

TRAFFIC and SAFETY

 DIVISION
LIBRARY

michigan depertment of state highways

LANSING

DEPARTMENT OF STATE HIGHWAYS

MICHIGAN DEPARTMENT OF STATE HIGHWAYS

A TRAFFIC ACCIDENT ANALYSIS
 OF
 HIGH ACCIDENT LOCATIONS
 IN
 TUSCOLA COUNTY

TSD-SS-130-70

LIBRARY
michigan department of state highways

LANSING

Prepared by
Safety \& Surveillance Section
Traffic \& Safety Division Bureau of Operations
in cooperation with

National Highway Safety Bureau Department of Transportation

ACKNOWLEDGMENTS

Michigan Department of State Police
Captain Amthor
Sgt. Hathaway
Cpl. Harrison

Tuscola County Road Commission Robert Wellington - County Engineer

Tuscola County Sheriff Department Hugh Marr - County Sheriff

Michigan Department of State Highways
Max R. Hoffman - Traffic Safety and Surveillance Engineer Ivan V. Bartha - Supervising Engineer Ursel L. Savage - Study Engineer

Office of Highway Safety Planning Noel C. Bufe - Director

NHSB PROJECT \#IS-69-3-001
ACKNOWLEDGMENTS
INTRODUCTION
Scope 2
Study Procedures 2
Study Area 4
ACCIDENT ANALYSIS 9
TRAFFIC ENGINEERING ANALYSIS 12
S UMMARY 17
APPENDIX - I. LIST OF ILLUSTRATIONS AND TABLES 18
TABLE I Population Inventory and Forecast 19
II Place of Work and Residence 20
III Reported Traffic Accidents inTuscola County21
IV Annual Accident Summary 22
V Monthly and Daily Accident Occurrence 23
VI Daily and Hourly Accident Occurrence 24
VII Age of Drivers Involved in Accidents 25
VIII Residence of Drivers Involved inAccidents25IX Weather Condition at Scene ofAccident26
$X \quad$ Pavement Condition at Scene of

Accident26FIGURE 1 Collision Diagram - Kelly Road andCemetery Road28

Table of Contents Continued

Table of Contents Continued

| 10A Photo - Oak @ Millington Road | 49 |
| :--- | :--- | :--- |
| 11 | Collision Diagram - Murray @ |

11 Collision Diagram - Murray @
Deckerville Road 50
11A Photo - Murray @ Deckerville Road 51
12 Collision Diagram - Fairgrove @ Merry
Road 52
12A Photo - Fairgrove @ Merry Road 53
13 Co11ision Diagram - Bray @ Birch Run
Road 54
13A Photo - Bray @ Birch Run Road 55
14 Collision Diagram - Millington Road 56
14A Photo - Millington Road 57
APPENDIX - II. Excerpts from Section C, Michigan
Manual of Uniform Traffic Control
Devices

INTRODUCTION

The Highway Safety Act of 1966 was enacted by the Congress of the United States in order to promote Highway Safety Programs. Subsequently, various Highway Safety Standards were developed to assure the orderly implementation of the Act.

Highway Safety Standard 4.4.9, Identification and Surveillance of Accident Locations, is one of those standards. The purpose of Standard 4.4 .9 is to identify specific locations or sections of streets and highways which have high or potentially high accident experience, as a basis for establishing priorities for improvement, selective enforcement, or other operational practices that will eliminate or reduce the hazards at the location so identified.

The State of Michigan carries out a program of this type on the State trunkline system; however, many of the State's city and county agencies lack the financial and technical prerequisites necessary to pursue similar programs with similarly defined objectives. To insure that this additional Highway Safety Standard is met and to improve the overall evaluation of the accident picture in Michigan, the Michigan Department of State Highways requested and received through the Office of Highway Safety Planning in the Executive Office of the Governor a federally funded project entitled, "Traffic Accident Analysis for Cities and Counties". The intent of
this new project is to provide a special traffic engineering field service for cities and counties. In cooperation with participating cities and counties, the proposed service under the direction of Department personnel will make a traffic engineering evaluation of the factors causing traffic accidents and will recommend corrections to those conditions which may be contributing to accidents.

SCOPE
The intent of this program is to improve traffic safety on all Michigan streets and roads by expanding the traffic engineering evaluation of factors causing accidents. This should be accomplished by conducting traffic accident analysis of locations which experience high accident frequencies, and summarizing recommendations for corrective action.

