MICEIG\&
SIATE HJGHMAX DHPARTMENT
Cborles M. Zieglex
Stabo Muhway Commesionos

Special 24-Hour Classified Speed Study Mo78 Station $1,2,3,4$ and 5

ANALYSIS ON SPMWD STUDV DAMA

Prepared by
Planning and Trafic Diviaion
With the cooperation of the United States Department of Comerce Buteau of Public Roada

December 1955

Speods of ail motor vebicles in both directions were observed at the follown ing Sive Locations in Inghan County, Michigan:

The general location of atetiong 1 thra 4 may be doscribed as Mof within B distance of 5 miles east of the intercection of US-16 and Mm8. Station 5 wais on Michicen Avonue approxinialy midway betwaex Lansing and Tast Lanting.

The observatsons axtended over the period of Noveraber 3. 2953 thru December 7. 1953.

Stations 1, 2, 3 and 5 operated a total of 24 houre with oach hour of the day being represented. Station 4 operated for the equivalent of two 24 -houx periods: Ono xeprosented the 24 hours from 12 Mon Tuesday thri 32 M . Hedresday and the other represented the 24 hours 9 rom 6 A.M. Sunday thru 6 A. M_{og} Monday. ghe 24 hours during which observations were made did not conest os 24 conthne ous boura at all statlong.

Since there were two 24 -hour operations at station 4 each of these two, as wall as ach operation at tathons $2.2,3$ and 5 , will frequently be recerred to as a atathonmopratson" sather than as a "station". The operation at atothon 4 ortending over thasday and Wednescay will be peforred to as atation or atation-operation "4 (may $)^{n}$, ead that extending over Sunday nd Monday as n4 ($\mathrm{S}-\mathrm{N} \mathrm{S}^{n}$ 。
 dftorent timen. At dtationoperations 3.4 (T-W) and 4 (SoM) the trafito wes obsarved 4 m both 21 rectiong simultangously.

The number of lanes and maximum legal speed at each location were as follows:

Station
2
2
3
4
5

Number
05 Lanos
4
3
2
2
40

Maximum
Legal Speed 40 50 50
None 45

The analysis of these data had three objectives as follows:

1. Determine the size of the sample of speed observations that should be taken.
2. Determine the best time of day to take speed observations.
3. Develop a method for determining when a speed limst ahould be imposed and what the Imit should be。

Before proceeding to these specific objectives, a genergl analysis was made to determine the comparstive behavior of driveri at the severel station=opera tions under varying conditions of traflic volunes and time of day.

It should be clearly understood that the results of this analysis apply only to the locations at which the observations were made. They are not to be taken as representative of driver behavior on rural state trunkines in general. While It is true that each station represented a different combination of speod limit and number of lanes, there was only one location for ach such combination and this could baxdly be accepted as representative of such conditions statewide.

In Table I ere shown a few basic statistics from the data. It la clear that gtation 5 is very different from the other 5 gtationmperations. It is fairdy certain that the difference is not due to the station being located on a folane divided roadway but to its boing in a suburban area and on the main streot conm necting two centers of popalation.

Rravelling eastbound on $M-78$ Ixom its intersection with US-16 one passes thru stations $1,2,3$ and 4 in this order. Notice in table I the increase in average speed and percentile speeds from ghations 1 thru 4 . Where is a slight
reduction in these speods from station 2 where there are 3 lanes to station 3 where there are only 2 lanes. It was found that this reduction was due to eastbound passenger cars reducing their speed and not to westbound increasing theirs. Trucks and busses, however, travel faster on the average thru station 3 than thru station 2

Attontion is called to the fact that at station 1 the average speod of trucks and busses as well as passenger carsifis more than the speed limit. This one statistic alone means that many vehicles must be travelling far above the speed limit.。

Tests upon the 24 -hour frequency distribution of the speeds of all vehicles at each station-operation show that no two are alike. Thase are tests for similaxity of the ratios of the number of vehicles in each speed group at one stationoperation to the number of vehicles in the same speed groups at another stationoperation. Although the tests employ actual numbers of vehicles. similarities or dissimilarities are best shown by percentage distributions as in Table II. Stations 2 and 3 come the nearest to belng alike, yet they are signiffcantly different. To the extent that these data represent the total situation one can conclude that something is definitely influencing the drivers' spoed differently at each of these station-operations.

