
 1

 Project Title: Wireless Data Collection Retrievals of Bridge
Inspection/Management Information

 Research Reference Number: MDOT # 2013-0067, Auth. No. 2 (R1, R2)

 Proposing Research Agency: Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931

 Principal Investigator(s): PI: Colin N. Brooks, MEM
Environmental Science Lab Manager, Research Scientist
Michigan Tech Research Institute (MTRI)
3600 Green Court, Suite 100, Ann Arbor, MI 48105
734-913-6858  cnbrooks@mtu.edu

 Co-PI: Theresa (Tess) M. Ahlborn, Ph.D., P.E., FPCI,
FACI
Professor, Civil and Environmental Engineering
Director, Center for Structural Durability
1400 Townsend Drive, Houghton MI 49931
906-487-2625  tess@mtu.edu

 Contracting Authority: Lisa Jukkala
Manager, Government Contracts/Training, Sponsored Programs
Michigan Technological University
1400 Townsend Drive, Houghton, MI 49931
906-487-2226  906-487-2245 fax  lajukkal@mtu.edu

Revised February 28, 2017:

 2

1. Report No.
RC-1634

2. Government Accession
No.
N/A

3. MDOT Project Manager
Rich Kathrens

4. Title and Subtitle
Wireless Data Collection Retrievals of Bridge
Inspection/Management Information

5. Report Date
2/28/2017
6. Performing Organization Code
38-6005955

7. Author(s)
C. Brooks, R. Sawtell, G. Sullivan, R. Dobson, T. Ahlborn, N.
Jessee, H. Kourous-Harrigan, S. Aden

8. Performing Organization
Report No.

9. Performing Organization Name and Address
Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931

10. Work Unit No. (TRAIS)
N/A
11. Contract No.
2013-0067
11(a). Authorization No.
No. 2 (R1, R2)

12. Sponsoring Agency Name and Address
Michigan Department of Transportation
Research Administration Section
425 West Ottawa Street
Lansing, MI 48933

13. Type of Report and Period
Covered
Final Report (Revised), including
Phase II through 2/28/2017

14. Sponsoring Agency Code
N/A

15. Supplementary Notes
This final report includes the content of the first report delivered Sept. 30, 2015, with updates to
reflect Phase II work completed through Feb. 28, 2017.
16. Abstract

To increase the efficiency and reliability of bridge inspections, MDOT contracted to have a 3D-model-
based data entry application for mobile tablets developed to aid inspectors in the field. The 3D Bridge
App is a mobile software tool designed to facilitate bridge inspection processes by enabling inspectors
to enter element-level bridge condition data using 3G/4G network-enabled tablet devices. The system
collects information from MDOT’s bridge management database, and then renders a dynamic,
interactive 3D model of the desired bridge. The bridge inspector is able to record the locations and
attributes of new defects in an element-level form by touch interaction and manipulation of the 3D
model. The interactive model, marked up with existing defects, also allows for bridge inspectors to
better visualize past inspection data. The inspector can also take pictures of the defects using the
tablet’s camera, as well as record comments. This gives users further insight into the progression of the
defect over time. The bridge inspector is able to navigate along the bridge model just as he or she
would during a normal inspection. Results can be integrated into bridge management workflows.

17. Key Words
Bridges, tablets, inspection, element, 3D, database,
data, interactive, Unreal Engine 4

18. Distribution Statement
No restrictions. This document is
available to the public through the
Michigan Department of Transportation.

19. Security Classification -
report
Unclassified

20. Security Classification -
page
Unclassified

21. No. of
Pages
101

22. Price

 3

Acknowledgments

The project team would like to thank and acknowledge the MDOT program manager, Rich Kathrens,
the research manager, Michael Townley, and the members of the research advisory committee for
their advice and oversight during this project. The help of Michigan Department of Technology,
Management and Budget staff in detailing database integration requirements was also appreciated.
The PIs would like to thank their project team of Reid Sawtell (lead developer), Glenn Sullivan, Helen
Kourous-Harrigan, Rick Dobson, Sam Aden, and Nate Jessee for their dedication to helping MDOT
rapidly, safely, and effectively collect element-level bridge condition data through this new tool. The
help of MDOT staff, especially bridge inspectors such as Janiene Devinney, and private companies
such as Great Lakes Engineering Group in increasing our understanding of real-world inspection
processes was critical to the success of the project. We thank everyone who advised the project and
met with our team.

Disclaimer
This publication is disseminated in the interest of information exchange. The Michigan Department of
Transportation (hereinafter referred to as MDOT) expressly disclaims any liability, of any kind or for
any reason, that might otherwise arise out of any use of this publication or the information or data
provided in the publication. MDOT further disclaims any responsibility for typographical errors or
accuracy of the information provided or contained within this publication. MDOT makes no
warranties or representations whatsoever regarding the quality, content, completeness, suitability,
adequacy, sequence, accuracy or timeliness of the information and data provided, or that the
contents represent standards, specifications, or regulations.

 4

Table of Contents
Acknowledgments ..3

Disclaimer ...3

Table of Contents ..4

List of Figures ..6

List of Tables ...6

Executive Summary ..7

1. Introduction ..9

1.1 Objectives ...9

1.2 Scope ... 10

2. Literature Review ... 12

3. Review of MDOT Practices ... 14

3.1 Inspection Forms ... 14

3.2 Inspection Procedures ... 16

4. Application Design and Requirements... 19

4.1 Requirements .. 19

4.2 Design Considerations ... 20

5. Server Implementation .. 22

5.1 Review of Bridge Fundamentals .. 22

5.2 BMS Database .. 23

5.3 Computing a Generic Bridge Model .. 23

5.4 XML File Structure ... 25

5.5 User Tuning .. 27

5.6 Other Services .. 27

5.7 Limitations ... 27

6. Client Implementation ... 29

6.1 Coding .. 29

6.2 Loading Bridge XML files .. 30

6.3 Navigation .. 31

6.4 Element-Level Defects ... 33

 5

6.5 Bridge Review .. 35

6.6 NBI Safety Inspection Report ... 36

6.7 Scratch Pad .. 39

6.8 Linear Defects and Defect Aggregation ... 39

6.9 Saving/Loading and Importing/Exporting .. 40

7. Conclusions .. 42

 6

List of Figures
Figure 2-1: Mobile device usage of the responding agencies. The “mixed” category includes agencies that use both tablets
and laptops. ... 12
Figure 2-2: Types of inspection and management software currently being used. Many agencies use custom software. The
“mixed/other” category represents modified or customized commercial solutions. ... 13
Figure 3-1: A section of the Structure Inventory and Appraisal form. .. 14
Figure 3-2: A section of the NBI Safety Inspection Report. The report combines historical and current ratings and comments
to fully document deterioration. ... 15
Figure 3-3: A section of the NBI CoRe Elements Report. Deterioration is classified by element type, quantity, and condition
state. .. 16
Figure 3-4: Inspection flow diagram and tool/material listing. ... 17
Figure 3-5: MTRI staff observe an MDOT inspector examining joint condition. ... 18
Figure 5-1: Bridge model generation. .. 22
Figure 5-2: Flowchart of the back-end obtaining all of the data necessary to create the 3D model. .. 24
Figure 5-3: Flowchart of BMS data integrated into the NBI Safety Inspection Report. ... 25
Figure 5-4: Example of a bridge member variable in XML format. .. 26
Figure 6-1: UE4’s Blueprint coding language as used to implement the Client Application’s user interface. 30
Figure 6-2: Load Bridge menu. ... 30
Figure 6-3: Camera Cylinder view orbits around and along the bridge. .. 32
Figure 6-4: Camera Rail view allows head-on inspection of the bridge. ... 32
Figure 6-5: Defect pop-up menu. Title and element shortlist are context-sensitive according to the bridge location touched. 34
Figure 6-6: Marker Editor offers an unrestricted view so the inspector can position and manipulate the defect. 35
Figure 6-7: Element Review mimics MiBRIDGE format. .. 36
Figure 6-8: Defect Summary drill-down to individual element-level defects. ... 36
Figure 6-9: Digital NBI Report form. .. 37
Figure 6-10: NBI Rating shortcut entry form, accessible from any bridge defect menu. .. 38
Figure 6-11: The ratings wheel is a touch-friendly interface for quickly selecting NBI ratings. .. 38
Figure 6-12: The scratch pad gives inspectors a place to write/draw notes that are not included in the report. 39

List of Tables

Table 3-1: Condition State Table for Prestressed Concrete. .. 16
Table 4-1: Software Platform Comparison .. 21

 7

Executive Summary
Current bridge inspection practices at the Michigan Department of Transportation (MDOT) utilize
paper forms followed by a manual data entry step to populate the Bridge Management System
(BMS) database with information needed for bridge management and repair. Faced with an aging
bridge inventory and increasing federal regulations regarding collection of element-level data, MDOT
wishes to increase the efficiency and reliability of collected data. To achieve this, MDOT requested a
2D/3D application that can utilize mobile tablet technology to aid inspectors in the field.

