 90 & 90 & 180 & 4 & 4 & 4 & 4 \\
\hline 26 & 135 & 135 & 135 & 180 & W & 犆 & 8 & 4 \\
\hline 27 & 135 & 135 & 135 & 135 & \％ & \％ & 敏 & \％ \\
\hline 28 & 90 & 90 & 90 & 135 & 4 & 4 & 伞 & k \\
\hline 29 & 90 & 90 & 90 & 225 & 4 & A & A & ＊ \\
\hline 30 & 135 & 135 & 135 & 225 & 易 & \％ & W & A \\
\hline 31 & 135 & 90 & 90 & 180 & \％ & 4 & 爯 & 4 \\
\hline 32 & 135 & 135 & 90 & 180 & W & \％ & 4 & 乐 \\
\hline 33 & 135 & 90 & 90 & 135 & 苞 & 4 & 令 & 最 \\
\hline 34 & 135 & 135 & 90 & 135 & 幍 & 每 & 食 & 吹 \\
\hline 35 & 135 & 90 & 90 & 225 & 閙 & 令 & ＊ & A \\
\hline 36 & 135 & 135 & 90 & 225 & \％ & \(k\) & 4 & 人 \\
\hline 37 & 90 & 135 & 90 & 180 & 㙖 & ， & 会 & 4 \\
\hline 38 & 90 & 135 & 135 & 180 & 会 & 㤽 & 溷 & 4 \\
\hline 39 & 90 & 135 & 90 & 135 & 4 & \％ & 葸 & 等 \\
\hline 40 & 90 & 135 & 135 & 135 & 䕝 & 最 & V & V \\
\hline 41 & 90 & 135 & 90 & 225 & 4 & 䫆 & 4 & 2 \\
\hline 42 & 90 & 135 & 135 & 225 & A & W & 潟 & A \\
\hline
\end{tabular}

TABLE 19
Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sequence & \multicolumn{4}{|l|}{Angular Inclinations In Degrees} & \multicolumn{4}{|l|}{Visual Representation} \\
\hline 43 & 90 & 90 & 135 & 180 & 鐇 & 4 & V & 4 \\
\hline 44 & 135 & 90 & 135 & 180 & R & ＊ & 樶 & 4 \\
\hline 45 & 90 & 90 & 135 & 135 & A & 4 & 㥩 & V \\
\hline 46 & 135 & 90 & 135 & 135 & 最 & 令 & 1 & \％ \\
\hline 47 & 90 & 90 & 135 & 225 & 令 & 4 & ， & 4 \\
\hline 48 & 135 & 90 & 135 & 225 & Q & 4 & W & \％ \\
\hline 49 & 90 & 90 & 90 & 0 & 全 & 4 & 4 & － \\
\hline 50 & 45 & 45 & 45 & 0 & W & ． 7 & \％ & 0 \\
\hline 51 & 90 & 90 & 90 & 45 & 4 & ＊ & 兊 & V \\
\hline 52 & 45 & 45 & 45 & 45 & ＊ & 准 & \％ & 浸 \\
\hline 53 & 90 & 90 & 90 & 315 & 爯 & 4 & 离 & ） \\
\hline 54 & 45 & 45 & 90 & 315 & 埭 & V & A & 发 \\
\hline 55 & 45 & 90 & 90 & 0 & ＊ & 4 & 4 & － \\
\hline 56 & 45 & 45 & 90 & 0 & W & \％ & 令 & － \\
\hline 57 & 45 & 90 & 90 & 45 & \＄ & 4 & 4 & ＊ \\
\hline 58 & 45 & 45 & 90 & 45 & 裂 & \％ & A & 羽 \\
\hline 59 & 45 & 90 & 90 & 315 & W & 4 & 苼 & 4 \\
\hline 60 & 45 & 45 & 45 & 315 & 湰 & V & 僉 & 2 \\
\hline 61 & 90 & 45 & 90 & 0 & 4 & 滑 & \(\pm\) & － \\
\hline 62 & 90 & 45 & 45 & 0 & 甥 & 羽 & W & 5 \\
\hline 63 & 90 & 45 & 90 & 4.5 & A & W & 4 & \％ \\
\hline
\end{tabular}
table 19
Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sequence & \multicolumn{4}{|l|}{Angular Inclination In Degrees} & \multicolumn{4}{|l|}{Visual Representation} \\
\hline 64 & 90 & 45 & 45 & 45 & A & \＄ & \％ & W \\
\hline 65 & 90 & 45 & 90 & 315 & A & \％ & 参 & 处 \\
\hline 66 & 90 & 45 & 45 & 315 & A & \＄ & 3 & ） \\
\hline 67 & 90 & 90 & 45 & 0 & 凮 & 4 & W & － \\
\hline 68 & 45 & 90 & 45 & 0 & 1 \({ }^{2}\) & 4 & 2 & \(\rightarrow\) \\
\hline 69 & 90 & 90 & 45 & 45 & A & 番 & 笠 & 羽 \\
\hline 70 & 45 & 90 & 45 & 45 & 羽 & 令 & \％ & 觰 \\
\hline 71 & 90 & 90 & 45 & 315 & 4 & 4 & 翖 & 㓱 \\
\hline 72 & 45 & 90 & 45 & 315 & 䝶 & 伞 & 7 & 4 \\
\hline 73 & 270 & 270 & 270 & 0 & － & 就 & 甾 & － \\
\hline 74 & 270 & 270 & 270 & 315 & V & 1嗗 & － & ＊ \\
\hline 75 & 270 & 270 & 270 & 45 & \(\stackrel{\text { V }}{ }\) & 翑 & V & W \\
\hline 76 & 315 & 270 & \(\cdot 270\) & 0 & A & W & 㲾 & \(\rightarrow\) \\
\hline 77 & 315 & 270 & 270 & 315 & 渗 & V & \(\downarrow\) & A \\
\hline 78 & 315 & 270 & 270 & 45 & － & V & \(\sqrt{1}\) & \％ \\
\hline 79 & 270 & 315 & 270 & 0 & V & 成 & － & － \\
\hline 80 & 270 & 315 & 270 & 315 & V & 20 & 䨐 & \％ \\
\hline 81 & 270 & 315 & 270 & 45 & V & － & 1 & S \\
\hline 82 & 270 & 270 & 315 & 0 & \％ & V & 发 & \(\dagger\) \\
\hline 83 & 270 & 270 & 315 & 315 & v & 需 & 28 & － \\
\hline 84 & 270 & 270 & 315 & 45 & － & V & \％ & 䍿 \\
\hline
\end{tabular}

