MICHIGAN DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION

```
CAPACITY AND LEVEL
OF SERVICE ANALYSIS
    US-23 BYPASS
    SOUTH OF STANDISH
```

 August 25, 1976


```
MICHIGAN DEPARTMENT
OF
STATE HIGHWAYS AND TRANSPORTATION
```


CAPACITY AND LEVEL
 OF SERVICE ANALYSIS
 US-23 BYPASS SOUTH OF STANDISH

August 25, 1976

> This report represents the findings and/or professional opinions of the Michigan Department of State Highways and Transportation staff and not an official opinion of the State Highway Commission.

STATE HIGHWAY COMMISSION

WILLIAM G. MILLIKAN, GOVERNOR

DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION

STATE HIGHWAYS BUILDING. 42S WEST OTTAWA
PHONE 517-373-2090

POST OFFICE BOX 30050 , LANSING. MICHIGAN 48909

JOHN P. WOODFORD, DIRECTOR

August 25,1976

Mr. Sam F. Cryderman, Deputy Director
Bureau of Transportation Planning
P. O. Box 30050

Highway Building Lansing, Michigan 48909

Dear Mr. Cryderman:
Documented in this report are the results of a capacity and level of service analysis for US-23 south of Standish to $M-65$. Included are tables, maps and summaries of data obtained to supplement previous traffic analysis conducted as part of a Corridor Location Study.

This report was prepared by Transportation Planner Joseph F. Valente, under the supervision of Robert M. Kirkbride. Both are under the supervision of Maynard A. Christensen of the East Central Multi-Regional Section.

Keith E. Bushnell, Administrator Multi-Regional Planning Division

MICHIGAN The Great Lake State
Page
I. Introduction
II. Procedures for Determining Capacity and Level
of Service 4
III. Research Material Used to Determine Capacityand Level of Service 7
IV. Major Factors Influencing Future Development Along Corridors A and B 8
V. Tables for Do-Nothing, Corridors A and B 10
VI. Standish Data 12
VII. Omer Data 13
VIII. Corridor A Data. - 16
IX. Corridor B Data. 21
X. Conclusion. 50

INTRODUCTION

This report presents the results of a capacity and level of service analysis for US-23 south of Standish to M-65. Data furnished is intended to supplement previous traffic analysis conducted as part of a corridor location study.

Alternatives considered were Do-Nothing, Corridor "A", and Corridor "B". The three alternatives were also analyzed with parking and without parking, as parking is a critical element requiring consideration in order to establish capacity. other elements required, and which were used to determine capacity and level of service, were lane, width, percent commercial vehicle traffic, percent sight restriction, practical hourly capacity, urban and rural segments of US-23, population and terrain. One element limiting, and often interrupting the flow of traffic on a highway, especially one in an urban area, is the intersection at grade. Because so many factors influence interrupted flow through intersections, it is not feasible to define "ideal conditions" as was done in the above mentioned corridors. Rather, interrupted flow criteria was developed around typical or average conditions. Factors used to adjust hourly capacity on rural roads were obtained by using level of service "C" for ideal conditions and level of service "D" was used for urban segments.

PROCEDURES FOR DETERMIND CAPACITY AND LEVEL OF SERVICE

Capacity Analysis

Separate procedures are required for rural and urban capacity determinations.

Rural Highway sections capacity is determined as CXWXAXT = Capacity C = Practical hourly capacity based upon a highway, which has 12foot lanes, perfect alignment and no truck traffic. "C" is bidirectional for undivided highways and directional for divided highways.
$W=$ Factor for lane width less than 12 feet.

A = Factor based upon percent sight restriction.
T = Factor based on percent commercial vehicle traffic.

The capacity value "C" is taken from Table 10.7 page 302 of the Highway Capacity Manual 1965. The alignment factor "A" is based on the percent of passing sight distance restriction by the total section length. The values for the alignment factors were taken from the Highway Capacity Manual 1965 and the percents from the Michigan Highways 1974 Sufficiency Rating.

