EFFECTS OF DEICING SALTS ON THE CHLORIDE LEVELS IN WATER AND SOIL ADJACENT TO ROADWAYS

CONSTRUCTION AND TECHNOLOGY DIVISION

			Technical Report I	Documentation Page
1. Report No.	2. Government Accession	No.	3. MDOT Project M	lanager
R-1495 Final Report				
4. Title and Subtitle			5. Report Date	
Effects of Deicing Salts on the Chloride Levels in Water and		er and	July 2007	
Soil Adjacent to Roadways		-	6. Performing Orga	nization Code
7. Author(s)			8. Performing Org.	Report No.
Robert W. Muethel				-
9. Performing Organization Name	and Address		10. Work Unit No. ((TRAIS)
Michigan Department of Trans	portation			
Construction and Technology I	Division		11. Contract No.	
P.O. Box 30049				
Lansing, MI 48909			11(9) Authorization	n No
12. Sponsoring Agency Name and A	Address		13. Type of Report	& Period Covered
Michigan Department of Trans	portation			
Construction and Technology	Division			
P.O. Box 30049		-	14 Spansaring Aga	nov Codo
Lansing, MI 48909			14. Sponsoring Age	ncy Coue
15 Supplementary Notes				
13. Supplementary Notes				
16. Abstract				
In 1971, the Michigan Departm	ent of Transportation be	egan a st	udy of the effects	of roadway
deicing salts on the chloride lev	els in roadside soils and	l ground	water. Monitoring	g included
sampling of surface water from	ponds, streams, and dra	ins, as w	ell as from shallo	ow groundwater
wells that received recharge fro	m surface water drainag	ge from t	he roadways cont	aining chlorides
from winter maintenance deicir	g applications. Monito	r well ar	rays were situated	l on roadway
segments along a north-south tr	unkline system extendir	ng from t	he northern Lowe	er Peninsula to
the south-central region of the State. Chloride levels were monitored during the period from				
1976 through 2006 at which time the investigation was ended. Results of the monitoring showed				
that the chlorides applied to the roadways are diluted by precipitation which prevents chloride				
build-up in the roadside soils and groundwater. The levels of chloride in the roadside surface				
waters also were found to be within acceptable limits. Caution is recommended regarding the				
use of alternative organic deicers that may result in biodegradation of the roadway infrastructure				
hy bacteria and other organisms known to be in the roadway environment				
17. Key Words	, kilo wir to be in the rot	18. Distr	ibution Statement	
deicing salt, chloride levels, groundwater, soil		No rest	estrictions. This document is	
avail		availab	lable to the public through the	
		Michig	an Department of	Transportation.
19. Security Classification - report	20. Security Classification	on - page	21. No. of Pages	22. Price
Unclassified	Unclassified		19	
	1			

MICHIGAN DEPARTMENT OF TRANSPORTATION MDOT

Effects of Deicing Salts on the Chloride Levels in Water and Soil Adjacent to Roadways

R. W. Muethel

Materials Section Construction and Technology Division Research Report R-1495 Final Report

Michigan Transportation Commission Ted B. Wahby, Chairman Linda Miller Atkinson, Vice Chairwoman Vincent J. Brennan, Maureen Miller Brosnan James R. Rosendall, James S. Scalici Kirk T. Steudle, Director Lansing, Michigan July 2007

The information contained in this report was compiled exclusively for the use of the Michigan Department of Transportation. Recommendations contained herein are based upon the research data obtained and the expertise of the researchers, and are not necessarily to be construed as Department policy. No material contained herein is to be reproduced, wholly or in part, without the expressed permission of the Engineer of Construction and Technology.

INTRODUCTION

In 1971, the Michigan Department of Transportation began a study of the effects of roadway deicing salts on the chloride levels in roadside soils and groundwater. Sampling locations were established along a major north-south state trunkline system to monitor deicing salt infiltration in areas experiencing winter conditions ranging from heavy snow accumulations in the northern region of the Lower Peninsula, to sleet and freezing rain in the southern region.

The pilot phase of the study, conducted during the 1971-72 period, involved selection of suitable sampling locations, placement of groundwater observation wells, and development of sample testing procedures. From the initial test findings a format for routine sampling was established. Preliminary sampling proceeded into 1973 at which time the study was temporarily suspended due to loss of qualified personnel.