TABLE 19
Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sequence & \multicolumn{4}{|l|}{Angular Inclinations in Degrees} & & Repr
2. & 3． & \\
\hline 85 & 315 & 315 & 315 & 0 & ＊ & \％ & 4 & － \\
\hline 86 & 315 & 315 & 315 & 315 & 离 & 4 & 处 & \(\wedge\) \\
\hline 87 & 315 & 315 & 315 & 45 & S &  & 風 & W \\
\hline 88 & 315 & 315 & 270 & 0 & － & 荗 & 䨖 & － \\
\hline 89 & 315 & 315 & 270 & 315 & 会 & A & V & \％ \\
\hline 90 & 315 & 315 & 270 & 45 & － & \(\pm\) & － & W \\
\hline 91 & 270 & 315 & 315 & 0 & V & 2 & － & \(\rightarrow\) \\
\hline 92 & 270 & 315 & 315 & 315 & V & ， & A & 䢕 \\
\hline 93 & 270 & 315 & 315 & 45 & 雱 & 2 & ） & \％ \\
\hline 8 & 345 & 270 & 315 & 0 & 樃 & 蓠 & － & ＋ \\
\hline 95 & 315 & 270 & 315 & 315 & \(\wedge\) & 舤 & 4 & \％ \\
\hline 96 & 315 & 270 & 315 & 45 & － & V & \％ & W \\
\hline 97 & 270 & 270 & － 270 & 180 & 4 & V & － & 4 \\
\hline 98 & 270 & 270 & 270 & 135 & v & \％ & v & V \\
\hline 99 & 270 & 270 & 270 & 225 & V & d & V & 会 \\
\hline 100 & 225 & 270 & 270 & 180 & A & \(\downarrow\) & V & 4 \\
\hline 101 & 225 & 270 & 270 & 225 & A & 官 & W & A \\
\hline 102 & 225 & 270 & 270 & 135 & 4 & 雱 & \％ & \％ \\
\hline 103 & 270 & 225 & 270 & 180 & V & A & － & 4 \\
\hline 104 & 270 & 225 & 270 & ． 135 & \(\checkmark\) & A & V & V \\
\hline 105 & 270 & 225 & 270 & 225 & \％ & 4 & \(V\) & \(\triangle\) \\
\hline
\end{tabular}
table 19
Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sequence & \multicolumn{4}{|l|}{Angular Inclinations In Degrees} & \multicolumn{4}{|l|}{Visual Representation} \\
\hline 106 & 270 & 270 & 225 & 180 & \(\stackrel{\rightharpoonup}{ }\) & V & A & 4 \\
\hline 107 & 270 & 270 & 225 & 135 & 殏 & V & A & V \\
\hline 108 & 270 & 270 & 225 & 225 & 需 & V & ＊ & ＊ \\
\hline 109 & 225 & 225 & 225 & 180 & A & 4 & 4 & 4 \\
\hline 110 & 225 & 225 & 225 & 135 & ＊ & － & 4 & \％ \\
\hline 111 & 225 & 225 & 225 & 225 & 通 & 会 & － & A \\
\hline 112 & 225 & 225 & 270 & 180 & 4 & 4 & \(\dagger\) & 4 \\
\hline 113 & 225 & 225 & 270 & 135 & A & 䓣 & 寄 & 貲 \\
\hline 114 & 22.5 & 225 & 270 & 225 & A & A & － & ＊ \\
\hline 115 & 270 & 225 & 225 & 180 & \(\downarrow\) & \(\Delta\) & 迢 & 4 \\
\hline 116 & 270 & 225 & 225 & 135 & 叟 & \＄ & A & \％ \\
\hline 117 & 270 & 225 & 225 & 225 & 㲾 & 4 & ＊ & 㥻 \\
\hline 118 & 225 & 270 & 225 & 180 & ＊ & \(\checkmark\) & A & 4 \\
\hline 119 & 225 & 270 & 225 & 135 & A & － & 4 & 車 \\
\hline 120 & 225 & 270 & 225 & 225 & A & 雱 & A & A \\
\hline
\end{tabular}