The width factor "W" is based on the average lane width with 12foot lanes considered as the maximum. These factors are shown in the Highway Capacity Manual 1965. The truck factor "T", including Terrain, were taken from the Highway Capacity Manual 1965 ,
the percent of commercial vehicles was taken from the Standish External O\&D Survey 1973.

Urban Capacity Determination

For an urban section of highway, capacity is first determined on the basis of an urban intermediate area with a population of $1,000,000$ and then factored, based on population of the urban area. Capacities represent conditions at level of service "D" with a peak hour factor of 0.85 . Capacity is adjusted based on type of parking. Practical hourly capacities for two-way urban streets, based on surface width and type of parking, were taken from Highway Capacity Manual 1965. These capacities properly factored based on population are for intermediate areas which include the fringe areas, the outlying business districts, and residential areas as defined on page 19 of the Highway Capacity Manual 1965. For the central business district a land use factor is used.

Level of Service

Once the capacity has been determined for the appropriate roadway segment it is divided into the 30 th high hour. The result being the V / C ratio or level of service. Level of service is a qualitative measure of the effect of a number of factors, which includes speed and travel time, traffic interruptions, freedom to maneuver, safety, driving comfort and convenience, and operating costs. The V/C ratios once known are converted to levels of service by use of the chart on page 6 of Michigan's Statewide Traffic Forecasting Model Volume $1-H$ 1973. A ratio of 1.00 , equivalent to level "C", or less indicates the level of service is adequate, a ratio greater than 1.00 indicates a capacity deficiency.

Average Daily Traffic (ADT) and Design Hour Volume DHV (30th High Hour) were used on the data compiled in T.A.R. 非 $276-B$. $A D T ' s$ and DHV's were projected for the years 1982, 1985, 1990, 1995 and 2000 with the base year being 1971. In addition to the data given traffic was forecasted, for the mentioned years, for the urban segments of US-23 in Standish and Omer. These predictions will follow in this report.

1. Field Review
2. T.A.R. \#276-B, February, 1976.
3. Highway Capacity Manual 1965.
4. Standish External Origin-Destination Survey 1974 .
5. Michigan Highway 1974 Sufficiency Rating.
6. Michigan Statewide Traffic Forecasting Model Vol. 1-H 1973.
7. "Population Projections of the Counties of Michigan" State of Michigan Research Division, Bureau of Programs and Budget

MAJOR FACTORS INFLUENCING FUTURE DEVELOPMENT

ALONG CORRIDORS A AND B

Existing US-23 will continue to provide services where productions are confined to the local areas. It will further serve as a primary collector of traffic destined for freeway travel. owing to the various recreational attractors, the predominance of volumes on US-23 relocated will be through trips with design hours occuring during the peak recreational season. The bypassing of many of these coastal towns will eliminate the congestion of recream tional traffic in those communities.

Based upon the proposed alignments, US-23 will bypass the city of Standish, the following assumptions are made:

1. Provision of a more direct and efficient route north from Saginaw, Bay Gity area to existing US-23 northeast of Standish.
2. Trips with origins and destinations in the immediate area will continue to utilize existing facilities.
3. In view of the fact that $\mathrm{JS}-23$ is one of the major north-south corridors and the relation of its alignment west of the lakeshore facilities from Standish, traffic will primarily be recreational with through trips attracted to the limited access facilities.
4. Projected data indicates a sizeable increase in volumes and resultant high design hours during peak recreational activity.