STUDY PROCEDURES

The study procedures for the subject project involves several distinct phases. They may be described as follows: basic data collection, identifying and locating high accident locations, a traffic engineering analysis of accidents, technical evaluation of previously compiled facts, and consequent remedial recommendations.

Since a portion of the data collection phase involves
accident records and reports, and since the Michigan Department of State Police is responsible for keeping all accident records in Michigan, the task of identifying and locating high accident locations in Tuscola County (and providing an inventory of those locations) was designated as State Police responsibility. Because of the lack of a modern or automatic system of locating accidents on the county road system, the high accident locations for Tuscola County were determined by manually extracting and compiling those locations with the highest number of accidents from the current (1968) county accident reports. From this list, the 14 highest accident locations were selected. Once the problem locations were identified, additional accident information for the years 1966 and 1967 was compiled in order to expand the accident base at each location. Upon completion of this portion of the data collection, the Department of State Police documented and transmitted to the Traffic and Safety Division of the Department of State Highways a list, along with the accident reports, of the high accident locations for Tuscola County.

The second portion of the data collection phase, Which is the responsibility of the Department of State Highways, involves data collection utilizing the following basic steps: 1) preparation of collision diagrams, and, if necessary, physical condition diagrams for each

```
selected location, 2) obtaining traffic counts where
necessary.
```

The accident analysis and traffic engineering evaluation phases involve the analysis of the summarized facts and field data, and prescribing the proper remedial treatment.

STUDY AREA

Tuscola County is located in the northwest corner of Michigan's "Thumb" area (see map following page). It is bordered on the west by Saginaw and Bay Counties, the east by Sanilac County, the north by Huron County and on the south by Genesee and Lapeer Counties. Tuscola County has 25 townships as part of its smaller political subdivisions. Well-defined urban areas are situated around Caro and Vassar. The County's 1960 population was 43,305 . This was a 13.2% increase over the 1950 census. Population projections for the next decade or so indicate that Tuscola County will continue to grow (see Table I) in keeping with present trends.

Tuscola County is primarily an agricultural county. Its economy depends heavily on this; however, there are serious efforts to attract a variety of industries especially in the urban areas of Caro and Vassar. It is
noteworthy to recognize that a sizeable amount of Tuscola County's residents are employed outside of Tuscola County (see Table II).

Projections for industrial and manufacturing growth in Tuscola County indicate that its future growth will be less than the statewide average. Most of this type development will be centered around Caro and Vassar. The future growth and development of Tuscola County's major industries will depend to a great degree upon a safe, convenient and economical highway transportation system.

According to the Seventeenth Annual Progress Report as compiled by the Local Government Division of the Michigan Department of State Highways, Tuscola County has $1,744.55$ miles of highways excluding city and incorporated village streets and roads. This includes 119.1 miles of state trunkline, 345.89 miles of county primary roads and $1,279.55$ miles of local roads. Of the $1,625.44$ miles of county roads, 675 are hard surfaced and the remaining mileage is either gravel or unimproved dirt road (see County map following page).

In general, traffic congestion in Tuscola County is not a serious problem. The accident rates on Tuscola County roads are less than the statewide average. However, the statistics as shown in Table III do indicate that from a percentage standpoint there was a substantial increase


```
in reported accidents for }1968\mathrm{ over those for the previous
two years.
    Motor vehicle registration has steadily increased in
Tuscola County (see Table III). However, accidents increased
at a faster rate.
```

llbrary
michigan department of
stake highways
LANSING

ACCIDENT ANALYSIS

The various methods of accident analysis are intended to probe into the detailed aspects or facts of automobile accidents. Compared to the millions of vehicle miles traveled, accidents are very rare events. However, they are the only present means available to indicate a failure in the driver-road-vehicle environment. Any one of these three may be a major contributor to an accident. Although we must accept the fact that as highway engineers we have very little responsibility for changing or correcting the motorist's ability to drive (enforcement) or for the condition of the vehicle (manufacturer), we do have, however, the responsibility to construct the road, within feasible economic and design limits, such that the driver can operate his vehicle safely.

In our analysis, we examined the contributing factors from the viewpoint of a highway traffic engineer with special attention to the effect which the highway environment may have had on the accident.

At each high accident location, individual accident reports were reviewed in detail and the accident factors were tabulated and grouped in various tables. Collision diagrams were prepared for each location in order to identify accident patterns and to locate the accident in
relation to the intersection or approaches to the intersection.

