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ABSTRACT

A method of analysis is presented for the investigation of developed
stresses, pore pressures, and displacements in a pavement structure con-
sisting of a flexible pavement supported on awater-saturated soil foundation.

A mathematical model of the pavement structure is constructed using
ideal materials. The flexible pavement surface is replaced by an imperm-
eable, linear viscoelastic, thin plate of infinite extent in the model. Apor-
ous elastic solid saturated with an incompresSible, viscous fluid is used to
simulate the saturated soil foundation. A uniform circular load is placed
at the plate surface to approximate a vehicle wheel load. The mathematical
model is analyzedto obtain an approximation of the deformation that would
occur if the real pavement structure were subjected to a uniform circular
load.

Analysis of the model is reduced to the solution of a linear initial-
boundary value problem. The initial-boundary value problem is solved -
using iterated Laplace-Hankel transformations. The transformed solution
images are inverted to obtain physically meaningful solutions to the prob-
lem using numerical methods. The Hankel transform inversion is perform-
ed approximately by numerical integration yielding values of the Laplace
transform of the solution at discrete points. The Laplace transform data
are then used to construct a generalized Fourier series approximation of
the time-dependent solution.

A computer program was developed that utilized the inversion algor-
ithm to invert the transformed solution functions. Stresses and displace-
ment at any geometric point in the flexible pavement structure may be ob-
tained as functions of time using the developed computer program.

Measured material properties were used to constructa numerical sol-
ution for the response to load of a hypothetical pavement structure. The
results of the analysis are presented. - '
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INTRODUCTION

This research was conducted in cooperation with the Federal Highway
Administration under the Highway Planning and Research Program to assist
in the national effort to develop a rational method for designing flexible high-
way pavements. The work undertaken in this study consists of the solution of
a stress distribution theory which accounts for interaction of water and solid
materials in the soil foundation, and the viscous time-dependent effect in the
pavement material. The viscous effect is included in order to make the math-
ematical model of the paveient structure as realistic as feasible since the
viscous time effect is very significant in bituminous concrete. However, the
primary purpose of the research is to develop an analytical tool for inves-
tigating water-solid interaction in saturated pavement structures subjected
to external loads.

The specific objectives, as outlined in the Project Proposal, were to:

1. Determine the displacement field which results
when a linear viscoelastic plate supported on a
porous elastic half-space containing an incompres-
sible fluid is subject to quasi-static point loading

normal to the half-space.

2. Determine the resulting stress field in the half-
space in the situation discussed in Objective 1.

3. Provide a computer program in FORTRAN lan-

guage which will be of use to other investigators in

considering the stress field and displacement field
-1~



problems discussed in Objectives 1 and 2. This
program would permit the users to vary pertinent
parameters, and to solve various quasi-static
type vertical loading problems.

The actual loading considered was a uniform circular load rather than
a point load as indicated in Objective 1. The circular loading pattern was
adopted because it approximates the load pattern of a single wheel load, and
can be simulated experimentally by plate loading tests. This problem has not
been treated before,either analytically or numerically.

The main product of the study is the solution of the viscoelastic plate
on poro-elastic half-space problem. In conducting the research necessary
to solve the defined problem, two secondary new results were obtained. The
first of these was the determination of a new initial condition onthe poro-
elastic foundation that allows for compressibility in the elastic material which
makes up the skeletal porous structure of the medium; the second consisted of
the development of a numerical technique for inverting iterated Laplace-Hankel
transform functions.

Before proceeding with the mathematical problem it might be appropriate
to discuss the problem on purely physical grounds in order to illustrate the sig-
nificance of the study and its relationship to the overall problem of analyzing
flexible pavement structures.

To begin with, the net effect of the solid-fluid interaction in the soil
foundation is that the hydrostatic stress that is applied to the soil particles is
less than that applied to an element of the soil mass. The reason for this is

that part of the load that is applied to the soil is carried by the fluid. At

points in the foundation where the pressure on the fluid is large, the soil



structure is weakened, because the ultimate undrained shear strength of the
soil material decreases as the effective pressure on the solid particles de-
creases.

The solid-tluid interaction under load phenomenon is time-dependent
and becomes insignificant after some period of time. The nature of the de-
cay of this transient effect is of interest because as the interaction reaches a
steady state condition, the effective solid particle stresses approach the ap-
plied stresses and the fluid pressure approaches zero value. The reason that
the interaction dissipates is that the fluid in the soil foundation tends to move
from areas of high total pressure to areas of low pressure. As the fluid
moves out of a highly stressed region, the solid particles in the element are
required to carry a greater portion of the load in order to maintain equilib-
rium.

The deformation of the foundation is time-dependent because, as the
fluid flows away from highly stresscd regions, the soil decreases in volume
and settlement occurs. This means that if a stationary load is placed on the
pavement structure for a period of time, the pavement will continue to de-
form for some time after the load is applied due to the solid-water inter-
action occurring inthefoundation. The viscous properties of the bituminous
concrete cause this effect to be magnified because, although the bituminous
material exhibits a relatively high initial stiffness, it creeps under constant
loading.

In actual service, loading that is applied to highway pavements is
transient in nature. The loading that is applied at a point in the foundation

increases as a vehicle approaches and decreases as it departs; and this
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process is repeated many times during the service life of the pavemeni. The
net effect of the service loading can be approximated by utilizing superposition
techniques. In this research, the cffect of a uniform circular load -—-applied
instantly and then held constant indefinitely--is studied. By adding up the et-
fect of several such loads applied at different times, any smooth time-de-
pendent loading can be approximated. Therefore, it is apparent that the solu-
tion determined in this study is a bt.lilding block which can be used to approx-
imate more complicated time-dependent pavement loadings il nccessary.

The viscous property of the bituminous concrete is temperature sen-
sitive. However, isothermal deformation is assumed in the subsequent anal-~
vsis presented in this report. Therefore, in applying the analyvsis it is
necessary to regard the deformation as occurring at some specified temper-
ature. Considering the service leading that is to be ultimately approximated,
it seems reasonable to assume that the temperature of the pavement will
remain constant during the passage of one service load. The temperature
distribution in the pavement slab can he expected to vary with depth; however,
the bituminous layer thickness is relatively thin (less than five inches) in the
pavement structures being considered in this study and, therefore, the tem-
perature gradient can be expected to be small. An allowance for the tem-
perature distribution with respect to depth can be made by selecting the
asswmed constant temperature value equal to the average of the actual dis-
tribution. In superimposing the effect of several service loads, each load
may be assumed to occur at different specified temperatures. This can be
done by utilizing appropriate material property data in analyzing the effect

of each of the loads.



This report of the research accomplished is organized into eleven chap-
ters. In Chapter I, a mathematical model of the pavement structure is intro-
duced. The ideal poro-elastic material, which simulates the foundation in the
model, is then discussed in Chapters III and IV. In Chapter V, the ideal lin-
ear viscoelastic material is discussed. This material is used to simulate the
bituminous pavement layer in the model. Thin viscoelastic plate theory is
introduced in Chapter VI. The mathematical solution of the model response
120 external load is given in Chapters VII, VIII, and IX. In Chapter X, the re-
sults of the analysis are applied to a hypothetical pavement structure using
measured material property data. Numerical results are given that include
fluid pressure distribution and decay curves. Finally, in Chapter XI, some
conclusions and recommendations are presented which concern the applica-
tion and extension of the results obtained in this study. The computer pro-
gram which was developed to perform the pavement analysis is included in
the Appendix. The program is designed so that other investigators may use
it to perform stress analysis of flexible pavement structures. Laboratory
tests for determining the material constants required are also discussed in

the Appendix.



I

THE MATHEMATICAL MODEL

A mathematical model of the flexible pavement structure may be con-
structed using ideal materials to simulate the actual physical materials. Once
this is accomplished, if the model is then assumed to be subjected to load’ing,
it may be analyzed to obtain an approximation of the deformation that would
occur if the real structure were subjected to the same loading.

The mathematical model that is used to simulate the flexible pavement
structure in this study consists of a linear viscoelastic plate supported on a
linear poro-elastic solid as shown in Figure 1. The plate is of infinite extent
and the f;)undation occupies the half-space lying directly below the plate. .

A vertical step load is applied to the plate at zero time. The load is uni-
formly distributed over a circular area of radius b on the plate surface. The
model is considered to have been at rest and unstressed prior to application
of the load.

The following assumptions have been made concerning the physical
response of the model:

1) body forces are neglected (A body force solution may be super-
imposed on the results obtained. )

2) the deformation occurs at a constant temperature

3) the deformation of the model is quasi-static (independent of inertial
effects)
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4) the model is assumed to be at rest prior to application of the load

5) the displacements and velocities at all points in the model are small
so that linear theory is applicable

6) the viscoelastic plate material is assumed to be incompressible
7) the boundary between the plate and the foundation is frictionless and,
therefore, only normal stresses are transferred from the plate to the

solid

8) the vertical displacements of the plate are equal to that of the founda-
tion at the interface

9) the thin viscoelastic plate forms an impermeable boundary across
which no fluid can flow

10) the poro-elastic foundation consists of a linear, isotropic, perfectly
elastic solid and an i_ncompressible fluid

11) the poro-elastic foundation is homogeneous and has isotropic
mechanical properties

12) creeping flow of the fluid in the foundation is assumed (Viscous ef-

fects on the flow through the pores are accounted for by introducing a

permeability parameter. )

13) " the shear stresses acting on the fluid are assumed to be small in

comparison to the normal stresses and, therefore, may be neglected

in the solution of stress distribution problems in the foundation.

The analysis of the mathematical model is summarized in the computer
program that is presented in Appendix A. The program can be used to deter-
mine stresses and displacements throughout the model. The theoretical basis
for the computer program is developed in the text that follows. A summary of
the development is presented here for reference.

To begin with, it is necessary to define the mechanics of deformation
for the interacting media foundation. This is done in Chapter III of the text,

where the necessary field equations and constitutive equations are presented.

This system of equations is reduced in Chapter IV by substituting the



constitutive equations into the equilibrium equations. Further reduction is
accomplished by considering the axial symmetry of the foundation loading. Two
unknown displacement generating functions are introduced which define the
axisymmetric deformation,

Next, in Chapter V, the mechanical properties of the viscoelastic plate
are investigated. Constitutive equations are presented that define the de-
formation response to load for the viscoelastic material. Then, by utilizing
the continuum equilibrium equations, the constitutive equations, and the geom -
etry of the plate, a single differential equation defining the deformation re-
sponse of the plate is obtained in Chapter VI. By applying the methods of
operational calculus itis poséible to reduce the plate equation to an algebraic
expression involving iterated Laplace-Hankel transforms of the unknown plate
deflection and foundation reaction.

In Chapter VII, an initial-boundary value problem is defined for the
foundatio;l. The unknown foundation reaction is one boundary condition of the
problem. In Chapter VIII, the boundary value problem is solved to obtain an
expression for the Laplace-Hankel transform of the foundation reaction. The
expression that is obtained %s combined with that determined in Chapter VI to
yield explicit expressions for the transformed plate deflection and foundation
reaction. The transformed solutions of other unknown stresses and dis-
placements’ in the foundation are then determined using the deflection and
foundation reaction expressions.

In order t.o determine physically meaningful solutions, it is necessary
to invert the transformed solution images. This matter is dealt with in

Chapter IX. The inverse Hankel transformation is approximated using a

-10-



numerical integration algorithm. The inverse Laplace transformation is
accomplished by approximating the time-dependent solution with a generalized

Fourier series. Knowledge of the Laplace transform of the solution permits

construction of the series approximation.

~11-



III

MECHANICS OF INTERACTING MEDIA

In order to solve the plate on half-space problem it is necessary to
mathematically describe the plate and foundation so that the applied load can
be related to the deformation. The interacting mixture of solid and fluid that
makes up the foundation will be considered first.

Biot [ 1] formulated Aa theory of deforming porous media in 1939. His
formulation was proposed to mathematically describe the porous solid model
proposed by Terzahgi [2]to mechanically depict soil consolidation under load.
The Biot theory has been developed and applied by many researchers since its
conception and has become the classical theory of poro-elasticity. Recently,
Paria [g]has discussed the Biot theory and its history of development.

The mechanics of interacting media treated here was formalized more
recently (1965) by Green and Naghdi (4] and is based on thermodynamic con-
siderations. The mechanics of interacting media are quite general and ap-
plicable to mixtures of gases, solids, and fluids. In the case of a mixture of
a perfectly elastic solid and an incompressible fluid, the modern theory re-
duces to the classical formulation of poro-elasticity. In 1968, Tabaddor fg]
discussed the development of the modern theory and its relationship with
poro-elasticity and theories of flow through rigid media. In the present paper,

the interacting media theory will be discussed for the case when the mixture

-13-



forms a poro-elastic material.

3.1 Fundamental Propertiés

In the development of the mechanics of interacting media, certain basic
assumptions have been made [ﬁl_, §] and will be referred to here as basic
postulates.

Postulate I: At every point in a poro-elastic continuum there exists
both fluid and solid, neither of which may be isolated physically
from the mixture.

Physically, Postulate I can be examined based on the microscopic phys-
ical model which has been proposed to describe poro-elastic material [_1_, §] .
Microscopically, the material is assumed to consist of an elastic skeleton
containing many interconnected void spaces, or pores, which are filled with
fluid. A small material element is thus seen to always contain both
fluid and solid. However, when macroscopic structures of poro-elastic mate-
rials are viewed, the small element appears to be a point in the structure.
(For example, in the problem being considered here the macroscopic structure
is a half-space of infinite extent.) Therefore, it is assumed that the small
element of material can be considered a point in the macroscopic structure,
and in this sense there exists both fluid and solid at every point in the mix-
ture.

The mixture of solid and fluid at an arbitrary point in the mixture will
take on new density properties. The density properties of the mixture at a
point in the macroscopic body can be examined by first considering a small
finite element and then shrinking it to a point. The fluid in the element has
a true density of (g which is equal to its mass divided by its mass volume.

An artificial initial fluid density (2)p can be defined by dividing the fluid mass

-14-
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in the poro-elastic element by the total volume of the element. This density
(25 can be thought of as the apparent initial density of the fluid in the poro-
elastic volume element. Further, if the element is deformed such that its
volume changes, and possibly some of the fluid flows out of it, a new artifi-
cial density (®p may be defined as the ratio of the current fluid mass in the
element and the current volume of the element. ‘®p can then be considered
to be the apparent fluid density of the deformed poro-elastic material at
time t . Similarly, the elastic solid in the skeletal structure of the volume
element can be seen to have a real density "5 , an artificial density g at
time zero,and a density ‘) at time { equal to its mass divided by the deformed
volume of the element. Now, if the volume element is shrunk to a point, and
it is assumed both fluid and solid exist at the point, it must be assumed that
the densities defined above do not change.

