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Abstract 

 

 Many highway bridges are skewed and their behavior and corresponding design analysis 

need to be furthered to fully accomplish design objectives.  This project has used an approach of 

physical-test-aided and detailed finite element analysis to better understand the behavior of 

typical skewed highway bridges in Michigan and to thereby develop design guidelines and tools 

to better assist in routine design of these structures.   

 It has been found in this research effort that the AASHTO LRFD Bridge Design 

Specifications' distribution-factor analysis method is generally acceptable but overestimates the 

design moment for the typical Michigan skewed bridge spans analyzed herein and sometimes 

underestimates the design shear.  Accordingly, a modification factor for possible shear 

underestimation based on detailed finite element analysis is recommended for routine design.  

Furthermore, the AASHTO specified temperature load effect is found to be relatively significant, 

compared with live load effect and should receive adequate attention in design.  On the other 

hand the influence of warping and torsion effects in the analyzed typical Michigan skewed 

bridges is found to be small and negligible for the considered cases of span length, beam spacing, 

and skew angle.  Based on these findings, the AASHTO distribution-factor analysis method is 

recommended to be used beyond the MDOT current policy of 30O skew angle limit for refined 

analysis, provided that the recommended modification factor C is applied and if the structure 

type, span length, beam spacing, and skew angle are within the ranges of the analyzed spans 

covered in this report. 

 An analytical solution for skewed thick plate modeling the concrete bridge deck is also 

developed in this research project, which can be furthered into an analytical solution for the 
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bridge superstructure.  When implemented in a software program, the analytical solution will 

serve routine design better than the distribution factor method and the finite element analysis 

method, without a constraint to the skew angle or a requirement for complex input such as 

element type, shape, size, etc. required for finite element analysis. 
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Chapter 1 

Introduction 

 

1.1 Background 

 

 Skewed bridges are commonly used to cross roadways, waterways, or railways that are 

not perpendicular to the bridge at the intersection. Skewed bridges are characterized by their 

skew angle, defined as the angle between a line normal to the centerline of the bridge and the 

centerline of the support (abutment or pier). According to the MDOT 2007 bridge inventory, 

about 33% of all bridges in Michigan are skewed with the angle ranging from 1º to 60º.  The 

AASHTO Standard Specifications for Highway Bridges (2002) did not account for the effect of 

skew. Namely there are no calculation methods or guidelines given in the specifications to cover 

or estimate the effect of skew.  So for decades, skewed bridges were analyzed and designed in 

the same way as straight ones regardless of the skew angle. 

 Nevertheless, research work has been published (e.g., Menassa et al. 2007, Bishara et. al. 

1993) indicating the mechanical behavior of skewed bridges being quite different from their 

straight counterparts. These efforts have shown that the AASHTO standard specifications did not 

adequately model and predict skewed bridge member behaviors including the midspan maximum 

bending moment and the obtuse corner maximum shear. Note also that these researchers have 

used numerical analyses such as finite element analysis (FEA). 

 Recently mandated AASHTO LRFD Bridge Design Specifications (2007) include 

provisions considering skew, but within certain ranges of the design parameters, such as the 
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skew angle, span length, etc. These ranges are often too narrow and thus frequently exceeded in 

routine design.  When one of the design parameters exceeds its corresponding limit, refined 

analysis is required by the specifications, which mostly likely would be a numerical analysis 

such as FEA. Unfortunately many bridge design engineers are not familiar or adequately 

proficient with these analysis methods. In addition, the analysis equations in the AASHTO 

LRFD design specifications were developed using the regression of grillage analysis results 

based on a number of assumptions, which may not be realistic for some cases. 

 MDOT currently has a skew policy that requires spans with 30 to 45 degree skew to be 

designed using refined methods such as FEA methods, and those beyond 45 degrees to be 

approved by Bridge Design and also designed using refined methods. 

 This project was initiated to address these concerns by better understanding skew bridge 

behavior and developing design guidelines and tools to facilitate design practice in Michigan.  

 

1.2 Research objectives 

  

 This research project had the following objectives. 

 1) To better understand the behavior of typical skew bridges in Michigan, 

 2) To accordingly develop design guidelines for bridge design engineers, and   

 3) To develop appropriate design tools that can help bridge design engineers in routine 

design for typical Michigan bridges. 
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1.3 Research approach 

  

 To accomplish the above objectives, the following tasks were planned carried out in this 

research project. 

 

1. Literature review 

 This task was to understand and document state of the art and the practice on the behavior 

of skewed highway bridges.  A literature search was performed using the Transportation 

Research Board's (TRB) database Transportation Research Information Services (TRIS) and its 

Research in Progress (RiP) component, the American Society of Civil Engineers' (ASCE) 

publication database, and the world wide web.  The identified publications were then reviewed 

and the results are summarized below in Chapter 2. 

 

2. Field testing 

 A full scale steel plate girder bridge S02 of 82191 was selected for physical testing under 

deck dead load and vehicular live load to provide measured behavior data.  The bridge carries 

Woodruff Road over I-75 and M-85 in Monroe County, Michigan.  The test was conducted in 

summer 2009. The field test had two main purposes. The first was to understand the strain load 

effect of a significantly skewed structure. The second purpose was to provide measurement data 

for validation and calibration of finite element modeling, so that the numerical analysis method 

could be reliably used to analyze and understand the behavior of typical skew bridges in 

Michigan. 
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3. Finite element analysis of Michigan typical bridge spans 

 Finite element models of skewed bridge spans typical in Michigan were developed using 

calibrated modeling based on the field measurement results from Task 2.  Considering its higher 

cost, physical measurement can only be performed on a very limited number of structures and at 

a limited number of perceived critical locations, while the measured data are valuable  and 

needed for calibrating numerical modeling.  On the other hand, FEA can cost-effectively 

demonstrate the structure's behavior at arbitrary locations with high accuracy, if properly 

calibrated. This approach was taken here to analyze typical skew bridge spans with various 

skewed angles, beam spacings, and span lengths, to understand how these parameters affect their 

behavior, particularly for Michigan applications.  The resulting analysis data were then used to 

develop guidelines for routine design practice. 

 

4. Analytical solution method 

 FEA as a numerical solution method requires the end user to input information to control 

the analysis such as the element types and sizes, besides the general information on the structure 

including dimensions, material properties, etc.  For routine design, this requirement can become 

challenging to meet when FEA is required.  A possible alternative is analytical solution 

implemented in a computer program.  The advantage of this approach is that data input for 

analytical solutions will be much simpler because only general information about the structure 

will be needed.  In other words, special data such as element types, shapes, and sizes will not be 

needed.  Namely analytical solution can be a powerful design tool for routine bridge design.  

This research project has also attempted this approach and the product is presented in Chapter 6. 
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5. Development of design guidelines 

 This task developed guidelines and distribution-factor modifiers for typical bridge types 

in Michigan, based on FEA results of selected bridge types, lengths, beam spacing, and skew 

angles.  These products are intended for bridge design engineers to use in designing Michigan 

skewed highway bridges. 

 

1.4 Report organization 

  

 This research report has seven more chapters. A literature review of state of the art and 

practice related to skewed bridges is presented in Chapter 2.  

 Chapter 3 focuses on the task of field measurement of a skewed steel bridge's behavior 

under loading. The information about the test bridge is provided in Section 3.1. Section 3.2 

discusses the instrumentation details,  and Section 3.3 presents the measurement results subjected 

to deck dead load and vehicular live load. 

 Chapter 4 presents the FEA calibration process and results using the measured response 

data from the physical test program presented in Chapter 3.  Section 4.1 discusses the FEA 

models used herein.  Section 4.2 presents the calibration and simulation results against the 

measurement  data.  Then, a summary is provided in Section 4.3 to conclude the chapter. 

 Chapter 5 focuses on the FEA for the selected typical bridge spans for Michigan.  

Eighteen cases of simple span highway bridges typical in Michigan were modeled using the 

calibrated FEA approach.  They were analyzed using an FEA software program, GTSTRUDL. 

Section 5.1 provides the details of the analyzed typical bridge spans. The skew angle, beam 

spacing, and span length were chosen as the parameters of investigation for their effects on the 
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behavior. In addition to these parameters, the effect of the span support boundary condition is 

also discussed. Section 5.2 reports the analysis results, compared with the results using the 

AASHTO LRFD specifications provisions, and Section 5.3 extends the discussion to cover 

thermal load effects.  A summary of the chapter is given in Section 5.4. 

 In Chapter 6, an analytical solution for skewed thick plates is developed.  This kind of 

solution has not been reported in the literature. The chapter starts with an introduction of the 

subject in Section 6.1, also discussing the Kirchhoff theory and Reissner-Mindlin theory, which 

are suitable for thin plate and thick plate analysis, respectively. Next, the concept of an oblique 

coordinate system is introduced in Section 6.2, along with its relationship to the rectangular 

coordinate system and the corresponding governing differential equation of skewed thick plates 

based on the Reissner-Mindlin theory.  Its solution is provided in Section 6.3 using a sum of 

polynomial and trigonometric functions. Section 6.4 discusses the technique for determining the 

parameters in the series solution based on boundary conditions and Section 6.5 demonstrates 

application example results, compared with those in the literature obtained using numerical 

methods.  Finally, Section 6.6 summarizes this chapter. 

 Chapter 7 presents the recommended guidelines for bridge engineers to consider in 

designing skewed highway bridges in Michigan.  A modification factor is included as part of the 

recommended guidelines to mitigate underestimation of design shear as a particular design tool. 

 Chapter 8 summarizes the findings and contributions of this research effort, and also 

gives recommendations for possible future research relevant to skewed bridges.  
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Chapter 2 

Literature Review 

 

 This chapter presents the state of the art and practice related to skewed bridge behavior 

and design practice, based on a literature review conducted in the present research project.  The 

publications reviewed below were identified using the TRB research database TRIS and its 

research in progress component RiP, the ASCE publication database, and the world wide web.  It 

has been observed hereby that all research efforts identified and reviewed have employed 

numerical approaches assisted by limited physical testing in investigating skewed bridge 

behavior.  Regression based on the data produced using the numerical and experimental 

approaches was also common to identify the trend of skew effect as a function of design 

parameters such as skew angle, beam spacing, span length, etc. 

 Menassa et al. (2007) presented the effect of skew angle, span length, and number of 

lanes on simple-span reinforced concrete slab bridges using FEA. Figure 2.1 shows a 

representative finite element model used in this research effort.  The result was compared with 

relevant provisions in the AASHTO standard specifications (2002) and the AASHTO LRFD 

specifications (2004).  Ninety six different cases were analyzed subjected to the AASHTO HS20 

truck. It was found that the AASHTO standard specifications (2002) overestimated the 

maximum moment for beam design by 20%, 50%, and 100% for 30, 40, and 50 degrees of skew, 

respectively. Similar results of over-estimation were also observed for the LRFD specifications 

(2004) - up to 40% for less than 30 degree and 50% for 50 degree skew. The researchers 
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therefore recommended to conduct three dimensional FEA for design instead of using the 

AASHTO provisions for skew angles greater than 20 degrees. 

 

 

Figure 2.1 Finite element model for a 36-ft span two-lane bridge, with 30° skew   

(taken from Menassa et. al. 2007) 

 

 Bishara et al. (1993) presented girder distribution factor expressions as functions of 

several design parameters (span length, span width, and skew angle) for wheel-loads distributed 

to the interior and exterior composite girders supporting a concrete deck for medium span length 

bridges. These expressions were determined using FEA results of 36 bridges with a 9-ft spacing 

of girders and different spans (75, 100, and 125 ft), widths (39, 57, and 66 ft), and skew angles 

(0º, 20º, 40º, and 60º). To validate this FEA model, a bridge of 137-ft length was tested in the 

field. From their analysis, it was concluded that a large skew angle reduces the distribution factor 
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for moment and the AASHTO standard specifications overestimated the maximum moment for 

design. 

 Ebeido and Kennedy (1996A, 1996B) conducted a sensitivity analysis using FEA, 

calibrated using physical testing of three simply supported bridge span models in the laboratory, 

one straight and the other two with a 45° skew. The bridge length was 12 to 14 ft, thickness of 

the deck was 2 in, width was 4 ft to 5 ft 8 in. After the FEA modeling calibration, more than 600 

cases were analyzed using FEA to investigate the influence of parameters affecting the moment, 

shear, and reaction distribution factors. Empirical distribution factors were thereby developed 

and recommended. It was concluded that a large skew angle increases the distribution factor for 

shear at the obtuse corner and decreases the maximum bending moment. In addition, it was 

asserted that the more severely the bridge is skewed, the more the AASHTO standard 

specifications provisions overestimated the load effect of maximum design moment, shear, and 

reaction. 

 These efforts indicated that the AASHTO standard specifications failed to reliably model 

and predict skewed bridge member behaviors including maximum mid span moment and obtuse 

corner shear for design. 

 NCHRP Report 592 (BridgeTech 2007) was devoted to improving the AASHTO LRFD 

Bridge Design Specifications by providing simplified load distribution factors for the beam line 

analysis method.  Skew effect was also covered. New distribution factor equations were 

produced using regression of numerical analysis results of a large number of bridge cases to 

cover wide ranges of the design parameters.  However, the numerical models were relatively 

simple or simplistic to perhaps accommodate the large number of cases.  
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 A typical such model using the grillage method used in that project is shown in Figure 

2.2.  Similar models were employed to analyze 1,560 bridge span cases with different skew 

angles, span lengths, beam spacings, number of lanes, truck locations, barriers, bridge types, 

intermediate diaphragms, and end diaphragms. 

 

  

(a)                                                        (b) 

 

Figure 2.2 A grillage bridge model taken from NCHRP Report 592 

(a) non-deformed shape before truck load application 

(b) deformed shape after truck load application 

 

 Nevertheless for skewed bridges, it is known that different grillage models can make the 

results different.  For example, the two grillage models in Figure 2.3 for the same structure have 

been shown to produce much different results (Surana and Agrawal 1998). In Figure 2.3 (a), 

transverse grid lines are parallel with skew, whereas in Figure 2.3 (b) they are orthogonal to the 

beam lines.  The model in Figure 2.3 (a) was reported to over-estimate the maximum deflection 

and moment, depending on the severity of skew.  The model in Figure 2.3 (b) has reportedly 

produced more accurate results.  The grillage model employed in NCHRP Report 592 as shown 
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in Figure 2.2 is similar to that in Figure 2.3 (a).  In addition, the model is too simple to be able to 

cover the effect of bearings in resisting a combination of torsion, shear, moment, and axial force. 

Accordingly, more detailed models are recommended to be included in such refined analyses for 

more profound insight. 

 

(a) Skew or parallelogram mesh (b) Mesh orthogonal to span

Diaphragm Beam

 

Figure 2.3 Grillages for skew bridges (taken from Surana and Agrawal 1998) 

 (a) transverse grid lines parallel with skew  

(b) transverse grid lines not parallel with skew 

 

 Helba and Kennedy (1995) conducted a parametric study of skewed bridges subject to 

concentric and eccentric loading using FEA. They also identified three groups of influencing 

parameters derived from an energy equilibrium condition: (1) the bridge geometry such as the 

skew angle, span length, aspect ratio, and continuity; (2) loading condition such as truck position 

and number of loaded lanes; and (3) the structural and material property such as those of the 

main girders or beams, transverse diaphragms, and the reinforced concrete deck slab and their 

connections. 
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 Khaloo and Mizabozorg (2003) analyzed simply supported bridges consisting of five I-

cross-section concrete girders using the commercial FEA program ANSYS. Beam elements and 

shell elements were used to model the girders and slab, respectively. A parametric study was 

conducted focusing on the following influencing factors: span length, girder spacing, and skew 

angle. 