These are some of the basic engineering techniques we used in trying to determine the reason for the accident.

To further document the various facts present at the fourteen high accident locations, the following tables were prepared to tabulate and chart specific data.
IV. Annual Accident Summary
V. Monthly \& Daily Accident Occurrence
VI. Daily \& Hourly Accident Occurrence
VII. Age of Drivers Involved in Accidents
VIII. Residence of Drivers Involved in Accidents
IX. Weather Conditions at Scene of Accidents
X. Pavement Conditions at Scene of Accidents

The information summarized in Table IV shows that during the years 1966 through 1968 a total of 53 accidents occurred at the 14 highest accident locations in Tuscola County. Of these, 28 resulted in personal injury and 21 were property damage. There were 4 fatals during this period.

Table V shows that the peak accident months were November and December accounting for 34% of the accidents. It also shows that Sunday was the peak accident day, with Friday, Saturday and Sunday accounting for over 70% of the total accidents.

The figures in Table VI indicate that the peak accident hours occur between 4 and 6 p.m. The information contained in Tables VII and VIII relates to the age and residence of drivers involved in accidents at the high accident locations during the study period. Table VIII shows that 63% of the drivers involved in accidents at the study locations were local residents. Table IX shows that 93% of the accidents occurred when the weather was clear or cloudy. Table X shows that nearly 70% of the accidents occurred when the pavement was dry.

TRAFFIC ENGINEERING ANALYSIS

The first step in the traffic engineering analysis phase of Tuscola County's high accident locations was the preparation of collision diagrams (see figures 1 through 14). It was apparent that no unusually high concentration of accidents existed at any one location. In fact, the highest total at one location for the 3 -year study period was six. Consequently, this report will discuss in detail only the four highest accident locations. However, collision diagrams and photographs are included for all 14 of the locations studied. A map showing the 14 locations within the county is included in the Appendix.

1. F.A.S. 128 (Cemetery Road) @ Kel1y Road, Novesta Township

This intersection was the scene of a total of six accidents for the years 1966 through 1968 , as shown by the collision diagram in figure 1. One of these was a right angle accident and one a head-on left turn accident. The other four accidents cannot be considered intersectional. They occurred from $1 / 4$ to $1 / 2$ miles north of Kelly Road. There is no accident pattern in this grouping and the presently available facts do not indicate a special criticality.

Kelly Road is a 22 foot blacktop road. It intersects Cemetery Road (F.A.S. 128) at approximately right angles. The geometrics at this intersection are adequate for the normal rural-type intersection (see photos in figure lA). The existing traffic control at this intersection is a $30^{\prime \prime}$ reflectorized stop sign for eastbound Kelly Road and a $24^{\prime \prime}$ stop sign for westbound Kelly Road.
2. Ormes Road, $1 / 10$ to $3 / 10$ miles East of Lewis Road (F.A.S. 779), Tuscola Township

Ormes Road in the subject area is a 24 foot bituminous road with 5 foot shoulders. The critical aspect of this short section of roadway is its horizontal alignment (see figures 2 A and 2 B). The existing traffic controls along this stretch of road are a series of warning signs (see figures 2 A and 2 B). There were a total of 6 reported accidents for this section of roadway for the years 1966 through 1968 (see figure 2). Five of these accidents were ran-off the road type accidents and two occurred at night. However, it is apparent that the sharpness of the existing curves was a major contributing factor to the occurrence of accidents at this location. Based on a yearly average of two accidents per year, we do not consider the accident problem at this location serious. The existing signing as prescribed and exected by the County Road Commission
meets the minimum standards of the Manual of Uniform Traffic Control Devices for the erection and location of those warning signs governing horizontal alignment changes.

Recommendation:

We recommend, however, that the curve signs be supplemented with the appropriate speed panels (See Section C, Warning Signs - Michigan Manual of Uniform Traffic Control Devices in Appendix II of this report). We further recommend that target arrows (also see Section C in Appendix $I I$) be placed in target position at the second curve for east and westbound ormes Road.
3. Frankenmuth Road, $1 / 2$ mile N. of Cottre11 Road, Tuscola Township

Frankenmuth Road is a county primary road connecting the City of Vassar with the southwest portion of the county. Frankenmuth Road in the subject area is a 22 foot bituminous road with 5 foot shoulders. The critical aspect of this section of roadway is its horizontal alignment (see figures 3A and $3 B$). There are several sharp curves in this area. The predominantly rural nature of the area probably contributes to high vehicular speeds. The Tuscola County Road Commission has erected warning signs showing a change in the horizontal alignment.

