

MICHIGAN STATE HIGHWAY DEPARTMENT Charles M. Ziegler State Highway Commissioner

LOAD DEFLECTION TESTS ON CORRUGATED METAL SECTIONS

By

M. J. Huber Civil Engineering Department, Michigan State College

L. D. Childs Physical Research Engineer, Michigan State Highway Department

An Investigation for the AASHO Bridge Committee, by the Michigan State Highway Department in cooperation with the Bureau of Public Roads; the Armco Drainage and Metal Products Company Inc.; the Republic Steel Corporation; and United Steel Fabricators, Inc.

> Research Laboratory Testing and Research Division Report No. 151 October 20, 1950

LOAD DEFLECTION TESTS ON CORRUGATED METAL SECTIONS

SYNOPSIS

Sample sections of corrugated metal plate of four different metal thicknesses and three types of corrugations were tested as beams and columns. Beam tests were made on plates formed to two curvatures, and column loading was applied to plates of three curvatures, one being the straight section. The connections were also studied.

Some of the outstanding results are: (a) the order of ability to support load is, first, the 2- by 6-in. box type, second, the 2- by 6-in. circular arc, and third, the 1-3/4- by 6-in. circular arc; (b) within each type, the strength increased with metal thickness; (c) the lap joint is more efficient than the butt joint for all tests except the straight columns; (d) double bolting of lap joints is more efficient than single bolting in the transfer of thrust as demonstrated in the short column tests; and (e) the fiber stresses at failure are practically the same for each curvature studied.

An important conclusion is that culverts may be designed on the basis of section modulus for 1-1/2-in., 1-3/4-in., and 2-in. depth for the circular arc type corrugation and 2-in. depth for the circular arc type corrugation and 2-in. depth for the box type.

TABLE OF CONTENTS

Title Page	ø	0	v	o	Ð	۰	o	0	۰	٩	Q	•	0	0	
Synopsis	o	o	0	ø	•	ò	0	† 8	•	•	•	Ģ	٥	ຄ	т
Table of Contents	o	ø	σ	¢	o	ą	Ð	ŧ	Q	٥	e	e	¢	ę	
Table of Figures	٥	Ð	۰	¢	ο.	a	0	٥	ó	0	0	٥	D	P	
List of Tables	0	v	ø	9	0	0	•	0	o	0	a	n	ō	ø	
Preface	٥	¢	۰	ø	G	9	c	o	Q	۰	C	e	Ð	Ð	
Introduction	٥	¢	¢	o	o	a	۰	٠	o	ö	¢		٥	Ď	9
Purpose of Investigat	ion	\$	0	D	e	0	•	o	0	•	0	e	0	0	9
Scope of Investigatio	n			~				•	~						10
Specimen Descript	ຳດກ	U		•	•	v	v		-	Ū	v	v	Ŷ	5	10
Delt Description	LULI	0	ø	0	9	Q	ø	4	0	Q	¢	o	¢.	e	10
Bolt Description	9	0	٥	o	. 0	0	۰	,o	0	٥	0	e	٥	0	12
The Six Tests .	Q	ø	Ŷ	0	ø	o	Q	0	0	ø	۰	ø	٥	ø	12
The Number of Sam	ple	ទ	•	0	¢	•	ò	ú	0	Ģ	0	0	0	à	15
System of Identif	ica	tion	ı	0	0		0	0	0		•	•	•	6	15
Supplementary Stu	die	g		-	- -	,		, ,			č		°	-	16
warphromotioes a work	(*** <u>*</u> ** ***	-	0	v	÷	v	Š	•	0	ů	v	æ	¢.	v	20
Testing Program	o	ø	°	ø	٥	D	8	n	ø	o	Q	o	•	a	19
Deceription of Annama	+														10
Describator of ubbara	របះក	Q	0	0	¢.	0	¢	0	Ð	Ρ.	0	ø	C	4	1.9
lest procedure	٥	¢	0	۰	ø	0	•	٥	Ð	٥	ø	0	ø	o	K 4
Miscellaneous Tests	ò	0	¢;	0	ο '	0	o	٥	Q	٥	٥	٥	¢	Ð	26
Observations	a	U	o	¢	ø	o	٥	٥	o	٥	•	ø	0	0	27
ECC C. C													•		0.0
Effect of Corrugation	. 🕈	Q	0	0	ė	۶	0	0	0	¢	¢	e	ņ	9	21
Strain Measuremen	ts	o	9	•	٥	o	o	0	o	υ	0	o	¢	۰	32
Effect of Gage 。 。	o	ð	ø	e	ŭ	•	e	e	e	•	e	. 0	a	o	47
Performance and Effic	ien	cv c	of J	loir	nts	~	•		~						56
A Discussion of Joint	An	tion				,c	-	•	•	ţ		v	•	•	50
A Discussion of corne	nc	0100	•	·0	0	0	ò	ø	0	¢	0	•	Ð	0	00
Bolt Strains	•	<u>^</u>	0	• ~	٩	9	0	۰	v	o	0	٥	ş	¢	60
Effect of Varying the	Rad	dius	; of	Cι	1L A E	itur	e	0	•	o	•	۰	0	0	65
Bolt Torque Tests .	o	0	٩	o	٥	0	٩	0	0	v	0	Ð	٥	ø	67
Summary of Principal Con	clu	sion	IS	¢	e	o	ø	o	o	0	o	0	şı	ø	68
Detailed Analysis of Con	clu	sion	ıs	0	0	Ð	٥	6	e	o	0	ø	Đ	Ŕ	69
				_											
1. Design by Use of	Sec.	tion	ı Mc	dul	lus	•	Ð	٥	0	٥	•	0	Q	0	69
2. Gage Efficiency w	ith	1-3	5/4-	- ar	1d 2	2-in		Dept	h	of	Cor	rue	ati	on	70
3. Efficiency of Lan	Jo	int.c	, -		. ^			- <u>r</u>			، مسرحي	· ©			71
a postine a pro	. с. т. ". т	ada-d Artera	, 	0	0	0	ø	a	0	٥	Ð	ę	£	0	1.4.
4. LILCIENCY OF BUT	Ű J(ount	s	¢	۰	0	۰	۵	0	C	۰	ø	p	ø	12
5. Bolt Torque	9	٥	9	0	۰	•	٥	٠	0	Ģ	0	o	ø	o	72
Annendix				0								-	_	_	·74

Page

. TABLE OF FIGURES

No.	Title			Page
1	Details of Plates and Joints	٥	Ð	11
2	The Six Fundamental Tests	¢	•	14
3	150-ton Press Assembled for Test 1	•	•	20
4	150-ton Press Assembled for Test 2	6	¢	20
5	Test for Joint Slippage	D	0	20
6	A Curved Column Section Being Failed	9	0	20
7	Transfer Devices	ų	٠	22
8	Upper Loading Head	0	٠	22
9	Arrangement of Tests 5 and 6	٩	•	22
10	Method of Distributing Load	÷	e	22
11	Gage Attached to Bolt	۰	•	22
12	Influence of Corrugation on Deflections - Test 1	Ð	0	28
13	Spreading of Specimens in Failure - Test 1	÷	٥	28
14	Influence of Corrugation on Deflections - Test 3	٥	•	30
15	Influence of Corrugation on Deflections - Test 4 .	¢	o .	31
16	Typical Failures - Test 3	۰		34
17	Typical Failures - Test 4	0	0	34
18	Influence of Corrugation on Deflections - Test 5 .	٥	0	35
19	Influence of Corrugation on Deflections - Test 6 .		3	36
20	Typical Failures - Type A	o	۰	44
21	Typical Failures - Type R	ŭ	0	45
22	Typical Failures - Type U	Ð	o	46
23	Influence of Metal Thickness on Deflection - Test 1	Ð	0	48
24	Influence of Metal Thickness on Deflection - Test 3	•	٠	49
25	Influence of Metal Thickness on Deflection - Test 4	0	0	50
26	Influence of Metal Thickness on Deflections - Test 5	٠	0	51
27	Influence of Metal Thickness on Deflections - Test 6	ø	o	52
28	Modulus of Rupture vs. Gage of Metal	0	e	54
29	Seam Strength under Column Loading	0	¢	59
30	Typical Failures at Joints	٥	•	60
31	Bolt Strains in Lapped Joint	٩	c	62
32	Bolt Strains in Butt Joint	•	o	62
33	Typical Failure - Double Bolted Joints			64

No.

Page

LIST OF TABLES

TEXT

No.

P	а	£	e
-	~	~	~

1	Corrugated Plate Sizes	17
2	Load vs. Strain in Extreme Fibers of Corrugated Plate .	32
3	Unit Stress at Elastic Limit - Test 5 🔋 🖕 🚬 .	38
4	Unit Stress at Elastic Limit - Test 6 💪 🔒 🐁 🐁 🐁	39
5	Effect of Corrugation and Section Modulus on Ultimate	
	Load and Modulus of Rupture	40
6	Modulus of Rupture - Test 5	42
7	Modulus of Rupture - Test 6 。 。 。 。 。 。 。 。	43
8	Effect of Gage on Section Modulus and Ultimate Load -	
	Test 5	53
9	Average Modulus Values for OA Plates by Vawter 💧 🔒 🔒	55
10	Efficiency of Joints	57
11	Tensile Strains in Bolts - Test 5	66
12	Ultimate Bolt Torque in Foot-Pounds	67

APPENDIX

1	Manufacturers' Data on Specimens	¢		0	74
2	Chemical Analysis and Brinell Hardness	¢	\$	o	75
3 A	Physical Tests on Plate Specimens	r	,	c.	76
3 B	Additional Physical Tests on Plates and Bolts.		3	a	77
3 C	Chemical Tests on Plates and Bolts	ć		e	78
3 D	Physical Tests on Bolts	,	J	0	78
4	Deflection Due to Column Loading - Test 1	,		0	79
5	Slippage in Bolted Seams - Test 2		2	0	79
6	Vertical Deflections from Test 3	4	>	o	79
7	Horizontal Deflections from Test 3		2	¢	79
8	Horizontal Deflections - Test 4	c	,	ð	80
9	Vertical Deflections - Test 4	~	,	o	80
10	Vertical Deflections of Plain Beams - Test 5	c	,	0	80
11	Vertical Deflections of Bolted Beams - Test 5 .			٥	80
12	Residual Vertical Deflections - Test 5		,	0	81
13	Horizontal Displacement of Plain Beams - Test 5 .		,	0	81
14	Horizontal Displacement of Bolted Beams - Test 5	ć	•	•	81
15	Load-Deflection Data from Test 6	۰	,	o	82
16	Residual Vertical Deflections - Test 6		,	0	82
17	Horizontal Displacement - Test 6	4	9		82

PREFACE

Most of the published research in the field of flexible metal culverts has been done on 1-1/2- by 6-in. circular arc corrugations. Recently, 1-3/4- by 6-in., 2- by 6-in. circular arc and 2- by 6-in. box type corrugations have been produced and further testing has become necessary in order to evaluate these corrugations.

In 1948, the Bridge Committee of the AASHO proposed a comprehensive investigation of corrugated metal plates and structures for the purpose of assisting in the development of a rational basis for the design of structures using the new sections. The proposal included (1) laboratory load tests on various sizes, shapes, and gages of corrugated plate sections, and (2) field investigations on flexible structures under different loading conditions. This report is confined only to the laboratory tests.

	In order to expedite the	work, a meeting of the following group
was	arranged in Washington, D.	C. for the purpose of establishing ways
and	means of carrying out the	laboratory testing program:
	Eric L. Erickson, Chairman	- Chief, Bridge Division, Bureau of Public Roads
	Dudley P. Babcock	- Highway Bridge Engineer, Bureau of Public Roads
	Earl F. Kelley	- Chief, Division of Physical Research, Bureau of Public Roads
	Raymond Archibald	- Chairman, AASHO Bridge Committee
	George M. Foster	- Bridge Engineer, Michigan State Highway
	Tage Beck	- United Steel Fabricators, Inc.
	C. R. Clauer	- United Steel Fabricators, Inc.
	David Henderson	- Armco Drainage and Metal Products Co.
	George E. Shafer	- Armco Drainage and Metal Products Co.

T. F. deCapiteau- Republic Steel CorporationW. R. Fraser- Republic Steel Corporation

At this meeting, the Michigan State Highway Department, represented by George M. Foster, Bridge Engineer, agreed to provide laboratory facilities and to perform the laboratory tests. The three steel plate fabricators agreed to furnish the necessary test specimens and to cooperate in the investigation.

The above committee voted to place the responsibility for working out the details of the laboratory tests in the hands of a subcommittee consisting of E. L. Erickson, Chairman, G. M. Foster, and a representative appointed by each company, namely, C. R. Clauer for United Steel Fabricators, T. F. deCapiteau for Republic Steel Corporation, and George E. Shafer for Armco Drainage & Metal Products Co. At a meeting of this subcommittee in Lansing on February 25, 1949, tentative plans and procedures were established for doing the laboratory testing. It was agreed that the work should be done by the Research Laboratory of the Michigan State Highway Department and that it would consist of simple load-deflection tests on parallel specimens of corrugated plate sections currently being produced by the three participating fabricators.

As testing of specimens progressed, the subcommittee was given the opportunity of inspecting the laboratory technique and procedure. At such a meeting on August 23, 1949, the following matters were discussed: bearings for specimens; bolt torque; bolt strain measurements; extent to which plates should be deformed under load; double bolting of joints; and an interim report. Similarly, on January 24, 1950, after observing a test, the subcommittee went into executive session and discussed the following: an outline of the final report; method of graphical presentation of data; strain measurement on plates at point of maximum moment; modulus of rigidity; comparison of modulus of rupture for plates of large and small radius of curvature, ultimate torque resistance of bolts; and tests on bolted samples at 100 ft.-lb. and 200 ft.-lb. bolt torque.

At a meeting on May 10, 1950, the committee discussed the theory of flexible structures and pointed out the advantages obtained by using ultimate strengths and modulus of rupture values for comparison of corrugation stability. The result was a decision to tabulate the unit stress at yield point and the modulus of rupture at ultimate load for each plate.

At a meeting in East Lansing on August 29, 1950 the committee reviewed a preliminary report of the complete results of the investigation. A draft of the final report incorporating the findings of the Research Laboratory and conclusions formulated in the committee was approved for presentation in brochure form. It was understood that this report was to be subject to final committee approval before publication.

LOAD DEFLECTION TESTS ON CORRUGATED METAL SECTIONS

INTRODUCTION

Purpose of Investigation:

The tests on corrugated plates were designed to furnish data which would aid in the solution of the following three problems:

1. Are cross-sectional area and section modulus sufficient information upon which to compute the strength of corrugated metal under bending and direct stress?

