

HE 147.6 .M5

R13

MICHIGAN'S STATEWIDE TRANSPORTATION MODELING SYSTEM

A METHOD FOR FUNCTIONALLY LASSIFYING RURAL ARTERIAL HIGHWAYS

> STATEWIDE STUDIES SECTION Report no.13 September 1975

States

MICHIGAN DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION

ар 19

OF

STATE HIGHWAYS AND TRANSPORTATION

BUREAU OF TRANSPORTATION PLANNING

MICHIGAN'S STATEWIDE TRANSPORTATION MODELING SYSTEM

A METHOD FOR FUNCTIONALLY CLASSIFYING RURAL ARTERIAL HIGHWAYS

> STATEWIDE STUDIES SECTION Report no.13 September 1975

STATE HIGHWAY COMMISSION

E. V. Erickson

Chairman

Charles H. Hewitt

Vice Chairman

Peter B. Fletcher

Carl V. Pellonpaa

DIRECTOR

John P. Woodford

IGHWAY COMMISSION.

ETER B. FLETCHER CHAIRMAN Ypsilanti

ች፟፟፟፟፟፝፝፝፝፝፝፝፝፝፝፝፝፝፝፝፝፝ቚ፝፝፝ ፠፟ዸቘ፟፟፟፟፟ጜ፝፝፝፝፝፠፝፝፝፝፝፝፝፝፝፝፝፝፠፟ቘጞ ፞ዼ፝ፙቘጞፙዀጞቘፙጟ

CARL V. PELLONPAA

Ishpeming

HANNES MEYERS, JR. COMMISSIONER STATE OF MICHIGAN

WILLIAM G, MILLIKEN, GOVERNOR

DEPARTMENT OF STATE HIGHWAYS AND TRANSPORTATION

STATE HIGHWAYS BUILDING, 425 WEST OTTAWA PHONE 517-373-2090 POST OFFICE DRAWER K, LANSING, MICHIGAN 48904

JOHN P. WOODFORD, DIRECTOR

September 11, 1975

Mr. Sam F. Cryderman, Deputy Director Bureau of Transportation Planning Michigan Department of State Highways and Transportation P.O. Drawer K Lansing, Michigan 48904

Dear Mr. Cryderman:

The Highway Planning Division is pleased to present Volume XII in a series of reports dealing with Michigan's Statewide Transportation Modeling System. The report, entitled "A Method for Functionally Classifying Rural Arterial Highways", documents the potential application of the Statewide model in the functional classification of rural highways using two basic elements.

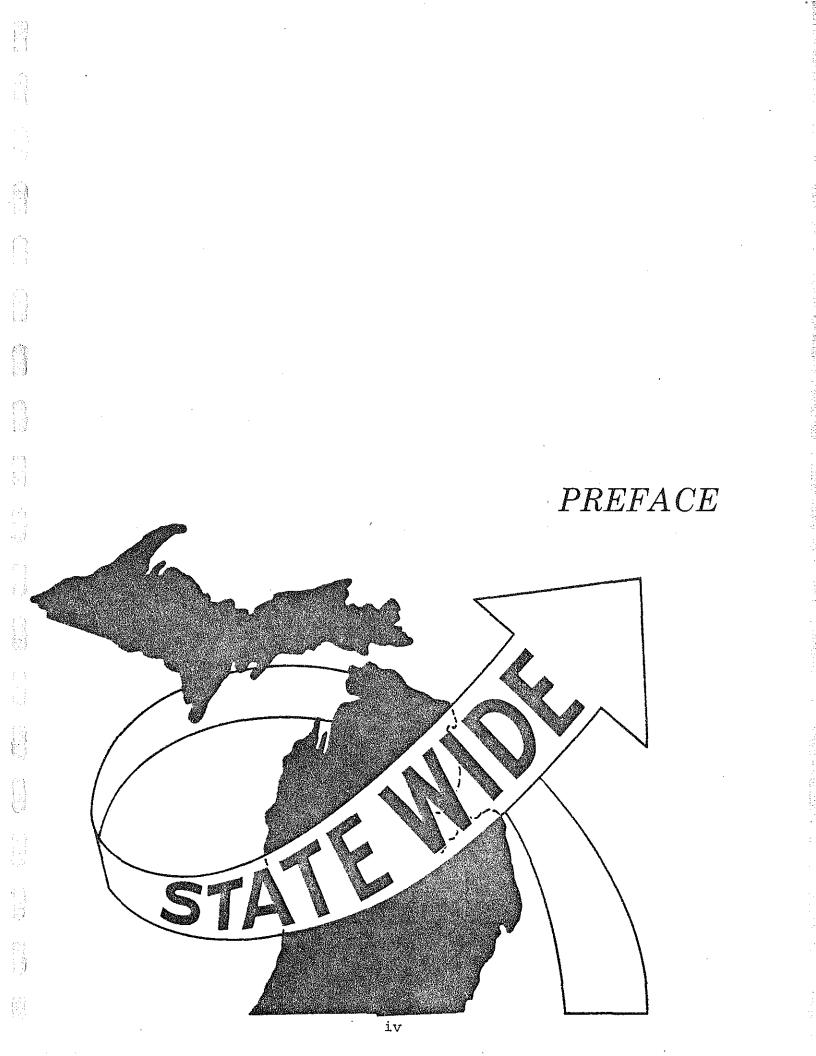
Population Centers and Other Travel Generators
 Highway Travel Characteristics

We have noted a recent concern in the Bureau of Transportation Planning pertaining to system level justification and also with the Federal Highway Administration in demonstrating the need for a project. It is felt that the elements contained within this report have the potential of supplying an answer to these questions and be of value in the state highway plan and regional planning process. It is also hoped that other states presently considering statewide transportation modeling have a chance to become familiar with potential multiple applications of a system such as this.

This report was prepared by Mr. James E. Carroll of the Statewide Transportation Planning Procedures Section, managed by Mr. Richard E. Esch.

Sincerely,

R. J. Lilly, Administrator Highway Planning Division



MICHIGAN The Great Lake State

TABLE OF CONTENTS

PREFACE	• • • • •	•••	. 1
INTRODUCTION	• • • •, •		. 3
SUMMARY OF FHWA PROCESS	• • • • •	• •	. 11
IDENTIFYING AND RANKING POPULATION CENTERS	••••	.	. 16
IDENTIFYING AND RANKING HIGHWAY TRAVEL CHARACTER	RISTICS	• • •	. 28
COMBINING THE ANALYSIS OF POPULATION CENTERS AND	D HIGHWAY TI	RAVEL	
CHARACTERISTICS			. 42
PLACE CLASSIFICATION	• • •, • •	• • •	. 47
CONCLUSION		•••	. 59

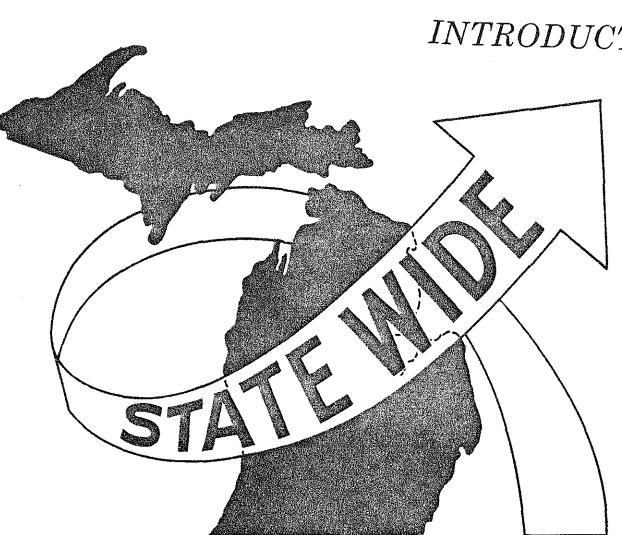
PREFACE

gala a mila. Salar a mila ga

and a straight of the second s

The following is the twelfth report in a series of reports dealing with the development of the Statewide Transportation Modeling System for the State of Michigan. The preceding reports are:

Volume	I	Objectives and Work Program
Volume	I-A	Region 4 Workshop Topic Summaries
Volume	I-B	Single and Multiple Corridor Analysis
Volume	I→C	Model Applications: Turnbacks
Volume	I-D	Proximity Analysis: Social Impacts of Alternate
		Plans on Public Facilities
Volume	I-E	Model Applications: Cost-Benefit Analysis
Volume	I-F	Air and Noise Pollution System Analysis Model
Volume	I-G	Transportation Planning Psychological Impact Model
Volume	I-H	Level of Service Systems Analysis Model: A Public
•		Interaction Application
Volume	I-J	Service-Area Model
Volume	I-K	Effective Speed Model: A Public Interaction Tool
Volume	I-L	System Impact Analysis Graphic Display
Volume	II	Development of Network Models
Volume	III	Multi-Level Highway Network Generator ("Segmental Model")
Volume	III-A	Semi-Automatic Network Generator Using A "Digitizer"
Volume	v	Part ATravel Model Development: Reformation-Trip
		Data Bank Preparation
		Part BDevelopment of the Statewide Socio-Economic
		Data Bank for Trip Generation-Distribution
Volume	VI	Corridor Location Dynamics
Volume	VI-A	Environmental Sensitivity Computer Mapping
Vólume	VII	Design Hour Volume Model Development
Volume	VII-A	Capacity Adequacy Forecasting Model
Volume	VIII	Statewide Public and Private Facility File
Volume	IX	Statewide Socio-Economic Data File
Volume	X-A	Statewide Travel Impact Analysis Procedures
Volume	X-B	Statewide Social Impact Analysis Procedures
Volume	X-C	Statewide Economic Impact Analysis Procedures
Volume	XI	Computer Run Times - An Aid in Selecting Statewide
		Travel Model System Size


This report deals with a systematic analysis routine which could assist in the systematic functional classification of a state trunkline highway network in rural areas.

-1-

Functional classification of the highway system is often difficult because the role a specific highway plays in society is continually changing. This change is due to the outside socio-economic change and also highway network changes. Many state transportation agencies find it necessary to rely on a vast array of manual techniques to complete the functional classification process. Monitoring the dynamic nature of this process often requires large amounts of time and staff. Therefore, because Michigan has developed a Statewide Transportation Modeling System that contains both the highway system and socio-economic data for the State, it was decided that a system such as this had the potential to systematically reduce the work load required to complete functional classification in future years. This report will deal with the initial phases in a long-range development project.

-2-

<u>/</u>_____

Andreas and the second se

 $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$

INTRODUCTION

化合物化合物 化合同分子的 计分子的 化分子子 化分子子 计分子

INTRODUCTION

Functional classification is the process by which streets and highways are grouped into classes according to the function that they serve in a region or state. It is a basic fact that individual road segments do not serve travel independent of one another. Rather, most travel involves movement through a network of roads. Functional classification defines the part that any particular road segment plays in the flow of trips through a total highway network and the importance each of these segments plays in the connection of socioeconomic centers.

Separate classifications are generally made in urban and rural areas. The reason for the distinction between the two is due to different characteristics each has in regard to density, type of land use, density of road networks, nature of travel patterns and the way all these elements are related.

The following categories are typical of a general functional classification system. Some states may vary the terminology used or divide certain classes.

> RURAL AREAS Principal Arterials Minor Arterial Roads Collector Roads Local Roads

URBANIZED AREAS

Principal Arterials Minor Arterial Streets Collector Streets Local Streets

Depending on whether a state is dealing with an urban or rural functional system, the following guidelines as to the percentage of total miles in each class generally apply.

-3-

RURAL FUNCTIONAL SYSTEMS

SYSTEMS	PERCENTAGE OF TOTAL RURAL MILES
Principal Arterial System	2 – 4
Principal Arterial Plus Minor Arterial Road System	6 - 12
Collector Road System	20 - 25
Local Road System	65 - 75

URBAN FUNCTIONAL SYSTEMS

SYSTEMS	PERCENTAGE OF TOTAL URBAN MILES
Principal Arterial System	5 - 10
Principal Arterial Plus Minor Arterial Street System	15 - 25
Collector Street System	5 - 10
Local Street System	65 - 80

The objective of this report is to show how Michigan's Statewide Transportation Modeling System could assist in classifying rural highways.

Michigan's Modeling System is a computerized process for simulating rural travel information using a typical gravity model distribution process. The statewide transportation modeling system process is based on three data files.

A. Statewide Network File - All highway link information is in this file, A-NODE, B-NODE, COORDINATES, and Link Data. (See Figure 1.)

-4-

STATEWIDE HIGHWAY NETWORK LINK FILE

CONTENTS OF EACH HIGHWAY SEGMENT OR LINK

AVERAGE SPEED DISTANCE **URBAN-RURAL DESIGNATION** TYPE OF ROUTE TRAFFIC VOLUME CAPACITY AVERAGE ANNUAL DAILY TRAFFIC VOLUME COMMERCIAL TRAFFIC VOLUME **DESIGN HOUR VOLUME** ACCIDENT FATAL RATE ACCIDENT INJURY RATE ACCIDENT RATE NUMBER OF LANES LANE WIDTH SURFACE CONDITION RIGHT OF WAY SIGHT RESTRICTION

B. Statewide Socio-Economic Data File - This contains
 information from the 1970 census of population and housing.
 (See Figure 2.)

C. Statewide Facility File - A collection of information about the physical environment. (See Figure 3.)

These three files were developed so that the Statewide Transportation Modeling System could be a dynamic process that will monitor impacts on major elements in society. The term dynamic is submitted in the sense that the user may modify any of the three basic data files and monitor the corresponding impact on society. The computer program components of the total modeling system have been divided into four groups. (See Figure 4.)

Group I - General Utility (This group contains information display programs.)

Group II - Basic Traffic Forecasting and Evaluation Tools
 (This group contains traffic information programs.)
Group III - Specific-Impact Modeling Process (This group

contains specific-impact models developed from the traffic forecasting model.)

Group IV - Continuing Processes (This group contains the continuing analysis programs.)

The purpose of this report is not to add to the development of the modeling system; instead, it is directed at the application of the system in assisting the process of functional classification in any typical highway planning organization. (See Figure 5.) The following sections will show actual applications using the Michigan Statewide Transportation Model.