Appendix \(V\)
Stacistical Analyses Experiment it
table 20
Number of Different Categorical Responses
to Arrow Sequences
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Sequence} & \multicolumn{4}{|c|}{Number of Categories} & \(x^{2}\) & df & \(p\) \\
\hline & \multicolumn{2}{|c|}{Undistracted} & \multicolumn{2}{|c|}{Distracted} & & & \\
\hline & uninformed & informed & uninformed & informed & & & \\
\hline 1 & 5 & 6 & 5 & 4 & . 20 & 1 & ns \\
\hline 2 & 8 & 7 & 7 & 6 & . 00 & 1 & ns \\
\hline 3 & 8 & 6 & 6 & 4 & . 02 & 1 & ns \\
\hline 4 & 3 & 4 & 4 & 4 & . 08 & 1 & ns \\
\hline 5 & 8 & 5 & 5 & 6 & . 62 & 1 & ns \\
\hline 6 & 8 & 5 & 5 & 4 & . 08 & 1 & ns \\
\hline 7 & 6 & 4 & 5 & 6 & . 44 & 1 & ns \\
\hline 8 & 10 & 7 & 7 & 5 & . 00 & 1 & ns \\
\hline 9 & 9 & 5 & 8 & 6 & . 15 & 1 & ne \\
\hline 10 & 6 & 4 & 4 & 6 & . 80 & 1 & ns \\
\hline 11 & 6 & 5 & 4 & 5 & . 20 & 1 & ns \\
\hline 12 & 8 & 5 & 5 & 5 & . 30 & 1 & \(n s\) \\
\hline 13 & 6 & 5 & 5 & 4 & . 00 & 1 & ns \\
\hline 14 & 8 & 6 & 7 & 5 & . 00 & 1 & ns \\
\hline 15 & 8 & 8 & 8 & 5 & . 39 & 1 & \(n s\) \\
\hline 16 & 5 & 4 & 3 & 4 & . 25 & 1 & ns \\
\hline 17 & 8 & 3 & 5 & 5 & 1.15 & 1 & ns \\
\hline 18 & 8 & 5 & 4 & 4 & . 30 & 1 & ns \\
\hline 19 & 9 & 5 & 4 & 6 & 1.39 & 1 & ns \\
\hline 20 & 9 & 6 & 8 & 5 & . 01 & 1 & ns \\
\hline
\end{tabular}

TABEE 20

\section*{Continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Sequence} & \multicolumn{4}{|c|}{Number of Categories} & \(x^{2}\) & df & p \\
\hline & \multicolumn{2}{|r|}{Undistracted} & \multicolumn{2}{|l|}{- Distracted} & & & \\
\hline & uninformed & informed & uninformed & informed & & & \\
\hline 21 & 10 & 6 & 8 & 6 & . 08 & 1 & ns \\
\hline 22 & 5 & 5 & 5 & 5 & . 00 & 1 & ns \\
\hline 23 & 7 & 6 & 5 & 4 & . 00 & 1 & ns \\
\hline 24 & 8 & 5 & 6 & 6 & . 33 & 1 & ns \\
\hline 25 & 11 & 8 & 8 & 8 & . 22 & 1 & ns \\
\hline 26 & 14 & 14 & 12 & 8 & . 47 & 1 & ns \\
\hline 27 & 12 & 13 & 9 & 8 & . 08 & 1 & ns \\
\hline 28 & 13 & 9 & 9 & 8 & . 00 & 1 & ns \\
\hline 29 & 14 & 9 & \(?\) & 11 & 1.95 & 1 & ns \\
\hline 30 & 17 & 12 & 17 & 9 & . 26 & 1 & ns \\
\hline 31 & 11 & 10 & 8 & 8 & . 02 & 1 & ns \\
\hline 32 & 14 & 10 & 10 & 9 & . 13 & 1 & ns \\
\hline 33 & 17 & 11 & 12 & 7 & . 02 & 1 & ns \\
\hline 34 & 15 & 11 & 11 & 8 & . 00 & 1 & ns \\
\hline 35 & 15 & 10 & 11 & 9 & . 11 & 1 & ns \\
\hline 36 & 16 & 10 & 11 & 7 & . 00 & 1 & ns \\
\hline 37 & 13 & 11 & 9 & 8 & . 01 & 1 & ns \\
\hline 38 & 13 & 9 & 9 & 9 & . 33 & 1 & ns \\
\hline 39 & 15 & - 10 & 10 & 9 & . 24 & 1 & ns \\
\hline 40 & 15 & 11 & - 8 & 8 & . 24 & 1 & ns \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { LIBRARY } \\
& \text { michigan department of } \\
& \text { state highways } \\
& \text { LANSING }
\end{aligned}
\]
Sequence Number of Cafegories
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{ence} & \multicolumn{4}{|c|}{Number of Categories} & \(x^{2}\) & df & \(p\) \\
\hline & \multicolumn{2}{|r|}{Undistracted} & \multicolumn{2}{|l|}{Distracted} & & & \\
\hline & uninformed & informed & uninformed & informed & & & \\
\hline 4.1 & 16 & 11 & 11 & 9 & . 09 & 1 & ns \\
\hline 42 & 16 & 10 & 12 & 10 & . 12 & 1 & ns \\
\hline 43 & 13 & 9 & 9 & 8 & . 14 & 1 & ns \\
\hline 44 & 13 & 10 & 10 & 8 & . 00 & 1 & ns \\
\hline 45 & 14 & 8 & 10 & 8 & . 27 & 1 & ns \\
\hline 46 & 13 & 10 & 9 & 6 & . 04 & 1 & ns \\
\hline 47 & 15 & 9 & 9 & 9 & . 66 & 1 & ns \\
\hline 48 & 12 & 14 & 11 & 9 & . 35 & 1 & ns \\
\hline 49 & 12 & 8 & 8 & 8 & . 36 & 1 & ns \\
\hline 50 & 13 & 10 & 11 & 8 & . 01 & 1 & ns \\
\hline 51 & 13 & 6 & 11 & 8 & . 45 & 1 & ns \\
\hline 52 & 16 & 12 & 13 & 10 & . 00 & 1 & ns \\
\hline 53 & 17 & 8 & 15 & 9 & 3.27 & 1 & ns \\
\hline 54 & 14 & 10 & 12 & 9 & . 00 & 1 & ns \\
\hline 55 & 12 & 10 & 6 & 10 & 1.07 & 1 & ns \\
\hline 56 & 11 & 7 & 11 & 10 & . 33 & 1 & ns \\
\hline 57 & 13 & 10 & 10 & 8 & . 00 & 1 & ns \\
\hline 58 & 16 & 10 & 11 & 8 & . 06 & 1 & ns \\
\hline 59 & 14 & 11 & 10 & 10 & . 16 & 1 & ns \\
\hline 60 & 17 & 15 & 13 & 8 & . 40 & 1 & ns \\
\hline
\end{tabular}