In order to proceed with the development of the mechanics of interacting
media, it is necessary to state Postulate I mathematically. Considering a
mixture of two continua 8; and s, , that are in relative motion, the posi-

tion of each point in s and in s are given by Eq. (1):
xi'xi(xltXZ'x3'” ’ yieyilYy.Y2,¥3,4),i=1,2,3 )
where x; denotes the position of each point in g, and y; that of $o

Both position vectors %; and Y are expressed in Cartesian co-ordinates
and are measured from a common Cartesian reference frame. The co-
ordinates X; and Yi refer to the original positions of the points in 8, and
8o prior to deformation. Postulate I states that every point in the mixture is
occupied simultaneously by a point in 8, and one in 85 . Focusing on an

arbitrary point in the mixture it is apparent that some point that was
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originally at X, in g , and one that was at Y] in 8o , now occupy the

arbitrary point in the mixture as indicated by Eq. (2):
Xi=2y,i=1,2,3 (2)

Since Eq. (2) is true for any arbitrary point in the mixture, it is true through-
out the mixture at any given time ¢ . It can be seen, therefore, that Eq. (2)

is mathematically equivalent to Postulate I.

Postulate TI: The total stresses that are applied to an infinitesimal
volume element at a point in the poro-elastic body are equal to the
sum of the partial stresses on the solid and fluid continua at that
point, ’

Physically, this postulate can be understood by considering a small finite
element of the poro-elastic mixture which ig subjected to surface traction stres-
ses on all sides. If the total force applied on any given face is divided into that
applied to the solid and that applied to the fluid, then two partial stress com-
ponents can be defined by dividing these two forces by the gross area of the
element surface. Letting g I k‘denote the total stress traction components ap-
plied to the cubic element of the poro-elastic mixture, it can be seen that par-

tial solid and fluid stress components Oji and ;) are related to the total stress

components by Eq. (3). _

Ti + my = s 3)
Now if the cube is shrunk to a point, or more accurately, if it is assumed to
be infinitesimal relative to the poro-elastic body, then O and iy may be
thought of as the stresses applied to the two artificial continua that exist at
every point in the mixture according to Postulate I, The stresses on the two

continua, therefore, must satisfy Eq. (3) which is equivalent to the condition

stated in Postulate II.
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Another basic property that is exhibited by the interacting media consid-
ered in this research is that of porosity. The poro-elastic mixture is assumed
to have a strong skeletal structure as opposed to a colloidal mixture of solid
and fluid having nd pore structure. It is therefore possible to define the por-

osity f of an element of the skeletal structure as shown in Eq. (4):
\'
= B2 4)
f \

denotes the volume of the interconnected pores, or void spaces, and

where Vp

VvV is the total volume of the element. An alternative definition of porosity
may be derived by considering the mean pore area of the surfaces that are
oriented parallel to one face of a cubic element of the gkeletal structure. The

mean pore area Ap is defined by Eq. (5):

h
Ap=;"-/m(ndz (5)
O

where A denotes the length of the element and m the ratio of pore area to total
area on the surfaces parallel to the z faces of the element. The volume vp can

be computed in terms of Ap as shown in Eq. (6).
Vp = Aph (6)

Substituting Eq. (6) into Eq. (4) yields an alternative expression of porosity in

terms of Ap and the gross area of the element face A .
A
e
f== (7)

This second definition of porosity is not used in the subsequent develop-
ment of the mechanics of poro-elasticity. It is used, however, in interpreting

laboratory tests which are performed to determine the material constants,
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3.2 Field Equations for Interacting Media

The approach used by Green and Naghdi [ﬂ to establish field equations
was to first assume that the interacting mixture satisfied Postulates I and O
which were given in 3.1. They then considered thé thermodynamics of the
interacting mixture and adopted a third postulate.

Postulate IIl: The first law of thermodynamics as stated in Eq. (8)
applies to interacting media.

Rate of flow of

Rate of Increase Power of the ex~ .
. mechanical and non-
of energy in a = ternal forces on - . (8
mechanical energy
mass system. the mass system.

into the mass system.
An energy balance equation which expréssed Eq. (8) in mathematical terms was
derived for a fixed arbitrary volume inspace, and invariance conditions which
result when the effect of rigid body motions of the mixture are considered were
systematically applied. The equations of mass conservation and motion that
were derived using this technique are analogous to the well known field equa-
tions for single constituent continua, such as for example, the elastic solid.
One of the expressions obtained, the conservation of mass equation, is
given in Eq. (9):

(2)

(lb
* Dt

Dt

In Eq. (9), is the material time-derivative operator which measures
the rate of change in density in this case of any given particle of material as
observed from a fixed point in space. @k,k and Vk,k are the divergences of
the solid and fluid particle velocities measured with respect to the same spatial
point. In the usual case, with no chemical action taking place between the fluid

and solid components in the mixture, each mass element is conserved and
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stronger continuity conditions hold.

D(l)p ,
(')mg-ﬁ]—"’mpuk,k:o (10)
D@p
() = e (2D = 11
mE D1 4+"<pv k,k (0] (11)
The equations of motion that were obtained are shown in Eq. (12).
(o-ki +1rki) )k +(|)pFi +(2)pGi :(l)pfi +(2)pgi +(|)mai + (Z)mvi (12) 3

The new variables Fj, G;,f; and 9i , that are introduced in Eq. (12) are,
respectively, the body forces per unit mass on the solid and fluid continua
and the acceleration vectors of the solid and fluid particles. The last two
terms in Eq. (12) vanish according to the strong continuity conditions.

For quasi-static deformations, the two acceleration terms on the right side of
Eq. (12) may‘ ‘also be dropped. In the absence of body forces and with quasi-
static deformation Eq. (12) reduces to Eq. (13) which is the form used in this

study.
(Oki +7gi)sk =0 (13)

A diffusive force vector ; was introduced to combine certain force
type terms that appear in the energy balance equation and are attributed to
interaction occurring between the two deforming media. 7j is defined as

shown in Eq. (14):
|
w25 (O = Tido + 5 R(F =1~ 0(6;-g)) (14)
In the absence of body forces and for quasi-static deformation Eq. (14) reduces
to Eq. (15):
|
7= 50~ Tkid ok (15)

Applying an invariance under rigid rotation argument to the energy

balance equation Green and Naghdi showed that the total stress tensor must

(1)  The commas appearing in Eq. (9) and (12) indicate partial differentia-
tion with respect to x g . Repeated indices indicate summation. These
conventions apply throughout the text.
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be symmetric as shown in Eq. (16).
Oki +7ki = Ojk + ik (16)
The principle results of this summary that will be used in the subsequent

poro-elastic analysis are expressions (13) and (16) and definition (15) which
are the quasi-static equilibrium equations, the total stress tensor symmetry
relation, and the diffusive force definition. To complete the formulation of
poro-elasticity it is necessary to obtain constitutive relationships for the
stresses and diffusive forces that will relate these variables to the deforma-
tion of the media. Before considering the formulation of constitutive equa-
tions, however, it is useful to consider what constraints are placed on the
deformation of the interacting mixture by the incompressibility of the pore
fluid.

3.3 Incompressibility Condition

The fluid in the poro-elastic material is assumed to be incompressible.
However, this does not imply that the artificial fluid continuum with density
p is incompressible. Physically, this becomes apparent when a small finite
volume element of the poro-elastic material is considered. In such an el-
ement, the fluid is contained in pores which are surrounded by an elastic
skeletal structure. Suppose, for example, that the cube faces are sealed so
that none of the fluid can escape. Then when the cube is compressed the elas-
tic skeleton will decrease in volume and the fluid filled pores will become more
closely spaced. Therefore, the volume of the element can be decreased with-
out changing the actual fluid content in it, and the artificial density @p which
is equal to the fluid content divided by the current volume of the cube can be

changed without removing any of the fluid from the element.
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Consider as another example a permeable cube, and assume that
elastic material in the cube to be incompressible also. In this case, if the
cube is compressed for a period of time the skeletal structure will change
shape but its volume will remain the same. As the pressure is applied the
fluid will flow out of the pores, allowing the pores to decrease in volume.
Therefore, the artificial density p will change because the original elas-
tic material becomes contained in an element of decreased volume. Thus, it
can be seen that incompressibility of the elastic skeletal material does not
imply incompressibility of the artificial elastic continuum. Other density
phenomena can be predicted for the artificial interacting continua; however,
further examples will not be pursued here as the two examples given serve
to motivate the analysis that follows. The derivation that is given here fel—
lows the work of Tabaddor [5] ..

Consider a small unstressed element of poro-elastic material with
initial porosity f initial solid volume V| and volume V| attime t . The
volume \-ll is defined as the volume formed by the extreme boundary sur-
faces of the mixture. Although the actual volume of the elastic material in
the skeletal structure is less than that of the cube, the artificial elastic solid
used for the continuum approximation has exactly the same volume as the
element of poro-elastic material. Since the elastic strains are assumed to
be small, the change in volume per unit cube of the artificial elastic mate-
rial may be tallien equal to emm ° the sum of the normal strains. It is,there-
fore, possible to express V, in terms of \7‘ as shown in Eq. (17):

- < 7)
Vi= V(14 @am) where 8mpmm = Yp m
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It is reasonable to agsume further that there exists a linear relationship
between the element compressibility and volume change of the pores. If such
a relationship is assumed,and after the initial dilatation of the skeletal mate-
rial has taken place, . v is defined as the current pore volume per unit vol-

ume, then the pore volume may be expressed as shown in Eq. (18):
v =V (R (em = emmi0)) + ) | 18)

where @mmlo) denotes the initial value of @mm 2t time zero when the load-
ing is applied, and where R denotes the ratio of pore compressibility to total
element compressibility. R depends on the geometry of the skeletal structure
and the nature of the material filling the pores. As the sample is compressed,
the pores will become smaller. This is pore compressibility. Howéver, the
elastic skeletal structure will be compressed also and, therefore, the total
change in volume of the cubic sample will be greater than the change in pore
volume. If the pores are filled with an incompressible fluid, the pore volume
change will depend on the fluid flow from the element. Also, in this case,
strong interaction occurs between the fluid and solid and the change in volume
of the skeletal structure is dependent upon the flow of fluid from the element
too.

If the skeletal structure material is incompressible, the pore compres-
sibility equals the total compressibility and R=| . Biot and others [ 1, §]
have treated the analysis of such materials. In the present research, mate-
rial having a compressible skeletal structure, such that R will be less than
one and greater than zero,is analyzed.

It is desirable for analytical purposes to consider R as constant.
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Postulate IV states the assumed condition:
Pogtulate IV: The ratio of pore compressibility to total compres-
sibility of a small finite element of the porous, fluid filled solid is
assumed to be constant for times greater than zero.

From Postulate IV it is seen that the validity of the analysis will vary
between different porous media according to how nearly R approaches a con-
stant value for > and for how long it remains so. Therefore, in investiga-
ting specific materials, this limitation should be measured by experimentally
observing the behavior of R .

Treating R as constant, we proceed to determine the constraint implied

by the pore fluid incompressibility. The total mass of fluid in the pores per

unit volume at time ¢ can be expressed as shown in Eq. (19):

(25 v e (Z)p V|
(2)p v (19)
(z)z, \/]

The second equality follows from the given expression. Similarly, the
initial apparent density of the artificial fluid can be expressed by the first

Eq. (20) which implies the second equality:

@5 « Ahe
an L B (20)
(2)p f

The ratio of current pore volume to current element volume can be expressed

in terms of fluid densities, or in terms of apparent solid strain as shown in

2
Eq. (21): @

=y Vv—u 2 (8mm ~ emmlOMR=) + - feg,mlo) @1)

2 The final approximate equality was obtained from Eqgs. (17) and (18) by

performing synthetic division, and neglecting the second order terms
in the result.
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Equation (22) follows by equating the left and the right sides of Eq. (21), and

rearranging ferms.
(2

E_%), @ mm (R =) + £ = R (@ (o)) (22)

It is assumed that the deformation is isothermal, and that no chemical
reaction occurs in the mixture. The last assumption implies that the mass
elements c;f each component of the mixture are conserved during deformation.
According to these assumptions the current apparent fluid density ‘@)p can be
linearly related to the apparent density at time §=20 by a small scaler

function ¥ as shown in Eq. (23):
“b = “plo) + y (23)

Substituting Eq. (23) into the conservation of fluid mass equation (Eq. (11) of

3.2) and neglecting the second order terms, results in Eq. (24):

Y o oy Vhk . - 2P Vi, k
$E - -opa (TFemmo)) 2t (24)

If the partial time derivative is taken in Eq (22), Eq. (25) results.

(f ‘5’? (R-f)-—aj?m- (25)
Substituting Eq. (24) in Eq. (25) results in the desired constraint condition
Eq. (26). ‘
1Y 9
a‘:.k (Rf f) ea"'\m (1+ @mm(°)) (26)
or®
Wik ~ (f-R) %emm
ot f ot
This equation states the condition that is forced on f,al:&l‘ and geétﬂ" by

assuming that the pore fluid is incompressible.

3.4 Constitutive Equations

Field equations that insure equilibrium and continuity of mass through-

out the interacting mixture have been given in 3.2, It is also necessary,

8 The approximate equality on the left of the second Eq. (26) follows

from the assumption that the first invariant of the solid strains is
small, that is, much less than unity.
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however, to relate the partial stress tensors at any arbitrary point in the mix-
ture to the deformation at that point. When this has been accomplished it will
be possible to relate deformations occurring in the interacting media to
stresses applied at the boundary of the media in terms of a boundary value
problem.

Tabaddor [5] has derived constitutive equations for ’a poro-elastic
mixture consisting of a perfectly elastic solid and an incompressible viscous
fluid for ﬁle case of small strain and strain rates. His wox;k follows the more
general work of Green, Naghdi, and Steel(4, 6]. The following fifth postulate
led to the results obtained: |

Postulate V. The mixture of interacting media satisfies the second
law of thermodynamics.

The second law of thermodynamics postulates the existence of an entropy state

function s which satisfies Eq. (27):
srafe 2

s /(94
As > _/( =) 27)
srate |
change in specific entropy per unit mass

where As

-
l

absolute temperature

dq

heat input per unit mass which is not an exact differential

The equality sign in Eq. (27) holds for reversible processes, and the inequality
sign for irreversible processes. The change in entropy is greater than that
produced by heat input in the irreversible case because internal entropy pro-
duction occurs due to dissipative processes, such as internal friction.