The accident experience for this section of roadway
for the years 1966 through 1968 was 6 accidents, 4 injury and two property damage (see figure 3). Based on the accident experience for those years, the problems at the subject location are not deemed to be serious.

Recommendation:

We recommend that the existing curve signs be supplemented with target arrows for northbound and southbound Frankenmuth Road.

We further recommend that the same sign (turn or curve) be used with the 30 MPH advisory speed panel (see photo 1 , figure $3 A$ and photo 3 , figure $3 B$).

We note that the 40 MPH speed sign (see photo 3 , figure 3A) is not located at the point of speed zone change, which we understand is the south city limits of Vassar. We recommend that this sign be relocated to coincide with this point.
4. Fostoria Road, (F.A.S. 127) @ Barnes Road, Water Township

This intersection was the scene of a total of five accidents for the years 1966 through 1968 , as shown on figure 4. Three of the accidents which occurred at this intersection were of the angle variety; however, all of the angle type accidents occurred in different years.

Fostoria Road is a 24 foot bituminous road with 5 foot shoulders. It intersects Barnes Road at approximately right angles. Barnes Road is a 22 foot bituminous road with 5 foot shoulders. The geometrics at this intersection are typical of the normal rural intersection (see
figure 4A). The existing traffic control is two $24^{\prime \prime}$ stop signs located on Barnes Road. Based on the accident experience at this location for the past three years, the problem at this location is not considered critical.

Remaining 10 Locations
Based on the accident experience at the 10 remaining locations, we have no specific suggestions for any changes.

These remaining high accident locations are as follows:

Location

5. Hurds Corner Road @ East Dayton, Wells Township
6. Waterman @ Kirk Road, Vassar Township
7. Deckerville Road, approximately 3/10 mile West of Murray Road, Ellington Township
8. Colwood @ Elmwood Road, Ellington Township
9. Kern @ Dixon Road, Denmark Township
10. Millington @ Oak Road, Millington Township
11. Murray @ Deckerville Road Ellington Township
12. Fairgrove @ Merry Road Fairgrove Township
13. Bray @ Birch Run Road, Arbella Township
14. Millington Road, approximately 4/10-5/10 miles East of Sheridan Road, Millington Township

Total P.D. Inj. Fat.

3

3

3
1
22

1
2

2
1

3

2

2

2

SUMMARY

There were a total of 1,098 reported traffic accidents on Tuscola County roads during the study period 1966 through 1968 for an average of 366 accidents per year.

Our analysis of the accident problem on county roads in Tuscola County, in relationship to spot or high accident locations, reveals that there are no critical problems which could be eliminated by the modest engineering means usually related to a spot improvement program.

However, the accident information summarized in Tables IV through X may yield some basic information needed by those agencies interested in highway safety from the standpoint of driver education and law enforcement. For instance, Table VI, Daily and Hourly Accident Occurrence, shows that the peak accident hours are between 4:00 p.m. and 6:00 p.m. It further shows that a notable percentage of accidents occurred between the hours 12:00 midnight to 3:00 a.m. This information may be helpful to law enforcement agencies in determining manpower needs for street patrol activities.
APPENDIX I