2. Can the experience in the use of the old style 1-1/2-in. corrugation be used for the design of 1-3/4-in. and 2-in. corrugation depths with proper allowance for the increased section modulus?
3. Do the methods of joining the plates fully develop the strength of the plates in bending and thrust?

The answers to these questions required many tests together with a correlation of the test results. In order to keep the laboratory program as simple as possible, the work was segregated with the following specific aims in mind:

1. To study the influence of size and shape of corrugation on the plate deflections due to loads.

2. To observe the effect of metal thickness upon plate deflections.

3. To compare the efficiency of single-bolted and double-bolted fastenings.

4. To observe the performance of butt joints versus lap joints.

5. To investigate the effect of bolt torque on joint action.

6. To measure the stresses in the bolts at plate failure.

7. To study the influence of plate curvature upon the magnitude of the extreme fiber stress.

-9-

Scope of Investigation

Specimens to be tested were obtained from three sources, each supplier furnishing at least one style of corrugation. Three parallel samples were submitted for each of ten tests for each metal gage. Two suppliers furnished some old-style material in addition to the style currently being manufactured in order that there might be some basis for correlating the results of the present test with those performed earlier by (1) Jamison Vawter.

<u>Specimen Description</u> - The corrugation designated as Type A is a circular arc type. The depth is 1-3/4 in. and the pitch 6 in. Details are given in Figure 1 A. Sections are joined by a lap joint with high tensile bolts spaced as shown in the sketch.

Another style plate submitted by the same manufacturer is also shown in Figure 1 B. This OA type has a corrugation depth of 1-1/2 in. and a 6-in. pitch. The lap seam is used for assembling as in Type A, but the bolts are slightly smaller. Spacing details are shown in the figure.

Another circular arc style is labeled Type R. This has a 2-in. depth and 6-in. pitch. The joint is similar to that of Type A with a small difference in the bolts. Figure 1 C shows these differences. From this same source, comes Type OR which is similar to the OA style these details are given in Figure 1 D.

A new corrugation commonly known as the box type is called style U. It is in reality a modified trapezoidal shape with a high section modulus due to the large surface in the outer fiber region. A butt seam is used for joining these plates. Details are shown in Figure 1 E and F.

¹ Tests on Curved Corrugated Beams by Jamison Vawter, University of Illinois. - 10 -

DETAILS of PLATES and JOINTS

FIGURE I

The average length of specimens used in all tests except Test 2 was 52-3/4 in. This dimension was the same whether the specimen was straight or curved. The specimens used in Test 2 were 24 in. in length. The average width of the specimens is given below in relation to specimen type.

Туре	А	width	21-3/4	in.
Type	R	width	22	in.
Type	ΰ	width	21	in.
Type	AO	width	21-5/8	in.
Type	OR	width	21-3/4	in.

More complete details showing manufacturer's data for each of these styles of corrugation may be found in Table 1, Appendix.

<u>Bolt Description</u> - The bolts supplied with specimen Type A and OA and Types R and OR were high tensile strength bolts with an average ultimate strength of approximately 132,000 psi. Bolts furnished with Type U specimens were of A-7 grade metal with a lower ultimate strength value than material used in other bolts.

The shank length of all the bolts used was 1-1/2 in., but they varied in diameter. The diameter of the bolts for Types A-R and V was 3/4 in. and for Types OA and OR it was 11/16 in.

<u>The Six Tests</u> - To make the laboratory study of corrugated metal plates as complete as possible, the investigation was organized about six fundamental tests. Three of these were devised to measure horizontal and vertical deflections under column loading, one test was a measure of joint slippage in a column, and the remaining two were designed to give horizontal and vertical deformations when the specimens were

- 12 -

acting as beams. The different tests are diagrammed in Figure 2.

Test 1 was a straight compression column. The specimens provided were plain, that is, there was no seam or joint. The plates had no curvature. The assembly was 52-3/4 in. long. The purpose of the test was to observe the type of failure and note the strength of straight corrugated metal sheets when subjected to column loading.

Test 2 was a test on short columns made up of two straight sections bolted together. The assembly was 24 in. long. The test was designed to measure slippage between the plates and to determine the strength of the seam in shear. The exception, of course, was the butt connection in which there was pure compression and no shear. These samples were tested to plate failure.

Tests 3 and 4 were identical except for curvature of test specimens. In Test 3 the specimens were formed to a radius of 150 in. as compared to a 30-in. radius in Test 4. In both tests the specimens were supported on edge with the chord vertical and tested as columns. The samples consisted of both plain and bolted specimens. The purposes of both of these curved column studies were to observe the extent of deformation, the resistance to load, and extent to which the seam developed the full strength of the plates.

Test 5 was a sample beam test in which the specimens were supported at both ends and subjected to a downward force at the center. Measurements were made of both horizontal and vertical displacements. The specimens used in this test were identical to those used in Test 3.

Test 6 differed from 5 only in the radius to which the plates were formed. In this case, a radius of 50 in. was used as against 150 in. in Test 5. Both plain and bolted samples were subjected to beam loading.

- 13 -

These last two tests were formulated for the purpose of measuring the plate, the characteristics of the failed section, and the efficiency of the joint while the plate was acting as a beam.

<u>The Number of Samples</u> - From the previous section it is seen that Test 1 required a plain sample, Test 2 a bolted sample, and the remaining four each required both a plain and bolted specimen. Thus, there were in reality ten tests. Three gages of metal were provided, namely, 1, 7, and 12 and sufficient samples were furnished so that each test could be repeated twice for each gage.

Certain additional plates were supplied from 10-gage stock. In Tests 5 and 6, the 10-gage samples were submitted from all sources. A few specimens of 3-gage material were received for Tests 1 and 2. In all, 352 plates were supplied and all were tested except a few old-style samples which were badly rusted.

System of Identification - Each plate was given a sample number when it was received. The system used was suggested by G. E. Shafer. It consisted of a group of numbers and letters in the following sequence: source, test number, a distinguishing letter for the individual plate, the nominal metal gage, and a letter indicating whether the plate was plain or bolted. Thus, we had a five-character symbol for each sample.

The following characters were used: The source was A, R, U, OA or OR. The test numbers were 1, 2, 3, 4, 5, and 6. X, Y, and Z provided symbols to distinguish the three parallel test specimens. Metal gages were 1, 3, 7, 10, and 12. The distinction between plain and bolted or seamed specimens was made by using letters P (plain) and S (seamed), respectively. Thus, a plate labeled A6X1S was from source A, for Test 6,

- 15 -

the first of 3 samples, of 1-gage metal, and was a bolted specimen. Complete summary of test specimens used in the investigation will be found in Table 1.

<u>Supplementary Studies</u> - Although each plate carried a symbol indicating the exact test to be performed upon it, there was some small deviation from the schedule. The subcommittee approved the proposal that the "Z" plate of each group need not be tested if the results of X and Y correlated closely. This left quite a number of plates free for miscellaneous testing described as follows.

1. Seam Strength. A large number of bolted Z plates from Test 3 were subjected to beam loading with the seam reinforced by a double row of bolts. This was done in an effort to learn whether or not the standard bolting method developed the full strength of the joint.

2. Residual Deformation. Some of the plain Z samples were tested as beams under a special beam loading program in which the load was released after each application. The intent here was to observe the rate of increase in permanent deformation.

3. Fiber Stresses. In Test 4, some SR-4 electric strain gages were cemented to the curved columns at anticipated points of maximum fiber stress. These strains were measured both on the inside and outside of the plate. The purpose here was to make measurements to compare with the theoretical values obtained from standard formulas.

4. Bolt Stresses. While conducting the beam tests, several sets of bolts were fitted with SR-4 Type A-8 strain gages to make measurements of bolt tension. Much difficulty was encountered due to the slippage in the joint. Considerable shear seemed to develop which, of course, could not be measured by the gages.

- 16 -

			STYI	Æ A			STYI	ER			STYL	EU			OL	d style							
TEST NO.	NOMINAL GAGE	DEVELOPED LENGTH	CHORD LENGTH	WIDTH	THICKNESS	DEVELOPED LENGTH	CHORD LENGTH	WIDTH	THICKNESS	DEVELOPED LENGTH	CHORD LENGTH	WIDTH	THICKNESS	DEVELOPED LENGTH	CHORD LENGTH	WIDTH	THICKNESS	STYLE					
1 P 2 8	1 7 12	52.8 52.6 53.0 24.0		21.4 21.4 21.3 21.4	•278 •191 •114 •283	53.0 53.0 53.0 24.0		22.0 21.7 21.9 21.6	•302 •205 •122 •287	53.0 53.0 53.0 24.0	 	21.1 21.1 20.9 21.0	.270 .172 .111 .274	53.0 53.0		21.5 21.4	•191 •109	OA OA					
2 2	7 10 12	24.0 24.0	 	21.4	•190 •118	24.0 24.0 24.0	 52-1	21.6 21.6 21.9 21.9	•185 •142 •121	24.0 24.0		20.9 20.8 21.1	•180 •105 •276	24.0	51.0	21.5	•198 •276	OA OR					
38	7 12 1		52.1 52.4 52.4	21.3 21.4 21.6	185 107 286		52.1 52.1 52.1	21.7 21.8 21.9	•193 •116 •292		52.1 52.4 52.0	21.0 21.0 21.0	•183 •108 •277		51.0 51.0	21.6 21.6	.184 .113	AO AO					
4 P	7 12 1 7 12		52.2 52.3 47.0 47.0 47.2	21.4 21.6 21.5 21.1 21.3	•196 •114 •284 •188 •114		52.0 52.2 47.0 47.0 47.0	21.8 21.6 22.0 21.4 21.6	.190 .117 .298 .191 .118		52.0 52.3 48.0 47.3 47.3	20.9 21.2 21.1 21.1	•103 •107 •273 •179 •108		51.0 51.0 46.0 46.0	21.0 21.7 21.6 21.7	•193 •110 •282 •191	OA OR OA					
4 \$	1 7 12	4 in.	47.0 47.2 47.0	21.5 21.4 21.6 21.5	•286 •195 •116	t in.	47.0 47.0 47.0	21.7 21.6 21.9 22.0	•291 •187 •117 •294	(4 in.	48.0 48.0 48.0	21.0 21.1 21.1 21.1	.272 .177 .109 .276	/4 in•	46₀0 52₀0	21.6 21.6	•185 •285	OA. OR					
י י ק ל ג	7 10 12 1	th 52 3/4	52.2 52.2 52.3 52.1	21.5 21.6 21.4 21.4 21.5	21.5 .281 21.6 .180 21.4 .141 21.4 .114 21.5 .283	(th 52 3/2	sth 52 3/4	gth 52 3/	gth 52 3/.	gth 52 3/	sth 52 3/	الا 22 52 52 52 52 52 52 4 52 4 52 4 52 4 5	21.7 21.7 21.9 21.9	.192 .144 .112 .295	ıgth 52 3,	52.2 52.0 52.3 52.4	21.0 21.2 20.7 21.0	.181 .135 .107 .276	igth 52 3,	51.6 52.3 52.1	21.6 21.6 21.7	•153 •119 •284	OR OA OR
6 P	7 10 12 1	dral leng	52.4 52.1 52.4 49.8	21.2 21.1 21.6 21.3	•187 •130 •114 •276	dnal leng	52.3 52.1 49.6	21.6 21.8 21.8 21.6	.187 .118 .292 186	minal ler	52.3 52.2 52.3 49.7	21.0 21.0 20.9 21.1 20.9	•178 •137 •107 •274 •175	minal ler	51.9 52.0	21,8 21.6	.152 .111	OR QA					
6 S	10 12. 1	Nom	49°7 50°0 49°8 49°6 49°6	21.2 21.3 21.6 21.4 21.3	•142 •116 •282 •188	Мош	49.0 49.3 49.6 49.6	21.5	.100 .117 .291 .188	Mo	49.8 49.8 49.8 49.8 49.8	21.2 21.1 21.1 21.1 21.0	•135 •108 •282 •175	No	50.3 50.1	21.8 21.6	.154 .101	OR OR					
	10 12		49•7 49•7	21.3 21.4	.131 .115		49.6	21.8	. 113		49•3 49•6	20.7 21.0	•132 •106		50•3 50•3	21.9 21.8	.150 .111	OR OR					
										TAE		ORRUGATH dimensi	D PLATE SIZE ons in inche	25 95)									

는 사회에서는 그는 것은 <u>해외에서 가장에서 가장에서 가장에서 가장에 가지 않는 것이다. 그는 것은 것은 해외에서 가장에 가장에 가지 않는 것을 하는 것을 하는 것</u>이다. 이는 것은 것은 것은 것은 것은 것을

5. Resistance of Bolts to Torque. Near the conclusion of the experimental work, a few plates were assembled and the bolts twisted until failure. Measurements were made with a torque wrench.

6. Tests on the Metal. Samples were cut from the plates and tested for Brinell hardness. Several samples were obtained from each different heat where such data could be ascertained. In other instances, random sampling was used. Larger sections of the same plate were sent to the Testing Laboratory of the Bureau of Public Roads for physical and chemical tests.

7. Joint Slippage. The behavior of a seam under shearing action was another feature investigated. While the short columns were being tested, some of the Z plates were assembled with bolts at 100-1b.-ft. torque, some at 200-1b.-ft. and others at 300-1b.-ft. Some were tested with a double row of bolts also.

Although the miscellaneous tests were more or less incidental to the main plan of study, they contributed a good share of interesting information.

TESTING PROGRAM

Description of Apparatus

As noted above, four of the six types of tests to be conducted were on a column type structure. Each of the first four tests provided a slightly different problem in assembling the test apparatus.

Test 1 required that the jaws of the loading machine be 52-3/4 in. apart after the different load transfer devices were placed in the machine and it also required a maximum load of approximately 300,000 lb. Existing testing apparatus available to the Highway Department did not satisfy these conditions and it was necessary to design and build a loading machine to meet these requirements. The machine designed may be seen in Figures 3 and 4. It consisted of two H columns joined at the top by a fixed cross member and at the bottom by a movable cross member. The load was applied through a hydraulic jack capable of exerting 150-ton load. The plate being tested was free at both ends to rotate in the direction of the least horizontal dimension of the plate. This was accomplished by clamping large loading heads on top and bottom of the column and having a round member fastened to the top of the loading head. The 1-in. round was free to rotate in a circular grooved plate attached to the top and bottom cross members.

The actual load being applied was measured through a dynamometer ring. Two dials were used to measure vertical deflection and two more dials were used to measure the horizontal deflection at the center of the plate.

Test 2 was also a column test but only 24 in. long. There was a 75-ton Universal Riehle testing machine available which had jaws large

- 19 -

FIGURE 5. TEST FOR JOINT SLIPPAGE IN UNIVERSAL RIEHLE TEST-

A CURVED COLUMN SECTION BEING FAILED IN A 50-TON PRESS.

FIGURE 4. 150-TON PRESS ASSEMBLED FOR TEST NUMBER 2.