TABLE 20
Continued


TABLE 20
Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Sequence} & \multicolumn{4}{|c|}{Number of Categories} & \(x^{2}\) & df & 2 \\
\hline & \multicolumn{2}{|r|}{Undistrected} & \multicolumn{2}{|l|}{- Distracted} & & & \\
\hline & uninformed & informed & uninformed & informed & & & \\
\hline 81 & 17 & 10 & 11 & 10 & . 54 & 1 & ns \\
\hline 82 & 12 & 11 & 12 & 11 & . 00 & 1 & ns \\
\hline 83 & 16 & 12 & 10 & 12 & . 67 & 1 & ns \\
\hline 84 & 15 & 10 & 11 & 11 & . 47 & 1 & ns \\
\hline 85 & 17 & 11 & 14 & 11 & . 12 & 1 & ns \\
\hline 86 & 20 & 13 & 16 & 12 & . 07 & 1 & ns \\
\hline 87 & 19 & 12 & 16 & 11 & . 02 & 1 & ns \\
\hline 88 & 16 & 10 & 9 & 11 & 1.24 & 1 & ns \\
\hline 89 & 15 & 8 & 15 & 12 & .48 & 1 & ns \\
\hline 90 & 13 & 12 & 17 & 11 & .41 & 1 & ns \\
\hline 91 & 15 & 8 & 7 & 13 & 3.90 & 1 & . 85 \\
\hline 92 & 18 & 12 & 14 & 12 & . 22 & 1 & ns \\
\hline 93 & 17 & 12 & 14 & 10 & . 00 & 1 & ns \\
\hline 94 & 14 & 10 & 15 & 14 & . 23 & 1 & ns \\
\hline 95 & 15 & 12 & 14 & 15 & . 29 & 1 & ns \\
\hline 96 & 17 & 12 & 12 & 16 & 1.42 & 1 & ns \\
\hline 97 & 11 & 10 & 11 & 12 & . 09 & 1 & ns \\
\hline 98 & 13 & 9 & 9 & 11. & . 83 & 1 & ns \\
\hline 99 & 15 & 9 & 10 & 12 & 1.34 & 1 & ns \\
\hline 100 & 15 & 9 & 10 & 14 & 2.08 & 1 & ns \\
\hline
\end{tabular}

