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INTRODUCTION

There is a need to accurately analyze the load effects on bridge decks from permitted overload
trucks on Michigan’s roads. The AASHTO Standard Specifications for Highway Bridges, 17"
edition (1) (AASHTO Standard), provides a distribution width of live loads when reinforcement
is parallel to traffic in Section 3.24.3, but not when reinforcement is perpendicular to traffic.
There is a distribution width factor, E, for cantilever slabs given in Section 3.24.5; however, the
structural action for this case is different than that of a continuous deck slab over multiple
beams. In the Bridge Analysis Guide, 2001 edition, (2) (BAG) it is stated in Example 9, Bridge
Deck Rating For Designated Loading, that, “Based on study of the AASHTO method, the
moment effect of the wheels of tandem axles spaced at 3'-6" will overlap, and hence are
additive.” The study of the AASHTO method was basic and a more detailed method is needed
to correctly model wheel loading from overload trucks on bridge decks.

In looking closely at the overload trucks, there are two critical scenarios:

1. Truck 13, 45-kip axles with only 4-ft separation between two axles,
2. Truck 14, 33-kip axles with only 4-ft separation between three axles, tri-axle.

A detailed method for correctly modeling wheel loading from these overload trucks will be
developed for bridge decks, followed by a simplified approach that can be used to analyze bridge
decks for these overloads.

LITERATURE REVIEW

Westergaard (3) provides the basis for the design moments in bridge slabs due to concentrated
loads, according to Section 3.24 in the AASHTO Standard (1). Closed form solutions applied to
homogeneous elastic slabs are developed by the mathematical theory of elasticity. These
solutions are applied to bridge decks for common wheel loading from trucks. Jensen (4, 6),
Newmark (5) and Jensen, etal (7) offer solutions to additional bridge deck situations, but
Westergaard (3) is the basis for most of this work. Erps, etal (8) developed simplified formulas
for use in a design office, based on Westergaard’s solutions. It is noted that Erps used side by
side trucks with a center to center of wheels spaced at 3’ for his analysis. A wheel load, P, equal
to 12 K was used for H-15 loading and 16 K was used for H-20 loading. Also, Erps used 1.25’
for the diameter of circle over which the wheel load P is considered uniformly distributed when
applying Westergaad’s formulas. Westergaard’s (3) complete paper is included in Appendix A
for convenient reference.

The current formulas for deck design moments due to wheel loads, Section 3.24.3.1 in the
AASHTO Standard (1), first appeared in the 8" edition of the AASHTO Standard (9) in 1961.
Prior to that, a slab distribution width was used for determining the deck design moments
considering both a single axle (24 K) and tandem axle (16 K) according to the 7" edition of the
AASHTO Standard (10). In all cases, a continuity factor of 0.8 was to be applied to positive and
negative moments for deck slabs continuous over three or more supports.



Tire contact area was added to the AASHTO Standard, 12" Edition (11), by the 1981 Interim
Specification (12) and was intended to allow for more accurate bridge deck analysis. The tire
contact area was to be assumed as a rectangle with an area in square inches of 0.01 P, in which P
is the wheel load in pounds. Equating this area for a 16 K wheel load to a circle results in a
diameter of 1.19’, which is similar to the 1.25” used by Erps, etal (8).

ANALYSIS

The following cases were analyzed using AASHTO and Westergaard*s (3) solutions to get a
historical perspective of the wheel loads effects on bridge decks. Free supports (simple
supports) were used in the analysis.

1957 AASHTO with 16k tandem axle,

1957 AASHTO with 24k single axle,

1957 AASHTO governing maximum,

1961 to 2002 AASHTO with 32k axle using (s+2)/32 distribution,

Westergaard solution using 16k tandem axles with a=6 b=3.5,

Westergaard solution using 16k tandem axle with a=4 b=3.5,

Westergaard solution using 24k tandem axle (alternate military loading) with a=6 b=4,
Westergaard solution using 24k tandem axle (alternate military loading) with a=4 b=4,
Westergaard solution using 16k and 8k axles in series with a=4 b=4.
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Case 9 is the trailing portion of a notional loading consisting of two axles at 8 K, followed by
two axles at 16 K, followed by three axles at 8 K with all axles spaced at 4.

Variables are the same as Westergaard (3) and are shown in Figure 1. The load P is the wheel
load and is half the axle load. The diameter of a circle, ¢, over which the load P is uniformly
distributed, was based on an area in square inches of 0.01 P when needed for use in the
Westergaard formulas. A single line of wheel loads and two lines of wheel loads were analyzed
for a given beam spacing to determine the controlling case. Moments parallel to the x axis, Mx,
are of interest. Westergaard (3) has shown that the maximum moment for the case of two wheel
loads on line in the direction of the span occurs when one wheel load is placed at “¥4 a” from the
center of the beam spacing and the other is placed at “% a” on the other side of the center of
beam spacing, with a equal to the gage of the wheels on the axles. This case is shown in Figure
1. Regarding cases 1 to 8: For a single line of wheel loads, the controlling moment was
determined based on the maximum moment from the wheel loads under load P; and between
loads P, and Ps, as shown in Figure 1. Maximum moment for two lines of wheel loads occurs
under load Py, according to Westergaard (3). For case 9, the moment determined was located at
the second 16 K axle load (followed by three 8 K axles) for both the single line and two lines of
wheel loads.



Figure 1. Four wheel loads placed on deck for maximum moment effect
For cases 5 to 8, the following Westergaard (3) equations were used.

Single line of wheel loads:

M,, =0.21072 P[logm . logln(\( 0.45 + 1-0. 675) +
0.1815] - o (61)

and

A7} =0.21072P, Togiy coth 021201 (74)
8 smh

Two lines of wheel loads:

0.1815] - (61)
is equal to
Ps
Mﬁx'—g-gm -------------- (66)

which is then used in

__ Ps f_D APs
T 9.32s+8: "2¢1b

The more accurate equation (61) was used in equation (93) for the analysis.

M, —0.14P_ _(93)



For case 9, the following Westergaard (3) equations were used.

Single line of wheel loads:

0.1815) — (61)

and

fgf{z}=o,21072h logyo coth ¥4 0:2125F (74)
1y ‘ 2" s nh

Two lines of wheel loads:
M; P A2

Pb b
0.10625 — ginh - (B3 B.; A> ______ (88)

with coefficients

; 70 ia
A=cosh S heos o - -.-(83)
B3 =cosh -7;—6— 1. . (84)
By=cosh —b—-cos o (85)
8 8
and
‘ Ps 0.4Ps '
M= "5 395 L %6 ]LZ(L w3 -0.14P_ _ _.(93)

Results are shown in Figure 2. It is noted that for cases 5 to 8, that moment determined for side
by side trucks with the distance between wheels of 4’ (variable “a”) is always greater than the
moment determined for a lone truck with the distance between wheels of 6° (variable “a”).
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Figure 2. Moments along x axis for designated loading scenario

Two critical scenarios for overload trucks were then analyzed:

1. Truck 13, 45-kip axles with only 4-ft separation between two axles,
2. Truck 14, 33-kip axles with only 4-ft separation between three axles, tri-axle.

For these two cases, only moments for side by side trucks with the distance between wheels of 4’
(variable “a”) were needed since this is the controlling loading.

Regarding case 1: For a single line of wheel loads, the controlling moment was determined based
on the maximum moment from the wheel loads under load P; and between loads P; and P3, as
shown in Figure 1, except that the loads P; and P; are at the centerline of the span. The
controlling moment for a single line of wheel loads always occurred on load P;. Maximum
moment for two lines of wheel loads occurs under load P1, according to Westergaard (3).

For case 1, the following Westergaard (3) equations were used.



Single line of wheel loads:

0.1815]) . (61)

and

M= 0.21072P, logo coth T O212PY 74
$
SSlIlh

Two lines of wheel loads:

M,, =0.21072 P[logm . 1og,m(\ 0.45 + 1-0. 675)+

0.1815] - (61)
is equal to
Ps
Mﬁx'_é-gﬁ_@ -------------- (66)

which is then used in

Ps 0.4Ps '
g gt on g~ 014P. . (93)

M= 2a--b

The more accurate equation (61) was used in equation (93) for the analysis.

Regarding case 2: For a single line of wheel loads, the maximum moment was based on the
moment from the wheel loads under load P3, as shown in Figure 3, except that the loads P;, Ps,
and Ps are at the centerline of the span. For two lines of wheel loads, the controlling moment
was determined based on the maximum moment for wheel loads under load P; and under load

P, as shown in Figure 3.



Figure 3. Six wheel loads placed on deck for maximum moment effect

For case 2, the following Westergaard (3) equations were used.

Single line of wheel loads:

and

0.1815]) . (61)

M,

Ty, 0312)P53; 74
", --(74)

} 0. 21 0791— 10{(_."10 coth
28~
s sinh ™ p

Two lines of wheel loads when determining moments under load P;:

M, A?
j‘u }z0.10536 Plogy 5=

Pb b
0.10625 — ginh - (B3 B.; A) ______ (88)



with coefficients

~ 70 @
A=cosh s Teos 5 - -.-(83)
b
B3 =cosh . 1. (84)
b Ta
B, cosh o e0S T (858)
and
0.1815] (61)
is equal to
Ps
Mor=5 g5 Tgg-----=----=-- (66)

which is then used in

Ps 0.4Ps

539548 T2q b 1P - - (93)

M, =

The more accurate equation (61) was used in equation (93) for the analysis.

Two lines of wheel loads when determining moments under load Ps3:

M,, =0.21072 P[logm . logm(x 0.4 + 1-0. 675)+

G 18-[5] e (61)
ﬂﬂf[z__ﬂjx_‘j\‘fgz _—
P B P cot _‘]:_S ‘
AM, M,—M,, |~ 021072 logi, ——-_.(72)
P~ P

and



M,

A2
RIJ =0.10536 P logy, B.E, =

L Pb . wbl 1 2
010630 .—‘; blnh _S_<B3+:B4 — Z_:l> e = (88)

with coefficients

A =cosh fs—b— +cos T

28 T TTT T

b T
By==cosh ~~—cos s

Results are shown in Figures 4 and 5.
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Figure 4. Moments along x axis for tandem 45 K axles spaced at 4’
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Figure 5. Moments along x axis for three 33 K axles spaced at 4’

Combined results are shown in Figure 6.
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Figure 6. Moments along x axis for tandem 45 K axles spaced at 4’
and three 33 K axles spaced at 4’
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DISCUSSION

It appears that the Alternate Military Loading of two 24 K axles spaced at 4’ was the justification
for changing the deck design moment equation to (s+2)/32 upon review of Figure 2. The
(s+2)/32 equation is slightly unconservative in a few cases; however, impact and frequency of
loading is not included in the values shown in Figure 2, which may help explain acceptance of
new equation. The Alternate Military Loading was first designated and included in Federal-Aid
Highway Act of 1956. The effect of this loading on bridge decks was included in the 1961
AASHTO Standard Specifications for Highway Bridges, 8" Edition, through a change in the
design moment equation to (s+2)/32.