LED FOR TEST NUMBER I.

- 20-

enough for 24-in. specimens. About half of the specimens in this test required a load greater than 75 tons and these were tested on the apparatus discussed above for Test 1. The upper head was lowered to allow for the difference in length between specimens 24 in. long and those 52-3/4 in. long. See Figure 4. Only the slippage at the joint between the two plates was measured for Test 2.

The remainder of the samples for Test 2 were tested on the 75-ton Riehle testing machine shown in Figure 5. The specimens being tested rested on a flat plate at the bottom and the load was applied to the top through a loading head which was of sufficient cross section to insure uniform distribution of the load over the entire plate.

Four dials were used to measure the slippage between the two plates. The photograph shows their arrangement. As the two plates were pushed past each other, the indicators registered the movement in thousandths inches. The applied load was measured by the beam balance of the Riehle testing machine.

The equipment used for Tests 3 and 4 was identical in all respects. The load was applied to the columns through a 50-ton hand-pumped hydraulic jack unit set in a frame constructed from I-beam and channel sections. Figure 6 shows this unit.

The top and bottom of these columns were fixed with load transfer devices which insured freedom from restraint on the ends. Figures 7 and 8 picture these devices. The load applied to the columns was measured through a dynamometer ring. Two pairs of dials were used to measure the deflection of the plates, one pair to measure the horizontal deflection of the center of the column and the other pair to measure the

~

vertical deflection. This arrangement may be seen in Figure 6.

This same 50-ton hydraulic press used for the column tests was also used for the beam tests 5 and 6. The ends of the beams rested on two concrete block piers capped with a 1- by 8- by 24-in. cold rolled steel plate. The plates were machined to a smooth finish and set at the same elevation.

In order to insure freedom from horizontal constraints on the ends of the beam specimens, a special load transfer device was designed. Each end of the corrugated metal plate specimen was set into the vertex formed by a 2-1/4- by 2-1/4-in. steel angle. To each angle was welded a 1-in. round steel bar. The round steel bars rested in a groove of 1-in. diameter milled in a flat steel plate. The flat steel plate, in turn, rested on three 1-in. round steel rollers which, in turn, rested on the steel caps of the two concrete block piers mentioned above. A photograph and diagram of this arrangement is shown in Figure 9.

Two-point loading was used to transfer the load from the hydraulic press to the beam being tested. It was impossible to use single-point loading at the center of the beam because the joint fastenings on the bolted sections interfered with this procedure. The span of the twopoint loading was made just wide enough to clear the joints in the plates. For the sake of uniformity, the same type loading was also used on the unbolted plates.

Wooden patterns were cut to fit each of the various types of corrugation used in order to insure uniform distribution of the load across the test specimen. These patterns were lined with heavy rubber sheeting for a more perfect fit. The load was applied to a steel loading head

_ 23 _

through a 1-in. round ball bearing. Figure 10 exhibits the steel head and wooden patterns used to distribute the load.

The vertical deflections of the center of the beam were measured with two 0.001-in. dials. The dials were attached rigidly to the frame of the testing machine and extensions from the stem of the dial were put through openings in the loading head directly to the corrugated plate. Changes in the span of the beam were measured to 1/64 in. with a steel straight-edge.

Incidental equipment used included a torque wrench and a Baldwin Southwark indicator to measure the strains in various parts of the specimens.

Test Procedure

The procedure in all of the six fundamental tests was essentially the same. The special angle pieces were clamped onto the ends of the specimen; it was placed in the press and seated; the dials were adjusted; and the load was applied through the hydraulic jack in previously calculated increments. Application of the load continued through the yield point until a maximum value was reached after which succeeding deformations resulted from loads below this ultimate figure.

A special study of permanent deformations was made on some of the specimens. The loading program was altered by releasing the load between applications to obtain alternate no load conditions. Dial readings at no load showed progressive permanent deformation.

The bolted specimens were subjected to the same type of test as the plain specimens. The seams were first bolted together to a designated bolt torque value by the use of a torque wrench. The assembled plate was then installed and tested in the manner described.

- 24 -

Since there was some difference in joint reaction caused by variation in torque applied to the bolt it was necessary to determine a torque that would approximate the force applied by the average laborer in the field. Using a wrench slightly smaller than that employed in the field, five highway employees found that the average torque they could apply was 157 ft.-lb. Assuming that the laborer in the field has a larger wrench and also a better knack for using such tools it was agreed that a torque of 200 ft.-lb. would be very near to field usage. All bolts used in fastening joints for the plates were tightened with a torque of 200 ft.-lb. except in a few instances where changes were made for experimental purposes.

In all of the tests except number two, the short column bolted plate study, both horizontal and vertical deflections were measured. In Tests 1, 3, and 4, measurements were all made with 0.001-in. dials. In Tests 5 and 6 the vertical deflections were read from dials but the horizontal spread of the beam ends was read on a scale graduated in 64ths of an inch. No horizontal readings were taken on Test 2. This test was designed for the measurement of resistance to direct thrust and only the slippage at the lapped joint was recorded. The butt joints resisted the thrust by pure compression, and in these cases total vertical deflections of the assemblies were the only data taken.

When two or more similar plates were subjected to the same test, the results were averaged and the averages tabulated. The figures from the permanent deformation study and the experiment with double bolting were obtained from a single sample of each type. The data originally recorded were the load increments and the horizontal and vertical deflections from the 0.001-in. dials. The load increment varied according to

- 25 -

the requirements of the test and was determined by the number of values needed to draw a smooth curve of the action of the plate under load. In Tests 1 and 2 it was 10000 lb. In Test 3 increments of 2000 lb. to 5000 lb. were used. Tests 4, 5, and 6 required smaller intervals, and the increments chosen for these tests were from 500 to 1000 lb.

Miscellaneous Tests

At opportune times during the regular testing program some supplementary studies were made. Strains in the outer fibers of the plates were measured on a few of the plates of Test 4. Several SR-4 type strain gages were attached to each side of the plate in tandem on the extreme fiber of the corrugations near the point of maximum bending moment of the plate. The data from the gage which produced the largest reading was selected as typical.

Tensile stresses on bolts were measured also. SR-4 strain gages were cemented to the bolts as shown in Figure 11. The joints were assembled with 200-1b.-ft. bolt torque and the plates were tested in the usual method.

The apparent strength of a number of bolts used in the joint assemblies was checked by actually twisting them by means of a torque wrench until failure, and measuring the ultimate torque in foot pounds.

Characteristics of the metal were also studied. Chemical analysis was furnished by the manufacturer. Brinell hardness tests using a 10 mm ball with a load of 500 kilograms were performed in the laboratory on small 2- by 2-in. specimens cut from the sheets. Test results will be found in Table 2, Appendix. Larger 12- by 15-in. samples were sent to the Bureau of Public Roads for determination of chemical and physical properties and modulus of elasticity. These data are presented in Table 3 A, B, and C, Appendix.

- 26 -

OBSERVATIONS

The results of the series of six tests are found in Tables 4 through 17 of the Appendix. The data therein has been used to construct graphs for a ready comparison of the influence of the various factors upon plate performance. The resulting curves are grouped where possible to bring out the effect of corrugation style in one case and effect of gage or plate thickness in another. Not all of the data is shown in graphic form because of the similarity in the shape and order of the curve.

Further comparisons are made on the basis of computed unit stress at the elastic limit and the modulus of rupture. These values were computed using the manufacturers' tabulated data for moment of inertia and section modulus. Measurements in Table 1 show that the measured values for thickness check within reasonable limits with the manufacturers' data shown in Table 1 of the Appendix. Other measurements that determine the moment of inertia were found to be within the same limits so that it was felt that the use of the tabulated values for section modulus and moment of inertia would be consistent with the degree of accuracy of the load deflection data.

Effect of Corrugation

Figure 12 illustrates graphically the effect of style of corrugation on overall load-carrying capacity when acting as intermediate columns. Types U and R have very nearly the same capacity, Types A and OA have progressively lower load-carrying ability. These curves are drawn on the assumption that all the plates had the same overall dimension and that the only variables are the factors that determine the section modulus. The section moduli for Types U, R, A, and OA are progressively

- 27 -

، بات ستر

TYPE A - 7 GAGE

28-

그 동생은 영상의

SPREADING OF SPECIMENS IN FAILURE - TEST I

TYPE U - 7 GAGE

TYPE R - 7 GAGE

FIGURE 13

TYPE OA - I GAGE

less and except for the similarity in curves U and R the loads are in proportion to the load carrying ability. The close agreement in the loads carried by Types U and R would indicate that in the case where these plates are acted on as slender columns either Type R is more efficient than in succeeding tests or that Type U is not developing its full load carrying capacity.

In all styles of corrugation tested there was a progressive spreading and consequent reduction of depth in the cross section of the plates at the center. This reduction of depth decreased the moment of inertia of the plates and failure progressed rapidly when the spreading became apparent. Photographs of four types of specimens from Test 1 are shown in Figure 13.

Tests 3 and 4 are further column tests except that the columns are curved having radii of 150 in. and 30 in., respectively. (See Figure 2) The graphs for these load-deflection tests are found in Figures 14 and 15. The curves for the unbolted specimens (Figure 14 A and 15A) have very nearly the same pattern as those for Test 1 shown in Figure 12. Here the difference between the load carrying capacity of Types U, R, A, OA, and OR are more apparent and are of the same order as the different section moduli. A different pattern may be noted for the bolted plates in Tests 3 and 4, as shown in Figure 14B and 15 B. The superiority of the U type is not nearly as evident in this case. In fact, in the bolted specimens of Test 4, the Type R corrugation is superior to Type U. This will be discussed further in the section on joint efficiency.

- 29 -

INFLUENCE OF CORRUGATION ON DEFLECTIONS

TEST 3

- 30 -

FIGURE 14

INFLUENCE OF CORRUGATION ON DEFLECTIONS

- 31-

TEST 4

FIGURE 15

<u>Strain Measurements</u> - For a further analysis of the effect of corrugation, strain gages were placed as nearly as possible to the point of maximum strain on specimens in Test 4. One sample of each of the three corrugation styles was analyzed in this manner. The resulting data is shown in Table 2. A coefficient of elasticity (E) of 29,000,000 psi. was assumed.

TABLE 2

LOAD VS. STRAIN IN EXTREME FIBERS OF CORRUGATED PLATE

Load in Thousand Pounds	Fiber Strain [*] Micro. in./in. Convex surface Spec. U4Z1P	Fiber Strain Micro in./in. Convex surface Spec. R4Z1P	Fiber Strain Micro. in./in. Concave surface Spec. R4Z1P	Fiber Strain Micro. in./in. Convex surface Spec. A4Z1P
7				172
$\overline{2}$	163	210	-248	280
3				387
4	259	417	-489	487
5	·			610
6	436	617	-718	742
7				873
8	56 5	740	-930	965
9				1140
10	710	928	-1136	1303
11				1522
12	859	1153	-1378	1873
13				2352
14	983	1366	-1540	3500
15				at 14.0
16	1104	1581	-1645	
17				
18	1254	1931	-1785	
19				
20	1404	2353	-2030	
21				
22	1552	3256	-2990	
23		7662	-8570	
24	1758	at 22.5	at 22.5	
25	0404			
26	2464			
27	ガコ 人に			
28	0140 Tam 5000			
29 0 70 -	AF DU O			
30 a *micro-	at 29.8 -in. is .000001 in	1.		

- 32 -

The unit stress at the elastic limit has been computed from the observed elastic limits in Figure 15 A. These elastic limits are found to be:

Type A - 10,000 lb. Type R - 16,000 lb. Type U - 22,000 lb.

From the observed strain readings at these points (Table 2) the computed stresses are:

Type A - tension face - 37,800 psi Type R - tension face - 45,850 psi Type R - compression face - 47,700 psi Type U - tension face - 45,000 psi

Computing the stresses for these same three specimens using the manufacturers' tabulated values for section modulus and substituting in the eccentric column formula S = P/A + MC/I the computed stresses

are:	Type	A	1949-	tension face - 38,230 psi
	Type	R	-	tension face - 53,570 psi
	Type	R		compression face - 57,830 psi
·	Type	U	680 -	tension face - 45,750 psi

The two methods of computing stress compare quite favorably, indicating the section modulus as furnished for these style corrugations furnishes reasonable stress values.

The characteristic failure of the principal styles of corrugation subject to loading conditions such as those in Test 3 and 4 are illustrated in Figures 16 and 17. The circular arc type corrugations both have the characteristic spreading that occurs when the plates are subjected to column action. The box type corrugation is also subject to some spreading under load and as shown in Figure 16, there is also evidence of localized buckling near the section in maximum stress.

The load deflection data for Tests 5 and 6 are shown in Figures 18 and 19 and make possible an evaluation of the effect of corrugation

- 33 -

INFLUENCE OF CORRUGATION ON DEFLECTIONS

TEST 5

FIGURE 18

-35-

INFLUENCE OF CORRUGATION ON DEFLECTIONS

TEST 6

style upon plate performance from two points of view, namely, the behavior in the elastic range and the performance in the yielding range up to the point of ultimate load.

In the elastic portion of the curve the stiffness of the plate is indicated by the slope of the straight line section. From Figures 18 and 19 one observes that for plain specimens, plates U, R, and A have a comparable degree of stiffness in gages 1 and 7. The lighter gages do not follow any well-defined pattern. The elastic limits are highest for U, less for R, and lowest for A style plates. Unit stress values at elastic limits for Tests 5 and 6 are presented in Tables 3 and 4.

There are at least two methods of evaluating performance above the elastic limit. The first and most direct is a comparison of ultimate loads, and the second is a comparison of modulus of rupture values.

Again reference to Figures 18 and 19 shows that among the three newer corrugations the ultimate loads are greatest for the U style, and lowest for the A style. For further analysis in this respect, Table 5 has been prepared. Values of the section modulus (I/C), and ultimate load have been tested for three types of corrugation and for four metal gages. The ratios in the third and fifth column are the quotient of the corresponding entries in columns two and four by the lowest values in that group.

The pattern of Table 5 substantiates the observations from the graphs in that the ultimate loads are greatest for the U style, less for R and least for A, This is to be expected since the section modulus values decrease in the same order. A further examination shows that the ratios of ultimate loads are greater than the ratio of the section moduli except in one instance.