Attention was given to the extent to which the speed limit was being exceeded at stations 1, 2, 3 and 5. Table III shows the percentage of vehicles in each hour exceeding the speed limit. Table $I V$ shows the percentage of vehicles exceoding the speed limit by more than 5 miles per hour. Obviously the situation is most serious at station 1 where in every hour of the day and night more than 53 percent of the drivers were exceeding the speed limit, and where in one hour (6 A.M. to $7 \mathrm{~A} . \mathrm{M}_{\mathrm{A}}$) more than 83 percent exceeded the speed limit. In each hour more than 15 percent and in two hours more than 40 percent exceeded the speed limit by more than 5 miles per hour at station 1. The contrast between the percenteges at station 1 and those at stations 2, 3 and 5 in Tables III and IV emphasizes the seriousness of the situation at station 1 . It is clear that drivers in an area which is only slightiy more densely populated than rural and surely less.
densely populated than suburban and on a 4-lane highway are not going to obey a 40. mile-an-hour speed limst without strict enforcement which is apparently lacking in the vicinity of station 1.

The relationship between volume of traffic and variation in speed was investigated and it was found that in general this variation decreases as traffic volume increases. Vehicles tend toward the same speed as more and more of them are crowded onto the road. Coefficients of variation in speed for all vehicles. vehicles travelling over 50 miles per hour and for vehicles trevelling less than \therefore 50 miles per hour are shown in Table V. They are shown for each of the 6 gitionoperations and 4 hourly traffic volume groups.

The coefficient of variation, rather than the atandard deviation, is used here because it is free of the unit of measure and therefore all the measures in Table V are directiy comparable one with another.

Where is a strong tendency for the coefficients of Table V to increase from station 1 thru stations 2, 3, 4 ($\mathbb{R}-\mathbb{N}$) and 5. This may be due to the percentage of the total volune that is trucks, or to the difference in number of lanes and posted speeds, or both. It is believed that this particular atudy does not contain sufficient data to warrant investigation of this increase.

Drivers' response to change in hourly traffic volumes and to changos in number of lanes and posted speeds represented by the several stations was studied by application of the methods of analysis of variance. Table VI shows the average speads by these two criteris.

In evaluating these findings from analysis of the variance in average apeeds it would be well to keep in mind that differences in average speed may also be Influenced by such things as percentage of trucks in the traffic stream, roadside development, grade and aligament, etc. To isolate the effect of suck factors upon average driver speed would require a well planned survey of much greater extent than this one.

Considering the speeds of all vehicles at all station-operations except 5 it was found that:

1. The average speeds among the several station-operations differed significantiy. Number of lanes and posted speeds did affect average driver speed.
2. The average speeds anong the geveral hourly traficic volume groups difiered significantly. Size of hourly trafic volume did affect average speeds.
3. The effect of number of lanes and posted speeds is probably sigasficantly greater than that of hourly traffic volumes.
4. There was aignificant interaction in the speeds between stationoperation and hourly trafic volume group. Driver response to changes in houxly traffic volume was not the same at all stationm operations, $O_{\text {, }}$ what is the same thing, driver response to changes in number of lanes and posted speed (changes in stationoperation) was not the same in different hourly traffic volume groups.
5. There is a definite trend toward reducing speed as hourly trafo Ifc volunen increase up to about 500 vehleles par houx. Beyond this there is no decrease shown.

Station 5 is obviously much different from the other 5 station-operations. It was treated separately because its inclusion witht做e other 5 station operations would have unduly accentuated otherwise normal differences.

Considering only atation-operations $4(1-W)$ and $4(S-M)$ it was found that the average speed of the former was signlficantly greater than that of the latter. This may be due to the fact that a greater percentage of the total vehicles are concentrated in the high traffic volune hours on Sunday than on woekdays. Driver response to change in hourly traffic volume was significantly different betweon 4 (SN) and $4(S-b)$.

Considering only station-operations 3 and 4 (T-N) affords an opportunfty to compare two locations with the same number of lanes (2) but with different speed limit conditions. The speeds were sigmificantly lower at station 3 with its 50 miles per hour spoed limit than at station 4 (T-W) with no speed limit. The average driveris response to this change in speed limits was significantly greater than his response to change in bourly traffic volume the drivers tended to chamge their speods in the aame manor at both these stabions as hourly trax fic volumes changed.