 Huang et al. (2004) also developed an FEA model of a severely skewed (60o) composite 

bridge with steel plate girders supporting a concrete deck.  The model was validated using field 

test.  In the FEA model, the concrete slab and the longitudinal steel girders were respectively 

modeled using four-node shell elements and two-node beam elements with six degrees of 

freedom at each node, respectively. 

 The combination of beam and shell elements used in Khaloo and Mizabozorg (2003) and 

Huang et al. (2004) has the benefit of shorter computational time but cannot model certain 

details. For example, the vertical location of the diaphragms and supporting bearings cannot be 

included. To overcome this, in the present research project solid elements are used to model the 

skewed bridge spans at the expense of longer computational time. 

 Komatsu et al. (1971) attempted to analyze the behavior of skewed box girder bridges 

using the so called reduction method. The reduction method is a numerical analysis technique 

that divides the entire structure into multiple “bar elements” and then performs the required 

analyses.  The computational cost of the reduction method can become lower than FEA methods.   

However, it is unable to model certain details of the structure. In Komatsu et al. (1971), this 

method was validated by testing a model skewed bridge subjected to eccentric load. The authors 

proposed four influencing factors to focus on in studying skew effect: the skew angle, aspect 
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ratio, ratio between the beams' bending stiffness and torsional stiffness, and loading condition.  

These factors were then investigated to understand their respective effects. 

 It is reasonable to conclude, based on these research efforts and results, that research on 

skewed bridges has overwhelmingly used numerical analysis (typically FEA) assisted by limited 

physical testing. On the other hand, it is also important to note that these numerical analyses have 

used simplified models that may miss many details that can be important in fully understanding 

the skew bridge behavior. Accordingly, more detailed modeling using 3D solid elements was 

performed in this research project to more reliably model the interested structures and their 

features.  In addition an attempt was also made to approach to structural analysis using analytical 

solution in this project, to reduce the high specialty requirement for FEA, particularly for routine 

design. 
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Chapter 3 

Field Test Program 

 

 As discussed in the previous chapters, there can be characteristic differences in the 

behavior of skewed bridges and their straight counterparts. In order to observe the behavior of 

skewed bridges under real truck load, field testing was conducted in this research project for 

physical measurement of interested responses, such as induced stresses due to accordingly 

changed moment and shear.  The field test program had two main purposes: 1) to observe load 

effects of a significantly skewed bridge by measurement, and 2) to provide measurement data for 

the calibration of FEA modeling, so that the numerical analysis approach is reliable and its 

results can be used to develop design guidelines for design practice.  The second purpose is more 

critical in the process of research reported herein, since it is to allow the numerical FEA to 

provide more data for the task of guideline development.  Field instrumentation and testing of 

many bridges can be prohibitively expensive, and calibrated numerical modeling and analysis 

using FEA is the viable approach to understanding the behaviors of typical Michigan skewed 

bridges with different skew angles, span lengths, beam spacings, etc. 

  

3.1   Test bridge 

 

 The test bridge S02 of 82191 in Monroe County, Michigan, carries Woodruff Road over 

I-75 and M-85, and it is hereafter referred to as the Woodruff Bridge in this report. Its 

superstructure includes a 9 in thick reinforced concrete deck and 6 parallel steel plate girders 
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spaced at 9 ft 9 in and continuous over 4 spans.  The Woodruff Bridge has a skew angle of 32.5° 

and it provides two lanes in each direction of east and west traffic.  Figure 3.1 shows the design 

drawing of the plan and elevation of the test bridge, and Figure 3.2 exhibits the instrumented and 

tested span (Span1) on the west end before deck forming was completed during construction. 
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Figure 3.1 Plan and elevation of test bridge on Woodruff Road over I-75 and M-85 
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Figure 3.2  Tested span of test bridge on Woodruff Road over I-75 and M-85 

 

 Based on a preliminary FEA, an instrumentation plan was developed to use strain gages 

at several locations on some of the steel girders.  As a result, two of the 6 girders were 

instrumented in one of the 4 spans (Span 1) at the west end.  The tested span has a span length of 

99 ft 2 in.  Figure 3.3 shows the plan view of the test span along with the strain gage locations 

S1, S2, and S3.  The six girder center lines are indicated using letters A through F.  More details 

of instrumentation are given in the next section. 
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Figure 3.3 Deck and girders of the Woodruff bridge (S02 of 82191) span 1 and instrumentation 

 

3.2 Instrumentation 

 

 Strain was measured in this bridge test program, using uni-directional strain transducers.  

A typical strain transducer is shown in Figure 3.4.  Mounting a transducer to a structural 

component required surface preparation to glue two supporting stems also shown in Figure 3.4.  

Therefore, these strain transducers have an advantage of less field installation effort compared 

with foil strain gages. Load response strains were recorded using an Invocon wireless data 

acquisition system, as displayed in Figure 3.5. This radio wave based system offers a capability 

of high resolution in acquired strain data. 

 

26 

 



 

 

Figure 3.4 A typical strain transducer used in Woodruff Bridge test 

 

 

Figure 3.5 Radio-based Invocon strain data acquisition system 

 

 The Woodruff Bridge was instrumented with 2 separate and parallel strain transducers on 

the bottom flange at each of the locations identified as S1 and S2 in Figure 3.3.  The locations 
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were selected to capture maximum bending and warping strain responses based on the 

preliminary FEA.  Figures 3.6 to 3.7 exhibit more detailed information including the locations 

and arrangements as well as the strain transducer identifications to be referred to later in this 

report when the measurement results are presented.  Figure 3.8 shows a photograph of the strain 

transducers installed on a flange's bottom surface. 

 

49'-6"

West edge of the girderN S1 north

S1 south
 

Figure 3.6 Strain transducer arrangement at location S1 on the bottom flange 

 

 

37'-6"

West edge of the girder
N

S2 north

S2 south
 

Figure 3.7 Strain transducers arrangement at location S2 on the bottom flange 
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Figure 3.8  Strain transducer arrangement on bottom flange at Locations S1 and S2 

 

 At locations S2 and S3 indicated in Figure 3.3, shear strains were of interest. Figures 3.9 

and 3.10 show the specific locations and arrangements of the strain transducers on the web of the 

steel beams.  At each location, three uni-directional train transducers were used to capture 

maximum shear responses.  Figure 3.11 exhibits the accordingly installed transducers. Along 

with strain measurement using these strain transducers, air temperature under the bridge was also 

measured.  The results are to be discussed later in this report. 
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Figure 3.9 Strain transducer arrangement at location S2 on web 
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Figure 3.10 Strain transducer arrangement at location S3 on web 
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Figure 3.11 Strain transducers arrangement on the web 

 

3.3 Measurement results 

 

3.3.1  Dead load effect 

 

 To understand the effect of the deck dead load, strain reading was collected during the 

first part of concrete placement of Span 1's deck.  Figures 3.12 to 3.19 display the strain reading 

results for different strain transducers.  Note that positive strains here are tensile strains, and 

negative compressive strains.  Figure 3.20 shows air temperature reading results.  These figures 

have time in minute on the horizontal axis, and microstrain (Figures 3.12 to 3.19) or temperature 

in degree Fahrenheit (Figure 3.20) on the vertical axis.  For the time in Figures 3.12, 3.14, 3.16, 

and 3.18, 0 min indicates when concrete placement started, and the strain reading is accordingly 
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set to 0.  Strain data collected before concrete placement are shown in the figures corresponding 

to negative time.  Note also that the strain transducer identification for each of these figures is 

given in Figures 3.6, 3.7, 3.9, or 3.10. 
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Figure 3.12 Strain at "S1 south" due to concrete deck placement (up to 105 minutes) 
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Figure 3.13 Strain at "S1 south" due to concrete deck placement (starting from 120 minutes) 
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Figure 3.14 Strains at "S2 south" due to concrete deck placement (up to 105 minutes) 
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Figure 3.15 Strains at "S2 south" due to concrete deck placement (starting from 120 minutes) 
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Figure 3.16 Strain at "S2 web diagonal" due to concrete deck placement (up to 105 minutes) 
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Figure 3.17 Strain at "S2 web diagonal" due to concrete deck placement  

(starting from 120 minutes) 
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Figure 3.18 Strain at "S3 web diagonal" due to concrete deck placement (up to 100 minutes) 
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Figure 3.19 Strain at "S3 web diagonal" due to concrete deck placement  

(starting from 120 minutes) 
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Figure 3.20 Ambient air temperature record 

 

 As seen above, two figures for each uni-directional strain transducer are shown (e.g., 

Figures 3.12 and 3.13 for S1 south, and Figures 3.14 and 3.15 for S2 south, etc).  One of them is 

for the time period from -60 minutes to 105 minutes, and the other from 120 minutes on.  This is 

because data collection was interrupted at 105 minutes, and then was resumed at 120 minutes.  

Since electrical strain gage reading is relative to the zero set at the commencement, the resumed 

strain reading lost the original zero setting and had to start from another zero set then.  Therefore 

the second figure starts at 120 minutes with a strain of new zero. 

 These results show that compressive strain was experienced at the bottom flange 

locations S1 and S2 before concrete was placed.  It is believed that this compressive strain was 
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due to temperature dropping shown in Figure 3.20.  It is seen that this temperature effect is not 

negligible. For example, Figure 3.14 indicates about 50 microstrains of compressive strain due to 

a temperature decrease of less than 10o F over about an hour of time.  For comparison, the 

maximum tensile strain was about 80 microstrains due to two legal truck loads to be discussed 

later.  

 Furthermore, to understand the temperature effect, the temperature readings in Figure 

3.20 should be used as a reference. Rapid temperature decrease was observed before concrete 

was started to be placed on this span and it corresponds to the observed compressive strain.  

Nevertheless, it should be noted that the temperature on the girder may be different from the 

ambient air temperature recorded because heat had to take some time to dissipate from the steel 

girder heated during the day and thus the girder may be hotter than the ambient temperature 

during these early evening hours before concrete placement.  Accordingly, it is challenging or 

difficult to find the temperature effect precisely by analysis based on the measured air 

temperature alone. This subject will be discussed further in Chapter 4 for FEA modeling 

calibration.  

 

3.3.2 Live load effect 

  

 In addition to measuring the dead load effect due to the concrete deck, truck load was 

also applied to measure the girders' strain response. Strain reading was taken with truck load 

driven on and off the test span to obtain truck load response at the strain-gaged locations. For 

each test, one or two trucks were driven through the span or to the predetermined locations on 
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the span.  The loading paths were designed to maximize the strain due to bending, warping 

torsion, and shear in the instrumented girders.  

 Figure 3.21 shows the two trucks with 3-axles used to load the Woodruff Bridge for 

strain reading purpose.  The left and behind truck is referred to as the “white truck” and the right 

and ahead truck as the “red truck” hereafter in this report. Before loading the bridge, the axle 

weights and spacings were measured and recorded to be used in the FEA. This information is  

documented in Figure 3.22.  

 

 

 

Figure 3.21  3-axle trucks used to load Woodruff Bridge 
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Figure 3.22  Details of 3-axle loading trucks in Figure 3.21 

 

 In this live load test program, a total of five loading paths or locations were used to 

respectively induce maximum strains at the different instrumented locations on the girders.  They 

are referred to as 5 different tests and are presented next with details.   

 

Test 1 

 In this test, the red truck was driven through Span 1 from the west end of the bridge 

towards east. Figure 3.23 shows the truck movement direction and path along the instrumented 

Girder C. This test was selected to maximize the moment effect of the girder at “S1 south” and 

“S1 north” on the two sides of the flange of Girder C at location S1 (Figure 3.8).  This test was 

repeated four times to generate adequate replicates for verifying consistency.  The strain records 

are shown in Figures 3.24 and 3.25 respectively for the two strain transducers "S1 south" and "S1 

north".  Note again that the strain transducer identifications and locations on the girder have been 

given in Figure 3.6. 
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Figure 3.23 Loading path of Test 1 

 

 

Figure 3.24 Strain at "S1 south" due to Test 1 load in Figure 3.23 
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Figure 3.25 Strain at "S1 north" due to Test 1 load in Figure 3.23 

 

 These strain records show  that strain reading was largely consistent, though small 

differences are observed. These differences might have been caused by the differences in the 

truck driven along different paths on the deck. Though the truck driver was instructed to follow 

the same marked path, it was impossible to exactly realize the same path and the deviation could 

be 1 ft or so in the transverse (north-south) direction. 

 

Test 2 

 In this test, both loading trucks were used to load Span 1.  After starting from the west 

end, the trucks were stopped at 60 ft from the west end without going through the entire span, as 

shown in Figure 3.26.  This was to create a side-by-side loading considered to be critical for 

moment design and to generate a maximum bending strain at location S1.  Accordingly, the 
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white truck was driven first to the predetermined location and was parked there, and then the red 

truck was driven on the span and stopped at its own target location indicated in Figure 3.26.  This 

test was repeated three times and the results are shown in Figures 3.27 and 3.28. 
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Figure 3.26  Truck load configuration and location of Test 2 

 

 

Figure 3.27 Strain at "S1 south" due to Test 2 truck load in Figure 3.26 
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Figure 3.28 Strain at "S1 north" due to Test 2 truck load in Figure 3.26 

 

 The two flat parts in the strain records in Figures 3.27 and 3.28 correspond to the white 

and red truck respectively driven to the target locations and parked there.  The oscillatory 

responses at these two parts were due to the truck taking the breaks to stop and the vibration 

induced thereby.  It is observed that the red truck contributed more strain than the white one, 

apparently because it was closer to the instrumented Girder C.  On the other hand, the 

contribution of the white truck is certainly not insignificant and in the same order of magnitude 

since the red truck directly loading Girder C.  This situation is different from the shear and 

torsional effect tests to de presented below. 
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Test 3 

 This test used one truck (the red truck) to load through Span 1 from the west end to the 

east.  Figure 3.29 shows the transverse location of the loading path. This test was designed to 

observe the maximum torsional effect in Girder C and thus the strain at “S2 web diagonal”. This 

test was repeated four times and the strain records are shown in Figure 3.30.  Quite consistent 

recording is seen there, as well as high resolution of data acquisition mainly due to the radio-

wave based system. 
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Figure 3.29 Loading path of Test 3 
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Figure 3.30 Strains at "S2 web diagonal" due to Test 3 truck load in Figure 3.29 

 

Test 4 

 This test consisted of both trucks loading to the same location as Test 2 but transversely 

off by a half of a lane.  Accordingly, the white truck was first driven to the target location and 

parked there, and then the red truck was driven to its target location as indicated in Figure 3.31. 

This test configuration and location was also determined to maximize the torsional effect in 

Girder C and thus the strain at “S2 web diagonal”. This test was repeated three times for 

replicates and the strain records are plotted in Figure 3.32. 