Predicting the deck moments using Westergaard’s (3) equations is lengthy and tedious, but can
easily be done once they are placed into spreadsheet software and verified. Deck moments from
the three 33 K axle loads are reasonably predicted using (s+3)/19 equation when compared with
the Westergaard (3) moments for the same loading (22 percent to 5 percent over the results using
Westergaard (3) equations for beam spacing of 5’ to 11’, respectively). Deck moments from the
tandem 45 K axle loads are also reasonably predicted using (s+4)/26 equation when compared
with the Westergaard (3) moments for the same loading (16 percent to 3 percent over the results
using Westergaard (3) equations for beam spacing of 5’ to 11°, respectively). Unfortunately, the
deck moments for the three 33 K axle loads using (s+3)/19 are unconservative for tandem 45 K
axle loads when the beam spacing is more than about 10°. However, beam spacing more that 10’
is seldom used for bridges in Michigan.

CONCLUSIONS

Detailed methods for accurately modeling wheel loading from overload trucks were developed
for bridge decks using Westergaard (3) formulas. A simplified approach that can be used to
analyze bridge decks for these overloads was also developed.

RECOMMENDATIONS

When determining the wheel load moments from overload trucks the following simplified
equations can be used.

1. For tandem axles with 4-ft separation between two axles: (s+4)/26,
2. For tridem axles with 4-ft separation between three axles: (s+3)/19,

where s is equal to the effective span length, in feet, as defined in Section 3.24.3 of the
AASHTO Standard (1).

If the rating factor determined using the simplified equations is less than 1.0, Westergaard (3)
equations should be used to refine the load effects from the wheel loads on the overload trucks.
The extra effort required in using the Westergaard (3) equations would be offset by the benefit to
our transportation system in allowing trucks with heavy axles to safely cross Michigan’s bridges.

11



REFERENCES

1. AASHTO (2002). Standard Specifications for Highway Bridge Design, 17th Edition.
Washington, DC.

2. Michigan Department of Transportation. Bridge Analysis Guide. Lansing, Michigan, 2005.

3. Public Roads, March 1930, "Computation of Stresses in Bridge Slabs Due to Wheel Loads,"
by H. M. Westergaard.

4. University of Illinois, Bulletin No. 303, "Solutions for Certain Rectangular Slabs Continuous
over Flexible Supports,” by Vernon P. Jensen.

5. Bulletin No. 304, "A Distribution Procedure for the Analysis of Slabs Continuous over
Flexible Beams," by Nathan M. Newmark.

6. Bulletin No. 315, "Moments in Simple Span Bridge Slabs with Stiffened Edges,” by Vernon
P. Jensen.

7. Bulletin No. 346, "Highway Slab Bridges with Curbs; Laboratory Tests and Proposed Design
Method," by Vernon P. Jensen, Ralph W. Kluge, and Clarence B. Williams, Jr.

8. Public Roads, October, 1937, “Distribution of Wheel Loads and Design of Reinforced
Concrete Bridge Floor Slabs,” by H. R. Erps, A. L. Googins, and J. L. Parker.

9. AASHTO (1961). Standard Specifications for Highway Bridge Design, 8th Edition.
Washington, DC.

10. AASHTO (1957). Standard Specifications for Highway Bridge Design, 7th Edition.
Washington, DC.

11. AASHTO (1981). Standard Specifications for Highway Bridge Design, 12th Edition.
Washington, DC.

12. AASHTO (1977). Interim Specifications for the Standard Specifications for Highway Bridge
Design, 12th Edition. Washington, DC.

12



APPENDIX A
H. M. Westergaard
"Computation of Stresses in Bridge Slabs Due to Wheel Loads,"
Public Roads, March 1930

13



INDEXED

PUBLIC ROADS

il ™. m.n w AN fﬂ|||||||ﬂ|h
AJOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE

BUREAU OF PUBLIC ROADS

RESEARCH HAS RESULTED IN A BETTER UNDERSTANDING OF STRESSES IN CONCRETE BRIDGE SLABS

Fer sale by the dent of i D.C. - - - - - - - - - - - - See page 2 of cover for prices

14




COMPUTATION OF STRESSES IN BRIDGE SLABS DUE
TO WHEEL LOADS*

By H. M., Westergaard, Professor of Theoretical and Applied Mechanics, University of Illinois, Urbana, Ill,

PART L.—INTRODUCTORY STATEMENT AND DEFINITIONS

support wheel loads in addition to the distributed

dead loads. The present investigation is limited
to the problem of the stresses contributed by the wheel
loads, 1t being assumed that the influences of the uni-
form loads may be estimated with sufficient accuracy
by available methods.! E. F. Kelley * published .in
1926 a study of the influence of the concentrated loads,
in the light of available results of tests, and he proposed
formulas for computing the bending moments. The
present investigation, which is purely analytical, applies
directly to the case of homogeneous elastic slabs. ’Fhey
are subject to accurate analysis by mathematical theor
of elasticity. Since the reinforced concrete bridge sla
may be assumed to act in certain respects approxi-
mately as a homogeneous elastic slab, the results found
for the homogeneous elastic slab may be applied in
forming a judgment as to the proper formulas for design.
It is notable that the results of this analysis do not
differ widely from those derived by E. F. Kelley from
the tests, in the study referred to.

SLABS IN HIGHWAY bridges must be designed to

Fioure 1.—SLap SvrrorTivng WHEEL Loabps

INVESTIGATION OUTLINED

Figure 1 illustrates the problem. The purpose of the
analysis is in particular to determine the following effects:

(1) The effect of the load P, alone when placed at
the center (v=0).

(2) The combined effect at the point of application
of P, produced by the two loads P, and P, which are
separated by the definite distance a, the distance v being
chosen so as to produce the greatest possible effect.

= Investigation made for division of tests, U, 8, Bureau of Public Roads,

! Uniform loads on rectangular slabs, each supported on four sides, may be dealt
with, for example, as described in a paper by the writer, entitled ** Formulas for the
Design of Rectangular Floor Slabs and the Supporting Girders,” Proe. American
Conerete Institute, vol, 22, 1929.hp. 26,

1 E, F. Kellay, Effective Width of Conerete Bridge Slabs Supporting Concentrated
Loads, Public Roads, vol. 7, No. 1, March, 1926, p. 7. ‘This paper contains references
to tests and earlier discussions of the same subject.

$8022—20—1

(3) The combined effect at the point of application
of P, produced by the two loads P; and P;, the definite
distance b apart, when v=0.

(4) The combined effect at the point of application
of P, produced by the four loads g’l, P,, P, and P,,
which are at the corners of a rectangle with dimensions
@ and b in the directions of # and y, the distance » being
chosen so as to produce the greatest possible effect.

The slab is supported on beams parallel to the direc-
tion of . Most of the computations are based on the
assumption that the slab extends sufficiently far in the
directions of +% and —y without support by beams in
the direction of z to make the influence of edges or
beams parallel to the axis of z negligible at the points
where the critical stresses exist, thus making it possible
for the purpose of analysis to consider the slab to extend
infinitely far in the directions of +y and —y, without
beams or edges in the direction of 2. At the same time
it will be shown, and illustrated by numerical examples,
how the influence of beams in the direction of 2 may be
taken into consideration. When not stated otherwise
specifically, the slab will be treated as having simply
supported nondeflecting edges along the center lines of
the two beams shown in Figure 1. Some computations
will be added, however, showing the changes brought
about by replacing the simply su portgg edges by
fixed edges. These computations will lead to informa-
tion about the intermediate cases of partially restrained
edges, especially the important case of a continuous
slab with several spans in the direction of .

Each of the four forces Py, P,, Py, and P,, shown in
Figure 1, is the resultant of a wheel pressure which is
distributed over a small area. In dealing with the
stresses directly under the load P, it will be necessary
to take into consideration the fact that this load is dis-
tributed over an area, but the loads P,, P;, and P,
may be considered as concentrated forces. The load
Py will be treated as distributed uniformly over a small
circle with diameter ¢. Yef, in expressing effects at
some distance from P, this load, like the others, may
be considered as concentrated at the point of application
of the resultant of the pressure.

Two theories of flexure of slabs are used, one of which
may be called the ordinary theory, while the other is a
special theory. The ordinary theory is based on an
assumption which corresponds to the hypothesis of
Bernouilli and Navier for beams, that the plane cross
section of a beam remains plane and normal to the
elastic curve of the beam. The assumption for slabs
is that a vertical line drawn through the slab before the
bending remains straight and normal to the deflected
middle surface after the bending. This assumption
applies with satisfactory accuracy to slabs of such pro-
portions as are used commonly in bridges, except for the
purpose of expressing the stresses produced by a con-
centrated load in its immediate vicinity. The diffi-
culty is overcome by use of the special theory in the

15
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following manner.® The load is introduced as dis-
tributed uniformly over the area of a circle with an
“equivalent diameter” ¢’ instead of the true diameter e.
By use of the special theory, in particular a solution
given by A. Nadai,*¢’ is dctermineé) so that the ordinary
theory, with ¢’ introduced as the diameter of the circle,
leads to the same maximum stress at the bottom of the
slab directly under the center of the circle, as does the
special theory with the true diameter ¢ introduced.

he advantage of this procedure is that after introduc-
ing ¢’ all the computations may be made according to
the ordinary theory, which, naturally, is much simpler
than the special theory. Some of the bending mo-
ments computed are to be inter&)‘mtcd, accordingly, as
equivalent bending moments. They have the signifi-
cance that the tensile stresses at the bottom of the
slab are computed, in the manner applicable in con-
nection with the ordinary theory, by dividing the
bending moment per unit of width of bﬁe cross section
bsy the section modulus per unit of width; that is, by

g’- , where £ is the thickness of the slab.

The study presented here draws extensively on the
work of A. N4dai, published first in papers and later
in his book on elastic slabs.® In a recent investigation
of slabs loaded by concentrated forces M. Bergstrisser °
obtained a satisfactory experimental verification of
Nadai'’s theory.

The results are presented in formulas, tables, and
diagrams.

NOTATION
#, y=horizontal rectangular coordinates. The origin
of coordinates is at the center of the span as
shown in Figure 1, unless specifically stated
otherwise. (The y-axis is moved to t.ha{eft edge
in some 1]Jm"t-iculacl,r cases.)
r, 8=horizontal polar coordinates.
z=deflection of slab at point z, y.

a, b, u, »=horizontal distances as shown in Figure 1.

h=thickness of the slab.

¢=diameter of circle over the area of which the load P,
is distributed uniformly.

¢’ =equivalent diameter of the circle over the area of
which the load P, is to be considered uniformly
distributed in order to make the ordinary theory
of flexure of the slab lead to the same maximum
tensile stress at the bottom of the slab as does
the special theory when the diameter is ¢.

If=modulus of elasticity of the material of the slab.

p=Poisson’s ratio of the material of the slab. In the
numerical computations the value assumed is
u=0.15.

LR .

N= IQ—W)-=meaaura of stiffness of the slab.

P, P,, P,, P;, and P,=wheel loads.

w=distributed load per unit of area.

=load per unit of length distributed over a line.

»=vertical shear ﬁer unit of width of cross section in a
section parallel to the y-axis, positive when acting
upward on the part having the larger values of 2.

V,=vertical shear per unit of width of cross section in
a section parallel to the a-axis, positive when
acting upward on the part having the larger
values of y.

M., M,=bending moment in the direction of a or y,
respectively, per unit of width of cross section,
acting upon a section parallel to the y-axis or
z-axis, respectively, positive when it produces
compression at the top and tension at the bottom.