-6-

STATEWIDE SOCIO-ECONOMIC DATA FILE *

GENERAL CHARACTERISTICS OF POPULATION

SCHOOL ENROLLMENT BY TYPE OF SCHOOL YEARS OF SCHOOL COMPLETED CITIZENSHIP BY AGE

INCOME CHARACTERISTICS OF POPULATION

FAMILY INCOME INCOME BY OCCUPATION AND SEX RATIO OF FAMILY INCOME TO POVERTY LEVEL

LABOR FORCE CHARACTERISTICS OF POPULATION

EMPLOYMENT BY AGE EMPLOYMENT BY OCCUPATION AND SEX EMPLOYMENT BY INDUSTRY AND SEX

SOCIAL CHARACTERISTICS OF POPULATION

AGE BY SEX TYPE OF FAMILY MARITAL STATUS

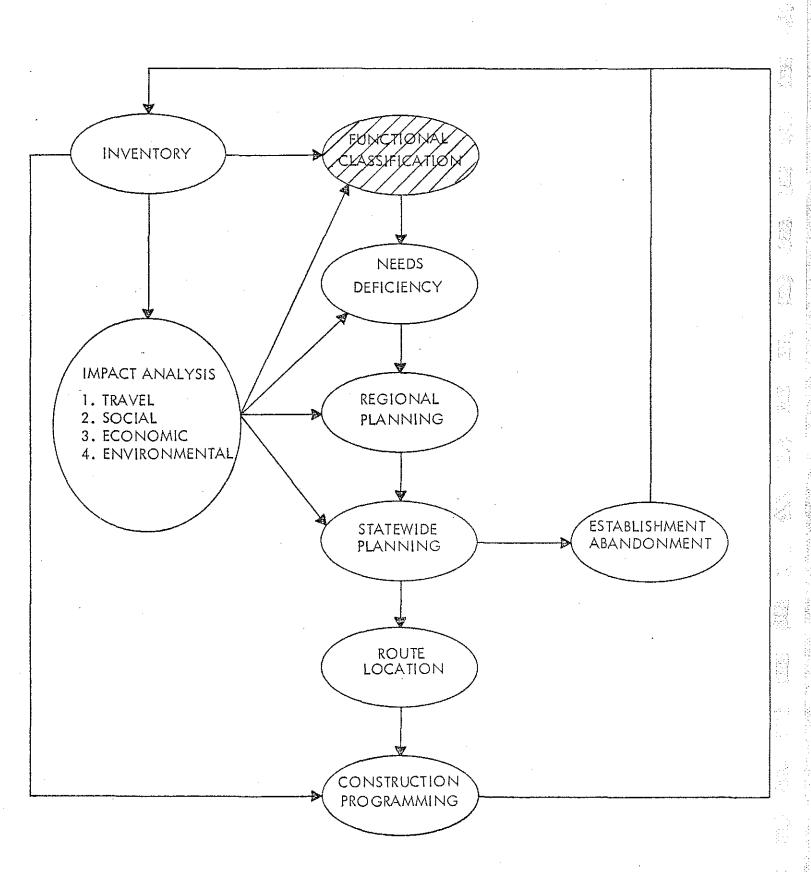
AREA CHARACTERISTICS

LAKE FRONTAGE ASSESSED VALUATION WATER AREA

*THOSE ITEMS LISTED HERE ARE SAMPLES TAKEN FROM THE COMPLETE FILE WHICH CONTAINS OVER 700 ITEMS. -7-

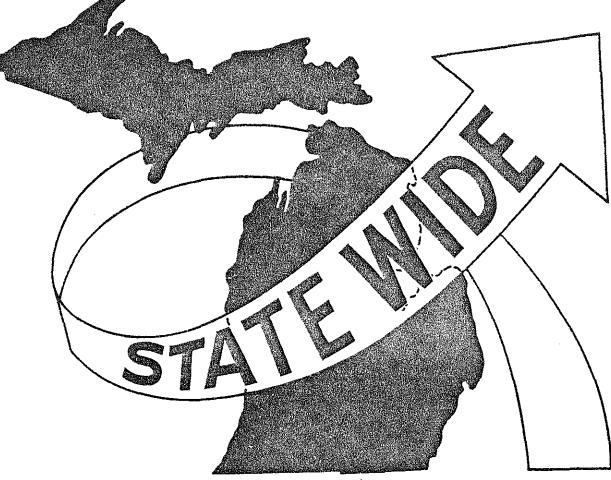
STATEWIDE FACILITY FILE

AIRPORTS AMBULANCE SERVICE BANKS **BUS TERMINALS** CAMP GROUNDS, PUBLIC AND PRIVATE **CERTIFIED INDUSTRIAL PARKS** CITIES OVER 5,000 POPULATION AND 30,000 POPULATION **CIVIL DEFENSE TERMINALS** COLLEGES, PUBLIC COMMUNITY COLLEGES AND UNIVERSITIES, PUBLIC AND PRIVATE COMMERCIAL CENTERS, MAJOR CONVENTION CENTERS DENTISTS ELECTRICAL GENERATING PLANTS GAME AREAS **GOLF COURSES GRAIN ELEVATORS** HEALTH SCREENING CLINICS, EPSDT **HIGH SCHOOLS** HISTORIC SITES HOMES FOR THE AGED HORSEBACK ENTERPRISES HOSPITALS **ICE ARENAS** MANUFACTURERS MARINAS MENTAL HEALTH CENTERS NEWSPAPERS, DAILY NEWSPAPERS, WEEKLY AND BIWEEKLY NURSING HOMES **OIL PROCESSING AND STORAGE PLANTS** PHARMACIES PHYSICIANS POLICE DEPT'S, STATE AND LOCAL PORTS **RAIL TERMINALS** SECRETARY OF THE STATE. OFFICES SEWAGE TREATMENT FACILITIES SKI RESORTS SNOWMOBILE TRAILS SOCIAL SERVICES OFFICES STATE PARKS STATE POLICE POSTS TOURIST ATTRACTIONS TRAILER ON FLAT CAR TEBMINALS TRANSIT SYSTEMS, BUS TREASURY OFFICES **TRUCK TERMINALS UNEMPLOYMENT OFFICES** WEATHER SERVICE STATIONS-NATIONAL WHOLESALE TRADE CENTERS


- 8 -

COMPONENT DETAIL

GENERAL UTILITY 1. A. TP PACKAGE **B. STATISTICAL BATTERY** C. GRAPHIC DATA PRESENTATION BATTERY 2. BASIC TRAFFIC FORECASTING AND EVALUATION TOOLS A. TRIP GENERATION-DISTRIBUTION MODEL B. SEGMENTAL MODEL C. DHV MODEL D. MASS TRANSIT MODEL SPECIFIC-IMPACT MODELING PROCESSES 3. A. COST-BENEFIT ANALYSIS B. SOCIAL IMPACT ANALYSIS C. PSYCHOLOGICAL IMPACT ANALYSIS D. LEVEL OF SERVICE ANALYSIS E. EFFECTIVE SPEED ANALYSIS F. ENVIRONMENTAL IMPACT ANALYSIS G. HIGHWAY BREAKDOWN PROBABILITY MODEL **CONTINUING PROCESSES** 4 A. SINGLE-STATION O & D ANALYSIS B. CORRIDOR LOCATION MODEL


-9-

TYPICAL PLANNING ACTIVITY RELATIONSHIPS

SUMMARY OF FHWA PROCESS

いたいの 無限学校 ひょうしん いたたいたい

vi

SUMMARY OF FHWA PROCESS

The following procedures for rural functional classification have been summarized from the "National Highway Functional Classification Study Manual", presented by the Federal Highway Administration (FHWA).

As a result of the major efforts on the part of the Federal Highway Administration and many states, the functional classification of any highway system involves identifying and ranking two basic elements.

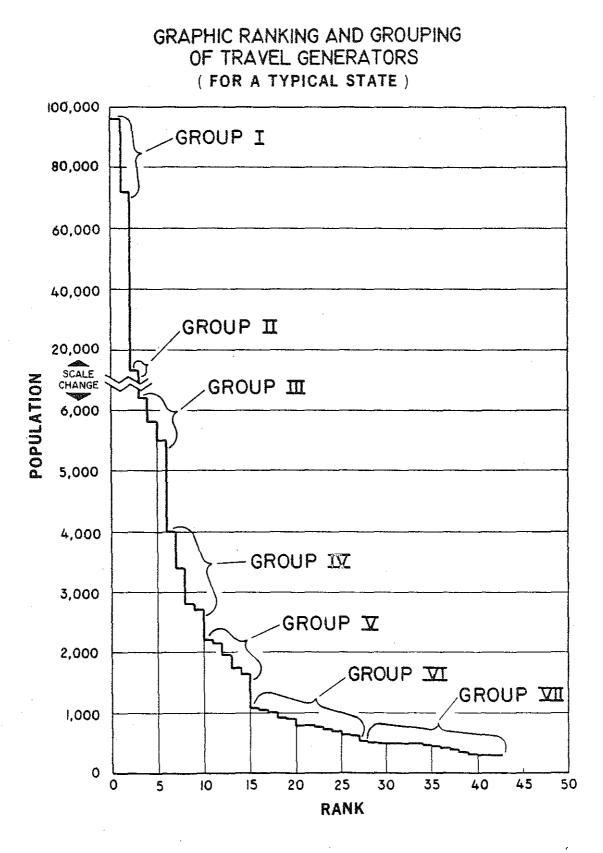
1. Population Centers and Other Travel Generators

2. Highway Travel Characteristics

Į.s

Since most trips begin or end in an urban area, population centers are considered the primary traffic generators. The size of the population in these areas generally reflects its capacity for generating and attracting travel. This is why population centers should be ranked in groups according to their estimated population as recommended by the FHWA example in Figure 6.

Major travel generators other than cities, such as recreation centers, should be treated separately during the ranking process. Usual trip generation rates do not apply since they contain little or no resident population, commercial activity, or industrial activity. The annual number of visitors to such a major travel generator can be equated to an urban area's population. The travel generator can then be grouped with population centers of similar trip generation potential. FHWA's recommended visitor/trip rate graph appears in Figure 7.


The procedure for functional classification of a rural system initially involves connecting travel generators in such a manner

-11-

ena Fil

御代書

-12-

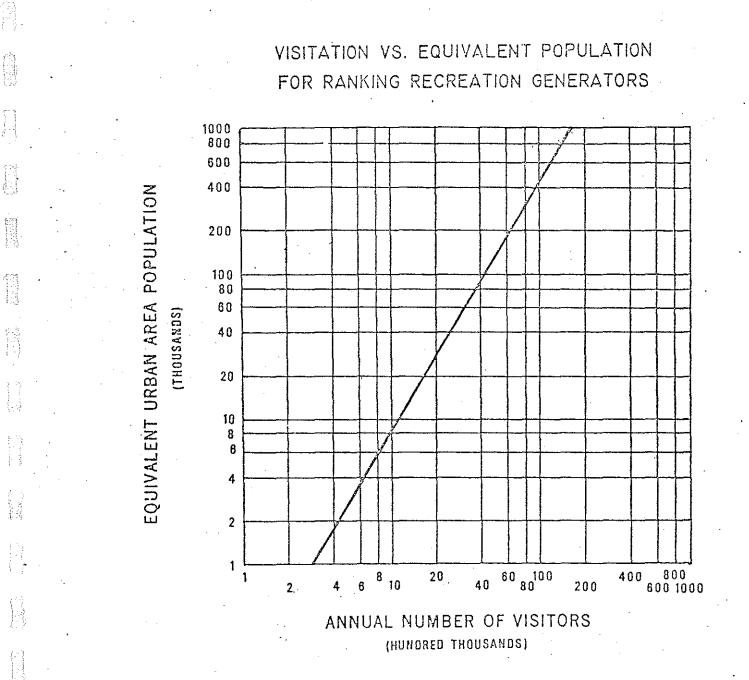
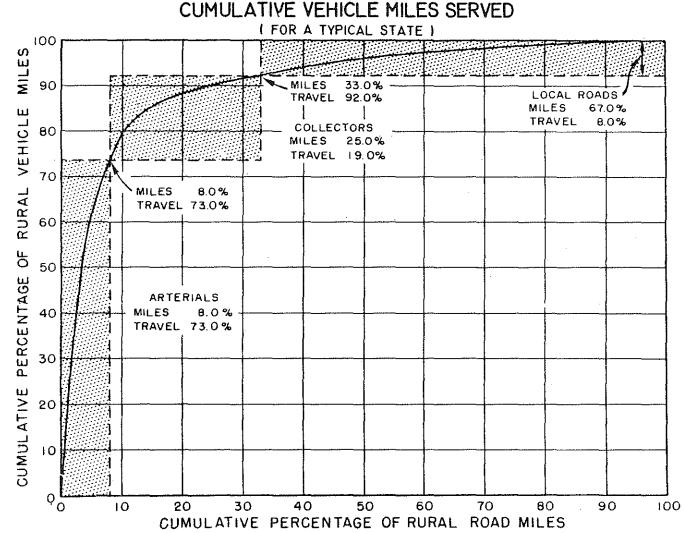



FIGURE 7

as to logically channelize the trips on the road network to represent the "real world". States having a Statewide Traffic Assignment Network and a travel model may use highway travel characteristics (average trip length, volume trip length index and vehicle miles) to evaluate the rural arterial systems. An example using vehicle miles as the travel characteristics being evaluated is shown in Figure 8 where the cumulative system mileage has been plotted against a cumulative travel characteristics which is vehicle miles of travel.

The following sections will demonstrate how the Statewide Transportation Modeling System can systematically identify and rank population centers, other travel generators, and highway travel characteristics.