Green and Naghdi {47 constructed an entropy production inequality for a sys-

tem of interacting media undergoing a reversible or irreversible process. This was
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done by examining entropy production of the mass system instantly occupying
an arbitrary volume V in space. Since the expression obtained applies for
any arbitrary choice of volume, the integral form of inequality may be local-
ized to an arbitrary point. Green and Steel Egj expressed the condition at a
point mathematically,in terms of a localized entropy production inequality.

In order to make use of the inequality it is necessary to cohstruct the general
form of the constitutive equations.

Green and Steel, in considering the problem of postulating constitutive
equations for a mixture consisting of a non-linear elastic solid and viscous
Newtonean fluid, relied on the known constitutive properties of each compon -
ent for inspiration. The condition of isotropy was imposed on the assumed
equations. The assumed éonstitutive relationships were then substituted into
the entropy production inequality. This resulted in an inequality which con-
tained several unknown state variables having undetermined coefficient functions.
By arbitrarily varying the state variables one at a time, constraints on the
unknown coefficients were obtained.  These conditions were then substituted
back into the assumed constitutive relationships. In this manner, Green and
Steel succeeded in obtaining constitutive equations for the non-linear elastic
and viscous fluid mixture. They then linearized the theory for the case of
- small elastic strains.

Tabaddor [g] investigated the same mixture with one additional physical
restriction. He assumed the fluid to be incompressible. He derived a con-
straint on the rate of deformation tensors as a consequence of the fluid incom-
pressibility. The incompressibility condition was presented in 3. 3. Tabaddor

substituted his incompressibility Eq. (28) in the entropy production inequality.
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av au
— +ay —pr o 28)
He then applied the procedure discussed above to determine the constraints
placed on the unknown coefficients of the state variables in the entropy in-
equality. This resultedinaset of constitutive equations for a non-linear elastic
solid and a viscous incompressible fluid. Tabaddor simplified his constitu-
tive equations further by introducing the infinitestimal strain assumption.
The resulting constitutive equations are:
(I)b‘
Tin = Opi= @) Sig +(dq=0) —=) e biy +2 (6 + agley
a -
+(ag *%) Y dik + ayp By
- - = =@
e —[t2 -
Trlk' '”ki' ( baa 51‘[(2)9 06+(‘2’P+p)=3g])’ (29)

hHp

+(2)p(az.- -bgaa)emm 5“( % A. f" 6ik + ZAZ fik

ouj Vi
mi= oSy =57
where a9k av's i
fik® 205~ +5)
and eiks'%'(“i,k + g i)

If it is assumed that there are no initial stresses on the continua prior to ap-

plication of the load at time zero, then Eq. (29) reduces to the following:

Oik = Oki ® (dgemm + GgY)bj + 20, ey

1Tik s -((gﬁ 06)’ +‘25 aaemm ) 6“& + )\|f" bik+2A2fik (30)
ou; av,
micalgy ~3r

In order to reduce the constitutive equations of the fluid, it is assumed that
the viscous terms, A,f,, and 2Ap fix are small in comparison to the

hydrostatic pressure. Neglecting these terms in ;) ylelds Eq. (31):
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p=(®Dagy + @D adgemm) (31)
where ik has been replaced by -p §jx because the normal components
of w;, are equal and the shear components vanish.
A change of variable can be accomplished by considering Eq. (24) of 3.3
which reduces to Eq. (32): R
R (32)

because @p. is assumed to be small.

Integrating this expression and noting that y=0at t=0 yields Eq. (33).
== DVik (33)
Substituting Eq. (32) for y in Eqgs. (30) and (31) yields Eq. (34).
Oik =(Ogemm = dg“Dvin,;m ) b + 202 e
. _ (34)
p = ~(ag(®P)" vy, m ~dg'*P emp )
The constitutive equations (34) are same as those given by Biot and Willis in
equation(l) of reference [7].
The variable Vm,m €21 be eliminated from the first constitutive

equation (34) by solving for Vm,m In the second equation and then treating

p as unknown.

2

(ag) 9g
Gik =] (04 —-a%-’ ) emm b.k '%‘(‘TG(T‘,T“_)) p6|k + 202 €ik (35)

Defining ag as the coefficient of en . and-a| as the coefficient of p in

Eg. (35) results in the form of constitutive equations that are used in this study.

Tik = ~Pdik
ou; 9V
i = a(jﬁ! - '=-'=L)
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The constitutive Eq. (36) relate the deformation occurring at any arbi-
trary point in the interactitlg media foundation to the state of stress there at
times greater than zero. Since Yy is zero initially at t=0 , the constitutive
equations for Oj, and p reduce to the following at the instant of loading.

Oik = dgemm dik + 20268

. (37)
p = dg ‘™D emm dik
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IV

GOVERNING DIFFERENTIAL EQUATIONS OF PORO-ELASTICITY

4.1 The Differential Equations of Poro-Elasticity

Equations (1) through (5) summarize the results obtained in Chapter III:

(Oki + i)k = O (1)
Oki=Oik=-01pdjx + 2ag¢ejx + agepmbik @)
Tki = Wik = ~P ik (3)
w2 - 2 @
tyy = B 2o (5)

These equations govern the quasi-static deformation of an interacting continua
mixture consisting of a linear elastic solid and an incompressible fluid at times
greater than zero. Equations (1) are the equilibrium equations of the continua
mixture. These expressions were obtained from the equations of motion,

Eq. (12) of 3.2,by neglecting the acceleration terms (quasi-static assumption)
and setting the body forces equal to zero. Equation (2) is the congtitutive equa-
tion for the solid partial stress tensor Gii « Equation (3) defines the partial
fluid stress tensor. Equation (4) gives a constitutive relationship for the dif-
fusive resistance in the media #; . (Diffusive resistance results because
interaction occurs between the two component materials when the continua are

deformed.) Finally, Eq. (5) is a constraint that is imposed on the system of
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equations because the fluid that fills the pores is incompressible.

The system of Eqs. (1) through (5) contains 29 unknowns and consists
of 19 equations. However, if the six solid strain definitions, the three dif-
fusive force definitions, and the definitions of the three normal components
of deviator tensor fij are introduced, the system is complete; containing 31
m@oms and 31 equations. The purpose of this section ié to reduce this sys-
tem of equations to a four-by-four system of equations with the solid displace-

ments u; and the fluid pressure p being the unknowns.
Oik + ik = 6P djg —p djk + 20 8 + A3y Sk (6)
By definition, #; is expressed as follows [4]:
|
i =50k~ Myidou (7)
if the body forces are zero and the deformation is quasi-static. Substituting
this expression in Eq. (4) yields Eq. (8).
| |
200%i = Tidig =057 ~ 37 ) (8)
I the equilibrium equation (1) is divided by two and subtracted from Eq. (8)

the following expression results:

,Ouj 9V

~Tyi,k * ol3y " o7 ) (9)

The substitution of expression (3) for Ty in Eq. (9) yields Eq. (10).

Uy Vi

o - o3-S @

This expression is of the same form as the modified Darcy law proposed by
Biot [ :_l_] to describe the creeping flow of a fluid through a deforming porous

media. 4

The microscopic flow through the pores is viscous and temperature
dependent. The viscous effects are accounted for in coefficient

of Eq. (9), which relates the macroscopic fluid discharge through the
media to the macroscopic pressure gradient P,; . In order to ac-
count for the temperature effect, it would be necessary to consider the
coefficient to be temperature dependent. In the present problem, how-
ever, @ may be considered constant because the deformation is as-
sumed to occur at a constant temperature.
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Substituting constitutive equations (6) into the equilibrium equations (1)

yields Eq. (11):

2028k, k *038mp,i ~(1+0)p,; =0 (11)
The artificial solid strain tensor is defined as shown in Eq. (12):
| ejk = & (uj K + v, i) (12)
Taking the divergence of the solid strain tensor Eq. (12) gives Eq. (13):
itk * B Ui kk * U ik ) . (13)
Substituting Eq. (13) in Eq. (11) yields Eq. (14):
Gpuj kk +(02+03)eny j—(a; +1)p,j=0 (14)

Using vector notation Eq. (14) can be expressed as shown in Eq. (15):
ap 920 +(ap + 03 )9(F-U) =(a, +1) Tp =0 (15)

Equation (15) is analogous to the Navier displacement vector equation of
elasticity. Because of the presence of four unknowns  u; and p in the three
Egs. (14), another equation is necessary to provide a complete system. A

fourth equation can be obtained taking the divergenée of both sides of Eq. (10).

é@mm
3t~ fmm) (16)

can be eliminated from Eq. (16) by substituting expression (5). Mak-

v2p s al
fom
ing such a substitution results in Eq. (17):

2. . 9R deqmm
ML iy (7)

In order to eliminate the dependent variable p from Eq. (17), another expres-
sion for Vzp can be obtained from Eq. (15) by taking the divergence of that

equation,

(202 +O3 )

Vzpa -——-——-(al 1) 7 8mm (18)

Substituting expression (18) into Eq. (17) eliminates p as shown in Eq. (19).

, ol (.R Semm _ | demm
Vg@mm"(agzmg,) f) at "¢ af (19)

Equations (15) and (19) are the fundamental equations that govern the

deformation of a porous linear elastic solid saturated with an
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incompressible fluid. The solution of Eqs. (15) and (19) in conjunction with suf-
ficient bouhdary conditions will provide the solutions of the quasi-static prob-
lems of poro—elasticity.s In the next; section, the solution of Egs. (15) and (19)
through the use of displacement generating functions is discussed for the case

of axially symmetric deformation.

4.2 Axially Symmetric Deformation - Displacement Generating Functions

The deformation of porous media problems that will be considered in
this study will be limited to the special case where the displacements are
axially symmetric. In this case, it is possible to further simplify the equa-
tions of poro-elasticity. In this section, two unknown functions E(r,z,t) and
S (r,z,t) will be introduced from which the displacements in the poro-elastic
media can be computed. In order that the equations of poro-elasticity be
satisfied, it is necessary that the functions introduced satisfy certain dif-
ferential equations; however, the equations that must be satisfied are much
simpler than those that govern u; and p .

Equation (20) expresses the axisymmetric constraint on the solid dis-

placement vector.
G=uplr,z,t) & +uzir,z,t)é, (20)

The Laplace differential operators ¥ and v2 which appear in the

fundamental equations (15) and (19) have the form of Eq. (21).

e -1 21
érm’ma@fa@':%ezaz ( )

in cylindrical co-ordinates where 8, . ée and e“z are unit vectors tangent

to the co-ordinate curves.

8 Alternatively, if ey, is considered as a fifth unknown, in addition to

vj and P, then Egs. (15), (18), and (19) may be considered the basic
governing equations.
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Assuming a displacement field defined in terms of two unknown functions,

E and S as shown in Eq. (22)

Glr,2,1)s9(E(r,2,1 ) +28(r,z,+ D-25(r,2,1 )8, (22)
where
VZS(r.pr)f-O (23)

leads to solutions of Eqs. (15) and (19).
Taking the divergence of both sides of Eq. (22) shows that the dilatation that

results from assumed displacement field depends.on E only.
-?V;QJ =emm=V2E (24)
Substituting Eq. (24) into Eq. (19) of 4.1 yields the partial differential equation

which £ must satisfy.

9 2

4.1 9
B2 VE @25)°

V .
If Eq. (22) is substituted into Eq. (15) of 4.1, which must be satisfied also, an

expression for $p results.

24
2 2 9JS
VR Fap) oz (26)

Solving partial differential equation (26) yields Eq. (27) for P :

03420 2a
L(03+292) j2p , <92 IS

(1+a) (I+0|)—5;-+po(f) (27)

where po(f) is arbitrary. The physics of the problem being studied here
insures that po(f) O . Thatis, the initial fluid pressure at time { =0~ is
assumed equal to zero, and no uniform hydrostatic pressure is applied to the

fluid continuum at any time t = O . Therefore, Eq. (27) reduces to Eq. (28).

2 20
_(03+20p) 2. 202 3S

= 8
(1+a;) (1+a) oz #8)

e In considering the axisymmetric deformation of materials with pore
compressibility R equal to unity, McNamee and Gibson [ _8] proposed
two displacement generating functions that satisfied equations of the
form of Eqs. (23) and (25).
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The displacement field defined by Eq. (22) may be expressed in physical com-

ponent form as shown in Eq. (29).

u, = $E +z§§,uz=§z§+zg—3_—s 29)

Partial differential equations (23) and (25) are the equations that define
E and S and thus the axisymmetric deformation of the poro-elastic foundation.
In order to establish sufficient boundary conditions on these equations, it is
necessary to consider the deformation that occurs in the plate that is sup-
ported by the foundation. Therefore, the equation that governs the plate defor-
mation must now be considered. First, however, a few comments concerning
the arbitrariness of E and 8 are given in 4. 3.

4.3 Arbitrariness of £ and $§ Functions

Functions E and S§ are arbitrary to the extent that the partial stress
tensors are not affected if an arbitrary linear function is added to E or if a
constant plus a term linear in ¢ is addedto S . If E is modified as shown

in Eq. (30)
E'sE<+b)+bpr + b3z (30)
then rigid body displacements result as shown in Eq. (31).
Wy =up + by, uz=uy+by (31)
It is observed that the addition of the constant b; does not affect the displace-

ments. If S is modified by adding a constant bg as shown in Eq. (32),

$'=S+bg (32)
then the rigid body displacement (33) results.
Uz = uz +bg (33)
Further, if a linear ¥ term is added to § as shown in Eq. (34)
o 1 (3Yr_dyz, 34

a rigid body rotation results.

¢
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It is interesting to note that the addition to S of a term linear in z does

not affect the artificial solid displacements, but does cause a change in the

‘partial stress components on the artificial fluid continuum as shown in Eq. (35).

S'=S+bgz, ub=uy, Uy=u,

35)
\ 2asb (
_Wr‘v = "W{‘a@ = -W'éz z2p'=p .%.m%?
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THE VISCOELASTIC MATERIAL

In order to define the deformation response to load in the plate, it is
necessary to relate the deformations occurring at any arbitrary point in the
plate to the state of stress at that point. It is the purpose of this Chapter to
set down such constitutive equations for the viscoelastic plate material.