M, =twisting moment in the directions of x and y per
unit of width of cross section in sections parallel
to the axes of « and ¥, positive when tending to
produce compression at the top in the direction
of the line z=y.

M’ ,,=value of M., in particular cases.

E.=reaction per unit of length at left edge.

Part IL—DERIVATION OF FUNDAMENTAL FORMULAS

FUNDAMENTAL EQUATIONS OF ORDINARY THEORY OF FLEXURE
DERIVED

It appears expedient to introduce the analysis by
showing briefly the derivations of the general funda-
nllelr)ll;s;l equations of the ordinary theory of flexure of
slabs.

Figure 2 shows three fundamental types of deforma-
tion of an element of the slab. They are produced
by the bending moments and twisti moments
acting on the element. One may visualize the deforma-
tion of the element in the general case by imagining
the three types existing in the same element at the
same time, superimposed one on another.

Figure 3 shows the total forces and couples acting
on a small block of the slab extending through the
thickness of the slab. In passing from the face with

3 Described in a previous paper by the writer, Stresses in Concrete Pavements
Computed by Thecretical Analysis, Public lton&s, vol. 7, No. 2, April, 1926, p. 25,
especjallg'dp?. 27, 31, and 32,

4 A, Nidal, Die Biegungsbeanspruchung von Platten durch Einzelkriifte, Schweize
rische Bauzeitung, vol. 76, 1020, p. 257; and his book, Die elastischen Platten, 1925

. 308,

¥ A, Nidal, Die elastischen Platten, Berlin (Julius Springer), 1025,

# M. Bergstriisser, Versuche mit freiaufliegenden rechteckigen Platten unter Einzel-
lii‘zgarl.balnstung. Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, No. 302,

7 These derivations may be found at a number of places In the technieal literature,
See, for example, A. Nidai, Dis elastischen Platten, 1025, p. 20; or the paper by W, A.
Slater and the writer, M ts and in Slabs, F ings, American Con-
crete Institute, vol, 17, 1821, p. 415 (or, National Research Counell, Reprint and
Circular Series, No. 32).
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coordinate = to that with coordinate z-+dz, the
bending moment per unit of width, M., increases

x

at the rate of Bé’la{
e

by the amount Qg%: dxz. The values
per unit of width, therefore, may be stated as follows:

M, at the face with the coordinate x; and ﬂf,-l—-qgg* da
at the face with the coordinate z+dz. The total
moments on the width dy, consequently, may be
stated as shown in Figure 3: M.dy at the face with

coordinate x; and (M,+-a§g‘dx}dy at the face with

coordinate z-+dz. Similar explanations apply to the
bending moment M,, the twisting moments M,,
and M., and the shears V, and V.

- Q
Q | -
z z
(@) (&)
Fiaure 2,—DEFoRMATIONS OF ELEMENT OFSLAB, (8) BENDING IN

Dirgction oF z, (b) BEnping 1N DirecTiON OF ¥, (¢) Twist-
ING IN DIRECTIONS OF & AND ¥
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wddyy (e %@ dg) dx

Fiaure 3.—Forces anp CoupLEs AcTing oN ELEMENT OF SuaB

One may write three independent equations of
equilibrium of the forces and couples. By equating
to zero the sum of the vertical forces, and dividing by
dx dy, one finds

av. av,

__._}_

o ay-‘!-w

By equaling to zero the sum of the moments with
respect to an axis through the center of the block,
parallel to the y-axis, by dlscard':%g the term which
aaxt da dy. ¥dx, and
again dividing by dz dy one finds the equation:

M, IM,, .,
da L 'ay__]lyx ————————————— (2)

0o (1)

is infinitesimal of the third order,

The third equation of equilibrium is similar to equa-
tion 2, and is obtained by exchanging the symbols z
and y in equation 2:
oM, + M., _
dy dx

Vo (3)

The twisting moments are moments of horizontal
shearing stresses in the vertical sections. By applying
the law of equality of shearing stresses in perpendicular
sections, one finds

My =My

By substituting the expressions for V, and V,, as
given in equations 2 and 3, in equation 1, one finds the
additional equation of equilibrium,

M, M., M, -
daz T2 droy oy W (5)
When each straight line drawn vertically through the
homogeneous slab before bending remains straight after
the bending, the horizontal normal stresses and shearin,
stresses in the vertical sections will be distribute
through the thickness of the slab according to straight-
ine diagrams, with extreme, equal and opposite va%ues

@)

at the top and the bottom and the value zero at the
middle. The middle surface of the slab, therefore, is a
neutral surface. At the bottom, the tensile stresses o,
in the direction of 2, and ¢, in the direction of y, and
the shearing stress 7., in the directions of 2 and y are
determined as in the case of beams, by divziding the

moments by the section modulus, which is % per unit
of width of the section; that is,

6 M. 6 M, 6 M.,
Te= gy POyT UG Ty e (6)

The next step is to express the relations between the
moments and the deformations. The deformations in
Figure 2, (a) and (b), are measu.ra(?i by the curvatures,

2.

—ﬁ in the direction of z, and —g-—f in the direction of
1, respectively. The de{nrina.t,ion in Figure 2 (¢) is
measured by the twist, — a%g’— The bending moment
M alone, without the action of M, and M, produces a
- g%i, in the direction of , which is expressed

as in the case of a beam with rectangular cross section
of depth h and width equal to one unit, that is,

2
—g;=%zh—|f’ On account of Poisson’s ratio, u, of

curvature,

lateral contraction to longitudinal extension, this
curvature will be accompanied by a curvature in the
direction of ¥, equal to — u times the curvature in the
direction of z. q[‘he bgending moment M, produces no

. %z i — .
twist of the type ~ oxdy’ By expressing in a similar

manner the effects of the bending moment M, one finds
the combined effect of the two bending moments,

&z 12 -
T b R ) E— (7)
2 2
~ S ML=uM). @
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The effects of the twisting moments M., may be
found by introducing a new system of horizontal rec-
tangular coordinates, x;, ¥, with the angle (xa,) =45°,
so that ;= :,}5(3:+ ), y.=1—}§(—m +¥). When fis any
function, one finds

Of Y of By, _ 1 (i_ LAY
Ox Ox, 02" Fy; da~ 3\ 0w, O
This result may be written as a stﬁteme%t concerning

d ad _1/9
t.hc operator =~ Namely i Va\aw " ay)

i 9_1/30 i)
One finds in the same manner, oy 1/2( Ela:l+ o)’
and accordingly, by combining the differential operations:
TR 2)-4(25- 22
dzdy 2\ dx, Oy, (6m1 dy,/) 2\ 0z y2
The stato of moments, M, =0, M,= 0, M,,50, is equiv-
alent to the following state of moments in the directions
of x; and y,: M, =M,,, M, =-M,, M., =0. By

using these values in equations 7 and 8, with @ and y
replaced by ?nd %, and then substituting in the

expression fora—x 6%}’ one finds
Pz 12(1+4)
_'a:.,:'ay"‘—'Eﬁa_ M:y----—--————-(g)

By this method one finds, furthermore, for the same
state of moments,

R TR T P S A
a*2\0n ay) * T2\ 0 " By, Ty )"

. 2
and likewise gf;= 0. Thatis, the twisting moment M,,

d t contribute to the curvat ¥ g -0,
oes not contribute to the curvatures, P o
The three equations, 7, 8, and 9, express therefore the
combined effect of the state of bené)ing moments, M,
and M, and twisting moments, M, -
It is expedient to introduce the following quantity,
which is a measure of the stiffness of the slab:

_ R
12—

Using this quantity, one finds, by solving equations 7,
8, and 9 for the moments,

N=ogr—— . -(10)

Pz P
M,=N(—-§—p(-r; .4y
2 o
M,=N(—ﬁz—pam—f)______. L (2)
62
M’”=—N(1-—,u)-a£y___._ . (13)

By substituting these expressions in equation 5, one
obtains the equation of flexure of the s ab, stated by
Lagrange in 1811, and frequently named after him,

d'z d'z 9z w

a2 oy e TN ---(14)
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By introducing the differential operator, known as
Laplace’s operator for two variables,

a8
ﬁ=-65§+a—y§ ___________________ (15)

Lagrange’s equation is restated in the simple form,
NNg=w._ ... ____________(16)

The vertical shears are expressed in terms of the
deflections by substituting the expressions in equations

11, 12, and 13, in equations 2 and 3. One finds
Az Az
Vf_"Naé‘Vv _Ng.i*‘" ________ (17)

v
FARA

4 + My
ax

i[e
el |

Vydx

Z{-@f@ +%}M""' dx)dx

xy
(@) ®)

Fraure 4 —TwisTiNG MOMENTS AND SHEARS A1 Epam

Xy

Figure 4 shows an edge of the slab. The twistin
couples in Figure 4 (a) are resultants of horizonta
shearing forces. These couples are equivalent to the
pairs of vertical forces shown in Figure 4 (b). The two
vertical forces at the boundary between the two blocks

leave a surplus upward force equal to : aw’*fda:, that is,

@ﬁ“—" per unit of length. - This consideration of vertical
shears and twisting moments at the edge leads to the
theorem given by Kelvin and Tait ® in 1867: The com-
bination of vertical shears and twisting moments at
the edge is equivalent to a combination of vertical
forces only, in terms of which the reactions are stated;
namely, first, a distributed upward reaction,

oM,
R,=v,4—‘ax—” _______________

secondly, an upward concentrated force at the left end
of the edge equal to the value of M,, at that point;
and thirdly, a downward concentrated force at the
right end of the edge equal to the value of M, v at that
point. At an edge parallel to the y-axis, with the slab
on the side of the larger values of  one obtains by the
same method a diata-i%uted upward reaction,

M.,

RSEV'Z-i-—ay '__..__...______(19)

At a rectangular corner formed by the two edges men-
tioned, each edge furnishes an upward force equal to

! Thomson (Lord Kelvin) and Tait, Natural Fhilosophy, 1867. See arts, 645-648
in the later editions,

—*
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the value of M., at the corner, giving a total concen-
trated force equal to 2M,,.

The problem of the ordinary theory of flexure of the
glab is to find a solution of Lagrange’s equation 16, sat-
isfying the special conditions existing at the boundary
of the area invcsti%ated. The boundary conditions are
expressed by use of equations 11, 12, 13, 17, 18, and 19.