PLOT OF CUMULATIVE ROAD MILEAGE VERSUS CUMULATIVE VEHICLE MILES SERVED

-15-

FIGURE

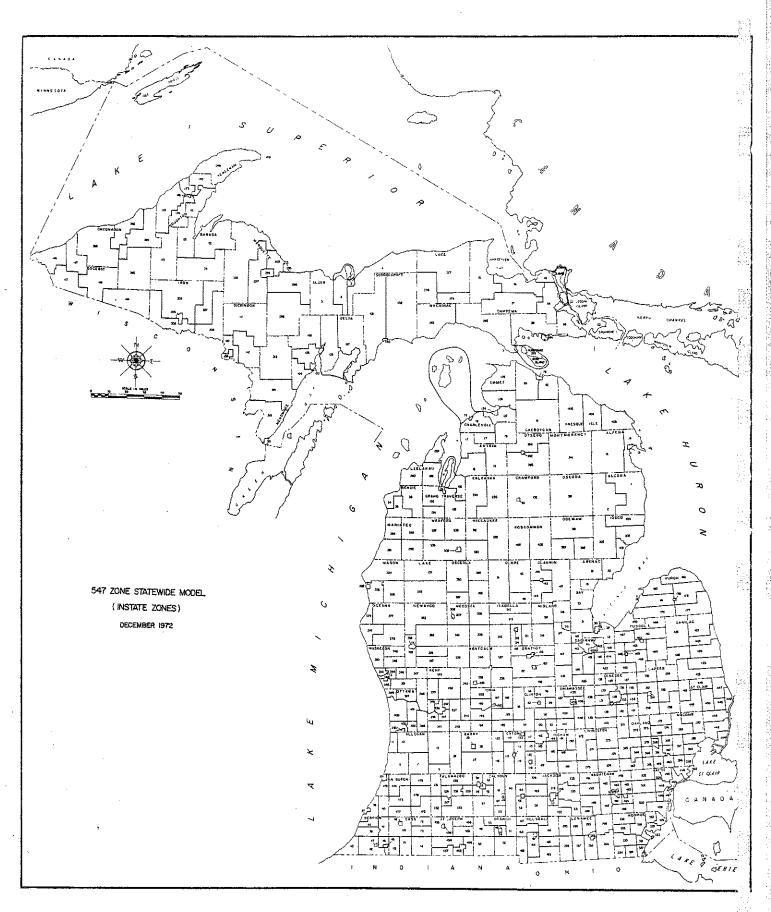
 $\mathbf{0}$

IDENTIFYING AND RANKING POPULATION CENTERS

IDENTIFYING AND RANKING POPULATION CENTERS

The previous section stated that the Federal Highway Administration found the evaluation of two elements necessary for the functional classification of any highway system. The two elements are:

1. Population Centers and Other Travel Generator Analysis


2. Highway Travel Characteristic Analysis

j.

This section will examine the ranking of population centers and other travel generators using a statewide model.

In order to evaluate population centers and the role each plays in functional classification for a state, the population for these areas must be readily available. The statewide transportation modeling system uses the census of housing and population information as the system data base. One of the variables applied in the trip generation equations is population. This makes population for the entire state accessible by the model on a zonal basis. States without a statewide transportation modeling system are forced to use the number of inhabitants as the only element when ranking population centers. This is where a system such as Michigan's can play an effective role, since the trip generation characteristics of each area more realistically portray the area's socio-economic importance. Figure 9 shows Michigan's statewide model's 547 zone system. One page of an actual output of population and trips generated by these zones is shown in Figure 10. This type of travel data is typically used in the travel forecasting process but may now serve a dual role in the identification and ranking of trip generators required for functional classification.

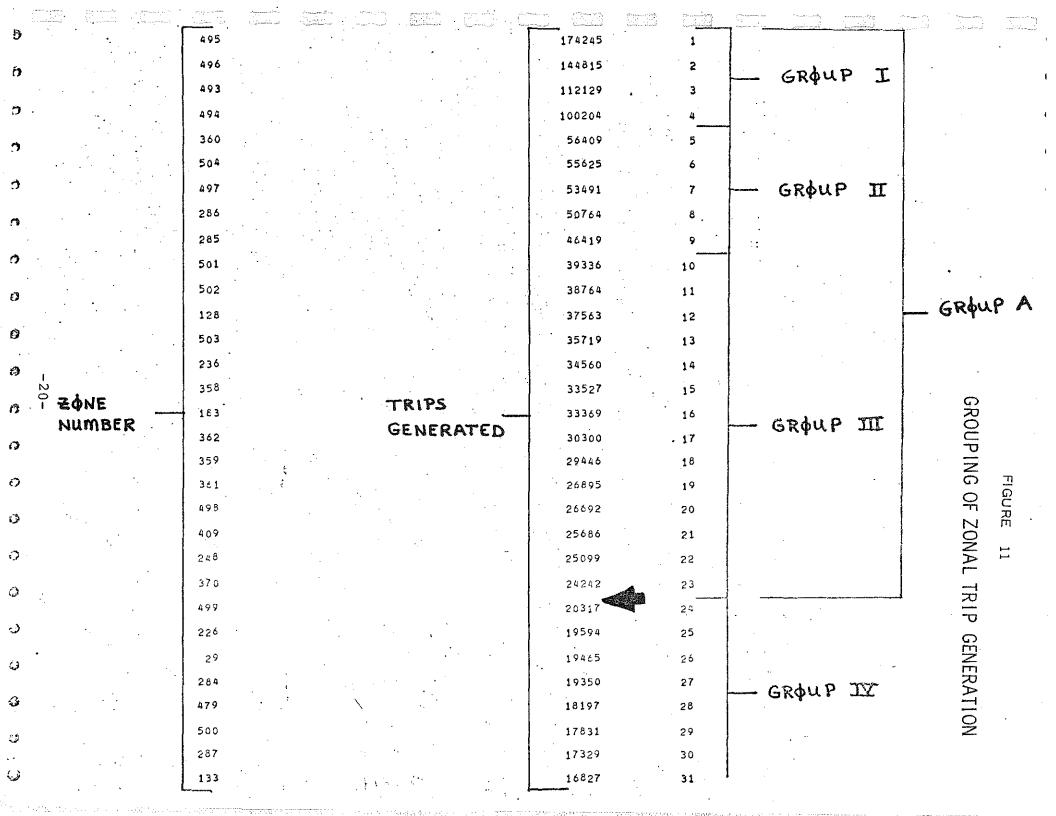
-16-

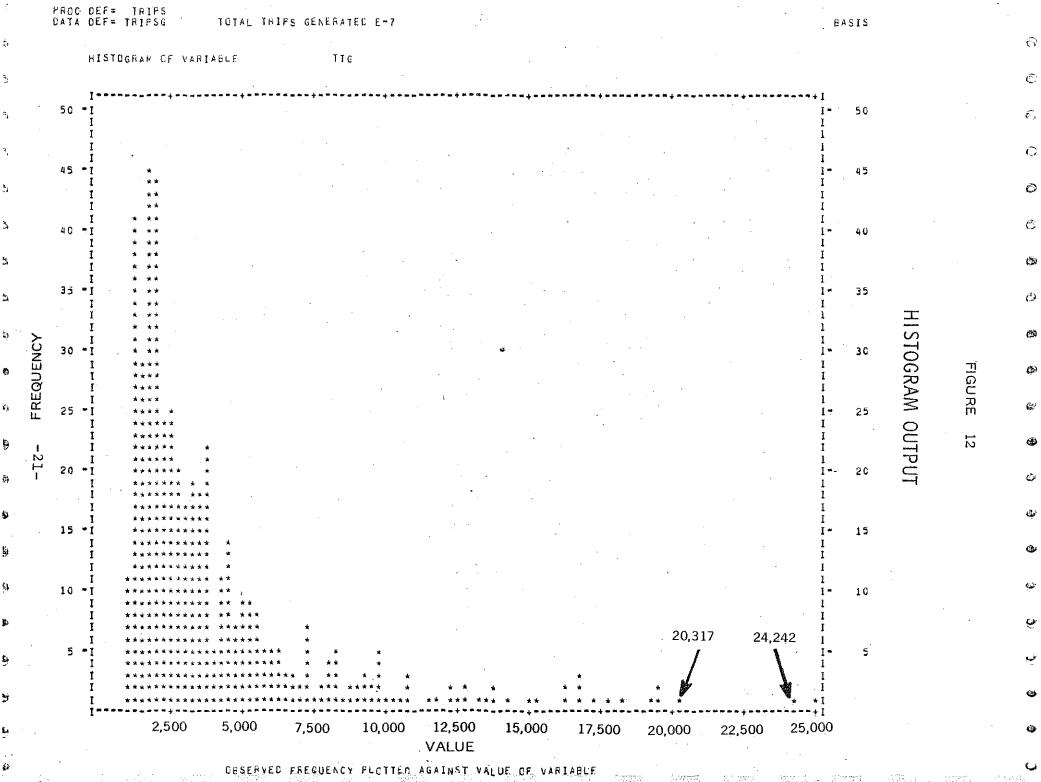
-17-

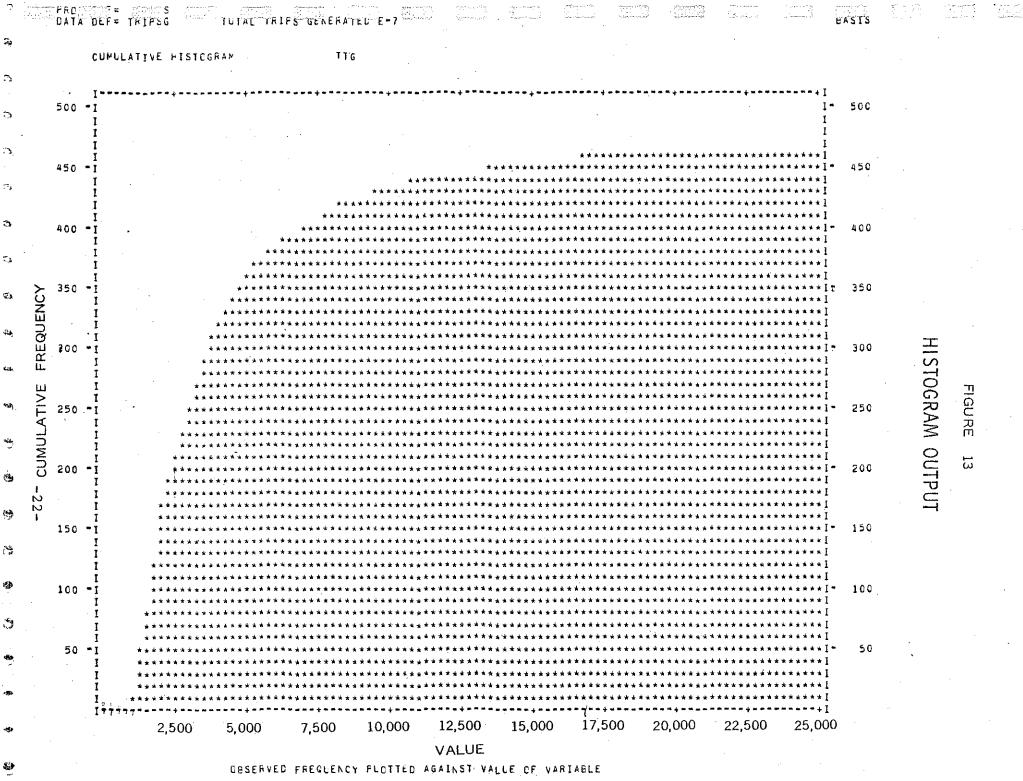
Andreas and the second se

ZONAL TRIP GENERATION OUTPUT

		GENERATION OF	
ZONE 1	101.	POPULATION 5466.000	TRIPS GENERATED 7453.500
2	102.	1188.000	4139.250
3	201.	547.000	5806.000
<u>ą</u>	202.	1842.000	1842 + 000
5	203.	2518.000	3791+500
6	204.	4000.000	5176.500
7	301.	10499.000	82285.000
8	302.	7225.000	20199.500
9	303.	13112.000	98584.750
10	304*	12241.000	60667.500
11	305.	4960.000	52135.750
12	306.	15273.000	87214.750
13	401.	6077.000	17798.500
14	402.	8768.000	27630.000
15	403.	14675.000	27630.000
16	501,	3295.000	7252.500
17	502.	4360.000	8216.000
18	503,	3415.000	10483.750
19	601*	4195+000	12850.000
20	602.	2842.000	11084.250
21	603.	3152.000	28222.750
22	701.	2345.000	6842.500
23	7020	4005.000	6596 250
24	703+	985.000	3158,750
25	801.	9995+000	62909.750
26	802.	10770.000	26669.250
27	803.	6450.000	50229.750
28	804 *	7670.000	18275+000


-18-


Analysis of trips is the key to functional classification of a specific highway. A significant part of this analysis is where the trips on each individual highway originate. Typically, the more inhabitants a population center has, the more trips generated by that population center. There are exceptions, such as a state park which has little opulation but generates many trips. This is the reason a study was made on the population centers which <u>generated</u> the larger number of trips. The file partially displayed in Figure 11 contains the generated trips per population center, or zone, sorted from high to low using the statewide model trip generation data. The grouping displayed on Figure 11 is for this test only and could have been changed according to individual trip generation characteristics in each state.


Further analysis can be made on the generated trips of each zone using histograms. (See Figures 12 and 13.) The histograms show the majority of the zones generating between 1,000 and 5,000 trips. Note the large gap in stratification in Figures 11 and 12 between the zone generating 20,317 trips and the zone generating 24,242 trips as indicated by the arrows. For test purposes, Michigan used this gap to define the large trip generators, i.e., any zone which generated more than 20,317 trips was considered as being a large trip generator. The resulting group will be titled Group A. In Michigan, Group A would include the following:

ZONE NUMBER	LOCATION
128	Flint
183	Lansing
236	Grand Rapids
248	Grand Rapids Area
285	St. Clair Shores, Roseville
286	Warren
358-362	Pontiac and Area
370	Pontiac Area
409	Saginaw
493-498	Detroit and Area
501-504	Detroit Area

-19-

ほうしん ほかかえ ししょちゅう しょう

 $\boldsymbol{\zeta}$

e

G

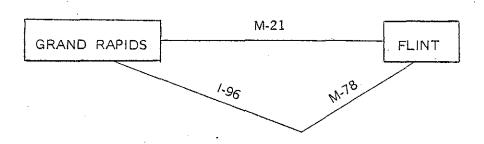
 $\langle \rangle$

6

C

€

€


ć

٤.

é

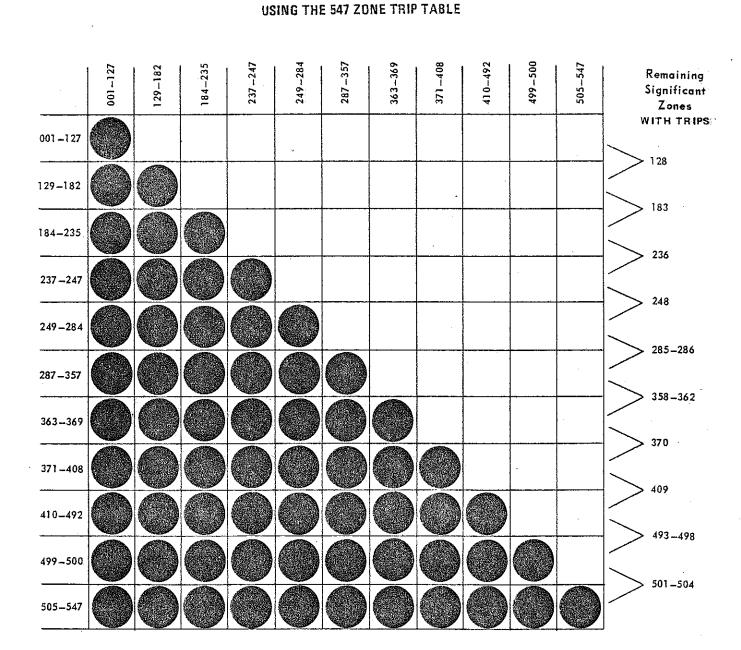

Once the major trip generators have been identified and ranked, the next step is to connect the routes on the highway network that serve them. This task is simple, provided that the connecting routes between major generators are obvious. But what if the connecting route is not obvious as shown in Figure 14.