- 37 -

UNIT STRESS AT ELASTIC LIMIT - TEST 5

Specimen	(1) Load at Elastic Limit	(2) Working Length (L - 4.38)	(3) Bending Moment (3)= <u>(1)x(2)</u>	(4) Total Section Modulus	(5) Unit Stress at Elastic Limit (5) = (3) \div (4)	Average
	(lb.)	<u>(in.)</u>	(in1b.)	(in. ³)	<u>(psi)</u>	(psi)
U5X1P	17000	48.12	204400	5.11	40000	41600
U5Y1P	17000	48.07	204300	5.11	40000	
U5Z1P	19000	48.15	228600	5.11	44800	
U5X7P	11000	48.04	132000	3.405	38800	39983
U5Y7P	11000	48.04	132200	3.405	38800	
U5Z7P	12000	48.07	144200	3.405	42350	
U5X1OP	9500	47.76	113500	2.615	43400	42000
U5Y1OP	9000	47.95	107800	2.615	41200	
U5Z1OP	9000	48.10	108100	2.615	41400	
U5X12P	7000	48.13	84200	2.066	40800	36930
U5Y12P	7000	48.18	84300	2.066	40800	
U5Z12P	5000	48.12	60200	2.066	29200	
R5X1P R5Y1P R5Z1P	11000 12000 12000	48.39 48.33	145000 144800	3.19 3.19	45400 45400	45400
R5X 7 P	7000	47.96	83800	2.165	38700	37030
R5Y7P	6000	48.17	72300	2.165	33400	
R5Z7P	7000	48.23	84400	2.165	39000	
R5X10P	6000	48.15	72200	1.641	43900	43900
R5Y10P	6000	48.10	72200	1.641	43900	
R5Z10P	6000	48.03	72200	1.641	43900	
R5X12P R5Y12P R5Z12P	$3500 \\ 4000 \\ 4000$	48.20 48.03 48.12	42200 48000 48120	1.288 1.288 1.288	32775 37375 37375	35842
A5X1P	6000	48.03	72100	2.782	25900	27320 .
A5Y1P	6000	48.00	72000	2.782	25850	
A5Z1P	7000	48.00	84000	2.782	30200	
A5X7P	4500	48.21	54200	1.882	28800	29830
A5Y7P	4500	48.20	54200	1.882	28800	
A5Z7P	5000	48.09	60100	1.882	31 900	
A5X10P	3000	48.03	36100	l,438	25100	25067
A5Y10P	3000	47.82	35900	l,438	25000	
A5Z10P	3000	48.07	36100	l,438	25100	
A5X12P	2000	48.06	24030	1.131	21250	21250
A5Y12P	2000	48.01	24000	1.131	21250	
A5X12P	2000	47.98	23990	1.131	21250	
OR5X1P	6000	47.85	71775	2.006	35432	35432
OR5X10P	4500	47.98	53977	1.045	51652	51711
OR5Y10P	4500	48.09	54101	1.045	51771	
OA5X12P OA5Y12P	3000 3000	48.34 48.15	36255 36.113	0.807 0.807	$44926 \\ 44750$	44838

- 38 -

UNIT STRESS AT ELASTIC LIMIT - TEST 6

Specimen	(1) Load at Elastic Limit	(2) Working Length (L - 4.38)	(3) Bending Moment (3)=(<u>1)x(2)</u>	(4) Total Section Modulus	(5) Unit Stress at Elastic Limit (5) = (3) \div (4)	Average
	(lb.)	(in.)	(in1b.)	(in. ³)	(psi)	(psi)
U6X1P	20000	45.82	229100	5.11	44800	42600
U6Y1P	18000	45.73	206000	5.11	40300	
U6Z1P	19000	46.00	218500	5.11	42700	
U6X7P	11500	45°75	131700	3。405	38700	39800
U6X7P	12000	45°96	137800	3。405	40400	
U6Z7P	12000	45°79	137300	3。405	40300	
U6X10P	10000	45 .73	114500	2.615	43800	43800
U6Y10P	10000	45.90	114500	2.615	43800	
U6Z10P	10000	45.95	114600	2.615	43800	
U6X12P	7000	45.48	79600	2.064	38600	41433
U6Y12P	7500	45.82	85900	2.064	41500	
U6Z12P	8000	45.60	91200	2.064	44200	
R6X1P	12000	45.70	137200	3.189	43000	41670
R6Y1P	12000	45.54	136800	3.189	42900	
R6Z1P	11000	45.31	124500	3.189	39100	
R6X7P	7000	45.67	79800	2.165	36800	38730
R6Y7P	7000	45.73	80100	2.165	36800	
R6Z7P	8000	46.09	92200	2.165	42600	
R6X12P R6Y12P R6Z12P	$4000 \\ 4000 \\ 4500$	45.87 45.50 45.48	45870 45500 51100	1.288 1.288 1.288	35600 35400 39700	36900
A6X1P	8000	45.73	91460	2.782	32800	31450
A6Y1P	8000	45.73	91460	2.782	32800	
A6Z1P	7000	45.78	80200	2.782	28800	
A6X7P	5 000	45.46	56800	1.882	30200	30300
A6Y7P	5000	45.68	57100	1.882	30300	
A6Z7P	5000	45.70	57200	1.882	30400	
A6X1OP	4000	46.00	46000	1.438	32000	30650
A6Y1OP	4000	46.17	46170	1.438	32100	
A6Z1OP	3500	45.78	40100	1.438	27900	
A6X12P	2000	45.57	22 7 80	1.131	20200	20200
A6Y12P	2000	45.76	22880	1.131	20200	
A6Z12P	2000	45.50	22750	1.131	20200	
OR6X10P OR6Y10P	4000 4000	$\begin{array}{r} 46.18 \\ 46.35 \end{array}$	$46180 \\ 46350$	1.045 1.045	$\begin{array}{c} 44191\\ 44354 \end{array}$	44272
OR6X12P	1500	46.00	17250	0.8228	20965	21022
OR6Y12P	1500	46.25	17344	0.8228	21079	

- 39 -

TABLE 5

EFFECT OF CORRUGATION AND SECTION MODULUS ON ULTIMATE LOAD AND MODULUS OF RUPTURE

(Based on Test 5)

Type and Gage of Corrugation	I/C	Ratio	Ultimate Load (in lb.)	Ratio	Modulus of Rupture (in psi)	Ratio
: •						
U l gage	5.11	1,84	28,000	2.31	66,406	1.26
R 1 gage	3.189	1 .15	18,900	l .56	72,454	l .38
A l gage	2.782	1.00	12,100	1.00	52,595	1.00
U 7 gage	3.405	1.81	16,600	1,98	59,090	1.09
R 7 gage	2.165	1.15	11,500	1.37	64,873	1.20
A 7 gage	1.882	1.00	8,400	1.00	54,066	1.00
U 10 gage	2.615	1.82	11,800	1.88	54,385	1.03
R 10 gage	1.641	1.14	9,750	1.43	72,055	1.36
A 10 gage	1,438	1.00	6,300	1.00	52,929	1.00
U 12 gage	2,063	1.82	8,400	2,25	49,235	1.23
R 12 gage	1.288	1.14	6.070	1.62	57,123	1.43
A 12 gage	1.131	1.00	3,740	1.00	39,960	1.00

- 40 -

Another basis for evaluation of corrugation efficiency is a comparison of moduli of rupture. These cannot be seen graphically but are computed by the formula

$$S_r = PKC/I$$

1

where P is the ultimate load, K is moment arm at ultimate load position, and the ratio I/C is section modulus of the plate. Modulus of rupture values for all plates in Tests 5 and 6 have been computed and are listed in Tables 6 and 7. However, for immediate comparison these figures have been grouped and averaged and are shown in columns 6 and 7 of Table 5 in such a way that the trend is evident.

The ratios of the modulus of rupture figures do not follow the same pattern as the ultimate loads. In this case the R type corrugation seems superior, while next in order are U and A. There is apparently no direct relationship between modulus of rupture and section modulus. Possible reasons for this fact are: first, the corrugation shape changes with a consequent change in section modulus value at the point of failure, and second, the stress formula is applied in a yield region where elastic relationships no longer exist.

Figures 20 and 21 illustrate typical failures for plain and bolted circular type corrugated specimens in Tests 5 and 6. As expected the maximum deflection occurs at the point of maximum bending moment. In the bolted specimens the maximum bending appears to occur at the row of bolt holes in the "top" plate at the joint. Figure 22 illustrates typical failures for the box-type corrugation. There is evidence of localized buckling in this style corrugation, and in the jointed specimens failure occurs more readily in the joint than in the corrugations themselves.

- 41 -

MODULUS OF RUPTURE - TEST 5

Specimen	(1) Ultimate Load	(2) Working Length (L - 4.38)	(3) Bending Moment (3)=(<u>1)x(2)</u>	(4) Total Section Modulus	(5) Modulus of Rupture (5) = (3) $\frac{2}{3}$ (4)	Average
مەرىپىرىمەرمەر <u>سەر مەرىپە مەرىپە مەرىپەر مەرىپەر مەرىپەر مەرىپەر مەرىپەر مەرىپەر مەرىپەر مەرىپەر مەرىپەر مەرىپە</u>	(1b.)	(in.)	(in1b.)	(in. ³)	(psi)	(psi)
U5X1P	28000	4 8。48	339 360	5.11	66411	66406
U5Y1P	28000	48。38	338660	5.11	66274	
U5Z1P	28000	48。57	339990	5.11	66534	
U5X7P	16800	48.37	203154	3.405	59663	59090
U5Y7P	16850	48.29	203422	3.405	59742	
U5Z7P	16240	48.38	196423	3.405	57866	
U5X10P	12000	4 8.01	144030	2.615	55078	54385
U5Y10P	12000	48.20	144600	2.615	55296	
U5Z10P	11400	48.43	138026	2.615	52782	
U5X12P	8100	48 .31	97828	2.066	48298	49235
U5Y12P	9000	48 .3 8	108855	2.066	52689	
U5Z12P	8000	48 .26	96520	2.066	46718	
R5X1P R5Y1P R5Z1P	17400 19300 18600	48.62 48.96	234590 227664	3.19 3.19	73539 71368	72454
R5X7P	11520	48 。67	140170	2.165	64744	64873
R5Y7P	11800	48.68	143606	2.165	66330	
R5Z7P	11300	48.70	137578	2.165	63546	
R5X10P R5Y10P R5Z10P	9720 10000 9550	$48.51 \\ 48.46 \\ 48.46$	117879 121150 115698	1.641 1.641 1.641	71834 73826 70505	72055
R5X12P	5720	48.45	69284	1.288	53792	57123
R5Y12P	6500	48.49	78796	1.288	61177	
R5Z12P	6000	48.43	72645	1.288	56401	
A5X1P	12180	48.41	147408	2.782	52986	52595
A5Y1P	12180	48.21	146799	2.782	52767	
A5Z1P	12000	48.25	144750	2.782	52031	
A5X7P	8000	48.45	96900	1.882	51488	54066
A5Y7P	8500	48.46	102978	1.882	54717	
A5Z7P	8700	48.45	105379	1.882	55993	
A5X10P	6180	48。46	74870	1.438	52065	52929
A5Y10P	6125	48。37	74067	1.438	51507	
A5Z10P	6550	48。49	79402	1.438	55217	
A5X12P	3600	48.38	43542	1.131	38498	39960
A5Y12P	3620	48.28	43693	1.131	38632	
A5Z12P	4000	48.35	48350	1.131	42750	
OR5X1P	8500	48.28	102595	2,006	51144	51144
OR5X10P	6300	48.12	75789	1.045	72525	73060
OR5Y10P	6360	48.37	76908	1.045	73596	
OA5X12P OA5Y12P	4440 3940	48.54 48.31	53879 47585	0.807 0.807	66765 58965	62865

1997 - 1995 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

TABLE 7

MODULUS OF RUPTURE - TEST 6

Specimen	(1) Ultimate Load	(2) Working Length (L - 4.38)	(3) Bending Moment (3)= <u>(1)x(2)</u>	(4) Total Section Modulus	(5) Modulus of Rupture (5)=(3):(4)	Average
	(1b.)	<u>(in.)</u>	(in1b.)	<u>(in.³)</u>	(psi)	(psi)
U6X1P	33850 —	47.73	403915	5.11	79044	77672
U6Y1P	33850	47.56	402476	5.11	78762	
U6Z1P	32000	48.04	384320	5.11	75209	
U6X7P	17300	47.21	204183	3.405	59966	60185
U6Y7P	17200	47.57	204551	3.405	60074	
U6Z7P	17400	47.37	206050	3.405	60514	
U6X10P U6X10P U6Z10P	12300 12000 13195	46.82 46.73 47.07	143970 140190 155270	2.615 2.615 2.615	55055 53610 59376	560 13
U6X12P	9180	45.85	105220	2.064	50979	51699
U6Y12P	9300	46.28	107600	2.064	52132	
U6Z12P	9300	46.15	107300	2.064	51986	
R6X1P	21000	47.40	248850	3.189	78034	81625
R6Y1P	21860	47.57	259970	3.189	81521	
R6Z1P	23000	47.32	2 7 2090	3.189	85321	
R6X7P	13800	47.57	164116	2.165	75804	76090
R6X7P	13650	47.95	163630	2.165	75580	
R6Z7P	14000	47.56	166460	2.165	76887	
R6X12P	7220	47.31	85394	1.288	66300	67982
R6Y12P	7055	47.12	83107	1.288	64524	
R6Z12P	8000	47.09	94180	1.288	73121	
A6X1P	13650	47.59	162401	2.782	58376	57939
A6Y1P	14000	47.54	166390	2.782	59809	
A6Z1P	13000	47.62	154765	2.782	55631	
A6X7P	9600	47.15	113160	1.882	60128	59257
A6Y7P	10000	47.56	118900	1.882	63178	
A6Z7P	8650	47.40	102503	1.882	54465	
A6X1OP	6800	47.78	81226	1.438	56485	61413
A6Y1OP	7560	47.94	90607	1.438	63009	
A6Z1OP	7410	47.43	87864	1.438	61101	
A6X12P	4385	47.43	51995	1.131	45973	44110
A6Y12P	4220	47.6 5	50271	1.131	44448	
A6Z12P	4000	47.40	47400	1.131	41910	
OR6X10P	7000	47.59	83282	1.04 5	79696	79281
OR6Y10P	6930	47.57	82415	1.045	78866	
OR6X12P	3500	47.0 1	41134	0.8228	49993	50285
OR6Y12P	3500	47.56	41615	0.8228	50577	

- 43 -

TYPICAL FAILURES, PLAIN & BOLTED, TYPE A

Δ**ΚΥΙΟς TEST 6**

TYPICAL FAILURES, PLAIN & BOLTED, TYPE R FIGURE 21

TEST 6

TYPICAL FAILURES TYPE U PLAIN & BOLTED FIGURE 22

use of the second se

TEST 6

It is evident from the above observations that there is a relationship between published section modulus and the load carrying capacity of the various corrugations. This relationship is not linear but rather as the section modulus increases the load carrying capacity increases at an even greater rate.

Effect of Gage

M. C.W.

Figures 23, 24, and 25 illustrate the influence of gage on overall strength of the plates for the column tests 1, 3, and 4, respectively. Without exception, these curves show that as the metal thickness is increased the load at which the plates failed increases also. This further illustrates the point that as the section modulus (a function of the gage) increases, the load carrying capacity of the plates is also increased.