TABLE 20
Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Sequence} & \multicolumn{4}{|c|}{Number of Categories} & \(x^{2}\) & \multirow[t]{2}{*}{df} & \multirow[t]{2}{*}{P} \\
\hline & \multicolumn{2}{|c|}{Undistracted} & \multicolumn{2}{|c|}{Distracted} & & & \\
\hline & uninformed & informed & uninformed & informed & & & \\
\hline 101 & 17 & 10 & 12 & 12 & . 87 & 1 & ns \\
\hline 102 & 15 & 10 & 11 & 11 & . 47 & 1 & ns \\
\hline 103 & 13 & 10 & 11 & 10 & . 07 & 1 & ns \\
\hline 104 & 16 & 11 & 15 & 10 & . 00 & 1 & ns \\
\hline 105 & 18 & 10 & 14 & 12 & . 61 & 1 & ns \\
\hline 106 & 11 & 10 & 10 & 12 & . 30 & 1 & ns \\
\hline 107 & 17 & 10 & 13 & 11 & . 40 & 1 & ns \\
\hline 108 & 17 & 14 & 12 & 12 & . 13 & 1 & ns \\
\hline 109 & 14 & 8 & 16 & 11 & . 10 & 1 & ne \\
\hline 110 & 16 & 12 & 12 & 11 & 1.79 & 1 & ns \\
\hline 111 & 20 & 12 & 17 & 12 & . 09 & 1 & ns \\
\hline 112 & 13 & 11 & 12 & 12 & . 08 & 1 & ns \\
\hline 113 & 17 & 11 & 13 & 11 & . 22 & 1 & ns \\
\hline 114 & 17 & 12 & 15 & 12 & . 05 & 1 & ns \\
\hline 115 & 14 & 9 & 11 & 11 & . 53 & 1 & ns \\
\hline 116 & 17 & 11 & 13 & 11 & . 22 & 1 & ns \\
\hline 117 & 18 & 12 & 10 & 10 & . 48 & 1 & ns \\
\hline 118 & 15 & 8 & 13 & 13 & 1.16 & 1 & ns \\
\hline 119 & 18 & 10 & 13 & 12 & . 81 & 1 & ns \\
\hline 120 & 18 & 11 & 13 & 12 & . 55 & 1 & ns \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{Means and Standard Deviations of Latencies on Arrow Sequences} \\
\hline \multirow[t]{3}{*}{Sequence} & \multicolumn{4}{|c|}{Condition} \\
\hline & \multicolumn{2}{|c|}{Undistracted} & \multicolumn{2}{|c|}{Distracted} \\
\hline & uninformed & informed & uninformed & informed \\
\hline \multirow[t]{2}{*}{1 MEAN} & 1.68 & 1.81 & 1.77 & 1.93 \\
\hline & . 33 & . 38 & . 53 & . 57 \\
\hline \multirow[t]{2}{*}{} & 1.71 & 2.12 & 1.78 & 1.82 \\
\hline & . 31 & . 56 & . 71 & . 28 \\
\hline \multirow[t]{2}{*}{} & 1.53 & 1.90 & 1.54 & 1.81 \\
\hline & . 23 & . 49 & . 42 & . 51 \\
\hline \multirow[t]{2}{*}{4} & 1.58 & 1.98 & 1.60 & 1.80 \\
\hline & . 28 & . 46 & . 36 & . 37 \\
\hline \multirow[t]{2}{*}{} & 1.58 & 1.92 & 1.60 & 1.97 \\
\hline & . 40 & . 58 & . 26 & . 46 \\
\hline & 5.53 & 1. 81 & 1.77 & 1.73 \\
\hline S.D. & . 22 & . 36 & . 57 & . 30 \\
\hline \multirow[t]{2}{*}{7} & 1.70 & 1.85 & 1.86 & 2.02 \\
\hline & . 47 & . 38 & . 58 & . 55 \\
\hline \multirow[t]{2}{*}{} & 1.60 & 1.91 & 1.76 & 2.04 \\
\hline & . 29 & . 38 & . 62 & . 46 \\
\hline \multirow[t]{2}{*}{} & 1.74 & 1.68 & 1.68 & 1.77 \\
\hline & . 56 & . 38 & . 44 & . 42 \\
\hline \multirow[t]{2}{*}{10} & 1.62 & 1.81 & 1.77 & 1.96 \\
\hline & . 36 & . 36 & . 33 & . 51 \\
\hline 11 & 1.74 & 2.09 & 1.48 & 1.81 \\
\hline S.O. & . 39 & . 45 & . 28 & . 44 \\
\hline \multirow[t]{2}{*}{12} & 1.65 & 2.06 & 1.80 & 1.99 \\
\hline & . 25 & . 38 & . 49 & . 35 \\
\hline \multirow[t]{2}{*}{13} & 1.72 & 1.86 & 1.67 & 1.98 \\
\hline & .26 & . 37 & . 34 & . 60 \\
\hline 14 & 1.74 & 1.99 & 1.66 & 1.90 \\
\hline S.D. & . 36 & . 52 & . 65 & . 61 \\
\hline
\end{tabular}