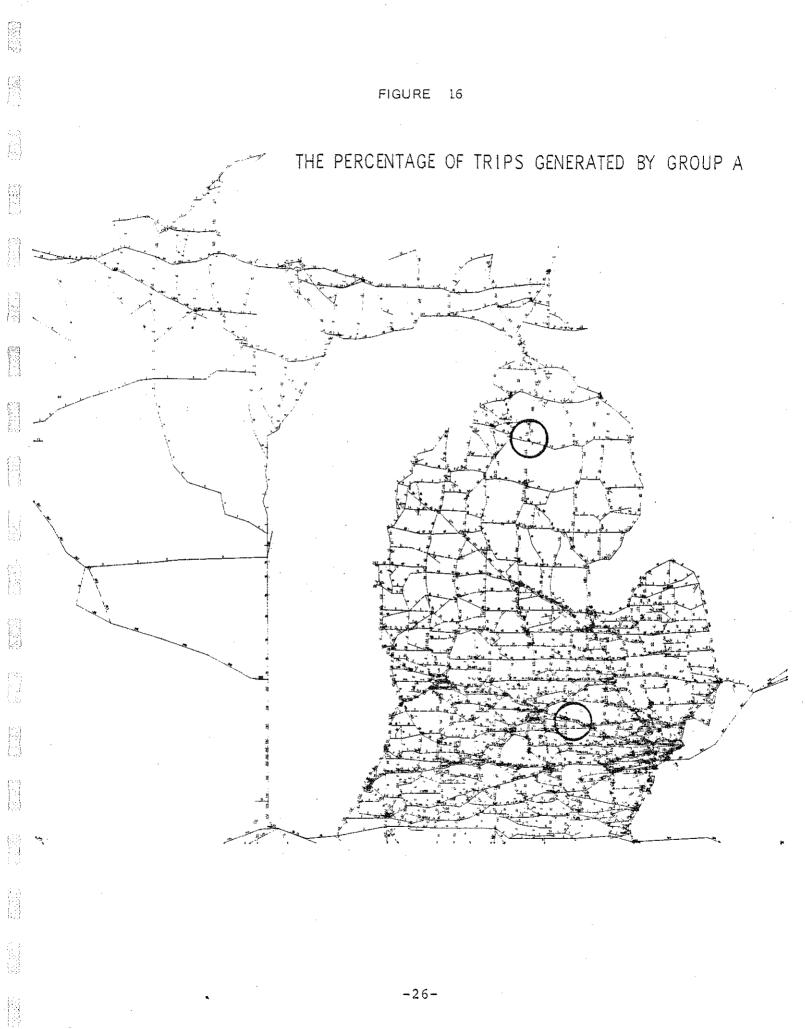
FIGURE 14

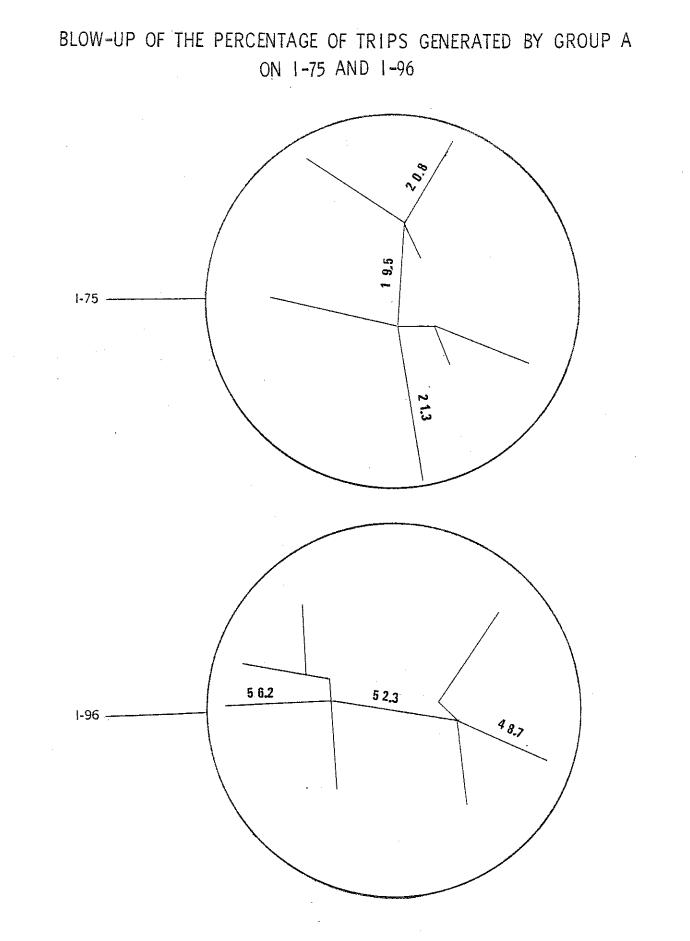
Is the connecting route between Grand Rapids and Flint M-21, which is a shorter but slower route or I-96 to M-78, which is a longer but faster route? The decision cannot be an arbitrary one and must be based on facts. Other questions that arise include the following. What percent of the total traffic of each trunkline do the trips from these zones represent? How do these percents compare with other trunklines? The purpose of this test is to answer these and other questions about population centers and the routes connecting them. The test was conducted in the following manner. Since only the trips from the Group A zones are going to be used for this analysis, the 547 zone trip table was modified so that the trips from the selected zones remained. All other trips were zeroed out as shown in Figure 15. Trips generated by the selected zones were loaded to a statewide network tape which has total trips for each trunkline on it. (Keep in mind that the selected zones are the zones which represent the major trip generators.) A comparison was made to

-23-

PROCESS OF ZEROING-OUT TRIPS FROM INSIGNICANT ZONES

1.


Follow each ROW across to each column. If a (•) appears in that column the zones for that respective ROW and column are multiplied by zero.


-24-

determine the percentage of trips that the select zones contribute to the total trips on each trunkline. This percentage was plotted for the entire state and is shown in Figure 16. If the rural trunklines were functionally classified based only on this percentage, this figure could represent a classification of state trunklines based on the percent of travel on a route originating from major trip generators. The percentage in Figure 16 has one assumed decimal point. The higher the percent on a trunkline, the more important is the trunkline to the population centers. In this test, that would be population centers in Group A. Compare the percent on two trunklines, I-75 and I-96 (see Figure 17). Approximately fifty percent (50%) of the travel on I-96 is from Group A. I-75 has approximately twenty percent (20%). Both are interstate routes but I-96 has a more important function in regard to the selected population centers. If desired, another group of population centers could be selected. The process would then be repeated and could be applied to all the generated trips from each of the population groups.


This type of analysis is useful in determining how important each section of road is to a state and what its function might be in regard to major trip generators. This is obviously not enough by itself so the next section will deal with functional classification from the standpoint of travel characteristics.

-25-

IDENTIFYING AND RANKING HIGHWAY TRAVEL CHARACTERISTICS

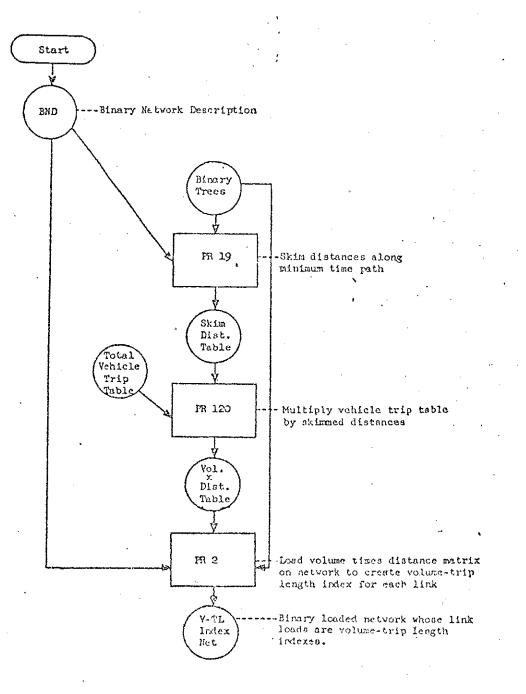
Viii

IDENTIFYING AND RANKING

HIGHWAY TRAVEL CHARACTERISTICS

The type of travel a trunkline serves varies from recreational trips, to commercial trips, to work trips. The kind of travel on a trunkline identifies the trunkline characteristics. Trunklines with similar travel characteristics often carry the same functional classification. Some examples of travel characteristic data which are useful in functional classification are average trip length, vehicle miles, and volume data. This type of data is readily available from any statewide transportation modeling system as independent variables in the analysis of functional classification.

The Federal Highway Administration has developed a procedure using a combination of these variables for determining a volume - trip index measurement using a computerized highway network and a combination of these values. (See Figure 18.) This procedure was followed using Michigan's Statewide Transportation Modeling System as described in the following paragraphs.


A skim tree was built from an existing loaded network. The skim trees were determined by the shortest distance. The output consists of a zone to zone distance matrix over the minimum time path for each zone. Figure 19 is an example of the skim tree output for zone number 1. The circled area in Figure 19 shows that the shortest distance from Zone 1 to Zone 102 is 91 miles.

The total trip table matrix from the loaded network is shown in Figure 20. The circled area in Figure 20 shows that the total trips from Zone 1 to Zone 102 is 1,380. This matrix is multiplied by the

-28-

FLOW OF OPERATIONS FOR COMPUTING VOLUME-TRIP LENGTH INDEX

ħ	29H4	antan (j. 194 1915) - Antania (j. 1947) Antania (j. 1947) - Antania (j. 1947)	M M	AN EWIE	<u>ി</u> ട ്ലൂ	ONE THE	MATE				an an an Carta San An	
•}	INTERCHANGE	VALUES	FRUM ZONE	1 TO ALL OTH	ER ZONES	TABLES I	NUMBER 101					· •
;	c	· .	1	2	3	. 4	5	6	7	8	9	,
	0	504	0 289.	30 284	279 35	274	297 50	285 118	291 153	305 143	271 73	
:	2	286 61	. 77	390	394	379	236	241	232	250	101 315	
	. 3.	-98 3n5	102 320	105 334	83 341	175 319	169 324	164 326	317 330	331 260	274	
· ·	5	273	266	268 243	263 238	261 232	241	242	258 236	244 309	243 312	
	° 7	238 324	238 322	296	308	310	153	134	134	157	115	
-	8 Q	139 119	111 123	121	211. 184	213 179	234	224 158	193	212 177	127 167	
	10	201	86		301	304	294	296 228	281 195	296 211	353 204	
_	11 12	353	382 · 201	210	214 201	214 137	217 153	135	132	147	134	
•	13	147	148 162	153 98	151	152 101	151 107	147 481	141 471	138 458	154 429	·
-	14	161 476	139	147	. 143	145	130	149	160	141	164	~
	16 17	156 434	265 436	261 398	269 421	266 421	279 432	262 154	262 178	251 166	419 137	
<u>}</u>	18	153	142	171	191	138	201	204 204	210 201	201 189	198 213	
	19 20	184 202	187 39	199	226 54	223	218 398	408	386	382	407	S
- - -	21	142	141 241	131 240	138 240	143. 219	152 213	231	234 271	242 263	231 253	KIN _ `
	22 23	255	276	276	269	112	106	255	223	217 255	228	
5	24	247 185	260 171	222	203 171	215 157	211 151	· 230 171	251 163	182	166	FIGUE
	26	161 -	. 146	236	234 174	238 186	237 179	228 197	262 231	243 233	259 232	
а н		245 165	180	181	211	201	211	201	194	206	196	19 OUTPUT
	' 29 30	210 332	186 353	168 210	170 200	180 203	322 209	318 179	341	330 150	333 161	19 17U
<u>ر</u> ۲	31	184	354	328	350	328	117	131 221	119 246	121 228	123 237	Dd
	32 33	· 130 229	128 238	111 216	236 233	240 235	195	177	173	198	188	
1	34	181 243	78 240	244 221	249	243 204	250 223	232	225 211	241	236 196	
	36	198	190	198	191	185	181	184	194	188	179 223	
	37 38	174 76	162 67	164 64	172 443	184	185 416	236	214 168	158	139	
·	39	159	50 °	104 279	107 274	118 75	278	232	243 100	264 86	253 112	
	40) 41	285 115	27 <u>1</u> 112	110	116	127	118	133	130	148	115	
, ÷	42	142 249	128 256	128	191 165	179 173	171	153 163	158 159	163 143	167 147	·-
	44	165	173	2.08 .	232	226 287	205 291	205	203 302	185 290	195 285	
2	45 46	197 132	183 139	287 134	270 134	142	119	137	124	135	125	·ب
	47 48	125 196	305 199	292 194	291 204	299 206	292 198	309 208	303 210	287 223	195 222	
17	49.	211	202	192	217	. 210	206	208	210	217 137	222 231	L.
inte.	50 51	219 241	210 233	· 207 · 355	213 355	203 485	138 508	143 437	151 422	360	375	
5	52	541	. 622	479	× 532 337	647 350	446 284	408 287	451. 249	393 293	378 283	
ر. :	53 54	340 - 293 -	321 542 -	305 515	859	768	705	532	544	E . •		J
	TOTAL =	124074	•		MEA	N =	226.826	-				
3	. •								<u>.</u>			<u> </u>
			,									