Analyzing stations 2 and 3 affords an opportunity to test the offect of number of lanes (3 at station 2 and 2 at station 3) when the speed limit is constant at 50 miles per hour at both atations. The average speed at station 2 was significantly greater than that at station 3. This is an indication that number of lanes does affect average speed. Driver response to change in hourly traffic volumes was the same at both stations and not significantly large.

The pariance between the average speeds at stations 2 and 3 , both of which have 50 miles per hour speed limits, is not neariy as great as the variance between the average speeds at stations 3 and 4 (T-W) of which station 4 (T W) has no speed limit. This would seem to show the greater effect of a speed limit over that of a diference in number of lanes. However, with so few stations possessing these various characteristics avallable, the evidence is not conelusive. The two vasiances were not atatistically significantly different.

At station 5, analyzed separately from the other 5 station-operations, the driver response to change in houxly treffic volume was highly significant. Drivers tended to drive slower as hourly trafilc volume increased up to 500 Fehicles per hour. Beyond this volune the average speed increased slightly.

Using only those drivers driving over 50 miles per hour the same analysis Of variance tests were made for the same groups of station-operations as for all dxivers. Generally speakings these faster dxivers made the same types of response to changes in speed limits, number of lanes and hourly treffic volume
as all drivers, but their responses were less pronounced. Also, they showed more nearly the same degree of response to changes in speed limits, number of lanas and hourly traffic volumes than did all drivers. In other words, the faster driver changed his speed less frequentiy and by a lesser amount due to speed zones, number of lanes of roadway and hourly traffic volumes than did the slower driver. Average speeds of these vehicles travelling over 50 miles per hour are also shown in Table VI.

Analysis of variance techniques were next applied to the data divided into several times of day and night periods for each of the 6 station-operations individually. The purpose of this was to determine whether or not the average speed of all vehicles was significantly higher at night than during the day. It was found that this dopends upon what is considered as "day" and "night".

The periods $6 \mathrm{~A} . \mathrm{M}$. to $6 \mathrm{P} \mathrm{M}_{\mathrm{M}}$ and $6 \mathrm{P} . \mathrm{M}_{\text {. to }} 6 \mathrm{~A} . \mathrm{M}$. Were first considered as day and night respectively. The average speed at station 2 was significantly higher at night than during the day; at station 5 exactly the reverse was true. At station-operations $2,3.4(T-N)$ and $4(S M)$ there was no significant difference between the average day and ndght speeds.

When the periods 6 A.M. to 12 P.M. and 12 P.M. to $6 A_{0} M_{0}$ were considered as day and night, respectively, the situation was entirely different. At stations 1 and 2 there was no significant difference between the average day and night speeds; at station-operations $3,4(T-N), 4(S-M)$ and 5 the average speed at night is significantly greater than during the day.

In general, the night speeds are not lass than the day speods. They are elther greater than or no different from the day speods.

Although the complete analysis was not carried out in detall there is no doubt that the variance of the average speeds among station-operations is far greater than that of the average speeds amongithe time periods. And therefore the data indicete that speed is influenced more by number of lanes and spesd limits than by time of day or night.

There is also strong indication, although again the analysis was not carried out in detail. that the variance of the average speeds amone hourdy traffic volume groups is greater than that among time periods of the day and night, but is less than that among station-operations.

It is important to note the conclusion to be drawn from this analysis of variance: The physical characteristles of the highway have the greatest influence on the average driver's speed. The traffic volume is next in importance as an influence on speed and time of day or night is least of the three. The driver has no control over the first two but he could reduce his speed at night if he chose to do so. Many do not so choose.

Determination of the size of sample presents a problem to which there is no one answer because aeveral factors are involved. First, there is the amount of varlation existing in the population to be sampled. Second, there is the amount of error that will be tolerated in the ostimate of the average speed from the sample data. Third, there is the probability level for which the sample size is to be estimated. This is a measure of the assurance that the average speed computed from the sample will differ from the average speed of the total population by no more than the amount of orror that will be tolerated. Fourth, if the population being sampled is relatively small, a smaller sample than that required from an infinite population may suffice for a given error tolerance and level of probability.

