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BACKGROUND 
 
When checking gusset plates at sections other than at the point of intersection of the chords, 
eccentricity of the forces may introduce bending forces in the plate.  The width of the section 
tends to be longer than the unbraced length, and so a small eccentricity may produce 
compressive bending stresses equal to or greater than the pure axial loading.  Due to concern 
over buckling under compression, these combined effects should be evaluated. 
 
While evaluating the tragic collapse of I-35W in Minnesota, these combined forces were 
evaluated by Holt (1) in the Federal Highway Administration (FHWA) Turner-Fairbanks 
Highway Research Center Report against: 
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where L is the unsupported length and r is the radius of gyration of the member, both in inches. 
This equation is related to the buckling stress of a column.  In contrast to this, the FHWA Bridge 
Design Guidance No. 1, Load Rating Evaluation of Gusset Plates in Truss Bridges, Parts A and 
B (2), suggested, in a draft version, that combined axial and bending forces should be evaluated 
against fy, the yield strength of the material.  Upon further investigation, the FHWA Bridge 
Design Guidance No. 1 was modified to state that gusset plates act as deep members and this 
check is not required.  While it will be shown that the proposed method is conservative, the 
authors of this report feel that this check will provide assurance to bridge owners that the intent 
of the historic criteria (see Eq. 1 above) is being met. 
 
Upon inspection, a number of differences can be found between the case of a concentrically 
loaded column and the free body diagram of a gusset plate.  In the case of a column, a four sided 
plate is loaded at opposing edges.  These edges may be simple or fixed, and are assumed to be 
loaded uniformly in compression.  The perpendicular edges are free, or unsupported.  The 
stiffness of the plate is generally also uniform across the section.  Finally, multiple modes of 
buckling may form in the column dependent upon the geometric properties of the section. 
 
In contrast to the properties of a column discussed above, the section of a gusset plate is not 
similar to a column.  The four sided section is loaded at opposing edges, which may be simple or 
fixed, but the loading is not uniform due to the eccentric loading.  One perpendicular edge is 
free, however the other edge may be fixed, simple, or some case in-between due to the 
connections with the truss members.  The stiffness of the plate is not uniform, as triangular 
unbraced areas are formed between the truss members.  The stiffness increases as the unbraced 
length decreases, and these areas retard the buckling of the extreme fiber.  Finally, as there is 
only one free edge, the mode of buckling is critical at one half wave, as will be discussed. 
 
While current AASHTO bridge codes provide an equation for the combined axial and bending 
(or eccentric loading) of a column, this does not take into account that one of the unloaded edges 
is retrained.  Additionally, the moment capacity of a plate with an unsupported compression edge 
is not defined in the AASHTO bridge codes.  It is assumed that a reduction in moment capacity 
from beam theory, or yield stress times the section modulus, would be required to account for the 
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unbraced compression edge.  Finally, the AASHTO codes are based upon rolled section with 
residual compression stresses at the free edges.  Contrary to this, plates with flame cut edges 
have tensile residual stresses at the edge (3).  
 
ENERGY METHOD 
 
In order to analyze the special case of a gusset plate under combined axial and flexural loads, we 
returned to plate buckling theory.  In a paper by Lundquist and Stowell (4), the energy method is 
used to determine the critical buckling stress of a plate under uniform compression with varying 
levels of edge restraint (from fixed to simple) of one unloaded edge.  The opposite unloaded 
edge is free.  Loaded edges are simply supported.  The critical stress is obtained from the 
condition of neutral stability: 
 
T=V1+V2          Eq. 2 
 
Where T is the energy from the loading, V1 is the energy of the plate resisting the load and V2 is 
the energy of the restraining edge resisting the load.  For our case, in order to be conservative, 
we are assuming that the restraining edge is simple and does not contribute to the resisting 
energy.  Therefore, V2=0 and Equation 2 simplifies to: 
 
T=V1           Eq. 3 
 
Lundquist and Stowell (4) further define the energies as: 
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Where:  
 
w is the deflection perpendicular to the plane of the plate 
 

( )2

3

1*12
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=

tED  and is the flexural rigidity of the plate 

  
f is the compressive force 
t is the thickness of the plate 
λ is the length of the half wave 
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υ is Poisson’s ratio of the material 
and a, b, x and y are as shown in Figure 1. 
 