TABLE I
POPULATION INVENTORY AND FORECAST

Source: United States Department of Commerce Bureau of the Census

TUSCOLA COUNTY PLACE OF WORK．AND RESIDENCE

Place of Work 1960

Residence 1960	$\frac{\text { E }}{\mathbf{L}}$	$\begin{aligned} & \text { ह̀ } \\ & \text { 岂 } \\ & 0 . \\ & 0.0 \\ & 0.0 . ~ \end{aligned}$			$\begin{aligned} & \text { 訁े } \\ & \text { 合 } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{H}} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$						$\begin{aligned} & \text { 旁 } \\ & \text { D } \\ & 0 \\ & 0 \\ & \text { 亳 } \end{aligned}$		¢	
Akron Township	4	4	22	8	74	12	275	－	－	－	－	－	－	－	24
Almer Township	0	12	32	8	8	0	664	4	4	4	－	－	－	4	4
Arbila Township	219	44	29	25	0	0	193	0	0	3	－	－	－	－	39
Columbia Township	0	4	16	15	49	8	358	21						8	16
Dayton Township	12	0	8	0	0	0	187	0	38	24	－	32	12	－	16
Denmark Township	4	－	126	182	11	－	454	3	－	－	－	－	－	4	35
Elkland Township	－	－	9	24	4	4	1044	31	43	－	－	4	4	4	4
Ellington Township	5	0	25	15	－	－	229	0	8	－	－	－	－	－	8
Elmwood Township	0	0	3	4	15.	0	329	24	8	－	－	－	－	－	10
Fairgrove Township	12	8	44	8	12	8	432	－	－	－	－	－	－	8	17
Freemont Township	51	11	27	12	－	－	419	－	－	20	－	26	－	－	12
Gilford Township	8	8	36	33	39	0	166								29
Indianfields Township	12	12	28	3	－	－	336	0	8	3	－	－	－	－	8
Caro Village	4	4	34	16	21	0	1170	4	20	0	0	5	12	8	61
Junita Township	－	－	15	4	0	4	261	－	－	－	－	－	－	－	4
Kingston Township	4	0	11	4	8	0	300	4	58	－	－	－	4	3	16
Koylton Township	－	－	12	－	－	－	115	－	72	3	－	7	－	8	8
Millington Township	210	51	19	38	－	－	479	－	－	20	－	4	－	4	112
Novista	－	－	4	12	－	－	269	4	8	－	－	4	12	－	＇4
Tuscola Township	34	－	57	69	13	－	415	－	－	－	－	－	－	－	37
Vassar City	68	9	83	56	16	4	714	4	－	－	－	3	4	－	27
Vassar Township	51.	16	27	21	4	－	217	－	－	－	－	－	4	16	20
Watertown Township	117	8	－	－	－	－	223	－	－	12	－	21	8	3	51
Wells Township	8	－	4	8	－	－	155	－	11	－	－	5	4	－	4
Wisner Township	3	－	16	－	110	3	111	－	－	－	－	－	－	－	4
	826	191	687	565	384	43	9515	99	278	89	0	107	60	74	570
Tuscola County Residents Employed In															
Tuscola County Residents Employed				3，403											
Total Tuscola County Residents															
				12，918		20									

TABLE III

Year	Tuscola Co. Roads	State Of Michi Accidents
1966	108	302,880
1967	351	299,004
1968	639	305,495
	PERCENT CHANGE	
$1966-67$	225	-1.28
$1967-68$	82	2.17

VEHICLE REGISTRATIONS								
Year	Pass.	Comm.	Vehicle Trailer	Trailer Coach	Motor Cycles	Muni- cipal	Total Plates	
1966	-	-	-	-	-	-	-	23,595
1967	17,664	3,764	1,322	4,366	417	635	37	28,205
1968	18,029	4,108	1,347	4,575	486	755	30	29,326

Table IV
ANMUAL ACCIDENY SUMMARY
FOURTEEN HIGH ACCIDENT LOCATIONS IN TUSCOLA COUNTY
Period studied: 1966 THROUGH 1968

* * * * * * * *

Accident Type	Day	Night	Total
Fatal Accident	1	3	4
Pexsonal Injury Acc.	16	12	28
Property Damage Acc.	9	12	21
Total	26	27	53

$* * * * * * * *$

Month	Fatal		Injury		Prop. Damage		Sub. Total		Totar
	Day	Night	Day	Ivight	Day	Wight	Day	Night	
January		1			2	3	2	4	6
February			2				2		2
March		1		1.				2	2
April			2		1	1	3	1	4
May			1	2			1	2	3
June			1		1	1	2	1	3
Jualy					2	1	2	1	3
August			3		1		4		4
September			3	1	2	1	5	2	7
October			1	1			1	1	2
November			3	4		2	3	6	9
December	1	1		3		3	1	7	8
S. Total	1	3	16	12	9	12	26	27	53
Total	4		28		21.		53		53

MONTHLY AND DAILY ACCIDENT OCCURRENCE
FOURTEEN HIGH ACCIDENT LOCATIONS IN TUSCOLA COUNTY
Period Studied:_1966 through 1968

* * * * * * * * *

Month	Day of the Week							Monthly Total	\% Of Total
	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.		
January				1	1	3	1	6	11.32
February					,	2		2	3.77
March					1		1	2	3.77
April		1		1			2	4	7.55
May					2		1	3	5.66
June		1			1		1	3	5.66
July				1		2		3	5.66
August	1					2	1	4	7.55
September					3	1	2	6	11.32
October			1			1		2	3.77
November		2	1	1	1	1	3	9	16.98
December	2		2		2		3	9	16.98
rotal	3	4	4	4	11	12	15	53	100.00\%
\% of	5.66	7.55	7.55	7.55	20.75	22.6 .4	28.30	100.00\%	100.00\%

Peak Accident Day: \qquad
Peak Accident Month: Nov. \& Dec.