The first factor, amount of variation in the population, is generally the most difficult to determine. However, with the data from these 6 station-operations available, the variation can be computed fairly close. Three sets of coefficiants of variation each by a different set of criteria, were computed from these data. A large proportion of them lay between 0.14 and 0.18. Therefore. a conservative figure of 0.20 for coerficient of variation would be satisfactory for estimating aize of sample. There seems little reason to expect the coefficient of variation to change much from one part of the state to another. Generally it
is a rather stable statistic.
The second and third factors, error tolerance and level of probability, must be determined on the basis of judgement. past experience or perhaps cost of obtaining the sample. These may also depend upon the use to be made of the sample data.

Where speed observations are to be made the fourth factor, size of population to be sampled, i.e. traffic volume, will generally be known with sufficient accuracy for estimating size of sample. If the traffic volume is not know and cannot be readily or easily determined the sample size can be determined on the basis of an infinite population. Such an estimate may be larger than necessary but the error is on the safe side.

In most cases the problem will be to secure a sufficiently representative sample rather than a sufficiently large one. Segments of the population whose representation in the sample may be desirable are the two directions of travel, type of vehicle, hour of day, day of week and season of year. It may also be desirable to have various weather and surface conditions represented, especially if the sample is to be used to estimate average year around conditions. To have all these various conditions represented several sub-samples would be necessary and the resulting total sample may turn out to be much more than adequate. For a spot check of the average speed at a single location it is quite possible that a $4-$ to 6-hour observation would suffice To obtain the average speed or a sufficiently accurate frequency distribution of the speeds along a route, in a large area or on a state-wide basis, it may be more important to have various surface typos. surface widths, numbers of lanes, types of terrain and trafic volumes represented than to have the various days of the week or seasons represented.

Clearly the problem of sample size is a complex one. In addition to the purely statistical factors there is the kind of use to be made of the sample data and the area to be represented. Fach sample size problem will generally have to be considered on its own merits. As a general guide to sample size for spot checks
of speod and perhaps to size of sub-imaples of a larger total sample Table VII shows some sample sizes for estimating average speed. These are shown for various traffic volumes flowing during the time the sample is to represent. These traffic volumes are not necessarily the volumes llowing oniy while the sample is actually belng obsexved. The sample sizes are shown for three different tolerable errors. $1 \%, 2.5 \%$ and 5% at each of two probability levels, 95% and 99% The entire table is based on a coofficient of variation of 0.2 .

The "required size of sample" values shown in table VII are computed on the assumption that the observetions will be taken at random from the "traffic volume to be represented". Trom an operational standpoint it would not be feasible to attempt to secure a purely random sample of vehicles for speod measurement. An. alternative method, very widely used, is systematic sampling. By this method every acth vehicle is selected and its spoed measuxed. The value of n is determined by computing the ratio of the estimated total traffic volume that will pass while the sample is being taken to the number of vehicles to be included in the sample. In applying this method the observer must be extromely careful to count the vehicles correctly and measure the speed of every n-th vehicle and not the n-th minus 1 or n-th plus 1 vehicle.

In cases where it is desired to know the average speed during each hour over a period of time it may be necessary to observe every second, fhird or fourth Vohicle in order to secure a sufficiently large sample for each hour. To meet these conditions with radar equipment it has been found feasible to let the equipment register the speed of every vehicle on the tape and then later in the office read from the tape only every second. third or fourth vehicle as required for analysis purposes. This results in a substantial reduction of the amount of office work required.
\therefore In cases where it is desired to know the average speed ovar a comparatively long period of time. it may suffice to record the speed of only every 10th, 15 th or 20 th vehicle. To meet these conditions it has been found feasible to turn on
the radar equipment for only each n－th vehicle required．Here again the ofisce work is greatly reduced．

As a general guide to sample size for astimating frequency distributions of speeds Table TII contains some sample sizes for this purpose．Again these are shown for various traffic volumes flowing during the time the sample is to repre－ sent．These traffic volumes are not necessarily the volunes flowing only while the semple is actually being observed．The sample sizes are shown for four dif－ ferent tolerable erxors， $5 \%, 2.5 \%, 1 \%$ and 0.5% at each of two probability levels． 95\％and 99%

Table VIII fs mado on the assuaption that in such frequency distributions the modal class．doe the speed group in which the largest number of vehicles appeax，may contain as many as 50% or more of the vehicles．If it is known that no class will contain as many as 50% or the vehicles（aone do in Table II）then the sample sizes in Table VIII are slifgtly larger than necessary for estimating frequency distribution．