To develop this application, a Michigan Technological University applied research team, led by staff
from the Michigan Tech Research Institute (MTRI), first examined the state of practice across the
nation to better understand currently available options. They found that as of 2014, no application
assisted with collection of element-level data. Next, MTRI met with experienced bridge inspectors
(from the consulting firm Great Lakes Engineering Group as well as MDOT staff inspectors) to better
understand the needs of bridge inspectors so the application design could be tailored to their input.

Because MDOT does not have 3D bridge models available for all bridges, MTRI developed a server
application using Django (a Python web framework) to generate Extensible Markup Language (XML)
files using data from MDOT’s BMS database. Each XML file provides a generic bridge model that is
sufficiently representative for inspection purposes; it contains information about the element-level
components of a bridge, including location and size. The server application includes a user tuning
component to correct initial erroneous assumptions due to lack of information, such as placement of
bearings per beam.

To produce the client application, MTRI selected the Unreal Engine 4 (UE4) game engine by Epic
Games to provide cross-platform rendering capability. The application itself is built using C++
interfaced with the UE4 engine, as well as UE4 Blueprints for high-level functionality. It uses Java for
integration with native camera functionality on Android devices, and Objective-C for iOS devices.
The client application receives a XML file from the server application and constructs an interactive
3D model. Using a set of intuitive navigational views, the inspector can traverse the bridge and mark
the surface of the model with element-level defect information, photos, and comments. Defect
markers are proportionally sized based on the defect quantity and are color-coded to match
condition states. The application also has a summary view for reviewing the aggregate defect
information and for editing National Bridge Inventory (NBI) ratings.

The project’s second phase focused on further development to bring the application closer to
implementation. MDOT-requested enhancements included import/export XML functionality to enable
integration of inspection results with MDOT’s BMS database, NBI reporting functionality, and
element transparency. A potential third phase would focus on moving the app into day-to-day usage

 8

by MDOT, with the potential to bring the tool into national usage by working with the American
Association of State Highway and Transportation Officials (AASHTO) to integrate it into
AASHTOWare. Recommendations included in the Implementation Action Plan for a potential third
phase include fully integrating the app with MDOT’s BMS database, updating the app with key
features suggested during user testing, enabling the app to support a wider set of bridges, and
moving into the deployment phase so that MDOT can start using the tool as part of its standard
inspection procedures.

 9

1. Introduction
Collecting bridge inspection data is a key component of assessing bridge condition and
managing MDOT’s infrastructure. Regulations issued by the Federal Highway
Administration require states to use a data-driven process to check the completeness
and accuracy of bridge data and to verify compliance with the National Bridge
Inspection Standards. States are also required to collect and maintain element-level
inspection data as prescribed by the American Association of State Highway and
Transportation Officials (AASHTO), a provision that increases the time and complexity
of the inspection process.

Current inspection practices have inspectors using paper forms in the field to collect
condition-state information and to provide historical reference data. These data must
then be entered manually into the Michigan Bridge Inspection System (MBIS) and
Michigan Bridge Reporting System (MBRS) (now both part of MiBRIDGE), which adds
yet another task to the process and introduces potential for error. Photographs
documenting bridge deterioration must be taken and stored as well, which requires
additional documentation to be generated linking individual photographs with the
locations they were taken. Finally, inspectors must carry relevant reference materials to
verify the accuracy of the data they are collecting. Together, these demands burden
inspectors with a growing load of devices and physical information that they must
manage, often in unfavorable or hazardous conditions.

Given these issues, MDOT wishes to increase the efficiency and accuracy of the data
collection process. Since mobile computing and wireless data transfer are now
ubiquitous, these technologies offer a promising alternative to the current paper
solution. Tablet devices are relatively inexpensive, can be made ruggedized for outdoor
use or come ruggedized, can communicate directly with MDOT online services, and
typically include cameras with acceptable resolution. A digital inspection process can
leverage all of these features to streamline data entry, rapidly collect more detailed
inspection information, and reduce the physical inventory needed by inspectors.

1.1 Objectives
This project had the following objectives:

1. Review and evaluate ongoing and recently completed research involving the
bridge inspection process.

2. Review MDOT’s process of collecting National Bridge Inventory (NBI) and
AASHTO Element Level inspection data.

 10

3. Develop an application to collect NBI and Element Level inspection data
using visual methods and 2D drawings or 3D models of the bridge elements.

4. Develop and test a wireless data collection and display system to meet
MDOT’s bridge inspection and management needs which can be integrated
with MDOT’s existing web applications and database structure. Determine
alternatives that will work on multiple mobile platforms.

1.2 Scope
To realize the overall project goal of developing an application that improves accuracy
and efficiency of MDOT’s bridge inspection process, the following 10 tasks were
performed (Tasks 1-6 were part of Phase I, and Tasks 7-10 were added with Phase II):

Task 1: Literature Review Document
Task 2: Web/tablet application integrated with MDOT’s current MBIS and

MBRS Systems (now known as MiBRIDGE).
Task 3: Field demonstration of application
Task 4: Application User’s Manual
Task 5: Complete documentation of the application and source code
Task 6: Final Report
Task 7: Integrate System With MDOT Database
Task 8: Finalize Cross Platform Support
Task 9: Finalize 3D Model User Tuning
Task 10: Add Support for collecting NBI Ratings

Task 1 was needed to evaluate what options currently exist. Determining how bridge
inspections are carried out nationwide helped shape the application’s features so it will
meet or exceed MDOT’s needs.

Task 2 included the development of the application itself and occurred throughout the
project time frame. Task 3 was imperative for garnering feedback from inspectors and
ensuring that the system was usable and successful. As Task 2 proceeded, Task 3 was
executed from the first prototype of the application through the conclusion of the project.

Similarly, Task 4 was ongoing throughout the project lifetime (including Phase II) to
reflect the evolving functionality of the application.

Task 5 provided a smooth transfer of the application from the research development
team to MDOT ownership.

 11

Tasks 7 to 10 were part of a supplemental development plan following the initial project
to enhance the application’s functionality and bring the application closer to release and
integration with MDOT’s inspection routine.

 12

2. Literature Review
While federal guidelines for bridge inspection reporting must be met nationwide,
individual states are free to meet those requirements in different ways. This has led to
the use of diverse methodologies and a host of commercial solutions addressing the
states’ needs. The literature review for this project determined the state of the practice
for bridge inspections across the country and summarized the tools currently available
to facilitate the process, including devices that could be used to deploy a mobile bridge
inspection application. Unfortunately, at the time of the project’s literature review in
2014, none of these solutions, mobile or otherwise, were capable of handling AASHTO
element-level data collection. The full state-of-the-practice report generated for this
project is contained in Appendix 8.2.

In addition to evaluating current software solutions, the project team developed a survey
to assess the methodologies used by bridge managers throughout the nation (Figures
2-1 and 2-2). Twenty-one responses were received from 21 states. This survey
concluded that over 70 percent of the responding states used some electronic hardware
in the data collection process, and over half of that hardware was laptops. Many
agencies used custom software for inspection and management, including in-house
software and modified or customized commercial solutions. See Appendix 8.3 for further
details on the survey results.

Figure 2-1: Mobile device usage of the responding agencies. The “mixed” category includes agencies that use
both tablets and laptops.

9

1
6

5

Mobile Device Usage

laptop

tablets

none

mixed

 13

Figure 2-2: Types of inspection and management software currently being used. Many agencies use custom
software. The “mixed/other” category represents modified or customized commercial solutions.

2
2

5

6

6

Software Used

Pontis

InspectTech

In-House
Software
None

Mixed/Other

 14

3. Review of MDOT Practices
The successful design and implementation of an application for collecting MDOT bridge
inspection data hinged on understanding the current practices of MDOT bridge
inspectors. By understanding the challenges and procedures inspectors deal with, the
project team could develop an application with the functionality needed to help MDOT
improve efficiency and accuracy. Project staff met with MDOT staff, including bridge
inspectors, on several occasions to learn about and document current practices.