In 1975, increased concern over the harmful effects of deicing salts led to reactivation of the study. In addition to the monitoring of chloride levels at selected field locations, the study included a literature search for possible alternatives to the use of chloride deicers, and for recommended procedures to be followed to minimize the harmful effects of chlorides. A progress report, Research Report No. R-1022 issued in 1976, presented the scope of the study, locations of the groundwater monitor wells, and the results of a literature search⁽¹⁾. Figure A-1 of the appendix shows the locations of the groundwater monitor well arrays.

The intensive monitoring phase of this investigation involved the biweekly sampling of groundwater, streams, and ponds adjacent to roadways, and biweekly sampling of shoulder gravels from statewide monitor sites along I-69, US-27 (now US-127), US-10 and I-75 on a year round basis from 1976 through 1984 at which time the project was again temporarily suspended. The results of the monitoring were presented in an interim progress report, Research Report No. R-1279 issued in 1986⁽²⁾. The report included an additional literature search. Recommendations of the report included resumption of less intensive roadside chloride monitoring.

In 1986, the statewide chloride monitoring project was resumed with biannual spring and fall samplings. Results of the samplings from 1986 through 1992 were presented in interim Research Report No. R-1322 issued in 1993⁽³⁾. The results indicated a continuation of the low chloride levels in the roadside environment. The report included an action item for adding an additional groundwater monitoring location on a new roadway in the Lansing vicinity.

In 1998, after opening of a new section of US-127 north of Lansing, a seven-well array of groundwater monitoring wells was established, including a sub-grade drain sampling location. Biannual samplings in spring and fall from the statewide monitoring locations continued through 2006 at which time the statewide roadside chloride monitoring project was ended.

This final report presents a long-term overview of the roadside monitoring from the well arrays and associated drain locations, expressed as biannual spring and fall chloride levels measured at the groundwater monitoring arrays. For the overview, the chloride levels are shown as averages for each well array. The average chloride levels for the well arrays show the overall effect of the deicing salt in the roadside environment at the monitoring locations.

SAMPLING AND ANALYSIS

Sampling for this study was structured to monitor the migration of roadway deicing salt into the roadside environment. The intensive phase of the study from 1980 through 1984 included monitoring of ponds and streams, shoulder gravels along the roadways, and roadside groundwater wells.

Shallow groundwater wells were established in areas of permeable soils that furnish direct groundwater recharge. Monitoring from the groundwater wells resumed in 1986 with a biannual sampling frequency in spring after frost melt and in fall before resumption of winter maintenance deicing. Samples were obtained from the groundwater wells at three of the four statewide locations originally established for the project (Figure A-1).

In 1984, monitoring from the well array along I-75 south of Grayling was discontinued due to poor recovery from the groundwater at approximately 30 feet below ground level. Chlorides from roadway deicing were not evident in the groundwater at this location. In 1998, an array of groundwater monitoring wells was established along a newly-opened segment of US-127 at Dewitt. Figures A-2 through A-6 of the appendix show the locations of the groundwater observation well arrays at the subject monitor locations.

In addition to the groundwater wells, a roadside sub-grade drain near the US-10 array of monitor wells at Clare was included in the study for the monitoring of chloride levels in drainage from the roadway. An additional sub-grade drain sampling site was included at the new US-127 location at Dewitt to monitor chloride levels in run-off before dilution in the groundwater.

Water samples were obtained for this investigation using several methods of retrieval including a centrifugal pump, pitcher pump, and dip-tube sampler. The water samples and shoulder gravel samples obtained for this investigation were analyzed in the laboratory for chloride ion content by titration according to the Mohr method using silver nitrate reagent and potassium chromate indicator.

FINDINGS

Results of the groundwater monitoring conducted from 1976 through 2006 at the US-10 location indicated that the roadside groundwater chlorides increased slightly after the start of winter maintenance deicing treatment on the newly-opened roadway, with no long-term build-up of chlorides over the years. Records of annual winter maintenance salt usage on the trunklines monitored for this investigation were obtained for 13 winter maintenance periods. The records indicated that an average of 20 tons of salt was used per lane-mile for each winter maintenance period⁽²⁾. National Oceanic and Atmospheric (NOAA) records of total annual precipitation obtained for the same years indicated that the monitoring locations received an average 32 inches of precipitation^(ibid). The amount of water in the total annual precipitation has adequately diluted the deicing chlorides to prevent build-up in the groundwater. Table A-1 of the appendix shows the average spring and fall chloride levels in groundwater sampled from the roadside wells.