49 

 



A

B

C

D

E

F

99'-2"

5 
@

 9
'-9

"=
 4

8'
-9

"
2'

-4
"

2'
-4

"

57°32'40"

N

S1

S3

S2
23'-8"

red truck

white truck

33'-5"

60'

 

Figure 3.31 Truck load configuration and location of Test 4 

 

 

Figure 3.32 Strain at "S2 web diagonal" due to Test 4 truck load in Figure 3.31 
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 Figure 3.32 shows that the white truck driven first to the target location contributed 

approximately 5 microstrains and stopped at around 100 seconds.  The white truck apparently 

contributed much less significantly because it was further away from Girder C where the strain 

was read.  Then, the red truck was driven on to the target location, superimposing more 

significantly about 20 more microstrains.  Comparing Test 4 with Test 3 (Figure 3.32 with 

Figure 3.30) it is seen that the additional white truck's contribution is very limited, apparently 

due to a significant load sharing by Girder D. 

 

Test 5 

 Test 5 also used both trucks for maximizing shear at the obtuse corner of the bridge.  The 

red truck was driven first to the target location marked in Figure 3.33 and parked there, and then 

the white truck followed to its own target location also marked in Figure 3.33.  This test was also 

intended to induce a maximum shear strain at “S3 web diagonal”.  Three strain reading replicates 

were acquired for this teat and they are exhibited in Figure 3.34. 
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Figure 3.33 Truck load configuration and location of Test 5 

 

Figure 3.34 Strain at "S3 web diagonal" due to Test 5 truck load in Figure 3.33 
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 Three obvious steps of strain increase are seen in Figure 3.34, between about 0 to 10 

microstrains, 10 to 22 microstrains, and 22 to 26 microstrains. These three steps corresponded to 

the front axle of the red truck, the rear tandem axle of the red truck, and the entire white truck in 

the adjacent lane, respectively. The red truck which was driven right next to the fascia beam 

contributed significantly more as seen.  Compared with Test 4, both tests involved a second truck 

in an adjacent lane that actually superimposed a very limited amount of additional strain. 

 

3.4 Summary 

 

 This chapter has presented the process and results of the field test program to provide 

measurements of strain effect resulting from the concrete deck placement as dead load and truck 

load as live load.  The strain readings also provide some insight to the behavior of skewed 

bridges.  

 In the dead load test, temperature strain effect is seen to be not negligible compared to the 

observed dead load effect and live load effect.  

 In the live load test, five loading tests were performed to induce possibly maximum 

strains in different strain reading locations. All tests were repeated three or four times, and 

consistent measurement results were obtained.  The second truck in an adjacent lane contributes 

more additional response for bending strain than for shear and torsional strains.  

 Besides the light shed on the behavior of skewed bridges, these test data are to be used 

next to calibrate and validate FEA modeling used in Chapter 5. 
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Chapter 4 

Finite Element Analysis Modeling and Calibration 

 

 Physical measurement can only be performed on a limited number of structures and at a 

limited number of perceived critical locations. However, these measurements are important and 

can be used to calibrate numerical modeling of the measured structures to provide validation. 

FEA is considered the most generally applicable and powerful tool for such modeling and 

analysis. This chapter first presents the developed finite element model for the test bridge and 

then the process and the results of validation and calibration using the measured data from the 

Woodruff Bridge. 

 

4.1 FEA modeling 

 

 GTSTRUDL, a 3-D FEA software program, was used in this study to perform the 

required analysis. This section presents the process of modeling along with model details and 

next section will discuss the process of validation using the measured data presented earlier in 

Chapter 3. 

  

4.1.1 Selection of modeling elements 

 

 In the analysis covering dead load effect of the concrete deck and live load effect of truck 

load, the 3-D linear solid element IPLS of the GTSTRUDL program was used to model the 

concrete deck, steel girder, bearing, intermediate diaphragm, and end diaphragm.  The reason for 
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this selection was to be able to model certain details that other simpler elements cannot model as 

commented on in Chapter 2.  For example, when the beams are modeled using beam elements as 

done in some previous research efforts reported in the literature, it will be difficult or too much 

time consuming to place the intermediate diaphragms at the right locations other than the neutral 

axis of the beam.  IPLS in GTSTRUDL is an 8-nodes iso-parametric solid brick element as 

shown in Figure 4.1. It is based on linear interpolation and Gauss integration. The basic variables 

on a node are the translations ux, uy, and uz in the three orthogonal directions. 

 

 

Figure 4.1 GTSTRUDL 3-D solid element IPLS 

 

4.1.2  Material properties 

 

 The FEA model of the Woodruff Bridge is divided into 5 structural parts, the deck, 

girders, bearings, intermediate diaphragms, and end diaphragms. The deck and end diaphragms 

are made of reinforced concrete, the girders and intermediate diaphragms are made of steel, and 

the bearings are made of synthetic rubber or elastomer with steel reinforcing plates.  Detailed 

information for each material is shown in Table 4.1. 

55 

 



 Note that the Young's modulus of concrete Ec in Table 4.1 is derived from the following 

equation (AASHTO). 

 (psi) 57000 '  (psi)c cE f=  

where f'c  is the compressive strength of the concrete and 4,344 psi was used in this modeling 

effort, obtained from compression tests of cylinders taken from the concrete batches placed in 

the deck of the test bridge. 

 

 

Table 4.1 Material properties used in FEA modeling 

 Young's modulus (ksi) Poisson's ratio 

Concrete 3757 0.2 

Steel 29000 0.3 

Synthetic rubber 11 0.4 

 

 

4.1.3 FEA modeling of the Woodruff Bridge 

 

 Figure 4.2 below shows the finite element model of the Woodruff bridge (isometric view) 

using 70,969 elements and 44,331 nodes.  Figure 4.3 displays the top view of Span 1 that was 

tested. It is seen in Figure 4.2 that the element mesh of Span 1 is finer than Spans 2 and 3 to 

allow a higher resolution of analysis.  Span 4 of the structure was not included in the model to 

reduce computational cost since Span 4's effect to Span 1 to be focused on was considered 

negligible. 
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Figure 4.2 Isometric view of FEA model of Woodruff Bridge 

 

 

Figure 4.3 Top view of Span 1 FEA model of Woodruff Bridge 

 

 For illustration, typical examples of strain contour plots are shown in Figures 4.4 to 4.6. 

Figure 4.4 shows the top view of Span 1, Figure 4.5 highlights the bottom flange at the midspan 

where the maximum strain is experienced, and Figure 4.6 shows the lateral view at the obtuse 

corner.  Load specific analysis results are to be discussed below. 
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Figure 4.4 Typical strain contour plot of Span 1 

 

 

Figure 4.5 Typical strain contour plot of a beam's bottom flange at midspan 
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Figure 4.6 Typical strain contour plot for the obtuse (left bottom) corner 

 

4.2 Validation and calibration of FEA model using measured responses 

 

4.2.1 Validation and calibration 

 

 The validation of FEA modeling started from checking mesh convergence in this project.  

Several different meshes were used to finalize to the one presented above upon confirmation of 

convergence.   

 The calibration of FEA modeling used the measured deck dead load and truck live load 

effects as the reference for confirmation decision making, which have been presented in Chapter 

3 and acquired by measurement from the Woodruff Bridge field tests.  In this process, it was 

found how to model the intermediate and end diaphragms may affect the computed strain 
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responses to a great extent.  Nevertheless several publications in the literature have asserted that 

the effect of these diaphragms are limited (e.g., BridgeTech 2007). The reason for this 

discrepancy is perhaps that the diaphragms in the Woodruff bridge are large and thus 

significantly more stiff than those used in many other highway bridges.  

 Several intermediate diaphragms of the Woodruff Bridge are photographed  in Figure 4.7. 

The depth of the intermediate diaphragms is approximately 3/4 of the steel girder web depth. As 

a result the diaphragms possess a high stiffness compare with traditional cross frames.  Their 

influence is particularly noticeable in analyzing the concrete deck dead load before the deck 

hardens and then participates in load distribution for live load.   

 Figure 4.8 shows a photograph of the west end diaphragm of the test bridge in Monroe 

Count, Michigan.  This end diaphragm is made of reinforced concrete and as thick (in the traffic 

direction) as the back wall of the abutment that the bearings and in turn the girders site on.  It is 

seen to  have the ends of the steel girders embedded in it including even the elastomeric bearings.  

As a result, the end diaphragm practically provides a very rigid support for the steel plate girders, 

although the design assumption for this end is simple support.  The discrepancy between the 

design assumption and the field condition has lead to significant differences in computed and 

measured strains.  Accordingly, two different support conditions were used in FEA to investigate 

further.  More details on this subject are presented in the following sections depending on which 

strain response is focused on.  One assumption is simple support condition and thus consistent 

with the design assumption. The other one is fixed end condition according to the field 

observation.  Of course neither of them is the real support condition, while the field condition is 

much closer to the fixed end one for the service load, which was the applied test load whose 

responses are used here as the reference for calibration. 
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Figure 4.7 Intermediate diaphragms of Woodruff bridge 

 

 

Figure 4.8  The reinforced concrete end diaphragm / back wall of the Woodruff Bridge 
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4.2.2 Dead load effect 

  

 Figures 4.9 to 4.16 show comparison of the deck dead load effect results by FEA using 

GTSTRUDL and measurement using the instrumentation presented in Chapter 3 for the test 

bridge.  In the analysis, temperature effect was not included because we did not have the girder 

temperature and the air temperature alone was considered inadequate for strain analysis.  As 

presented in Chapter 3, each strain location has two figures, one for the time period from 60 

minutes before to 105 minutes after the concrete placement starting, and the other from 120 

minutes after the concrete placement starting.  Note again that the time at concrete placement 

starting is set at 0 and thus negative time is used for before and positive time for after that 

starting time. 
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Figure 4.9 Comparison of dead load strains at S1 south (up to 105 minutes) 
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Figure 4.10 Comparison of dead load strains at S1 south (starting from120 minutes) 
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Figure 4.11 Comparison of dead load strains at S2 south (up to100 minutes) 
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Figure 4.12 Comparison of dead load strains at S2 south (starting from120 minutes) 
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Figure 4.13 Comparison of dead load strains at S2 web diagonal (up to 105 minutes) 
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Figure 4.14 Comparison of dead load strains at S2 web diagonal (starting from 120 minutes) 
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Figure 4.15 Comparison of dead load strains at S3 web diagonal (up to 105 minutes) 
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Figure 4.16 Comparison of dead load strains at S3 web diagonal (starting from 120 minutes) 

 

 In these figures, the difference between the FEA and measurement results is observed. 

The reason for the difference is considered to be due to not including the temperature effect in 

the FEA results. This is consistent with the fact that the measurement results showed generally 

more compressive strains than FEA owing to monotonic decrease in air temperature in this night 

concrete pour, conducted according to the Michigan Department of Transportation (MDOT) 

Standard Specifications for Construction.  With this understanding, the calibration of FEA 

modeling for deck dead load effect concluded here. 
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4.2.3 Live load effect  

 

 As discussed in Chapter 3, five different load tests using different truck load 

configurations and locations were performed in the field.  Accordingly, this FEA modeling 

calibration was conducted using the field measurement of all of these tests. To reiterate, Tests 1 

and 2 had a focus on moment/warping strains, Tests 3 and 4 on torsional strains, and Test 5 on 

shear strains. 

 Figures 4.17 to 4.23  demonstrate comparison of the live load strain results by FEA 

computation and field measurement. It is seen that the FEA results agree very well with the 

measurement results for these 5 tests, each having 3 or 4 replicates.  This has provided evidence 

for the effectiveness of the FEA modeling effort and approach for the interested load effects 

moment, warping moment, torsion, and shear.  This modeling approach was then extended to a 

sample of typical new bridge spans in Michigan to observe effect trends of the design factors on 

skew bridge behaviors and responses. 
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Figure 4.17 Comparison of measured and FEA computed live load strains at S1 south  

for Test 1 in Figure 3.23 

 

Figure 4.18 Comparison of measured and FEA computed live load strains at S1 north  

for Test 1in Figure 3.23 
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Figure 4.19 Comparison of measured and FEA computed live load strains at S1 south  

for Test 2 in Figure 3.26 

 

Figure 4.20 Comparison of measured and FEA computed live load strains at S1 north  

for Test 2 in Figure 3.26 
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Figure 4.21 Comparison of measured and FEA computed live load strains at S2 web diagonal  

for Test 3 in Figure 3.29 

 

Figure 4.22 Comparison of measured and FEA computed live load strains at S2 web diagonal  

for Test 4 in Figure 3.31 
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Figure 4.23 Comparison of measured and FEA computed live load strains at S3 web diagonal  

for Test 5 in Figure 3.33 

 

4.3 Summary 

 

 In this chapter, details of developed finite element model using GTSTRUDL are 

described first. Element material properties were determined from testing data and mesh size is 

selected by checking convergence. For all 5 structural components (deck, beams, intermediate 

diaphragms, end diaphragms / back walls, and bearings), 3-D solid element IPLS is employed to 

model the Woodruff Bridge in detail. From the calibration process, it is found that the existence 

of intermediate and end diaphragms / backwalls affect the strain measurement response to a great 

extent because those of the Woodruff Bridge appear to be larger and stiffer than many other 

bridges. 

 The FEA results are compared to measurement results of the deck dead load test and 

truck live load test. For the dead load test, differences are observed between the FEA and 
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measurement results because the measurement results include not only the dead load effect but 

also the temperature load effect, although the general trends look consistent between the two sets 

of strain results.  For the truck live load test, the FEA results agree very well with the 

measurement results for all five tests and numerous replicates of measurement reading. It is thus 

concluded that our FEA modeling is reliable and can capture the critical responses of moment, 

warping moment, torsion, and shear.  
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Chapter 5 

Numerical Analysis Program Using FEA 

   

 In Chapter 4, our FEA modeling was validated and calibrated using measurement results 

of deck dead load and truck live load strains. In this chapter, 18 cases of typical simple span 

bridges in Michigan are selected, modeled, and analyzed using the validated FEA modeling 

approach. Moment and shear distribution factors are derived for these bridge spans and are 

compared to those according to the AASHTO LRFD Bridge Design Specifications. The effect of 

diaphragms and boundary conditions on the load distribution factors is also investigated.  In 

Section 5.1, parameters and dimensions of the analyzed bridges are provided. Sections 5.2 and 

5.3 present the analysis results and discussions of the effect of truck load and thermal load on the 

behavior of skewed bridges, respectively. A summary is provided in Section 5.4 to conclude the 

chapter. 

 

5.1 Modeling typical new Michigan bridges 

 

 Based on the calibration of FEA modeling discussed in Chapter 4, FEA using 

GTSTRUDL is performed to 18 cases of simple span composite bridges with six beams.  The 

selected design parameters are exhibited in Table 5.1.  Two superstructure types are considered 

here: steel I and prestressed concrete I beams supporting a composite reinforced concrete deck.  