3.1 Inspection Forms
At the core of the inspection process are the forms that define what data must be
collected to complete a bridge inspection. These forms include the NBI Safety
Inspection Report, NBI CoRE Elements Report, and the Structure Inventory and
Appraisal (SI&A) form.

The SI&A form (Figure 3-1) largely serves as a reference for the bridge being inspected
by providing information such as component material types, dimensions, load ratings,
and inspection frequency. It also contains a few fields for overall ratings of structure
components such as superstructure, substructure, deck, and paint.

Figure 3-1: A section of the Structure Inventory and Appraisal form.

The NBI Safety Inspection Report contains the bulk of what the inspector must collect. It
is organized first by overarching categories such as Deck, Superstructure, and

 15

Substructure. Each of these categories is then broken into subcategories, such as
Stringer, Paint, Section Loss, and Bearings (for Superstructures). The inspector must
assign each subcategory a 0 to 9 condition rating that factors in all of the deterioration
or flaws present in those components throughout the bridge. To aid the inspector’s
decision, a history of ratings for previous years is included, as well as past comments.
When the report is completed, the combination of current and historical inspection
information gives an overall picture of the progress and rate of bridge deterioration (see
Figure 3-2 for an example).

Figure 3-2: A section of the NBI Safety Inspection Report. The report combines historical and current ratings and
comments to fully document deterioration.

The NBI CoRe Elements Report captures AASHTO element-level information on
condition state. Each component of the bridge is assigned an element type number
(there are approximately 158). For a given bridge, applicable element types have a total
quantity and a unit of measurement (linear, area, or both). When inspectors look at a
bridge, they must quantify the units and condition states of defects for each element
type for the whole bridge. The condition states are Good, Fair, Poor, and Severe. To aid
in the inspection process, each element type has a table listing the possible defects that
can be associated with it and descriptions of the defect for each condition state (see
Table 3-1 and Figure 3-3).

 16

Table 3-1: Condition State Table for Prestressed Concrete (from the Michigan Bridge Element Inspection
Manual).

Figure 3-3: A section of the NBI CoRe Elements Report. Deterioration is classified by element type, quantity, and
condition state.

3.2 Inspection Procedures
While the inspection forms determine which data need to be collected, of equal
importance is how those data are collected. There are no rigid rules that define how a
bridge inspector should go about collecting the necessary information to fill out the
forms, so there is a natural variability in how individuals and organizations will handle
the process. However, guidelines and the physical nature of the task ensure that there

 17

should be sufficient overlap in practices to define a generalized procedure. Capturing
this process was essential to the design of the inspection application since it directly
reflects the needs of the application’s users, who are in turn trying to meet the needs of
bridge managers.

MTRI staff began by meeting with Amy Trahey, president of Great Lakes Engineering
Group, LLC, and a former MDOT bridge inspector. Trahey provided a virtual walk-
through of a bridge inspection. (Figure 3-4 represents the inspection process as Trahey
described it.) The process is nonlinear—inspectors do not simply go down the list of
items on the form and evaluate each one. This is largely a matter of efficiency. For
example, evaluating the railings on a bridge requires walking both sides of the bridge,
and in doing so the inspector will pass many other components. Trahey also provided a
listing of tools and materials an inspector would require during the inspection, such as
manuals, ratings guides, cameras, previous inspection reports, and pencils. Another
important consideration is that inspections are routinely performed by two inspectors.
Typically, one inspector will proceed with the inspection itself, filling out the forms, while
the other inspector will photograph bridge deterioration and areas of concern.

Figure 3-4: Inspection flow diagram and tool/material listing.

 18

To supplement their understanding of the bridge inspection process, MTRI staff
accompanied MDOT inspectors Janiene DeVinney and Lindsey Renner for a mock
inspection of the Curtis Road Bridge over M-14 northeast of Ann Arbor (Figure 3-5).
This served as a very useful demonstration of the workflow process outlined by Amy
Trahey and gave the application developers a chance to see firsthand what a bridge
inspector deals with. Of particular note, inspectors write a great deal of information on

scratch paper or in the margins of the paper
forms, since the generalized ratings are
formed from a comprehensive view of the
bridge while the inspection process itself
must proceed piecemeal. The group also
discussed office practices, because
inspectors must transfer information from
paper forms to MDOT’s database after the
inspection is completed. They also discussed
task assignment authentication/security
practices since inspectors are responsible for
the quality of their inspections.

Figure 3-5: MTRI staff observe an MDOT inspector
examining joint condition.

 19

4. Application Design and Requirements
Using the information gained from the literature review and from observing MDOT’s
current practices, the project team formulated requirements and design parameters for
the application. The software requirements specification is designed to encapsulate
what the application will and will not do. Its primary purpose is to ensure clear
communication between the client and the developer concerning the application’s
functionality. It is not meant to be a rigid constraint; it can be revised as needed given
further clear communication between parties. The original document can be seen in
Appendix 8.4.

4.1 Requirements
The primary requirement of the application was that it collect and aggregate AASHTO
element-level inspection data. It was MDOT’s desire that this would involve a 2D or 3D
interface (preferably 3D) depicting the bridge elements, which could then be tagged with
relevant information such as element type, defect type, condition state, and defect
quantity. Such an application would have the advantage of not only capturing element-
level data, but also capturing the location and size of individual defects, which opens up
new opportunities for monitoring deterioration. This primary requirement was of keen
importance since at the time of the literature review, no software or procedure existed to
efficiently gather element-level data.

Of secondary importance was the collection of comments and photographs concerning
the defects, preferably utilizing a device’s built-in camera. This information, along with
the element-level data, is vital to maintaining a historical record of the bridge’s condition
so appropriate deterioration monitoring can occur and response decisions can be made.
Additionally, it was desired that the application automatically compile the recorded
information into the broader categories used in the various forms, thereby eliminating
the need for inspectors to keep track of it themselves. Compiling individual defects also
would dovetail well with the inspectors’ practice of recording information as it is
observed.

MDOT was also interested in viewing historical information during the inspection
process. This feature would be similar to the previous ratings available on the NBI
Safety Inspection Report, which provide additional input for the inspector to consider.
Finally, since the application would already be in a digital format, it should be designed
to enable communication with the MDOT BMS database to store finalized inspection
data and photographs, eliminating the need for inspectors to do so manually.

 20

4.2 Design Considerations
In developing the application, several important design decisions had to be considered.
The first of these was device compatibility, since a wide range of portable electronic
devices are available, including laptops, tablets, and smartphones. MDOT was primarily
interested in tablet devices as a good compromise between the bulk and power of a
laptop and the portability but small screen size of a smartphone. However, the tablet
operating system (OS) universe is quite diverse, and different options are often
incompatible with one another: Any application developed natively for one device would
need to be completely reprogrammed to work on another OS. Web applications are
promising in that they run via browsers instead of natively, but they require an active
Internet connection. This may not be available in rural areas, rendering the application
useless. Additionally, the desire for either 2D or 3D interaction is not well-suited to a
Web application, primarily for performance reasons. Fortunately, MTRI was able to
identify an alternative development strategy that sidesteps these challenges: software
packages used to design video games for multiple mobile platforms.

Game design software, referred to as game engines, are software packages used by
game developers to create interactive applications. They can be either 2D or 3D, and
many of them promise cross-platform compatibility. With such packages, the task of
device interoperability falls to the engine creators rather than the individual developers.
The MDOT application is not a game, but it does share many common elements with
video games, such as a need for 2D/3D rendering, geometry modeling, touch-based
interaction and Web access. MTRI investigated a variety of available engine platforms
to select one as the foundation for the MDOT bridge inspection application. From the
large pool of available platforms, MTRI narrowed the list to three for final consideration,
detailed below in Table 4-1.

 21

Table 4-1: Game Engine Comparison.