	0	1	2	3 .	4	5 .	6	7	ß		9.			
0		0	263395	111	127	91	20	229		235	· ·	240		
1	204	77	288	279230	97239	36154	537	718		710		3286		
2	12075	3977 2247	32 1189	67 4838	35	177	291 266	198 234		905 203		3690		
3	1432 211	87	134	257	244 172	308 156	158	85	•	203 130		190 62		
5	131	92	143	133	92	. 428	89	129	- `	222	•	202		
6	125	96	124	142	71	29	179	91		.85		137		
7	109	• 97	60	67	132	523	787	812		480	•	3367		
8	1555	1972	1904	692	130	. 272	210	270		117		>30		
9	900 317	726	272	148 130	127 32	175	239 127	165		213 57		170 87		
10 11	29	53	(<u>1380</u>)	130	109	113	127	261		71		111		
12	104	78.	98	119	1774	2414	953	809	4	307		532		
13	1294	827	655	1012	489	188	934	383		400	•	402		
14	970	203	755	1889	735	876	83	. 47	· .	25		16		
15	51	1445	688	648	119	429	761	478		675		362		
16 17	157 110	129 48	107 · 48	127 16	92 28	109 52	98 377	89 859	•	117 463		48 726	H	
18	607	901	830	2308	451	309	255	. 218		143		150	OT	
19	128	208	167	57	146	62	137	121		189		137	Ä	
20	178	45398	136360	12377	662423	61	- 36	47		19		59	[
21	689	345	324	435	247	• 439	-575	317	•	230		271	uin-d	
22	324 248	176	87 33	59 263	113 594	170 450	-850 1249 ·	269		124 375		59	70	
23 24	144	215	125	141	176	° 301	148	295		528		172 279	-0	
25	332	119	152	356	239	336	257	168	•	210		764		
26	523	728	382	150	199	85	356	201	•	182		159	ΤA	
27	126	330	239	229	330	254	182	191		76		144	ω	
28	345	192	153	.109	870	1616	1358	853		289		313	Fi	
29	374 38	780 74	150	340	364	192	101 357	57		127		109		
30 31	155	191	341 79	221	252 .83	175 2206	1347	820		332 693(346 597	N	
32	1092	316	505	360	155	88	91	- 133		210		209	MAT	
33	122	44	86	170	. 52	207.	472	475 -		195		224	H	
34	322	13316	471	369	149	238	88	106	•	181		115	R	
35	253	176	- 113	228	224	102	183	216	1	351		772	\times	
36 37	2503 1099	273	738	468 486	529 488	501	424	323 328		434 205		248		
38	5147	3877	6302	92	400 52 ·	231	208 172	- 343		452		103 397		
39	241	13378	724	833	897	. 173	145	68		152		226		
40	146	107	146	98	19956	3046	17340	2785	3	476	÷ .	4193		
41	314	1940 -	779	519	375	568	- 440	808.		380		204		
42	458	564 37	385 171	. 444 558	351	436	581	413		527		611		
43 44	130 82	138	1/1 1153	438	126 541	278- 165	267 95	· 220 304	,	117 255		104 197		
45	109	214	191	97	146	87	118	. 113	•	66		94		
46	349	433	477	430	291	457	768	523	•	413		638		
47	381	101	173	160	164	. 90	94	71		192		1170		
48		179	197	401	363	103	223	167		109		85		
49	157	120	181	4233	1829	5123	4149	1731		584		622		
50	574	1442 898	· 1337 2880	724 4537	874	910	310	165		431		1352		
51 52	1053 1705	2887	1460	2477	170 1043	381 5456	.540 2773	171 2316		110 461	2	342 636		
53	1550	487	1186	1346	2689	496	892	1671		1029		5757		
54	591	139	266	183	134	241	654	521	. *					

skim tree matrix, which will result in a new matrix of zone-to-zone trips times zone-to-zone distance. (See Figure 21.) The circled area shows that the value from Zone 1 to Zone 102 is 125,580. The resulting matrix is loaded to the network. The value assigned to each link is that links "volume - trip length index". A plot of the assigned value was prepared for the entire state. A portion of that plot appears in Figure 22.

The "average trip length" per link was computed by dividing the volume trip length index per link by the total traffic assigned per link. This value was plotted for the entire state. (See Figure 23.)

The average trip length for each link is also shown in a bandwidth plot for the entire state. (See Figure 24.) Bandwidth is a plotting technique used as a visual aid. The width of the band for each link is determined by the value or range of values being plotted as specified. For our plots, the value or range of values for each band will be listed in the title block.

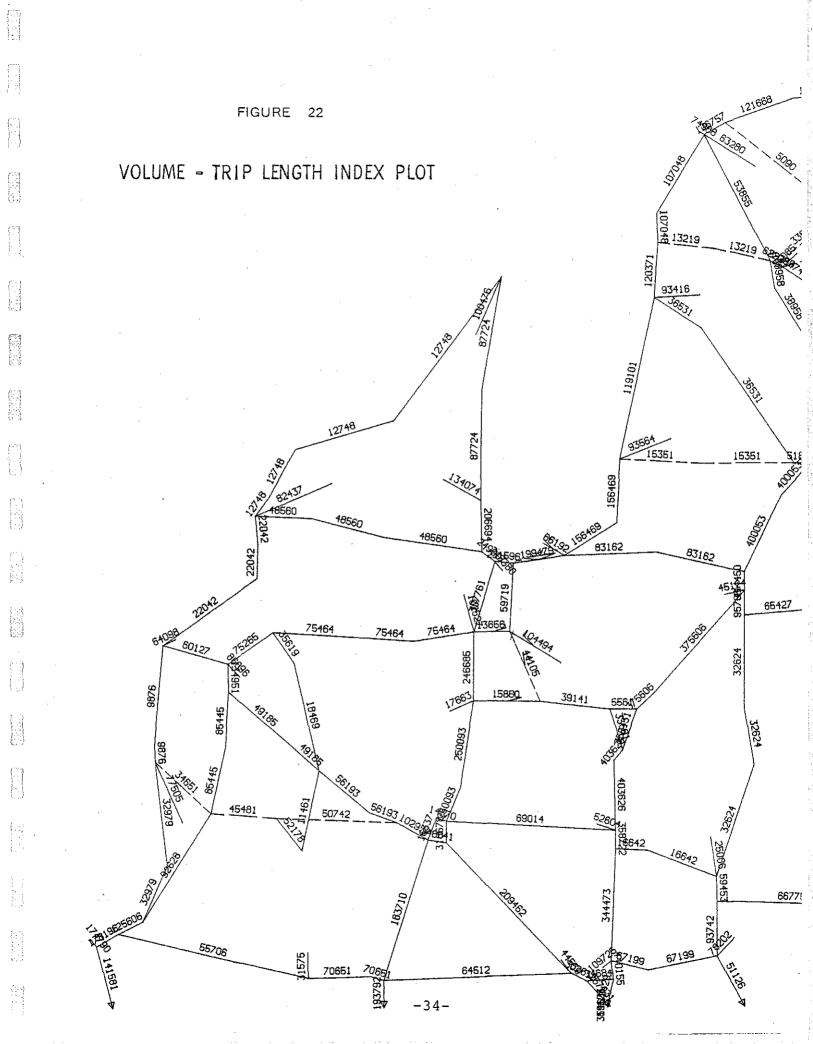
The average trip length is in miles and is in a network file which is sorted from largest to smallest average trip length. If classification were to be made based on average trip length, the higher values would indicate the more important roads in a state trunkline system.

The term "vehicle miles" refers to the amount of travel by one motor vehicle traveling one mile and includes all highways and streets. As it was stated earlier, the guidelines for cumulative vehicle miles and cumulative road mileage in classification studies remain consistent for a typical state. They are as follows:

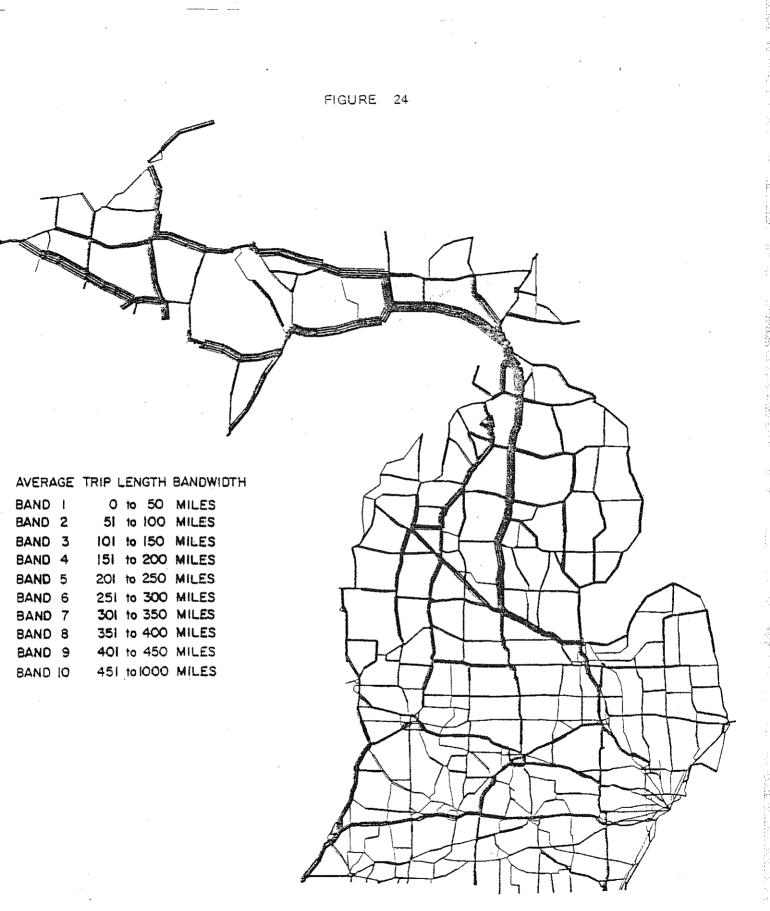
-32-

a per

MICHIGAN STATEWIDE 547 ZONE AVERAGE TRIP LENGTH PRINTOUT ZONE TO ZONE


INTERCHANGE VALUES FROM ZONE 1 TO ALL OTHER ZONES . TABLES NUMBER 101

		. 0	1	2	<u>,</u> 3	4	5	. 6	7	8	9		
-	o		0	7901850	30969	34798	27027	5700	66639	71675	65040		
	1	58344	22253	81792	9773050	3695082	1807700	64366	109854	101530	239878		
	2	736575	306229	12480	26398	13265	41772	70131	45936	77250	372690		
•	3	140336	229194	124845	401554	42700	52052	43624	74178	67193	59850		
	4	64355	27840	44756	87637	54868	50544	51508	28050	33800	16988		
	5	35763	24472	38374	34979	24012	103148	21538	33282	54168 26265	49086		
	0	29750	22848	30132	33796	16472	7221 80019	41528 102458	21476 107995	75360	42744 387205		
	/ 8	35316	31234 218892	17760 230384	20636 146n12	40920 27690	63648	4/040	52110	24804	67310		
	9	216145 107100	89298	46784	27232	22733	32200	3/762	33660-	37701	28390		
	10	63717	101824	125580	39130	9728	11466	3(592	10678	16872	30711		
	11	10237	20246	19432	28462	23326	24521	20728	51156	14981	22644		
	12	23988	15678	20580	23919	243038	369342	·12 ⁸ 655	106788	641949	71288		
	13	190218	122396	100215	152812	74328	23388	13/29A	54003	55200	61905	VOLUME	
	14	156170	32886	73990	181344	74235	93732	37923	22137	11450	6864	~	
	15	24276	20n855	101136	92664	17255	· 55770	113389	76480	95175	59368	\subset	
	16	24492	34185	27927	34163	24472	30411	22676	23318	29367	20112	\leq	
	17	47740	20928	19104	6736	11788	22464	50 ₀ 58	152902	76858	99462	Ē	
	18	92871	127942	141930	440820	84788	62109	54020	45780	28743	29700	,	
	19	23552	38896	33233	12882	32558	13516	21948	24321	35721	29181	ŧ.	
	20	35956	177.1522	4772600	668358	18547844	24278	14688	18142	7258	. 24013	TRIP	
	21	97838	48645	42444	6n030	35321	65728	132825	74178	55660	62601	~	
	22	72252	42416	20880	16560	24747	36210	22 ⁰ 65n	72899	32612	14927	-0	
1	23	63240	16836	9108	70747	66528	47700	315495	30551	81375	39216	-	
ω	24	35568	55900	27750	28623	37840	63511	34040 . 43947	74045 27384	13.464n 38220	128340 126824		
ω	25	61420	20349	24472	60876	37523 47362	50736 20145.	81168	52662	44226	41181	Ż	
•	26 27	84203 30870	106288	90152 44932	35100 39846	61380.	45466	32854	45267	17708	33408	6	<u> </u>
	28	56925	59400 38016	27693	22999	174870	340976	27295A	165482	59534	61348	LENGTH	ଦ୍ର
	29	78540	145080	25200	57800	65520	61824	32118	19437	41910	36297	T	FIGURE
	30	12616	26122	71610	44200	51156	36575	64903	29913	49800	55706	-	ñ
	31	28520	67614	25912	59150	27224	258102	170457	97580	83853	73431	INDEX	•
	32	141960	40448	56055	84960	37200	20240	20111	32718	47880	70863	D	21
	· 33	279.38	10472	18576	39610	.12220	40365 -		82175	38610	A2112	J.	jt
	34	58282	1038648	114924	91881	36207	59500	20416	23850	<u>` 31571</u> -	27140	\times	
	35	61479	42240	24973	44916	45696	22746	30979	45576	240478	151312	N	
	36	495594	146490	146124	89388	97865	90681	78016	62662	81592	44392	6	
	37	171225	44226	26076	83592	89792	42735	49 088	69764	46330	22969	ONE	
	38	391172	259759	403328	40756	22256	53248	79636	57624	71416	55183	[]]]	
	- 39	38319	668900	75296	89131	105846	45094	3-640	16524	40128	57178		
	40	41610	28997	40734	26852	1496700	286324	930360	278500	298936 56240	469616	ТО	
	41	36110	217280	85690	60204	47625	67 024 7 4556	5852n	105040	85901	23460		
	42 43	65036	72192	49280	84804 92070	62829 21798 .	44480	88893 43521	65254 34980	16731	102037 15288	ZONE	
	43 44	3237n 1353n	23874	42408 239824	101616	122266	33825	19475	61712	47175	38415	ç	
	45	21473	39162	54817	26190	41902	25317	32568	- 34126	19140	26790	m	
	46	46068	6n187	63918	57620	41322	54383	10216	64852	55755	79750	• • •	
	47	47625	30805	50516	47520	49036	26280	29046	21513	55104	228150		
	48	19012	35621	38218	81804	74778	20394	40384	35070	24307	18870		•
	49	33127	24240	34752	918561	384090	1055338	. 862992	373896	126728	138084		
	50	1257 06	302820	276759	154212	177422	125580	44330	24915	59047	312312		•
	51	253773	299234	1022400	1610635	82450	193548	23>980	72675	39600	128250		
	52	922405	1795714	699340	1317764	674821	2433376	1131384	1058412	574173	240408		
	53	527000	154327	361730	453602	941150	14.0864	250004	416079	594497	1629231		
	54	1731923	75338	136990	157197	102912	169905	34/928	283424	•			
	TOTA:						9.8				· · · · ·	₩ 1 maj	stand s
4437	· · ·		ىلى شىمى «	المحمطين المعطين		1999 - 1999 -	and in the second second	entre 17 - Cashille	9	an a	۰۰۰ ، ۰۰ ایری میکند ب _ا ر		


63

e.