Figures 26 and 27 illustrate the same relationship for Tests 5 and 6. In this case again there is a progressive increase in load carrying capacity.

It is seen that the stiffness of the corrugated sheet is influenced to a great extent by metal thickness. Comparison of 1 gage and 12 gage curves, for example, illustrate that an increase in metal thickness from 0.105 in. to 0.275 in. trebles the ability to carry loads.

Since metal gage is a factor in the determination of section modulus Table 8 has been computed. Here plates from each of the three principal sources have been grouped by gage, section modulus and ultimate load figures have been tabulated, and two ratio columns have been formed by dividing the section modulus and ultimate load values, respectively, by the lowest entries in each group. The ratio columns show a variation

- 47 -

Hellin ee e

1948 - 1940 1947

TEST I

INFLUENCE of METAL THICKNESS on ON DEFLECTION

FIGURE 23

그는 아이는 가지 않는 것을 알려야 한 것을 물었다. 그는 가지는 것은 것을 가지도 않는 것을 다니?

INFLUENCE OF METAL THICKNESS ON DEFLECTIONS

11.27

8.

TEST 4

治療が設けた

įŻ.

INFLUENCE OF METAL THICKNESS ON DEFLECTIONS

in section modulus ratios from 1 to almost 2.5 while the ultimate load ratios vary from 1 to 3.34.

The effect of metal thickness on modulus of rupture can be readily ascertained by use of the values listed in Tables 6 and 7. By averaging the entries in these tables in such a way as to obtain a representative modulus of rupture value for each gage for each manufacturer we are able to produce Figure 28.

TABLE 8

EFFECT OF GAGE ON SECTION MODULUS AND ULTIMATE LOAD (Based on Test 5)

<u>Gage</u>	<u>I/C</u>	Ratio	<u>Ultimate load</u> (in pounds)	<u>Ratio</u>
Type U			· - ·	
1 7 10 12	5.11 3.405 2.615 2.066	2.47 1.65 1.26 1.00	28000 16600 11800 8400	3.34 1.98 1.41 1.00
Type R				
1 7 10 12	3.19 2.165 1.641 1.288	2.48 1.68 1.27 1.00	18900 11500 9750 6070	3.11 1.89 1.61 1.00
Type A				
1 7 10 12	2.782 1.882 1.438 1.131	2.46 1.66 1.27 1.00	12100 8400 6300 3740	3.24 2.25 1.68 1.00

Included in Figure 28 and illustrating the 1-1/2-in. type corrugations (OA and OR) are values of unpublished data by Jamison Vawter, Professor of Civil Engineering, University of Illinois. This is a report of tests on beams made of corrugated plate much the same as Tests 5 and 6 of this present project. All of Vawter's tests were made on Type OA corrugation and the principal results are shown in Table 9.

- 53 -

-54-

TABLE 9

by Vawter

Test No.	Gage	Radius inches	Total load pounds	Average Span inches	Section Modulus in. ³	Modulus of Rupture psi.
2	7	50	9900	50.88	1.872	67300
3	5	50	11710	50.82	2,166	687 00
4	3	50	13370	50.76	2.454	69100
1	1	50	15130	50.41	2.694	70800
7	7	100	8850	52.06	1.872	61500
8	5	100	10910	52.14	2.166	657 00
5	3	100	12120	52.10	2.454	64300
6	1	100	14130	51.93	2.694	6 810 0
10	7	150	8580	52.06	1.872	59700
9	5	150	10390	52.06	2.166	62400
11	3	150	11900	51.98	2.454	63000
12	l	150	14210	52.12	2.694	68700
				-		

AVERAGE MODULUS VALUES FOR OA PLATES

The values for modulus of rupture in Table 9 compare favorably with the values for Type OA as secured by this series of tests. Vawter's values in Table 9 have been averaged and presented graphically in Figure 28 together with data from tests on OA plates in this investigation.

The curves for Types U and R corrugations in Figure 28 are somewhat similar in that modulus of rupture increases with metal thickness, although the pattern for Test 5 of Type R is not clear. Type A and OA exhibit a different trend. Although the modulus of rupture value for 12 gage material is low, there is no increase in ordinate for gages heavier than number 10. In all cases, however, the 12 gage has a low modulus of rupture value. This would seem to indicate that none of the corrugation styles efficiently develop the metal strength to its fullest extent for this thin metal. It is also possible that some of the apparent loss of efficiency is due to the type of loading used in Tests 5 and 6. The two point loading head used is more likely to cause localized buckling

- 55 -

in thinner plates than will occur in the heavier gages. Such point loading does not occur in actual practice and this fact may be kept in mind when analyzing this data.

Performance and Efficiency of Joints

This phase of the project may be further subdivided into two parts, 1) Lap joint versus butt joint, and 2) single bolting versus double bolting (lap joint only). The lap joint versus butt joint may be further analyzed by comparing their action first as in a beam and secondly as in direct shear.

As a basis for the evaluation of joint performance it was decided that plates with seams were to be tested in a manner identical to that for plain plates. Thus, the efficiency of the fastening could be judged by finding the ratio of the load carried by the seamed sample to the load carried by the plain plate. Table 10 has been compiled on this basis.

Joint efficiency may be computed at any load, and for comparison these efficiency ratings have been listed for both elastic limit and ultimate load in Tests 5 and 6. It may be noticed that with very few exceptions the efficiency rating is higher at the point of ultimate load than at elastic limit. Most of this is a result of slippage and internal adjustment which causes the elastic limit to be lower than it might otherwise be. In the curved beams the butt joint as used in Type U is about 20% less "efficient" than the lap joint. This is also evident by comparing the curves drawn from the load deflection test. It was previously pointed out that in curves drawn for the different tests comparing the plain and bolted sections that the Type U specimen has

- 56 -

6000	li i anno 1999 anno 1				CURVED	COLUMNS												CUR	VED BEA	NS				
	Specimen		Test :	#3		T	est #4]			·		Test #	5		1		T	est #6			·····
		<u> Ultima</u>	te loads	% E	ff.	Ultima	te loads	- *	Eff.	E	astic 1	imits	% E:	ff.	Ultimat	e loads	% Eff.	Elasti	c limit	s %	Bff.	Ultimate	loads	% Eff.
	-	plain_	bolted			plain.	bolted			pla	in b	olted	_		plain	bolted		plain	bolt	ed		plain	bolted	
	Ul ga	123000	65000	5	3	30400	20000		66	176	70	9000	5	1	28000	18800	67	19000	110	000	58	32800	20000	61
	U 7 ga	70000	40800	5	3	17400	13000		75	113	30	4000	3!	5	16600	11800	71	12000	60	00	50	17000	14000	82
	U 10 ga									91	.60	3000	33	3	11800	10300	87	10000	50	00	50	13000	11000	85
	U 12 ga	40000	30800	7	7	8400	8400	E.	100	63	130	2000	3	2	8400	7500	89	7500	40	юо	53	9000	8000	89
	R lga	79700	52300	6	5	22000	21000		96	116	70	8000	6	9	18900	19000	100	11700	70	000	60	22000	18000	82
	R 7 ga	48600	42800	8	3	12000	13000	1	.00	66	70	5000	7	ž	11500	11900	100	7300	60	00	82	13800	12000	87
	R 12 ga	28000	28200	10	c	5500	7000	1	.00	36	30	4000	10	o	6070	6800	100	4200	35	00	83	7600	69000	91
	A 1ga	45000	41800	9:	3	14500	13000		90	63	30	4000	6	3	12100	11400	92	8000	40	000	50	13500	12700	94
	A 7 ga	44600	34800	7	8	9000	9000	1	100	46	570	4000	8	5	8400	8400	100	5000	40	000	80	9400	8900	95
	A 10 ga									30	000	2000	6	7	6300	5700	90	3500	30	00	86	7300	5800	79
	A 12 ga	16700	17100	10	o I	2500	3500	1	100	20	000	2000	10	0	3740	3900	100	2000	20	000	100	4200	4000	95
57-		% Effi	l ciency is	l ratio,	• expresse	d as per	cent, of	load bo	lted to 1	Load pla	in.													
10,000						Test $\#$	45									Tes	t #6							
	Specimen			Elasti	c limit			Ult:	imate						·	Elas	tic limi	t			Ulti	mate		7
_		plain	bolted	% Eff.	double	e bolted	% Eff.	plain	bolted	% Eff.	double- bolted	% Eff.	plain	bolted	l % Eff.	double	bo l ted	% Eff.	plain	bolted	% Eff.	double bo	olted	% Bff.
	R 1 ga	11670	8000	69	10	0000	86	18900	19000	100	19000	100	11700	7000	60				22000	18000	82			
	R 7 ga	6670	5000	75	6	5000	90	11500	11900	100	11200	97	7300	6000	82	70	00	96 97	13800	12000	87	10780	D I	78 07
	R 12 gş.	3830	4000	100		4500	100	6070	6800	100	7000	100	4200	3500	63	40	100	95	7600	6900	91	6930		ЯT
	A lga	6330	. 4000	63	5	5000	79	12100	11100	92	10500	87	8000	4000	50	50	00	62	13500	12700	94 07	14180		100
	A 7 ga	4670	4000	86	5	5000	100	8400	8400	100	9000	100	5000	4000	80	40	00	100	9400	8900	95	0720		93 80
	A 10 ga	3000	2000	67	2	3000	100	6300	5700	90	5000	79	3500	3000	00	35	00	100	7300	5000	19	5(1)		00
	A 12 ga	2000	2000	. 100		2000	100	3740	3900	100	3560	95	2000	2000) 100	20	00	100	4200	4000	95	3320		79
																TAE	LE IO							
																1			EFFICIE	NCY OF	JOINTS			
											-							Bolted	at 200	ftlb.	bolt to	rque.		
]			

consistently higher values than the R and A. In the bolted specimens the advantage of the U type corrugation is no longer apparent.

In Test 2 the joints were subjected to vertical thrust. In this test the criterion for evaluation was plate slippage. The data for Test 2 is given in Table 5 of the Appendix and the curves are shown in Figure 29. The U style corrugation shows a marked superiority in this particular test. It is obvious from Figure 30 A that there is no opportunity for slippage to take place in the joint. Instead the plate fails by buckling of the metal near the ends or near the seam.

Of the two remaining styles of corrugation the Type R joint shows some superiority over the Type A joint in resistance to direct shear. The type of failure common to the lap joint when subject to direct shear is shown in Figure 30 B and C.

Double bolting was tried on the lap joints to see if such a method of fastening could be used to fully develop the plate metal strength. Table 10 shows data relative to the performance of double bolted joints. There is approximately a 10 percent increase in efficiency at the elastic limit but there is no increase in efficiency apparent at the ultimate load.

A Discussion of Joint Action

Test 2 was designed primarily to investigate the strength of the joints under direct thrust. When testing the lap type joint in which the bolt torque was 300 ft.-lb. there was a sudden slipping between the two plates at about 70,000 lb. This was probably due to the fact that all of the load up to the point of slippage was carried by friction between the plates. When friction no longer could carry the entire load there was sudden slipping and the bolts and bearing surfaces of the bolt holes

- 58 -

100

SEAM STRENGTH UNDER COLUMN LOADING CLASSIFIED BY METAL THICKNESS SEAM STRENGTH UNDER COLUMN LOADING CLASSIFIED BY CORRUGATION TYPES

carried the load with a normal elastic action.

When the bolts were tightened to 200 ft.-lb. torque the load in the joint was carried immediately by the bolt and the metal and there was no sudden deformation. The torque with which the bolts were tightened did not apparently affect the ultimate load which the joint carried in direct thrust.

An analysis of Figures 31 and 32 of lap and butt joints acting in pure bending (Tests 5 and 6) show the following characteristics: First, in a lap joint the "B" row of bolts functioned in tension. The "B" row, shown in Figure 31, is the row farthest from the edge of the metal when one looks in the direction of the load. Second, as the load increased, the outside row of bolts loosened, and the portion of load carried in tension by these bolts approached zero. Third, when the metal at the joint definitely failed, the tension on the inside row of bolts was also decreased and the corrugated plate itself began to fail rapidly.

The analysis of the butt joint is somewhat different. Curve B of Figure 32 shows the tensile stress in the lower row of bolts in a butt joint. The stress increases rather uniformly as the load increases.

Curve A shows the tensile stress in the upper row of bolts of the butt joint. As the load is increased the tensile stress due to tightening the bolts is decreased probably due to the fact that the two butt plates are moved toward each other. The load continues to decrease for several 1000-lb. load increments and then increases. This increase probably begins when the butt joint begins to spread at the bottom and pivots about the upper edge of the butt plate. This stage is shown in the failed joint in Figure 32, except that the bolt does not usually fail.

- 6l -

4

POUND\$

LOAD

Both upper and lower rows of bolts are here in tension and there is often excessive deformation in the butt plate. In very few instances were there bolt failures, but most joint failures seemed to have come from the failure of the butt-plate itself.

Since there is some difference in strength between a single-bolted lap joint and an unbolted specimen, it was felt that the strength of the joint could be increased by doubling the number of bolts in the joint. Figure 33 shows a double-bolted joint.

The dashed curves on Figure 31 show the tensile bolt strains of the double-bolted specimens. Curve A shows that the A row of bolts decreases in tensile strain from an initial strain due to torque down to zero. Practically the same action is taking place as occurs in the singlebolted plates.

There is much more variation in the "B" row of bolts subject to tension. The dashed curve B shows these bolt strains. The strain increases only slightly beyond the initial strain introduced by tightening the bolts up to a point just beyond the elastic limit of the beam. Then the strain increases more rapidly for several thousand pounds and starts to decrease again when the metal in the joint fails. It will be noted that the strain curve for the bolts in the double-bolted joints varies considerably from the strain curve for the bolts in the single-bolted joints.

At the elastic limit there is a tendency for the double-bolted joint to be more efficient than the single-bolted joint, but at the ultimate strength of the plates neither type of joint has a decided advantage. With this thought in mind it is very probable that there is no advantage in double-bolting a plate except in case of direct thrust, especially since

- 63 -

TYPICAL FAILURE - DOUBLE BOLTED JOINTS

the decrease in bolt stress caused by double bolting is of no great value because the greater bolt stress in single-bolted joints is not detrimental to the joint.

Bolt Strains

On certain plates in Test 5, strain gages were cemented to the bolts used in the plate seams for the purpose of observing the strain pattern. These data are shown in Table 11. Two graphs which portray the typical behavior of longitudinal bolt strains are shown in Figures 31 and 32.

Figure 32 is the set of curves for the butt joint. The initial stresses are incurred in the tightening process. As the load is applied vertically downward some relief is seen in the upper row of bolts. After the elastic limit of the metal was reached both rows increased in tension.