These bridge types were selected based on an MDOT bridge inventory search showing them to 

be the top two types of new bridges constructed in Michigan in the recent 10 years.  About 80% 
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or more new bridge in these years belong to these two groups.  The span length and skew angle 

ranges were also selected based on bridge inventory data statistics and consultation with 

members of the MDOT research advisory panel (RAP) for this project.  The beam spacing range 

is rather more certain and was determined according to experience of the research team and the 

MDOT RAP members for this project.  Table 5.2 lists the material properties of the steel and 

concrete materials used in the analysis. 

 

 

Table 5.1 Analyzed bridge types and design parameters using FEA  

 Steel I-beam Prestressed I-beam 

Skew angle 0°, 30°, 50° 0°, 30°, 50° 

Beam spacing 6', 10' 6' 

Span length 120', 180' 60', 120' 

 

  

Table 5.2 Material properties of steel and concrete for analyzed bridge sample 

 Young's modulus (ksi) Poisson's ratio 

Steel 29000 0.3 

Concrete 3600 0.2 

 

  

 Using the selected design parameters, a total of 18 spans were designed according to the 

AASHTO LRFD Bridge Design Specifications (2007) as currently practiced in Michigan.  The 
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resulting cross sectional details of these spans are tabulated in Tables 5.3 and 5.4.  For each and 

every case here, the reinforced concrete deck's thickness is 9 in to be consistent with MDOT 

practice. 

 

Table 5.3 Cross sections of analyzed steel bridge spans 

Span-spacing-

skew 

top flange 

width 

top flange 

thickness 

web 

depth 

web 

thickness 

bottom 

flange 

width 

bottom 

flange 

thickness 

120'-6'-0° 17" 0.875" 60" 0.5625" 20" 0.875" 

120'-6'-30° 17" 0.875" 60" 0.5625" 20" 0.875" 

120'-6'-50° 17" 0.875" 56" 0.5625" 20" 0.875" 

180'-6'-0° 17" 0.875" 84" 0.5625" 24" 1.25" 

180'-6'-30° 17" 0.875" 84" 0.5625" 24" 1.25" 

180'-6'-50° 17" 0.875" 81" 0.5625" 24" 1.25" 

120'-10'-0° 17" 0.875" 72" 0.5625" 20" 0.875" 

120'-10'-30° 17" 0.875" 72" 0.5625" 20" 0.875" 

120'-10'-50° 17" 0.875" 69" 0.5625" 20" 0.875" 

180'-10'-0° 17" 0.875" 84" 0.5625" 30" 1.25" 

180'-10'-30° 17" 0.875" 84" 0.5625" 30" 1.25" 

180'-10'-50° 17" 0.875" 80" 0.5625" 30" 1.25" 
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Table 5.4 Cross sections of analyzed prestressed I-beam bridge spans 

Span-spacing-skew Girder type 

60'-6'-0° 

AASHTO Type III girders 60'-6'-30° 

60'-6'-50° 

120'-6'-0° 

AASHTO Type V girders  120'-6'-30° 

120'-6'-50° 

 

  

 In order to investigate the effect of intermediate diaphragms on the behavior of the 

bridges, these structures with and without intermediate diaphragms were analyzed and are 

compared below.  Figures 5.1 to 5.18 display the arrangement of the intermediate diaphragms in 

the analyzed bridges with different design parameters listed in Table 5.1. 
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Figure 5.1 Intermediate diaphragm arrangement of steel bridge: 

span length = 120 ft, beam spacing = 6 ft, skew angle = 0° 
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Figure 5.2 Intermediate diaphragm arrangement of steel bridge: 

span length = 120 ft, beam spacing = 10 ft, skew angle = 0° 
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Figure 5.3 Intermediate diaphragm  arrangement of steel bridge: 

span length = 180', beam spacing = 6', skew angle = 0° 
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Figure 5.4 Intermediate diaphragm  arrangement of steel bridge: 

span length = 180', beam spacing = 10', skew angle = 0° 
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Figure 5.5 Intermediate diaphragm  arrangement of steel bridge:  

span length = 120 ft, beam spacing = 6 ft, skew angle = 30° 
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Figure 5.6 Intermediate diaphragm  arrangement of steel bridge: 

span length = 120 ft, beam spacing = 10 ft, skew angle = 30° 
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Figure 5.7 Intermediate diaphragm  arrangement of steel bridge:  

span length = 180 ft, beam spacing = 6 ft, skew angle = 30° 
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Figure 5.8 Intermediate diaphragm  arrangement of steel bridge:  

span length = 180 ft, beam spacing = 10 ft, skew angle = 30° 

 

120'

5 
SP

A
 @

 6
' =

 3
0'

21'-10 1/2"

4 SPA @ 28' = 112'

21'-10 1/2"

50.0°

 

Figure 5.9 Intermediate diaphragm  arrangement of steel bridge: 

span length = 120 ft, beam spacing = 6 ft, skew angle = 50° 
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Figure 5.10 Intermediate diaphragm  arrangement of steel bridge:  

span length = 120 ft, beam spacing = 10 ft, skew angle = 50° 
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Figure 5.11 Intermediate diaphragm  arrangement of steel bridge:  

span length = 180 ft, beam spacing = 6 ft, skew angle = 50° 
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Figure 5.12 Intermediate diaphragm  arrangement of steel bridge:  

span length = 180 ft, beam spacing = 10 ft, skew angle = 50° 
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Figure 5.13 Intermediate diaphragm  arrangement of prestressed concrete bridge:  

 span length = 60 ft, beam spacing = 6 ft, skew angle = 0° 
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Figure 5.14 Intermediate diaphragm  arrangement of prestressed concrete bridge: 

 span length = 60 ft, beam spacing = 6 ft, skew angle = 30° 
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Figure 5.15 Intermediate diaphragm  arrangement of prestressed concrete bridge: 

  span length = 60 ft, beam spacing = 6 ft, skew angle = 50° 
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Figure 5.16 Intermediate diaphragm  arrangement of prestressed concrete bridge:  

span length = 120 ft, beam spacing = 6 ft, skew angle = 0o 

85 

 



5 
SP

A
 @

 6
' =

 3
0'

4 SPA @ 30' = 120'

30.0°

 

Figure 5.17 Intermediate diaphragm  arrangement of prestressed concrete bridge:  

span length = 120 ft, beam spacing = 6 ft, skew angle = 30o 
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Figure 5.18 Intermediate diaphragm arrangement of prestressed concrete bridge:  

span length = 120 ft, beam spacing = 6 ft, skew angle = 50o 

 

 

 In addition to the intermediate diaphragm, the effect of end diaphragm and bearings on 

the behavior of the skewed bridges were also studied. For this purpose, the following three 

models were analyzed. 

 1. The girders and deck are assumed to have a fixed support boundary condition by 

concrete end diaphragms at both ends of the span, like the case of Woodruff Bridge. At the 

bottom of the end diaphragms, translations and rotations are constrained.  This condition is 

referred to as "Fixed" end condition hereafter. 
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 2. The girders are assumed to be braced using typical steel cross frames. At the bottom of 

the girders, a simply supported condition was modeled using no constraint to horizontal 

translations at one end of the span and a hinge at the other end that constrains translations.  This 

condition is referred to as "SS" end in this report. 

 3. The girders are assumed to be braced with typical steel cross frames. At the bottom of 

the girders, elastomeric bearings are provided.  The bearings are modeled using solid elements 

and as fixed to the abutment at the bottom surface. The elastomeric bearings are modeled as a 

linearly elastic material with Young's modulus = 11 ksi and Poisson's Ratio = 0.4.  This support 

condition is referred to as "bearing" end hereafter.  

 To focus on the parameters described above, the barriers, guard rails, or sidewalks were 

ignored in the FEA models. 

 

5.2 Live load effect 

 

 In this section, a study is conducted focusing on the load distribution factors for moment 

and shear for the analyzed bridge spans typical in Michigan.  These distribution factors are 

compared with those according to the AASHTO LRFD Bridge Design Specifications (2007). 

 

5.2.1 Live load distribution factor for moment 

 

 In the AASHTO LRFD Bridge Design Specifications (2007), the load distribution factor 

for moment for interior beams is given in Article 4.6.2.2, as copied here in Equation 5.1.  For the 

bridges analyzed here, it is employed to be compared with FEA results. 
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  ...............................(5.1) 

 

where DFm stands for load distribution factor for moment, S is the beam spacing (ft), L is the 

span length (ft), ts is concrete slab thickness (in), Kg is the longitudinal stiffness parameter (in4). 

The applicable ranges of Equation 5.1 are 3.5 ≤ S ≤ 16.0, 4.5 ≤ ts ≤ 12.0, 20 ≤ L ≤ 240, 4 ≤  Nb, 

and 10,000 ≤ Kg ≤ 7,000,000. The analyzed bridge spans in this research project fall in these 

ranges. 

 

Figure 5.19 Load distribution factor for moment in interior beams of steel bridge: 

 span length = 120 ft, beam spacing = 6 ft. 
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For skewed bridges, the following correction factor is also required in the AASHTO 

specifications to be multiplied to the load distribution factor in Equation 5.1 to account for skew 

and effectively reduce the design bending moment. 

 

  ..................................(5.2) 

 

where θ is the skew angle in degree. The applicable range of above equation is 30° ≤ θ ≤ 60°, 3.5 

≤ S ≤ 16.0, 20 ≤ L ≤ 240, and 4 ≤ Nb. The analyzed bridges have skew angles within the given 

applicability range.  Results calculated using these specified equations are to be compared with 

the FEA results. 

 

 

Figure 5.20 Load distribution factor for moment in interior beams of steel bridge:  

span length = 120 ft, beam spacing = 10 ft. 
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 Figures 5.19 to 5.24 for respective design parameter combinations display the FEA 

results of moment distribution factors of the analyzed bridge spans, compared with the AASHTO 

distribution factors also plotted.  It is seen that the "Fixed" end model significantly deviates from 

the other models and the AASHTO approach.  Otherwise, the other two models ("SS" and 

"Bearing") are closer to the AASHTO approach.  When the beam spacing is smaller (6 ft), the 

AASHTO approach gives fairly similar results of moment distribution.  While the AASHTO 

distribution factor is generally acceptable compared with the FEA results, it is also fair to point 

out that the former generally overestimates moment effect, with a maximum of about 25% 

overestimation. 

 

 

 

Figure 5.21 Load distribution factor for moment in interior beams of steel bridge: 

span length = 180 ft, beam spacing = 6 ft. 
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Figure 5.22 Load distribution factor for moment in interior beams of steel bridge: 

span length = 180 ft, beam spacing = 10 ft. 

 

 

Figure 5.23 Load distribution factor for moment in interior beams of prestressed concrete bridge: 

span length = 60 ft, beam spacing = 6 ft. 
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Figure 5.24 Load distribution factor for moment in interior beams of prestressed concrete bridge: 

span length = 120 ft, beam spacing = 6 ft. 

 

Influence of intermediate diaphragms 

 To understand the effect of intermediate diaphragms considered to be a possible reason 

for the observed difference in the moment distribution factor, models with and without the 

intermediate diaphragms are used in FEA for comparison.  The results are shown in Figures 5.25 

to 5.30 according to the combination of design parameters, span type, span length, beam spacing, 

and skew angle. 
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Figure 5.25 Effect of intermediate diaphragms on moment distribution factor in interior beams: 

 steel bridge, span length = 120 ft, beam spacing = 6 ft  

 

 

 

Figure 5.26 Effect of intermediate diaphragms on moment distribution factor in interior beams: 

steel bridge, span length = 120 ft, beam spacing = 10 ft 
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Figure 5.27 Effect of intermediate diaphragms on moment distribution factor in interior beams: 

steel bridge, span length = 180 ft, beam spacing = 6 ft 

 

Figure 5.28 Effect of intermediate diaphragms on moment distribution factor in interior beams: 

steel bridge, span length = 180 ft, beam spacing = 10 ft 
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Figure 5.29 Effect of intermediate diaphragms on moment distribution factor in interior beams: 

prestressed concrete bridge, span length = 60 ft, beam spacing = 6 ft 

 

Figure 5.30 Effect of intermediate diaphragms on moment distribution factor in interior beams: 

prestressed concrete bridge, span length = 120 ft, beam spacing = 6 ft 

 

 It is seen in these results that the intermediate diaphragms do reduce the moment 

noticeably but at most about 10%.  It is also of interest to mention that the AASHTO moment 
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distribution factor indeed overestimates the moment effect even further beyond the models  with 

intermediate diaphragms. Again, the 10 ft beam spacing cases appear to show more noticeable 

differences than 6 ft.  This perhaps is because of the relatively stiffer diaphragms used and the 

AASHTO distribution factors do not include diaphragm stiffness as an influencing factor. 

 

Influence of warping 

 Warping effect may become significant in thin-walled open section beams subjected to 

twisting moment for skewed or horizontally curved cross sections.  Beam bridges' cross sections 

may be viewed as an assembly of a number of π shaped thin walled open sections with a beam 

being a leg of the π shape cross section.  This phenomenon causes additional longitudinal 

stresses in the bottom flange of the beams.  In order to examine the effect of warping, the FEA 

results were examined at the quarter and mid span cross sections.  The midspan section was 

expected to experience the maximum bending stress and the quarter span section the maximum 

warping stress.  The warping stresses are compared with the bending stresses in Figures 5.31 and 

5.32 as a ratio to help observe the warping effect for all 18 cases of design parameter 

combinations listed in Table 5.1. 
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Figure 5.31 Effect of warping at quarter span section 

 

Figure 5.32 Effect of warping at mid span section 

 

 These curves show the ratio of the warping stress to bending stress as a function of skew 

angle for the range defined in Table 5.1.  It is seen there that the warping effect is very small or 

negligible for the prestressed concrete bridges.  This is because warping effect exists only in 

thin-walled open sections, and the prestressed I-beam sections are hardly considered to be of 
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thin-wall with also the deck included in the cross section.  For steel bridges, warping effect is 

rather more visible but still too small to be worth attention in routine design such as those cases 

investigated herein. 

 The warping stress is observed at about 3% of the bending stress at the mid span section 

(Figure 3.32). In contrast at the quarter span where warping effect was expected to reach its 

maximum, the warping effect increases as the skew angle increases and the stress ratio can reach 

up to about 10% (Figure 3.31).  Note also that at the quarter span location, the bending moment 

or stress is lower than that at the midspan section.  Thus, the total longitudinal stress at the 

quarter span is expected to be still smaller than that at midspan.  Nevertheless, if the beam is 

designed to change cross section (e.g., for a plate girder), it is prudent and thus recommended to 

locate the cross section reduction beyond the point where warping effect may become 

significant, which is the quarter span point for these cases analyzed here. 

 

5.2.2 Load distribution factor for shear  

 

 In the AASHTO LRFD Bridge design Specification (2007), the load distribution factor 

for shear is given in Article 4.6.2.2. In this section, the main focus is on the shear in the exterior 

beam, also referred to as the obtuse corner shear or reaction where a maximum is expected.  For 

this case, the AASHTO shear distribution factor is copied here: 

  

......................................(5.3) 
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where DFs is the load distribution factor for shear, de is the distance from the exterior web of the 

exterior beam to the interior edge of curb or traffic barrier in feet.  The applicable ranges of 

Equation 5.3 are 3.5 ≤ S ≤ 16.0, 4.5 ≤ ts ≤ 12.0, 20 ≤ L ≤ 240, 4 ≤  Nb, -1.0 ≤ de ≤ 6.6. All the 

analyzed bridge spans in this report are within these ranges.  To account for skew effect, the 

following correction factor is prescribed in the AASHTO specifications to be multiplied to the 

load distribution factor for support shear at the obtuse corner. 