Library License/Cost Pros Cons
OSG Based on Lesser

General Public
License (LGPL), a
free software license

Free, low-level
access, open-
source code

Small community, poor
documentation/support,
low cross-platform
compatibility (must
develop natively)

Unity $3,000 per developer Very large
community, good
support, game
industry standard,
feature-rich, great
performance

Expensive, must
purchase licenses per
developer, must
purchase per additional
platform supported,
closed-source code

Unreal Engine 4 Initially $19/month for
MTRI (unlimited
seats, and now free),
plus 5% of revenue if
selling on market
under standard
license

Cheaper than
Unity, large
community,
feature-rich,
cutting-edge
development,
source code
available

Early in product life
cycle (software bugs,
low support initially for
some features), 5% of
revenue if selling on
market

Based on the low cost, list of features and promise of cross-platform support, MTRI
chose to proceed with application development using Unreal Engine 4 by Epic Games.
While being on the cutting edge of development is always a risk, Epic has a long history
of successful development (Unreal Engine 3 is widely used even today). Additionally,
Unreal Engine 4 subscribers are granted access to the source code of the engine, a
huge advantage in shaping the application to MDOT’s needs and ensuring that MDOT
and MTRI will always have access to the platform for future development. As an added
bonus, Epic entirely dropped the monthly subscription fee in March 2015, so MTRI and
MDOT were able to receive software updates at no charge during the remainder of the
development period.

 22

5. Server Implementation
Since previous 3D models of the state’s bridges were not consistently available, a
model had to be created from scratch. Given the large amounts of descriptive
information within MDOT's Bridge Management System database, MTRI decided to
build a model utilizing all of the relevant data. from the database This way, any bridge
being inspected could be viewed with a sufficiently representative model. The data were
retrieved from the database, missing information was derived from the data collected,
and then a representative model was created as an XML file (See Figure 5-1). When
requested, the XML file is then sent to the client application to render the 3D model.

Figure 5-1: Bridge model generation.

5.1 Review of Bridge Fundamentals
To gain a better understanding of bridges, the MTRI team met with Tess Ahlborn, Co-PI
and Michigan Technological University Professor of Civil and Environmental
Engineering. Ahlborn gave a two-hour lecture on basic bridge fundamentals and
addressed any of the staff’s questions or misunderstandings about bridges. During the
lecture, Ahlborn covered how a generic bridge works, explaining the function of the
deck, superstructure, and substructure. The lecture also covered more specific bridge
parts (such as pin and hanger assemblies, bearings, diaphragms, and girders) to
provide further details about the basic components of a bridge. Ahlborn concluded the
lecture by explaining all of the bridge elements that composed the Curtis Road Bridge
over M-14 near Ann Arbor, which MTRI has been using as a test bridge for
development (since the time MTRI staff visited it for the mock inspection). This in-depth
explanation of bridges was instrumental in the project’s development, as it provided
further insight into how bridges work and fit together, allowing the programmers to better
understand the process of making generic 3D bridge models.

 23

5.2 BMS Database
The first step in building the 3D model was the retrieval of data from MDOT’s BMS
database. The database is composed of 16 tables. These tables were not intended to
be used to generate 3D models, but they contain a wealth of information including
bridge dimensions, bridge measurements, bridge form data and AASHTO element-level
data. After copying the database onto MTRI’s local server for development and testing,
MTRI added one additional table to the database that would store all of the information
needed to create a proportionally accurate representation of the bridge. This Bridge
Model table draws from almost all of the other tables within the database and
incorporates several new fields that MTRI, using generic assumptions about bridge
construction, derived from the information in the database. To simplify the XML
generation process, the application only pulls data from this new Bridge Model table.
The Bridge Model table is very large, simplifies the process of exporting database
information into an XML format, it also means that individual bridges can be modified
without making changes to the rest of the BMS database.

Additionally, the BMS database contains a wealth of ancillary information such as
sidewalk dimensions, traffic flow information and presence of water beneath the bridge
The application uses some of this information to collect the most recent element and
NBI report information, though there is other information that has not been utilized yet
due to other tasks being prioritized to improve the functionality of the application
first. However, this information lends itself to future improvements of the application that
could make the model even more realistic.

5.3 Computing a Generic Bridge Model
After the Bridge Model table is created, MTRI utilizes Django, an open-source Python
Web framework for managing websites while incorporating large amounts of data from
databases (https://www.djangoproject.com/). This server application will output the
requested XML file for the desired bridge when contacted by the client application. To
generate the XML file, the server will query the appropriate information from the Bridge
Model table, derive necessary quantities from the queried data, convert all variables to
the appropriate units, and generate a list of member components (See Figure 5-2). The
data needed for the NBI report information is shown in Figure 5-3. The client connects
to the server using HTTP over a Wi-Fi or cellular connection. This Internet connection
will be necessary for the application to load the appropriate Bridge Model XML file, but
after the initial download of the XML file, no further Internet connection is necessary as
the file can be stored on the tablet device.

https://www.djangoproject.com/

 24

The initial generation of the Bridge Model utilizes a set of assumptions to create values
for variables that cannot be derived from the database, such as placement of bearings
per pier, number of beams, and joint locations. These derived quantities should work for
the majority of bridges, and all the necessary information to render the 3D model will be
within the XML file. If these assumptions result in an erroneous model, administrative
users can tune them to improve model fidelity (discussed in section 5.5).

Figure 5-2: Flowchart of the back-end obtaining all of the data necessary to create the 3D model.

 25

Figure 5-3: Flowchart of BMS data integrated into the NBI Safety Inspection Report.

5.4 XML File Structure
The entire XML file is arranged into six categories: basic bridge information, deck,
superstructure, substructure, bearings, and culvert. Other than basic bridge information,
all of the categories are created using AASHTO element-level data from the BMS
database, which gives very specific details about all of the bridge parts that compose
that bridge. The individual pieces of the bridge that will be rendered as parts of the 3D
model are represented by the term Member in the XML file.

Each Member contains data for the Role, Type, Name, Length, Width, Height, X-
coordinate, Y-coordinate, Z-coordinate, and the AASHTO Element Number associated
with that Member. The Role is the category an individual member falls into, the Type is
the exact name specified by the AASHTO element-level data within the database, and
the Name is the identifier associated with the standard bridge inspection labeling
schemes for elements such as 2 South or 1 West 2 South. The labeling scheme
changes per element, and also depends on the bridge orientation, such as whether the
bridge runs north and south or east and west. Each Member is associated with one

 26

label, so if the deck bottom surface is labeled as 1 South 3 West, that will be an
individual bridge piece that will be rendered separately from 1 South 2 West. When
rendered, the bridge parts will appear seamless, as if they were one bridge part, but
they actually are multiple pieces that make up the entire deck bottom surface. The
Length, Width, and Height are all values derived from the database to render a
proportionally accurate representation of the bridge. The only information in the
database relevant to member height is the vertical clearance of the bridge. All of the
element Heights below the substructure (pier, pier cap, and abutments) are inferred,
using fixed height for most elements and extending the pier and abutment heights to
cover the remaining distance. Other dimensions are also inferred if they are not found in
the database. The X-, Y-, and Z-coordinates are based on the Length, Width, and
Height of the individual element as well as its location relative to the other components
to get an exact centeral location for that element. The AASHTO Element Number is
provided so the client application can determine the context of the member. (See Figure
5-4 for examples of the above data contained within the bridge XML file.)

Figure 5-4: Example of a bridge member variable in XML format.

Using Member variables to represent individual bridge pieces is critical since the
unavailability in the database of some of the required information imposes certain
limitations on creating a 3D model from the database. The Member variables are self-
defining (they do not rely on relative information from any other part of the XML) so the
client is more flexible for future model improvements. This will be helpful in the case of
more unusual bridges such as those that have a varying number of beams per span, or
those where the bearing placement per pier is abnormal.

 27

5.5 User Tuning
As noted, MTRI made some generic assumptions in calculations for key variables used
to render the 3D bridge model. To address the issue, an administrative website
(separate from the client application) was developed through Django that enables the
inspector or bridge engineer to verify and/or modify these assumptions to create a more
accurate model. For the generic concrete overpass-style bridge, the calculations should
be reasonably accurate. However, there are several outliers where key pieces of
information about how the bridge is composed—such as numbers of beams per span
and placement of bearings per pier—are abnormal. These bridges would be modeled
incorrectly and therefore the inspector could not record defect data accurately. The
website’s administration tool allows bridge inspectors to fix any errors in the model
(usually ahead of the inspection) to create a better replica of the bridge, and allows
them to make any necessary changes to the data as they see fit. Within the
administration tool, the information is divided into eight categories: Assumptions,
General Bridge Information, Deck, Superstructure, Substructure, Bearings, Bearing
Placement, and Culvert. The most important information that the bridge inspector will
need to review are the Assumptions and Bearing Placement sections. These are the
two areas where data are not present in MDOT’s database but are derived from
calculations and assumptions. In the future, more fields and categories may be
incorporated in the administrative tools to make a more accurate model.