LEVEL OF SERVICE

NO RESTRICTION ON OPERATING SPEED

APPROACHING UNSTABLE FLOW -LITTLE FREEDOM TO MANEUVER

STABLE FLOW - FEW SPEED
RESTRICIIONS

STABLE FLOW - HIGHER VOLUMES -
RESTRICTED SPEED and LANE CHANGING

FORCED FLOW OPERATION AT LOW SPEEDS - MANY STOPS

V/C RATIOS AND LEVEL OF SERVICE/US-23

V/C RATIOS AND LEVEL OF SERVICE/US-23

NO PARKING

US-23, From M-65 to Omer

Omer Business District

US-23, From Omer to Standish City Limits US-23, From C.L. S. to Main St./Standish Main St., From River St., S. to Beaver St.* Main St., From Beaver, S. to Cedar St. * Main St., From Cedar, S. to City Limits* US-23, From City Limits, S. to By-Pass*

DO-NOTHING

1971	1995
.947 C	1.774 F
.947 C	1.724 F
1.071 C	2.011 F
1.199 D	2.092 F
.919 C	1.626 F
.995 C	1.754 F
1.061 C	1.863 F
.625 B	1.218 D

CORRIDOR "A"

1982		1985		1990		1995		2000	
1.220	D	1.236.		1.292	D	1.348	E	1.404	E
1.116	C	1.156		1.237	D	1.332	D	1.413	E
. 365	A	. 365	A	. 373	A	.397	A	. 414	A
. 426	A	. 402	A	. 426	A	. 484	B	. 476	B
. 394	A	. 414	A	. 439	A	. 510	A	. 525	A
. 414	A	. 434	A	. 494	A	. 545	A	. 585	B
. 434		. 464		. 535	A	. 595	B	. 621	B
. 294	A	. 315	A	. 347	A	. 395	A	.403	A

Level

SERVICE		LANES
LANES		
A	0.286	0.400
B	0.643	0.667
C	1.000	1.000
D	1.214	1.200
E	1.428	1.333

* 4 LaNES

BASE AND FUTURE YEARTRAFFIC FORECASTS19711982

$$
1985
$$

$$
1990
$$

$$
1995
$$

$$
2000
$$

STANDISH/OMER
(BUSINESS DISTRICT)

CORRIDOR A 1985
ADT/DHV
0000
(00)

CORRIDÓR A 1990
ADT/DHV
0000
(00)

CORRIDOR B 1985
ADT/DHV
0000

CORRIDOR B 1990
ADT/DHV
0000
(00)

CORRIDOR B 2000
$A D T / D H V$

CITY OF
OEVER
ARENAC CO.
OR TION ZOE-1970 CENSUS.
STREET SYSTEMS
ACt 51 puslic acts 1951

CITY OF
OMER
ARENAC CO
pOP उEE-1970 CENSUS

STREET SYSTEMS

ACT 51 PUEZIC ACTS 1951

BASE AND FUTURE YEAR TRAFFIC FORECASTS

1971
1982 1985 1990
1995 2000

ARENAC COUNTY

CORRIDOR A

$$
\frac{2000}{A D T / D H V}
$$

US-23 FREEWAY OPEN TO AIPENA.

CONCLUSION

A deficient level of service is shown on US-23 for 1971 from the city limits on both ends of Standish into the business district. All other segments are approaching dificient levels, along US-23. Taking the "Do-Nothing" alternatives into consideration the 1995 level of service on all segments will show a level of service "F" which is critical. The Do-Nothing approach shows level of service "F" with parking and without parking. A field trip to the study area noted that there was metered parallel parking on both sides of the state trunkine in the city of Standish. If parking were removed, traffic would tend to flow smoother during the week, however, during the week-ends traffic would continue to be congested because there would be three lanes in one direction merging to one lane at the north end of Main Street. Since this is primarily a recreational route Northbound traffic will peak on Friday night and Southbound traffic will peak on late Sunday afternoon. By 1995 removal of parking will have little or no significance as capacity deficiencies will remain critical.

Corridor A with parking or without parking relieves congested traffic from the city of Standish, but would not relieve capacity deficiencies in the village of Omer. Recreational vehicles would be getting off the assumed by-pass just west of Omer to get to the coastal towns such as Tawas and AuGres, which have a high concentration of recreational facilities.

Corridor B would relieve traffic from Standish and Omer because the assumed by-pass would extend to the east of Omer crossing US-23 near M-65. The majority of the traffic, being recreational, would
by-pass Standish and Omer, therefore, reducing congestion and improving the level of service from "E" to a free flow level of service from "A".