USE OF INFINITE SERIES EXPLAINED

Consider a simple beam with span s, carrying some
concentrated loads and in addition a distributed load,
the latter expressed by the function p=p(z), the dis-
tance z bein mea’saraff from the left end. The vertical
shear in this beam is a function V'= V&x), which changes

suddenly at the Eoints of application of the concentrated
loads, and which at all other points is governed by the
relation,
av
=g e~ _.(20)

Any function V which is obtainable in this manner
may be expressed by a Fourier series, which converges
toward V except at the points of application of the
concentrated loads and at the ends of the beam, of the

form
n

V.= Zc » COS

1, 2

e
e - (21)
where ¢;, ¢, . . . . €n, . . . 8ve constants. Assuming
that a set of constants exists bringing about the
convergence,’ one may determine the constants by the
criterion,

‘L‘ (V=T cos™dz=0,m=1,2, .. ...(22)

Using the relations,

¢ ommr  mwr 0 when n=m
e
J 0 P g0 = (23
J;ms s COST dx -;— when n=1m (23)

one finds, by substituting V; from equation 21 in equa-

tion 22:
¢ s
c,,,=£f Veos ™ dn_ _
s Jo

whereby all the constants ¢;, c., may be deter-
mined when the function V 1s known. ]
By differentiating equation 21 and reversing signs,

one obtains a new Fourier series,

1,9,

nwey .
Sl
8

nwi

which in a special case converges toward p in equation
20 at all points where p does not change suddenly;
this special case is that in which all the concentrate

loads are zero. If the concentrated loads are not zero,
the Fourier series in equation 25 becomes divergent.
Yet, integration of the series, with reversal of signs,

reproduces V; in equation 21, and further successive
integrations lead to expressions for the bending mo-
ments, slopes, and deflections in terms of convergent
Fourier series, So far as these effects are concerned,
Ny

the aggregation of individual loads sin ?% ex-
pressed by the divergent series in equation 25, is equiv-
alent to the complete load on the beam. That is, the
series in_equation 25, in spite of being divergent, rep-
resents the complete load on the beam, consisting of the
distributed load p(z), and the concentrated forces.
The series in equations 21 and 25 apply outside the
interval 0<x< s when the function V is periodic with
period 2s, and symmetrical with respect to the points
t=0 and z=s, that is, when V(z)=V(—2), and
 V(s+z)=V(s—=z). The function p, has the same
period, and is antisymmetrical with respect to the
points 2=0 and z=s, that is, p(x)=—p(—2),
p(s+a)=—p(s—=z). The functions apply then to a
continuous l?eam with simple supports at the points
x=0, £, +28

P P
L L'U. * 2L 1L 3
p 3 _]l_ 8 s
v
[ [2e= (] x
&

Fravne 5—Venrioar SHears 1N BEam

In the case shown in Figure 5 one finds, using equa-
tions 24, 21, and 25, and writing V for V3, and p for p,:

n
V=§) 2 :l sin "™ oos M. (26)
T n 8 8
1,2
p=== E :sin E’:‘" sin ﬂ':—x _________ 27)

The latter expression will be used in representing
concentrated load on the slab.

SOLUTION FOR SLAB LOADED BY CONCENTRATED FORCE,
EXPRESSED BY INFINITE SERIES
The y-axis is placed temporarily at the left edge of the
slab. The edges, at x=0 and z=s, are simply sup-
ported. The slab extends infinitely far in the directions
of +y and —y, and is loaded by a single force P at the
oint @=u, y=0. This load will be represented as a
oad p on the z-axis defined by equation 27.
The function z, representing the deflections in the
part of the slab in which y is positive, is defined by the
requirement that it must satisfy Lagrange’s equation,

about the convergence,

% For proof of the exiztence of the set of constants brinair\l&
Modern Analysis, second

see, for example, B, T. Whittaker and . N. Watson,
edition (Cambridge), 1915, p. 161.

18 The use of divergent Fourler series in representing concentrated loads was intro-
duced by A. Mesnager, Comptes Rendus, vol. 164, 1917, p. 600, and has been
extensively by A. Nidai; ses his book, Die elastischen Platten, 1925, p. 82.
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A%z=0 (equation 16 with w=0), at all points within the
area, and in addition the following boundary conditions:
At the edges 2=0 and 2=s and at y= o :

N e=Az=0________________ (28)
ty=0:
n
d 1 r . MTU . Bl
a—;=0 and V,=—§p= -—E-Z sm—g--v sin —:---(29)
Lo

One may determine the function z by a partly deduc,
tive process. For the present purpose, it is sufficient
however, to state the solution, and then verify it. The
following solution ' satisfies all the requirements:

Ps? nl

TN L
1,2+

nwk

It is seen immediately that z=0 for 2=0 and r=3s,
and for y= . One finds, furthermore,

d0z__ P Zn_1.1 1 gin T g MTE (31)
dy~ T 2xNLdn Ve SID g S
1,2,

which becomes zero when =0,
K
&z P E] nay\ o opry . onrx
" TN ﬁ(l___s_)e ¢ osin - - sm~8-—__(32)
1,2,

n
&#z: P El R A W T Y -
o= e 20 (1 ) e i M s "2 ag)
1,2,

n
0z, 02 P 1 - . nru . nmx

ﬂ2=a‘i§ T 6?= “-‘N'_N E ¢ & 8In R_ s1n 8__(34)
1,2,

which becomes zero when =0, rT=s, 0r Y=,

1
_ daz PZ WML onmy L AwE
V,==N = s e ¢ sin - 5 sin -s—.,_(3o)
1,2,
which assumes the required form when y=0. Finally,
2

2
one finds, %,z= - %%?: that is, A%z=0,

Nédai * observed (as may be verified withous diffi-
culty) that by introducing the function,

i
P 1 % | pau . nmx
=NAz= L E :_ iz i
e=NAz pu € ¢ osin g sin— _ - (36)
1,2,
one may restate equations 32 and 33 and express

2
dxdy
in the following simple form:

iz a
2I\Ta_$2=‘p—y a—;:____ P ..,-.._(37)

AL Nédai, Die elastischen Platten, 1925, p. 85,
# A, Nadai, Die elastischen Flatten, 1925, p. 86,
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1+ P )e ¢ sin == sin = _.(30)
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2N§L’i=¢+ygﬁ_..._." .. (38)
2N%2§y=-ygg-____._._. (39)

Then one finds by equations 11, 12, and 13:
M=-1Fe,, 1;—"3;-%’_. o __(40)
M,~-11¢ p—-l-;—“yg—:j _____ _(41)

Moy=-13Ey 00 )

NADAI'S SOLUTION IN FINITE FORM PROVED

Nadai,* by a deductive process involving functions
of a complex variable, derived an expression in finite
form for the function ¢ in equations 36 to 42, Again
it will be sufficient here to state the expression and
verify it.

The origin of coordinates is placed now at the center
of the span, as in Figure 1. The edges have the equa-

tions @ = ig: and the point of application of the load P

has the coordinates z=—y= —£+u, y¥=0. The expres-

2
sion found by Nadai, then, is stated as follows:
P B
. @1-=Nﬂz=4—w_10gsﬂ-___.....__. _(43)
where )
A=cosh ™Y 4 cos-w(x—_v)-. e (44)
s 8
B=cosh -';y—cos m‘_(xs-I-v)_ e (45)

The function ¢ in equation 43 is the same as the
funciion ¢ in equation 36 (restated in terms of the new
coordinates) if it satisfies the following requirements:
First, Ap=0 at all points except at the point of
application of P.

Secondly, ¢=0 at 2= —;—% and for y= o,

Third, the total vertical shear at the circumference
of a small cirele drawn around the load shall be — P.

To show that the first requirement is satisfied, the
derivatives of ¢ in equation 43 are expressed. One

finds
Lomlete) . ow(z—o)
e P Sin——— sin- .
'a'r«;s(— 5t )-8
de P . 1 1
(‘Jf;f}é smh? (E" A) ___________ (47)

Then, by use of the relation, cosh? %y-—sinh"‘ -“3—’-{= L, one
finds

1 A, Nédai, Dio clastischen Platten, 1025, p, 89,
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2 .
gﬁ | o8 I-(-:!'; v) cosh %y— 1
Bl 45 B *

v
cos ™ ®=2) cosh ™ +1
8 E
7 ,
e B

that iS, Agp =@ + @2' =0.

The second requirément is satisfied because A=DB

when 2= =3, and because g converges toward 1 when y
increases indefinitely.
That the third requirement is satisfied, may be shown

as follows: When « and g are small values, one may
write, cosa= l—cg. cosh = 1—1—%3- Consequently, in
the immediate neighborhood of the point z= —w, %;=0
where z+v and y are small, equation 45 may be rep. aced
by the simpler expression,

2 2
B=-2’;2(y“+(x+v)*)=’,‘;—;.._._, _(48)

where 7 is the distance between the points—», 0 and z, y.
Since log, B is numerically large and varies rapidly in
this neighborhood while log, A varies relatively slowly,
one may use for A the value at the point x=—v», y=0,
that is,

A=1-+co 2—:?=2 cos

Then equation 43 assumes the following form, applica-
ble when the distance » from the point of application of
the load is small:

-

—
i)
=

[

IJ
o=y log, —
28 cos

3

i

. &

Equations 17, for the vertical shears, may be written:
V.= -—g"; V,= —gg- Correspondingly, the vertical
shear in a section perpendicular to the radius vector »

may be written: V,= —%:—f’- Then equation 50 gives

P
V=5

of the small circle with radius » is —P. Thus all the
requirements are satisfied.

; that is, the total shear at the circumference

Part III.—DERIVATION OF FORMULAS WHICH HAVE DIRECT APPLICATION TO THE PROBLEM OF
BRIDGE FLOORS

DETERMINATION OF MOMENTS AT ONE POINT DUE TO A CONCEN-
TRATED LOAD AT ANOTHER FOINT

Using equations 40 to 47, one may express the bend-
ing moments M, and M, and the twisting moment M,
produced at the point @, ¥ by the load P at the point
—9, 0. One finds

M. (1 P 1 (11— .
R L R
Loa(e—o) . w(edw)
___(M(T_ s s .
M.y= 8s a t 5 ---(52)
where

A=cosh %y-l-cos@, B=cosh %y—cosﬂ—(-m:—m)-

One may use these formulas to obtain expressions for
the moments produced at the point —#,0 (the point of
application of P; in Figure 1) Ey a load P at t]g)e point
¢, . It is necessary for this purpose to let the points
—uv, 0 and z, ¥ exchange significances. That is, one re-
places @, ¥, and » by —», —y, and —z, respectively.
By this exchange the expressions for 4 and % remaln
the same. Denoting the new moments by M’,, M’,,
and M’ ;,, one {inds

M =M, M',=M,.  _________ (53)

owle—v) . w(xte)
. Q _#)Py(sm s s1n p i
M= 8s B} - _(54)

That is, a law of reciprocity applies to the bending
moments: The bending moments in the directions of

and y produced at point 1 by a load P at point 2 are
the same as those produced at point 2 by a load P at
point 1. It becomes unnecessary, therefore, to distin-
%uish between M, and M’,, or between M, and M’,.

he twisting moments, on the other hand, do not follow
this law of reciprocity; M’,, differs from M,.

With p=0.15, equations 51, 52, and 54 may be written
as follows: "

M, A
2 L}=0.10536 P logy

0.10625 %’ sinh ’;y (flf_i _________ (55)

» (Sin ety L W_—‘”})
Ml /] .
M,:J 0.10625" B -(56)

EFFECTS OF LOAD DISTRIBUTED UNIFORMLY OVER THE AREA OF
A SMALL CIRCLE

Consider now a load P which is distributed uniformly
over the area of a small circle with center at the point
—», 0 and with the diameter ¢, as P, in Figure 1. In
order to obtain the correct maximum tensile stress at
the bottom of the slab by use of the ordinary theory
of flexure, the moments will be determined (as proposed
in the introduction) as if the load were distributed
uniformly over the area of a circle with diameter ¢
instead of ¢.”®

By using polar coordinates r, 8, with the pole at the
center of the circle, and with the angle 8 measured from
the z-axis, the load on an element of the area of the

W Numerieal computations based on these equations are made conveniently by
use of the tables published by K. Hayashi, Sieben- und mohrstellige Tafeln der
(I%imi?t. ﬁ%ﬂ%ﬁyp& lfunktionen und deren Produkte sowle der Gammafunktion,

erlin; 3

15 See footnote 3 an p. 2 and the explanation following this reference.
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circle will be expressed as %P.‘._ rdrd. On account of the
1

reciprocal relation of bending moments (equations 53),
the bending moments produced at the center of the
cirele may be computed by means of equation 51,
Since the distances are smaﬁ, the values of A and B
may be taken from equations 49 and 48, respectively.