5.6 Other Services
The application requests different URLs for past NBI CoRe Element and NBI Inspection
reports. Each URL sends back an XML file with the most recent report information for
the bridge that was selected. Additionally, the server can accept newly collected NBI
data to store to the database. When the user finishes an inspection, he or she can press
the “Push” button, and the front-end application will send all of the element-level defect
and report information in an XML file to the back-end. The back-end will then
appropriately store the data in the correct variables to use in the future.

5.7 Limitations
As models do not exist for every bridge potentially needing inspection, MTRI needed to
use information from MDOT’s BMS database to create each 3D model. The current
application is optimized to accurately model generic overpass-style bridges but will
inaccurately model bridges that are irregular. This limitation is ameliorated using the
Django administration site, which can correct many simple errors in the models. Another
limitation is that the application does not yet handle “exotic” bridges such as cable

 28

bridges, culvert bridges, or truss bridges. These bridges will not cause the application to
crash or behave improperly, but they will not be rendered properly in the current
version. This limitation could be addressed through a future enhancement-focused
project phase. Such bridges are not particularly common, and modeling them would be
time-consuming; time was instead spent on higher-priority tasks during the project’s first
two phases. A final key limitation is that bridges that are not monitored by MDOT are
particularly challenging to model properly, as no AASHTO element-level data have been
captured for them. The application’s model for these bridges would be limited by a lack
of structural information and would be unlikely to represent the bridge accurately.

 29

6. Client Implementation
Implementation of the client application, whose name has been changed from MDOT
3D Wireless Bridge Inspection System/3DWBIS to 3D Bridge App, is the primary
product of this research. It is built on Epic Games’ Unreal Engine 4 (UE4) and can work
both in Windows desktop environments and on Android mobile devices such as tablets
or smartphones. Taking advantage of UE4’s rendering capabilities, the 3D Bridge App
parses XML files delivered by the server and creates 3D representations of the bridge
being inspected. Then, inspectors can dynamically tag the surface of the bridge with
defects.

6.1 Coding
UE4 is primarily based on the C++ programming language using the Microsoft Visual
Studio development environment. The engine relies heavily on macro functionality,
adding its own particular flair of coding as well as an extensive application program
interface (API) for interfacing with the engine. Any software development projects
utilizing the engine include an Unreal-specific build program that automatically sets up
the Visual Studio environment and pre-compiles specialized header files that prepare
the macro interface. There is also a UE4 plug-in for Visual Studio that allows tighter
integration with UE4 projects. The bulk of the new application is coded in this
environment, but there are several important exceptions.

The first is UE4’s Blueprint language (see Figure 6-1). This is essentially a visual coding
language defined within the UE4 editor that allows for high-level interaction with game
mechanics. This higher abstraction level, as compared to coding in C++, benefits
certain tasks such as user interaction with objects and camera navigation. Functions,
operators, events, and variables exist in Blueprint as blocks on the screen with inputs
and outputs as tie-in points on the blocks. Different code blocks are then strung
together, linking like variables across blocks as well as tying the execution flows
together to form the program.

The second exception is native device coding. This is done within the UE4 source code
rather than project code and is specific to the operating system targeted. In this case,
use of the built-in cameras available on mobile devices must be developed separately
for iOS and Android. For example, Android’s native language is Java, so the camera
functionality exists as a Java plug-in for UE4. While it is inconvenient to have to
reproduce this functionality for each supported operating system, the extra effort

 30

needed is rather small compared to developing the entire application for multiple
systems.

Figure 6-1: UE4’s Blueprint coding language as used to implement the Client Application’s user interface.

6.2 Loading Bridge XML files
The first step in using the application is to load the XML model for the bridge being
inspected. The sidebar menu of the application includes a Load Bridge button, which
polls the server for a list of bridge models available (see Figure 6-2). The user then
selects the bridge of interest and can either load it or download it. The Download option
copies the XML to the device’s internal storage for offline use; such bridges will have
their menu item display in green instead of blue. The Load option will use the
downloaded XML if available or, if not, will ask the server for the XML instead. While in
offline mode, only bridges with downloaded XML files will appear in the list. Once the

server has responded, the
application will parse the XML and
generate a list of all the bridge
member elements. Each member
element is assigned appropriately
scaled and positioned geometry
within the application world,
effectively constructing the bridge
from its individual components.
Each of these elements retains
context-sensitive information about
itself, such as the member’s name,

Figure 6-2: Load Bridge menu.

 31

that is displayed when the user interacts with the element.

6.3 Navigation
Navigation in a full 3D environment can be daunting since it involves motion with six
degrees of freedom (6-DoF), three-axis translation and three-axis rotation. This problem
is exaggerated in touch-based environments, which are limited to a 2D plane. Multi-
touch, gestures where more than one finger is used, can help, but overreliance makes
the user experience unintuitive. For the client application, multi-touch is limited to the
familiar pinching gesture often used for zoom. Since this limits the application to 3-DoF
input for a 6-DoF environment, some constraint on allowable motion is needed. To cope
with this problem, two viewing methods have been implemented to allow for natural
viewing of the bridge geometry while keeping user interaction simple and intuitive.

The first viewing method has been dubbed Camera Cylinder (see Figure 6-3).
Essentially, the camera, or view angle of the user, is constrained to a cylindrical orbit
along the bridge. Swiping left or right with mouse or touch interaction pans the view,
while swiping vertically changes the orbit angle of the camera around the bridge. Since
a full 360-degree orbit of the bridge would result in the camera viewing the bridge
upside down, or, if the camera were flipped, would cause a control inversion that would
be frustrating and confusing for users, viewing is limited to 180-degree arcs. However,
the compass widget in the upper right of the application heads-up display (HUD) can be
clicked to switch to the opposite arc. The final pinching gesture allows the camera to
zoom in on a target area of interest to the inspector. The Camera Cylinder viewing
mode is the default and allows the inspector to intuitively navigate most of the bridge,
while the zoom option makes it easy to get close-in views.

The second viewing method is called Camera Rail (see Figure 6-4) and was created in
response to feedback from MDOT bridge inspectors during a demonstration of the
application. In this view, the camera is constrained to a box volume centered on the
bridge. Vertical and horizontal swipes pan the camera in their respective directions,
while the pinch gesture translates the camera forward or backward along the bridge.
The compass widget switches the camera view direction 180 degrees. This viewing
method is convenient for reproducing some of the viewing angles inspectors use in the
field, such as looking at an abutment head-on.

 32

Figure 6-3: Camera Cylinder view orbits around and along the bridge.

Figure 6-4: Camera Rail view allows head-on inspection of the bridge.

 33

6.4 Element-Level Defects
The primary feature of the application is its ability to tag the bridge model with defects.
After navigating to the bridge location being examined, the inspector can tap on the
bridge surface to place a defect marker (see Figure 6-5). A menu pops up that allows
the inspector to select an element type from a shortlist of elements most likely
applicable based on context-sensitive information from the bridge XML file. A check box
exists to disable the filtering and present the full list of elements should the inspector not
find the one being examined. Once an element type has been selected, the inspector
chooses the defect type. The defect type drop-down menu is populated only with types
applicable to the selected element type. The inspector can also choose the condition
state of the defect (the default state is Fair) and enter the unit quantity for the defect.
The defect description is automatically updated according to the combination of defect
type and condition state, allowing the inspector to quickly confirm that the option
selected matches MDOT guidelines. The Add Picture button allows inspectors to attach
an existing photograph or take a new one; clicking on an attached photo will display a
full-screen image of the photo. At the bottom is a comment box where inspectors can
add any additional information they wish to record.

 34

Figure 6-5: Defect pop-up menu. Title and element shortlist are context-sensitive according to the bridge
location touched.

Also part of the defect pop-up menu is the option to switch to the Edit Marker mode; this
view removes the HUD and pop-up overlays to offer an unrestricted view of the bridge
(see Figure 6-6). A minimal interface at the bottom presents the user with options to
resize (according to unit quantity), relocate, and rotate the defect marker. The user also
can manipulate the aspect ratio of the marker, allowing for an infinite variety of

 35

rectangular markers. Setting the aspect ratio to 0 will convert the marker to circular from
rectangular.