Bolt strains in a lap joint are shown in Figure 31. For single bolting there was not much change in bolt tension for the first 5000-lb. load. Above that value the "A" row of bolts obtained rapid relief and the tension increased more rapidly in the "B" row.

Double bolting aided the strains in the "B" row. Throughout the test the increase in strain in these bolts was very small for a double-bolted joint. The "A" row behaved in a manner similar to that shown for single bolting.

Effect of Varying the Radius of Curvature

Tests 5 and 6 differed only in the plate curvature. The plates for Test 5 were formed to a 150-in. radius of curvature while the samples used in Test 6 were curved to a 50-in. radius. An inspection of Figures 18, 19, 26, and 27 shows slightly higher ultimate values for Test 6 than Test 5. This was to be expected because of the difference in the span.

- 65 -

TABLE 11TENSILE STRAINS IN BOLTS - TEST 5

Ŕ.,

Strain in microinches per inch for indicated load in pounds on bolted beams

Plate Iden.	Bolts	Row Fig. 31-32	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000	16000	17000
U l ga	S	A B	1040 1470	1000 1430	920 1510	850 1500	760 1660	690 1780	600 1890	700 2080	810 2170	910 2210	1020 2230	1080 2260	1140 2290	1200 2320	1250 2400	1250 2550	1220 2610	1020 2760
U lOga	S	A B	1180 1050	1160 1100	1130 1170	1120 1230	1130 1270	1180 1325	1400 1470	1540 1580	1640 1 6 40	1740 1740	2000 1810							
U 12ga	S	A B	1230 1300	1290 1290	1350 1260	1430 1160	1470 1160	1530 1180	1600 1080	1695 1120	1710 750									
R l ga	D	A B	630 730	610 730	580 740	530 760	500 770	460 780	400 780	340 800	270 810	200 810	140 810	80 800	30 810	0 820	860	920	950	97 ⁰
R l ga	S	A B	870 760	730 830	740 820	740 82 0	710 810	650 800	500 880	410 1170	_350 1350	270 1530	200 1600	130 1630	100 Fail	50	10	0		
R 7 ga	S	A B	1563 740	1600 734	1543 740	1310 770	1135 833	948 875	700 953	588 1081	420 1188	235 1323	198 1661	98 Fail	0				·	
A 1 ga	D	A B	668 544	622 566	555 541	445 579	350 552	230 592	47 640	63 695	52 785	95 878	100 880	70 970						
A l ga	S	A B	750 845	705 822	620 859	503 815	347 838	232 885	168 895	180 1096	198 1255	197 1383	· 218 1658	253 2152				×		
A 7 ga	S	A B	554 764	561 786	576 864	555 934	576 1044	545 1068	524 1151	340 1213	189 1419	108 1656	34 1812							
A 7 ga	D	A B	647 750	605 795	532 855	405 865	278 910	243 970	222 1040	153 1105	138 1230	70 13 35	70 1480							
A 10ga	S	A B	720 665	6 50 682	510 690	405 720	296 680	180 650												

1. 66 1

There was some question, however, as to the relative magnitude of the fiber stresses at these different curvatures. Tables 3 and 4 list the fiber stress at the elastic limit and Tables 6 and 7 give the modulus of rupture at ultimate load. A direct comparison of average unit stresses at elastic limit for Test 5 with those of Test 6 produces no deviation that can be attributed to curvature. Major discrepancies occur in the U 12 gage, A 1 gage, and A 12 gage with values from Test 5 exceeded by those of Test 6; and R 1 gage, OR 10 gage, and OA 12 gage where Test 5 shows the larger values. However, modulus of rupture figures are higher in Test 6 than in Test 5 for all samples except OA 12 gage.

Bolt Torque Tests

Three sets of corrugated plates from each manufacturer were fastened together with the bolts supplied for that purpose. These were tightened with a torque wrench until failure occurred. The data presented in Table 12 shows that the high tensile bolts furnished with the A and R specimens withstood about 700 ft.-lb. torque while the standard bolts supplied for the U styles failed at a lower value. In either case, however, the 200 ft.-lb. torque value used for fastening the seamed specimens throughout this test was well within the working limits of the bolt metal.

TABLE 12

	ULTIMATE	BOLT	TORQUE	IN	FOOT-POUNDS	
1	ga.	7	ga.		12 ga.	

Style	1	. ga.	7	ga.	12	ga.	Average
-	Test 1	Test 2	Test	1 Test	2 Test	l Test	2
A	680	720	710	730	720	720	713
R	720	750	780	690	680	710	715
U	605	580	590	575	580	620	5,92

- 67 -

SUMMARY OF PRINCIPAL CONCLUSIONS

1. Culverts may be designed on the basis of section modulus for 1-1/2-, 1-3/4-, and 2-in. depths for circular arc type corrugation and 2-in. depth for the box type.

2. There is some indication that the effectiveness of 1-3/4- and 2-in. depth corrugations begins to fall off when a thickness of metal is decreased to 12 gage.

3. The standard lap joint detail is not quite able to develop the strength of the metal at ultimate stresses and the joint lowers substantially the effective elastic limit. Double bolting tends to bring the effective elastic limit back to normal but it has little or no effect on the ultimate strength in bending. The tests indicate that double bolting increases the stress of the joint in thrust.

4. The butt joint used developed the box-type corrugation in thrust but not in bending.

5. Even when bolt nuts are set up with a torque wrench to a given torque, the tension in the shanks varies greatly from joint to joint. The torque adopted in the tests for tightening the nuts (200 ft.-lb.) appears to be a good one to use in practice.

6. Plate curvature had little effect on magnitude of extreme fiber stress.

Errata, p. 50, Michigan Engineering Experiment Station Bulletin 109

Conclusion 1 should read:

"When using 1-3/4 and 2-in. circular arc type and 2-in. box type corrugations in the design of culverts, experience with the old type 1-1/2 in. depth material may be used by assuming that corrugations having the same section modulus will give the same strength against bending."

Also, in Conclusion 2, delete "1-3/4 and 2-in. depth" and replace by "all".

DETAILED ANALYSIS OF CONCLUSIONS

1. Design by Use of Section Modulus - In order to state that corrugated metal structures may be designed on the basis of the section modulus, one must show that if figured by the use of the section modulus the resulting stresses correspond fairly well with those obtained in the tests. A study was made of Table 2 showing strain gage readings on three specimens, viz. one 1-3/4-in. depth specimen, one 2-in. specimen, and one 2-in. box section. If the published section moduli are used the extreme fiber stresses may be computed.

These may be compared with the stresses computed from the observed strains. At approximately the elastic limit the following stresses were computed using the published section moduli:

1-3/4-in。	corrugation	tension fac	e -	230,230	psi
2-in.	corrugation	tension fac	е –	53,570	psi
2-in.	corrugation	compression	ti	57,830	psi
box	corrugation	tension fac	e	44,750	psi

If these stresses are computed from the observed strains assuming a coefficient of elasticity of 29,000,000 we have:

1-3/4-in。	corrugation	tension	face	1000	37,800	psi
2-in.	corrugation	tension	face	-	45,850	psi
2-in.	corrugation	compressi	Lon "	PQ-4	47,700	psi
box	corrugation	tension	face	-	45,000	psi

Thus the two methods of obtaining the stress compare quite favorably. A more indirect test of the validity of the section modulus may be had by using it to compute the ultimate stresses from Tables 10, 11, and 15, Appendix. Table 10, Appendix covers fifteen tests of seamless specimens in pure bending. Computing the moduli of rupture by use of the section moduli we obtain an average value of 60,100 psi with a maximum of 74,600 psi and a minimum of 39,900 psi. For the corresponding values in Table 11,

- 69 -

Appendix, covering tests of bolted specimens we have:

Average	modulus	of	rupture	Į t	54,600	psi
		maz	cimum	5	72,200	psi
		mir	nimum	4	11,500	psi

For Table 15, Appendix, the values are:

Seamless average 64,000 psi maximum 82,600 psi minimum 44,200 psi

All these figures tend to show that the published values of section moduli give reasonable stress values. If now these tests are grouped according to the type of corrugation we have for the moduli of rupture:

corrugation	69,200	psi
corrugation	54,300	psi
corrugation	72,500	psi
corrugation	63,000	psi
	corrugation corrugation corrugation corrugation	corrugation 69,200 corrugation 54,300 corrugation 72,500 corrugation 63,000

These values are averages for all bent column and pure bending tests on seamless specimens.

2. Gage Efficiency with 1-3/4- and 2-in. Depth of Corrugation

The following table gives the average ultimate strength or modulus of rupture obtained from all available seamless and single bolted tests on the circular arc type sections under pure bending and combined bending and direct stress:

<u>Gage</u>	Depth of Corrugation	Averag	<u>e Ultimate Stress</u>
1	13/4		56,400 psi
	2		75,900 psi
		Aver.	66,200 psi
7	1-3/4		61,000 psi
	2		71,000 psi
		Aver.	66,000 psi
10	1-3/4		52,100 psi
	2		71,600 psi
		Aver.	61,900 psi
12	1-3/4		41,600 psi
	2		66,100 psi
		Aver.	53.800 psi

- 70 -

From the above table it is seen that the average ultimate stress for circular arc type corrugations of 1, 7, and 10 gage lies above 60,000 psi, whereas the average ultimate stress for 12 gage is 53,800 psi. It may be that under ultimate stress the thin gage metal deforms to such an extent that the section modulus is not entirely effective.

For the box section we have:

Seamless

Gage	<u>Average Ultimate Stress</u>
1	62,200
7	54,200
10	52,100
12	52,000

Here the falling off of efficiency for 12 gage is less than that for the circular arc types although the same tendency is evident.

3. <u>Efficiency of Lap Joints</u> - The tests for bolted and seamless straight columns are not comparable because the former specimens were only 24 in. long whereas the latter were 52-3/4 in. long. In the other tests the ultimate strengths could be compared because the specimens were otherwise identical. The average ultimate stresses were as follows:

150-in. radius column test (see Table 7, Appendix) 73,700 65,400 30-in. radius column test (see Table 9, Appendix) 59,900 58,300 150-in. radius pure bending test (see Tables 10 and 11, Appendix) 60,100 54,600 50-in. radius pure bending test (see Table 15, Appendix) 64,000 54,000

Bolted

The "efficiency" percentages given in Table 10 show the lap joints in a somewhat more favorable light than the ultimate loads given above. If the percentages given in this table for lap joints are averaged for each depth of corrugation and each test number and these averages

- 71 -
averaged we obtain:

For ultimate loads 97% efficiency For elastic limit 79% efficiency

In other words the standard lap joint nearly develops the ultimate strength of the corrugated metal but slippages and yielding take place which makes the elastic limit appear considerably lower.

The lower part of Table 10 shows that for pure bending the use of double bolting increases the lowered elastic limit about 20 percent but it lowers the efficiency at ultimate load for pure bending by about 2 percent. One very marked effect of double bolting is the reduction in tension bolt stress (See Figure 31). For pure compression (the straight column test) Table 5 shows an increase in the average ultimate stress due to double bolting from 31,600 psi to 36,200 psi or 14 percent. Attention should be called to the fact that the columns had an unsupported length of only 24 in.

4. <u>Efficiency of Butt Joints</u> - Table 10 shows an average efficiency of the butt joint of about 75 percent at ultimate loads and about 45 percent at the elastic limits in bending. Under pure compression (straight column tests) Tables 4 and 5, Appendix, show that the butt jointed column is stronger than the seamless column. Thus, under pure compression the butt joint developed the full strength of the section.

5. <u>Bolt Torque</u> - Table 11 gives the bolt strains for eleven test specimens under various loads up to 19,000 lb. All bolts were tightened with a torque wrench to 200 ft.-lb., yet the recorded bolt strains vary all the way from 544 to 1,563. Assuming the modulus of elasticity as 29,000,000, the stress varied from 15,770 to 45,400 psi. The stress in some bolts, therefore, must have been three times that in others. The cause

- 72 -

of this may be due to the variation in the coefficient of friction between nut and plate and between nut and bolt shank, at the time the nuts were tightened.

Table 12 shows the ultimate bolt torque on the three types of bolts used. The lowest value recorded was 680 ft.-lb. and the highest 750 ft.-lb. Thus, the torque adopted for the tests (200 ft.-lb.) is about 2/7 the ultimate and appears to be a reasonable one to use in practice.

) S

TABLE 1 APPENDIX MANUFACTURERS DATA ON SPECIMENS

APPENDIX TABLE 2

CHEMICAL ANALYSIS AND BRINELL HARDNESS* 1.1

nir I

i	Doole	Dratuall	<u></u>		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Chenimon	nock-	DLIUGIT	đ	10	c	D	C14	0	ħ <i>4</i>
opecimen	WELL B.	naroness	<u> </u>	WIL	QQ	<u> </u>	51	u	MO
TERT D		00	000	800	0.70	0.7.0			
USZLP	856		°080	.300	°038	°016		.27	
U5ZLS	B59	93	°080	° 200	.038	°016		.27	
UGZ1P	B66	104	。090	. 390	.042	.015		.25	
U6ZIS	B67	105	°060	. 390	₀ 042	°012		.25	
U5Z7P	B65	103	.019	°058	.026	.006	.004		
U5Z7S	B59	93	.019	.028	.026	.006	.0 04		
U6Z7S	B64	101	.019	°058	.026	.006	.004		
U5Z10S	B60	95	.019	°058	.026	.006	°007		
U6Z10P	B60	95	°018	. 028	.026	006ء	.004		
U6710S	B65	103	.019	.028	.026	.006	.004		
	200								
R5X1P	B68	107	.05	.15	.030	.014		43	07
REXIS	BGA	101	04	11	084	010		40	.07
RGALD RG71D	BGQ	107	05	ידד אר	080	010		o ±J 4 ⊠	°00
	DOO DCO	100	00	010 TT	074	010		° 4 0	•07
ROULD DEVED	D09 D07	109	٥ <u>04</u>	<u>المال</u> ۲۳	°004	010°	-		.08
ROA / P	B75	110	°04	°T0	°N%0	°OTT		.44	.08
R527S	B73	116	.04	۰ ــــــــــــــــــــــــــــــــــــ	.033	°0T0		.48	<u>.08</u>
R6X7P	870	110	°04	.13	.026	°01T		.44	•08
R6Y7S	B72	114	.04	°11	°032	°010		. 48	۰08
R5X10P	B72	114	۰05	. 15	.025	.010		•54	.09
R5ZLOP	B77	124	ْ 05	°12	°05°	。010		. 54	.09
R5X12P	B73	115	۵O5 ·	. 16	.030	.010		.44	.05
R5Z12S	B71	112	°02	"1 6	_° 030	.010		. 44	.05
R6X12P	B75	121	٥05	。16	.030	.010		.44	.05
OR5X10P	B71	112		No		Data		• ·· -	
A671S	B56	90							
A2Y7S	B67	105	Τvi	oical lin	nits -	No spec	ific deta		
A5¥7P	BGO	95	*J	for	n thia	ອກດາເກັື			
ASYING	B70	11/		T.O.3		Eroup			
AUALUO AE7100		114							-
AF710C	DIC	107	00	co to	015	007		04	
ROLLCO	DOQ	107	0U2	°0T-°0%	°0Tb-	-0U0-		•04-	
	DEO	00			。しんん	°007		۰UÐ	
AGX12P	858	92							
A6Z12S	B67	105							
OA5Y12P	B67	105							
OA5Y12S	B63	99							
			Ty	pical ana	alysis	Bolts			
Type U Bo	lts		.18-	. 30	.05 ma	x04	max.		
			°53	°e0					
Type R Bol	lts	258	.39	. 66	°032	.019		. 25	
~ ~									
Type A Bol	lts	269	. 46	°80	°043	.010		,	
~ -									

*Note: Chemical Analysis data furnished by Manufacturers. Brinell hardness of plates performed by laboratory using 500 kg. load and 10 mm. ball. Bolt hardness values furnished by fabricator.