The term ﬁ at the end of equation 51 may be ignored
as insignificant in comparison with TI; Moreover,

sinh %y may be replaced by -T; Y. Then equation 51

leads to the following values of the resultant moments
at the center of the circle:

o
Mo _ (" 4o (F4P (10 259956 (1 wysint,
M'J—f do . n_clﬂrd?( 4W—]ugc .ml__-u_-_. i)

-

2

M _(L+wP( (45 w\ 1\, (1-wP .
- e (o) )00

T e 1
Since f"‘ rdr log, r—= SI (Iog, %—- -); one finds
0

The equivalent diameter ¢, is expressed with satis-
factory approximation by the fo lowing formula,"
applicable when ¢<3.45h:

a=2(v04c*F B2 —0.675 ). _ . (58)

GREATEST BENDING J\IOLMBNTS COMPUTED FOR CASE OF WHEEL
A

OAD AT CENTER

When the load is at the center, that is, =0, the
moments M, and M, in equation 57 assume the fol-
lowing values, which are denoted by M,. and M,,,
respectively:

Mu._.._”(u-;-p)log,.‘**‘? +1)_-_. . (59)
4 T

afo.,=Mo,—(—1;:l-3 . (60)

or, with u=0.15, and ¢, substituted from equation 58:

My, —0.21072 P[logmi - ‘logm(.\/ 0.4}’—;+ 1 —0.675)+
0815 - . (61)
My, =My~ 0.0676 P _________(62)

1 Equation § in the paper by the writer, Stresses in Conerote Pavements Computed
by Theoretieal Analysis, Public Roads, vol. 7, No. 2, Aprll, 1025,
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Fioure 6.—CoBFFICIENTS OF BENDING MomENnts, My: AND M,,, IN DIRECTIONS OF & AND g, REsrECTIVELY, PRODUCED AT
M

CENTER OF BLAB'BY A4 CENTRAL LoAD P DISTRIBUTED UnirorMLY OVER THE AREA OF A
¢. Resvirs REPRESENTING EqQUATIONS 61, 62, 104, AND 105. NUMERICAL VALUES STATED ¥ TapLe 1.

u=0.15
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TasLe 1—Values of the coefficient of the mazimum bending

moment per unit of widlh, produced al the center of the slab in
the direclion of the span by a central load P distribuled uniformly
over the area of a small circle with diameter ¢. The edges are
assumed fo be simply supporied. The values were compuled
from equation 61 for different relative values of the span, s, the
thickness, h, and the diameler ¢. Figure 8 shows the resulls
graphically. Poisson's ratio, u=0.15

=0 | =008 | cm0.108 I eml.lse | c=0.208  c=0.258
N . . | — -
| ]
[ a=gh | 0.3051 ‘ 0308 | 0.2 | 0.2
s 8h | 8315 | 3280 | 3026 | .2784
=10k L8610 | 3980 | L8110 L2811
. 8=12h JBEE5 | L 3B08 | LB ‘ . 2815
| s=Uh | 3827 | 13805 | L3178 | 2800
| s=ish | 3940 | 3660 | 3186 | 278
| a=I8k L4056 | L3709 . 186 . 2786
| #=20 4185 | L8744 L BI84 ‘ .27
] i
Table 1 and Figure 6 show values of the coefficient
M, . v :
T'f’ computed from equation 61. The coeflicients
stated are pure numbers. If, for example, one reads
- M, _— -
in Figure 6, }f—’ =0.3, the significance is: M,,=0.3 P,

or, with P=10,000 pounds, M,,=0.3x 10,000 pounds

~3,000 pounds =3,000 " :i]:ls' =3,000 fif%llfi (the unit

of bending moment per unit of width being inch-
pounds per inch or foot-pounds per foot or simply
pounds). If units of the metric system were used, the
coefficients in Figure 6 would remain unchanged.
These comments apply also to the coefficients stated
in the diagrams an({) tables which are given later.

. . M,
the curves in Figure 6 also represent values of “3

on & separate scale. The third scale from the right
serves this purpose. _

The moment M, could be produced as the maximum
moment per unit of width in a simple beam with span
g and width b,, the load P being applied at the center

of the span, and distributed over the width of the

beam. Ignoring the effects of Poisson’s ratio, one may
assume the bending moment to be distributed uni-
formly over the width. The width b, bringing about
this equivalence of a slab and a beam is called the
effective width.' It is defined by the equation,
1pr
M= [RaSREREEREEEEEE (63)
or,
Ps
bc B IJMn,—, ————————————————— (64)

Values of b, computed from this equation, with
M, defined by equation 61, are shown in Table 2 and
Figure 7. Knowing b, one may compute the bending
moments by equation 63.

The diagram at the right of Figure 7 shows a set of
straight horizontal lines which may be allowed to take
the place of the curves in a crude, approximate com-
putation. To be on the side of safety the straight lines
should be drawn so as to represent the low values
rather than the average values defined by the curves.
The straight lines are drawn according to the formula,

b,=0.585+2 - __.__.._(65)

Since the difference between PM and _PM is (‘-Ol'lStﬂllt, 7 E. F. Kellay, Effective Width of Concrete Bridge Slabs Supporting Concentrated
. Loads, Public Roads, vol. 7, No. 1, March, 1926, p. 7.
e — — S s
1 a=0.255
__'__,,_.—P-'-_‘
i
H ]
| o
I.os - — ey -— : 1.08
_e=0.208 | 2 e=0.20s
© - ]
2 i
z =l
8 3
= | =}
k \ | E
g 0.9s — - — oy — g o9y —
| e -
g FETRET) | o c=0.155
; 3
5 [ 5
L) . i ®
£ L\ &
E oBs - —— I‘———.__,_____q — S— : 08s R
3 S=0.108 — m e=0.108
I;! z
E - a
I . z-
& W H
| I
078 |—— . * ~ \k e | ﬁ 0.7s —
E =0 \ I o £20.080
1 "____‘—-—-—‘
.65 e - 0.6s
[ 8 1] 12 14 e 8 20

RATIO, 2 ,OF SPAN TO THICKNESS

A

Tieure 7—Errecrive Winth b, For Cunrtran Loan, Distrisurep Usirormiy Over THE AREA oF A SmaLn Circie Wirn
DIAMETER ¢, WHEN THE EDGES ARE SIMPLY SupporTED (FroM Equarions 64 anp 65, anp Tanrue 2). Posson’s Rarro,

p=0,15
98022—30——2
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A cc;rresp()nding, roughly approximate expression for
the bending moment is obtained by substituting this
value of b, in equation 63:

Ps
MM:Q.'{Z&-I——SC -------------- (66)

Tasre 2—Values of the ratio, ;;", of the effective width fo the span,

in the cases represented in Table 1. The values were com uled
Jrom equations 64 and 61, and are represented graphically in

Figure 7. Poisson’s ralio, u=0.15
‘ i e=0 | ¢=0.068 | ¢=0.108 | e=0.158 I c=0.208 | e=0.258
=0k ‘ 0.819 | 0,832 | 0.870
s=8h LT LT74 B
a=10h LTI LJTAT | LEDd
F=12h 678 .713 .To2
w14k 633 605 - T8
s=16k 633 . 683 LT85
#=18k 616 BT . 785
&=20k . 802 - BGS . T85

MOMENTS COMPUTED FOR CASE OF TWO WHEEL LOADS ON LINE
IN DIRECTION OF SPAN

Figure 8 (a) shows the ease of two wheel loads, P, at he
point 0, 0, and P, at the point 2, 0. The effects pro-
duced by P, at the point of application of P; are
expressed by equations 59 and 61, and are represented
in Table 1 and Figure 6. The moments contributed at
the %oint. of application of P in Figure 8 (a) by P, may

be obtained from equation 51. One finds
L
A_TTeos Sy e
B T 2’
1—cos o

and consequently,

L

035 \

MOMENTS M, OR Af,. AT POINT OF APPLICATION OF PRODUCED BY P
£ £ »

0.2 |— I
0.1.Py f— \ \
o
o 0ls 0z2s 03 OAs 055
VALUES OF ¢
(2)

ROADS Val. 11, No, 1
' 14+ p)P. x .
M,=M,=( 4:) ?log, cot ;S L ..(67)
or, with p=0.15,
M. =M, =0.21072 P, logy, cot 57 ______(68)

Table 3 and the curve in Figure 8 (a) represent values
computed from equation 68,

Tasre 3.—Coefficients %: and g’ of the moments produced al
2

the point 0, 0 by the load P; at the ?Joa'-:}ﬂ x, 0, compuled from equa-
tion 68, and represented graphically in Figure 8 (a). = Poisson's
ratio, u=0.15

| | 1
T |AL_M oz (MMM, l
s | BRTE s | PR
o0 | ogsot | 015 | 01308
S0z | .ae6 | .20 | 102
los | mes | la | leer
05 | ma || 40 | looee
o7 | et W | 0

o . 1686

When there is a fixed distance o between the two
loads, the moments under P, may be increased by
moving the loads toward the left, into the positions of
Py and P; in Figure 1. With P; and P, at the points
—#, 0 and a—w, 0, respectively, and P,=P,=P, the
moments under P, may be expressed as follows, by use
of equations 57, 59, 51, and 60:

Me=M,y+ gl—'i:)P log, cos %U +

— )
1+cos T@=2)
(1_.,.;,_‘)}3 log, ———— L _(69)
87 1—cos ™
' §

My RESPECTIVELY
°
7
b

LOADS P

°
]
]

TO OBTAIN COMBINED EFFECT OF TWO
o
o

AMOUNTS JMy OR A0y TO BE ADDED TO M OR

VALUES OF &

(3)

. h
Freure 8.—Benping Moments PRODUCED AT POINT OF APPLICATION 0F LEFT oF Two Loavs (From Equarions 68 anp 72,
5

AxD Tamnes 3 anp 4).

24
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M,=M, (_1‘_1""')'_}) ____________ (70) TasLe 4.—Values Ag{‘—" or % to be added to M"* (given in
'-I'I'
( 20) ( ) ~ Table 1) or -A};f" (equation 62), respectively, to obtm-n the values
. w(a—2v wla—2v
Since 1+cos ————=2 cos* » these moments  4f % ar %‘f due to the combined action of {wo loads P placed at
reach tl;eu‘ %Eﬂf;%um values when the pmd‘ll(‘,t the poinls — 4 0 and §q! 0, computed from equation 72, and rep-
f=cos Z_COST_F' becomes a maximum. By  resented graphically in Figure 8 (b). Poisson’s ratio, u=0.15
L. —4p

wl'l.tulgf=%(cos 1r((!,T$)+ cos ;ﬂ') one finds that the o Jaan_am| o« IM;_, A,

. d . . - z P P 3 P P |

condition, Ef =0, gives sin M=0, or v=2. That — :

< th v 1load | 2s o.01 o1 | 030 0. 0671
is, .t'. e two equa ga s are placed as they would be on a -3 E%g? :}E -+
beam. With v=7, equation 69 becomes, Z?E "533 5 Iﬂ' Zﬁ%
. » i&h i mo | o |
{ T 12 .
1+wpP, f
My=Moy + S0P 1o 48 (71)
™ 2 MOMENTS COMPUTED FOR TWO LOADS ON CENTER LINE
or, with u=0.15, Flglllﬁ. 9 shows two loads, P, at the point 0, 0, and
% at the point 0, . The moments pmduced under
AM, M.~ M. cot ™% P, by P, are given by equations 59 to 62 and in Table
P P 43 1 and Figure 6. To these moments must be added the
; 0.21072 logyy ——— (72) . .