PAGF

. .

garan ang

Ş. . •

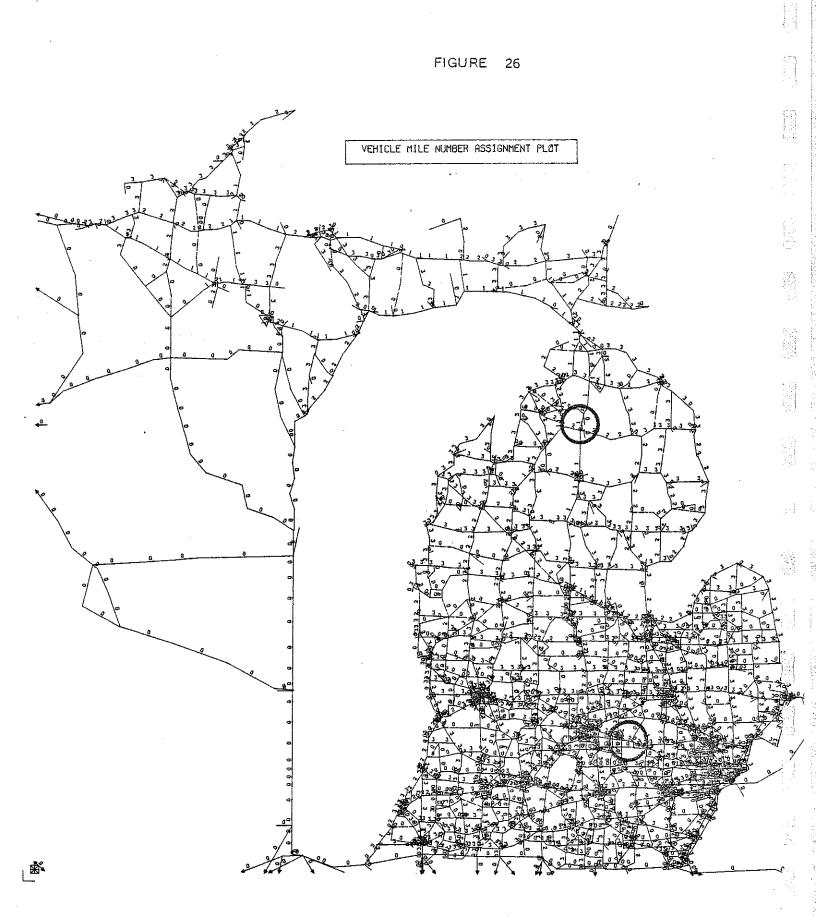
Arterials	~	Repr	eser	nt i	8%	of	the	tot	al	rural	road	miles
		and	73%	of	th	e '	vehic	le	mil	les		

Collectors - Represent 25% of the total rural road miles and 19% of the vehicle miles

Local Roads - Represent 67% of the total rural road miles and 8% of the vehicle miles The application of these guidelines using the Statewide Transportation Modeling System was made in the following manner.

The vehicle miles per link were added to the network by multiplying the link mileage times the link assignment. The results were totaled by a summary program and that total was also added to each link of the network. Each link's vehicle miles were divided by the total vehicle miles for the entire state starting with the link with the highest average trip length and proceeding to the smallest. The percentage that each link was of the total was cumulated after each division. The network's links remain sorted by average trip length so the links with higher average trip length are cumulated first. (See Figure 25.)

Using the vehicle mile guidelines, the cumulative percentage was separated at eight percent (8%) and thirty-three percent (33%). A number was assigned each percentage group as follows:

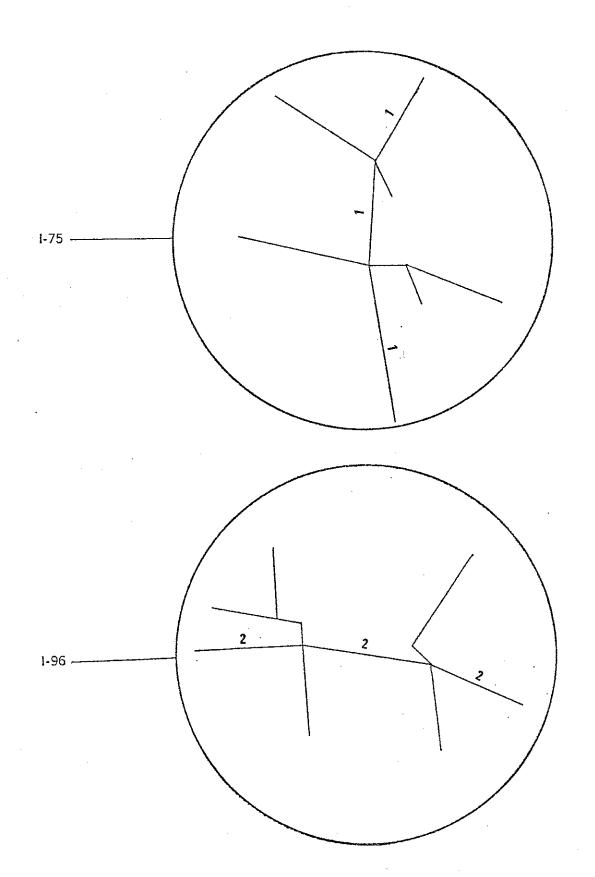

- Number 1 Assigned to all links with a cumulative vehicle mile percentage between 0% and 8%
- Number 2 Assigned to all links with a cumulative vehicle mile percentage greater than 8% but less than 33%
- Number 3 Assigned to all links with a cumulative vehicle mile percentage greater than 33%.

The number assignment for each link was loaded to the network and plotted. (See Figure 26.) Compare the circled areas of two roads,

-37-

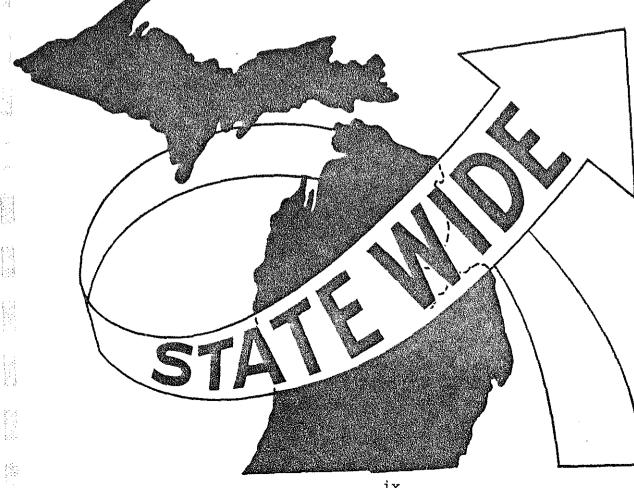
, A												
<u><u></u></u>		 . LI I	NK V.M.T.	A.T.L.	TOTAL V.M.	\$ TOTAL	CUM TOTAL	¥				~
	-		1520670	00000490	2382679192	0.06	0.00					~
			3886480	.00000489	2382679192	0.16	0.24					
~			2586610	00000489	2382679192	0,11	0.34					-
-			1574400	00000489	2382679192	0.07	0.40		· .			
			3904600	00000473	2382679192	0.16	0.57					L.
			836100	00000473	2382679192	0.04	0.60					
<u>_</u>			1134236	00000465	2382679192	. 0,05	0.65		AVERAGE			.•
2		· · ·	2496971	00000465	2382679192	0.10	0.75	-	.RA			
· · ·			2477700	00000405	2382679192	0.10	0.86		Ĝ			-
			1238680	00000463	2382679192	0+05	0.91		뉢			
		· · ·	592620	00000462	2382679192	0.02	0.93		TRIP			
~	· · · ·		243390	00000457	2382679192	0.01	0.94			Ξ		
	۰ .		4750350	00000451	2382679192	0.20	1.14		NG	FIGURE		
	၊ ယ ထ		2228700	00000450	2382679192	0.09	1.24		LENGTH	, ñ		
	α I		2639250	00000450	2382679192	0.11	1.35			25		
			1839600	00000449	2382679192	0.08	1.42		Fri			
			529000	00000441	2382679192	0.02	1.45	·	OS			
			486680	00000441	2382679192	0.02	1.47		ORTED		. •	
		•	1597580	00000441	2382679192	0.07	1.53	•				
		•	5313000	00000440	2382679192	0.22	1.76		HIGH			
-4			6337650	00000440	2382679192	0+27	2.02		GH			`-
		· •	160020	00000438	2382679192	0+01	2.03		10			ξ.,
Č			1606020	00000428	2382679192	0.07	2.10	•				وبعز
U.		•	1276580	00000428	2382679192	0.05	2.15		LOW			لمب
¢,p		•	152829	00000423	2382679192	0.01	2.10					. 1.
-			2998230	00000422	2382679192	0.13	2.28					. '
G			455060	00000416	2382679192	0.02	2.30					
¢)			. 837900	00000415	2382679192	0.04	2.34				-	
2		· . ·	782250	00000415	2382679192	0,03	2.37					<u>۸_</u>
Ð			883920	00000408	2382679192	0.04	2.41		-			ú
•••••		•	1572089	00000406	2382679192	0.07	2.47					-

· 1942


I-96 and I-75 in Figure 27. It is known that both roads are interstate routes, and it is expected that they would be functionally classified the same, but, the plot shows that if a classification were to be made based on travel characteristics alone, the two roads would differ.

All and a second second

The exercise above has shown, however, that data such as the volume - trip length index, average trip length, and vehicle miles of a road, can be measured on a link by link basis using Michigan's Statewide Transportation Modeling System. The next portion of the report is a preliminary attempt at combining the analysis completed in the previous section with the travel characteristic analysis in this section to obtain a total data base for functional classification. FIGURE 27


BLOW-UP OF VEHICLE MILE NUMBER ASSIGNMENT FOR 1-75 AND 1-96

К. 1 -

-41-

COMBINING THE ANALYSIS OF POPULATION CENTERS AND HIGHWAY TRAVEL CHARACTERISTICS

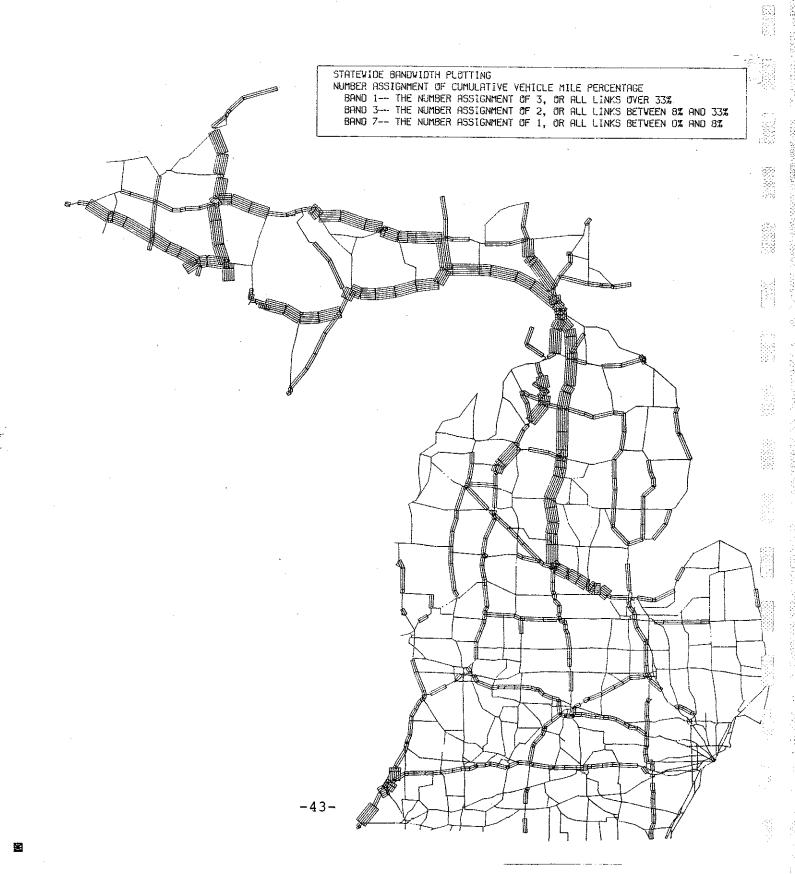
and a sub-

ix

COMBINING THE ANALYSIS OF POPULATION CENTERS AND HIGHWAY TRAVEL CHARACTERISTICS

Functional classification of a road according to its character of service requires looking at more than one variable. This section will deal with the combining of both zonal ranking data and individual route travel characteristics. The combination could be used to assist in functional classification of rural state trunkline networks on a system level.

In the travel characteristic section, a number assignment was given to the cumulative vehicle mile percentage on each link. The number assignment was as follows:


- Number 1 Assigned to all links with a cumulative vehicle mile percentage between 0% and 8%
- Number 2 Assigned to all links with a cumulative vehicle mile percentage greater than 8% but less than 33%

Number 3 - Assigned to all links with a cumulative vehicle mile percentage greater than 33%.

Figure 28 is a Statewide bandwidth plot of this number assignment. If a similar number assignment were given to the link percentage of trips generated by zones of Group A in the zonal importance section, a combination of the two number assignments could be made.

For test purposes, the following number assignment was made for the percentage of trips generated from zones in Group A. (The higher the percentage, the more important a link is to the zones in Group A.) This number assignment was loaded to the network and plotted FIGURE 28

THE NUMBER ASSIGNMENT OF THE CUMULATIVE VEHICLE MILE PERCENTAGE

using bandwidth for the entire state. (See Figure 29.)