Monitoring of roadside groundwater observation wells on I-75 south of Grayling, I-75 south of West Branch, and I-69 at Kinderhook indicated the same lack of long-term chloride build-up in the groundwater as annual precipitation has provided adequate dilution of the deicing

salt. Tables A-2, A-3 and A-4 of the appendix show the average spring and fall chloride levels in the groundwater sampled from the roadside wells in these monitor arrays.

The results of groundwater monitoring at the US-127 location at Dewitt showed groundwater chloride levels in some of the wells that were uncharacteristically higher than those at the other statewide locations, indicating possible chloride intrusion from a source outside of the roadway right-of-way. Table A-5 of the appendix shows the average spring and fall chloride levels in the groundwater sampled from the wells at this location.

A literature search conducted for this project found that salt has been the least expensive deicing agent available⁽¹⁾. As an essential mineral for living organisms, common salt is one of the least harmful agents to release into the environment. Complex chemical deicers, which are considerably more expensive than salt, may contribute to presently unknown types of pavement and structure deterioration, as well as environmental distress. Organic deicing agents contain compounds that are nutrients for bacteria and other organisms in the roadside environment which may excrete acidic residues that will attack the Portland cement concrete and bituminous components of the roadway infrastructure. The literature search also found that the chloride levels measured in the roadside environment were within tolerable limits for pond life and roadside vegetation^(ibid).

CONCLUSIONS AND RECOMMENDATIONS

The results of monitoring of the groundwater chlorides at the selected statewide roadside locations from 1976 through 2006 show that the annual precipitation can provide adequate dilution of the winter maintenance deicing salt applications to prevent a build-up of chlorides in the groundwater. It is apparent that increased winter precipitation that requires increased deicing salt application for safe roads also provides increased water for the dilution of the additional salt, preventing accumulation of the salt in the roadside environment.

Alternative organic deicers, known to cause imbalances in aquatic environments due to nutrient properties which promote uncontrolled growth of undesirable organisms such as algae, should be used with caution. Calcium magnesium acetate (CMA) and other organic deicers, although less corrosive than salt, can also contain constituents which may be nutrients for organisms such as bacteria which are known to be active in the roadway environment. Such organisms may release acidic residues that cause deterioration of the Portland cement concrete and bituminous pavement infrastructure.

Major improvements in corrosion-resistance have been implemented by vehicle manufacturers, resulting in protection against the rusting problems that were previously prevalent due to the corrosive effects of deicing salt. Construction of new bridges and pavements now feature corrosion-resistant reinforcement components to eliminate the previous deterioration caused by rusting of corrosion-susceptible reinforcing steel.

Conservative use of salt for winter maintenance deicing appears to be the most economical procedure for maintaining safe roads.

REFERENCES

- 1. Muethel, R. W. (1976), "Effects of Deicing Salts on the Chloride Levels in Water and Soil Adjacent to Roadways," Michigan Department of Transportation Interim Research Report No. R-1022.
- 2. Muethel, R. W. (1986), "Effects of Deicing Salts on the Chloride Levels in Water and Soil Adjacent to Roadways," Michigan Department of Transportation Interim Research Report No. R-1279.
- 3. Muethel, R. W. (1993), "Effects of Deicing Salts on the Chloride Levels in Water and Soil Adjacent to Roadways," Michigan Department of Transportation Interim Research Report No. R-1322.

APPENDIX

Figure A-1. Locations of ground water wells and state trunkline segments monitored.

Figure A-3. I 75 well locations, south of Grayling. Roadway opened to traffic in 1971.

8

×

Figure A-4. I 75 well locations, south of West Branch. Roadway opened to traffic in 1971.

9

Figure A-5. I 69 well locations, vicinity of Southern Road. Roadway opened to traffic in 1967.