To determine the best time of day to make speed observations a search was made for those time periods during which the frequency distribution of speeds differed insignificantly from the distribution for 24 hours．The chi－square test was used to determine significance or insigniflcance of differences between dis－ tributions．Each station－operation was tested separately．

Detailed results of these tests will not be given．The following table gives the bour periods found to be most satisfactory：

Number of Hours	All Station－ Operations	Station
in Period	Except Ste． 5	5
9	－	$9 \mathrm{~A}_{0} \mathrm{M}_{0}-6 \mathrm{P}_{0} \mathrm{M}_{0}$
9	－	12 M－－9 P．M．
6	$9 \mathrm{~A}_{0} \mathrm{M}_{0}-3 \mathrm{P}_{0} \mathrm{M}_{0}$	－
4		$1 \mathrm{P}_{0} \mathrm{M}_{0}-5 \mathrm{P}, \mathrm{M}_{0}$
4	$4 \mathrm{~Pa}_{\text {M }}$－ 8 P． $\mathrm{M}_{\text {。 }}$	$2 P_{0} M_{0}-6 P_{0} M_{0}$
4	$5 \mathrm{P}_{\mathrm{M}} \mathrm{M}_{0}-9 \mathrm{P}_{0} \mathrm{M}_{\text {。 }}$	3 P．M．－7 P．M．
4	7 P．Mo－11 P．M．	－
4	$8 \mathrm{P} \mathrm{M}_{0}-12 \mathrm{P} \mathrm{M}_{\text {。 }}$	－

Regarding the third objective, to develop a method for determining when a speed limit should be imposed and what the linit should be. no method was found from the data available. An attempt at a solution to this problem was made by computing certain statistics relating to the number of passing maneuvers that would take place in an hour at the observed distributions of speed if passing opportunities were always available when desired. Graphs of these statistics gave no clues to the solution of the problem.

It is belfeved that no amount of speed data alone will solve these problems regarding speed limits. At the present time speed limits are determined more or less arbitrarily and often imposed only after considerable public clamor is raised. The reasons for speed limits may occasionally be economic, but they are usually imposed for the purpose of reducing or preventing accidents.* It would seem, therefore that the determination of whether or not to impose a speed Iimit should include an examination of the accident record, or an evaluation of the accident potential, or both.

Admittedly there is evidence both pro and con to the question of speed limIts reducing accidents. Nevertheless. if it were not for the ever present possibility of an accident, most driving would be at greater speeds than at present.

On modern turnpikes where roadside friction is nearly zero, speed limits are set as high as 70 miles per hour. Few drivers would consider this limit too high. Many drivers exceed it. But where roadside friction is high, as it is on many free roads and streets, there are few who would condone a speed limit as high as 70 miles per hour.

The point is that a connection between high speed and accidents is clearly recognized and whether or not to establish a speed limit should rest on the accident record and the accident potential due to roadside friction. The question cannot' be answered from speed data alone.

* Except in the case of local and National cemeteries where a speed limit is imposed to compel respect for the dead rather than to protect the living.

It should be recognized also that a speed limit has little value if it is not enforced.
-.

Table I

Number of Vehicles, Percentage Trucks and Busses, Average Speeds and Percentiles by Station-Operation

Item

Total Vehicles Observed

Average Speed (Mis./Hro):
All Vehicles
Passenger Cars

Percentile Speed (All Vehicles):

| 75 | 45.26 | 49.42 | 49.22 | 51.83 | 49.51 | 40.20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 80 | 46.65 | 50.65 | 50.47 | 53.01 | 50.86 | 41.57 |
| 85 | 48.04 | 52.24 | 51.97 | 54.19 | 52.64 | 42.93 |
| 90 | 49.44 | 53.83 | 53.47 | 56.20 | 54.43 | 44.30 |