TABLE 3 A

PHYSICAL TESTS ON PLATE SPECIMENS (by Bureau of Public Roads)

Specimen	5 5 6	Yield Strength	8 8 4 9	Ultimate	8 0 0	Modulus of
No.	1	Offset .05 percent	å	Strength		Elasticity
- <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	******	P.S.i.	**************************************	P.s.i.	* 0 0 0	x 10 ³
U5Z1P U5Z1S U671P		30,444 29,158		49,427 48,020		30,393 29,725 29,247
U6Z1S U5Z7P		29,675 39,781		50,397 48,798		29,061 30,642
U5Z7S U5Z10S U6Z10S		43,255 38,784 43,153		51,394 52,026 56,348		30,263 32,069 32,241
Ave.		35,828		50,801		30,455
R5X1S R3Z1S R5Z7S R6X7P R5Z10P R5Z12S R6X12P OR5X10P		31,849 34,530 44,737 42,857 41,250 45,455 44,007 39,867		48,288 49,378 52,053 54,416 50,764 52,196 52,862 49,600		28,804 29,783 29,497 28,529 30,119 28,633 29,481 28,525
Ave. of new plates		40,669		51,422		29,264
A6Z1S A2X7S A5X7P A5X10S A5Z12S A6X12P OA5Y12P OA5Y12S		20,430 31,380 35,196 38,923 24,779 24,091 46,223 43,363		41,219 46,183 43,296 48,154 41,681 41,182 53,237 51,150		29,885 30,676 29,707 29,945 28,471 27,049 31,357 31,907
Ave. of new plates		29,133		43 , 619		29,289

APPENDIX TABLE 3 B

ADDITIONAL PHYSICAL TESTS ON PLATES AND BOLTS (by Bureau of Public Roads)

	Yield	Tens	ion Tests	Rockwel	Ll Hardne	ss Tests
Specimen	Strength	Reduction	Elongation	Small	Tension	Specimens
No.	Offset	in		Squares	After	Tests
	.10 percent	Area,		Tested by	Grip	Reduced
	P.s.i.	Percent	Percent	Michigan	End	Section
U5Z1P	31,519	67	33	B58	B58	B79
U5ZLS	30,454	68	37	B59	B53	B79
U6Z1P	33,453	70	24	B56	B63	B77
U6Z1S	31,769	72	32	B63	B66	B82
U577P	40,328	57	18	B60	B63	B74
U5Z7S	42,140	51	25	B62	B64	B74
U5Z10S	40,376	48	18	B64	B66	B78
U6Z1OS	46,220	46	16	B63	B66	B78
Ave.	37,032					
R5X1S	33,219	68	35	B55	B55	B74
R3Z1S	34 876	69	32	B60	B65	B78
R5Z7S	45,053	63	22	B64	B70	B77
R6X7P	44,493	62	21	B63	B68	B74
R5Z10P	43 472	65	28	B72	B71	B81
R5Z12S		56	26	B74	B69	B80
R6X12P	44,544	59	18	B65	B71	B74
OR5X10P	40,800	58	23	B69	B65	B74
Ave. of						
new plates	40,943					
A6Z1S	20,789	67	41	B48	B51	B71
A2X7S	33 817	58	23	B59	B56	B64
A5X7P	35, 307	63	31	B63	B56	B66
A5X10S	38,769	54	26	B60	B59	B74
A5X12S	25,133	64	38	B40	B41	B71
A6X12P	24,273	62	35	B38	B45	B70
OA5Y12P	46,583	45	16	B67	B68	B72
OA5Y12S	43 , 717	45	18	B67	B64	B70
Ave. of						
new plates	29,681					

TABLE 3 C

CHEMICAL TESTS ON PLATES AND BOLTS (by Bureau of Public Roads)

Identification	* 4	Chemic	al Ana	lysis.	Percen	<u>t by w</u> e	eight	
No.	* <u>C</u>	: S :	Mn	: P	: Si :	Cu	: Mo	
			PLAT	FES				
U5Z1P	•08	.035	.26	.012	.00l	.24	755	
U6Z1P	۰08	. 035	.25	°013	.003	.25		
U5Z7P	.03	.025	.024	. 004	.001	.00		
U5Z1OS	.02	.031	.033	.003	.001	.00		
R5X1S	°03	.012	.12	.004	.001	<u>,</u> 50	۰08	
R5Z7S	•04	.016	,10	.002	.002	.46	.07	
R5Z12S	.04	.018	.12	.007	.002	.52	.07	
A5X10S	.02	.019	.015	.017	"00T	.03		
A6X12P	.02	.019	.017	°00°	.001	°02		
OA5Y12P	.02	°030	.044	. 004	.000	.11		
OA5Y12S	。02	٥033	.042	005ء	.002	.12		
			BOL	rs				
U - White (1)	.16	027ء	.53	800ء	.002	.09		
R - Yellow (1)	.42	°036	.75	ol9ء	.004	.05	desia ubar	
A - Green (1)	.42	°053	.71	.011	.003	。Ol		

TABLE 3 D

PHYSICAL TESTS ON BOLTS

Company Submitting Specimens	: Stress Tension : P.s.i.	: Rockwell Hardness
	<u>Ave. of 7</u>	Ave. of 2
United	80,057	B62
Republic	137,357	B100
Armco	129.779	B96

- 78 -

-79-

. .

-80-

c: 1

2020510121000000	a an	FLAIN	a an a subsection of the second s	SINGLE BOL	FED		DOUBLE BOI	ASD
Lead in	TYPE U	TIPE R	TYPE A	TYPE U	TYPE R	TYPE A	TYPE R	турь а
Pounds	1 ga. 7 ga. 19 ga. 12 ga.	1 ga: 7 ga. 10 ga. 12 ga.	1 ga. 7 ga. 10 ga. 12 ga.	1 ga. 7 ga. 10 ga. 12 ga.	1 ga. 7 ga. 12 ga.	1 ga. 7 ga. 12 ga.	1 ga. 7 ga. 12 ga.	1 ga. 7 ga. 10 ga. 12 ga
0 1 2 3 4 5 6 7 8 9 10 11 13 13 15 16 17 19 20 21 23 22 23 22 23 25 27 27	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 2 3 3 6 3 4 7 4 8 5 45 5 16 13 95 6 64 74 1956 8 111 159 66,07 12 194 322 18 364 1031 32 940 69.75 44 2043 66 611.5 69 1375 1375 1375 7666 1384 2644 613.9 TABLE 12 RESIDUAL VERTION Pormane	0 0 0 0 0 3 1 3 23 3.5 4 5 236 10.5 6 24 1014 18. 14 73 235 19 46 263 63.74 44 109 754 76 310 66.3 160 1075 376 68.4 1192 2662 4559 912.1 L DEFLECTIONS FROM TEST #5 na Deformation (Thousandth	0 0 0 0 1 6 6 4 3 18.5 13 10 4 22.5 17 41 5 47.5 28 50 15 60 48 63 33 189 198 379 45 383 409 47.5 66 815 1197 100 2129 2564 157 3090 40.3 205 487 205 487 218 401 205 487 205 487 218 41.8 366 510 685 1196 2377 818.8 - 150° RADIUS BEAMS Inches)	0 0 0 2 5 2 11 30 7 32 90 21 53 106 27 74 215 40 113 458 57 114 66.9 167 458 190 654 218 1419 288 2735 387 611.9 540 755 1033 1750 2605 3871 619.0 Note: The fil	0 0 0 6 11 9 18 31 44 35 56 372 61 115 05.9 92 205 162 410 328 802 612 2605 1052 48.4 2096 3574 911.1	0 0 0 4 16 20 23 28 33 31 95 63 35 42 129 41 65 316 49 78 548 59 139 1823 73 227 67-0 95 480 16 1137 160 2177 165 611-2 256 583 850 1414 2276 3318 619-0 1414 2276 3318 619-0	0 0 0 0 0 14 0 15 21 27 0 46 115 48 15 124 1295 68 45 266 8 3.5 100 93 1133 157 205 65.0 252 409 476 904 964 2138 1692 8.0 210.5 2
	e 28		1					l

Load in Thousand			TIPE	υ		TYP	ER		TYP	E OR	ŀ	TYPE		TYPE OA		
Pounds	1 ga.	7 ga.	10 ga.	12 ga.	l ga.	7 ga.	10 ga.	12 ga.	1 ge.	10 gu.	l ga	7 ga.	10 ga.	12 ga.	12 ga.	
0 1	52.32 .34	52.25 29	52.04 52.12?	52.28 •36	52.56 .58	52 33 37	52.31 .32	52.36 38	52.03 .06	52 13 22	52.27 .29	52.44	52.25 29	52.27 34	52•48 •52	
2.0	•35	•33	-19	.43	.60	.38	•35	•42	•09	.30	•32	-50	• 32	.40	•56	
3.0	•36	•34	,21	• 46	.60	. 41	•39	•46	.13	• 35 • 37	•33	•52	• 35	.60	•62 •70	
4.0	•38	-35	+23	.48	.61	.43	• 42	•50	.16	- 39 - 42	•34	•53	•42	8 3.74	•78 @ 4-2	
5.0 6 7 8 9 10 11 12 13 14 15 16 17	• 39 • 40 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 48 • 48 • 49	• 36 • 37 • 40 • 41 • 42 • 44 • 44 • 45 • 49 • 58 • 70 • 16.6	.25 .27 .28 .31 .32 .34 .40 @11.8	.50 .52 .54 .60 @ 8.4	.62 .63 .64 .67 .69 .70 .70 .72 .74 .75 .84	.45 .48 .50 .55 .61 .70 .88 @11.5	.44 .47 .55 .54 ⊕ 9.75	.59 .83 @ 6.07	.19 .23 .37 .63 ⊛ 8.5	.45 .60 @ 6.3	.36 .38 .40 .43 .47 .62 .75 .74 @12.1	.56 .58 .66 .79 @ 8.4	•52 •75 ® 6•3			
17 19 20 21 22 23 24 25 25 25 26 27 28	470 550 551 554 558 581 67 76 3 52 52 52 52 52	₩10¢0			•93 53•09 @18•9			E	DRIZONTAL DI	Chor	FROM IEST # d Longth (1	5 - 150" F inches) final entr	adius flai	E BRAMES	ultimate load in thousand	. pounde.
	¢28														1	

	interest weeks at	restatestatestat	vietetwiedwie	dent/dent/states	vietwintetet/iwicc	wivioration	03100000000000000000000000000000000000			and the state of the	second		00000100000000000000000000000000000000	COLUMN COLUMN COLUMN	did white and	debter witerberten	100wiw00riw	Instal with the lower of the	And the second second second second	rowstware on twee	head wat had a standard and a standard and a standard a standard a standard a standard a standard a standard a		manani di S
				SINGLE	Bolted										Ľ.		DOUB	LE BÖLTED					
Load in Thousand	Y	TYPE	υ		ŢΥΡ	E R			TYPE .	A		TYPE C	R	TYPE OA		Ŧ	(PE R	•		TYPE A			
Pounds	l ge.	7 ga.	10 ga.	12 ga.	l ga.	7 ga.	12 ga.	l ga.	7 ga.	10 ga.	12 ga.	l ga.	10 ga.	12 ga.		l ga.	7 ga.	12 ga.	l ga.	7 ga.	10 ga.	12 ga.	
0 1 2 5 5 5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 16 17 18	52,42 44 45 49 49 512 555 557 557 557 557 557 557 557 557 55	52.32 •34 •36 •38 •41 •43 •43 •43 •54 •54 •53 •11 @11.8	52.17 .24 .30 .32 .34 .37 .45 .53 .61 .61 .61 .61 .61 .61	52.436 .39 .43 .47 .49 .54 .64 .64 .75 .87	51.94 .98 .99 52.00 .01 .03 .05 .07 .11 .14 .17 .20 .25 .30 .35 .35 .35 .35 .43 .52 .63 .65 .43 .55 .52 .63 .65 .55 .55 .55 .55 .55 .55 .55 .55 .55	52.12 .14 .15 .16 .20 .23 .25 .29 .32 .35 .54 @11.9	52.17 .15 .20 .24 .28 .35 .42 @6.8	52.27 .28 .30 .32 .35 .36 .41 .48 .54 .54 .56 .68 .66 .74 .911.1	52.39 .42 .43 .45 .48 .52 .57 .64 .74 .64 .74 .68.4	52.25 29 -32 -33 -36 -39 -41 -44 -46 -53 -5-7	52.36 .36 .43 .55 @3.9	51.63 .669 .72 .75 .84 .87 52.00 .14 .87 .52.00 .14 .87 .52.00 .152 .00 .152 .00 .152 .00 .152 .00 .152 .00 .152 .00 .152 .00 .153 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	51.87 .97 52.00 .06 .11 .10 .20 .25 .34 .55 .55 .55 .55	51.67 52.11 .16 .30 .37 03.8		51.61 .64 .66 .70 .72 .72 .75 .78 .75 .78 .75 .78 .83 .84 .83 .84 .92 .52.02 .13 .23 .39	52.20 .23 .25 .26 .29 .36 .36 .39 .36 .36 .39 .36 .39 .38 .36 .55 .55 .63 .83 .811.2	52.06 .16 .19 .20 .23 .25 .25 .25 .33 .37 .47 .44 .69 B7.0	51.94 .95 52.00 .00 .02 .03 .08 .11 .17 .17 .29 .44 6 10.5	52.45 .48 .50 .53 .55 .61 .66 .72 .84 .84 .89.0	52.23 .28 .32 .34 .41 .55 85.0	52-25 -28 -29 -32 -33 -52 -50 -61 -83-5	
20	eto*0				a19.0					Gaora	Length (In	ohea)			0	19.0							
	Loa	d and de	flection	n values be	yond ulti	imate 1	bad are she	on on lo	id-defle	action e	irves.	1		Note: Th	∼ l vafine	1 antr	/ 171 ma	مساده م	1 the m	timote '	land in t	housend nounds	
								1							1	MUP	, 111 QU	on calound	To end of	0.1 mil (19)		tromenter pourtie	