· 11

TABLE A-1					
Bian	nual Sampling	s from Clare	US-10 Monitor	r Site	
	Groundwater Wells		Edge Drain, Sta 145 EB		
	Avg Chlorides, as ppm cl-		Chlorides, as ppm cl-		
	Spring	Fall	Spring	Fall	
Year	Sampling	Sampling	Sampling	Sampling	
2006	47	40	156	78	
2005	97	95	135	138	
2004	64	42	181	35	
2003	64	78	209	121	
2002	52	41	103	67	
2001	150	43	259	99	
2000	124	55	135	78	
1999	55	73	145	82	
1998	44	88	100	52	
1997	42	41	107	59	
1996	42	16	103	63	
1995	142	64	74	50	
1994	27	46	110	43	
1993	52	25	234	57	
1992	15	22	164	82	
1991	21	25	103	61	
1990	26	32	154	46	
1989	35	35	83	61	
1988	32	22	117	60	
1987	ns	61	ns	ns	
1986	ns	ns	ns	ns	
1985	ns	ns	ns	ns	
1984	58	66	103	71	
1983	45	35	99	57	
1982	30	26	99	50	
1981	43	38	113	50	
1980	28	64	71	50	
1979	38	33	ns	ns	
1978	33	33	ns	ns	
1977	24	9	ns	ns	
1976	0	3	ns	ns	

REMARKS: ns = not sampled

TABLE A-2 Biannual Samplings from Grayling I-75 Monitor Site				
	Groundwater Wells			
	Avg Chlorides, as ppm cl-			
Year	Spring Sampling	Fall Sampling		
1984	10	14		
1983	21	14		
1982	16	16		
1981	13	15		
1980	11	12		
1979	23	20		
1978	21	23		
1977	11	5		
1976	7	14		

	TABLE A-3					
Biannu	al Samplings f	rom West Bra	nch I-75 Moni	itor Site		
	Groundwater Wells		Background Well			
	Avg Chlorides, as ppm cl-		Chlorides, as ppm cl-			
	Spring	Fall	Spring	Fall		
Year	Sampling	Sampling	Sampling	Sampling		
2006	45	105	11	11		
2005	55	69	4	14		
2004	44	104	18	4		
2003	78	163	7	4		
2002	66	91	11	0		
2001	53	90	14	18		
2000	121	121	11	0		
1999	105	138	4	0		
1998	100	173	0	4		
1997	73	95	4	0		
1996	89	82	7	0		
1995	69	45	0	4		
1994	78	68	4	4		
1993	54	79	7	4		
1992	52	71	4	4		
1991	54	62	11	4		
1990	46	64	21	4		
1989	49	64	58	22		
1988	48	66	4	11		
1987	ns	68	ns	11		
1986	ns	ns	ns	ns		
1985	ns	ns	ns	ns		
1984	54	62	11	4		
1983	67	65	7	7		
1982	72	88	11	11		
1981	64	84	7	14		
1980	66	84	14	7		
1979	68	86	15	15		
1978	78	91	15	23		
1977	29	37	0	9		
1976	19	20	*	*		

REMARKS: ns = not sampled * well not established

	TABLE A-4				
Biannual Sa	Biannual Samplings from Kinderhook I-69				
	Monitor Site				
	Groundwater Wells				
	Avg Chlorides, as ppm cl-				
Year	Spring Sampling	Fall Sampling			
2006	291	98			
2005	130	180			
2004	134	124			
2003	254	186			
2002	89	95			
2001	153	85			
2000	186	148			
1999	222	98			
1998	156	101			
1997	402	165			
1996	126	94			
1995	152	110			
1994	141	117			
1993	175	156			
1992	88	136			
1991	84	122			
1990	187	99			
1989	109	95			
1988	107	119			
1987	ns	171			
1986	163	120			
1985	ns	ns			
1984	113	86			
1983	107	92			
1982	138	83			
1981	114	101			
1980	144	91			
1979	192	115			
1978	125	99			
1977	61	44			
1976	69	27			

REMARKS: ns = not sampled

TABLE A-5					
Biannual Samplings from Dewitt US-127 Monitor Site					
	Groundwater Wells		Drain		
	Avg Chlorides, as ppm cl-		Chlorides, as ppm cl-		
	Spring	Fall	Spring	Fall	
Year	Sampling	Sampling	Sampling	Sampling	
2006	439	356	85	78	
2005	410	518	1355	1156	
2004	476	522	78	613	
2003	393	703	571	518	
2002	360	474	60	833	
2001	341	424	57	ns	
2000	235	292	28	121	
1999	153	244	11	273	
1998	ns	21	ns	15	

REMARKS: ns = not sampled