Number 1 - Assigned to all links 30% and over Number 2 - Assigned to all links between 20% and 30% Number 3 - Assigned to all links between 0% and 20%.

Each link on the network has a number assigned to it for zonal importance and one for travel characteristics. The two were utilized in combination by averaging. This average was plotted in bandwidth for the state. (See Figure 30.)

Figure 30 shows the results of the preceding two sections on one plot. The user now has the ability to look at as many variables, for assisting him in functional classification of rural trunklines, as are available to the Statewide Transportation Modeling System. Variables such as zonal importance and route characteristics can be monitored separately or in combination. Figure 30 demonstrates that the Statewide Transportation Modeling System can greatly assist in functional classification of areas where the generated trips from population centers follow typical trip generation patterns. The areas which do not follow these patterns have a relatively small population but generate a large number of trips. They are known as special interest areas. So far, they have not been examined for functional classification purposes using a Statewide Model.

-44-

THE NUMBER ASSIGNMENT OF THE PERCENTAGE OF TRIPS GENERATED BY GROUP

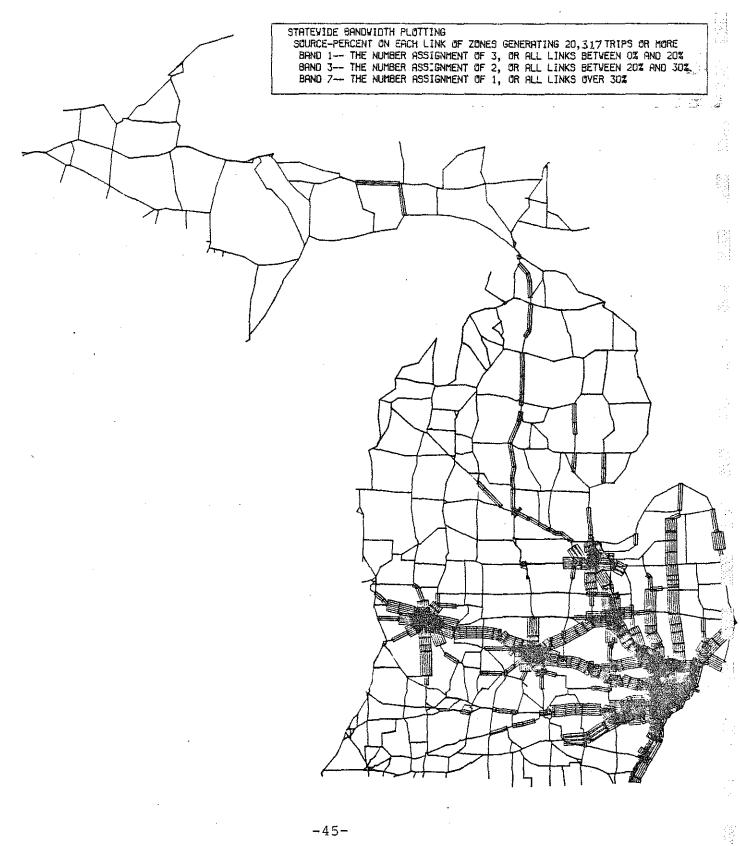
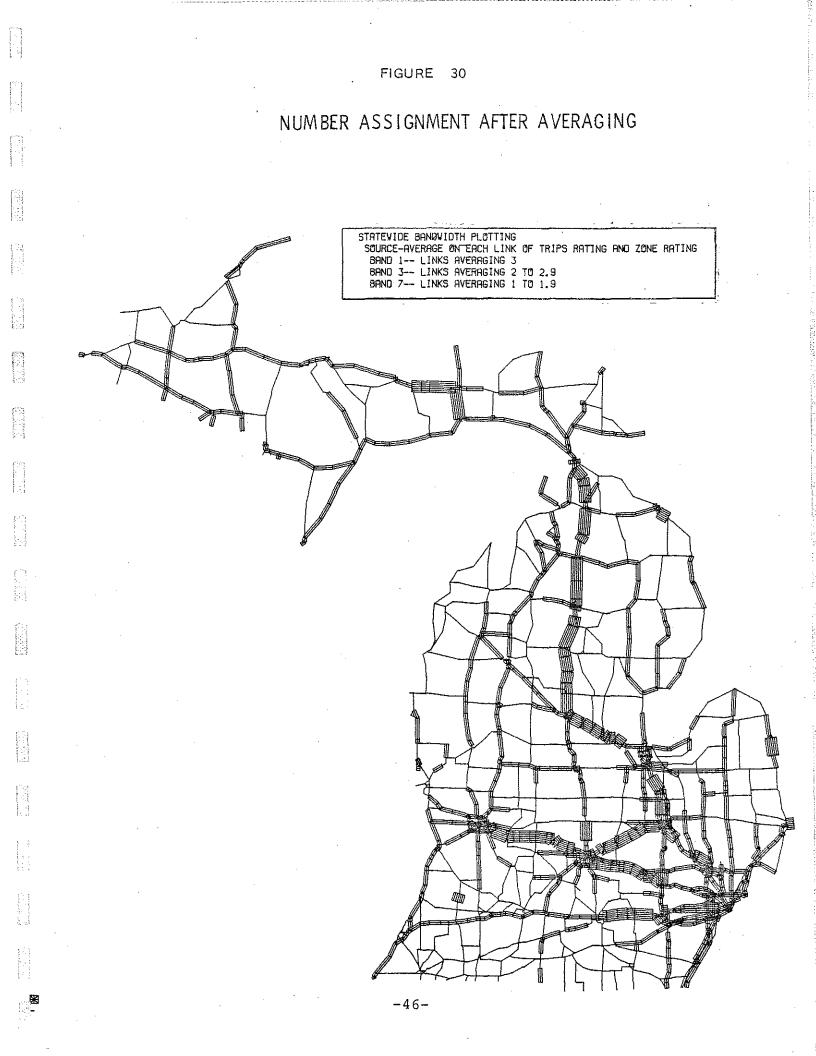
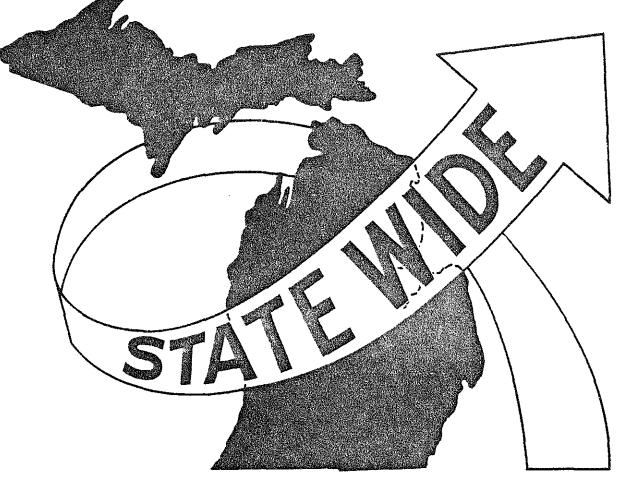



FIGURE 29



-45-

虃

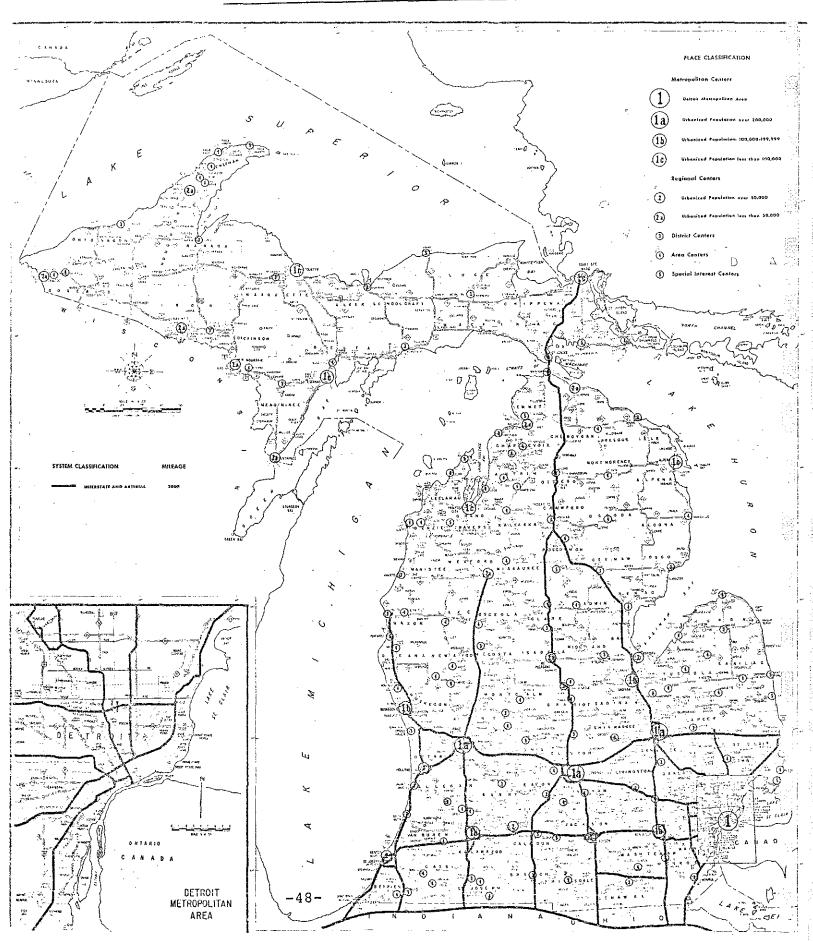
PLACE CLASSIFICATION

State of the state

х

PLACE CLASSIFICATION

Place classification is a means of ranking cities or special interest areas in the state according to its importance as a traffic attractor. In the report, <u>Highway Classification in Michigan</u>, the Michigan Department of State Highways and Transportation considered 147 places as warranting state trunkline service. The places were ranked and separated into classes by differences in socio-economic characteristics. (See Figure 31.) Since this requires a tedious, time consuming process, it was felt that the Statewide Transportation Modeling System would be of value in this area as it relates directly to functional classification. This section is a brief demonstration of some of the model's potential application using its own socio-economic data files. These files are the same ones used in ranking zones by generated trips and also in the travel characteristic analysis.


The two major factors typically used in ranking a place are its population and the relationship to surrounding population. With the Statewide Transportation Modeling System, each can be examined quickly and efficiently because they are the same elements used in the statewide trip generation-distribution analysis.

The statewide 547 zone network system is used in the place classification development process discussed in the next few pages. The 147 places classified by the Michigan Department of State Highways and Transportation in the previously mentioned report were used for this test. The original place classification and population of the initial 147 areas were given to the zone in the transportation modeling system which represented that area.

-47-

FIGURE 31

PLACE CLASSIFICATION FROM THE REPORT HIGHWAY CLASSIFICATION IN MICHIGAN

The place classification assigned each area was sorted from most important place classification to least important. (See Figure 32.) This file is used as a comparison with the order of importance given by the model analysis process.

[...]

ζ.

6

The first attempt at place classification by the model was done by ranking the population of each area. Only the statewide model zones containing the study areas were sorted by population size. The zones were sorted from highest population to lowest. (See Figure 33.)

It should be mentioned at this time that only the first page of the output will be shown in these figures. They contain enough information to demonstrate the point we are making and save printing the extra pages.

Compare Figure 32 with Figure 33. Note that the seven highest population areas match the seven highest place classifications. Also, note that when the population is below 50,000, that the match ceases. Why is the city of Bay City with a population of 49,449 less important in place classification than the city of Alpena which has a population of 13,805? The reason is the surrounding population.

Typically, the importance or role an area has in the hierarchy of a state is directly related to the function it plays to the surrounding population. An area like the city of Alpena is a perfect example of this. It is rated high in place classification because of the type of service provided to the surrounding population. Therefore, if the statewide modeling system is going to assist in place classification, it must be capable of analyzing the type, as well as the magnitude, of services provided to the surrounding population.

-49-

 \sim

FILE: GUCITY/ GETHE

-			*			، بالبر ۲			
2		DETROIT	1	493	2849269	1513601	53		1
0		LANSING	14	EB1 A	550958	131546	24		2
		FLINT	14	a 128	651974	153317	30		3
• .		GRAND RAPIOS	14	A 236	495690	197649	40		4
· `		KALAWAZOO	1 5	8 226	436853	85555	19		5
		ANN ARBOR	16	8 479	2639101	59797	4		٤
-7		NUSKEGON	14	342	329295	44631	14		. 7
۲		SAGINAW	18	a 409	317778	\$1849	29		8
		ALPENA	10	13	13805	13805	Í		ç
· •		TRAVERSE CITY	10	151	20650	18048	87		1 C
· ^ ·		SAULT STE MARTE	10	5 63	17148	15136	83		11
		MARQUETTE	10	2 2 9 5	21967	21967	100		12
. с э		ESCANABA	10	103	15368	15368	100		13
Q		BATTLE CREEK	2	2 055	473505	38931	8		14
4	-50	JACKSON	ĩ	216	473621	45484	10		15
0	Ĩ.	HOLLAND	2	2 395	- 332301	26479	8		16
\sim		BENTON HARBOR-ST JOSE	рн 2	2 037	87155	27523	32		17
. /		PORT HURON	2	442	830001	35754	4		18
• >		BAY CITY	2	2 0 2 9	286708	49449	17		19
Ċ		NOUNT PLEASANT	2 A	210	92014	20504	22		20
		CADILLAC	2 A	505	21985	\$950	45	·	21
Ċ		PETOSKEY	2 A	124	11895	6342	53		22
		CHERDYGAN	2 A	79	11895	5553	· 47		23
		MENOMINEE	2 A	311	10748	10748	100		24
في.		IRON MOUNTAIN	2 A	109	13978	8702	67		25
5		IRON RIVER.	2 A	205	13978	2684	19		26
)		HOUGHTON-FANCOCK	2 A	169	10887	16887	100		27
J		IRONWOOD	24	146	с	e711	С		28
		ALLEGAN	E	G C O 7	424610	4516	1		29
-		HASTINGS	3	025	616(30	. 6501	1		30
\bigcirc		THREE PIVERCHAR		<u>5</u> 9	27107				

FIGURE 32

¢

t

Ł

ι

K.