The constitutive equations of the ideal, linear, isotropic, viscoelastic
solid exhibit a time—dependent relationship between stress and deformation.
However, since the stresses must be linearly related to the strains at all times
in the viscoelastic material, the constitutive equations are similar to those of
ideal elasticity. A convenient form of the viscoelastic constitutive equations
results if the dilatation is related to the first invariant .of the stress tensor

and the deviatoric strain is related to the deviatoric stress tensor as shown in

Eq. (1).
R(1)
Omm * 3(1~2V{1)) Smm

. R (1)
O T U m &ij

where

€5 8 €;;-1/3 Emm dij

R () and V(1) are linear time-dependent operators which are analogeous
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to the Youngs modulus and Poisson's ratio constants that appear in con-
stitutive equations of ideal elasticity. In this study it is assumed that the
viscoelastic plate material is incompressible and, therefore, the operator

V(1) . must be constant and equal to 1/2 as shown in Eq. (2).

3(1-2(v))
Emm = ————— Omm = 0 2
R(N @
Taking this constraint on V($) into account eliminates the first constitutive

equation (1) and simplifies the others to the form (3).
[ !
ij = 273 R(}) €} 3)

This expression shows that one linear time operator defines the constitutive
behavior, if the viscoelastic material is incompressible. Using the deviatoric
tensor definitions (1), it is possible to express Eq. (3) in terms of the ordinary

stress and small strain tensorial components.

- ) . | "
€ii= zrm i - ZRE Tmm bij @)
In the case of uniaxial stress, Eq. (4) reduces to Eq. (5):
O’(jj) =R (1) g(jj) (no sum on j ) (5)

which shows that a uniaxial experiment can be used to derive R(t)

A hereditary integral type constitutive equation is used to describe the
viscoelastic plate material in uniaxial strain for this study. This form of
equation can be constructed if the stress relaxation behavior of the maferial
is known. The necessary data are obtained by subjecting the material to a

constant uniaxial strain and observing the stress that results as a function of

time. The stress relaxation function () 1is defined in terms of the uniaxial

test data as shown in Eq. (6):
_ O'ci j) (t)
o(t) = €. (no sum on j ) (6)

where the instant of load application is defined as time zero.
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The general form of a typical ¢(#) function is shown in Figure 2,

In order to approxﬁnate the stress response for a more complicated
strain loading history, the linearity of the material can be utilized. This is
done by superimposing the stress relaxation response to several step function
loads such as shown in Figure 3, where the actual loading curve €( j j)(t) is
approximated by either of the two step function curves shown. The stress

response to each of the approximate loading curves is given by Eq. (7).
AE, ~
O’u = %(pu('—fk) A'k A'k iz @)(]])(')
0y = %‘PI (1-1y) X At = O
Letting At) approach zero in both summations Oy and Oy yields Eq. (8):
d€ji(#)
infinum G, = supremum Gy af@(t—‘z’)-g%!—-d’l’ (8)

t
where the last equality follows from the definition of the Riemann Integral.

Letting $, approach -eoo yields an expression for O(t) which ac-
counts for the effect of the entire uniaxial strain history of material. Inte-
grating the resulting expression by parts and assuming that the material was
unstrained at § =-e» gives Eq. (9).

i i
d 7) -
/¢(f—f)_—d%,ll-» dt = B(0) Ejj(1) +/€(jj)(?’)i‘%%ﬂ ls )

For the problem being considered it is assumed the loading history of the
material prior to application of the strain loading at time zero may be neg-
lected. This assumption leads to the hereditary integral constitutive equation

(10) for uniaxial strain,

Oijj (1) = @) &, (1) +6/€(“)(t) -‘33(3—';!-;1—) a7 (10)

Eq. (10) is equivalent to the operator form (11).
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STRESS RELAXATION FUNCTION

TIME

Figure 2. Typical stress relaxation function.

Figure 3.

Multi step-function approximations of strain loading.
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Gjp () = [fb(o)( )+ J) 22D dT] € (1 (11)

Comparing Eqs. (5) and (11) shows that R(t) may be defined by Eq. (12),
R() = () ( ) +of'( ) 22T) 47 (12)
if the deformation is quasi-static. Substituting Eq. (12) in Eq. (4) yields the
form of constitutive equations that are used to describe the viscoelastic plate

material in this study

»(0) €;;(1) +/ i(7) ""’ 0 g7 = 3 5 0ij - 0'2m bij (13)
o
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Vi

VISCOELASTIC THIN PLATE THEORY

6.1 The Viscoelastic Plate Deflection Equation

In order to define the deformation response of the plate as a whole to
the externally applied load and the foundation reaction, it is necessary to insure
point-to-point equilibrium throughout the plate continuum. The equilibrium

equations for the viscoelastic continuum are given by Eq. (1):
0ij,i =0 (1)

where G”ij is the stress tensor. |

The constitutive equations (13) from Chapter V, equilibrium equations (1),
and small strain definitions can be used to derive a viscoelastic plate bending
equation which is analogous to the differential equation that describes the bend-
ing deformation of thin, perfectly elastic plates. In the derivation that follows it
is assumed that:

1) the plate surfaces are subjected to normal stress tractions only

2) there are no forces applied in the plane of the plate

3) the body forces are equal to zero

4) the vertical plate deflection wv is small in comparison to the plate

thickness

5) the plate thickness is small in comparison to its in-plane dimensions.
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Restrictions 1) through 5) above, lead to the following assumptions con-
cerning the form of the plate displacement field v .

1) Lines normal to the mid-surface of the plate are assumed to remain
normal to the mid-surface during the deformation (shearing deformation is
neglected).

2) The mid-surface of the plate is assumed to remain unstrained during
the deformation.

3) It is assumed that the normal stresses perpendicular to the plate sur-
face do not gignificantly affect the strains in the plane of the plate.

These assumptions yield displacement component functions of the form (2):

e -0 ., OW
U= -z, Vet (2)

where u and v are the displacements occurring in the plane of the plate and
w is the vertical displacement component. The strain components can be

computed using Eq. (2), as shown in Eq. (3):

e g W T il I
Eyxx = ~Zaxz +Eyy = 23yF Exy "% 3%y (3)

Next, holding time 1 fixed, but arbitrary, and integrating the equilib-
rium equations (1) over the thickness of the plate yields three resultant
equilibrium conditions which must be satisfied. Two of the resultant equa-
tions are automatically satisfied, the third is given by Eq. (4)s |

dQx , 9Qy $_ o =
S Ty ta-a =0 (4)

where Q, and Qy are the resultants of the O, and CTyy stresses, and .
gt and q~ are the stress tractions applied to the upper and lower faces of
the plate. Two additional resultant equations can be obtained by computing the
moments of the first two equilibrium equations about the middle plane of the
plate; then computing the resultants of these equations over the depth of the

plate. The resultant moment expressions are given in Eq. (5):
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oM, oM
—k 2 _q =
% ay QR 0

(5)

IR Iy
where h/2 h/2 h/2
Mxy §/G‘wzdz . Mxﬂ/@nxzdz . MV/O"yyzdz
~h/2 -h/2 -h/2

As in the case of thin elastic plate theory, displacement solutions of the form
Eqg. (2) are sought such that equilibrium is satisfied in the resultant sense as
defined by Egs. (4), (6), at all times t . Eliminating Q, and Qy from

Egs. (4) and (5) yields Eq. (6):
%M, _ 29*Myy + M,
e dxay ay®
one single differential equation which must be satisfied to insure equilibrium

=q - q" (6)

in the resultant sense.
Equation (6) can be expressed in terms of the vertical displacement com-
ponent w by substituting the strain equations (3) into the constitutive equations

(13) of Chapter V and computing My , M , and M, from the resulting

Ry y

expressions. In doing this, assumption 3) is used to simplify the constitutive
relationships. Also, t is held fixed, but arbitrary, for these operations. Sub-
stituting the resultant expressions into Eq. (6) yields the thin plate equation of
viscoelasticity in Cartesian co-ordinates.

R()h® (a"’w 3w *w )  qt-q

12 \owd ¥ 23xayz T aya

M

Using symbolic notation the plate equation takes the form Eq. (8):

D(t)v2v2w = q*- q°, 'D() -»Eﬁéﬂ h®s DR (1) (8)

in any admissable co-ordinate system.
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6.2 Solution of Plate Equation

In this section, an iterated Laplace-Hankel transformation is used to solve
for the transform image of the plate deflection in terms of the transformed
foundation reaction. This provides a boundary condition for the poro-elastic
foundation boundary value problem. With this expression, sufficient boundary
conditions are known to define the foundation boundary value problem.

Considering the mathematical model that is being analyzed, Eq. (8) is
restricted to a cylindrical co-ordinate system, and w is assumed to be a
function of radius r and time t only. TFigure 4 illustrates the geometry of
the platé, the reference co-ordinate system and the surface traction sign con-
vention. The z axis in Figure 4 extends downward into the half—spacé foun-
dation.

The plate equation (8) takes the form Eq. (9):

D (2 + L 20 + L5 wnt) s ' (r,h) - g (r,1) )
where, a-(r1) = {H(t)q,r<b
o,r=b
(10)
md i = {4128
(11)

in the cylindrical co-ordinate system for the axially symmetric loading shown
in Figure 4. The bending stiffness D(t) which is defined in Eq. (8) contains
the time operator R(t) from Eq. (12) of Chapter V.

There are two unknowns in Eq. (9); the plate deflection w and the reactive
pressure q' on the lower face of the plate. An additional equation relating

these two unknowns will be obtained subsequently by considering the defoxrma-
tion response of the half-space of poro-elastic material which supports the

{
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loaded plate.
It is useful to modify Eq. (9) so that the partial differentials in r can be
eliminated fg_ R _:Lg] . This can be done by utilizing the zero order Hankel inte-

gral transformation that is defined by Eq. (12):

e o]

fo () =/ rflr) Jo (nr)dr (12)
0
Applying this transformation to both sides of Eq. (9) and rearranging terms
yields Eq. (13):

! 3 (1-T)
D l:‘P(O) Wo(r\,f) +bfwo(q,1)T dT:]

(13)

g + 4
=r1—5 by, (bn) H (1) +ag5(n,t)/n
for the transformed displacement W%y o
Further simplification can be achieved by applying the Laplace integral trans-
formation [9, 107, defined by Eq. (14):
ry * -st
f(s)=/e > f(t)dt (14)
0

to Eq. (13). The final result is given in Eq. (15):

. qby,(bn) n q_o+(rl,5)
- r15s n4
which is an algebraic equation in n and s relating w, and gt . Solving

sD®(s) wy(n,s) (15)

Eq. (15) for E;g yields Eq. (16):

_ _ bJy(b
3 = q“sch(s)Wo(r\.S)—q_l,T(;q_) (16)

which may be regarded as a boundary condition on the foundation at the
plate ~ foundation interface. It is noted that although the plate equation has
been reduced to an algebraic equation that relates a; and @o , neither of

the unknowns q} and w, canbe determined explicitly from this single e-

0

quation. It is, therefore, necessary to investigate the foundation-plate inter-

action as well, in order to determine q7 and W,



vl

DEFINING THE PLATE ON HALF-SPACE PROBLEM

There are two unknowns in Eq. (16) of 6.2, the transformed plate deflec-
tion w, and the transformed reactive pressure a; . An additional equation
relating these two unknowns can be obtained by considering the response of
the foundation that lies below the plate. This can be done by formulating an
initial-boundary value problem in the foundation. In doing this it is convenient
to use a cylindrical co-ordinate system because the loading and deformation are
axially symmetric.

7.1 Boundary Conditions

The constitutive equations for the solid partial stress tensor given in
Eq. (36) of 3.4 can be expressed in cylindrical co-ordinates in terms of phys-

ical components as shown in Eq. (1):

ou 6u
G,,=—a|p+202T+o (——r— r z)

Au du
Opo=—aip+2ap F-+az( S+ +5F)

1)
_ aUz aUr
Orz = a2l or T3z )

Jduyz duy Up Jugz

In order to determine the boundary conditions on E and S it is necessary

to express the stresses in terms of E and S . Substituting Eqs. (24), (28),
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and (29) of 4.2 in Eq. (1) yields expressions for the stress components in terms

of functions E and S .

a3-2 2 2
0=”,_,( 3 Olﬁg)v2€+2°2(a E,, 028 a1 oS

2

(14+ay) are ar2 (1+ay) 9z
(93-20j02) » 32€ 3% _a;  as

e + -
2" " (lvap) E 2"2(622 322 (1*q) gz

' ' 2)
Oy {03720102) o o, () OE 2 95 9 98
00" " (1+a)) 2'7 o T Tor  (i*ep oz
2 2
6 = Q—E;+ .Q__;S._ = =]
rz zag(ardz zaraz) Org= Oz9=0

The boundary conditions can be determined by considering the state of
stress at the boundaries. At 2z=0 the total stress in the z direction on the
2 face of an element of the poro-elastic material must equal q* , the plate
reaction. This means that the traction stress a* is exerted on both the fluid
and solid components of the solid-fluid mixture. Using the definitions of 4.2,
this boundary condition can be expressed in terms of E and § as shown in
Eq. (3)-

2
+ . 6__%_§;$__.,vz
q'(rt) = 2ap < . - E)

It is assumed that the traction g+ at the surface of the half-space van-

220 >0 (3)
ishes as r becomes large. This is physically apparent since qt is the re-
action that results under the plate when a circular uniform load of finite radius
is applied to the top surface of the plate.

The surface at z =0 is assumed to be impermeable to the fluid at
any time t . Therefore, the relative velocity vector of the fluid to the solid
material must be zero in the z direction at the surface. Equation (10) of 4.1
states that the partial derivative of P with respect to 2 is proportional to the

relative velocity in the z direction and, therefore, is zeroat z =9 . This
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condition is expressed by Eq. (4).

2 +
202 % , (93 +2d)0p0) .,  *>0 )
1+a) o9z 205 9z'lz=0 r=0

The shear traction Oy at z=0 is equal to zero, since it is assumed -
that the plate is free to deform horizontally relative to the half-space surface;
this condition is expressed by Eq. (5):

32E
202( = (r,0,t)=0 t>0,r20 ()

With regard to displacements, it is assumed that the vertical displacements

in the foundation at z=0 are equal to the plate deflections there, as shown

in Eq. (6).
ulryo,t) = wir,t) (6)

It is also assumed that the stresses, and displacements, and rigid rota-
tion in the half-space vanish as ’,.2 + 22 approaches infinity. These con-

ditons are expressed in the following equations:
lim Ggp =0 lim O;, =0 lim O,, =0

f2+22—%aoo‘

limp=0 lim 0,, = 0 (")
limu, =0 lim v, = 0

9S
Ilm-a—r

By considering Eq. (2) of this section and Egs. (24), (28), and (29) of 4.2, it
can be seen that the above physical conditions are satisfied if the following

restrictions are placed on E and § :

2 2
Lo oS . (9SE 3¢S, _
llmV E'o “maz‘o I'm(622+2622)-0
2 2
as \ I =
_,+ = lm e oy G =0
lim ( ar) 0 i (ar2 zara) "
Itm(‘SE 35 -$)=0 Iim&——-&gg+z-——-azs)zo
Sz B drdz Ardz
oS,
lim = 57 -
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When the step function load is applied at time ¢:=0 s the plate will re-
spond with an instantaneous elastic deformation, and the skeletal structure of
the porous media foundation will undergo an instantaneous volume change be-
cause &e skeletal material is assumed to be compressible. This means that
at time zero emm takes on an initial value which places a restriction on the

function E(r,z,t) as shown in Eq. (9).