Figure 6-6: Marker Editor offers an unrestricted view so the inspector can position and manipulate the defect.

A button on the bottom left of the defect menu links the defect to the NBI rating entry
menu, through which the inspector can pull up the NBI section most relevant to the
current defect (see Section 6.6).

6.5 Bridge Review
The Bridge Review menu offers several choices for reviewing the data collected during
the inspection process. The Element Review mimics the format available on the
MiBRIDGE website (see Figure 6-7), listing the percentage of condition states for each
bridge element but also providing a breakdown of the individual defects contributing to
that score. Totals are updated as the inspection continues, relieving inspectors of
having to perform the calculations themselves.

 36

Figure 6-7: Element Review mimics MiBRIDGE format.

The Defect Summary menu offers an alternative breakdown of the defects (see Figure
6-8). The top level of the drill-down shows the condition rating, while subsequent levels
show the category, then element type, defect type, and finally individual defects.
Quantities are automatically summed for each level of the drill-down, and comment
boxes and icons for photographs are available.

Figure 6-8: Defect Summary drill-down to individual element-level defects.

6.6 NBI Safety Inspection Report
As part of the supplemental Phase II work plan, the project team added the capability of
entering and reviewing NBI safety inspection report information to create a more
integrated solution to bridge inspections. The full NBI safety inspection report

 37

information can be accessed through the Bridge Review menu. The display mimics the
paper form but includes a few appropriate upgrades for a digital format (see Figure 6-9).

The top section of the display is identical to the paper form, listing bridge information
such as location, dimensions, materials, last inspection date, and current inspector, and
providing an entry box for general inspection notes. Below that, the NBI rating entries
are found, divided into structural categories (such as deck, superstructure, etc.) The
categories are collapsible, facilitating navigation between sections on limited screen
space. The final section, Miscellaneous, contains data entry fields for all applicable
items including guardrail ratings, water adequacy, approach alignment, high-load hits,
and underwater inspection method.

Figure 6-9: Digital NBI Report form.

General NBI sections pertaining to the bridge structure and approach all follow the
same entry format and can be accessed from the full report form or by clicking the NBI
Ratings shortcut button in any bridge defect menu (see Figure 6-10). The shortcut menu
option will infer which NBI category the inspector is interested in reviewing based on the
current defect context, but any category can be selected from the drop-down menu.
This context-sensitive shortcut system allows inspectors to move quickly between
entering detailed element-level information and entering information in the broad NBI
categories, facilitating an enter-as-you-go approach.

At the top of the shortcut form, the previous three ratings are listed along with a button
to enter in the current rating. Below that, the previous three comments are listed, each
one accompanied by a button that will copy that comment into the current comment box

 38

at the bottom of the entry form. Once copied, the comments can be edited, freeing the
inspector from having to entirely rewrite the comments each time. When selecting
numeric NBI ratings, the inspector sees a ratings wheel displayed which depicts a pie
graphic with the ratings N and 0-9 (see Figure 6-11). This format allows the inspector to
quickly select the desired rating on a mobile device with or without the use of a stylus.
The N rating was included at MDOT’s recommendation to allow for a “not applicable”
option when a bridge does not contain that particular component.

Figure 6-10: NBI Rating shortcut entry form, accessible from any bridge defect menu.

Figure 6-11: The ratings wheel is a touch-friendly interface for quickly selecting NBI ratings.

 39

6.7 Scratch Pad
At the request of inspectors following field demonstration reviews, a scratch pad
interface was implemented. The interface consists of a white space upon which the
inspector is free to draw or write something of interest (see Figure 6-12). The interface
includes several sizes of brushes for drawing and erasing as well as a Clear Screen
option. Writing is best done with a stylus since fingers are too large for small text, but
drawing can be done easily with either tool. Currently, the scratch pad’s content is not
recorded within the inspection and is purely for the inspector’s personal use. Future
development work could include extending the scratch pad tool set to create overlay
drawings for pictures associated with bridge defects, allowing inspectors to highlight
problem spots or write comments. Such photo overlays could be included with the photo
data uploaded to the server to facilitate management review of inspection data.

Figure 6-12: The scratch pad gives inspectors a place to write/draw notes that are not included in the report.

6.8 Linear Defects and Defect Aggregation
Certain bridge elements, such as railings and abutments, are measured in linear feet
rather than area. Since all defect information is handled by placing area defects on a

 40

surface, there must be a method for converting area-based defects to linear quantities.
The application handles this by projecting the polygons of the area defects onto a one-
dimensional line at the base of the elements. For example, defects on the inside,
outside, or top of the railing will be projected onto a line parallel with the long dimension
of the railing before aggregation, while defects that are placed on the ends of the railing
will be excluded from the aggregate value since they do not contribute to the linear
quantity. Aggregation proceeds from Severe defects to Poor and then to Fair. At each
condition-rating stage, when the aggregate quantity for that stage is computed, area
that overlaps with regions that have a more severe condition rating are excluded. The
result is a total linear quantity for the element in which all area defects are included but
in which overlapping quantities are not counted multiple times: A severe defect located
spatially below a poor defect will supersede the poor defect in the aggregate quantity. In
the defect pop-up menu, the inspector may choose to define a particular defect as
linear; however, such a defect will be represented in the application as a quadrilateral
polygon with an assumed width of 6 inches. These “linear defects” serve as a quick way
to represent cracks, but it is the projection algorithm that truly computes the linear
quantity.

The bridge deck is the largest element in any bridge model, and typically will have
defects on the top and bottom surface. The bridge deck does use an area-based metric,
so area defect aggregation must occur in a 2D plane. All defects are projected into the
2D plane, and then aggregation proceeds analogously to the 1D case (described in the
previous paragraph), in which the most severe defects are aggregated first and then the
combined region is excluded from overlapping but less severe defects. The application
uses a polygon operator library, Clipper Lib, to perform the necessary polygon union
and intersection operations.

6.9 Saving/Loading and Importing/Exporting
As with any computer-based application, it is vitally necessary for the users to be able to
save and load their work at any time to the local device. Such capability is a hedge
against software failure and user error. To this end, the application includes both a
named-save file system and an autosave feature. At any time, the user may enter a
unique name identifying a particular inspection and then save the current progress of
that inspection as a file on the local device bearing the chosen identifier. These save
files may be restored at any time, and will return the loaded bridge model, all defects,
and NBI report data to the state they were in at the time the save file was created,
allowing the user to undo inadvertent changes or to resume the inspection at a later
time. The autosave feature activates every time the user modifies a defect on the bridge

 41

surface. There is only a single autosave for the entire application, so it is not a reliable
way to save data for future us as it is frequently overwritten, but it does provide a way to
recover quickly from a software failure such as an application crash, or from a limited
hardware failure such as a depleted battery. Once the device is operating properly and
the software is running, the autosave may be loaded, restoring the inspection to the
state it was in as of the most recent modification to any bridge defect.

The final critical element is importing and exporting inspection information so that it may
be integrated into the MDOT BMS database. Exporting an inspection generates an XML
file that includes the original bridge model and NBI information, but included are all the
NBI values as well as each individual defect and its location on the bridge model
surface. As an XML file, this information can be uploaded to MDOT servers and
processed into database entries documenting the inspection. When the same bridge is
inspected in the future, the same XML format may be used to generate a new
inspection that includes the previous inspection data, which can then be imported into
the bridge inspection application. This import/export system was implemented as an
interim substitute for full integration of the 3D Bridge App with the MDOT BMS
database. Full integration is awaiting MDOT approval that fits into its schedule of
database upgrades.

 42

7. Conclusions
After reviewing nationwide bridge inspection practices and discussing current practices
and needs with bridge inspectors, MTRI staff developed the 3D Bridge App to render 3D
bridge models and interactively tag them with AASHTO element-level defect
information. Currently, bridge models are generated using information gleaned from
MDOT’s BMS database and then tuned with user input. The new system will allow
bridge inspectors to gather element-level information efficiently while eliminating the
manual data entry present in the current state of practice.

While this project had a specific scope, future development of the 3D Bridge App would
be a logical and very promising follow-on to the first two phases of development and
implementation-focused improvement. Should MDOT develop a more detailed set of
bridge models (such as by obtaining the engineering design files used in bridge
construction) that have the necessary metadata, such as element type and category
(Deck, Substructure, etc.), then the application could be modified to work with those
models rather than the generic models derived from database attributes. The digital
nature of the application also makes it ripe for integration with other operations such as
remote sensing overlays and GPS tracking. The app could be extended to work with
larger, more complex bridges. Finally, the app’s per-defect approach to bridge markup
opens up new possibilities for bridge management decision-making and represents a
step beyond the current inspection regulations, since the app captures the location of
defects in addition to their quantities.