ACCIDENT ANALYSIS

Table VI
DAILY AND HOURLY ACCIDENT OCCURRENCE

FOURTEEN HIGH ACCIDENT LOCATIONS IN TUSCOLA COUNTY

Period Studied: $\quad 1966$ through 1968

* * * * * * * * * *

Hour	Day of the Week							$\begin{array}{r} \text { Hour } \\ \text { Total } \\ \hline \end{array}$	of Total
	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.		
$12-1 \mathrm{AM}$						1	1	2	3.77
$1-2 \mathrm{AM}$		1	1			1	1	4	7.55
2-3AM							2	2	3.77
3-4AM									
4-5AM						1	1	2	3.77
5-6AM					1			1	1.89
6-7AM				1				1	1.89
7 - 8AM			1					1	1.89
8 - 9 AM									
$9-10 \mathrm{AM}$			1	1				2	3.77
10-11AM					1	1		2	3.77
11-12AM					1	1	1	3	5.66
12-1PM		1			1	1		3	5.66
1-2PM					1	1	2	4	7.55
2-3PM					1	1		2	3.77
3-4PM		.				2		2	3.77
4-5PM		1	1				2	4	7.55
5-6PM		1			1		2	4	7.55
$6-7 \mathrm{PM}$	1					1	1	3.	5.66
$7-8 \mathrm{PM}$	1				2			3	5.66
$8-9 \mathrm{PM}$	1					1		2	3.77
$9-10 \mathrm{PM}$				1			1	2	3.77
10-11PM				1	2			3	5.66
$11-12 \mathrm{PM}$							1	1	1.89
Not Stated									
Total	3	4	4	4	11	12	15	53	100.00\%
\% of Total	5.66	7.55	7.55	7.55	20.75	22.64	28.30	100.00\$	100.00\%

Peak Accident Hour: 2 a.m., 2 p.m., 5 p.m., 6 p.m.
Peak Accident Day: Sunday

Table VII

AGE OF DRIVERS INVOLVED IN ACCIDENTS
FOURTEEN HIGH ACCIDENT LOCATIONS IN TUSCOLA COUNTY

Period Studied: 1966 through 1968

* * * * * * * * * *

$\begin{aligned} & \text { Age } \\ & \text { Group } \end{aligned}$	Number of Drivers Involved in				Percent
	Fatal	In,jury	Prop. Damage	Total	
Under 16		1		1	1.41
16-19	1	3	6	10	14.10
$20-24$	2	8	6	16	22.50
25-34	1	11	5	17	23.96
$35-14$	1	7	6	14	19.71
$45-54$	1	2	1	4	5.64
55-64		3	2	5	7.04
$65-74$		1	2	3	4.23
75 \& Over					
Not Stated		1		1	1.41
Total	6	37	28	71	100.00

Table VIII

RESIDENCE CF DRIVERS INVOLVED IN ACCIDENTS

Residence	Number of Drivers Involved in				Percent
	Fatal	Injury	Prop. Damage	Total	
Local	5	20	20	45	63.40
Michjgan	1	17	7	25	35.19
Out of gtate					
Not Stated					1
Total	6				71

ACCIDENT ANALYSIS

Table IX
WEATHER CONDITIONS AT SCENE OF ACCIDENTS FOURTEEN HIGH ACCIDENT LOCATIONS IN TUSCOLA COUNTY

Period Studied: 1966 through 1968

* * * * * * * * * *

Weather	Severity of Accident.				Percent
	Fetal	Injury	Prop. Damage	Total	
Clear or Cloudy	4	25	20	49	92.45
Rain		1		1	. 1.89
Fog					
Snow or Sleet		2	1^{*}	3	5.66
Not Stated					
Total	4	28	21	53	100.00

$* * * * * * * * *$

TABLE X

PAVENENP CONDITIONS AT SCENE OF ACCIDENTS

Pavement					
	Severity of Accident				
Dry	Fatal	Injury	Prop. Damage	Total	
Wet	3	20	14	37	69.78
Snowr/Icy		4	2	6	11.32
Icy	1	5	4	10	18.90
Mot Stated					
Total					

WESTBOUND KELLY ROAD

SOUTHBOUND CEMETERY ROAD

EASTBOUND
KELLY ROAD

EASTBOUND
ORMES ROAD

WESTBOUND
ORMES ROAD

NORTHBOUND
FRANKENMUTH ROAD

SOUTHBOUND FRANKENMUTH ROAD

FIGURE 4

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM Period: 1966 THRU 1968 TUSCOLA CO, Description WATERTOWN TW BARNS AT FOSTORIA.RDS.