 

.................................................(5.4) 

 

The applicable ranges of Equation 5.4 are 0° ≤ θ ≤ 60°, 3.5 ≤ S ≤ 16.0, 20 ≤ L ≤ 240, and 4 ≤ Nb. 

The considered cases in this report defined in Table 5.1 are all within these ranges. Their FEA 

results are exhibited in Figures 5.33 to 5.38 along with those using the AASHTO approach for 

comparison. 

 

Figure 5.33 Load distribution factor for shear in exterior beams of steel bridge: 
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span length = 120 ft, beam spacing = 6 ft 

 

 

Figure 5.34 Load distribution factor for shear in exterior beams of steel bridge: 

span length = 120 ft, beam spacing = 10 ft 

 

Figure 5.35 Load distribution factor for shear in exterior beams of steel bridge: 

span length = 180 ft, beam spacing = 6 ft 
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Figure 5.36 Load distribution factor for shear in exterior beams of steel bridge: 

span length = 180 ft, beam spacing = 10 ft 

 

 

Figure 5.37 Load distribution factor for shear in exterior beams of prestressed concrete bridge: 

span length = 60 ft, beam spacing = 6 ft 
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Figure 5.38 Load distribution factor for shear in exterior beams of prestressed concrete bridge: 

span length = 120 ft, beam spacing = 6 ft 

 

 It is seen in these figures that the "Fixed" and "SS" end models have produced similar 

results as the AASHTO approach.  In contrast, the "Bearing" end model's shear distribution 

factor is noticeably different.  This model allows the supports (bearings) to deform and thus more 

evenly distribute the total load being transferred from the superstructure through the bearing to 

the substructure, while the other models and approach ("Fixed", "SS", and the AASHTO 

approach) do not. Figure 5.39 shows how the total load is distributed among all the beams and 

thus bearings as a typical case.  It is seen that, compared with the SS end condition, the "bearing" 

end condition distributes the reactions forces more evenly.  This more even distribution reduces 

the reaction on the bearing at the obtuse corner.  In other words, the bearings next to the obtuse 

corner bearing share more loads than the "SS" end condition model. 
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 While it may be too high of a requirement for design calculations to consider bearings' 

function of load distribution, the SS end condition that is commonly used in routine design is 

shown here to produce conservative predictions for design shear.  

 

 

Figure 5.39 Reaction force distribution among beams 

(steel bridge, span length = 120 ft, beam spacing = 10 ft, skew angle = 50°) 

 

 

Influence of torsion 

 Skewed bridges are subjected to twisting moment due to differential deflections in the 

beams and different load paths from the loading location to the nearest support.  This twisting 

adds shear stresses to the maximum shears in their straight counterpart.  It is thus important to 

understand this effect and its magnitude for routine design.  Figure 5.40 is designed to shed light 

on this effect.  It displays the ratio of the shear stress on the fascia beam web due to torsion to 

that due to reaction shear as a function of the skew angle.  It is seen that the torsional effect is 
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relatively small, especially for the steel superstructure, probably because it is less rigid than the 

prestressed concrete superstructure and its span is usually longer.  For different locations other 

than the obtuse corner, more torsional effect has been observed, but the shear is much lower than 

that at the obtuse corner and therefore the total shear stress is lower. Thus, it is concluded that the 

effect of torsion causing additional shear stress is not at a significant level for skewed bridge 

design in Michigan to deserve special checking. 

 

Figure 5.40 Effect of torsion on shear at obtuse corner 

 

5.3 Thermal load effect  

 

 The effects of ambient thermal forces on bridge components can be significant and 

should not be underestimated or ignored in design. The thermal forces referred to here are caused 

by fluctuation in ambient temperature. In the AASHTO LRFD Bridge Design Specifications 

(2007), the prescribed change in temperature is a function of the bridge location as well as the 
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superstructure material. The specifications require consideration for two types of temperature 

change: uniform temperature change and gradient temperature change. In the following sections, 

both changes are discussed and addressed. 

 

5.3.1 Uniform temperature load 

 

 The uniform temperature change refers to the condition where the entire bridge is at the 

same temperature without differential temperature differences in the same or different 

components and is then subjected to a constant temperature change. The temperature range is the 

difference between TMaxDesign and TMinDesign, where  TMaxDesign and TMinDesign are respectively the 

highest and lowest temperatures the bridge may experience. Figures 5.41 to 5.44 below show the 

highest and lowest temperatures given in the AASHTO LRFD code for steel and concrete girder 

bridges with a concrete deck of interest here.  For Michigan, the highest and lowest temperatures 

are summarized in Table 5.5.  

 

Figure 5.41 Contour map of TMaxDesign for concrete girder bridges with concrete deck 
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   Note that the temperature difference focused here is understood as the cause of thermal 

load effects, such as thermal expansion or contraction for the entire superstructure. 

 

 

Figure 5.42 Contour map of TMinDesign for concrete girder bridges with concrete deck 

 

Figure 5.43 Contour map of TMaxDesign for steel girder bridges with concrete deck 
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Figure 5.44 Contour map of TMinDesign for steel girder bridges with concrete decks 

 

 

Table 5.5 TMaxDesign and TMinDesign for steel and concrete girder bridges in Michigan 

 TMaxDesign TMinDesign 

Steel girder bridges with concrete decks 110°F -20°F 

Concrete girder bridges with concrete decks 105°F -10°F 

 

 

 The design thermal movement is then computed here using the temperature range ∆T 

given in the following equation and is applied to the sample of typical Michigan bridges 

analyzed here in.  

 

 ..............................................(5.5) 
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5.3.2 Temperature gradient load 

 

 Contrary to uniform temperature change mainly due to seasonal change, bridge structures 

can also be exposed to temperature gradient over the depth of the superstructure mainly due to 

impedance of the structure to temperature change in a short period of time, such as in a day.  For 

example, when the deck or top of the bridge is exposed to the sun while the bottom side is not, 

the differential in temperature through the depth of the superstructure can cause thermal forces. 

The AASHTO LRFD Bridge Design Specifications specify the vertical temperature gradient in 

concrete and steel superstructures with a concrete deck as shown in Figure 5.45.  This model is 

used in analyzing the typical Michigan bridge spans here. 

 

Figure 5.45 Positive vertical temperature gradient in concrete and steel superstructures 

 

 Dimension A in Figure 5.45 is taken as: 

• 12.0 in., for concrete superstructures that are 16.0 in. or more in depth. 

• 4.0 in. less than the actual depth, for concrete sections shallower than 16.0 in. 
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• 12.0 in. with distance t as the depth of the concrete deck, for steel superstructures. 

Temperature T1 and T2 in Figure 5.45 are given in Figure 5.46 and Table 5.6 taken from the 

AASHTO LRFD specifications. For example, Michigan is categorized as Zone 3 in Figure 5.46, 

and therefore T1 = 41°F and T2 = 11°F according to Table 5.6.  The specifications allow T3 to be 

set at 0.0°F unless a site-specific study is made to determine a more appropriate value. In this 

report, T3 = 0.0°F is accordingly used.  

 

Figure 5.46 Solar radiation zones for the United States 

 

Table 5.6 Basic parameters for temperature gradients in Figure 5.45 
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 According to the AASHTO LRFD code, not only positive temperature values in the 

gradient model but also negative values for T1 and T2 should be considered. The negative values 

shall be obtained by multiplying -0.30 to the value specified in Table 5.6 for plain concrete decks 

and -0.20 for decks with an asphalt overlay. This negative temperature case can cause positive 

bending moment effect in the midspan area of the bridge span and therefore should be taken into 

account. 

 

5.3.3 Analysis results for moment 

 

 In this section, the effect of temperature on the moment in the typical Michigan bridges is 

discussed. Thermal loads due to uniform temperature change and gradient temperature described 

in the previous sections are applied to the typical Michigan bridge models developed in this 

chapter. Table 5.7 shows the coefficients of thermal expansion of steel and concrete materials 

used in the FEA. 

 

Table 5.7 Coefficients of thermal expansion of steel and concrete 

Material Coefficient of thermal expansion (/°F) 

Steel 6.5×10-6 

Concrete 5.5×10-6 

 

 

 The difference between concrete and steel shown in Table 5.7 results in a bending effect 

in a composite bridge cross section when thermal load is applied. In addition to this, the 
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difference in temperature between top and bottom of the bridge which causes moment effect is 

considered when gradient thermal load is applied. 

 Figures 5.47 to 5.55 show the contour plots of principal stress for the typical Michigan 

bridge span of 120 ft span length and 10 ft beam spacing subjected to the HL93 truck load, 

gradient temperature load, and uniform temperature load. The principal stress is mainly caused 

by bending moment. As seen in the figures, the location of the maximum moment by thermal 

effect is close to that by truck load. Therefore, the location where the maximum moment is 

observed under truck loads is focused on hereafter. 

 

 

Figure 5.47 Contour plots for maximum principal stress subjected to HL93 truck load 

 (span length = 120 ft, steel beam spacing = 10 ft, skew angle = 0°) 
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Figure 5.48 Contour plots for maximum principal stress subjected to gradient temperature load  

(span length = 120 ft, steel beam spacing = 10 ft, skew angle = 0°) 

 

Figure 5.49 Contour plots for maximum principal stress subjected to uniform temperature load 

(span length = 120 ft, steel beam spacing = 10 ft, skew angle = 0°) 
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Figure 5.50 Contour plots for maximum principal stress subjected to HL93 truck load  

(span length = 120 ft, steel beam spacing = 10 ft, skew angle = 30°) 

 

Figure 5.51 Contour plots for maximum principal stress subjected to gradient temperature  load  

(span length = 120 ft, steel beam spacing = 10 ft, skew angle = 30°) 
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Figure 5.52 Contour plots for maximum principal stress subjected to uniform temperature  load  

(span length = 120 ft, steel beam spacing = 10 ft, skew angle = 30°) 

 

 

Figure 5.53 Contour plots for maximum principal stress subjected to HL93 truck load   

(span length = 120 ft, steel beam spacing = 10 ft, skew angle = 50°) 
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Figure 5.54 Contour plots for maximum principal stress subjected to gradient temperature load  

(span length = 120 ft, steel beam spacing = 10 ft, skew angle = 50°) 

 

 

Figure 5.55 Contour plots for maximum principal stress subjected to uniform temperature load 

(span length = 120 ft, steel beam spacing = 10 ft, skew angle = 50°) 
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Table 5.8 Principal stress of typical Michigan steel girder bridges (psi) 

 

Skew angle Truck Lane Gradient Uniform 

120'-6' 0° 4926 1896 197 200 

 

30° 4775 1804 183 120 

 

50° 4852 1467 186 80 

120'-10' 0° 4783 1508 312 458 

 

30° 4795 1533 314 460 

 

50° 4655 1458 291 328 

180'-6' 0° 3747 1578 123 104 

 

30° 3690 1577 123 104 

 

50° 3642 1571 116 31 

180'-10' 0° 3852 1847 214 184 

 

30° 3741 1895 208 192 

 

50° 3686 1868 181 184 

 

 

Tables 5.8 and 5.9 show the maximum principal stresses of the typical Michigan steel girder 

bridges and prestressed concrete girder bridges, respectively. The ratio of thermal effect to the 

AASHTO design live load obtained from this result is shown in Figure 5.56 for gradient 

temperature change and Figure 5.57 for uniform temperature change. As shown in the figures, 

the thermal effect of prestressed concrete girder bridges is more significant than that of steel 

girder bridges. The difference in the temperature gradient distribution in Figure 5.45 is the reason 

for this. In addition, it is observed that the bridge with wider beam spacings have more 

significant thermal effect. The cause for this trend is possibly that the wider beam spacing makes 
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the distance between neutral axis of the composite section and bottom flange longer, and then the 

longer distance makes the stress at the bottom flange higher. According to the analysis, the effect 

of thermal loads on moment is at most 12% and therefore it should not be neglected. 
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Table 5.9 Principal stress of typical Michigan prestressed concrete girder bridges (psi) 

 

Skew angle Truck Lane Gradient Uniform 

60'-6' 0° 381 144 44 36 

 

30° 380 145 46 32 

 

50° 385 142 52 29 

120'-6' 0° 397 183 55 42 

 

30° 415 181 59 40 

 

50° 417 177 66 39 
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Figure 5.56  Effect of gradient thermal load on moment 

 

Figure 5.57 Effect of uniform thermal load on moment 
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5.3.4 Analysis results for shear 

 

 In this section, the effect of temperature on shear is discussed. The main focus is on the 

shear force at the obtuse corner as one of the main focus points of skewed bridge design.  As 

done in the previous section, thermal loads by gradient temperature and uniform temperature are 

applied to the typical Michigan skewed bridges. The comparison results for the reaction force at 

the obtuse corner between traffic loads and thermal loads are shown in Tables 5.10 and 5.11.  

 

Table 5.10 Reaction force of typical Michigan steel girder bridges at obtuse corner (lb) 

  Skew angle  Truck Lane Gradient Uniform 

120'-6' 0° 44009 21722 2574 889 

  30° 44621 22245 3211 811 

  50° 44400 23892 4289 900 

120'-10' 0° 52770 27202 5821 2054 

  30° 52721 27149 6721 1389 

  50° 53301 29521 7032 1121 

180'-6' 0° 44362 26546 4601 1165 

  30° 44321 28139 5312 1188 

  50° 46211 29874 5489 1365 

180'-10' 0° 54875 36798 9041 2649 

  30° 53587 36124 10143 2401 

  50° 57211 39158 10682 1604 
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Table 5.11 Reaction force of typical Michigan prestressed concrete bridges at obtuse corner (lb) 

 

Skew angle Truck Lane Gradient Uniform 

60'-6' 0° 37782 10487 2784 120 

 

30° 35393 10245 2611 420 

 

50° 33810 11028 3214 1220 

120'-6' 0° 42231 16987 4021 65 

 

30° 42121 17513 3862 115 

 

50° 41974 18768 4921 1643 

 

 

 

 

Figure 5.58  Effect of gradient thermal load on shear at obtuse corner 
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Figure 5.59   Effect of uniform thermal load on shear at obtuse corner 

 

 The ratio of thermal effect to the AASHTO HL93 live load effect obtained from this 

result is shown in Figure 5.58 for gradient temperature change and Figure 5.59 for uniform 

temperature change. Like the moment described in the previous chapter, wider beam spacing has 

more thermal effect on shear. According to these analysis results, the effect of thermal loads on 

shear and reaction is at most 12% and therefore it should not be neglected. 