TABLE 21

\section*{COMTINUEO}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sequence} & \multicolumn{4}{|c|}{Condition} \\
\hline & \multicolumn{2}{|c|}{Undistracted} & \multicolumn{2}{|l|}{- Distracted} \\
\hline . & unimfomer & informed & unimomed & Informed \\
\hline 15 HEAN & 1.74 & 2.00 & 1.66 & 1.94 \\
\hline S.J. & . 48 & . 45 & . 47 & . 72 \\
\hline 16 KEAN & 1.60 & 1.80 & 1.47 & 2.00 \\
\hline S.D. & . 23 & . 43 & . 32 & . 40 \\
\hline 17 MEAR & 1.66 & 1.92 & 1.82 & 1.97 \\
\hline S.0. & . 33 & . 43 & . 68 & . 43 \\
\hline 18 MEAN & 1.67 & 1.94 & 1.48 & 1.89 \\
\hline S.D. & . 30 & . 42 & . 00 & . 45 \\
\hline 19 MEAN & 2.62 & 2.55 & 2.58 & 2.22 \\
\hline S.D. & 1.47 & . 87 & . 97 & . 53 \\
\hline 20 NEAN & 1.61 & 2.20 & 1.62 & 1.94 \\
\hline S.D. & . 31 & 1.00 & . 60 & . 41 \\
\hline 21 UEAN & 1.57 & 1.84 & 1.61 & 1.87 \\
\hline S.D. & . 28 & . 39 & . 48 & . 65 \\
\hline 22 MEAN & 1.74 & 2.03 & 1.76 & 1.98 \\
\hline S.O. & . 32 & . 62 & . 45 & . 30 \\
\hline 23 MEAN & 1.58 & 2.07 & 1.77 & 1.90 \\
\hline S.D. & . 43 & . 39 & . 40 & . 40 \\
\hline 24 MEAN & 1.66 & 2.05 & 1.76 & 1.96 \\
\hline S.D. & . 23 & . 39 & . 50 & . 65 \\
\hline 25 NEAN & 1.56 & 1.77 & 1.52 & 1.69 \\
\hline S.D. & . 34 & . 42 & . 28 & . 32 \\
\hline 26 MEAN & 1.68 & 1.81 & 1.52 & 1.72 \\
\hline S.D. & . 35 & . 33 & . 38 & . 47 \\
\hline 27 MEAN & 1.71 & 1.84 & 1.48 & 1.67 \\
\hline S.D. & . 44 & . 46 & . 56 & . 40 \\
\hline 28 MEAN & 1.63 & 1.83 & 1.43 & 1.77 \\
\hline S.D. & . 39 & . 40 & . 35 & . 45 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sevuence}} & \multicolumn{4}{|c|}{Condition} \\
\hline & & \multicolumn{2}{|c|}{Undstacted} & \multicolumn{2}{|l|}{- - Distracted} \\
\hline . & & unintormed & informed & y inforsed & 1neoned \\
\hline \multirow[t]{2}{*}{29} & SEAN & 1.64 & 1.92 & 1.64 & 1.74 \\
\hline & S.D. & . 31 & . 55 & . 38 & 45 \\
\hline \multirow[t]{2}{*}{30} & MEAN & 1.55 & 1.87 & 1.59 & 1.87 \\
\hline & S. 0 . & . 27 & . 40 & . 36 & . 56 \\
\hline \multirow[t]{2}{*}{31} & MEAN & 1.60 & 1.94 & 1.48 & 1.81 \\
\hline & S.D. & . 29 & . 47 & . 40 & . 38 \\
\hline \multirow[t]{2}{*}{32.} & MEAN & 1.54 & 1.98 & 1.59 & 1.91 \\
\hline & S.D. & . 23 & . 47 & . 49 & . 67 \\
\hline \multirow[t]{2}{*}{33} & MEAN & 1.60 & 1.96 & 1.66 & 1.86 \\
\hline & S.D. & . 34 & . 49 & . 47 & . 47 \\
\hline \multirow[t]{2}{*}{34} & HEAN & 1.61 & 1.88 & 1.45 & 1.72 \\
\hline & S.O. & .33 & . 4 & . 30 & .46 \\
\hline \multirow[t]{2}{*}{35} & hean & 1.68 & 1.98 & 1.54 & 1.80 \\
\hline & S.D. & . 36 & . 62 & . 35 & . 49 \\
\hline \multirow[t]{2}{*}{36} & MEAN & 1.66 & 2.04 & 1.63 & 1.89 \\
\hline & S.D. & . 32 & . 47 & . 40 & : 52 \\
\hline \multirow[t]{2}{*}{37} & MEAN & 1.61 & 1.83 & 1.57 & 1.75 \\
\hline & S.D. & . 29 & . 54 & . 33 & . 39 \\
\hline \multirow[t]{2}{*}{38} & MEAN & 1.72 & 2.13 & 1.62 & 1.80 \\
\hline & S.D. & . 29 & . 71 & . 46 & . 39 \\
\hline \multirow[t]{2}{*}{39} & MEAN & 1.68 & 2.22 & 1.68 & 1.92 \\
\hline & S.D. & . 38 & 1.42 & . 47 & . 42 \\
\hline \multirow[t]{2}{*}{40} & MEAN & 1.61 & 1.93 & 1.61 & 1.79 \\
\hline & S.D. & . 40 & . 54 & . 58 & . 47 \\
\hline \multirow[t]{2}{*}{41} & MEAN & 1.68 & 1.93 & 1.54 & 1.91 \\
\hline & S.D. & . 54 & . 55 & . 37 & . 59 \\
\hline \multirow[t]{2}{*}{42} & MEAN & 1.72 & 1.85 & 1.58 & 1.87 \\
\hline & S.D. & . 33 & . 45 & . 38 & . 47 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Seguence} & \multicolumn{4}{|c|}{conticion} \\
\hline & \multicolumn{2}{|c|}{Undistracted} & \multicolumn{2}{|c|}{Distracted} \\
\hline & uninformed & imbried & unimformed & 1060med \\
\hline 43 SEAN & 1.67 & 2.00 & 1.56 & 1.79 \\
\hline S.D. & . 43 & . 64 & . 29 & . 51 \\
\hline 44 MEAN & 1.55 & 1.94 & 1.54 & 1.87 \\
\hline S.D. & . 25 & . 47 & . 34 & . 48 \\
\hline 45 NEAN & 1.54 & 1.89 & 1.47 & 1.70 \\
\hline S.D. & . 34 & . 45 & . 24 & . 38 \\
\hline 46 SEAN & 1.82 & 1.30 & 1.96 & 1.99 \\
\hline S.D. & . 43 & . 86 & . 67 & . 75 \\
\hline 47 NEAN & 1.58 & 1.95 & 1.63 & 1.89 \\
\hline S.D. & . 30 & . 52 & . 38 & . 59 \\
\hline 48 MEAN & 1.81 & 2.13 & 1.61 & 2.19 \\
\hline 3.0 & . 4 & . 50 & . 33 & . 70 \\
\hline 49 MEAN & 1.59 & 1.77 & 1.50 & 1.70 \\
\hline S.D. & . 30 & . 39 & . 23 & . 31 \\
\hline 50 MEPN & 1.89 & 1.73 & 1.59 & 1.84 \\
\hline S.D. & . 70 & . 34 & . 31 & . 63 \\
\hline 51 MEAN & 1.56 & 1.82 & 1.59 & 1.75 \\
\hline S.D. & . 28 & . 41 & . 47 & . 41 \\
\hline 52 MEAN & 1.49 & 1.79 & 1.49 & 1.64 \\
\hline S.D. & . 40 & . 30 & . 36 & .38 \\
\hline 53 MEAN & 1.72 & 1.85 & 1.75 & 1.79 \\
\hline S.D. & . 40 & . 51 & . 60 & . 44 \\
\hline 54 MEAN & 1.58 & 1.93 & 1.60 & 2.30 \\
\hline S.D. & . 30 & . 50 & . 36 & . 96 \\
\hline 55 MEAN & 1.52 & 1.96 & 1.52 & 1.89 \\
\hline S.D. & . 21 & . 68 & . 41 & . 59 \\
\hline 56 HEAN & 1.70 & 1.91 & 1.52 & 1.95 \\
\hline S.D. & . 40 & . 53 & . 30 & . 44 \\
\hline
\end{tabular}