Table II

Percentage Distribution of Speèds at the 6 Stetion-Operations

Speed Group (Miles per How)	Percentege in Each Speed				Group.	
	Ste.tion	Station	Station	Station	Station	Station
	1	2	3	$4(T-N)$	$4(S-M)$	5
$1-25$	0.20	0.30	0.62	0.66	0.26	1.85
25-30	2.06	1.44	2.86	1.43	1.67	9.84
30-35	6.47	6.00	7.38	6.07	5.13	26.35
35-40	26.92	12.09	13.49	20.85	18.05	36.25
$40-45$	39.42	32.60	33.46	27.65	25.81	18.26
45-50	17.97	25.53	21.61	20.58	26.69	5.91
$50-55$	6.37	15.73	16.69	21.20	13.99	1.18
$55-60$	1.19	4.19	3.43	6.55	5.71	0.27
60-. 65	0.34	1.67	1.32	3.85	1.99	0.06
65-70	0.06	0.31	0.10	0.85	0.44	$\cdots 0.02$
70 \& up	0.01	0.14	0.04	0.31	0.26	0.01
Total	100.00	100.00	100.00	200.00	100.00	100.00

Table III
Percentage of Each Hour's Traffic Volume Exceeding the Speed Limit at 4 Stations

Hour of Day				
	Station	Station	Station	Station
	1.	2	3	5
$12 \mathrm{P}_{0} \mathrm{M}_{0}-1 \mathrm{~A}_{0} \mathrm{M}_{0}$	58.8	17.7	31.6	10.6
$1 \mathrm{AOM}-2 \mathrm{~A}, \mathrm{M}$.	61.1	28.0	22.5	20.3
$2 \mathrm{ADM}-3 \mathrm{~A} \mathrm{M}_{0}$	62.4	28.6	23.3	- 28.9
$3 A_{0} M_{0}-4 A_{0} M_{0}$	56.6	30.4	35.7	20.8
$4 \mathrm{~A}_{0} \mathrm{Mo}_{0}-5 \mathrm{~A} \mathrm{M}_{0}$	56.1	25.2	26.0	25.1
$5 \mathrm{~A}, \mathrm{H}$ - $-6 \mathrm{~A} \mathrm{M}^{\text {a }}$	71.4	21.3	22.1	13.6
$6 \mathrm{~A}_{0} \mathrm{M}_{0}-7 \mathrm{~A}_{0} \mathrm{M}_{0}$	83.8	23.1	22.2	12.0
	79.9	21.6	19.2	6.7
$8 \mathrm{~A}, \mathrm{M}_{0}-9 \mathrm{~A} \mathrm{M}_{0}$	58.0	23.5	19.0	6.6
$9 \mathrm{~A}, \mathrm{M}_{\circ}-10 \mathrm{~A}_{0} \mathrm{M}_{0}$	63.8	27.2	28.4	8.5
$20 \mathrm{~A}_{*} \mathrm{M}_{*}-11 \mathrm{~A}_{0} \mathrm{M}_{0}$	56.5	28.6	29.5	4.6
$11 \mathrm{~A} \mathrm{M}_{\text {, }}-12 \mathrm{M}$ 。	53.9	23.8	34.7	9.0
12M. - $1 \mathrm{P}_{0} \mathrm{M}_{0}$	60.0	19.7	17.9	11.9
$1 \mathrm{P}_{0} M_{0}-2 \mathrm{P}_{0} M_{0}$	65.5	15.5	18.7	8.6
	60.5	21.0	16.1	6.8
$3 \mathrm{P}_{\mathrm{O}} \mathrm{H}_{0}-4 \mathrm{P} \mathrm{M}_{0}$	61.7	18.2	18.8	6.2
$4 \mathrm{P}, \mathrm{M}_{0}-5 \mathrm{P} \mathrm{M}_{0}$	66.9	22.0	21.0	6.2
5 P . M - $-6 \mathrm{P}_{0} \mathrm{M}_{0}$	58.3	17.3	17.8	6.8
$6 \mathrm{PO}_{\mathrm{O}} \mathrm{M}_{0}-7 \mathrm{P}_{\mathrm{O}} \mathrm{M}_{0}$	72.9	24.9	23.1	5.7
$7 \mathrm{PO}_{0}$ - 8 P.M.	69.8	25.8	25.0	5.0
$8 \mathrm{POM}_{0}-9 \mathrm{P}_{0} \mathrm{M}_{0}$	66.1	19.2	12.4	4.1
$9 \mathrm{P}_{0} \mathrm{M}_{0}-10 \mathrm{P}_{0} \mathrm{M}_{0}$	69.2	26.8	20.0	6.8
10 P.M. - 11 P. M	70.1	18.3	20.7	7.0
11 P.M. - 12 P . M ${ }_{\text {c }}$	70.7	23.3	18.3	8.0
Total	100.0	100.0	100.0	100.0

Spoed Limits:
Station 1-40 mis./hr.
Station 2-50 mis./hr.
Station 3-50 mis./hr.
station 5-45mis./hr.