8mm (1) 2,0) 3 V2E (r,2,0) = f(r, 2) (9)
Equation (9) is the initial condition for partial differential (25) of 4.2. The

function f(r,z) can be determined by considering an elastic plate, with a
Youngs modulus equal to R (0) supported on an elastic half-space that has
Lame constants 02 and (a4 -0 dg) . The initial condition is developed
explicitly in 7.2 and is stated here for reference:

V2E(r,z,o)=

[ co -
Cae 1% J, (b )J d 10
(04“(2)5084’02) Oj qe | n o(VW) n ( )
where: .
=_292(04— ﬁaa'ﬂiz)b

DR(0) (ag=*pag+2ax)n3+2az (0, pag+ay) (11)
7.2 Initial Condition on v2g

In order to solve for V2E = emm in partial differential equation (25) of
4.2, it is necessary to know the initial value of enm - At t=0 the con-
stitutive'equations for the partial solid and fluid stresses reduce to Eq. (37) of
3.4 which may be added together to give a relationship for the total stresses
as shown in Eq. (12).

Cij *ij = 2028)j +(ag—2Ddg)epm b (12)

In addition to satisfying the constitutive equations (12), Oij + Wij must also

satisfy the equilibrium equations (13) of 3.2 at time zero.
(i +73j),i =0 (13)

Therefore, determining the initial condition on V2g = 8mm reduces to finding

the solution to the analogous 'elasticity' problem defined by the total stress
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tensor constitutive equations (12), the equilibrium equations (13), the Beltrami-
Michell compatibility conditions € 11 ], and appropriate boundary conditions.
The boundary conditions on gjj +%;j can be determined by considering
the magnitude of the stresses at time zero, at the surface of the half-space.
The total normal stress applied to the top surface of poro-elastic half-space

at time zero is q*(r,0) as expressed in Eq. (14).
Oz (1,0,0) + W;(r,0,0) = q (r,0)* (14)

According to the assumed frictionless boundary condition at the plate - half-

space interface, the shear stresses vanish there.
Opz (r,0,0) + 5 (1,0,0) =0 (15)

In order to obtain an expression for qt(r, o) , the Hankel transformed
plate equation (13) of 6.2 can be considered in the following modified form,

which results when the time t is set equal to zero.
q ag (n,o)
DR (0)wg (n,0)* 5 bJ) (b ) + ——ﬁf—— (16)
The unknown transformed plate deflection w, in Eq. (16) is assumed to be

equal to the transformed vertical deflection of the half-space at z=0.

This condition is stated in Eq. (17).
Wo(n,0) = uz,(n,0,0) (17)

The deflection u, (r,0) resulting from the axially symmetric normal
surface traction at z = O on the half-space can be computed using the

solution of Terrazawa [12] as shown in Eq. (18).

u,(r,z,0)| =-— (0q-"Pdg + d) 72"1)Jo(nr)dq (18)
where 2 g0 20p(a4-pagray) n
= g4 (n,0)

Taking the zero order Hankel transform of Eq. (18) and substituting for the

transformed plate deflection wy in Eq. (16), results in Eq. (19) for q'g at

time zero.
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_DR(0)In?(aq~-“"D ag+ 2ap) Z (n) _qbJ, (bn)
202( 04—(2)508 + 02) rl

a6 (q,0)= (19)

An explicit expression of Z(n) is desired since Omm ¥ "mm can be com-
puted [12]if Z(n) is known. Substituting the second equality (18) in (19)

solving for Z(n) provides the desired result:
Z(n)=Cqy)(bn) (20)

where c- —202(04—(2)5(18+02)b

DR(0)n3(a,-2Bag+2a,)+2a,(a,~“Pdg+ay)
Finally, using the Terrazawa solution again, with Eq. (20) substituted for Z(n),

the solution of Omm +7y;, is obtained.
3a,-3%Pag+2ap) ° -

ST 8 2/ cquibne P ugndn  (21)

t=0 (ag="hagtaz) 5

By examining the constitutive equations (12) it is apparent that emm(r,z,0)

(Gmm+77mm)

is related to  Opm+7mm bPY Ea. (22).

(Gmm*"ﬁ'mm)l 1_0=(2(!2'%’3(14-3(215(18)emm(?',Z,O) (22)
Equating Eq. (21) and Eq. (22) and solving for e m(r,z,0) yields the

desired initial condition as given by Eq. (23):

o Cqe "V Uy (bn) Jylnr)d
v2E(r,z,0)=emm(r2,0)=/ (qe (Z)L n)Jolnridn
o lag-"pdg+ay)

where the left term comes from the derivation of € (Eq. (26) of 4.2). If this

(23)

equation is operated on by the zero order Hankel transform, condition (24)

results.

. (n.2.0) I Cqe™"2y|(bn)
12,00 =
mmg \N (04_aé2,p+02) n (24)

The transformed quantity emm, (n,2.0) provides an initial condition in math-
ematical terms that accounts for the instantaneous volume change that occurs
in the foundation upon application of external loading. This condition is nec-

essary to the solution of the partial differential equation that defines E .

-56=



7.3 The Initial-Boundary Value Problem

The significance of the results obtained in Chapter VII can be summarized
by outlining the initial-boundary value problem. First, two partial differential

equations must be solved.

=13
CV4E(r'z’f)=Vz—<5—'(r,z,?) (25)
v2S(r,z,t) =0

here
w z>0,¢20, 120

These governing equations are from 4.2 . The solution of the first equation in

(25) will be required to satisfy the following initial condition:
v2E (r,2,0) = f(r, 2) 26)
The solutions € and § must also satisfy boundary conditions (27) through (29)

at z=0 .

92E

m(r,o,f)=0 : r=0,1t>0 (27)
%€ _as

202 (dTéE-g;—VZE>=q+(f,” r=20,2:=0,1t>0 (28)

2« (az+20a,)
dS+3 2V2_<£

9°S - . (29)
572 203 dz) o) r=0,2:=0, >0

The solutions will be required to satisfy boundary conditions (30) also.
u (r,0,1) = w(r,t) (30)
As r2 + 22 approaches infinity (31) must be satisfied.

2 2

: 2E - ., 98 . 3%E o%S, . . Ak 98

v s v . oc 9 2y s oL L
lim V<E = 0 lim 53 0 "m(azz+2622) 0 lnm(ar-e-zar)-o
(2+22—z@oo (31)

2 2 2 2
. %, a%S. . OE, 9S a4, 9% o2g
lim (d—r2+zd—rz)-o "m(az+dz S$)=0 lim (ardz+ 2 5r7 )=0

S _
I|m—-dr-0
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A method will be developed for solving the system of Eqgs. (25) through
(31) in Chapter VIIL. Generally, the method will consist of applying integral
transformations to the problem in order to reduce partial equations (12) to
ordinary differential equations having one independent variable z . Trans-

formed initial and boundary conditions will then be imposed and transformed

solutions for the stresses and displacements will be established.

~-58-



VII

SOLUTION OF INITIAL-BOUNDARY VALUE PROBLEM

The problem has now been defined and reduced to terms that allow solu-
tion., The initial-boundary value problem that defines the foundation defor-
mation is summarized in 7.3. In 8.1, the governing partial differential equa-
tions will be solved using iterated Laplace-Hankel transformations. I 8.2,
boundary conditions will be transformed and imposed on the solutions for Eo
and §o obtained in 8.1 and transformed solutions for the plate deflection,
foundation reaction, and several other variables will be obtained. Finally,

in 8, 3 the transformed solutions of the remaining unknowns are obtained.

8.1 Solution of Differential Equations Using Transform Methods

The first differential equation (25) of 7.3 takes the form (1):

aemn1
1
at ()

when v2E is replaced by 8mm - Taking the Laplace transformation of Eq. (1)

2 .
cVeenm =

eliminates the partial derivative with respect to t and reduces (1) to a partial

differential equation in r and z .
c¥28 mm{r,2,8)= 88 mm(r,2,5)~e mm(r,2,0) @)

Equation (3) is the Hankel transform of (2):
(a'iz’a"lz)‘-’mmo('l»zvs'):%Emmo(n.z,s»)—e%ﬂ'z—'?l (3)

which contains derivatives with respect to z only. Substituting the initial con-
dition expression previously obtained for emmo(flvsz) in 7.2 results in

Eq. (4).
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2
gc 245 na s ke NZ
(dzz (l\ c))emmo ke (4)
I |
where k=— Ca — Jy ( bn)
(04-‘2’ﬁae+02) qf\c' L

The general solution of the ordinary differential equation (4) is given by Eq.(5):

émmo('\nz.s)=|e'qz+Bze"‘z+3e+y2 (5)
where ] ) | k
|=-k'§o32=d|+m,83=d|+m'

d| ond d) are abritrary functions of n and s
and p=Va2+sr.

From the definition of the displacement function E(r, z,t) it has been shown
that Emmo(’l ,Z,s ) may be expressed by Eq. (6):
42 2y = "
(4727 N Egln,z8) = 8mm (N:2,3) (6)
Substituting Eq. (6) in Eq. (5) yields the differential equation that defines
Eo(niz,8) .
42 2)E n . o-NZ -M2z +Uz

(c;z-r\ JEo(n,2,s) = Bje\* +Boe"“+ Bge (7)

Equation (7) is an ordinary, non-homogeneous differential equation and its

general solution is given below:
Eo(nz,s) = (C+dp) €WZ +(Cp +d5) e + C526" (8)
+ CgqelM? + cgeM?

where
B8 B B
CI 2 (“‘_'2 + 2 - 3 )
4n 2a(M-n) 2n(M+n)
B B8
C2= (-:-‘2 - __2_ + —__3_ )
" aq 2a(u-n)  2nq(p-n)
ke B3C BocC

€3 2qs » G475 O ¢

and dp,ds are arbitrary functions of n and s .
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The second Eq. (25) of 7.3 is the governing differential equation for the
displacement generating function § . Applying the Laplace and then zero order

Hankel transformations to that equation gives Eq. (9):

2 -
(;“:—z-—q‘?) S (n,2,8) = 0 )

which is a homogeneous ordinary differential equationin z . The general solu-

tion to this equation is given by Eq. (10):
So (n,2,8) = dze™® + dje'? (10)
where d3 and dé are arbitrary functions of n and s.
This completes the solution of the differential equations that define Eo

and S 0 ° Equation (8) is the solution for Eo , and Eq. (10) is the solution
for S o ° There are unknown coefficients multiplying each term in Eqs. (8)

and (10). These coefficients are constant with respect to z , but must be re-
garded as functions of | and 8 . In 8.2 the transformed boundary conditions
will be imposed on the solutions E o and 50 , and this will result in the un-

known coefficient functions becoming fully defined.

8.2 Determining Laplace-Hankel Transforms

If the first %.hree boundary conditions at z =co given in Eq. (31) in 7.3
are now invoked; the general solutions Eo and §° can be simplified. The
first of the conditions implies that émmo must approach zero as z ap-
proaches infinity. Therefore, the coefficient B3 in Eq. (5) must vanish,

Then, according to the definition of C a given in Eq. (8), C4 must also vanish.

Bz =Cgq =0 (11)

The second boundary condition at z =eo implies that %_Sﬁ must vanish as
z
z approaches infinity., This condition makes it necessary that d% be equal

to zero as shown in Eq. (12):
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lim 39S, - z.
700 = (n,2,8)=nd’3 62 =0 ' 12)

Therefore, Eq. (10) reduces to Eq. (13):
So (n,2,8)= dze™W (13)

The constraint on the transformed quantities that results from the third con-

dition is given in Eq. (14).

27 2g
. Ik =S
lim LIPS 9y=0 (14)
2=00 3,2 922

Substituting from Egs. (8) and (13) and invoking Eq. (11) results in Eq. (15):
M (n2(C,+dp) 6"+ n2C 526" +02 d56"%)=0 (15)

Z =0

For Eq. (15) to be true, the constants 02 and d'2 must satisfy condition

(16): (Cop+dp)=0
(16)

Now consider the boundary conditions at z=0 S Eqgs. (27) and (29) of 7.3
are operated on by the repeated Laplace-Hankel transformations, the two
conditions given in Eq. (17) result.

dE,
-ndz (n,0,8)=0

25, @

a3z +2a 2
os)+(—3—2)(d q) (n,0,8) =0

92
Substituting for Eo in the first Eq. (17) results in the following expression:

(18)
R(C) +dp)=C3 - MGCs

An expression can be obtained from the second Eq. (17) by substituting for

both E, and §, . (a5 +20p)
dy = - —3— (2n2 C3 +M(n2 - u2) Cg)

2a,n2 (19)
Taking the Laplace-Hankel transformation of boundary condition (28) in 7. 3

yields Eq. (20):

7 The remaining conditions (31) of 7.3 are satisfied.
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ds =
-2a, (EEQ('T'O'S)"TZ Eo (n,0,8))= a‘; (20)

Substituting for E, and Sy gives Eq. (21).
2 -
=202 (-nd3 - ((C| +dp )+ Cg )) = a3 (21)
The Laplace-Hankel transformed plate equation (15) of Chapter VI is re-

peated here as Eq. (22).
. : -+
- — q Qo (n,8)
rl55 n@ (22)
The plate deflection is assumed to equal the half-space deflection at z=0 for

all $)»0 . Therefore, Wo can be related to Eo and §o as follows, using

Eq. (29) of 4.2: _
- - dE =
wo(nis)=.uzo(n,o,s)=d—zo(q,o,s)-so(q,o,s) @3)

It then follows by substitution for E, and S, from Egs. (8) and (13) that

. (24) i lid.
(24)

Substituting Eq. (24) into the plate equations (22) and making use of Eq. (18)

yields Eq. (25). gbJ(bn)
s

-+ —
do=-n¥Dsp(s)dz -

(25)
Solving Eqs. (18), (19), and (21) simultaneously yields an expression for dz .
—+
CG“qO (26)
93—
where 7
Co s kas(2n+u)
p(p+n)2
and ,
, 2
Coe (2ap) 3—202r\211(a3+202)—202 qg2(03+202)

u(p+nl)laz+2as)
Substitution of this result in Eq. (25)yields the following transformed solution for

the reactive pressure 6-; under the plate.