AM, M,—M,, S10 --- moments M, and M, contributed at the point of ap-
P P plication of P, by P; Equation 51, with z=2=0,

These values become negative when «>>0.5903s. In
this case the greatest effect is produced by P, alone,
placed at the center of the span.

Table 4 and Flgme 8 (b) show values computed from
equation 72,

that is, with
A=cosh ™ +1=2cosh? T—?‘".
8 28

B=cosh ™ —1=2ginh? 7,
& 28

MOMENTS AT POINT OF APPLICATION OF B PRODUCED BY F)

| T—— |
i | T ——
——— | ——
0.8 low (B2 lag [ LB zor
VALUES OF i
o —— T
i —
. | MMy | ]
; [ o I e — =1 —_—
E o CHANGE DUE TO FIXING EDGES
=0. 18, |

Fraure 9—Bewpine MoumexTs PropUckED AT PoiNT oF AprLicatioNn oF P, By P; (From Equartions 74, 102, anp 103, anp
TasrLes 5 anp 7). Porssow's Rario, u=0.15

25
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and with P=P;, gives

M }_(1+#)P3] ™, A=wWPy __ (73)
fr==m " log, coth o2 A RIS
M, A 2 4s sinh ?"!

or, with u=0.15,

f};{‘] =0.21072P; logy, coth %i%}25-}33y ---(74)
v s sinh ?

Coefficients % and g"» computed from equation 74,

3 .
are stated in the first section of Table 5. Equation 74
is represented graphically by the curves drawn with full
lines in the upper part of Figure 9.
MOMENTS COMPUTED AT CENTER FOR LOAD AT ANY POINT, AND
ALSO AT ANY POINT FOR LOAD AT CENTER

Table 5 and Figures 8 to 14 show moments produced
at l?oints &, y by a load, P=1, at the center, point 0,0,
and moments produced at point 0, 0 by a ioad, P=1,

ROADS

Vol. 11, No. 1

at points x, y, for Poisson’s ratio, p=0.15. All of these
moments are defined by equations 44, 45, 55, 56, with
v=0. Kquations 68 and 74 apply to the special cases
of =0 and =0, respectively. With v=0, the equa-
tions for the twisting moments (equations 52 and 54, or
equation 56 when x=0.15) may be written in the simpler
forms,
sin ™ cosh 7Y

§ 8§

M,,=— (I=wPy

5 oo 220 22
&
. 2wx
- . sin ——
_ﬁ{{-’”= . (1 J-'-) I Y _ 8 '—'.-.-(75J

48 2w

cosh _2@— cos
8 §

In the special case, z=§= that is, at the edge, these
equations give

0.30 T 0.30 E
~y=0.053 . ,\\tno
0.28 - 0.28

1
1
—}
|
i
1
|
o
]
|
|

—x=0.25s

=0

028 | r : 0.26

024 | -1 —] 0,24 (—1 1
y=0.la

0.22 YY - - — o.22

W\ \-xa0.0755

R

VALUES OF My
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VALUES OF My
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xe0.2s \ N\
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0.08 | — o.08 3
=085 \v\:a =y N \ =0
et A \\ “\ N
—1 TR =
- y o[:\ A ’ z=03s” \\*\"\\ “ \\\\
=i ~
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) =
< T N i« _"‘:\";--.__ RN
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1 i ' \, —
\ e— |
ST
o .
° ° ols  02: 03s O04s  05s o 0.22 0.4 0.6 0.8 108

VALUES OF x

VALUES OF ¥

Froure 10.—Brxpive Moments M,, PrRobucsp ar PoiNt %, y BY Loap P=1 a7 0, or a7 0 BY Loap P=1 ar PoINT %, i (FROM
¥

Equarion 55 axp TaBLE 5).
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0.24

0.20

o1&
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e
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VALUES OF Afy.
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=9854 =y,
1 Ly=08s
=0.02 A -0.02
L] ol 0.2 0.3s 0.4 055

YALUES OF ==
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L] o.2s 043 0.6s 0.5 Los
VALUES OF 3

Froure 11 —Bexping Momests M,, PrRopUCED AT PoINT 7,  BY Loap P=1 a1 0, or AT 0 BY Loan P=1 a1 PoINT 7, y (FROM
Equartion 55 axp TasLe 5). Pomsson's Rario, p=0.15
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Frauns 12—Twisting Mosents M., Propucep ar Point 2, y BY Loap P=1 ar 0 (rrom Equations 56, 75, aAnp T7, AND

TasLE 5).

Poisson's Ratio, pu=0.,15
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- l-o,o.s.r
0.03 0.03 r/v\\ N ors (\ “l\
0.25 [ / \ R 02s

¥ o \ §on / \\\ \
s \ D=
3 ""/ K\ > / /ﬁx\-n.::\ \\.

0.01 \ a0l R\ Y

B = k\§ /4 : \\k\h
o ols 025 03s 04s 053 ° 0zs 0.d4s 0.6 0.8 Los
VALUES OF x VALVES OF y

Fiauae 13.—Twistiva Moments M’.,, PRopuceD AT 0 BY Loap P=1 av PomNt z, y (FrROM EquaTions 56 AnD 76, axp TaBLE
5). Porsson's Rario, u=0.15

TaBLE 5.—Bending moments M, and M, produced at point x, y by load P= I, at point 0, 0, or at point 0, 0 by load P=1 at point z, y.
computed from equalions 44, 45, 55 (with v=0), 88 and 74, and represented graphically in Figures 8 (a), 9, 10, 11, and 14, Twisting
moments Mz, produced at pointz, y by load P=1 al point 0, 0, and twisting moments M' ., produced at point 0, 0 by load P=1 at
%a{nt z, Y, puled from equations 44, 45, 56 (with v=0), 75, 76, and 77, and represented graphically in Figures 12, 13, and 14,

otsson's ratio, u=0.15
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TFioure 14—Contour LiNes oF Sunrraces REPrESENTING Moments (Comranri TFieures 10 To 13).
Poisson's Rario, p=0.15
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4s cosh 1—?

and M’;,=0.

For small values of z and y, that is, in the immediate
neighborhood of the point 0, 0, one may write

sin2-7'3:=2sin TE_27% cosh Y _1, and
s § 8 8
2wy _ 2wz .2'”2 20 o
cosh . et 8—2(1; +a?).

Then equations 75 and 76 may be written

May=M =~ %‘ff k- -U——S—ff sin 20._(78)

where 6 is the angle between the z-axis and the radius
vector to the point =, y; or, with p=0.15,

M,y=M' 5= —0.06764 P m-z‘_"z"—y-z
- —0.03382 P$in 20 oo woome(79)

With 2=, equation 79 gives M.y=M' .= —0.03382P.
With 2=2y or y=2, the same equation gives M=
M 5= —0.02706P.

Attention is called especially to Figure 14, showing
contour lines of the surfaces representing the moments.

Vol. 11, No. 1

ROADS

COMPUTATION OF MOMENTS PRODUCED AT POINT OF APPLICA-

TION OF Py IN FIGURE 1 BY THE TWO LOADS Py AND Py

The two loads P; and P, in Figure 1 will be assumed
to be equal, each equal to P. In order to determine the
value of v at which the bending moments produced ‘at
the point —v, 0 by the two loads become as large as
possible, the following conditions are introduced tem-
porarily: P=1, s=m, y-axis abt the left edge. Then
equations 32 and 33 Joad to an expression of the follow-
ing form for the bending moment M, produced ab
point u, 0 by the load P=1 at the point x, b:

M= Z (), sin nae Sin NX_ oo e - (80)

1,2+

where the coeflicients C, are functions of b only. The
same formula, only with different values of (,, ex-
presses the corresponding value of M,. The two loads
P=1 at the points 1, b and u-+a, b then produce the
moment,

n
M= Z ¢, sin nu (sin natsin n(u+a))

1,2,

"
= E%’ (1—cos 2 na+ cos ne—cos N (2u-+a))-(81)
N 1’2'..-

e
K
o

0.4P ’74\'___

0.2P |

MOMENTSMx PRODUCED AT POINT OF APPLICATION OFF BY 5} .hND_F:'_

MOMENTS M, .ﬂiNl!})ld‘ill PRODUCED AT POINT OF APPLICATION OFR BY _F; AND By

-0.1P I_
0

-0.1P
0.2s 03s 045 05s

VALUES OF a

02 045 0.6 5 08 s 1.0s

VALUES OF &

Traune 15 —BENpING MOMENTS PRODUCED AT POINT OF APPLICATION OF P, sy Two Loaps, P;=P anp Py=P (rroM Equa-

riox 88 anp Tasne 6).
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One finds, furthermore,

déf—— En O, (sin 2nu-+sinn(2u-+a))._-_(82)

1,2,

N T @ @ .
which becomes zero when U=g— g OF V=g 1t is con-

cluded that M, or M,, respectively, reaches an extreme
value when v=g: and that this value is a maximum

when M in equation 80 is positive for all values of z
between 0 and =. That is, the rule by which two equal
Joads are placed on a beam so as to produce a maximum
moment, and which was found to apply to P, and Py,
applies also to P; and Py,

he y-axis is now moved back to the center-line of
the slab, and the span is assumed to have any value, s.
The two loads P;= P and P, =P are placed as shown in
Figure 15. For these two loads equations 44 and 45
give equal values of A, but different values of B, which
will be denoted by B; and Bj, respectively. One finds

—cosh ™+ cos ™ :
A=cosh 5 e oo .. _(83)
By =cosh -T;—b—l __________________ (84)
B,;=cosh %—-cus?“_..". .. (85)

The moments produced by the two loads, Py=I and
P,—P, then may be expressed as follows, by wuse of
equations 51 and 54:

M, _ (Q+wP A
M,]_ T 8r l0%epp*
1—w)Pb . . wb/1 1 2
( §:) --smhl; (B—S—FR--E ... (86)
sin ™
Lo (—pPb s
Myy,= —8s B (87)
or, with p=0.15,
M, - A?
ﬂ{y]—0.10036 P]ng}g&B_‘i
LPb . oomb/1 12
0.10625 ry sinh ?(Ba-l' B‘—H S — (88)
sin ™
Pb g
M= —0.10625 -~ ) ARSEEEEEES (89)

Table 6 contains values computed from equations 88
and 89 with use of equations 83, 84, and 85. Figure
15 shows curves representing equation 88,

A comparison of equations 87 and 76 shows that the
twisting moment M, produced at the point —gs 0, by

the two loads P at the points - g- b and %T“, b, is equal
to the twisting moment M’,, produced at the point 0, 0

by a single load P at point @ 2. Tigures 13 and 14, -
3 g

2

ROADS ' 17

therefore, supply the necessary information about the
twisting moments produced by P; and P,

COMBINED EFFECTS OF FOUR LOADS

To produce the greatest possible bending moments
M, and M, at the point of application of Py, the four
loads, Py, Py, Ps, and P;, each equal to P, are laced
as shown in Figure 16. The combined effects of P, and
P, are given in equations 71 and 72 and in Table 4, in
conjunction with equations 60 and 61 and Table 1.
The combined effects of Py and Py are defined by equa-
tions 83 to 89 and are given in Table 6. By adding the
results, one finds the moments M., M,, and M., pro-
duced at the point of application of P; by the combined
action of the four loads. From these values one obtains
the principal moments M; and M, that is, the greatest
bending moment and the smallest bending moment at
the particular point, and also the angle ¢ between the
2-axis and the direction of M,, by the following for-
mulas, which are analogous to those applying to a plane
state of stresses:

T

tan 2\{/=ﬁ—{zj‘f{ﬁfv e __(91)

Table 6 contains values, for P=1, of M, and of the
amounts M,— Moz My— Moz M,— M., and M,— M.
which are to be added to M, (as given by equation 61
and in Table 1) in order to obtain the moments due to
the four loads. The curves in Figures 16 and 17show
the values of M,— My, M:— M, and ¢ for different
values of ¢ and b.