 

 
Figure 1: Plate with three restrained edges and one free edge under compressive loading 

 
In a series of steps in Lundquist and Stowell (4) the deflection equation is found as: 
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where a1, a2 and a3 are constants that help to describe the shape caused by the restraint 
coefficient ε.  As we are assuming the edge to conservatively be simply supported, ε=0 and these 
terms drop out, leaving: 
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In evaluating this equation, Timoshenko (5) found that the smallest buckling stress is when there 
was only one half-wave, or λ = 1*a.  This implies that the plate will only buckle in this one 
mode, as the critical stress is first reached in this shape.  Substituting this value into Eq. 7 we are 
able to find the required derivatives of the deflection equation. 
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Timoshenko (5) also evaluated a case with variable loading and all sides of the plate simply 
supported.  In this case, the deflected shape did not change as compared to the uniformly loaded 
case, but the force, f, in T (Eq.4) changed from a constant to an equation based on y.  Figure 2 
identifies the loading situations considered for the gusset plate. 
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Figure 2: Loading cases for plate simply supported at y=0 and free at y=b 

 
In Figure 2, σb is the bending stress and σc is the pure axial stress.  A discontinuity occurs when 
σc=0, and so a different equation will be created for this case.  In the case that there is a 
compressive force, the force equation can be represented as: 
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Examining Figure 2 and solving at known points of f(0) and f(b) we find the values of m and C.  
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Combining Eqs 13 and 14 it follows that,  
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The force equation then becomes: 
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where yNA is the distance (a constant) from the free edge to the neutral axis of the bending force.   
 
Substituting Eqs. 8 and 16 into Eq. 4 and then solving the double integral we find: 
 

( )∫ ∫
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+=

b

dydx
a

x
ba

yAtCymT
0

2

2

2

**sin*
*

******
2
1

λ

λ

ππ  

 

( )∫ ∫
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

b

dydx
a

x
ba

yACymtT
0

2

2

2
22

222

**sin*
*

*****
2

λ

λ

ππ  

 

( )∫ ∫
−

⎟
⎠
⎞

⎜
⎝
⎛+=

b

dydx
a

xyCym
ba

AtT
0

2

2

22
22

22

**sin****
**2
**

λ

λ

ππ  

 

( )
2

2
0

2
22

22 **2sin*
42

****
**2
**

a

a

b

dy
a

xaxyCym
ba

AtT
−

∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+=

π
π

π  

 

( )∫
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−+=

b

dy
a

aaa
a

aaayCym
ba

AtT
0

2
22

22

2*
**2sin*

42*22*
**2sin*

42*2
****

**2
** π

π
π

π
π

 

( )∫ +=
b

dyayCym
ba

AtT
0

2
22

22

2
****

**2
** π

 

 

6 



b
yCym

ba
AtT

0

34

2

22

3
*

4
**

**4
**

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

π
 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

3
0*

4
0*

3
*

4
**

**4
** 3434

2

22 CmbCbm
ba

AtT π
 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

3
*

4
**

*4
** 222 bCbm
a

AtT π        Eq. 17 

 
From Timoshenko (5), we know the double integral of the energy from the plate’s resistance 
simplifies to: 
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and using Eqs. 17 and 18 to solve Eq. 3: 
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After substituting Eq. 15 into Eq. 19 we can solve: 
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And then substituting Eq. 14 into Eq. 20: 
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If we let z be the ratio of the bending and compressive stresses, or: 
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then we can solve for σc,: 
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Once the compressive stress is found, the total stress can be found by: 
 

( zccrit += 1* )σσ          Eq. 24 
 
If the compressive stress is zero, then z cannot be found using Eq. 24.  For the case where the 
plate is in pure bending, Eq. 21 can be simplified as: 
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As can be seen, the critical stress is dependent upon the ratio of the compressive and bending 
forces, the geometry of the plate and the modulus and poisson’s ratio of the material.  Given 
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these inputs, the critical buckling stress can be found analytically.  In order to compare to 
tabulated values, the k factor, or buckling coefficient, can be found from the critical stress as: 
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COMPARISON OF ENERGY METHOD TO TABULATED VALUES 
 
Values for the minimum buckling coefficient, k, have been tabulated by Johnston (6).  These 
factors are related to the ratio of the compressive and bending stresses, and do not take into 
account the geometry of the plate, as do Eqs. 23 and 25.  
 