SORTED BY THE CLASSIFICATION IN THE REPORT HIGHWAY CLASSIFICATION IN MICHIGAN PLACE CLASSIFICATION FILE

1499

CLASSIFICATION

10.80

~ 3					C I for a state of the S T with the state of	na genejo Na s <u>u</u> danu			ار با می وارد و می وارد. این از این			n and a second s	.,		
~	DETROIT	1	493	2849269	* 1513601	53			1						~
	GRAND RAPIDS	1 A	236	495690	197649	40			2						
	FLINT	1 A	128	651974	193317	30			3						
•	LANSING	1 A	183	550998	131546	24			4	-					C
	ANN ARBOR	18	479	2639101	99797	4			5						<i>1</i> -
·	SAGINAW	18	409	317778	91849	29			6				-0		·
-	KALAMAZOD	18	226	438893	85555	19			7				PLACE		\sim
~	BAY CITY	2	029	286708	49449	17			8	1. J.					C
	JACKSON	2	216	473621	45484	10			ç				CLAS		
	MUSKEGON	18	342	329295	44631	14			10		•		AS		C
<u>.</u>	BATTLE CREEK'	2	055	473505	38931	8	•.		11				SIE		C
	PORT HURON	2	442	830001	35794	4	•		12				i.		
$\widehat{}$	MIDLAND	3	315	127786	35176	28		·	13	*			AT	FIG	Ç
Ci t	BENTON HARBORSST JOSEPH	4 2	037	87155	27523	32			14	POP			IFICATION	FIGURE	
י י ע ש	HOLLAND	2	395	332301	26479	8			15	POPULATION					
τ	PONROE	Э	323	2388188	23894	1			16	ATI			FILE	ů ů	e ^{ren} N
<u>.</u>	MARQUETTE	1 C	295	21967	21967	100			17	0 N			S		C
	MOUNT PLEASANT	2 A	210	92014	20504	22			18				ORTED	-	
-	ADRIAN	3	262	226823	20382	9			19				B		Ċ
, · ·	TRAVERSE CITY	10	151	20690	18048	87			2 C				ВΥ		Ç
•	QWOSSO	3	433	436504	17179	4			21			•			
<i></i>	ESCANABA	1 C	103	15368	15368	100			22				POPU		(, ⁻
<u>ن</u>	SAULT STE MARIE	10	έß	17148	15136	88			23				Ĕ		۲.,
	ALPENA	1 C	13	13805	13805	100			24	•			LATION		
Ú	NILES	З	045	60920	12988	21			25				<u>o</u>		C.
U	ALBION	4	170	10887	12112	100			26				~		C
~	BIG RAPIDS	• 3	306	53447	11995	22			27						-
Ú	GRAND HAVEN	3	399	335766	11844	4			28						i u
U	HOUGHTON-HANCOCK	2 A	169	10887	10887	100			29						î,
-	MENOMINEE	2 A	311	10748	10748	100	· · ·		30						
	CADILLAC	2 A	505	21985	9990	45			31						\

1.1.1

 \cup

5

Ć

ALCORRECTOR DUTY

Surrounding population can be examined with a process called proximity analysis. Proximity analysis documents the potential of the modeling technqiue in describing the degree to which any socioeconomic characteristic - for example, population - is concentrated around a zone of interest. This is accomplished by using the average driving time between zones based on an actual road network. Any individual wishing further information on proximity analysis may review the publication entitled: Volume 1-D Proximity Analysis: Social Impacts of Alternate Highway Plans on Public Facilities, May 1974. In the Alpena-Bay City situation, this process would evaluate the relationship of each of these cities and their surrounding areas.

In the tests, the populations for all urban zones within sixty (60) minutes of each study area were totaled. (This sixty minute time band was considered the "surrounding population" but could have been set to any other user time specification.) The surrounding population totals were listed by study area and the population of the urban zones within the sixty minute time band of the study area. A ratio was calculated to determine what percent the population of the study was of the urban population within the surrounding population for each study area. This ratio was sorted from high to low. (See Figure 34.)

The higher the ratio, the more important this area is to the surrounding population. In other words, the higher ratio has a smaller total of urban population within the 60 minute time band. The converse is also true.

When comparing Figure 32 with Figure 34, the match is very poor. However, note that the first ten cities listed in Figure 34 are important in place classification.

-52-

~,		2007.		+ ICC	C Providence & Francisco				ing a star of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set				
2	· .							·					
۲	MARQUETTE	1 C	295	21967	21967	*					••••		
	ESCANABA	10	103	15368	15368						PLA		
	MENOMINEF.	24	311	10748	10748						LACE		
···•	ALPENA	10	13	13805	13805						CL		
·	HOUGHTON-HANCOCK	24	169	10887	10887						LAS		
	SAULT STE MARIE	10	83	17148	15136	88					SIE	•	
* k	TRAVERSE CITY	1 C		20690	18048	87	•						·
	MANISTEE	3	291	9021	7723	86	* ·				ATION		·
•	IRON MOUNTAIN	2A	109	13978	8702	62	US				I O		
5	CHARLEVOIX	3	75	6342	3519	55	RRC				<u></u> 1		تع
¢	DETROIT	1	493	2849269	1513601	53	UN				Ē		·~
	PETOSKEY	2 A	124	11895	6342	53	SURROUNDING				S,	ПО	
ື ບໍ່	BOYNE CITY	4	78	6342	2969	47					ORI	FIGURE	·**
0	CHEBOYGAN	2 A	79	11895	5553	47	POPULATION				ORTED		Ċ.
	CADILLAC	2 A	505	21985	9990	45	JLA				BY	34	
0	GRAND RAPIDS	1 A	236	495690	197649	40							ς
0	CALUMET-LAURIUM	4	170	10887	3875	36					AD AD		ς.
	GLADSTONE	4	106	15368	5237	34	RATIO			,	RC		
<i>(</i>)	BENTON HARBOR-ST JOS	SEPH 2	037	87155	27523	32	0				SURROUNDING		ί.
U'	EAST JORDAN	4	77	6342	2041	32					D		C
	FLINT	1 A	128	651974	193317	30					NG		
	SAGINAW	18	409	317778	91849	29					PC		С.
\cup	MIDLAND	3	315	127786	35176	28					JPL		
	MARLETTE	4	428	6270	1706	27					POPULATION		v
\cup	GAYLORD	4	392	11895	3012	25							C
ت ت	LANSING	1 A	183	550998	131546	24							۲ <u>د.</u>
J	NEGAUNEE	3	299	21967	5248	24					RA		ı
)	LANSE	3	22	10887	2538	23					RATIO		<u> </u>
)	MOUNT PLEASANT	2 A	210	92014	20504	22					0		<u> </u>

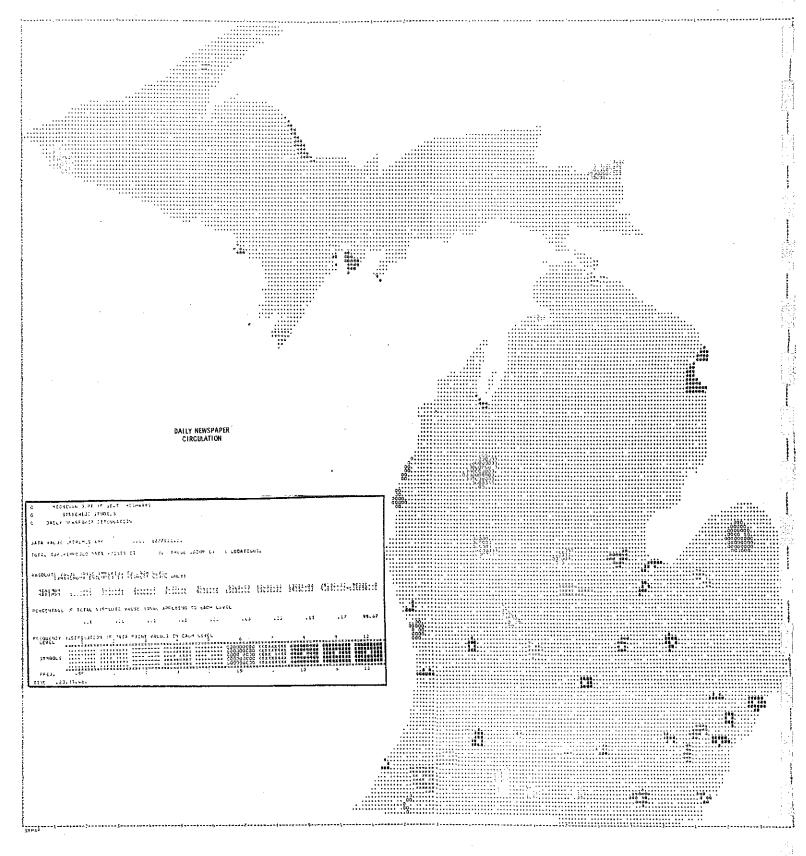
ς..

Now look at Figure 33 and Figure 34. Figure 33 lacks the areas important to surrounding population in its place classification order. Figure 34 lacks the areas of population importance in its order. A combination of the two is needed to get a variable which will include both.

The variable was attained by multiplying the ratio times the population. The new variable was sorted from high to low and listed. (See Figure 35.)

Compare Figure 32 with Figure 35. Note that this match is much closer than the previous two. Most differences now are due to a socioeconomic characteristic of that area. Measuring these additional socio-economic characteristics is not beyond the statewide model's capabilities as the socio-economic data file contains over 1,000 pieces of information about each of the 508 instate zones.

Proximity analysis also allows the use of any facility available in the facility file on a zonal basis. Examples of facility file data are newspaper circulation, number of hospitals, airports, etc., per zone. (See Figures 36 and 37.) Both the facility file data and the socio-economic data may also be graphically displayed as Figures 36 and 37 indicate. The facility file contains many variables which could be measured and used for place classification by the user.


Place classification is important in the functional classification of a road because it indicates the road service needed for that area. The purpose of this section is to show the model's potential as a tool of assistance in making a decision on place classification. Although it is realized that the Statewide Transportation Modeling System is

-54-

े 9		•	رىچ مەرەپىيەتىيە بىلىرىمە يىلىرىمە رى				15 .							anting angle and a
	CETROIT	1	493	2849269	1513601	53	80220853	1						
	GRAND RAPIDS	14	236	495690	197649	40	7905960	2						
	FLINT	1 A	128	651974	193317	30	5799510	3						•
	LANSING	1 A	183	550998	131546	24	3157104	4						
	SAGINAN	18	409	317778	¥1849	-29	2663621	5						
	MARQUETTE	i¢	295	21967	21967	100	2196700	6			A	ס-	,	
	KALAHAZOD	18	226	438893	45555	19	1625545	7	•		AND	PLACE		
	TRAVERSE CITY	10	151	20690	16048	87	1570176	8	*		S			
•	ESCANABA	10	103	15368	15368	100	1536800	9	POP	.,	, A	CLAS		
	ALPENA	10	13	13805	13805	100	1380500	10	Ŭ		õ	AS		
	SAULT STE MARIE	1Ç	83	17148	15136	88	1331968	11	ATI		ND			тана М
•	HOUGHTON-HANCOCK	24	169	10887	10887	100	1088700	12	POPULATION AND		SURROUNDING	SIFICATION		
	MENCHINEE	24	311	10748	10748	100	1074800	13	AND			ATI	<u></u>	
	MIDLAND	3	315	127786	35176	28	. 984928	14			POPULATION	2	FIGURE	
ហ	BENTON HARBOR-ST JOSEPH	2	037	87155	27523	32	880736	15	SURROUNDING		Ĭ		ñ	
տ I	BAY CITY	; 2 '	029	286708	49449	17	840633	16	our		Ă	Ē	35	
	MANISTEE	· 3	291	9021	7723	86	664178	17			N N	SO	. .	-
	NUSKEGON -	18,	342	329295	44631	14	624834	18				SORTED	÷ .	
	IRON KOUNTAIN	24	109	13978	8702	62	- 539524	19	POP		AR	E		
	JACKSON	2	216	473621	45484	10	454840	20			A	ΒY		
	FOUNT PLEASANT	24	210	92014	20504	22	451088	21	POPULATION		VARIABLE			
	CADILLAC	24	505	21985	9990	45	449550	22	V NC	-		POPUL		
	ANN ARBOR	18	479	2639101	99797	4	399188	23	\geq	• •		μ		
	PETOSKEY	2 A	124	11895	6342	53	336126	24	RIABLE			ATION		
	BATTLE CREEK	2	055	473505	38931	8	311448	25	Ē	•		N.		
	NILES	3	C 4 5	. 60920	12988	21	272748	26						
	SIG RAPIDS	3	306	53447	11995	22	263890	- 27					•	
	CHEBOYGAN	24	79	11895	5553	47	260991	28						
	HCLLAND	2	395	332301	26479	8	211832	29						
	CHARLEVOIX	3	75	6342	3519	55	193545	30				• -		
	40Å1AN	3	202	225823	20183	Q	183438	31		· .			•	

5 1 4 10 10 10 10 10 10 10

FREQUENCY DISTRIBUTION OF DAILY NEWSPAPER CIRCULATION ON A ZONAL BAS

limited in doing the entire job of place classification, it is felt that it can contribute a large part to it. $\left(\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$

і. 121 -

gerina na super estat estat

And the second second second

give a product of the second s

CONCLUSION

CONCLUSION

The process of functional classification using present techniques places extreme pressures upon the staff of every state. Every year, a more detailed project arises with the additions of future roads throughout the state. Now, more than ever before, a highway department must provide system level justification or need for a project. The present process for functional classification remains mostly manual. All of this requires time and time is expensive. This is why a system application of the statewide transportation modeling system can be beneficial to the functional classification process, state highway plan, and regional planning process.

Certain limitations do exist using Michigan's statewide model. The analysis is limited to state trunklines in rural areas. Another limitation is that certain zones are not fine enough, i.e., the zone's total area is too large for the detail needed. But, these limitations are offset by the advantage of having an added tool to assist in the functional classification process.

All information is on a link by link basis for the entire state. It can be displayed in listing or plot form. The biggest advantage to using an automated system to get trip characteristics versus manual methods is the time savings. Additionally, the entire process is "dynamic" in that as new highways are constructed, the functional classification of the total Statewide Transportation Modeling System can automatically be updated. The tests presented in this report were made on the 1965

-59-

highway network. But, if it were necessary to get trip characteristics on the 1975 highway network, all that is required is that the old network be updated and the process rerun with the new network and new population data. A 2300 zone statewide modeling system is in the preliminary stages. When that model becomes operational, the same process described above can be applied to provide more refined data eliminating the present limitations of the 547 zone system. It is felt that Michigan's statewide model has the potential of being most helpful in the process of functional classification in the future.