An examination of Figure 17 shows that the following
formula applies as a crude approximation, giving values
which are not ‘too small, when 0.3s<{a<(0.5s, and
0.3s<b<s:

34‘1_)140:_ 0.43__
= L T— (92)

Using this formula in conjunction with the roughly
approximate formula, equation 66, one finds

Ps 0.4Ps
Mi=535518: T 2a+b

DETERMINATION OF CHANGES CAUSED BY INTRODUCTION OF
BEAMS IN DIRECTION OF z

Let the slab, extending indefinitely far in the direc-
tions of +y and —, be loaded by a force P at the
point @, 7 and by a force — P (that is, an upward force
P) at the point &, 2b,— 1, (where by>y1). The deflec-
tions, z, and bending moments, M, and M,, roduced
by the two loads at the line y=b; will neutra ize each
other, so that at this line one finds z=Az=0. The
part of the slab for which y< b, therefore, behaves as
if the slab had a simply supported edge at ¥ =b.. Like-
wise,”® if one introduces a set of loads + P at the points
z=u, y=1+2al, and loads —P at the points x=1;,
y=2b,—y +2nl, with n=0, £1, £2,. . ., the part of
the slab between the lines =5, and y=b,—1 will act
as a rectangular slab which has simply supported edges

18 A, Nadai, Die elastischen Platten, 1925, p. 84,
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Traunre 17.—Compinep EFrects oF Four Loaps. Curves
vor CoNsTANT VALUES oF M;— Mj,, DETERMINED FROM
Fraure 16. Poissow’s Rario, p=0.15.

TaABLE 6.— Bending moments M, and M, produced at poini —Zﬁ

0 by two loads, P=1, at poinis -—v%. b and ‘?f-, b, compuled from

equalions 83, 84, 85, and 88, and represented graphically in

igure 15. Twisting momenls M., produced at the same point
by the same two loads, or by these loads in conjunction with Py
and P, computed from equalions 85 and 89. Amounis M. —
Moz, My— Moz, Mi— My, and My— My, to be added to Mo to

oblain the moments produced al point -E. 0 by the combined

action of four loads, P=1, applied as shown in Figure 16, M,
and M, being the principal moments at the point. Angle ¢
belween x-azis and direction of My The values of My— M.,
My— My, and § are computed from equations 60, 72, and 83 lo
91, and are represented graphically in Figures 18 and 17.
Poisson's ratio, p=10.15

From two loads From four leads |

M.~ | My— | M= | M~ . -

a b ol
5 & Mz My My | My, Moz Mye Mz
i L +
0.1 |0.34483 | 0. 18703 |0. 02594 (0.45008 | 0. 22450 0.45207 | 0. 22165 | 6 29
.2 |.27823 | . 00281 | .03163 | . 38343 13037 | . 38783 77 1
0.2 .4 00568 29308 322 | . 20617 0113 | 5 12
L6 | L 12818 |—. 02030 | . 01464 | . 22538 01726 | . 22089 01625 | 3 &7
W8 | LO7BER |—. 02348 | . 5 | L 18358 | L 01408 01358 | & 7
L0 . 04864 |—, 01034 | . 0057 | . 15384 01822 | . 15408 01788 | 2 26
.1 | . 30636 16128 | . 01861 | . 37250 | . 16078 | .37412 | 15016 | 4 5O
<2218 02700 | . 30000 | . 08271 | 31248 7082 | 6 &5
3 . 00691 | 02622 | . 28207 | . 00G41 | . 2859; L0031 | 6 81
6| 11089 | —. 01767 | . 01854 | . 17763 | —. 01817 | . 17927 |—. 01601 | & 22
"8 | 07074 |—. 02106 | .01222 | 13788 |—. 02156 | . 13881 |—. 02240 4 22
1.0 | . (4405 |—. 01747 | .007SL | . 11119 |—. 01767 | . 11166 (—. 01844 | 8 27
J1 27000 | 13864 | 01364 | 31634 | 11044 131724 | L 10851 1 3 40
L2 | . 21347 | . 07023 | . 02258 | 25200 | 04208 | . 25530 . 6 3
N "4 | 14361 | 00603 | . 02542 | .18305 [—. 02217 | . 18615 |—. 02627 | 6 &7
" TG | .00568 |—. 01621 | .OL981 | .13507 |—. 0M341 | . 13724 |—. 04558 | & 18
OB | .0B138 |—. 01828 | (01360 | . 10082 [—. (4644 | . 10208 —. 04770 | & 16
1.0 | 03825 |~ 01617 | . OOSOG I 07769 |—. 04337 | . 07835 |—. 4 13
L1 .25423 | L1100 | .01012 | 27146 | .OGS68 | 27196 | .06818 | 2 &I
c2 0 .10030 | . 05674 | .01765 | 20753 | L O0B33 | 20007 | L OMTH 4 OO
5 CE 1 L12207 | 00330 | 02238 | 14020 |—. 04702 |, 14284 |—. (4006 | 6 43
.t 6 | 08087 |—. 01327 | . 01892 | .09760 —. 06368 | . 0BO70 |—. 06657 | 6 36
T8 | 05113 |— 01535 | . 01308 | 00836 |—, 06576 | . 06U74 |— 0674 | 5 46
1.0 | . 08171 |—. 00261 | L00917 | L4804 |—. 06302 | . 04969 |—. 06377 | 4 39

atr= i% and at y=b, and y =5, —1, and which is loaded

by the force P at the point @;, 3. This equivalence of
two cases leads to a si.mgle determination of the action
of the rectangular slab by use of the results found for
the slab extending infinifely far in the directions of @
and ¥.

As the first example, consider a slab which has simply

supported edges at x= :g% and at y=-;) and which ex-

tends infinitely far in the direction of —y. Let this
slab be loaded by a force P at the point 0, 0. The slab
extending infinifely far also in the direction of +y then

is to be loaded by the additional force — P at the point
=0, y=2b;—y, =s. Values stated in the first section
of Table 5, then give at the point 0, 0:

M, = M, —0.0263P

M, =My, +0.0105P
As a second example, consider a square slab loaded
at the center. With bl=§-, l=s, the loads P are intro-

duced at the points =0, y=0, +£2s, +4s,. . . and the
loads — P are introduced at the points =0, y= +£s,

43¢, . . .. Then one finds at point 0, 0, by use of
Table 5 and equation 62:
M= M, +2(—0.0263+0.019—0.0001+. . aP

= My, —0.0490P,

M, = (Mys—0.0676P) +2(0.0105—0.0013 +
0.0001—. . )P

= My, — 0.0490P,

The e%lality of the two moments, so determined, is
noted. They should be equal since the slab is square.

EFFECTS OF CHANGING FROM SIMPLY SUPPORTED EDGES TO FIXED
EDGES INVESTIGATED

A rectangular slab is considered which has simply
supported edges at 2= i% and y= ié. and is loaded by

a single force P at the center, point 0, 0. By intro-
ducing the symbols,

@ an= =g

nw wWps  NwE
where n=1, 3, §,-+ + +

one may show that the following formula expresses the
deflection of this slab at the point z, ¥ when 2=0:

n

PP cos @ a

z= S tanh @y — g 1w, T
27N n* 17 cosh? cosh wy
1,3,6,

—w,x tanh e, sinh @, —sinh w2+ w2 cosh o, |-(95)

To verify this formula, one may begin by observing
that z=0 when z= % (giving w2 =a,) and when y = %5+
One finds

n
0:_ PL §Veos o
dz 27°N n
1, 8,5,
sinh w,z— w,2 tanh «, cosh m,‘a::l, _-(96)

Y I:w . sinh w2

G

cosh? a,

which becomes zero vhen 2=0. By further differenti-
ations one finds

n
P €0s :
Az =N Z _osnm_.,yl:_ tanh a, cosh @,z +sinh w.,a::l_ 97)

1,3,8
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which becomes zero when x=§ ory= ¢%- The vertical
shear in a section parallel to the y-axis becomes, accord-
ing to equation 17,

Ve= —N%‘;= —Il) Z] cOS Wl I:cosh Wl

1,8, 5,0+

— tanh a, sinh m,‘z]-_ e --(98)

When =0, this series assumes the divergent form,

L
‘F’==—I§2cosﬂ%y ........... (99)

1,3,8,

By comparing this equation with the expression for V,
in equation 29, it is seen that equation 99 expresses the
fact that the boundary condition in the section x=0,
resulting from the presence of the concentrated load P
at point 0, 0 is satisfied. By further differentiations of
equation 97 one finds A*%2=0. Thus, the function 2
in equation 95 satisfies the equation of flexure as well as
all the conditions of the boundary.

The slope at the edge x=% is of particular interest.
Equation 96 gives at this line

9z Pl

L3
9z _ €oS @,y oy Sinh ay
o 2N ----(100)

ne cosh? a,
1,8,5,¢

Consider now the function,

i
R 5 cos w,y «a, tanh ay
1y D i B S5, cstmbascoshors

— wyr sinh w,,z:l _____________ (101)

This funetion is found to have the following properties:
Aty= :t%: z1=Az=0.

04z, _

.02 _ -
Atm—O.ax 0, V,=—N E}:c_[]'

621_

At $=£:21=0, i

dz .
5 o (equation 100).
At all points: A%z =0,

Tt follows that the function 2’ =z+ 2, represents the
deflection (for 2>>0) of a rectangular slab which has

simply supported edges at == and fixed edges af

r= :k%: and which is loaded by the force P at the point

0, 0. That is, 2 represents the change of deflection
caused by fixing the two edges parallel to the y-axis.
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The corresponding changes of the moments in the
section #=0 are then expressed as follows, by use of
equations 11 and 12:

azzl 6*2.