 

5.4 Summary 

 

 This chapter has presented the FEA calculation program for typical Michigan skewed 

highway bridges in this research project. In the analysis shown in Section 5.2, the moment and 
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shear distribution factors were derived and compared with AASHTO LRFD Bridge Design 

Specifications. FEA results for the "SS" end model shows that moment effect decreases and 

shear effect increases as the skewed angle increases, as seen in the moment distribution factor of 

the AASHTO LRFD specifications. However, the AASHTO LRFD specifications do not cover 

the "Fixed" and "Bearing" end conditions.  The moment distribution factor for the "Fixed" end 

model is less than half of what the specifications give, and the shear distribution factor for the 

"Bearing" end model does not increase as the skew angle increases. It can happen that the 

structural members are overdesigned or underdesigned if it is designed as per the specifications. 

 In Section 5.3, the thermal effects caused by uniform temperature change and gradient 

temperature change on moment and shear are investigated. Results have shown that thermal 

effect can be as high as 12% of the effect of AASHTO live load effect for both moment and 

shear and therefore it should receive adequate attention in the design process. 

123 

 



 

Chapter 6 

Analytical Solution Program 

 

 In this chapter, an analytical solution for skewed thick plates is pursued and successfully 

developed. Skewed plates are important structural elements used in a wide range of applications 

including skewed bridges where the reinforced concrete deck can be viewed as a typical thick 

plate.  Skewed plate analytical solutions presented in this chapter can be used to develop their 

counterpart for skewed bridges by assembling several plates supported by beams at their edges to 

form the bridge system.   

 The advantage of such analytical solutions is that the end user will not need to deal with 

complex model building and computational issues like element type, element size, mesh 

convergence, etc, since there is no mesh nor iteration needed to solve the problem.  The 

computer will be used as a powerful calculator to performed the required calculations.  When 

such a computer program is written to implement the analytical solution for routine application, 

the required input data from the user will be identical to those used in routine design, such as 

span length, beam spacing, deck thickness, concrete material properties, steel material properties, 

etc. 

 In this chapter, two plate theories are discussed first to provide the background. These 

theories have led to corresponding governing equations of three-dimensional elastic medium 

based on respective basic assumptions, but not yet for thick plates in an oblique coordinate 

system. Next, the concept of oblique coordinate system is introduced for dealing with skewed 

thin and thick plates and its relationship to the rectangular coordinate system. Then, the 
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governing differential equation of skewed thick plates subjected to truck wheel loads is 

developed based on the Reissner-Mindlin theory in the oblique coordinate system.  The equation 

is then solved using a sum of polynomial and trigonometric function series. Analytical solution 

results for several application examples are also compared in this chapter to corresponding 

solutions reported in the literature derived from numerical methods.  Their agreement indicates 

that the proposed analytical solution approach is equally effective, with an advantage of being 

more user friendly for routine application. 

 

6.1   Introduction 

 

6.1.1  Plate theories for various plate thicknesses 

 

 A number of theories exist for analyzing plates and are discussed in this section. A plate 

is also a three-dimensional structure whose general governing equations are as follows. 

 

(1) Equilibrium equations: 

0

0

0

xyx xz

xy y yz

yzxz z

X
x y z

Y
x y z

Z
x y z

τσ τ

τ σ τ

ττ σ

∂∂ ∂
+ + + =

∂ ∂ ∂
∂ ∂ ∂

+ + + =
∂ ∂ ∂

∂∂ ∂
+ + + =

∂ ∂ ∂ ……………………………(6.1) 
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(2) Constitutive equations: 
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1 2
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νσ ε ε ε ε
ν
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ν
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τ γ
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 = + + + − 
 = + + + − 
 = + + + − 

=

=
= ………………………..(6.2)

 

(3) Compatibility equations: 

, ,

, ,

x y z

xy xz yz

u v w
x y z
v u w u w v
x y x z y z

ε ε ε

γ γ γ

∂ ∂ ∂
= = =

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= + = + = +
∂ ∂ ∂ ∂ ∂ ∂ …………………….(6.3)

 

 

 Because there are 15 unknowns (6 stresses σx, σy, σz, τxy, τxz, and τyz, 6 strains 

εx, εy, εz, γxy, γxz, and γyz, and 3 displacements u, v, and w) in 15 equations, the solution exists, 

theoretically.  However, it is extremely difficult if not impossible to solve the above equations 

analytically because of their complexity and interaction. Thus, assumptions are used for specific 

problems to simplify the process of solution, such as plates and shells with respect to the shape 

of the structure, or plane stress or plane strain problems with respect to resulting stress or strain 

distribution. 

 Plates can be roughly categorized into four groups defined in Table 6.1 (Hangai 1995) 

according to the ratio of their thickness to typical edge length.  Typical decks of composite 
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highway bridges can be categorized into the group of thick plates.  Namely  their ratio of 

thickness to edge length is in the range of 10-1 to 100.  Therefore, analytical solution for bridge 

deck on skewed structures is to be developed here based on the Reissner-Mindlin theory. 

 

 

Table 6.1. Plate categories 

 

 

Thickness of plates (thickness/edge length) 

 

Applicable theory 

 

Extremely thick plates (100) 

 

Higher order theory 

 

Thick plates (10-1~100) 

 

Reissner-Mindlin theory 

 

Thin plates (10-1) 

 

Kirchhoff theory 

 

Extremely thin plates (10-2) 

 

Membrane theory 
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6.1.2 Kirchhoff theory and Reissner-Mindlin theory 

 

 The most fundamental and classical plate theory is the Kirchhoff theory for thin plates. 

This theory consists of the so called Kirchhoff assumptions as follows (Reddy 2007): 

 

 (1)   The transverse deformation w is infinitesimal. 

 (2)   The straight lines perpendicular to the mid-surface (i.e., the transverse normals)  

  before  deformation remain straight after deformation. 

 (3)  The transverse normals do not experience elongation (i.e., are inextensible). 

 (4)  The transverse normals rotate such that they remain perpendicular to the middle  

  surface after deformation. 

 

The above four assumptions are mathematically formulated as follows: 

 

 (1) Infinitesimal deformation 

22

, 1, 1w ww h
x y

 ∂ ∂ << << <<  ∂ ∂    ...................................(6.4)
 

 (2) No mid-surface deformation along the x and y directions 

0 0 0
0, 0, 0x y xyz z z

ε ε γ
= = =

= = =
......................................(6.5) 

 (3) The transverse normals maintain their length and the stress along z-direction is zero 

0, 0z zε σ= = ....................................................(6.6) 

 (4) The transverse normals and mid-surface remain perpendicular 
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0, 0xz yzγ γ= = ...................................................(6.7) 

 By applying these assumptions in Equations 6.4 to 6.7 in 6.1 to 6.3, the following 

Equation 6.8 is obtained. 

4 4 4

4 2 2 42w w wD p
x x y y

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ ∂ 

..................................(6.8) 

where D is the flexural rigidity of the plate, w is the transverse deformation, and p is the 

transverse load.  

 The Kirchhoff theory is widely used in plate analysis, but suffers from under-predicting 

deflections when the thickness-to-edge-length ratio exceeds 1/20 because it neglects the effect of 

the transverse shear deformation (e.g., Reddy 2007).  

 To address this issue, the Reissner-Mindlin theory was developed by Reissner (1945) and 

Mindlin (1951). This theory relaxes the perpendicular restriction for the transverse normals and 

allows them to have arbitrary but constant rotation to account for the effect of transverse shear 

deformation. Namely, the assumption in Equation 6.7 is not dropped in the Reissner-Mindlin 

theory. Note that the relationship between the Kichhoff and Reissner-Mindlin theories for plates 

is analogical to that between the Bernoulli-Euler and Timoshenko theories for beams.  In the next 

section, skewed thick plates are analyzed based on the Reissner-Mindlin theory. 

 

6.2  Governing equation in an oblique coordinate system 

  

 When a plate’s boundary profile is a parallelogram, the oblique Cartesian coordinate 

system can be advantageous. Next, we first present the concept of oblique coordinate system and 
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then derive the governing differential equation of skewed thick plates based on the Reissner-

Mindlin theory in the oblique coordinate system. 

 

6.2.1  Oblique coordinate system 

 

 Figure 6.1 shows an oblique coordinate system spanned by the X and Y axes, along with 

the reference rectangular system by x and y, with angle YOy denoted as skew angle α. 

Parallelogram ABCD in Figure 6.1 represents the skewed plate of interest, and the edge lengths 

CD and AD are 2a and 2b, respectively. Hereafter, quantities with subscript of upper-case letters 

(i.e., MX and MY) are those in the oblique coordinate system and quantities with subscript of 

lower-case letters (i.e., Mx, and My) are those in the rectangular coordinate system. 

y
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E

G

H F
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MXY
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MXY
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Figure 6.1     A skewed plate defined in an oblique coordinate system 

 

 First, the relation between the rectangular and oblique coordinate system is provided as 

follows in Equations 6.9 to 6.11 (Morley 1963, Liew and Han 1997).  Equation 6.9 is the basis 

for deriving the rest of the equations. 

 

1 tan
0 sec

X x
Y y

α
α

    
=    

     ……….............…………………….(6.9) 
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α α
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     ∂∂  =    ∂∂        ∂∂    ………….............…………… (6.10)

 

1 0
sin cos
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φφ α α

    
=     

     ……......……………………(6.11) 

 

In the above equations, 𝜙𝜙x, 𝜙𝜙y, 𝜙𝜙X, and 𝜙𝜙Y are the rotations normal to the x, y, X, and Y axes 

respectively. The relationship between the strain, moment, and shear of the two coordinate 

systems can be derived using Equations 6.9 to 6.11.  This derivation leads to Equations 6.12 to 

6.14 as follows. 

 

2 2

1 0 0
sin cos sin cos
2sin 0 cos

X x

Y y

XY xy

ε ε
ε α α α α ε
γ α α γ

    
    =     

        

……….......………(6.12) 
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where ɛ and γ are the normal and shear strains.  M and Q indicate the moment and shear force in 

the respective directions noted by the subscript and they are also presented in Figure 6.1.  The 

stress-strain relationship of the oblique and rectangular coordinate systems are described in the 

following Equations 6.15 and 6.16) respectively. 
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   =   
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where [Dr] and [Do] are the flexural stiffness matrices respectively under the rectangular and 

oblique coordinate systems. The flexural stiffness matrices relate the moments to the curvatures 

in the respective coordinate systems. For example, [Dr] in the rectangular coordinate system for 

isotropic material is (Timoshenko 1959): 
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where E is the Young’s modulus, ν is the Poisson’s ratio, t is the thickness of the plate. Since 

Reissner-Mindlin theory assumes that the transverse normals do not experience elongation, 

Equations 6.15 and 6.16 are changed into the following Equations 6.18 and 6.19. 
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 The relationship between [Dr] and [Do] can be calculated readily using the following 

equation 6.20: 
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Namely, 
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 Note that Equation 6.21 is applicable not only for isotropic material, but also for more 

complex materials, such as orthotropic or anisotropic materials. 

 If the relationship between the shear force and deflection is described as in Equations 

6.22 and 6.23, the relationship between the extensional stiffness matrices [Ar] and [Ao] in the 

equations are derived from Equation 6.24: 
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Namely,             
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where w is the transverse deformation perpendicular to the plane of the plate and Ks is the shear 

correction factor to account for non-uniform transverse shear distribution.  

 The extensional stiffness matrix relates the shear forces to the shear strains. For example, 

[Ar] for isotropic material is  

[ ] 1 0
0 12(1 )r

EtA
ν

 
=  +  

                                              ……….(6.26) 

Based on the relationships (6.21) and (6.25), the governing equation of skewed thick plate 

bending is developed in the next section. 

 

6.2.2  Governing equation for bending of skewed thick plates in oblique system 

 

 Hereafter, matrices [Do] and [Ao] are referred to using their respective elements D11 to D33 

and A44 to A55 as follows: 
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  = =        .................................(6.27) 

 

where the diagonal elements of [Do] relate the moments to the curvatures in the same directions. 

The off-diagonal terms relate the same moments to the curvatures in other directions due to the 

Poisson's effect and coordinate system obliquity. Similarly, the diagonal components of [Ao] 

relate the shear forces to the shear strains in the same direction, and off-diagonal terms to the 

shear strains in other directions due to obliquity. 

 The following Equations 6.28 to 6.30 are the equilibrium conditions of the skewed plate 

shown in Figure 6.1 (Morley 1962). 
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 (1) Equilibrium of forces along the z direction： 

X YQ Q Q
X Y

∂ ∂
+ = −

∂ ∂ ..................................................(6.28)
 

 (2) Equilibrium of moments along the  x axis： 
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X
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+ =
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 (3) Equilibrium of moments along the  y axis： 

Y XY
Y

M M Q
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∂ ∂
+ =

∂ ∂ ...............................................(6.30)
 

where Q in Equation 6.28 is the load applied over the upper surface of the plate. 

 By substituting the moments and shear forces in the oblique coordinate system in 

Equations 6.21, 6.25, and 6.27 into the equilibrium conditions in Equations 6.28 to 6.30, the 

following Equations 6.31 to 6.33 are obtained in the oblique system. 

2 2 2 2

45 45 55 442 2
X Y X Y

s s s s
w w w wK A K A K A K A Q

X Y Y X Y X X X Y Y
φ φ φ φ       ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

+ + + + + + + = −       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
  

  ........(6.31) 

2 2 2 2 2 2 2

11 12 13 23 332 2 2 2

45 55

2X Y X Y Y X Y

s Y s X

D D D D D
X X Y X Y X Y Y X Y

w wK A K A
Y X

φ φ φ φ φ φ φ

φ φ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∂ ∂   = + + +   ∂ ∂    .......(6.32)

      

2 2 2 2 2 2 2

12 13 22 23 332 2 2 2

44 45

2X X Y X Y X Y

s Y s X

D D D D D
X Y X Y Y X Y X Y X

w wK A K A
Y X

φ φ φ φ φ φ φ

φ φ
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Note that Reddy (2004, 2007) also presented similar governing equations but for solving the 

problem of simply supported straight thick plates.  

 To make the solution process simpler, a new potential function ψ is introduced below in 

this research project for skewed thick plates. We assume that w consists of terms up to the 4th 

derivative and 𝜙𝜙X and 𝜙𝜙Y up to the 3rd derivative of ψ, with respect to the spatial variables X and 

Y. The following relations in Equations 6.34 to 6.36 are obtained to satisfy Equations 6.32 and 

6.33. 

( ) ( ) ( )
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….................................................(6.36) 

 By substituting these relations into Equation 6.31, the governing equation based on the 

the Reissner-Mindlin theory for skewed thick plates is then formulated as a 6th order partial 

differential equation as follows 

( )L Qψ = − .............................................................(6.37)
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where L is a linear differential operator in the oblique coordinate system: 
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6.3  Analytical solution in the series form 

 

 In the next two sections, a general solution to the governing differential Equation 6.37 is 

developed as the sum of a fundamental (homogeneous) and a particular (non-homogeneous) 

solution. 

 

6.3.1  Homogeneous solution 

 

 The homogeneous solution ψh is the solution to Equation 6.37 for Q=0, obtained as a sum 

of polynomials ψhp in Equation 6.39 and trigonometric series ψht in Equation 6.40 below. This 

structure of solution is inspired by Gupta (1974) for skewed thin plates. 
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where  is the imaginary unit, and CeXf, CeYf, SeXf, and SeYf are trigonometric functions as 

follows 
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where the bar above λ denotes the conjugate of λ. λ1X, λ2X, λ3X, λ1Y, λ2Y, and λ3Y are the 

eigenvalues to be obtained by satisfying L(ψht)=0. For example, λeX is derived by solving the 

following equation.  