EASTBOUND BARNES ROAD

NORTHBOUND FOSTORIA ROAD

WESTBOUND BARNES ROAD

GUARD RAIL.

FIGURE 5

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM
	Period: 1966 THRU1968 TUSCOLA CO Description WELLS TWE EAST DAYTON AT HURDS CORNER Accidents - Total $\frac{4}{3}, ~(51$ P.D. $\frac{0}{}$ Injury $\frac{3}{\text { Fatal } 0}(\mathrm{O})$
	\qquad

SOUTHBOUND HURDS CORNER ROAD

EASTBOUND EAST DAYTON ROAD

NORTHBOUND HURDS CORNER ROAD

WATERMANRE

FIGURE 6

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM
LEGEND Stop \& Go Signal Flashing Beacon	Period: 1966 THRU 1968 TUSCOLA CO Description VASSAR TWP. KIRK AT WATERMAN FDS.

EASTBOUND WATERMAN ROAD

NORTHBOUND
KIRK ROAD

WESTBOUND WATERMAN ROAD

> (3)

DECKERVILLE PO

FIGURE 7

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM Period: 1266 THRU 1968 TUSCOLA CO, Description ELLINGTON TW DECKERVILLE RD.

EASTBOUND
DECKERVILLE ROAD

WESTBOUND

ELMWOOD RD.
,

$$
\begin{aligned}
\text { ACC. NO. } 1-3 & -1968 \\
\text { ACC. NO. } 1 \& 2- & -0.2 \text { mi. S. of } \\
& \text { Ellwood Rd. }
\end{aligned}
$$

FIGURE 8

EASTBOUND ELMWOOD ROAD

WESTBOUND ELMWOOD ROAD

FIGURE 9

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM
	Period: 1966 THRU 1968 TUSCOLA CO. Description DENMARK TWP DIXON AT KEKN ROS Accidents - Total P.D. \qquad Injury \qquad Fatal \qquad ()
	\qquad

NORTHBOUND
 KERN ROAD

SOUTHBOUND
OAK ROAD

EASTBOUND MILLINGTON ROAD

NORTHBOUND OAK ROAD

SOUTHBOUND MURRAY ROAD

NORTHBOUND MURRAY ROAD

FIGURE I2

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM
	Period: $\frac{1066 \text { THRU } 1268}{\text { TUSCOLA CO. DescriptionFA }}$ FAIRGROVE RD at MERRY RD Accidents - Total $\frac{2}{1}$ (Injury $\frac{1}{1}$
	C.S.Acc. Rate $/ \mathrm{mv}$ Acc. Rate/mvm Drawn DJM_ Date 3-30-70 Rev. Plan No. $\quad 13$

NORTHBOUND MERRY ROAD

EASTBOUND FAIRGROVE ROAD

SOUTHBOUND MERRY ROAD

BIRCH RUN RD.

FIGURE 13
MICHIGAN DEPARTMENT OF STATE HIGHWAYS
Traffic Division

WESTBOUND
BIRCH RUN ROAD

NORTHBOUND
BRAY ROAD
\qquad

FIGURE 14

MICHIGAN DEPARTMENT OF STATE HIGHWAYS Traffic Division	ACCIDENT STUDY COLLISION DIAGRAM
LEGEND Stop \& Go Signal Stop Sign $\quad \mathbf{~}$ Flashing Beacon Yield Sign $\quad Y \nleftarrow$	Period: \qquad QLA CQ Den
	TUSCOLA CO. Description Millington Twp.
	Acc. Rate/mv Acc. Rate/mvm
	C.S.
	Drawn DJM \qquad Date 1-6-70 \qquad Rev. \qquad
	15

EASTBOUND
MILLINGTON ROAD

APPENDIX II

Section C. Warning Signs

Introduction

Warning signs shall be used for the purpose of warning traffic of existing or potentially hazardous conditions either on or adjacent to the roadway. Warning signs require caution on the part of the motorist and may call for reduction of speed or other maneuver in the interest of his own safety and that of other motorists and pedestrians. Adequate warnings are of great assistance to the vehicle operator and are valuable in safeguarding and expediting traffic. However, the use of warning signs should be kept to a minimum. Too frequent use of them or their unnecessary use to warn of conditions which are apparent tends to bring disrespect for all signs.