3t = 552 Do (s)Cg-Cp qby, (bn)
ns(Cy -n?Ds(s))

Substitution of expression (18) for q(C|+d2) in Eq. (24) simplifies the

27)
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transformed plate deflection expression to the following.

wo (n,s) = -dg (28)
Substituting the expression obtained for d3 into Eq. (28) yields the trans-
formed solution for the plate deflection, -

_ 9 -Cg
Wg (n,8) = Cy (29)

The solution §0 follows directly from Eq. (13):

- (Ce-a35) -
So(n.2,8)= %qo g"? (30)

Now referring to Eq. (8) for Eo ; the constant C +dp 1is related to the

known constants C3z and Cs through Eq. (18). Also, (Co+dy) and C4 are
equal to zero by Egs. (16) and (11), respectively. Therefore, in order to
define Eo completely it is only necessary to determine C5 . Equation (21)

can now be used to solve for Cg since 63 is known by Eq. (27). Substituting

for (C;+dy) from Eq. (18) into (21) and solving for Cg results in the fol-

lowing expression; 35-20,0 (d3+C3)
5% T2, n (n-m)
2 (31)
E, then is given by Eq. (32), with Gg being defined by Eq. (31),
Eglnuz,s)= (X S_He (g Lk ¢ onz, . -uz
o'\N an s n°5 20 s ze Cge (32)

Some of the transformed stresses, strains, and displacements in the
poro-elastic half-space can now be computed using the solutions (30) and (32)
for §, and Eo - Uzo may be obtained by transforming the second

Eq. (29) of 4.2 and substituting for Eo and §o

_(06-63)
C

: : (Ce-a4) _ -
iz =(Com ye' —csue”z—(k—c-mg—:" yze V2 (33)

2s

The first invariant of the transformed solid strain tensor can also be obtained

by making use of the fact that according to Eq. (24) of 4.2, emm is equal
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to VZE

émmo(fl'z.s) = % Cs e'”z-% ke F (34)
The quantity p, can also be obtained by using Eq. (28) of 4.2.
20, _ q(Cs-E; )e N (ag+ 202L)émmo(q,z,s))
(1+09,) Coy 2ao
Using the constitutive equations (1) of 7.1 it follows that the transform of the

(39)

Po (n,2,8) =

first invariant of the solid partial stress tensor is related to émmo and
P, s shown in Eq. (36):
Cmmo(q,z,s)=—3u|50+(202+303)Emm0 (36)

The transform of the vertical partial solid stress in the half-space can be ob-

tained using the second Eq. (2) of 7. 1.
(03'20| 02)é
(1+q))

o (Ce7Tg) .z, ke | o(CeEE) .z, 20 e
o)\ ey ) 8 g e g e Cs 0

6zzo(’l’z'?*)" mm,t20p [(—zk—cs-—uqc5

387

The other unknowns are more difficult to obtain because their expressions
include partial derivatives of E and S , with respect to the variable ¢ .
The derivation of explicit expressions for these other quantities is given in 8. 3.

8.3 Determining Opz» Op,, Ogo , andu, .

Orz is defined b
y Eq. (38).
8%E . 8%s

Orz =20 (F37+25=0) (38)

which is one of the constitutive equations from 7.1. Forming the Laplace, and

then the first order Hankel transform of this equation results in Eq. (39).

= dE ds,
Grz|=—202(q dz°+zq dzo) (39)

By Eq. (39) it can be seen that 6”‘ can be expressed in terms of Eo and
§o . Equations (30) and (32) of 8.2 provide the necessary expressions of

§o and Eo that are needed for computing the derivatives which are given by

Eq. (40).
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2
oF, (40) f
T - |

Finally, O,; can be obtained by performing inversion (41):
-} [2.=) dgo d§o
Opp=L of—Zaz(nﬁaT-+nz?z-’) n Jilnridn (41)
where L-l indicates the inverse Laplace transformation is to be performed
Ur can be obtained in a similar matter. t
oE +2 oS8 (42)

ar  “or
Equation (42) can be expressed in terms of known transformed quantities as

Uy =

shown in Eq. (43).
ar"""lEo'Z”\go (43)
The necessary inversion process is indicated in Eq._(44).
up =L l:f (nEo+2znSo) i (Ar)dn (44)
In order to derive an expression for Op, that canbe computed from

Eo and S, , consider Eq. (45):

k) (Gyp-p) + (Orr-Ogo) , 352
er

r ez O (45)

which is the first equilibrium equation, Eq. (1) of 4.1 expressed in cylindrical

coordinates, using physical components., Multiplying Eq. (45) by r2 and re-

arranging terms results in Eq. (46):

Z]
a_' "2 (GN' -p)"-‘ r (Ory = 2p+ Ggg)—rz

Now if an expression can be obtained for 6" ~2p,+ 699 in terms of Eo
o 0

(46)

and §0 , then Eq. (46) can be integrated with respect to r to obtain the desired

expression for O, . Such an expression follows by the definition of Omm
Opp -2p+0g9=+0Tmm=0zz72P (47)
Transforming Eq. (47) yields the desired expression, Eq. (48):
arro‘2§°+ 69(,0: Emmo"azzo‘zﬁo (48)
The transforms appearing on the right of Eq. (48) all have been determined pre-

viously and are given by Egs. (36), (37), and (35), respectively.
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Returning to Eq. (46), it can be seen that the quantity éa—'(rz(G"-p» can

be obtained from the inversion formula (49):
_‘ar—=;f L't Orrg=2Pot+ Ogg, ndo(nr) dn
| (49)

—rsz [ ]qd,(qr)dq

By making use of Eqs. (41) and (48), integrating both sides of Eq. (49) with

respect to r and interchanging the order of integration,Eq. (50) :

2 P UG o5 4G
f (O-"'"p)=°/;/fL O,'°-290+6900 dfdf'
(50)
_ffr [ 'Z'}qd (nr) drdn
is obtained. Making use of the integrals, Eq. (51):
v
ofrdo(r\r)dr=%d|(r\r)
] o o (61)
2 = £L Jy(nr)-E= dy(nr)
of' Jl(r‘r)d' r‘2 | fl r‘ 0 f‘
results in Eq. (52):
[ o)
Gr'=p+l:l[oj(0"°_25°+ 0990)'!—J,(r\r)dq
dGr; 52
@ } 50 (52)
6 dz

_ _ d0
where 0"0—26o+0'99° is defined by Eq. (48) and rZy may be obtained
dz

by differentiating Eq. (39) as shown in Eq. (53):

d0y 2 -
.. Lk_c_. _n_kic_ Ce)e nz
a2 202N (23+ 25 MN%5

(53)

-at
“Ccp

+y Zn
7
Since p can be computed from Eq (35), Eq. (562) is fully defined and can be

used to compute O, . Also, once 0y, is computed, then Ogp can be

computed using Omm e+ Orr 9 and (,, as shown in Eq. (54):
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090= Omm~Opr =022 (54)

All of the unknown dependent variables have now been expressed in terms
of the known transformed displacement generating functions. However, the
doubly transformed solution images that have been presented must be inverted -
in order to provide a meaningful solution of the physical problem being studied.

Equations (55)
3(ns) =o/°‘°q§1,(q,swv(r.r)dq 55)
and (56)
alr,t)= ! (g (r,8) (56)

indicate symbolically the operations that will provide the physiéal solution.

In Eq. (55), §,(ns) denotes a typical solution image such as §§ . For the
v order Hankel inversion (55), the Laplace variable s is considered con-
stant, then in Eq. (56) s is allowed to vary. The actual inversion algorithm
to be used in this study is a numerical approximation of the inversion process
indicated by Egs. (55) and (56). The numerical inversion technique is pre-

sented in Chapter IX.
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IX

INVERSION OF LaPLACE-HANKEL TRANSFORMS

9.1 General Algorithm

The Laplace-Hankel transformed solutions that were obtained in Chapter
VIII have been programmed so that the transforms can be evaluated for given
values of n and s using a computer. The general procedure that is used to
obtain the desired physical solutions from the transform images is discussed
in this section.

Values of the Laplace transform of the solution are obtained at discrete
points along the positive real axis in the transformed plane by performing the
Hankel inverse transformation with s held fixed. The Hankel inversion is
approximated by performing numerical integrations between zeros of the inte-
grand and accumulating the sums until successive intervals yield negligible
results. The integrand consists of the product of the double transform with
s fixed and the inversion kernel as shown in the following equation:

5(r.s)=ofmav(q,s) s=/mrldv(qr)dﬂ (1)

After the approximate Hankel inversion has been performed, the Laplace
transform data are used to construct a Fourier series approximation of the
time-dependent solution. The approximate solution obtained converges in the
mean to the exact solution. A truncated version of the series expansion is

used in the computer program.
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There are three sources of error in the transform inversion algorithm.
In the approximate Hankel inversion, errors occur through the numerical
integration process and using finite limits of integration. In the Laplace
inversion approximation, error results because only a finite number of terms
in the Fourier series areused. Finally, error results due to round-off as in
all computer programs.

In order to investigate the accuracy of the computer program, the iterated
Laplace-Hankel transforms of several known functions were inverted using

the inversion algorithm. The results obtained agreed with the known solutions
to a reasonable degree of accuracy and indicated that the accuracy of the
algorithm is adequate. Based on the indirect accuracy checks obtained testing
known functions, it is thought that all of the algorithm errors combined are
within the accuracy of the physical definition of the problem. That is, the
errors incurred in determining mechanical constants and other physical pa-
rameters in the problem which determine the uaiqueness of the mathematical
problem are consistent with those inherent in the transform inversion al-

gorithm.

More detailed information follows in 9.2, concerning the theoretical basis
of the Laplace inversion procedure.

9.2 Numerical Inversion of the Laplace Transform

The theoretical formulation of the Laplace inversion algorithm used in
this study was developed by Erdelyi [13] . He showed that it is theoret-

ically possible to construct Fourier series approximations of functions,
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quadradically Riemann integrable on the positive infinite internal of real num-
bers °, utilizing only the Laplace transforms of the functions. Erdelyi ob-
served [_li, E] that the sequence of function e_lm' is linearly dense in the
vector space L2(O,oo) ,‘which is defined as the set of quadradically integrable
functions mentioned above, if the sequence /, consists of real, positive num-

bers and satisfies Eq. (2).
= R

I
=0 14+(1)2 @

He also noted that it is possible to construct an orthonormal sequence of func-

tions ®p that is linearly dense in L 5(0,0) by applying the Gram-Schmidt
[t

orthonormalization process [16]to the functions e f if the /m elements

satisfy Eq. (3).
ln2ly /£ men (3)
Orthonormalization of e'lfﬁ' yields Eq. (4):
a t
(=X . e'm! 4
q’n ) =0 mne ( )

which defines the ¢, functions.

The coefficients Cp,, in Eq. (4) are defined by Eq. (5):

n-| n
Cmn=(2fn)'/2 Tr (!m"li)/” ([m-fk) (5)
i= k=0
m (k#m)
where n”‘ denotes the product of terms i through m .
aj

It is, therefore, possible to construct-a Fourier series representation of
any function f(t) quadradically integrable on the interval zero to infinity, as
stated in Eq. (6).

N~ (£00)00 2T (SHTIONT)AT) 0, (1)
. nN=0 n=0 0

(6)

8 It is shown in Appendix C that nearly all of the transformed solutions ob-
tained in Chapter VIII correspond to time-dependent solutions that have
finite steady state values not equal to zero. Such functions are not quad-
radically integrable on the infinite interval. However, if the steady state
portions of the transforms are subtracted off, the resulting transforms
correspond to quadradically integrable functions.
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The series on the right of Eq. (6) converges to f(t) in the mean square sense
as defined in Eq. (7).
lim 7| - T o 1% g1 =
e 0/ f(t)—ngo (f,9p) Pn(t)| di =0 (7)
This means that f(t) is approximated by the series in such a manner that the
integral of the square of the approximation error along the t axis vanishes as
the number of terms in the series becomes infinite.

The inner product terms (f,®,) can be expressed in terms of the values

of Laplace transform of f(t) at s=/  as shown in Eq. (8):

T 0
dT =X Crq Gllm) (8)

w@© n o _I
= m
e (r)d7= 1 Cran /(7
Substituting Eq. (8) in Eq. (6) yields an expression for f(t) which can be com-
puted if g(ly,) are known.

[mf) 9)

t0-% (3 Condln)E Crno
1)~ e
n=o0 m=o0 mn 9m m=0 mn

Series expression (9) provides an inversion formula for the Laplace trans-
formation which utilizes knowledge of the transform G(s) at the discrete points
S=/m . Truncating the series (9) to a finite humber of terms defines an

algorithm which may be used to approximate f(t) if g(s) is known.

9.3 Improving Convergence

It was found in applying the algorithm to the plate on half-space problem
transforms that the partial sums of the Fourier series approximation of the
solutions in the time domain converge in an oscillatory manner at small values
of time. In order to improve the convergence, Fejer summing was performed
as defined by Eq. (10):

Eoi N
ejer SumN=(ﬁ%l Sp) /N (10)
where S, denotes the nth partial sum of the Fourier series. This summation

procedure is known to improve the convergence of Fourier sine-cosine series[17]

-72-



and was formally applied to the partial sums of the generalized Fourier series

as a numerical experiment. Figure 5 shows a comparison between the con-
vergence achieved in a typical problem as a function of the number of terms in
the series by both summation methods. It can be seen that in the problem shown,
the Fejer summing procedure markedly improved the convergence. Although

no proof has been presented concerning the generality of this result, from the
numerical results obtained thus far, the Fejer summing procedure appears to

be a time saving device that provides correct results.

Another technique which yields improved convergence consists of com-
puting the mean value of the n and ph-| partial sums. Results obtained using
this procedure are shown in Figure 6. This particular procedure has been
incorporated into the computer program.