( ) ( )cos sin 0
2 2

eX eXh X Y h X YL
a a

π λ π λ+ + + = 
 

 ........................(6.42)

 

140 

 



 The polynomial function ψhp in Equation 6.39 has 12 unknowns Z1 to Z12, and the 

trigonometric function ψht in Equation 6.40 has 24l unknowns Ah, Bh, Ch, …, and Xh 

(h=1,2,3,…,l) with l being the number of the trigonometric terms needed for convergence. 

Therefore, the homogeneous solution ψh has 24l+12 unknowns and they will be determined 

according to the boundary conditions as discussed later. 

 

6.3.2  Particular solution 

 

 For a particular solution in the series form, the transverse load Q(X,Y) in Equation 6.37 is 

expanded to a trigonometric series as follows 

 

1,2... 1,2...

cos ( ) ( ) ( ) ( )( , ) ( , )sin sin sin sin
2 2 2 2
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j a k b j X a k Y bQ X Y Q d d
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∞ ∞
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+ + + +
= ∑ ∑ ∫ ∫

.....................................................(6.43) 

 

 Equation 6.43 is able to describe a uniformly distributed load, a concentrated load, a line 

load, or a patch load.  The HL93 lane load is a uniformly distributed load.  The axle loads of 

HL93 design truck are concentrated loads.  They are expressed in the following Equations 6.44 

and 6.45, respectively. 
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where q0 is the uniformly distributed load and Q0 is the concentrated load at a point (X0, Y0). 

Accordingly, the particular solution ψp for Equation 6.45 can be written in a series form as 

1,2,... 1,2,...

( ) ( ) ( ) ( )cos cos sin sin
2 2 2 2

m m

p jk jk
j k

j X a k Y b j X a k Y bK L
a b a b

π π π πψ
= =

+ + + +
= +∑ ∑

....(6.46)
 

where Kjk and Ljk are to be determined to satisfy Equations 6.37 and 6.43, m is the number of the 

trigonometric terms needed for convergence. The general solution for ψ is derived as the sum of 

the homogeneous solution and the particular solution as: 

( )hp ht pψ ψ ψ ψ= + + ..................................................(6.47) 

Since no unknowns exist in the particular solution, the total number of unknowns in the general 

solution is still 24l+12, as in the homogeneous solution. 

 

6.4 Determination of unknown constants for series solution 

 

 The unknown constants in Equations 6.39 and 6.40 are to be determined using 

appropriate boundary conditions.  These conditions are presented in this section.  For bridge deck 

plates, the boundaries are the edges of the plate, which may be free, supported by a beam, etc. In 

The following derivations, the normal and tangential directions to the edge are denoted here 

using subscripts n and s respectively. The moments on the edges are accordingly noted using 

these subscripts consistent with the directions of the stresses thereby induced.  For example, Mn 

is for the moment causing normal stresses and Ms is the torsional moment inducing shear 

stresses. 

 The following four boundary conditions are common for highway bridge decks.   
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 (1) Clamped: 0, 0, 0n sw φ φ= = =                                                           (6.48)  

 (2) Soft Simply Supported (SS1) : 0, 0, 0n sw M φ= = =                                        (6.49) 

 (3)   Hard Simply Supported (SS2): 0, 0, 0n sw M M= = =                                       (6.50) 

 (4) Free: 0, 0, 0n s nM M Q= = =                                                                             (6.51) 

 

  An example of clamped condition is one created by the end diaphragm / back wall of the 

Woodruff Bridge, discussed earlier in Chapter 3 and shown in Figure 4.8.  The difference 

between the soft and hard simple supports in Equations 6.50 and 6.51 is graphically described in 

Figure 6.2.  The boundary condition of SS1 restricts the tangential rotation by supporting two 

points in the cross section, thereby generating a non-zero torsional moment. In contrast, the 

boundary condition of SS2 supports the plate only at one point in the cross section, allowing a 

tangential rotation and generating no twisting moment.  Note that the Kirchhoff theory treats SS1 

and SS2 in Equations 6.49 and 6.50 as the same boundary condition.  The free boundary 

condition can be used to describe, for example, a deck overhang cantilever. 

Msn≠0

Msn=0

SS1

SS2

 

Figure 6.2 Comparison between SS1 and SS2 

 

𝜙𝜙s 
          𝜙𝜙s ≠ 0 

         𝜙𝜙s = 0 
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 The boundary conditions in Equations 6.48 to 6.51 can be unified as follows: 

1,2,3             (edge CD in Figure 6.1)
4,5,6            (edge AB in Figure 6.1)

( , ) 0     
7,8,9            (edge BC in Figure 6.1)
10,11,12        (edge AD in Figure 6.1)

d

d
d

X Y
d
d

=
 =Γ =  =
 = ....................(6.52)

 

where Γ1(X,Y) to Γ12(X,Y) represent the left hand side of Equations 6.48 to 6.51.  

 Γ1(X,Y) to Γ12(X,Y) are expanded as Fourier series as follows for the solution method 

pursued in this project: 
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∑

∑
.

................................................(6.53) 

where coefficients a0d, acd, and bcd are Fourier coefficients for boundary condition Гd(X, Y). Note 

that the number of equations can be equated to that of unknowns 24l+12 by arranging the 

number of truncated terms in Equation 6.53 and this is how the analytical solution is derived in 

this research effort. 

 

6.5  Application examples 

 

 In this section, two application examples are presented using the developed analytical 

solution for skewed thick plates. They are also compared with solutions published in the 

literatures and FEA result obtained using a commercial package ANSYS.  In the analysis by 

ANSYS, 2D 4-node quadrilateral plate elements (SHELL181) applicable to thick plate analysis 
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are used for the skewed plates with various skew angles.  In addition, the effect on convergence 

of number of terms l and m in the fundamental and particular solutions is studied.  In the 

following examples, the shear correction factor Ks is taken as 5/6 commonly used in plate 

analyses (Vlachoutsis 1992, Pai 1995). 

 

6.5.1  Isotropic skewed thick plates 

 

 For the concerned skewed thick plates, the following material and geometrical properties 

are used: E = 580,200 ksi (4000 kN/mm2), ν=0.3, a = b = 3.94 in. (100mm), and t = 1.57 in. 

(40mm). The external force Q is a uniformly distributed load 1,450 ksi (10kN/mm2) applied to 

the plates with skew angle α=0°, 30°, and 60°. The SS2 boundary condition in Equation 6.50 is 

used for all four edges.  

 As a first step, the numbers of terms in the series solution m and l in Equation 6.40 and 

6.46 are determined. The expansion of the transverse load Q and the boundary conditions Γd 

accordingly use m and l terms respectively. To see the trend of convergence as a function of l, 

Figure 6.3 shows the results of the out-of-plane deflection w at the center of the plate with 

increasing number of terms m, for four different l values. The vertical axis shows the deflection 

normalized by that of l=7 and m=55, denoted as (l,m)=(7,55).  As seen, the deflection w for 

(l,m)=(5,55) and (7,35) differ less than 0.1% from that of (l,m)=(7,55).  Thus it can be concluded 

that the solution is already convergent while truncated at (l,m)=(7,55) and therefore l=7 and 

m=55 are employed in this example. Note that for different skew angles α=30° and 0°, similar 

results are observed. 
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 For comparison of present analytical solution and other numerical solutions, Table 6.2 

exhibits results of the proposed solution, Liew and Han’s method (1997), and FEA results using 

ANSYS for the deflection w, maximum principal moment Mx at the center of the plate (X,Y) =   

(0 in., 0 in.) or (0mm, 0mm). The deflection and moment are expressed in a dimensionless form as 

 and  (Liew and Han 1997), where wc and Mc are the deflection and 

moment at the center of the plate, D is the bending stiffness and expressed as 

. 
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Figure 6.3 Effect of truncation in the proposed analytical solution for deflection at the center of 

simply supported (SS2) isotropic 30o skewed thick plates under uniform loading 
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Table 6.2  Comparison of proposed analytical solution and other methods 

for simply supported (SS2) skewed thick plates results under uniform loading 

α     

0° Present 8.8686 2.1453 2.1453 

 ANSYS 8.8684 2.1454 2.1454 

 Liew and Han (1997) 8.8721 2.1450 2.1450 

30° Present 5.8358 1.9132 1.5130 

 ANSYS 5.8327 1.9121 1.5122 

 Liew and Han (1997) 5.8319 1.9110 1.5108 

60° Present 1.1717 0.8615 0.4891 

 ANSYS 1.1711 0.8601 0.4888 

 Liew and Han (1997) 1.1692 0.8567 0.4885 

 

  

 Figures 6.4 to 6.7 display comparisons between the present method and finite element 

method (FEM) analysis using ANSYS for the deflection w and strains εx, εy, and εxy defined in 

Equation (6.54), along line EF in Figure 6.1 and on the top of the plate. 
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Figure 6.4 Analytical and FEM results for deflection of simply supported (SS2) isotropic skewed 

thick plate bending under uniform loading 

 

Figure 6.5 Analytical and FEM results of x-direction strain of simply supported (SS2) isotropic 

skewed thick plate bending under uniform loading  
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Figure 6.6 Analytical and FEM results of y-direction strain of simply supported (SS2) isotropic 

skewed thick plate bending under uniform loading 

 

Figure 6.7 Analytical and FEM results of xy-direction shear strain of simply supported (SS2) 

isotropic skewed thick plate bending under uniform loading 
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 The results show that the analytical and the numerical solutions agree with each other 

well for these isotropic thick skewed plates under the uniformly distributed load.  In Figure 6.4, 

the deflection w is seen to be decreasing as the skew angle increases. This is apparently due to 

the reduction in the shortest distance from the loading location to the nearest support. Normal 

strains εx and εy displayed in Figures 6.5 and 6.6 also behave similarly due to the same reason.  

However, shear strain εxy in Figure 6.7 is due to torsion and does not change with skew angle 

monotonically.  

 When a plate is skewed, the direction of principal stress and moment is different from the 

x and y axes. This causes torsion and εxy in the plate. This relation is not monotonic and depends 

on the relative relations of the plate’s skew angle, width/length ratio, loading position, boundary 

conditions, etc. 

 

6.5.2 Orthotropic skewed thick plates  

 

 Orthotropic thick skewed plates are demonstrated in this example, with the  following 

material and geometrical properties: Ex = 580,200 ksi (4000 kN/mm2), Ey = 290,100 ksi (2000 

kN/mm2), Gxy = 174,060 ksi (1200 kN/mm2), Gxz = 145,050 ksi (1000 kN/mm2), Gyz= 116 ,040 

ksi (800 kN/mm2), νxy=0.2, a = b = 3.94 in. (100 mm), t = 0.79 in. (20 mm), where Ex and Ey are 

Young’s modulus along the x and y directions, and Gxy, Gxz, and Gyz are shear modulus in the xy, 

xz, and yz planes.  These values determine [Dr], [Do], [Ar], and [Ao] in Equations 6.16 and 6.20.  

The external transverse force is a concentrated force of 1,450 ksi (10 kN) applied at (X, Y) = (-

1.97 in., 1.97 in.) or (-50mm, 50mm). Plates with skew angle α=0°, 30° and 60° are analyzed 
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here. Edges AB and CD are simply supported (SS1) and Edges BC and DA are clamped.  The 

case is therefore referred to as an CCSS boundary condition. 

 As the previous example, the number of terms include l and m in Equations 6.40 and 6.46 

need to be determined first. Figure 6.8 shows the deflection w at the center of the plate (X,Y) = (0 

in., 0 in.) or (0 mm,0 mm) for skew angle α=60°, as one of the cases considered, for various l and 

m values. It is seen that the deflection at (l,m)=(7,75) is well converged.  Therefore (l,m)=(7,75) 

is employed here and also used as the reference for comparison. 
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Figure 6.8 Convergence of deflection at the center of CCSS orthotropic skewed thick plates 

under concentrated loading. 

 

 For this example, because no previous work in the literature has been found reporting 

similar experience, only FEM analysis results are employed for comparison with our analytical 

solution results. Figures 6.9 to 6.12 show comparisons of the deflection w and strains εx, εy, and 
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εxy defined in Equation 6.54 along the line HF in Figure 6.1. It is seen that the proposed 

analytical solutions and the numerical solutions agree with each other very well. 
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Figure 6.9 Analytical and FEM results of Deflection of CCSS orthotropic skewed thick plate 

bending under concentrated loading 

 

 

Figure 6.10 Analytical and FEM results of x-direction strain of CCSS orthotropic skewed thick 

plate bending under concentrated loading 
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Figure 6.11 Analytical and FEM results of y-direction strain of CCSS orthotropic skewed thick 

plate bending under concentrated loading 

 

Figure 6.12 Analytical and FEM results of xy-direction shear strain of CCSS orthotropic skewed 

thick plate bending under concentrated loading 
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 The results shown in Figures 6.9 to 6.12 indicate that the response behavior for this case 

is much more complex than the previous example, due to non-symmetric loading and boundary 

conditions.  These response quantities are read at Y=0 in. (0mm). Due to the oblique coordinate 

system, the load at (X,Y)= (-1.97 in., 1.97 in.) or (-50mm, 50mm) has different relative relations 

with the interested responses on Y=0 in. (0 mm), depending on skew angle.  This causes the peak 

responses in Figures 6.9 to 6.12 to move towards X=0 mm with skew angle increasing from 0o to 

60o. This behavior is more pronounced in the shear strain ɛxy than deflection w and the other two 

strains ɛx and ɛy. 

 

6.6 Summary 

 

 The governing differential equation of skewed thick plates in an oblique coordinate 

system is formulated for the first time in this research project. It allows derivation of the 

analytical solution for any boundary conditions and loading conditions. All response quantities 

including shear forces, moments, stresses, strains, deflections, and rotation angles can be readily 

derived from the proposed potential function solution ψ. The two illustrative examples show that 

the analytical solutions are in good agreement with those reported in the literature and numerical 

solutions by FEA. 

 This analytical solution method can be readily extended to skewed beam bridges by 

assembling several skewed plates into the bridge system using appropriate boundary conditions.  

Such solutions can be readily computerized for routine design application.  This approach will be 

much more user friendly than the FEA approach since there will be no need for mesh related data 

input, such as element type, element size, element aspect ratio, etc. 
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Chapter 7 

Recommended Design Guidelines 

 

 

 The previous chapters have presented the research approaches and findings in this 

project.  The acquired knowledge is important for understanding the behavior of typical 

Michigan skewed bridges.  Accordingly, the following design guidelines are developed and 

recommended for routine design of typical skewed bridges in Michigan. 

 (1) The AASHO LRFD Bridge Design Specifications' moment distribution factor 

overestimates the design moment for interior beams in skewed beam bridges.  A modification 

factor is developed below to account for this effect in routine design. 

 (2) The AASHTO LRFD Bridge Design Specifications' shear distribution factor may 

underestimate the design shear for fascia beams in skewed beam bridges.  When such a case 

occurs, the design will be inadequate.  A separate modification factor is developed below and 

recommended to be applied in routine design to account for this effect.  