Table IV

Percentage of Each Hour's Trafíic Volume Fxceeding the Speed Limit by More Than 5 Miles per Hour at 4 Stations
Hour
of Day

Table V

Coefficiont of Variation of Speeds of Vehlcies by Station-Operation and Hourly Traficic Volume Groupa All Vehicles

	Coe fixicient			Variation		
Hourly Trafeic Volume Group	$\begin{gathered} \text { Station } \\ 1 \end{gathered}$	$\begin{gathered} \text { Station } \\ 2 \end{gathered}$	$\begin{gathered} \text { Stacion } \\ 3 \end{gathered}$	$\begin{aligned} & \text { Station } \\ & 4(T-W) \end{aligned}$	$\begin{aligned} & \text { Station } \\ & 4(5-i n) \end{aligned}$	$\begin{gathered} \text { Station } \\ 5 \end{gathered}$
0-199	0.146	0.157	0.169	0.181	0.182	0.212
200-399	0.146	0.367	0.163°	0.178	0.160	0.178
400-499	0.135	0.155	0.165	0.169	0.168	0.170
500 ox moxe	0.125	0.144	0.147	0.168	0.146	0.158

	Vehicles Travelijng Over					50 Miles Per Hour
$0-199$	0.067	0.081	0.066	0.089	0.088	0.106
$200-399$	0.069	0.073	0.057	0.081	0.075	0.057
$400-499$	0.053	0.068	0.070	0.073	0.068	0.044
500 ox more	0.041	0.061	0.040	0.071	0.066	0.049

Vehicles Travelline Iess Than 50 Miles per Hour

$0-199$	0.117	0.111	0.134	0.132	0.126	0.174
$200-399$	0.116	0.128	0.128	0.129	0.121	0.163
$400-499$	0.111	0.120	0.127	0.124	0.136	0.153
500 01 moxe	0.108	0.112	0.122	0.126	0.106	0.150

Table VI

Average Speods of Vehíclés by Station-0peration and Hourly Traffic Volume Group

Hourly traffic Volume Group						Total	$\begin{gathered} \text { Station } \\ 5 \end{gathered}$
	$\begin{gathered} \text { Station } \\ 1 \end{gathered}$	$\begin{gathered} \text { Station } \\ 2 \end{gathered}$	$\begin{gathered} \text { Station } \\ 3 \end{gathered}$	$\begin{aligned} & \text { Station } \\ & 4(T-W) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { station } \\ 4(S-M) \end{array} \end{aligned}$		
0-199	41.82	45.29	44.22	46.79	46.50	45.43	39.16
200-399	42.68	44.86	44.35	46.30	45.07	44.83	37.61
$400-499$	42.30	45.01	44.11	45.72	43.45	43.66	36.19
500 or more	41.75	44.88	44.15	45.76	45.16	43.65	36.60
Total	42.11	44.96	44.25	46.22	44.96	44.29	36.68

Vehicles Travelline over 50 Miles per Hour

| $0-199$ | 54.17 | 54.97 | 54.15 | 55.57 | 56.38 | 55.34 | 56.40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 200 | -399 | 54.38 | 54.77 | 54.20 | 55.33 | 55.05 | 54.84 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 55.19$

400	-499	53.76	54.49	54.38	54.87	54.60	54.40	54.32

| 500 | or more | 53.45 | 54.19 | 53.30 | 55.04 | 54.53 | 54.12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 53.62

| Total | 53.82 | 54.57 | 54.02 | 55.28 | 55.22 | 54.68 | 54.10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Required Size of Sample from Various Traffic Volumes for Estimating Average Speod (Based on Coefficient of Variation of 0.2)