9.4 Selecting /5 Points

In addition to the requirements stated in 9.1, Erdelyi [ E] suggested that
the /m sequence should be a "base' for the Laplace transformation.® This
means that if the Laplace transformed function is approximated by some new
function and the difference between the values of the function and its approx-
imation vanish at all the '"base' points, then the difference between the two
functions will vanish identically at all points indicating that the two functions
are equivalent. Further, by the uniqueness of the Laplace transformation (18)

the inverse transform of the approximating function can differ from that of the

®  Any sequence of points that has a finite limit point is a base for the Laplace

transformation [13].
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original function only by a null function which is of no consequence:
O) Null Function (7)dT =0, for every positive t 11)
The practicality of placing this additional restriction on the choice of the
"m sequence becomes apparent if the Laplace transformation is applied to
both sides of Eq. (9). Using Schwarz's inequality [16], it can be shown that
such a transformation will yield Eq. (12):
é(s)ﬁo(mio Crn GUm) (m%oc'""(s+l"‘)-') 12)
where the series shown converges to the transform §(s) pointwise as defined

by Eq. (13).
. - _oo =) -1 =
lim | §(s) g:o(f.%z,/%(t)e dt|=0 (13)

N-ew n

That is, the error of approximation at each point g vanishes as the number
of terms in the series become infinite.

Conversely if the /m are restricted so as to form a base for the Laplace
transformation, then Eq. (14):

nem 5"m’}?o‘f'¢’nf,f° Ban e ™ dt=0 (14)

implies that the series approximation (12) will converge pointwise to the Laplace
transform of the unknown time-dependent solution. Therefore, since it is known
that only a finite number of /m points can be used in numerically constructing
the Fourier series approximation (9) of f(t) it seems logical to select the lm
such that (14) is approximately satisfied. This can be done by requiring that
the 1", be part of a sequence that is a base for the Laplace transformation.

Several lm sequences were experimented with in developing the algorithm
for inverting the transformed solutions to the plate on half-space problem. All

of the sequences tested satisfied the requirements set forth by Erdelyi, but it

was found that numerical errors develop in the inversion process if the truncated
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Figure 7. Numerical inversion results, test function,
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sequences that are used do not satisfy certain additional conditions.

Generally, it was found that the maximum and minimum magnitudes of the
/m points must be limited. It was also discovered that the convergence of
the /m sequence at its limit point must not be too rapid. That is, the /m
points must be spread out over the domain defined by the maximum and minimum
allowable values, rather than clustered near the limit point.

The lm sequence that was selected for use in the computer program is

defined as follows:

[, =€,
(15)
[ = iﬂ'l X€2+€3

n
The parameters €, , €5 and €y are determined by examining the Laplace
transform image. € and €2 are selected to bracket the portion of the trans-
form image that maps into the transient part of the solution in the time domain.
€, defines the maximum Im value and €, and €3z define the rate of con-
vergence of the sequence and the magnitude of the smallest fm value. Gen-
erally, €| may be set equal to 100, €, =5 and €3 =,01. Figure 7
illustrates the results that were obtained applying the inversion algorithm to

the iterated Laplace-Hankel transform of a known time-dependent function using

these values of el» 62 and 63 .
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EXAMPLE PROBLEM

The following numerical example is presented to illustrate the use of the
computer program and to provide a test problem for potential program users.
Only the results of the problem analysis are presented here. Details concern-
ing program input and output are given in the Appendix along with the program
listing.

A hypothetical pavement structure having the geometric and physical
properties indicated in Figure 8 is assumed to be subjected to the loading shown
at time zero. The foundation constants that are shown were approximated for
a saturated, well-graded sand and gravel mixture using the techniques discussed
in Appendix B-1. The stress relaxation function @(t) that is used in this ex-
ample to describe the plate material is based on stress relaxation tests that
were performed on sand asphalt mixtures by Moavenzadeh and Soussou [197.
Details concerning the stress relaxation data are given in Appendix B-2.

Thé results of the computer analysis are as follows: the reaction of the
foundation directly undex; the center of the load is approximately equal to 32 psi
at time zero and approaches a steady state value of 40 psi rapidly. At a dis-
tance of one load radius, or 10 1n from the origin, the foundation reaction is
16 psi at t =Q and 19 psi at steady state. The partial fluid stress at the origin

varies from 3.7 psi, or 11 percent of foundation reaction, at 4=Q to zero value

=T
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in steady state as shown in Figure 9. The variation of fluid pressure with depth
is shown in Figure 10. The plate deflection at the origin is shown as a function
of time in Figure 11, having an initial value of about 0.02 in. and a steady state
value of 0,05 in. The plate detlection at 10 in. from the origin varies from an

initial value of 0.015 in. to a steady state value of 0.03 in. as shown in Figure 12,
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XI
CONCLUSION

?

11.1 Summary

In this study a method has been developed for analyzing the deforrnation'
response to load of a flexible pavement model consisting of a viscoelastic
plate supported on a poro-elastic foundation. The three stated objectives in
the proposal were accomplished. The mathematical model allows for an
initial volume change to take place when the load is applied in order to ac-
count for the fact that the solid particles in granular soil material may be
compressible. This allowance for initial compressibility has not been al-
lowed for in previousfoundatknlsetﬂenienttheoriesi

The model response to applied load was formulated as an initial-boun-
dary value problem. The technique used to solve the problem consiéted of
reducing the partial differential equations of the problem into ordinary dif-
ferential equations using transform methods. Then the transformed prob-
lem was solved yielding iterated Laplace-Hankel transformed images of the
desired solutions. A numerical technique was then developed to invert the
transforms »and obtain the desired physical solutions, the stresses and dis-
placements in the model. The results of the analysis have been recorded in
a computer program which is included in this report. Using the program,

it is possible to compute plate deflections, foundation to plate reactions,

~85-



fluid pressures, and eight other stress or displacement quantities as functions
of time. The program is designed to be used by others, and instructions con-
cerning its use are given in Appendix A. It is noted that the portion of the pro-
gram that was developed for inverting Laplace-Hankel transforms is applicable
to other problems involving the inversion of either iterated, or single trans-
forms of the types mentioned here.

11.2 Further Study

The most difficult problem that is encountered when one attempts to
estimate stresses and displacements in an actual pavement structure utilzing
the developed computer program is that of determining the values of the mate-
rial constants. To begin with,stress relaxation data are required to describe
the plate material, and uniaxial stress relaxation tests at constant temper-
ature are required to determine the needed data. The data currently avail-
able in the literature need to be extended. There are also seven poro-elastic
constants which are used in the analysis. Suggested tests for determining
these constants are presented in Appendix B-1. Several tests were made to
determine the poro-elastic constants of a typical base course material for
use in the sample problem analysis given in Chapter X. The tests were per-
formed using a triaxial soil testing device. From the limited experiencé
gained in performing these tests it appears that although the tests are dif-
ficult to perform, such testing is feasible. The poro;elastic properties of
base course and subbase materials need to be investigated extensively.

After the poro-elastic and viscoelastic material properties of highway

pavement structure materials have been investigated adequately, it will be
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feasible to check the accuracy of the flexible pavement model. Such verifi-
cation should include plate load testing of real pavement sections having
known material properties. If the model proves accurate for simple pave-
ment structures consisting of a single layer of bituminous material resting
on a single foundation material it would then be useful to extend the model to
account for layers of different porous media occurring in the foundation. An-
other phenomenon that will require investigation is the effect of partial sat-
uration on the foundation. If isothermal deformation is assumed, it may be
possible to allow for this in the mathematical model by treating the pore fluid

as compressible [17.

The opinions, findings, and conclusions expressed in this publication are
those of the authors and not necessarily those of the Federal Highway
Administration,
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APPENDIX A

COMPUTER PROGRAM LISTING AND USER GUIDE

What the Program Does

The program determines the magnitude ot any stress or displacement com-
ponent at any appropriate position in the plate on half-space flexible pavement
model as a function of time. The user must specity which unknown stress or
displacement function is required, loading conditions, the magnitudes of mate-
rial constants, and the position where the solution is to be determined.

Using the input information specified, and function sub-routines, the pro-
gram constructs discrete values of the Laplace-Hankel transformed image of
the desired solution. These data are integrated numerically for fixed values
of the Laplace variable to yield discrete values of the Laplace transformed
image of the solution. (This numerical integration process approximates the
exact Hankel transform inversion operator.) The program then uses the dis-
crete data to numerically invert the Laplace transformed solution to obtain
the desired physical solution. The Laplace inversion process that is used
consists of constructing a Fourier series approximation of the time-dependent
solution using the discrete Laplace transform data. The Fourier series ap-
proximates the exact solution in the mean square sense, and its Laplace trans-

form approximates the Laplace transform of the solution pointwise.
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Execution, or process time, on this program varies from two to ten min-
utes for one set of data.

The Program ALGORITHM

The algorithm begins in the main program where SET UP is called. In
SET UP the problem data is read in and then printed out. The zeroes of the
appropriate Hankel kernel are also computed in SET UP ana stored in the array
ATJ (). Control then returns to the main program and the steady state and
initial values are obtained and stored in STEADY and F(1). To do this the main
program calls HANKE L setting GCODE equal to 2 and 3 and s equal to 1. Util-
izing the ATJ (), HANKEL calls SMPSM repeatedly where numerical inte-
gration is performed on the inverse Laplace transform of the desired solutions
between successive ATJ ( ) points. Within SMPSN the function G is called
which in turn calls one of the G 1 through G 11 tunctions in order to evaluate
' the integral as required for numerical integration. The integral results be-
tween successive ATJ () are accumuiated in HANKE L until additional inte-
grations contribute less then DEL x 100% of the accumulated results.

The main program then determines the transient part of the solution. The
L ( )sequenceand C ( , ) array are computed in the main program and
are used to construct a set of orthonormal functions using the Gram-Schmidt
process. The Laplace transtorm ot the desired solution is then determined
at each of the L () points ana is stored in GINTP (). This is done by
setting GCODE equal to 1 and s equal to successive values of L. () and calling
function HANKEL where SMPSN is called as was done in determining STEADY

and F(1).
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The main program utilizes C( , ), L( ), and GINTP ( )tocon-
struct a truncated Fourier series approximation of the transient part of the
solution for each specified value ot time, T ( ). The transient solution is
stored in F(2) through F (KK) and then combined with STEADY to yield a NN
term series approximation of the problem solution, Q ( ) which is then output,
Mean sum approximations, which are defined as the sum ot the NN and NN~-1
approximations of Q ( ) divided by two, are also computed and are stored in
QMEAN (). Solution approximation results are output consisting of F « )
Q () and QMEAN () tor each NN series approximation. This process is
repeated NN equal I through NNN and successive series approximations are
compared. The process is terminated betore NNN is reached it a succeeding
approximation differs from the previous by less than SUMDEL x 100%. The final
QMEAN () approximation is output as the solution along with the times
T(C )

Card Input Description

Order of Precedence as given:

Variable Names Format Optional
MG, OPT1, OPT2, OPT3 412 No
KK, (T (I), I=2, KK) 12,8X,7D10.5/(8D10.5) Yes
DEL, BJDEL, IMAX, NJO, SUMDEL  F10.5, F16.10, 212, F10.b Yes
L1,ACCPT, FOCUS, NNN 3D6. 3, 12 Yes
Z, RR, H, BE, Q 5F10.5 No
FFD’AI;’CI;’”:;?’A?FLK’ GAMA, 2F10.5, 6E10.5 No
RO, NB E10.4, 12 No
B(), I=1, NB 8E10. 4/ No
BB(I), I=1, NB 8E10.4/ No
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vVariable Description

OPT1, OPT2, OPT3

MG

determine which optional input cards are being utilized.

Setting OPT1, OPT2, and OPT3 equal to zero indicates

that no optional data cards are being used. Setting OPT1

equal to one indicates that the time array is to be specified.

Setting OPT2 equal to one indicates that DEL, BJDE L, IMAX,

NJO and SUMDEL are specified. Setting OPT3 equal to one

indicates L1, FOCUS, ACCPT, and NNN are to be specified.

determines which stress or displacement component is to

be computed. When it has a value

=1, the foundation reaction stress at the plate boundary
is to be computed.

= 2, the plate deflection is to be computed at some point.

= 3, implies the vertical displacement component at some
point in the foundation is to be computed.

=4, implies the vertical stress component is to be
computed.

= 5, implies the first invariant of the solid strain tensor
is to be computed.

=6, implies the partial fluid stress is to be computed.

= 7, implies the first invariant of the solid partial stress
tensor is to be computed.

= 8, implies the solid radial displacement component is

to be computed.
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T (I)

DEL

BJDEL

IMAX

NJO

SUMDEL

=9, implies the shear stress, 0, is tobe computed.
=10, implies the radial stress component of the solid

partial stress tensor is to be calculated.

I

11, implies the tangential component, Ogg > of the
solid partial stress tensor is to be calculated.
indicates the number of time values at which the solution
is desired.
the time array, having KK elements, the first of which is
automatically specified as zero in the program. Only KK-1
values may be read in as input.
is a decimal tolerance factor. DEL controls the accuracy
of the numerical integration performed in sub-routine
function HANKEL, but not the accuracy of the numerical
Laplace transform inversion that is performed in the main
program.
is a decimal tolerance factor. BJDEL controls the ac-
curacy of the Bessel function values that are computed in
sub-routine function BJ ( , ).
limits the number of points used in performing numerical
integration over a given interval using sub-routine SM PSN.
limits the maximum number partitions that may be used in
sub-routine function HANKEL in performing the numerical
Hankel transform inversion process.
is tolerance factor that controls number of terms used in

series approximations of solution.
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11 is largest element I(1) in L. ( ) array.

ACCPT is equal to .5 times the limit point of L. ( ) array.

FOCUS is a constant that controls the convergence of the L ( )
array. It is greater than .1 and less than 1.

NNN limits the number orthonormal vectors that may be con-
structed for use in the Fourier series approximation of
Laplace transforms in the main program. NNN is the
maximum number of terms that will be allowed in the
truncated Fourier series.

Z is the vertical depth to a given point in the model. Z is
measured positive downward and is equal to zero at the
plate - half-space interface.

RR is the horizontal radial distance from the axis of the applied
load to a point in the model.

H is the plate thickness. This value is used in computing the

bending stiffness of the plate.

BE is the radius of the loaded circular area.

Q is the applied load pressure.

FF is the porosity of the foundation material.

R is the pore compressibility constant.

BULKO is the apparent initial bulk modulus of the porous fluid-filled materilél.
BULK is the apparent bulk modulus of the porous fluid-filled material in th?kt'

steady state.
GAMA is the fluid density of fluid component of the interacting

mixture.
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DARCY is the Darcy coefficient of permeability of the porous

medium.
A2 is the shear modulus of the solid material.
Al is the fluid pressure interaction coefficient.
RO is the initial value of the stress relaxation function of the

plate material.

NB is the number of exponential terms that are to be used
to describe the stress relaxation function of the plate
material.

B () is an array that contains the exponents of the exponential
terms used in relaxation function.