However, if we use a long plate in Eqs. 23 and 25 and assume a few material properties the 
calculated buckling coefficient can be compared with the tabulated values and are shown in 
Table 1.  The calculations are shown in Appendix A. 
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Table 1: Long Plate Minimum Buckling Coefficients, k 

Long Plate Minimum Buckling Coefficients, k 

Z 
Tabulated 

Value 
Calculated 

Value 
0 pure compression 0.42 0.426 
1 σc = σb, max comp. stress at free edge 0.57 0.567 
∞ pure bending 0.85 0.851 

 
 
COMPARISON OF ENERGY METHOD TO FINITE ELEMENT VALUES 
 
As the tabulated values only cover long, rectangular plate geometries, Finite Element Analyses 
(FEA) were performed to further evaluate the accuracy of the energy method.  The program 
GTStrudl was used to create the models.  Known solutions of classical buckling theory were 
used to verify the elastic buckling FEA models prior to applying it to these cases.  Various ratios 
of loading and geometry were analyzed.  GTStrudl generated a non-dimensional buckling 
multiplier, buck, (not to be confused with k, the buckling coefficient), which could then be 
converted into a buckling stress. 
 

max*σσ buckcrit =          Eq. 27 
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The buckling stress from GTStrudl is compared with the critical buckling stress found using the 
Energy Method in Table 2.  The Energy Method calculations are shown in Appendix B.  
 

Table 2: FEA Model versus Energy Method for various geometric and loading ratios 
Plate 

Dimensions Loading Values at edge FEA Model Energy 
Method Difference 

a (in) b (in) Simple (ksi) Free (ksi) Buckling 
Multiplier σcr (ksi) σcr (ksi) % 

18 18 2.0 2.0 14.19 28.38 28.83 -1.56% 
18 36 2.0 2.0 10.97 21.94 22.36 -1.88% 
36 18 2.0 2.0 6.76 13.52 13.66 -1.02% 
18 18 0.0 4.0 9.46 37.84 38.44 -1.56% 
18 36 0.0 4.0 7.07 28.28 29.83 -5.20% 
36 18 0.0 4.0 4.52 18.08 18.22 -0.77% 

 
 
COMPARISON OF ENERGY METHOD TO FINITE ELEMENT VALUES FOR 
SAMPLE GUSSET PLATE 
 
The Energy Method formulas are based upon a rectangular section.  In the truss gusset plates that 
drive the need for this analysis method, the actual section in combined bending and axial forces 
is triangular in shape.  The unbraced length, a, is taken at the free edge.  The loaded edge, b, is 
taken to be the distance from the loaded edge to the joint center.  
 
A sample gusset plate was analyzed using the Energy Method and also by FEA.  It is not 
assumed that the values will be the same, as the stiffness of the plate itself will decrease from the 
simple edge to the free edge (as y goes from 0 to b).  However, it is assumed that the Energy 
Method will be conservative as the smallest stiffness will be applied to the entire plate. 
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Figure 3: Chord loading on sample gusset plate 

 
The sample ½ inch gusset plate is shown in Figure 3.  The factored loading of the chords is also 
shown.  The gusset plate was digitized from shop drawings to generate the dimensions.  In order 
to apply the Energy Method, sections were chosen.  For this example, the sections were taken at 
the top edge of the bottom chord (Section 1) and at the right edge of the vertical (Section 2).  The 
factored axial compressive stresses were found at these two sections as well as the factored 
bending stresses.  The axial and bending stresses were combined at the edge of the section (the 
free edge) and at the point where the plate is assumed to be simply supported.  For Section 1, the 
plate was assumed to be simply supported at the extension of the joint center.  For Section 2, the 
plate was assumed to be simply supported at the edge of the horizontal chord.  Dimension a was 
found as the length of the free edge and b is the distance from the free edge to the assumed point 
of simple support.  Figure 4 demonstrates how these distances were measured for the sample 
gusset plate. 
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Figure 4: Measured distances for Sections 1 and 2 of a sample gusset plate 

 
Using the stresses and plate dimensions found from the sample gusset plate, idealized rectangular 
sections were analyzed according to Eqs. 24 and 25.  Table 3 documents the Energy Method and 
FEA for the idealized gusset plates.  The idealized gusset plate Energy Method calculations are 
given in Appendix C. 
 