 (3) Effects due to the AASHTO LRFD Bridge Design Specifications' temperature loads 

can be significant in typical Michigan skewed highway bridges, and they should not be neglected 

especially when thermal stresses superimpose on to maximum live load stresses. 

 (4) Warping and torsional effects in typical Michigan skewed bridges are small and can 

be neglected when designing typical short and medium spans.  This conclusion is based on the 
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types and span ranges of bridge structure studied herein, which represent a significant majority 

of new Michigan highway bridges.   

 (5) The AASHTO distribution-factor analysis method is recommended to be extended 

beyond the MDOT current policy of 30O skew angle limit for refined analysis to at least 50o 

studied herein, provided that the modification factor C be applied, as recommended in (2) above, 

to unconservative design shear prediction and if the structure type, span length, beam spacing, 

and skew angle are within the ranges of the analyzed spans covered in this report (and thus 

within the applicable ranges of the AASHTO LRFD Bridge Design Specifications' distribution 

factors.)  

 

7.1  Concept of modification factor 

 

 As seen in Chapter 5, the AASHTO specified load distribution factors overestimate the 

design moment for the interior beams and also may underestimate the design shear for the fascia 

beams in skewed structures analyzed using the calibrated FEA modeling approach.  Accordingly, 

a modification factor C is developed below to account for these observed deviations.  It is 

defined as follows 

 

                                                      (7.1) 

 

where DFFEM and DFAASHTO are the distribution factor for moment or shear by FEA and the 

AASHTO LRFD specifications, respectively. Application of this modification factor on the 

AASHTO distribution factor can reach the level of prediction of the detailed FEA reported 
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herein, as shown in Equation 7.1.  C is above 1 when the AASHTO specifications underestimate 

the load effect, and C is below 1 when the AASHTO specifications overestimate. It is thereby 

recommended that when C is above 1, it be applied to produce a more conservative design. 

 

7.2 Modification factor for moment 

  

 In this section, the modification factor C for the AASHTO moment distribution factor is 

discussed and presented. Section 7.2.1 is devoted to the modification factor for steel girder 

bridges and 7.2.2 for prestressed concrete I-girder bridges. For both types of bridge spans, the 

following three boundary conditions are considered, (1) simply supported end, (2) fixed end, and 

(3) bearing supported end. 

 

7.2.1 Steel girder bridges 

 

 The modification factor C for the AASHTO moment distribution factor of the steel girder 

bridge are derived using regression of the FEA results into the following equations 

 

                                 (7.2) 

                            (7.3) 

                                (7.4) 
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where S is the beam spacing (ft), L is span length (ft), and θ is the skew angle in degree.  The 

applicable ranges of above equations are 6.0 ≤ S ≤ 10.0, 120 ≤ L ≤ 180, and 0° ≤ θ ≤ 50°. 

Equations 7.2, 7.3, and 7.4 are respectively for the boundary conditions of (1) simply supported 

end, (2) fixed end, and (3) bearing supported end. These functions are developed using a 

regression analysis of the FEA results.  The coefficients of determination R2 are respectively 

0.908, 0.962, and 0.892.  As an alternative way of expressing Equations 7.2 to 7.4, Figures 7.1 to 

7.9 show contour plots of the modification factors C for L, S, and θ within the given ranges.  

These figures show the curves on which the C value is constant for the specified skew angle θ.  

The C values are noted on these curves.   For example, Figure 7.1 shows C value contours 

between C=0.9 and 0.8 for moment in steel beams of a straight bridge with 0o skew angle. 

 

 

Figure 7.1 Contour of modification factor C for moment in steel girder bridges  
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(end condition: simple support, skew angle = 0°) 

 

 

Figure 7.2 Contour of modification factor C for moment in steel girder bridges  

(end condition: simple support, skew angle = 30°) 
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Figure 7.3 Contour of modification factor C for moment in steel girder bridges  

(end condition: simple support, skew angle = 50°) 
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Figure 7.4 Contour of modification factor C for moment in steel girder bridges  

(end condition: fix support, skew angle = 0°) 
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Figure 7.5 Contour of modification factor C for moment in steel girder bridges  

(end condition: fix support, skew angle = 30°) 
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Figure 7.6 Contour of modification factor C for moment in steel girder bridges 

 (end condition: fix support, skew angle = 50°) 
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Figure 7.7 Contour of modification factor C for moment in steel girder bridges 

 (end condition: bearing support, skew angle = 0°) 
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Figure 7.8 Contour of modification factor C for moment in steel girder bridges 

 (end condition: bearing support, skew angle = 30°) 
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Figure 7.9 Contour of modification factor C for moment in steel girder bridges  

(end condition: bearing support, skew angle = 50°) 

 

 As seen in Equations 7.2 to 7.4 and Figures 7.1 to 7.9, modification factor C for moment 

does not go beyond 1 in the applicable ranges.  This indicates that the AASHTO LRFD design 

code overestimates moment and is conservative.  
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7.2.2  Prestressed concrete I-girder bridges 

 The modification factor C for the AASHTO moment distribution factor of the prestressed 

concrete girder bridge is also derived for the three boundary conditions in the following set of 

equations 

 

                                          (7.4) 

                                         (7.5) 

                                              (7.6) 

 

 

Figure 7.10 Contour of modification factor C for moment in prestressed concrete girder bridges  

(end condition: simple support) 
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where L is span of beam (ft), θ is the skew angle in degree. The applicable ranges of above 

equation are 60 ≤ L ≤ 120, 0° ≤ θ ≤ 50°. Equations 7.4 to 7.6 are for the boundary conditions of 

(1) simply supported end, (2) fixed end, and (3) bearing supported end, respectively. Figures 

7.10 to 7.12 show the contour plots of modification factor C with L and θ within the applicable 

ranges.  

 

 

Figure 7.11 Contour of modification factor C for moment in prestressed concrete girder bridges  

(end condition: fix support) 
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Figure 7.12 Contour of modification factor C for moment in prestressed concrete girder bridges 

 (end condition: bearing support) 

 

 Again the modification factor values are all below 1, as is the case for typical Michigan  

skewed steel girder bridges.  This means that the AASHTO LRFD design code is conservative. 

 

7.3 Modification factor for shear 

  

 In this section, modification factor C for the AASHTO shear distribution factor at the 

obtuse corner is derived. As done in the previous section, typical skewed Michigan steel and 

prestressed concrete girder bridges are addressed. Section 7.3.1 below has a focus on the 

modification factor for the steel girder bridges and 7.3.2. for the prestressed concrete girder 
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bridges. For both types of bridges, three kinds of boundary conditions are considered as in the 

previous section. 

 

7.3.1  Steel girder bridges 

 

 The modification factors C for the shear distribution factor of the steel girder bridge at 

the obtuse corner are derived as shown in the following equations 

 

                           (7.8) 

                            (7.9) 

                                  (7.10) 

 

where S is the beam spacing (ft), L is the span length (ft), θ is the skew angle in degree. The 

applicable ranges of the above equation are 6.0 ≤ S ≤ 10.0, 120 ≤ L ≤ 180, 0° ≤ θ ≤ 50°. 

Equations 7.8 to 7.10 are for the boundary conditions of (1) simply supported end, (2) fixed end, 

and (3) bearing supported end, respectively. Figures 7.13 to 3.21 below show the contour plots of 

modification factor C when L, S, and θ vary within the applicable ranges. These functions are 

developed based on regression using the corresponding FEA results for the typical Michigan 

skewed bridge spans, with the coefficient of determination R2 at 0.897, 0.883, 0.935, 

respectively. 
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Figure 7.13 Contour of modification factor C for shear in steel girder bridges  

(end condition: simple support, skew angle = 0°) 
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Figure 7.14 Contour of modification factor C for shear in steel girder bridges  

(end condition: simple support, skew angle = 30°) 

 

 

173 

 



 

Figure 7.15 Contour of modification factor C for shear in steel girder bridges  

(end condition: simple support, skew angle = 50°) 
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Figure 7.16 Contour of modification factor C for shear in steel girder bridges  

(end condition: fix support, skew angle = 0°) 
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Figure 7.17 Contour of modification factor C for maximum shear in steel girder bridges  

(end condition: fix support, skew angle = 30°) 

176 

 



 

Figure 7.18 Contour of modification factor C for maximum shear in steel girder bridges  

(end condition: fix support, skew angle = 50°) 
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Figure 7.19 Contour of modification factor C for shear in steel girder bridges  

(end condition: bearing support, skew angle = 0°) 
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Figure 7.20 Contour of modification factor C for shear in steel girder bridges  

(end condition: bearing support, skew angle = 30°) 
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Figure 7.21 Contour of modification factor C for shear in steel girder bridges  

(end condition: bearing support, skew angle = 50°) 

 

 As observed in the equations or the figures, the modification factor C sometimes exceeds 

1, indicating underestimating or unconservative prediction of the AASHTO LRFD Bridge design 

Specifications.  To be on the safe side, it is recommended that the modification factor C be 

included in design computation. 
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7.3.2  Prestressed concrete I-girder bridges 

 

 The modification factor C for the AASHTO shear distribution factor of the prestressed 

concrete girder bridges is derived into the following equations for the respective support 

conditions in the order of (1) simply supported end, (2) fixed end, and (3) bearing supported end, 

respectively: 

 

                                   (7.11) 

                                              (7.12) 

                                           (7.13) 

 

where L is the span length in foot and θ is the skew angle in degree.  The applicable ranges for L 

and θ are 60 ≤ L ≤ 120 and 0° ≤ θ ≤ 50°.  Again these equations are regression results using the 

corresponding FEA results, with the coefficient of determination R2 of 0.971, 0.938, and 0.912, 

respectively. The following figures show the contour plots of modification factors when L and θ 

are changed within the above range.  
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Figure 7.22 Contour of modification factor C for shear in prestressed concrete girder bridges 

(end condition: simple support) 
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Figure 7.23 Contour of modification factor C for shear in prestressed concrete girder bridges 

 (end condition: fix support) 
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Figure 7.24 Contour of modification factor C for shear in prestressed concrete girder bridges 

(end condition: bearing support) 

 

 As seen in the equations and contour plots, the modification factor C occasionally 

exceeds 1, which identifies the AASHTO LRFD specifications being unconservative.  

Accordingly, the modification factor C is recommended for those cases for routine design. 
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Chapter 8 

Summary, Conclusions, and Recommendations 

 

8.1  Research summary and conclusions 

 

 This chapter summarizes the process and conclusions of this research effort on Michigan 

skewed bridges. Future research topics relevant to this subject are recommended later in this 

chapter. The major findings and contributions of this research project are summarized as follows. 

 1) A literature review was completed in this project to summarize state of the art and the 

practice relevant to skew bridge behavior, analysis, design, and research.  The identified and 

reviewed research efforts have mainly focused on the moment analysis for design, not shear, 

which increases with severity of skew.  The applied research method has been numerical analysis 

of skewed structures, assisted by limited physical testing for verification. 

 2) Field measurement was performed in this research project for deck dead load and 

vehicular live load on a skewed bridge, the Woodruff Bridge, in Monroe County, Michigan.  The 

test program also establishes an appropriate procedure for field measurement of full scale bridges.  

The measurement results have contributed to understanding of the behavior of a significantly 

skewed bridge based on maximum strain responses at perceived locations to the intended loads.  

These measurement data also have played a critical role in the calibration of FEA modeling as an 

important step to the development of design guidelines in this project. 

 3) FEA modeling was validated and calibrated using the measurement data from the 

Woodruff Bridge. Based on this calibration, a sample of 18 typical Michigan bridges were 
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analyzed using FEA and compared to relevant provisions of the AASHTO LRFD Bridge Design 

Specifications. In the analysis, skew angle, span length, and beam spacing were selected as 

controlling parameters.  For every of the selected 18 cases of Michigan bridges, effect of 

boundary condition on the bridge behavior has also been investigated for its effect on the 

response. 

 4) The following design guidelines are developed and recommended for the investigated 

ranges of superstructure type, span length, skew angle, and beam spacing, based on the 

observations in the load test and the FEA investigation. 

 a) The AASHO LRFD Bridge Design Specifications' moment distribution factors 

overestimates the design moment for interior beams in Michigan skewed beam bridges.  A 

modification factor is developed in Chapter 7 to account for this effect in  routine design. 

 b) The AASHTO LRFD Bridge Design Specifications' shear distribution factors may 

underestimate the design shear for fascia beams in Michigan skewed beam bridges.  A different 

modification factor is developed in Chapter 7 and recommended here to account for this effect in 

routine design for situations where the AASHTO load distribution factor underestimates. 

 c) Effects of the AASHTO LRFD Bridge Design Specifications' temperature loads can be 

significant, to about 10% of the live load effect, in typical Michigan skewed highway bridges. 

They should not be neglected especially when thermal stresses superimpose to maximum live 

load stresses. 

 d) Warping and torsional effects in typical Michigan skewed bridges are small for the 

considered cases and can be accordingly neglected in design analysis. 

 5) The AASHTO distribution-factor analysis method is recommended to be extended 

beyond the MDOT current policy of 30o skew angle limit for refined analysis up to at least 50o, 
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provided that the modification factor C is applied to unconservative shear predictions and if the 

structure type, span length, beam spacing, and skew angle are within the ranges of the analyzed 

spans covered in this report (and thus within the applicable ranges of the AASHTO LRFD 

Bridge Design Specifications provisions.)  

 6) An analytical solution for skewed thick plates has been developed first time in the 

literature, where the thick plate is a model for reinforced concrete bridge deck.  This solution can 

be readily furthered to an analytical solution for skewed highway bridges integrated by 

assembling several thick plates supported on beams.  The advantage of this analytical solution 

approach is a much lower requirement for the end user's data input for routine bridge design 

analysis, excluding complex information such as element type, shape, size, etc. typically required 

for FEA.  It also will not be restricted by skew angle range as well. 

  

8.2  Recommendations for future research  

  

 The following future topics are recommended to further pursue for improved design, 

construction, and rating of skewed highway bridge spans in Michigan. 

 1) A field experimental application of sensored bearing at the obtuse corners in a skewed 

bridge was planned in this project but could not materialize due to several delays in the process.  

It is recommended to continue to pursue this experimental research.  It will allow profound 

understanding of the magnitude of the obtuse corner shear reaction and its variation during the 

service life. 

 2) Further pursue analytical solution for skewed highway bridges under the design dead 

and live loads, and implement the obtained solution into a computer software program for 
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routine design application.  This program will be much more end-user friendly than FEA 

programs, without the need for complex input data such as element type, shape, and size that 

demand months if not years of special and specific training even possibly including graduate 

school level courses.  The recommended research effort should have a task of software 

development starting with a functionality design so that the end product will be accepted by the 

targeted users. 

 3) Investigate and develop possible measures to reduce the potential of skewed deck 

shrinkage cracking using a deck less constrained to the supporting beams.  It has been found (Fu 

et al. 2007) that the full composite action is the cause of such cracking.  Thus relaxing this action 

is expected to reduce cracking potential effectively.  Practical designs need to be developed in 

this research effort that can be effectively and efficiently implemented in routine design and 

construction.  This research effort will also significantly mitigate or eliminate deck early 

cracking for straight bridges as well. 
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