BB (I) is an array that contains the coefficients of the exponential
terms used in the relaxation function.

Sample Input

Problem:

Utilizing the foundation and plate material properties given in this report,
determine the plate deflection directly under the loaded area at the origin of the
model. The loading pressure is assumed to be 40 psi and the radius of the loaded
area, 10 in. The plate is assumed to be 4-1/2 in. thick. The solution to this
problem is given in Chapter X.

The required input is as follows:

MG =2
OPT1 =0
oPT2 =0
OPT3 =0
Z =0,
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RR = 0.

H =4.5
BE = 10.
Q = 40,
FF =.125
R =.9

BULKO = 30000.

BULK = 3000.
GAMA = .0361
DARCY =.196
Al = 6.2

A2 = 10000,
RO = 156029.
NB =11

B(I) I=2, NB = 5000., 500., 50., 5., .5, .05, .005, .0005, .00005, .000005
BB(I) I=2, NG = 6650, 23200, 41900, 33000, 30100, 12600, 4300, 1440, 836, 403
Note: The option to use no optional cards has been chosen, therefore, certain var-
iables will be automatically specified in the program as follows:
KK = 20

T(, I=1, KK

1t

jaw]
jew]
—
2
&t
—
[\~]
7]
(W]
—
—
[¥7]
oo
[\~]
S}
w
°

jaw]
w
()]
W

DEL = 0.001
BJDEL = ,001
SUMDEL = ,05
IMAX = 8
NJO = 60
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NNN = 14

L (1) = 1.D2
" FOCUS =.5
ACCPT =,01

The required input cards appear as shown in Figure 1 .
A complete program listing follows these instructions. Comment cards
have been inserted in the listing to explain various parts of the program.

Optional Input Data

Certain input data are optional in that the user need not specify these items
unless he desires. The input is set up in this way to minimize the required in-
put but to also insure maximum program flexibility

Special Cases

Grr, RR2 O

In this case it is necessary to submit an extra set of input cards with MG
set equal to 12. The reason for this is that in this case it is necessary to per-
form two separate integrations in computing the Laplace transform of Oy -
One integration is performed on (G12, and the other integration is performed on
G10.

If z=RR=0then only one set of data is required with MG set equal to 10.

Ogg, RR20:
The program will not solve for Opg directly. However, QOgo may be

obtained by solving for Opmy Oy, and Oy separately using the program,

and then combining the results according to the following formula.
G060 = Omm=Orr ~ 022
If RR=0:z , then G11 may be obtained directly by setting MG equal

to 11.
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MAIN PROGRAM FOR

FLEXIBLE PAVEMENT MODEL
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APPENDIX B

DETERMINING MATERIAL PROPERTIES

B-1 Poro-elastic Material Constants

Seven material constants appear in the constitutive equations that were intro-

duced in Chapter III. The seven constants are:

1) R , the pore compressibility

2) ¢ , the porosity

3) 0o , the shear modulus

4) o0z the apparent Lame constant at steady state

5) ((14—(2’[508) , apparent Lameé constant at time zero for total stress tensor

6) a , the diffusion constant

7) Q , the fluid pressure interaction coefficient.

Certain material tests suggested by Biot and Willis [ 7] may be used to deter-
mine these constants. One of these is the jacketed compressibility test which con-
sists of subjecting a sample of the porous fluid-filled material enclosed in a thin
impermeable jacket to an external pressure p' . The inside of the jacket is
vented to the atmosphere so that the excess pore pressure within the sample be-
comes negligible after a period of time. The specimen compresses, and water
flows out of the pores during the test and eventually, a steady state condition is
reached when the fluid flow ceases. The total sample volume change and total
pore water outflow that occurs in reaching the steady state condition is measured.
Using this information it is possible to compute & the coefficient of jacketed
compressibility which is defined by Eq. (1).

- emm (1)

pl
Substituting this expression in the total stress tensor constitutive equations, Eq. (6)

of 4.1, and noting that Lt is zero in this experiment when the steady state is

J
reached, yields Eq. (2):

=Za,+a @)

which may be used to determine a if the shear modulus as is known.
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Knowledge of the amount of water forced out of the sample during the jack-
eted compressibility test may be used to determine a; . First, it is observed [ 7]

that the measured water outflow per unit sample volume ¢ 1is given by Eq. (3).

g=f(@mm-Vm’m) (3)

Dividing Eq. (3) by emms the measured change in sample volume per unit vol-
ume, noting that Wjj=0 when steady state is reached, and using the last Eq. (34)
of 3.4, yields Eq. 4).

—g_—-_f—u(e
émm emm = MM

-vm) = (14 )
Since both ¢ and epmare measured in the jacketed compressibility test, it fol-
lows that if the porosity f is known the constant @) can be obtained using Eq. (4).

A second test, the unjacketed compressibility test is required, if the skele-
tal material is compressible, to determine the apparent Lame constant at time
zero for the total stress tensor. This test consists of applying a hydrostatic
stress p' to a saturated sample of the material under undrained conditions.
The sample volume change that results is measured. An unjacketed compres-
sibility constant is defined as shown in Eq. (5).

5:-&’1‘.'& ’ 5)

p
Using Egs. (34) of 3.4 leads to Eq. (6):
(2)—

024'04— paB (6)

[l Sand
win

which yields the desired Lame constant if the shear modulus 02 is known.
The pore compressibility constant R may be computed by combining some

of the information obtained in the jacketed test with that obtained in the unjack-

eted test. TFirst it is observed that by definition R may be expressed as shown

in Eq. (7).
4

R=
(emm -emm | 1=0)

(7)

The instantaneous dilatation in the jacketed test may be computed using unjacketed

compressibility constant as shown in Dq. (8).



(8)
emm| y=0 =—p's
Since the value of ©®mm is measured in the jacketed test, R may be computed.
The porosity constant, f may be obtained by first determining the specific
gravity 8.6. of the skeletal material contained in a sample of the poro-elastic
mixture, Then the porosity, or void space per unit volume of the skeletal mat-

erial can be computed from the specific gravity information as shown in Eq. (9).

_(Sample Weight (dry)/ Unit Vol.)
Density of Water

f=1

/S.G. (9)

The specific gravity of soil materials which are of primary interest in this study
should be determined in accordance with ASTM Specification D 854-58 (AASHO
No. T 100),

The diffusion constant a is related to the Darcy coefficient of permeability
D.C.P by Eq. (10):

a= fluid density (10)
(D.C.P)f
where the fluid density is that of the fluid contained in the pores. The permea-
bility constant for granular soils should be determined according to ASTM
D2434-68.

Finally, it is necessary to determine the shear modulus a, . One way
of determining this constant is to superimpose a unixial stress in addition to the
hydrostatic pressure p' , at the end of the jacketed compressibility test. As-
suming the additional loading is applied in the z direction, 0, may be deter-

mined from Eq. (11):

_ (AOZZ-03A emm)
02- 2hr8z;

(11)

which follows from Eq. (6) of 4.1. The axial strain Ae,, in Eq. (11) may be

determined by measuring the axial deformation of the sample.



B--2 Stress Relaxation of Sand-Asphalf Mixtures

The results of stress relaxation measurements on a sand-asphalt mixture
that were obtained by Moavenzadeh and Sousscu [197] are used in the example
problem that is presented in Chapter X of this report. These particular data
were chosen because of the convenient mathematical form in which they were
presented. It would be more physically realistic to utilize data from tests on
bituminous concrete because flexible pavements are consiructed primarily of
such bituminous and coarse aggregate mixtures. With regard to this it is noted
that the quasi-static response of sand-asphalt mixtures and of bituminous con-
crete has been studied by several other investigators in recent years E@, 21,
2_%_] . The data from tests on these other mixtures could be put in the same
form as that given in reference [ 19 ] by using a numerical collocation technique
that will be described here.

The sand-asphalt mixture used in the Moavenzadeh study was made up of
Ottawa sand and asphalt cement. The gradation of the Ottawa sand used is

given in Table 1.

TABLE 1
GRADATION OF AGGREGATES

Percent Passing*

Sieve Size

ASTM D 1663-59T| Sclected Gradation

16 8§5-100 100
30 70~ 95 75
50 45- 75 45
100 20- 40 26
200 9- 20 15

* Percent of the total weight of material passing a
given sieve size.



The asphalt cement used was an AC-20 grade asphalt and the results of

some conventional tests on the material are given in Table 2.

TABLE 2
RESULTS OF TESTS ON ASPHALT
Test Result
Specific gravity, 77/77 F 1. 020
Penetration, 200 gm, 60 sec, 39.9 30
Ductility, 77 F 250 + CM
Flash point, Cleveland open cup 545 F

Relaxation test data were obtained for the mixture by subjecting it to
uniaxial compressive strain. Corrections were introduced to account for the
fact that the initial loading near time zero was not constant but was increased
from zero to the desired constant level linearly with time. An exponential series
function of the form Eq. (12) : j
® (1) =9 (=) +i§l B e Oi' 12)
was fitted to the stress résponse versus time data using a technique developed
by Schapery [23] Basically the technique consists of selecting the b, coef;
ficients to span several decades of time, and then selecting the Bi to mini-
mize the mean square error between the function and the data.

A ten term series was selected to model the sand asphalt mixture, with

the b; coefficients defined by (13).

bi=5%x104x 13", i=1 7010 (13)
Fitting the curve to the data by the least squares technique yielded the B,

coefficients as indicated in Table 3.
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TABLE 3

NUMERICAL VALUES OF COEFFICIENTS
OF STRESS RELAXATION FUNCTION

10

®(0=0E)+1 B, o P!
i=

where:

I
= & 00 o W W R N®

.65 x 10°
.32 x 10*
.19 x 10*
.30 x 10*
.01 x 10*
.26 x 10*
.30 x 103
.44 x 10°
.36 x 102
.03 x 102
.60x 102

1

5x
5x
5x
5x
5x
5x
5x
5x
5Xx
5x

102
102
10*
10°
102
10”2
10=2
10-%
10=°
10°8
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APPENDIX C

INITIAL AND STEADY STATE SOLUTIONS

The solutions corresponding to the Laplace-Hankel transformed solution
images can be readily determined for the initial state and steady state [24_] by

computing the limits shown in Eq. (1).

dy(n,t) = lim s§y(n,s) , initial valve case
'I=O § =00
(1)
gv("l.f), = lim sdy(n,s) , steady state case
2o S0 »

The initial value and steady state transforms can then be inverted numerically

by approximating the inverse Hankel transformation operation shown in Eq. (2).

f(r,t) = |im 9y (n,0)nJuy (n,rdn (2)

= oo O+

]

The limits indicated in Eq. (1) have been analytically determined for the
double transforms that were obtained in Chapter VIII. The limit functions ob-
tained are presented here.

The initial value limiting functions can be predicted independently because
the initial values of all the dependent variables can be obtained in the same

manner that the initial value of the dilatation was determined in 7.2 . The

initial values of the Hankel transforms of the dependent variables obtained

using limiting process Eq. (1) are given in Eq. (3).
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Using Terezawa's solution [12] the initial condition defining problem of 7.2

was solved and expressions Eq. (3a), (b), (d), (g), (i), (j), and (k) were ob-
tained by this alternative procedure. These results verify the validity of the
computed limits indicated.! Expression Eq. (3e), (f), and (h), are either used

in combination to make up the other expressions or are made up of a com~
bination of the others. Therefore, the results obtained by direct solution

imply that Eq. (3e), (f), and (h) are valid also. Examining Eq. (3a), (b), (c),
(e), (h), and (k) it can be seen that the boundary conditions at z =0 are satisfied
at t=0 as summarized in Eq. (4a), (b), and (c).

sIim sqg (n,s) .= sIim 5(5'220(q.s)—l-’°(r1,s))
’ z=0

lim swy(n,s) = lim st s)
§ —o»ap o n’ § =0 zo(rl'

z=0

=0
2=0
The steady state Hankel transforms of the dependent variables are given

lim § 6r2| (q, S)
§ =tz

by Eqgs. (5) and (6).
qbdJj(bn) 20,

K= ) (5)
[DR e)n#2ap+ 03)+ 2050 (ap + az)] ¢
lim s @8 (n,s)= - Kclos + 03) (a)
$ =0 )
i - ) (2ap+a3) ‘
gm0 O (n,s) = 205 R, ®) ()
. = . .-AZ KC(22+Q3X'+?‘Z) kez
.3'1'1'03 lzo(n,2,8) = € [ Zaph - (c)

1 The plate deflection and foundation reaction at time zero, given by
Eqgs. (3a) and (3b), also agrees with the known solution for an elastic
plate supported on an elastic half-space and subjected to a circular
uniform load [257
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L . ke
Tosemmo(q,z,s)- Kce (d)

s
lim sP,{n,z,8) =0 (e)
s =0
im s0 s)=-(2a, + 3az) Kce ¥ f
| 32:03 Omm, (N2 s)=-(2ap + 303) ()

lim s 612 (n,z,) = ca ™ [kazr\z -K(ap + 03)-K(22+03)nz:l (e
§—=0 0.

. - ez
= + -K - (h)
s'lTos ur'(r\,z,s) 2050 [K(Zaz a3)nz-Kcap-kcapnz "
i s T nz - Nz i
sl_g;os Orz)(n,z,8) = keoge ™t nz Kc(2az +a3)e’\* nz 1)

d0yz, (n,2,8)
lim_§ — " ne l:Kc(Zaz + a3)(1-nz)-Kcagp

s—=0 dz
+kecao fll:l

@)

lim 8 (G, =28, +0a0.) = -Kclao + 203)e™\?
s o 0 00o e 3 (k)

+ Kc (202 +03) nze ¥ -kcapnze ™V

Examining Eq. (6a), (e), and (g) verifies that boundary condition Eq. (7a) is
satisfied. Using Eq. (6b) and (c) with z set at zero, it can be seen that Eq. (7b)

is satisfied also. Setting z equal to zero in Eq. (6i) shows that boundary con-

dition Eq. (7c) is satisfied in the steady state.

(a)

lim sgt(n,s)= lim s (O,, (n,2,8)-Py(n,2,s))
oy S 90 o Pz ()

z=0

lim s wd (n,s) = lim s iz, (n,z,s)
s—0 0 T Lo V2o

(o) (7)

z=0

=0

Iimos O’,zl(q.z.s)
z:=0

§ —t=

(c)
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In this appendix Hankel transforms of the steady state and initial values of
the solutions to the plate on foundation problems have been presented. The
initial value transforms have been compared with independently determined
results and have been found to be correct. The transformed steady state solu-

tions are utilized in the computer program.
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