TAbLE 21
CONTMUED
\begin{tabular}{|c|c|c|c|c|}
\hline Saquence & \multicolumn{4}{|c|}{condition} \\
\hline \multirow[t]{2}{*}{.} & \multicolumn{2}{|c|}{Undistracted} & \multicolumn{2}{|c|}{Disyacted} \\
\hline & uninformad & informed & uninformad & inforned \\
\hline 57 SEAN & 1.52 & 1.80 & 1.57 & 1.79 \\
\hline S.D. & . 27 & . 34 & . 56 & . 41 \\
\hline 58 MEAN & 1.60 & 1.88 & 1.51 & 1.76 \\
\hline S.D. & . 26 & . 51 & . 31 & . 54 \\
\hline 59 MEAN & 1.80 & 2.10 & 1.77 & 2.10 \\
\hline S.D. & . 50 & . 45 & . 43 & . 65 \\
\hline 60 MEAN & 1.64 & 1.91 & 1.63 & 1.87 \\
\hline S.D. & . 37 & . 52 & . 40 & . 56 \\
\hline 61 VEAN & 1.68 & 1.91 & 1.58 & 1.89 \\
\hline S.D. & .34 & . 43 & . 35 & . 47 \\
\hline 62 MEAN & 1.69 & 2.01 & 1.64 & 1.90 \\
\hline S.0. & . 35 & . 61 & . 34 & . 60 \\
\hline 63 HEAN & 1.67 & 2.05 & 1.56 & 1.83 \\
\hline S.D. & . 54 & . 50 & . 45 & . 49 \\
\hline 64 MEAN & 1.58 & 1.82 & 1.58 & 1.73 \\
\hline S.D. & . 29 & . 29 & . 37 & . 40 \\
\hline 65 MEAN & 1.65 & 1.95 & 1.74 & 1.90 \\
\hline S.D. & . 28 & . 47 & . 63 & . 41 \\
\hline 66 MEAN & 1.61 & 1.93 & 1.59 & 1.87 \\
\hline S.D. & . 31 & . 42 & . 38 & . 44 \\
\hline 67 HEAN & 1.67 & 1.80 & 1.58 & 1.92 \\
\hline S.D. & . 39 & . 34 & . 50 & . 54 \\
\hline 68 MEAN & 1.80 & 2.02 & 1.82 & 1.84 \\
\hline S.D. & . 53 & . 45 & 1.00 & . 45 \\
\hline 69 MEAN & 1.48 & 1.82 & 1.55 & 1.62 \\
\hline S.D. & . 24 & . 60 & . 39 & . 72 \\
\hline 70 MEAN & 1.73 & 1.96 & 1.65 & 1.81 \\
\hline S.D. & . 46 & . 39 & . 48 & . 38 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
TABLE 21 \\
contimeo
\end{tabular}} \\
\hline \multirow[t]{2}{*}{Secuence} & \multicolumn{4}{|c|}{Condision} \\
\hline & \multicolumn{2}{|l|}{-a-undiserased} & \multicolumn{2}{|c|}{D1stracted} \\
\hline . & uninformed & informed & uninformed & intormed \\
\hline \multirow[t]{2}{*}{71 תERA
S.0.} & 1.64 & 1.87 & 1.67 & 1.79 \\
\hline & . 32 & . 45 & . 49 & . 38 \\
\hline \multirow[t]{2}{*}{\[
72 \text { nesin }
\]} & 1.68 & 1.97 & 1.63 & 1.76 \\
\hline & . 28 & . 44 & . 56 & . 72 \\
\hline 73 SEAN & 1.90 & 2.16 & 2.05 & 2.74 \\
\hline S.0. & . 62 & . 80 & 1.10 & 1.98 \\
\hline 74 vean & 1.71 & 2.12 & 1.58 & 1.93 \\
\hline S.0. & . 58 & . 75 & . 48 & . 50 \\
\hline 75 MEAN & 1.69 & 2.16 & 1.75 & 1.97 \\
\hline S.D. & . 42 & . 76 & . 85 & . 47 \\
\hline 76 MEAN & 1.61 & 1.95 & 1.56 & 1.94 \\
\hline S.L. & . 24 & . 55 & . 24 & . 55 \\
\hline 77 NEAN & 1.55 & 2.01 & 1.60 & 1.79 \\
\hline S.D. & . 26 & . 56 & . 40 & . 40 \\
\hline 78 MEAN & 1.64 & 1.91 & 1.60 & 1.81 \\
\hline S.D. & . 31 & . 43 & . 40 & . 44 \\
\hline 79 MEAN & 1.94 & 2.06 & 1.76 & 1.93 \\
\hline S.D. & . 70 & . 54 & . 49 & . 40 \\
\hline 80 MEAN & 1.58 & 2.10 & 1.56 & 1.80 \\
\hline S.D. & . 20 & . 48 & . 33 & . 46 \\
\hline 81 YEAN & 1.57 & 2.01 & 1.58 & 1.90 \\
\hline S.D. & . 30 & . 48 & . 42 & . 45 \\
\hline 82 MEAN & 1.54 & 1.86 & 1.62 & 1.88 \\
\hline S.D. & . 32 & . 35 & . 41 & . 51 \\
\hline 83 MEAN & 1.51 & 1.86 & 1.68 & 1.79 \\
\hline S.D. & . 25 & . 29 & . 52 & . 49 \\
\hline 84 YEAN & 1.56 & 1.88 & 1.65 & 1.98 \\
\hline S.D. & . 27 & . 34 & . 62 & . 65 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Sequence} & \multicolumn{4}{|c|}{Condtion} \\
\hline & \multicolumn{2}{|r|}{Undsereced} & \multicolumn{2}{|c|}{Distrectac} \\
\hline . & unjuforred & informed & uninformed & infomed \\
\hline 99 EAX & 1.53 & 1.77 & 1.69 & 1.79 \\
\hline S.D. & . 34 & . 33 & . 54 & . 50 \\
\hline 100 YEAN & 1.54 & 1.81 & 1.53 & 1.85 \\
\hline S. D. & . 21 & . 29 & . 37 & . 38 \\
\hline 101 NEAN & 1.60 & 1.85 & 1.68 & 1.81 \\
\hline S.O. & . 44 & . 61 & . 74 & . 38 \\
\hline 102 napin & 1.65 & 1.90 & 1.77 & 1.91 \\
\hline S. 0 . & . 39 & . 34 & . 39 & . 47 \\
\hline 103 HEAN & 1.78 & 1.94 & 1.69 & 1.83 \\
\hline S.D. & . 49 & . 27 & . 42 & . 35 \\
\hline 104 MEAN & 1.62 & 2.02 & 1.64 & 1.94 \\
\hline S.D. & . 23 & . 46 & . 46 & . 45 \\
\hline 105 MEAN & 1.67 & 1.99 & 1.54 & 1.87 \\
\hline S.D. & . 34 & . 49 & . 58 & . 47 \\
\hline 106 MEAN & 1.64 & 1.94 & 1.63 & 1.84 \\
\hline S.D. & . 33 & . 62 & . 41 & . 41 \\
\hline 107 MEAN & 1.63 & 1.98 & 1.62 & 1.79 \\
\hline S.D. & . 36 & . 70 & . 43 & . 28 \\
\hline 108 MEAN & 1.74 & 2.02 & 1.80 & 1.89 \\
\hline S.D. & . 44 & . 58 & . 46 & . 41 \\
\hline 109 MEAN & 1.66: & 1.82 & 1.63 & 1.79 \\
\hline S.D. & . 40 & . 45 & . 53 & . 40 \\
\hline 110 MEAN & 1.56 & 1.96 & 1.67 & 2.00 \\
\hline S.D. & . 22 & . 52 & . 42 & . 68 \\
\hline 111 MEAN & 1.44 & 1.72 & 1.57 & 1.66 \\
\hline S.D. & . 26 & . 41 & . 43 & . 42 \\
\hline 112 HaN & 1.69 & 2.04 & 1.56 & 1.72 \\
\hline S.0. & . 38 & . 53 & . 27 & . 38 \\
\hline
\end{tabular}