Traficic						
Volume	Probability Level of 95%			Probability Level of 99\%		
to be	Tolerable Error			Tolersble Error		
Represented	5\%	2.5%	1\%	58	2.5\%	1\%
25	18	23	25	20	24	25
50	28	42	48	34	45	49
75	34	58	72	4.4	64	73
100	39	71	94	52	81	96
150	44	94	137	63	111	142
200	48	111	177	70	136	186
250	50	124	215	75	158	229
300	52	136	251	79	176	270
4.00	54	153	318	85	206	348
500	56	165	377	88	230	421
750	58	186	504	94	272	585
1.000	59	198	606	97	299	727
1.500	60	212	760	100	332	959
2,000	61	220	870	102	351	1.141
2.500	61	225	952	103	364	1,288
3.000	61	228	1.017	103	373	1.409
3.500	61	231	1.069	104	380	1.510
4,000	62	233	1.111	104	385	1.595
5,000	62	235	1.176	105	392	1.734
6.000	62	237	1.224	105	397	1,841
8,000	62	240	1,290	106	404	1,994
10,000	62	241	1.333	106	408	2.098
15:000	62	243	1.395	106	414	2.256
- 20,000	62	244	1.428	107	417	2,344
25,000	62	244	1.449	107	419	2.400
50.000	62	246	1.492	107	422	2.521
75.000	62	246	1.507	107	423	2.564
100,000	62	246	1.514	107	424	2.586
200,000	62	247	1.526	107	425	2,620
300:000	62	247	1.530	107	425	2,632
400,000	62	247	1.532	107	425	2.637
500.000	62	247	1.533	107	425	2,641
750,000	62	247	1.535	107	425	2,646
$1.000,000$	62	247	1,535	107	425	2.648
Infinite	63	247	1.538	108	426	2.655

Table VIII

Required Maximum Size of Sample from Various Traffic Volumes for Estimating Frequency Distribution of Speeds (Modal class containing as much as 50% or more of the vehicles)

Traficic Volume	Probability Level of 95%				Probability Level of 99%			
To be		ra	θ T	¢0r		0 ra	e P	ro
Represented	5\%	2.5\%	1\%	0.5\%	5\%	2.5\%	1\%	0.5\%
25	23	25	25	25	24	25	25	25
50	- 44	48	50	50	46	49	50	50
75	63	72	74	75	67	73	75	75
100	79	94	99	100	87	96	99	100
150	108	137	148	149	122	142	149	150
200	132	177	196	199	154	186	198	199
250	151	215	24.4	248	182	228	246	249
300	168	251	291	298	207	270	295	299
400	196	317	384	396	250	348	391	398
500	217	377	475	494	285	421	485	496
750	254.	504	696	736	352	585	718	742
1.000	278	606	906	975	399	726	943	985
1.500	306	759	1. 297	1.444	460	958	1.376	1.467
2,000	322	869	1.655	1,901	498	1.141.	1.785	1.941
2.500	333	952	1,984	2.347	524	1.287	2.173	2,409
3.000	341	1.016	2,286	2.783	543	1,408	2.541	2,870
3.500	346	1.068	2.565	3.208	558	1.509	2,890	3.325
4,000	350	1.110	2,824	3.623	569	1.595	3.223	3.773
$\because \quad 5,000$	357	1.175	3.288	4.424	585	1.734	3.842	4.650
6,000	361	1.223	3.693	5.189	597	1,840	4,406	5,502
8,000	367	1.289	4.364	6.621	613	1.993	5.397	7.1.39
10,000	370	1.332	4.899	7.934	622	2.097	6.239	8.690
15.000	375	1.394	5.855	10,788	635	2.255	7.877	12.234
20,000	377	1.427	6,488	13,152	642	2,343	9,067	15.368
25:000	378	1.448	6,938	15.144	646	2.399	9.971	18,158
50,000	381	1.491	8.056	21.724	655	2.520	12.455	28.513
75,000	382	1.506	8,513	25,403	658	2.563	13.583	35.205
100.000	383	1,513	8.762	27.753	659	2,585	14,227	39.885
200,000	383	1.525	9,164	32.225	661	2,619	15.317	49.821
300,000	384	1.529	9.306	34.054	662	2,631	15.718	54.333
400,000	384	1,531	9.378	35.048	662	2,636	15.927	56,909
500,000	384	1.532	9.423	35.674	663	2,640	16.055	58,576
750,000	384	1.533	9.482	36.543	663	2.645	16.228	60.957
1,000,000	384	1.534	9.512	36,993	663	2.647	16.317	62,221
Infinite	384	1.537	9.604	38.414	663	2,654	16.587	66.349