- 81 -

terrane and the second s	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	FLAIN SPECI	IMENS		a and a second secon	1		2007-00200200200200	BOLTED SPECIN	12)//S	1.050101010101010101010100000
Lead in Thousand	TYPE A	TYPE OR	TYPE R	TY	PS U	1 2a. 7 P	TYPE A	TYPE O	R TYPE R 12 ga. 1 ga. 7 ga. 1	TYPE H	za. 12 za.
Thouseand Pounds 1 1.5 2 2.5 3.5 4 4.5 5 6 7 8 9 9 0, 11 12 13 14.4 15 6 7 8 9 9 0, 11 12 13 14.5 22 24 22 23 24 25 26 27 27 28 29 30 31 32 33 33 33 33	TIPE A TIPE A 1 ga. 7 ga. 10 ga. 12 g 71 88 142 12 22 127 155 247 35 178 236 366 92 230 302 500 322 278 388 726 64. 337 505 1473 405 700 2200 460 1152 2700 559 1750 67.3 359 1250 67.3 359 2200 1152 2700 5413 413 413 413 413 413 413 413 413 413	112E of a. 10 ga. 12 g 6 174 34 1 174 34 1 174 34 1 174 34 1 174 34 1 174 34 10 372 16 2 541 151 5 242 9 715 633 2 1069 3 2 2265 3500 3500 27.09 27.09	2112 A 2112 A 2112 A 2 ga. 12 ga 21 Ba 7 ga. 12 ga 34 55 71 105 60 95 12 Ga 20 13 35 71 105 14 55 71 105 15 169 201 430 25 169 231 430 254 339 1152 268 407 3050 263 734 4403 355 734 4400 355 735 543 47.6 350 2621 350 2621 350 2621 565 51.8 744 1493 505 2625 53.8 742 742 427 427 4295 565 51.8 7445 31500 62 216 31500 62 216 3160 62 742 742 742 742 742 742 <td>1 1</td> <td>cm 10 ga 12 ga 73 82 112 130 150 204 177 219 293 222 271 361 271 361 500 2113 300 436 316 380 500 363 427 571 386 470 651 425 519 901 467 580 69 503 642 1500 700 # 13 934 717 17 TABL</td> <td>1 84.7 8 74 11 137 22 213 33 278 43 366 57 505 83 666 113 857 176 1131 266 1491 88. 1999 2475 3400 0127 0127 0127</td> <td>1112 й 10 ge. 12 19 160 11 316 17 469 13 689 2 19 180 13 689 2 19 180 13 689 2 19 1218 19 1218 19 1218 19 90,6 19 1218 19 90,6 19 90,6 19 90,6 19 90,6 19 90,6 19 90,7 121 90,7 131 90,7 141 90,7 152 90,0 19 90,0 19 90,0 19 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 <t< td=""><td>Ea. 10 ga. 10 ga. 10</td><td>12 20.1 11.1 20.1 12 20.4 11.0 698 1312 46 11.0 698 130 136 27.5 136 130 136 27.5 136 1370 136 27.7 524 137 21.4 417 27.7 27400 173 335 60.1 93.9 221.4 417 27.7 524 313 6.41 405 761.1 31.5 405 77.7 524 31.6 61.365 659 127.7 1452 1072 1072 1072 1072 1072 1072 1072 1452 1767 (Failed Failed 9.6 \$\$\scitewidthtarrow 76 CORRUGATED FLAT \$</td><td>2 ga. 1 ga. 7 ga. 1 2 ga. 1 ga. 7 ga. 1 132 56 103 1 2 2 103 171 2 371 155 247 3 4 6 195 323 4 664 227 406 195 323 4 6 195 317 2 502 6 1117 275 502 6 1056 15 513 403 454 1056 15 513 1403 37 557 1346 6 622 22.646 714 3850 826 6 937 1155 1440 1765 6 6.22 26.66 14 937 1155 1440 1765 6 20<td>ga. 12 ga. 54 153 45 207 47 411 25 524 30 660 36 901 42 1163 52 1543 59 8 8 61 11 EBT</td></td></t<></td>	1 1	cm 10 ga 12 ga 73 82 112 130 150 204 177 219 293 222 271 361 271 361 500 2113 300 436 316 380 500 363 427 571 386 470 651 425 519 901 467 580 69 503 642 1500 700 # 13 934 717 17 TABL	1 84.7 8 74 11 137 22 213 33 278 43 366 57 505 83 666 113 857 176 1131 266 1491 88. 1999 2475 3400 0127 0127 0127	1112 й 10 ge. 12 19 160 11 316 17 469 13 689 2 19 180 13 689 2 19 180 13 689 2 19 1218 19 1218 19 1218 19 90,6 19 1218 19 90,6 19 90,6 19 90,6 19 90,6 19 90,6 19 90,7 121 90,7 131 90,7 141 90,7 152 90,0 19 90,0 19 90,0 19 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,0 <t< td=""><td>Ea. 10 ga. 10 ga. 10</td><td>12 20.1 11.1 20.1 12 20.4 11.0 698 1312 46 11.0 698 130 136 27.5 136 130 136 27.5 136 1370 136 27.7 524 137 21.4 417 27.7 27400 173 335 60.1 93.9 221.4 417 27.7 524 313 6.41 405 761.1 31.5 405 77.7 524 31.6 61.365 659 127.7 1452 1072 1072 1072 1072 1072 1072 1072 1452 1767 (Failed Failed 9.6 \$\$\scitewidthtarrow 76 CORRUGATED FLAT \$</td><td>2 ga. 1 ga. 7 ga. 1 2 ga. 1 ga. 7 ga. 1 132 56 103 1 2 2 103 171 2 371 155 247 3 4 6 195 323 4 664 227 406 195 323 4 6 195 317 2 502 6 1117 275 502 6 1056 15 513 403 454 1056 15 513 1403 37 557 1346 6 622 22.646 714 3850 826 6 937 1155 1440 1765 6 6.22 26.66 14 937 1155 1440 1765 6 20<td>ga. 12 ga. 54 153 45 207 47 411 25 524 30 660 36 901 42 1163 52 1543 59 8 8 61 11 EBT</td></td></t<>	Ea. 10 ga. 10	12 20.1 11.1 20.1 12 20.4 11.0 698 1312 46 11.0 698 130 136 27.5 136 130 136 27.5 136 1370 136 27.7 524 137 21.4 417 27.7 27400 173 335 60.1 93.9 221.4 417 27.7 524 313 6.41 405 761.1 31.5 405 77.7 524 31.6 61.365 659 127.7 1452 1072 1072 1072 1072 1072 1072 1072 1452 1767 (Failed Failed 9.6 \$\$\scitewidthtarrow 76 CORRUGATED FLAT \$	2 ga. 1 ga. 7 ga. 1 2 ga. 1 ga. 7 ga. 1 132 56 103 1 2 2 103 171 2 371 155 247 3 4 6 195 323 4 664 227 406 195 323 4 6 195 317 2 502 6 1117 275 502 6 1056 15 513 403 454 1056 15 513 1403 37 557 1346 6 622 22.646 714 3850 826 6 937 1155 1440 1765 6 6.22 26.66 14 937 1155 1440 1765 6 20 <td>ga. 12 ga. 54 153 45 207 47 411 25 524 30 660 36 901 42 1163 52 1543 59 8 8 61 11 EBT</td>	ga. 12 ga. 54 153 45 207 47 411 25 524 30 660 36 901 42 1163 52 1543 59 8 8 61 11 EBT
Load in	Түрк а	PLAIN SPECIMENS	TYPE R	TYPE I			TYPE A		BOLTED SPECI	SENS TYPE II	
Thousand Pounds	1 gs. 7 ga. 10 ga.	12 ga. 1 ga.	1. 7 ga. 12 ga. 1 g	a. 7 ga.	10 ga. 12 ga.	1 ga. 7 [5a. 10 ga.	12 ga. 1	ga. 7 ga. 12 ga.	1 ga. 7 ga. 10 ga.	12 ga.
0 1,5 2,5 3,5 4,5 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 25 27 29 30 31 22 23 25 27 29 20 20 20 20 20 20 20 20 20 20	0 0 0 0 13 0 0 13 0 14 17 5 72 21 27 197 30 06 559 54 263 1862 111 939 3170 156 2190 % 7.4 495 % 8.6 1062 2549 4850 \$ 33	0 0 0 3 26 4 252 3 2411 3 2411 3 2411 3 2411 3 2411 3 241 13 24 4 5 6 17 28 4 4 3 5 6 17 28 4 4 3 5 6 17 145 145 145 145 145 145 145 145	0 0 0 2 0 4 0 18 4 64 10 135 40 2070 142 2070 142 2070 142 2070 142 2070 142 2070 142 2070 142 2070 143 2 1378 3 1528 4 1528 4 1528 4 1527 44 1528 4 1528	0 = 0 0	$\begin{array}{c} 0 & 0 \\ 2 \cdot 5 & 3 \\ 4 \cdot 5 & 6 \\ 6 & 8 \\ 8 \cdot 5 & 9 \cdot 5 \\ 13 \cdot 5 & 11 \\ 13 \cdot 5 & 14 \\ 17 & 19 \cdot 5 \\ 23 & 40 \\ 37 & 215 \\ 66 & 1062 \\ 130 & 69 \cdot 3 \\ 270 & 69 \cdot 3 \\ 2030 \\ 2030 \\ 2030 \\ 2030 \\ 3 & 13 \cdot 2 \end{array}$	0 2 3 3 4 2 7 4 4 5 13 13 13 13 13 13 13 13 13 13	0 0 0 7 29 33 44 44 103 59 254 204 59 254 203 59 254 203 59 254 203 59 254 203 59 254 203 59 254 59 254 59 254 8.7 8.7 8.7 7 7 8.7 7 7 8.7 7 7 7	o 9.5 12.5 9 278 812 # 3 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 1.5 18 0 1.5 18 0 1.25 25 0.5 33 65 1.37 107 1.46 1.70 1.5 70 605 7 109 2175 37 166 & 6.9 70 362 02 194 6 610.8 05 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 05 06 07 0 1.55 06 06 06 05 06 05 06 06 06 06 06 06 06 06 06 06	0 0 0 0 1 31 17 4 80 17 7 49 40 12 94 60 17 115 98 23 118 159 26 150 240 43 201 363 56 27 711 84 416 1260 120 721 3627 135 905 0 11 171 1391 210 2177 314 3262 4309 0 14-5 1264 (Nolt) Failed 50 ⁶ RADIUS BEAM the Inches)	0 9 32 25 38 75 1666 418 718 0 8
Load in	TYPE A	PLAIN SPECI TYPE	IMPIIS OR TYP	S R	TYPE U			туре а	BOLTED SPEC	TYPE R	TYPE U
Pounds 0 1 1.5 2.5 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 20 31 20 20 20 20 20 20 20 20 20 20	1 ga. 7 ga. 10 ga. 12 49.83 49.71 50.00 49 .85 -77 .12 .89 .83 .19 50. .93 .87 .28 50 .95 .9.8 .13 55 .96 .91 .37 51 50.00 .99 .51 e2 .05 50.05 51.09 .12 .44 e27.3 .27 51.14 .37 69.4 .51.18 .51.99 e13.5	ga. 10 ga. .78 50.25 .89 -35 .99 -50 .14 .35 -60 .70 .70 .70 .97 .97 .97 .97 .97 .97 .97 .97	12 ga. 1 ga. 7 gu \$0.17 49,60 49.7 .50 .64 .3 .50 .65 .9 .63 .66 .9 .83 .68 .9 \$3.5 .71 .9 \$3.5 .72 50.0 .75 .0.0 .75 .0.0 .75 .0.1 .9 .68 .3 .90 .48 .90 .5 .71 .9 .75 .0.1 .90 .48 .75 .0.1 .90 .48 .75 .0.1 .90 .48 .91 .7 .1 .84 .2 .83 .9 .4 .91 .7 .95 .91.4 .91 .7 .95 .3713.8 .00 .13 .95 .3713.8 .20 .30 .95 .51.13 .22 .20	. 12 ge. 9 49.64 7 .72 10 .79 4 .98 8 .98 10 50.09 5 .43 2 .51.95 14 .97.6 11 11 11 11 11 11 11 11 11 1	1 ga. 7 ga. 10 ga 49.79 49.83 49.81 .83 .87 .88 .86 .91 .92 .90 .95 50.99 .93 .98 50.02 .94 50.02 .49 .95 .05 .13 .90 .08 .16 .02 .10 .18 .03 .13 .20 .06 .15 .24 .07 .18 .99 .13 .50 .07 .18 .99 .15 .78 .15 .78 .18 51.45 .22 .23 .25 .28 .23 .25 .28 .28 .25 .28 .28 .24 .25 .28 .28 .28 .24 .25 .28 .28 .28 .24 .25 .28 .28 .28 .28 .28 .28 .28 .28	. 12 53. 49.51 .65 .77 .84 .89 .93 .54 50.00 .04 .17 .99 TA B	1 ga. 7 ga. 49.64 49.65 .66 .77 .72 .85 .76 .91 .82 .92 .87 50.00 .98 .22 50.07 .41 .17 .77 .51 88.9 .51 88.9 .51 88.9 .51 28.9 .27 .27 .27 .27 .27 .27 .27 .27	- 10 gm. 12 gm 5 49.69 49.80 .81 .97 9 .92 50.00 .18 50.05 .37 3 .16 50.77 5.47 44 50.71 55.8 5 5 5 5 5 5 5 5 5 5 5 5 5	 10 ga. 12 ga. 50.33 50.34 -45 .65 .70 50.36 .70 51.07 .70 51.07 51.43 93.9 51.71 45.5 67 51.37 51.43 93.9 51.71 45.5 64 55 65 50 50 50 50 50 50 50 50 50 50 50 50 50	1 ga. 7 ga. 12 ga. 49.56 49.65 49.31 -55 -70 -39 -62 -75 -47 -65 -61 -577 -68 -86 -68 -70 -90 -80 -74 -97 50.07 -77 50.03 0.45 -74 -97 50.07 -77 50.03 0.45 -82 -10 86.9 -82 -10 86.9 -82 -10 86.9 -82 -10 86.9 -139212 -23 -32 -43 -33 -43	1 gs. 7 gs. 10 gs. 12 gs 1 gs. 7 gs. 24 gs. 14 gs. 15 1 gs. 15 gs. 15 1 gs. 15