TABLE 21
Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sequence}} & \multicolumn{4}{|c|}{Condition} \\
\hline & & \multicolumn{2}{|c|}{Undistracted} & \multicolumn{2}{|l|}{- Distracted} \\
\hline \multicolumn{2}{|l|}{} & uninformed & Informed & uninformed & informed \\
\hline \multirow[t]{2}{*}{113} & MEAN & 1.62 & 1.91 & 1.65 & 2.00 \\
\hline & S.D. & . 33 & . 39 & . 45 & . 45 \\
\hline \multirow[t]{2}{*}{114} & MEAN & 1.76 & 2.06 & 1.66 & 2.01 \\
\hline & S.D. & . 38 & . 62 & . 42 & . 53 \\
\hline \multirow[t]{2}{*}{115} & MEAN & 1.52 & 1.87 & 1.57 & 1.74 \\
\hline & S.D. & . 22 & . 32 & . 40 & . 45 \\
\hline \multirow[t]{2}{*}{116} & MEAN & 1.66 & 1.92 & 1.54 & 1.99 \\
\hline & S.D. & .31 & . 58 & . 40 & . 50 \\
\hline \multirow[t]{2}{*}{117} & MEAN & 1.85 & 2.21 & 1.69 & 1.75 \\
\hline & S.D. & . 52 & . 76 & . 56 & . 41 \\
\hline \multirow[t]{2}{*}{118} & MEAN & 1.70 & 2.03 & 2.29 & 2.32 \\
\hline & S.D. & . 27 & . 46 & 1.20 & 1.39 \\
\hline \multirow[t]{2}{*}{119} & MEAN & 1.69 & 2.04 & 1.64 & 2.07 \\
\hline & S.D. & . 38 & . 63 & . 38 & . 60 \\
\hline \multirow[t]{2}{*}{120} & MEAN & 1.59 & 1.90 & 1.65 & 1.89 \\
\hline & S.D. & . 40 & . 60 & . 46 & . 62 \\
\hline
\end{tabular}

\section*{REMERENOES}

Enustun, \(H\) Fuide sign revisions may eliminate confusion. Trafice Mngineering. 1964, 34, P. . 13-19.

Wiley, T. T. Transportation to the New York Forld's Falr. Traficiongineertas. 1964, 34, Pp. 12m16.

Zajkowski, Mmo, z Settoriy, G. T. A Resegroh Prosram to Determine zfective utilizetion of Aryobiminy jn
 Sbate mignva Comatssion, Treffic Bafety Division, Tratic Research Bection, Contract 69-1262.```