Altogether, MDOT’s 3D Bridge App affords cutting-edge improvements in the bridge
inspection process, enhancing the efficiency and quality of data collection and
interpretation.

 Appendix - 1

8. Appendix

8.1 List of Acronyms and Abbreviations ... Appendix - 2

8.2 State of Practice and Literature Review ... Appendix - 3

8.3 Survey Results ... Appendix - 25

8.4 Requirements Document .. Appendix - 30

8.5 Implementation Action Plan ... Appendix - 53

8.6 List of Possible Future Developments for the 3D Bridge App ... Appendix - 56

 Appendix - 2

8.1 List of Acronyms and Abbreviations

3DWBIS 3D Wireless Bridge Inspection System

App Application

AASHTO American Association of State Highway and Transportation Officials

BMS Bridge Management System

CoRe Commonly Recognized

DoF Degree of Freedom

DTMB Department of Technology, Management and Budget

FHWA Federal Highway Administration

HUD Heads-Up Display

MBIS Michigan Bridge Inventory System

MBRS Michigan Bridge Reporting System

MiBRIDGE the Michigan Bridge Management and Inspection Systems

MDOT Michigan Department of Transportation

MTRI Michigan Tech Research Institute

NBI National Bridge Inventory

OS Operating System

PI Principal Investigator

SIA (SI&A) Structure Inventory and Appraisal

UE4 Unreal Engine 4

XML Extensible Markup Language

 Appendix - 3

8.2 State of Practice and Literature Review

 Appendix - 4

 Appendix - 5

 Appendix - 6

 Appendix - 7

 Appendix - 8

 Appendix - 9

 Appendix - 10

 Appendix - 11

 Appendix - 12

 Appendix - 13

 Appendix - 14

 Appendix - 15

 Appendix - 16

 Appendix - 17

 Appendix - 18

 Appendix - 19

 Appendix - 20

 Appendix - 21

 Appendix - 22

 Appendix - 23

 Appendix - 24

 Appendix - 25

8.3 Survey Results

 Appendix - 26

 Appendix - 27

 Appendix - 28

 Appendix - 29

 Appendix - 30

8.4 Requirements Document

 Appendix - 31

 Appendix - 32

 Appendix - 33

 Appendix - 34

 Appendix - 35

 Appendix - 36

 Appendix - 37

 Appendix - 38

 Appendix - 39

 Appendix - 40

 Appendix - 41

 Appendix - 42

 Appendix - 43

 Appendix - 44

 Appendix - 45

 Appendix - 46

 Appendix - 47

 Appendix - 48

 Appendix - 49

 Appendix - 50

 Appendix - 51

 Appendix - 52

 Appendix - 53

8.5 Implementation Action Plan
Project Title: Wireless Data Collection Retrievals of Bridge Inspection/Management
Information

Project Number: 2013-0067, Auth. No. 2 (R1, R2)

Principal Investigator: Colin N. Brooks

Description of the Problem:

Currently, MDOT is faced with the task of inspecting its entire bridge inventory using a
paper form process. Considering that every bridge must examined every two years, or
more frequently as condition demands, this is a time-consuming process. The size of
the task has only increased in recent years given the FHWA’s demands for compliance
with the National Bridge Inspection Standards by checking the completeness and
accuracy of bridge data. The collection of AASHTO element-level data further increases
the demand on inspectors.

To meet and exceed the requirements of the new regulations, MDOT is interested in
incorporating mobile digital technology into the bridge inspection process to increase its
efficiency and reliability. By switching to a digital inspection process, MDOT will
eliminate the need for manual data transcription from paper to digital. The fact that most
mobile platforms come equipped with a built-in camera means that MDOT can
streamline the process of associating images with defect information, which otherwise
must be done manually.

To facilitate the collection of element-level data, MDOT wishes to use interactive 3D
bridge models that the inspectors can mark up with defect information. The inspection
program will then automatically perform tallying to generate quantity information for
element-level reporting. Additionally, an interactive 3D format for bridge inspections
lends itself to bridge management decision support, since it provides detailed
information about defects and their location on a bridge that is not captured by element-
level reporting alone. Tracking individual defects also provides information on how those
defects deteriorate over time, further aiding in management decision-making.

Major Discovery:

During this project, MTRI developed a mobile application (the 3D Bridge App) for
displaying and interactively marking 3D bridge models with element-level defects. The
application was built using Unreal Engine 4, a cross-platform game engine that allows
the application to be deployed to a variety of operating environments including
Windows, iOS, and Android. The application automatically tallies condition state and
defect quantity information, freeing the inspector from that burden. The captured bridge

 Appendix - 54

inspection data can be transmitted wirelessly to MDOT to be stored for bridge
management purposes.

Additionally, using information from MDOT’s BMS database, MTRI developed a system
for generating representative 3D bridge models for common concrete bridge
construction styles. While these models may not be perfect, in concert with user tuning
they are designed to be more than sufficiently useful for enabling inspectors to
recognize the bridge structure and intuitively interact with it.

How the Application Will Be Used by MDOT

MDOT has the option of using the application to revise the current state of practice for
bridge inspections. Initially, this use should consist of an implementation-focused trial
period in which a few interested inspectors attempt to utilize the application in day-to-
day operations. MDOT should use the trial period to identify challenges that will be
faced in deploying the application statewide, and to formulate improvements for meeting
those challenges. Potential problems could include but would not be limited to hardware
issues (battery life), errors in the application itself that were not apparent during
development, integration issues with the MDOT BMS, and deficiencies in user training.
Discovering and correcting these issues during a trial phase would be critical for long-
term success in revising MDOT practices, as a rocky deployment could burden an
otherwise useful tool with a poor reputation. Conversely, a smooth deployment could
improve adoption rate and support further development. The MTRI team would work
with MDOT to address issues discovered throughout the implementation trial period.

During the trial phase, problems that actively disrupt the inspector’s workflow should be
addressed immediately. Continuing the trial without correcting disruptive problems could
mask other issues, rendering the ongoing trial usage ineffective. On the other hand,
smaller obstacles such as unintuitive interactions and cosmetic flaws should be
documented for later evaluation and correction as time and funding permit. Trial
participants should be informed of this differentiation so they do not become fixated on
perceived flaws that do not reduce the overall functionality of the application. This is
especially critical since different inspectors may have different opinions as to what the
“best” approach is. Continually revising noncritical functionality will squander the time
and effort spent on the trial implementation, distracting from the identification of more
serious issues that could be barriers to successful deployment.

At the conclusion of the trial period, MDOT should evaluate the feedback generated by
the trial participants. Ideally, any key issues will already have been solved, but if they
have not, this is the time to evaluate the readiness level of the application. If the key
issues identified cannot be fixed quickly, the application may need further development
and another trial implementation before it is ready for wider distribution and full

 Appendix - 55

introduction into day-to-day usage. If the application completes the trial period without
such setbacks, MDOT can evaluate the trial participants’ feedback and make a final
decision about deployment.

Value Added to MDOT Operations

As a digital application, the 3D Bridge App eliminates the need for the paper forms
currently used by bridge inspectors. This allows them to perform any number of
inspections without access to a printer. Since inspection information is ultimately stored
in the BMS database, the application also eliminates the manual data transcription
process, which is costly in terms of time consumed and is an additional source of
potential error in the transcribed data. Additionally, the application has great potential to
streamline the inspection process, improving inspector efficiency and accuracy in the
field. This is especially the case since the application allows inspectors to capture
AASHTO element-data in an intuitive manner (by marking the bridge model with defects
as the inspector observes them in real time). Further, the application automatically
aggregates the information for reporting, freeing inspectors from that burden. The
application also is able to display context-sensitive information concerning the
inspection process, such as the condition-state guidance tables from the Michigan
Bridge Element Inspection Manual. Integrating those tables into the application allows
the inspectors to quickly verify their choices without flipping through the physical
manual.

As a digital platform for bridge inspections, the application offers a wealth of new
opportunities in the future. Integrating more-detailed bridge models, such as those used
during the construction of the bridge, could better facilitate lifetime management of
infrastructure. Additionally, the rendering capabilities of Unreal Engine 4 could be
leveraged to display remote sensing data as overlays on the 3D models, aiding both
inspections and management decision-making.