Table 3: FEA Model versus Energy Method for sample gusset plate 
Plate 
Dimensions 

Loading Values 
at edge FEA Model Energy 

Method Difference 
Section 
Location 

a (in) b (in) Simple 
(ksi) 

Free 
(ksi) 

Buckling 
Multiplier σcr (ksi) σcr (ksi) % 

Section 1 36.7 45.0 2.0 3.5 1.97 6.90 6.99 -1.36% 
Section 2 13.0 34.5 11.8 27.1 1.70 46.07 47.87 -3.76% 

 
In addition, the entire gusset plate was modeled, rather than the sections that have been analyzed 
as idealized rectangles.  Gusset plate thicknesses were increased in the areas overlapping with 
chord members, as indicated by the darker areas in Figure 3, to reflect the increased stiffness 
provided by the chord members.  Loading on the gusset plate was through all the nodes in 
contact with the chord members, as shown in Figure 5.  
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Figure 5: Regions of loading for sample gusset plate FEA model 

 
The buckling coefficient of the entire gusset plate for the calculated loads was much higher than 
the coefficient calculated for a particular rectangular section.  An iterative process was used that 
reduced the stiffness of the portions of the gusset plate at yield until changing the stiffness had 
little effect on the buckling multiplier.  The FEA buckling multiplier for the gusset plate was 
6.27, demonstrating the conservatism of the Energy Method (see Table 3 where the buckling 
multiplier calculated was near 2) and the reserve safety.  Figure 6 shows the anticipated buckled 
shape of the entire gusset plate from the FEA model.  The plate has been rotated to best show the 
buckling.  Figure 7 shows the minimum principle stress contours for the final iteration of 
stiffness.  
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Figure 6: Anticipated buckled shape of entire sample gusset plate 

 
 

 
Figure 7: Stress contours (psi) in entire sample gusset plate 

 
RESISTANCE FACTORS 
 
The equations above generate critical stresses based upon the energy method.  In order to apply 
to current codes, resistance factors should be evaluated.  In Load Factor Design (LFD), the 
compressive resistance is reduced by a factor of 0.85 in Eq. 10-150 (7).  The flexural resistance 
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of a column is not reduced, or has a factor of 1.0.  In Load and Resistance Factor Design 
(LRFD), Section 6.5.4.2 of the code (8) gives the axial compressive resistance factor as 0.9 and 
the flexural resistance as 1.0.  Resistance factors can readily be inserted into Eq. 24. 
 

( zcccrit += )φσσ *1*          Eq. 28 
 
where φc is the compressive resistance factor, dependent upon the code used.  As the bending 
resistance is 1.0 for both LFR and LRFR, there is no need to modify Eq. 28 for flexural 
resistance or Eq. 25 for the pure bending case.  Should the critical buckling stress exceed the 
yield stress of the material, the yield stress would control. 
 
SUMMARY 
 
A solution to solving the combined axial and flexural stress resistance is needed in order to 
accurately load rate existing gusset plates.  An approximate solution can be found using the 
Energy Method.  This solution is conservative as it is developed based on a rectangular plate, 
while the actual shape is more likely triangular or trapezoidal.  The increasing stiffness of the 
triangular shape will retard buckling at the extreme edge, and therefore the actual critical stress 
should be higher than that generated under this method.  While this method is conservative, it is 
our belief that it more correctly models the plate resistance than the two methods currently 
proposed, either using the equation for buckling under pure compression or the yield strength of 
the material.  
 
The critical buckling stress for a gusset plate can be calculated as follows: 
 

1. Calculate the concurrent forces in the plate. 
2. Chose the sections to be analyzed, placing the sections so that the eccentricity is 

maximized.  
3. Calculate the axial stress, σc, based on the overall section dimensions and concurrent 

forces.  Load factors should be included. 
4. Calculate the bending stress, σb, and yNA based on the overall section dimensions and 

concurrent forces.  Load factors should be included. 
5. Set a equal to the unbraced length of the free edge. 
6. Set b equal to the distance from the free edge to center of the joint. 
7. Calculate z: 
8. If 0=cσ  then  0=z
 

c

bz
σ
σ

=  otherwise 

 
9. Calculate σcrit: 
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10. Evaluate bccrit σσσ +≥ . 
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Appendix A 
Comparison with Tabulated Values of Long Plates
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Comparison with Tabulated Values of Long Plates
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Appendix B 
Comparison with Finite Element Analysis
for Various Geometries and Loadings
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Appendix C 
Comparison with Finite Element Analysis of
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