The conditions warranting warning signs are classified in the following groups according to the type of conditions to which they are applied:

1. Changes in Horizontal Alignments (W1 Series)
2. Intersections
(W2 Series)
3. Advance Warning of Control Devices
(W3 Series)
4. Converging Traffic Lanes (W4 Series)
5. Narrow Roadways (W5 Series)
6. Changes in Highway Design (W6 Series)
7. Grades (W7 Series)
8. Roadway Surface Conditions (W8 Series)
9. Schools and Pedestrians (W9 Series)
10. Railroad Crossings
(W10 Series)
11. Entrances and Crossings
12. Miscellaneous
13. Construction and Maintenance

Warning signs with certain exceptions shall be diamond-shaped (square with one diagonal vertical) and shall have a "Highway Yellow" background with black legend. These exceptions are

[^0]
the Railroad Crossing signs, the Target Arrow signs, the Curve Speed panel, the Exit Speed sign, the Obstruction panel, and the Lattice Background. Other exceptions to the diamond shape are provided for in the case of temporary signs for highway construction and maintenance.
The use of warning signs should be limited to those standard signs set forth in this section. However, after the Engineer has exhausted all possibilities, it may be found that no standard sign fits the situation and warning signs, other than those specified, may be required. Such signs shall conform with the general specifications for size ($30^{\prime \prime}$ minimum), shape, and color of warning signs. All warning signs having significance during hours of darkness shall be reflectorized or illuminated.

TARGET ARROW SIGN

Reflectorized

W1-6-48 $48^{\prime \prime} \times 24^{\prime \prime}$

W1-6-96 $96^{\prime \prime} \times 48^{\prime \prime}$
This sign may be used as a supplement to a Turn or Curve sign for potentially hazardous turns or curves. To increase its target value and to obscure misleading topography, the sign may be mounted on a Lattice Background (W12-10).

Where further emphasis of the required movement is desired, the W1-6-96 may be used in lieu of the unit consisting of the W1-6-48 and the W12-10.

This sign shall not be used to mark the ends of medians, centerpiers, etc., where there is no change in the direction of travel for all traffic. Further, it shall not be used as a route directional confirmatory marker or in any location where an intersecting street or highway of equal or nearly equal importance presents a choice of movement.

When used, the Target Arrow sign shall be erected in target position and, if possible, mounted high enough to be visible for at least 500 feet. It shall be placed at five feet minimum bottom height and two feet from the edge of the shoulder or curb face.

CURVE SPEED PANEL

35
 Reflectorized

W12-1-21	$21^{\prime \prime} \times 21^{\prime \prime}$	$\left(10^{\prime \prime}\right.$ and $3^{\prime \prime}$ letters)
W12-1-24	$24^{\prime \prime} \times 24^{\prime \prime}$	$\left(12^{\prime \prime}\right.$ and $3^{\prime \prime}$ letters)

The Curve Speed panel may be used as a supplement to the W1-1 through W1-5 signs only and shall display a speed legend in increments of five miles per hour. Since this legend is advisory, no Traffic Control Order is required. The W12-1-21 shall only be used with the appropriate 36 inch W1 sign and the W12-1-24 with the appropriate 48 inch W1 sign.

To determine the accurate negotiable speed on a turn or curve by the use of a ball bank indicator or Devil Level, several runs should be made in the same direction to obtain the most accurate reading possible. Readings obtained from several trial runs in the same direction shall determine the curve speed for that respective direction. Since the comfortable turn or curve speed on a specific turn or curve may vary, depending on direction of travel, the same procedure shall be used to obtain the curve speed for the opposite direction.

The following table indicates the speed to be used on the Curve Speed panel.

Indicator Reading	Speedometer Reading	Appropriate Panel Legend
10°	60,59, or 58	60
10°	$57,56,55,54$, or 53	55
10°	$52,51,50,49$, or 48	50
10°	$47,46,45,44$, or 43	45
10°	$42,41,40,39$, or 38	40
10°	$37,36,35,34$, or 33	35
12°	$32,31,30,29$, or 28	30
12°	$27,26,25,24$, or 23	25

[^0]: *Special warning signs for highway construction and maintenance projects are to be found in Part II of this Manual.