M',~M.=N| ~Gd-wg3|

n
_ PsN\eos v,y tanh o, - ¢
=51 ) Iainh 3 ayt Dy L7 W tanh an 2] (102)
1,3,5,

2 2
j’i»f’,—-M,=-N[ Py 9 z']

'ay-.», —H R 2ot

n

P b t' l L]

- '2:8 E?il?éya “}‘;T‘” [~ (1— ) @, tanh a,— 2] (103)
1,85, -

The values stated in Table 7 have been computed
from equations 102 and 103 with p=0.15 and [=
2 57s=7.854s. The value of lis so large that changingit
to infinity would make no noticeable difference. he
results are represented graPhiually by the curves in the
lower part of Figure 9. The curves for M’, and M’,
in the upper part of Figure 9 were constructed from the
curves for J\JE and M, by laying off intercepts equal to
M',— M, and M',—M,.

From the values given in the table for point z=y=0,
one finds by use of equation 60:

Moo= Myz—0.0699P . ______(104)
My, = Myz—0.06764P — 0.03863P = M, — 0.1063P
e e mmmmsmmmmmmsEmm————ma———o (105)

_These formulas explain the two scales farthest to the
right in Figure 6.
TasLe 7.—Changes, M'.—M. and M',—M,, of the bending

moments at the cenler-line of the slab, caused by change from
simply sulgporf.ed edges to fized edges, when the slab is loaded by

the force P=1 at point 0, 0. Values com uted from equalions
102 and 108, and shown graphically in Figure 8. oigson’s
ratio, u=0.15
—T T T R
‘ L M- \ MYy—M,y l LIS TR YA | A |
\_ | i | | | _
0 | 00094 | —0.0383 | 1.0 | —0.0248 |  0.0039
‘ .2 | —.06755 | —.0323 | 15 | —00704 | 00386
4 | —. 0602 —. 0181 2 | —.00098 100129
—. 489 —. 048 |

| 8

SLAB CANTILEVERED FROM A SINGLE FIXED EDGE INVESTIGATED

| | ]
i i

The slab shown in Figure 18 has a fixed edge along
the y-axis, and is assumed to cover one-half og the ay-

lane, the part for which z is positive. Consider the

ending moment M, produced at the point 0, 0by a load
P=1 at the point z, . The locus of a point with the
three recta%ﬂar coordinates z, ¥, M, is the influence
surface for M,. It is well known that any influence
diagram may be obtained as a deflection diagram by
introducing the proper discontinuity at the point under
investigation. In applying this prineiple to the present
case, one is to determine a surface with coordinates 2,
¥, 2, so that the function z satisfies the following condi-
tions: Tt is required, first, that the equation of flexure,

')
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Traune 18—DBexping MomeNTs AT Fixep Epan oF LireE Snap (rrom Equarion 110 axp TasLe 8)

A?z=0, be satisfied at all points except at the point 0, 0,
where the function has a singularity; secondly, that

z=%=0 at the edge z=0, except at the point 0, 0;

thirdly, that z and Az shall converge toward zero when
2 or y increases indefinitely; and fourthly, that the
singularity at the point 0, 0 shall represent a proper
concentration of slope at the particular point.

One may think of this concentration of a slope as
one thinks of the concentration of a force: The distrib-
uted force p=p(y) represents a total load P= S pdy;
bﬁr changing the function p gradually, but maintaining
the value of the integral, the distributed force may be

changed into the concentrated load. The function ET:

may be concentrated by gradual change in the same
manner as the function p.

A function 2z of the l'oﬁowing form is found to satisfy
the requirements:

where kis a constant. A simple method of determining
this constant is by noting that a distributed load, one
unit per unit of i’f’mgth, on the line z=1, produces a
moment M, = —1 at the edge. That is,

e kd L
"'1=J_w1—+?;%5=;€7r, or, k= —'11: R ,(]07)

Since z in equation 106 is interpreted as equal to the
desired moment M, at the point 0, 0, one finds

x2

M,— - wr_(_xz-l-y’_) _____________

or, in terms of the angle 0 from the v-axis to the radius
vector,

The result expressed in equation 108 may be restated
as follows: A load P at the point u, 0 produces a
moment diagram at the edge with the equation,

P 1 -
Mx’=""“_"_',yg——-----————-(]-]-_D)
1+
U

Table 8 and Figure 18 show values computed from
this equation.

TaBLE 8—Moments M. at ﬁxéd edge in Figure 18 when P=1,
computed from equation 110

1]
‘ L i Lo -
[} 0.818% || 2.0 0. 0637
.3 . 2020 2.5 439
.0 . 2546 8.0 L0318
10 1582 3.5 L0240
L5 1 . 4.0 L0187

]

It is of some interest to know the bending moment
M, produced at point 0, 0 in Figure 18 when the load
P is distributed uniformiy over a circle with diameter ¢
tangent to the edge at point 0, 0. Equation 109 gives

i '% ¢ cos 0 vl g2
M= — J d.ﬂj; 4Prdr cos’ §,
s

et T

or,
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Fiaure 19.—REacrions ar Lerr Epce (rrom Equarion
115 awp Tarre 9). Porssow’s Rario, p=0.15

This moment is three-fourths of the moment produced
when the load P is concentrated at the center of the
circle.

REACTIONS DETERMINED

Consider the case shown in Figure 19. The y-axis is
at the left edge. The two edges are simply supported,
and the slab extends infinitely far in the directions of
+y and —y. The load P is applied at the point u, 0.
From equations 17, 43 to 46, and 52, and by considera-
tion of the changed position of the y-axis, one finds the
shear V, and the twisting moment M, at the left edge,

é;inr—u
P 8
Vi=j, T I R (112)
cosh —* —cos —
& &
.o
n T
_G-wPy M :
M,,= e e __(113)

cosh ™ — cos
8 §

According to equation 19 this combination of shears
and twisting moments is equivalent to the vertical
reaction,

sin ™
R.=V +6_M£vr_(3_#‘)l). 8
R0 4

iy Psinn ™Y
1—-3_—” S (14)
 cosh ™ cos ™%
g 8
or, with p=0.15,
sin ¢
R,-—-(],712"I—)-- S S
8 U
cosh = — cos —
& &
1;@; sinh T
1—0.29825 ——— — {-(115)

Ly T
cosh ™/ — cos T
& &

Table 9 and Figure 19 show values computed from
equation 115,
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Fraure 20,—Posrrions oF Rusunrants, Kaca Rerre-
sENTING Lrrr Havr or Rieur Hary or THE DIaGRAM
oF Reacrions, 1N Casps SHowN IN FI1GUre 19 (From
Equarion 116). Poisson's Ratio, p=0.15

TasLe 9.—Reactions R. produced al the lefi edge by aload P=1
on the z-axis al the distance w from the edge, compuled from
equation 115, and represented graphically in Figure 19, ois-
son’s ratio, p=0.16

Reaction R Reaction R
! = _lf  e— I
s s
u=gs | u=gs u=%a umgs u—is uags
1. 2840 0.7125 0.4113 0.7 0. 0427 0, 056 0. 0515
.1 10612 | 6568 L G004 .8 L0211 030 L0280
.2 . T200 . 530 L3354 .8 . 0085 L 014 <0144
.3 483G . 382 . 2636 10 L0014 SO0 . 0054
.4 2605 . 256 . 1823 1.07 « 00D
] 1423 162 L1816 || 11 =, 1
.6 L0795 . (98 L0849 )
i |

For the purpose of computing bending moments in
the supporting beams, it is of interest to know the posi-
tion of the resultant force representing the right half
of each of the symmetrical diagrams in Figure 19. The
distance, yr from the point 0, 0 to this resultant is
defined by the equation of moments,

ynﬁm Ieg£y=‘£”nydy- N S ()]

The integral on the left side of this equation becomes

in the three cases I—J, and é—), respectively. The in-

g’
tegral on the right side was determined in each of the
three cases by numerical integration. By this method
the three distances 1z shown in Figure 20 were obtained.
One may interpret these results by saying that the
resultant of the whole reaction is resolved in each case
into two sub-resultants, each representing one-half of
the diagram, and located as shown in Figure 20. An
examination of the values given in Figure 20 shows that
the following formula applies as a rough approximation:

Ya=03~us ... __ (117)

®,
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. A TapLE 10.—Reactions R, produced at the left edge by a load P=1
oy on the x-axis at a small istance u from the edge, compuled from
?quuﬂtom 119 and 120, and represented graphically in Figure 21.
E 052 n case of a simply supported edge, Poisson’s raiio, p=0.156
- FIRED EOGE 1 _"
g , Values of Rz | Values of R
= 04
g SIMFLY SUPPCATED EDGE T{ -‘;imp; Fi &d- :’I ;i;'nply ¥i mi_
. X1 1 1
: 03l f— —_— / bu]lﬁf;w edge "“‘;‘&Ea‘“ edge
£ _ i | I
5
§ ol 0 0.4535 | 0.6866 | 2.0 | 0.0474 | 0.0255
¥ y .8 | .mese | .ess8 | 25 ) . L0121
z .5 3195 | .4074 || 3.0 | .0210 | 0064
: IR S . 3.6 | 0154 | .0030
2 oid — Lo | Uil | 1882 | 40 | L0070 L0022
] LG | .0819 | 0603 |
. / i —
A =2 -tu -t o u 2u Fu 4.\1 -
s oF and at point 0, 0 of the fixed edge

Ficure 21.—REeacrioNs Propucep BY Loap CLose TO

Epce (rrom Equartions 119 axp 120, AND TapLe 10)
In CasE oF SIMPLY SUPPORTED Epar, PolssonN's Rario,

p=0.15

When the distance u from the edge to the load be-
comes small in comparison with the span, one may
simplify equation 114 by substituting,

Tl
sin
&

MUY _TY a TY(TU T e
< sinh S,cosh8 cos 232(!}'1'%)-

Then one finds

P u u?
Rs=§“'_;u£+?72(l+#+2(1"#)i¢2+_,y2)— --(118)

or, with p=0.15,
P ]
1 +;478;3__)“___(Ug)

R.=0.1830- — ;,(1
“14L
u?

When the edge is fixed, one finds, by a procedure similar
to that which led to equation 110,

1 P 0.6366
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Table 10 and Figure 21 show results computed from
equations 119 and 120.

1f  is substituted for 4 in equations 118 to 120, these
equations may be interpreted as defining the reaction
R, produced at point 0, 0 by aload P at point 2,%. In
terms of polar coordinates, with x=rcos 8, y=7 sin @,
oam finds then at point 0, 0 at the simply supported
edge

1+%

R, (120

P cos 0
R.,= ;:j— (14 p+2(1— u) cos? 0)- .. (121)

2P

R,=; cos® 0. _ .. ___._-.._(122)

One may use these formulas to determine the reaction
er unit of length produced at point 0, 0 when the load
is distributed uniformly over the area of a small
circle with diameter ¢, tangent to the edge at point 0, 0.
By integrating over the area in the same manner as in
deriving equation 111, one finds at point 0, 0 of the
simply supported edge

Bl :
By="g" memmmrommne (123)
and at point 0, 0 of the fixed edge
3P
Rz=—TE,__. _____..-.....__(124)

It is noted that % is the value that would be obtained

if the force were distributed uniformly over the length
of the circumference of the circle. At the fixed eﬁge
the twisting moments are zero, and R, is the same as
the shear 1%,. At the simply supported edge, on the
other hand, the presence of the twisting moments
cause R, in equation 123 to be larger than the shear
V. at the same point. One finds at point 0, 0

Ve=""0 oo -(125)

That is, the shear V, at point 0, 0 is twice the value that
would be found by distributing the load uniformly over
the circumference of the circle.
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