To enable MDOT to take advantage of the full value of these mobile app technologies
and the investment made in the 3D Bridge App, the Michigan Tech team has
recommended four tasks for a potential third phase of the project. These tasks would
focus on implementing and deploying the application into day-to-day usage at MDOT.
They are as follows:

1. Integrate the 3D Bridge App with MDOT’s database using the current version of BrM.
Currently, the application will save inspections as XML files that are output to specific
locations on the tablets. To integrate the application with MDOT’s database, all of the
information within the XML would need to be uploaded to MDOT’s database.

2. Update key features identified by MDOT to make the application more user-friendly
and the bridge inspector’s job even easier. MTRI has recorded all of the suggestions

 Appendix - 56

made throughout Phase II of the project, and suggests MDOT look at some of these for
potential incorporation (see Appendix 8.6).

3. Use the 3D Bridge App for a wider set of bridges. Current implementation focuses
mostly on generic highway overpass bridges in Michigan. More detailed models could
be created by rendering non-generic bridge elements and improving material and mesh
fidelity (material is how the model is ‘painted’, the mesh refers to the geometry itself). to
help mimic reality. MTRI would ensure that the application creates models for the
majority of bridges that are accurate enough for use.

4. Perform alpha and beta tests to bring the 3D Bridge App to the point of deployment
into day-to-day usage.

Implementation Plan Checklist:

Results achieved through this research
(check all that apply)

Actions needed to implement results
(check all that apply)

X Knowledge to assist MDOT X Management decision
X Manual change X Funding
 Policy development or change X Training

X Development of software/computer
application

X Information technology deployment

X Development of new process X Information-sharing
X Additional research needed X Other (specify) implementation-focused

trails and database integration.
 Project produced no usable results
 Other (describe)

8.6 List of Possible Future Developments for the 3D Bridge App
(The development times noted in parentheses are estimates; some tasks may take
more or less time than expected.)

Features to Integrate (Short Amount of Time)

• Develop a “Home View” button that when clicked would reset the camera to a set

location so that users know where they are. Would help if the user gets “lost” within
the 3D environment.

• Develop common views in addition to just navigating using the pinch/slide method.
Common views include looking down at deck, looking up at deck soffit, right and left
elevations, and front and back face of substructure.

 Appendix - 57

• Develop square and round columns through user tuning.
• Render an approach slab for every bridge. (Dimensions are not in the database, but

MTRI could hard-code them, so inspectors could record approach slab information.)
• Show length and width of a defect instead of total area and aspect ratio.
• Develop a button that would give directions to the bridge through Google Maps.
• Show bridge name somewhere on the screen.
• Show time stamp in the corner.
• Develop an exit-without-saving button.
• Develop zoom capabilities in defect editor mode.

Features to Integrate (Medium Amount of Time)

• Develop an Orientation Viewer—Have a side button named “Viewer” to assist in
orienting the inspector to the bridge. Once the user clicked this button, a list of every
individual member would be displayed and organized by element, span, bay, etc. If a
user clicked the individual member, the camera would be placed in a position for
viewing that member. A rough example is shown below.

o Beams
 Span1
 Span2
 Span3

• Beam 3S 1W
• Beam 3S 2W
• Beam 3S 3W
• Beam 3S 4W
• Beam 3S 5W

 Span4
 Span5

• Develop a label schema that can be toggled on and off with a button to clearly label
every individual member.

• Add the option to enter defects according to the strict unit reported in the MBE rather
than surface area only. For instance, select all of an element when reported by
“each”, For instance with bearings, users would not want to highlight one face of a
bearing; the whole bearing should be bad. Or, when a beam end is bad, since
beams are reported by linear feet, then it would highlight the entire surface area of
the beam for the length of the beam that is bad. For most elements it is useful that
there is the option (columns for instance), but many users would want their
inspectors to match.

 Appendix - 58

• Have a view-only mode, especially on desktop computers, where inspectors could
view inspection models but could not edit any information.

• Develop a copy-and-paste functionality for defects.
• Limit defect dimensions to the dimensions of the element it is attached to
• Limit the defect total quantity so that it cannot exceed the total quantity of the

element. Currently, users can make the defect as big as they want.
• Require inspector to take a minimum number of photos before pushing the data (i.e.,

sending the data to the application’s back-end for storage).
• Implement different materials to simulate concrete, steel, etc.
• Develop capability to draw over pictures taken with camera.

Features to Integrate (Long Amount of Time)

• Have the application use GPS to allow for the inspector to be better oriented. (What

happens if GPS gets disconnected? How reliable will GPS be under a bridge?)
• Pinch-to-rotate view as in Sim City game. Camera could be confined to a region, as

opposed to a rail. (Camera rails are easy and can be made to help the user avoid
getting lost when navigating around a bridge in the app.)

• Draw a defect in defect editor mode.
• For cracks, draw the crack by setting a series of points, which the application would

then connect to draw a line.
• Implement customized elements—splayed spans, curved girders, beam shapes, box

beams, T-beams, straight beam curved decks, etc.
• Integrate model into Google Maps to overlap with Google Maps’ version of the

bridge based on the latitude and longitude coordinates, as some CAD models are
able to do.

• Add voice-to-text for comments, or ability to write in comments with stylus; this is
especially useful when inspectors are on the deck and have to watch out for traffic.

• Have the compass reflect the actual direction the inspector is facing.
• Render pin-and-hanger assemblies as well as diaphragms (need user input).
• Create decals for every individual defect to better reflect what each defect looks like

instead of showing the defect as a rectangle or circle.
• Add spell-checker feature for comments.
• Toggle protective system or coating from whatever element the coating is on.
• Make the deck transparent to see defects on the top or bottom surface of the deck.
• Integrate CAD models into the app, and also integrate map metadata into the CAD

model.
• For reviewing past inspections, highlight old defects that have not been reviewed by

the inspector.

 Appendix - 59

• Develop 3D models focused on design, not operations and inspection/maintenance
(add in areas on operations and inspection/maintenance).

• Need top/bottom layers to show corrosion above bottom spalls.
• Use camera as recording device to take video, or use unmanned aerial vehicles to

take video or pictures.
• Add skew to the bridge model.
• Include settlement units—deflection between elements.
• Add button to export all photos to a photo log and organize the folders correctly. This

would be useful since normally, one inspector inspects the bridge while another
inspector is taking photos.

	Acknowledgments
	Disclaimer
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	1. Introduction
	1.1 Objectives
	1.2 Scope

	2. Literature Review
	3. Review of MDOT Practices
	3.1 Inspection Forms
	3.2 Inspection Procedures

	4. Application Design and Requirements
	4.1 Requirements
	4.2 Design Considerations

	5. Server Implementation
	5.1 Review of Bridge Fundamentals
	5.2 BMS Database
	5.3 Computing a Generic Bridge Model
	5.4 XML File Structure
	5.5 User Tuning
	5.6 Other Services
	5.7 Limitations

	6. Client Implementation
	6.1 Coding
	6.2 Loading Bridge XML files
	6.3 Navigation
	6.4 Element-Level Defects
	6.5 Bridge Review
	6.6 NBI Safety Inspection Report
	6.7 Scratch Pad
	6.8 Linear Defects and Defect Aggregation
	6.9 Saving/Loading and Importing/Exporting

	7. Conclusions
	Insert from: "SPR-1634-report2.pdf"
	8. Appendix
	8.1 List of Acronyms and Abbreviations
	8.2 State of Practice and Literature Review
	8.3 Survey Results
	8.4 Requirements Document
	8.5 Implementation Action Plan
	8.6 List of Possible Future Developments for the 3D Bridge App

	Insert from: "SPR-1634-Report3.pdf"
	8. Appendix
	8.1 List of Acronyms and Abbreviations
	8.2 State of Practice and Literature Review
	8.3 Survey Results
	8.4 Requirements Document
	8.5 Implementation Action Plan
	8.6 List of Possible Future Developments for the 3D Bridge App

	Insert from: "SPR-1634-REport4.pdf"
	8. Appendix
	8.1 List of Acronyms and Abbreviations
	8.2 State of Practice and Literature Review
	8.3 Survey Results
	8.4 Requirements Document
	8.5 Implementation Action Plan
	8.6 List of Possible Future Developments for the 3D Bridge App

